locale_facets.tcc

00001 // Locale support -*- C++ -*-
00002 
00003 // Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
00004 // Free Software Foundation, Inc.
00005 //
00006 // This file is part of the GNU ISO C++ Library.  This library is free
00007 // software; you can redistribute it and/or modify it under the
00008 // terms of the GNU General Public License as published by the
00009 // Free Software Foundation; either version 2, or (at your option)
00010 // any later version.
00011 
00012 // This library is distributed in the hope that it will be useful,
00013 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00014 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015 // GNU General Public License for more details.
00016 
00017 // You should have received a copy of the GNU General Public License along
00018 // with this library; see the file COPYING.  If not, write to the Free
00019 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
00020 // USA.
00021 
00022 // As a special exception, you may use this file as part of a free software
00023 // library without restriction.  Specifically, if other files instantiate
00024 // templates or use macros or inline functions from this file, or you compile
00025 // this file and link it with other files to produce an executable, this
00026 // file does not by itself cause the resulting executable to be covered by
00027 // the GNU General Public License.  This exception does not however
00028 // invalidate any other reasons why the executable file might be covered by
00029 // the GNU General Public License.
00030 
00031 // Warning: this file is not meant for user inclusion. Use <locale>.
00032 
00033 #ifndef _CPP_BITS_LOCFACETS_TCC
00034 #define _CPP_BITS_LOCFACETS_TCC 1
00035 
00036 #pragma GCC system_header
00037 
00038 #include <cerrno>
00039 #include <clocale>          // For localeconv
00040 #include <cstdlib>          // For strof, strtold
00041 #include <cmath>            // For ceil
00042 #include <cctype>           // For isspace
00043 #include <limits>           // For numeric_limits
00044 #include <typeinfo>         // For bad_cast.
00045 #include <bits/streambuf_iterator.h>
00046 
00047 namespace std
00048 {
00049   template<typename _Facet>
00050     locale
00051     locale::combine(const locale& __other) const
00052     {
00053       _Impl* __tmp = new _Impl(*_M_impl, 1);
00054       try
00055     {
00056       __tmp->_M_replace_facet(__other._M_impl, &_Facet::id);
00057     }
00058       catch(...)
00059     {
00060       __tmp->_M_remove_reference();
00061       __throw_exception_again;
00062     }
00063       return locale(__tmp);
00064     }
00065 
00066   template<typename _CharT, typename _Traits, typename _Alloc>
00067     bool
00068     locale::operator()(const basic_string<_CharT, _Traits, _Alloc>& __s1,
00069                        const basic_string<_CharT, _Traits, _Alloc>& __s2) const
00070     {
00071       typedef std::collate<_CharT> __collate_type;
00072       const __collate_type& __collate = use_facet<__collate_type>(*this);
00073       return (__collate.compare(__s1.data(), __s1.data() + __s1.length(),
00074                 __s2.data(), __s2.data() + __s2.length()) < 0);
00075     }
00076 
00077   template<typename _Facet>
00078     const _Facet&
00079     use_facet(const locale& __loc)
00080     {
00081       size_t __i = _Facet::id._M_id();
00082       locale::facet** __facets = __loc._M_impl->_M_facets;
00083       if (!(__i < __loc._M_impl->_M_facets_size && __facets[__i]))
00084         __throw_bad_cast();
00085       return static_cast<const _Facet&>(*__facets[__i]);
00086     }
00087 
00088   template<typename _Facet>
00089     bool
00090     has_facet(const locale& __loc) throw()
00091     {
00092       size_t __i = _Facet::id._M_id();
00093       locale::facet** __facets = __loc._M_impl->_M_facets;
00094       return (__i < __loc._M_impl->_M_facets_size && __facets[__i]);
00095     }
00096 
00097   // Routine to access a cache for the locale.  If the cache didn't
00098   // exist before, it gets constructed on the fly.
00099   template<typename _Facet>
00100     inline const __locale_cache<_Facet>&
00101     __use_cache(const locale& __loc)
00102     {
00103       size_t __i = _Facet::id._M_id();
00104       if (__builtin_expect(__i >= __loc._M_impl->_M_facets_size,false))
00105     __throw_bad_cast();
00106       __locale_cache_base* __cache = __loc._M_impl->_M_get_cache(__i);
00107       if (__builtin_expect(!__cache, false))
00108     {
00109       __cache = new __locale_cache<_Facet>(__loc);
00110       __loc._M_impl->_M_install_cache(__cache, __i);
00111     }
00112       return static_cast<const __locale_cache<_Facet>&>(*__cache);
00113     }
00114 
00115   // Stage 1: Determine a conversion specifier.
00116   template<typename _CharT, typename _InIter>
00117     _InIter
00118     num_get<_CharT, _InIter>::
00119     _M_extract_float(_InIter __beg, _InIter __end, ios_base& __io,
00120              ios_base::iostate& __err, string& __xtrc) const
00121     {
00122       typedef char_traits<_CharT>       __traits_type;
00123       const locale __loc = __io.getloc();
00124       const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
00125       const numpunct<_CharT>& __np = use_facet<numpunct<_CharT> >(__loc);
00126 
00127       // First check for sign.
00128       const char_type __plus = __ctype.widen('+');
00129       const char_type __minus = __ctype.widen('-');
00130       int __pos = 0;
00131       char_type  __c = *__beg;
00132       if ((__traits_type::eq(__c, __plus) || __traits_type::eq(__c, __minus))
00133       && __beg != __end)
00134     {
00135       __xtrc += __ctype.narrow(__c, char());
00136       ++__pos;
00137       __c = *(++__beg);
00138     }
00139 
00140       // Next, strip leading zeros.
00141       const char_type __zero = __ctype.widen(_S_atoms_in[_M_zero]);
00142       bool __found_zero = false;
00143       while (__traits_type::eq(__c, __zero) && __beg != __end)
00144     {
00145       __c = *(++__beg);
00146       __found_zero = true;
00147     }
00148       if (__found_zero)
00149     {
00150       __xtrc += _S_atoms_in[_M_zero];
00151       ++__pos;
00152     }
00153 
00154       // Only need acceptable digits for floating point numbers.
00155       const size_t __len = _M_E - _M_zero + 1;
00156       char_type  __watoms[__len];
00157       __ctype.widen(_S_atoms_in, _S_atoms_in + __len, __watoms);
00158       bool __found_dec = false;
00159       bool __found_sci = false;
00160       const char_type __dec = __np.decimal_point();
00161 
00162       string __found_grouping;
00163       const string __grouping = __np.grouping();
00164       bool __check_grouping = __grouping.size();
00165       int __sep_pos = 0;
00166       const char_type __sep = __np.thousands_sep();
00167 
00168       while (__beg != __end)
00169         {
00170       // Only look in digits.
00171           const char_type* __p = __traits_type::find(__watoms, 10,  __c);
00172           if (__p)
00173         {
00174           // Try first for acceptable digit; record it if found.
00175           ++__pos;
00176           __xtrc += _S_atoms_in[__p - __watoms];
00177           ++__sep_pos;
00178           __c = *(++__beg);
00179         }
00180           else if (__traits_type::eq(__c, __sep) 
00181            && __check_grouping && !__found_dec)
00182         {
00183               // NB: Thousands separator at the beginning of a string
00184               // is a no-no, as is two consecutive thousands separators.
00185               if (__sep_pos)
00186                 {
00187                   __found_grouping += static_cast<char>(__sep_pos);
00188                   __sep_pos = 0;
00189           __c = *(++__beg);
00190                 }
00191               else
00192         {
00193           __err |= ios_base::failbit;
00194           break;
00195         }
00196             }
00197       else if (__traits_type::eq(__c, __dec) && !__found_dec)
00198         {
00199           // According to the standard, if no grouping chars are seen,
00200           // no grouping check is applied. Therefore __found_grouping
00201           // must be adjusted only if __dec comes after some __sep.
00202           if (__found_grouping.size())
00203         __found_grouping += static_cast<char>(__sep_pos);
00204           ++__pos;
00205           __xtrc += '.';
00206           __c = *(++__beg);
00207           __found_dec = true;
00208         }
00209       else if ((__traits_type::eq(__c, __watoms[_M_e]) 
00210             || __traits_type::eq(__c, __watoms[_M_E])) 
00211            && !__found_sci && __pos)
00212         {
00213           // Scientific notation.
00214           ++__pos;
00215           __xtrc += __ctype.narrow(__c, char());
00216           __c = *(++__beg);
00217 
00218           // Remove optional plus or minus sign, if they exist.
00219           if (__traits_type::eq(__c, __plus) 
00220           || __traits_type::eq(__c, __minus))
00221         {
00222           ++__pos;
00223           __xtrc += __ctype.narrow(__c, char());
00224           __c = *(++__beg);
00225         }
00226           __found_sci = true;
00227         }
00228       else
00229         // Not a valid input item.
00230         break;
00231         }
00232 
00233       // Digit grouping is checked. If grouping and found_grouping don't
00234       // match, then get very very upset, and set failbit.
00235       if (__check_grouping && __found_grouping.size())
00236         {
00237           // Add the ending grouping if a decimal wasn't found.
00238       if (!__found_dec)
00239         __found_grouping += static_cast<char>(__sep_pos);
00240           if (!__verify_grouping(__grouping, __found_grouping))
00241         __err |= ios_base::failbit;
00242         }
00243 
00244       // Finish up
00245       __xtrc += char();
00246       if (__beg == __end)
00247         __err |= ios_base::eofbit;
00248       return __beg;
00249     }
00250 
00251   // Stage 1: Determine a conversion specifier.
00252   template<typename _CharT, typename _InIter>
00253     _InIter
00254     num_get<_CharT, _InIter>::
00255     _M_extract_int(_InIter __beg, _InIter __end, ios_base& __io,
00256            ios_base::iostate& __err, string& __xtrc, int& __base) const
00257     {
00258       typedef char_traits<_CharT>       __traits_type;
00259       const locale __loc = __io.getloc();
00260       const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
00261       const numpunct<_CharT>& __np = use_facet<numpunct<_CharT> >(__loc);
00262  
00263       // NB: Iff __basefield == 0, this can change based on contents.
00264       ios_base::fmtflags __basefield = __io.flags() & ios_base::basefield;
00265       if (__basefield == ios_base::oct)
00266         __base = 8;
00267       else if (__basefield == ios_base::hex)
00268         __base = 16;
00269       else
00270     __base = 10;
00271 
00272       // First check for sign.
00273       int __pos = 0;
00274       char_type  __c = *__beg;
00275       const char_type __plus = __ctype.widen('+');
00276       const char_type __minus = __ctype.widen('-');
00277 
00278       if ((__traits_type::eq(__c, __plus) || __traits_type::eq(__c, __minus))
00279       && __beg != __end)
00280     {
00281       __xtrc += __ctype.narrow(__c, char());
00282       ++__pos;
00283       __c = *(++__beg);
00284     }
00285 
00286       // Next, strip leading zeros and check required digits for base formats.
00287       const char_type __zero = __ctype.widen(_S_atoms_in[_M_zero]);
00288       const char_type __x = __ctype.widen('x');
00289       const char_type __X = __ctype.widen('X');
00290       if (__base == 10)
00291     {
00292       bool __found_zero = false;
00293       while (__traits_type::eq(__c, __zero) && __beg != __end)
00294         {
00295           __c = *(++__beg);
00296           __found_zero = true;
00297         }
00298       if (__found_zero)
00299         {
00300           __xtrc += _S_atoms_in[_M_zero];
00301           ++__pos;
00302           if (__basefield == 0)
00303         {         
00304           if ((__traits_type::eq(__c, __x) 
00305                || __traits_type::eq(__c, __X))
00306               && __beg != __end)
00307             {
00308               __xtrc += __ctype.narrow(__c, char());
00309               ++__pos;
00310               __c = *(++__beg);
00311               __base = 16;
00312             }
00313           else 
00314             __base = 8;
00315         }
00316         }
00317     }
00318       else if (__base == 16)
00319     {
00320       if (__traits_type::eq(__c, __zero) && __beg != __end)
00321         {
00322           __xtrc += _S_atoms_in[_M_zero];
00323           ++__pos;
00324           __c = *(++__beg); 
00325           if ((__traits_type::eq(__c, __x) || __traits_type::eq(__c, __X))
00326           && __beg != __end)
00327         {
00328           __xtrc += __ctype.narrow(__c, char());
00329           ++__pos;
00330           __c = *(++__beg);
00331         }
00332         }
00333     }
00334 
00335       // At this point, base is determined. If not hex, only allow
00336       // base digits as valid input.
00337       size_t __len;
00338       if (__base == 16)
00339     __len = _M_size;
00340       else
00341     __len = __base;
00342 
00343       // Extract.
00344       char_type __watoms[_M_size];
00345       __ctype.widen(_S_atoms_in, _S_atoms_in + __len, __watoms);
00346       string __found_grouping;
00347       const string __grouping = __np.grouping();
00348       bool __check_grouping = __grouping.size();
00349       int __sep_pos = 0;
00350       const char_type __sep = __np.thousands_sep();
00351       while (__beg != __end)
00352         {
00353           const char_type* __p = __traits_type::find(__watoms, __len,  __c);
00354           if (__p)
00355         {
00356           // Try first for acceptable digit; record it if found.
00357           __xtrc += _S_atoms_in[__p - __watoms];
00358           ++__pos;
00359           ++__sep_pos;
00360           __c = *(++__beg);
00361         }
00362           else if (__traits_type::eq(__c, __sep) && __check_grouping)
00363         {
00364               // NB: Thousands separator at the beginning of a string
00365               // is a no-no, as is two consecutive thousands separators.
00366               if (__sep_pos)
00367                 {
00368                   __found_grouping += static_cast<char>(__sep_pos);
00369                   __sep_pos = 0;
00370           __c = *(++__beg);
00371                 }
00372               else
00373         {
00374           __err |= ios_base::failbit;
00375           break;
00376         }
00377             }
00378       else
00379         // Not a valid input item.
00380         break;
00381         }
00382 
00383       // Digit grouping is checked. If grouping and found_grouping don't
00384       // match, then get very very upset, and set failbit.
00385       if (__check_grouping && __found_grouping.size())
00386         {
00387           // Add the ending grouping.
00388           __found_grouping += static_cast<char>(__sep_pos);
00389           if (!__verify_grouping(__grouping, __found_grouping))
00390         __err |= ios_base::failbit;
00391         }
00392 
00393       // Finish up.
00394       __xtrc += char();
00395       if (__beg == __end)
00396         __err |= ios_base::eofbit;
00397       return __beg;
00398     }
00399 
00400 #ifdef _GLIBCPP_RESOLVE_LIB_DEFECTS
00401   //17.  Bad bool parsing
00402   template<typename _CharT, typename _InIter>
00403     _InIter
00404     num_get<_CharT, _InIter>::
00405     do_get(iter_type __beg, iter_type __end, ios_base& __io,
00406            ios_base::iostate& __err, bool& __v) const
00407     {
00408       // Parse bool values as unsigned long
00409       if (!(__io.flags() & ios_base::boolalpha))
00410         {
00411           // NB: We can't just call do_get(long) here, as it might
00412           // refer to a derived class.
00413           string __xtrc;
00414           int __base;
00415           __beg = _M_extract_int(__beg, __end, __io, __err, __xtrc, __base);
00416 
00417       unsigned long __ul; 
00418       __convert_to_v(__xtrc.c_str(), __ul, __err, _S_c_locale, __base);
00419       if (!(__err & ios_base::failbit) && __ul <= 1)
00420         __v = __ul;
00421       else 
00422             __err |= ios_base::failbit;
00423         }
00424 
00425       // Parse bool values as alphanumeric
00426       else
00427         {
00428       typedef char_traits<_CharT>           __traits_type;
00429       typedef basic_string<_CharT>      __string_type;
00430 
00431           locale __loc = __io.getloc();
00432       const numpunct<_CharT>& __np = use_facet<numpunct<_CharT> >(__loc); 
00433       const __string_type __true = __np.truename();
00434       const __string_type __false = __np.falsename();
00435           const char_type* __trues = __true.c_str();
00436           const char_type* __falses = __false.c_str();
00437           const size_t __truen =  __true.size() - 1;
00438           const size_t __falsen =  __false.size() - 1;
00439 
00440           for (size_t __n = 0; __beg != __end; ++__n)
00441             {
00442               char_type __c = *__beg++;
00443               bool __testf = __n <= __falsen 
00444                      ? __traits_type::eq(__c, __falses[__n]) : false;
00445               bool __testt = __n <= __truen 
00446                      ? __traits_type::eq(__c, __trues[__n]) : false;
00447               if (!(__testf || __testt))
00448                 {
00449                   __err |= ios_base::failbit;
00450                   break;
00451                 }
00452               else if (__testf && __n == __falsen)
00453                 {
00454                   __v = 0;
00455                   break;
00456                 }
00457               else if (__testt && __n == __truen)
00458                 {
00459                   __v = 1;
00460                   break;
00461                 }
00462             }
00463           if (__beg == __end)
00464             __err |= ios_base::eofbit;
00465         }
00466       return __beg;
00467     }
00468 #endif
00469 
00470   template<typename _CharT, typename _InIter>
00471     _InIter
00472     num_get<_CharT, _InIter>::
00473     do_get(iter_type __beg, iter_type __end, ios_base& __io,
00474            ios_base::iostate& __err, long& __v) const
00475     {
00476       string __xtrc;
00477       __xtrc.reserve(32);
00478       int __base;
00479       __beg = _M_extract_int(__beg, __end, __io, __err, __xtrc, __base);
00480       __convert_to_v(__xtrc.c_str(), __v, __err, _S_c_locale, __base);
00481       return __beg;
00482     }
00483 
00484   template<typename _CharT, typename _InIter>
00485     _InIter
00486     num_get<_CharT, _InIter>::
00487     do_get(iter_type __beg, iter_type __end, ios_base& __io,
00488            ios_base::iostate& __err, unsigned short& __v) const
00489     {
00490       string __xtrc;
00491       __xtrc.reserve(32);
00492       int __base;
00493       __beg = _M_extract_int(__beg, __end, __io, __err, __xtrc, __base);
00494       unsigned long __ul;
00495       __convert_to_v(__xtrc.c_str(), __ul, __err, _S_c_locale, __base);
00496       if (!(__err & ios_base::failbit) 
00497       && __ul <= numeric_limits<unsigned short>::max())
00498     __v = static_cast<unsigned short>(__ul);
00499       else 
00500     __err |= ios_base::failbit;
00501       return __beg;
00502     }
00503 
00504   template<typename _CharT, typename _InIter>
00505     _InIter
00506     num_get<_CharT, _InIter>::
00507     do_get(iter_type __beg, iter_type __end, ios_base& __io,
00508            ios_base::iostate& __err, unsigned int& __v) const
00509     {
00510       string __xtrc;
00511       __xtrc.reserve(32);
00512       int __base;
00513       __beg = _M_extract_int(__beg, __end, __io, __err, __xtrc, __base);
00514       unsigned long __ul;
00515       __convert_to_v(__xtrc.c_str(), __ul, __err, _S_c_locale, __base);
00516       if (!(__err & ios_base::failbit) 
00517       && __ul <= numeric_limits<unsigned int>::max())
00518     __v = static_cast<unsigned int>(__ul);
00519       else 
00520     __err |= ios_base::failbit;
00521       return __beg;
00522     }
00523 
00524   template<typename _CharT, typename _InIter>
00525     _InIter
00526     num_get<_CharT, _InIter>::
00527     do_get(iter_type __beg, iter_type __end, ios_base& __io,
00528            ios_base::iostate& __err, unsigned long& __v) const
00529     {
00530       string __xtrc;
00531       __xtrc.reserve(32);
00532       int __base;
00533       __beg = _M_extract_int(__beg, __end, __io, __err, __xtrc, __base);
00534       __convert_to_v(__xtrc.c_str(), __v, __err, _S_c_locale, __base);
00535       return __beg;
00536     }
00537 
00538 #ifdef _GLIBCPP_USE_LONG_LONG
00539   template<typename _CharT, typename _InIter>
00540     _InIter
00541     num_get<_CharT, _InIter>::
00542     do_get(iter_type __beg, iter_type __end, ios_base& __io,
00543            ios_base::iostate& __err, long long& __v) const
00544     {
00545       string __xtrc;
00546       __xtrc.reserve(32);
00547       int __base;
00548       __beg = _M_extract_int(__beg, __end, __io, __err, __xtrc, __base);
00549       __convert_to_v(__xtrc.c_str(), __v, __err, _S_c_locale, __base);
00550       return __beg;
00551     }
00552 
00553   template<typename _CharT, typename _InIter>
00554     _InIter
00555     num_get<_CharT, _InIter>::
00556     do_get(iter_type __beg, iter_type __end, ios_base& __io,
00557            ios_base::iostate& __err, unsigned long long& __v) const
00558     {
00559       string __xtrc;
00560       __xtrc.reserve(32);
00561       int __base;
00562       __beg = _M_extract_int(__beg, __end, __io, __err, __xtrc, __base);
00563       __convert_to_v(__xtrc.c_str(), __v, __err, _S_c_locale, __base);
00564       return __beg;
00565     }
00566 #endif
00567 
00568   template<typename _CharT, typename _InIter>
00569     _InIter
00570     num_get<_CharT, _InIter>::
00571     do_get(iter_type __beg, iter_type __end, ios_base& __io, 
00572        ios_base::iostate& __err, float& __v) const
00573     {
00574       string __xtrc;
00575       __xtrc.reserve(32);
00576       __beg = _M_extract_float(__beg, __end, __io, __err, __xtrc);
00577       __convert_to_v(__xtrc.c_str(), __v, __err, _S_c_locale);
00578       return __beg;
00579     }
00580 
00581   template<typename _CharT, typename _InIter>
00582     _InIter
00583     num_get<_CharT, _InIter>::
00584     do_get(iter_type __beg, iter_type __end, ios_base& __io,
00585            ios_base::iostate& __err, double& __v) const
00586     {
00587       string __xtrc;
00588       __xtrc.reserve(32);
00589       __beg = _M_extract_float(__beg, __end, __io, __err, __xtrc);
00590       __convert_to_v(__xtrc.c_str(), __v, __err, _S_c_locale);
00591       return __beg;
00592     }
00593 
00594   template<typename _CharT, typename _InIter>
00595     _InIter
00596     num_get<_CharT, _InIter>::
00597     do_get(iter_type __beg, iter_type __end, ios_base& __io,
00598            ios_base::iostate& __err, long double& __v) const
00599     {
00600       string __xtrc;
00601       __xtrc.reserve(32);
00602       __beg = _M_extract_float(__beg, __end, __io, __err, __xtrc);
00603       __convert_to_v(__xtrc.c_str(), __v, __err, _S_c_locale);
00604       return __beg;
00605     }
00606 
00607   template<typename _CharT, typename _InIter>
00608     _InIter
00609     num_get<_CharT, _InIter>::
00610     do_get(iter_type __beg, iter_type __end, ios_base& __io,
00611            ios_base::iostate& __err, void*& __v) const
00612     {
00613       // Prepare for hex formatted input
00614       typedef ios_base::fmtflags        fmtflags;
00615       fmtflags __fmt = __io.flags();
00616       __io.flags(__fmt & ~ios_base::basefield | ios_base::hex);
00617 
00618       string __xtrc;
00619       __xtrc.reserve(32);
00620       int __base;
00621       __beg = _M_extract_int(__beg, __end, __io, __err, __xtrc, __base);
00622 
00623       // Reset from hex formatted input
00624       __io.flags(__fmt);
00625 
00626       unsigned long __ul;
00627       __convert_to_v(__xtrc.c_str(), __ul, __err, _S_c_locale, __base);
00628       if (!(__err & ios_base::failbit))
00629     __v = reinterpret_cast<void*>(__ul);
00630       else 
00631     __err |= ios_base::failbit;
00632       return __beg;
00633     }
00634 
00635   // For use by integer and floating-point types after they have been
00636   // converted into a char_type string.
00637   template<typename _CharT, typename _OutIter>
00638     void
00639     num_put<_CharT, _OutIter>::
00640     _M_pad(_CharT __fill, streamsize __w, ios_base& __io, 
00641        _CharT* __new, const _CharT* __cs, int& __len) const
00642     {
00643       // [22.2.2.2.2] Stage 3.
00644       // If necessary, pad.
00645       __pad<_CharT, char_traits<_CharT> >::_S_pad(__io, __fill, __new, __cs, 
00646                           __w, __len, true);
00647       __len = static_cast<int>(__w);
00648     }
00649 
00650   // Forwarding functions to peel signed from unsigned integer types.
00651   template<typename _CharT>
00652     inline int
00653     __int_to_char(_CharT* __out, const int __size, long __v,
00654                const _CharT* __lit, ios_base::fmtflags __flags)
00655     {
00656       unsigned long __ul = static_cast<unsigned long>(__v);
00657       bool __neg = false;
00658       if (__v < 0) 
00659     {
00660       __ul = -__ul;
00661       __neg = true;
00662     }
00663       return __int_to_char(__out, __size, __ul, __lit, __flags, __neg); 
00664     }
00665 
00666   template<typename _CharT>
00667     inline int
00668     __int_to_char(_CharT* __out, const int __size, unsigned long __v,
00669                const _CharT* __lit, ios_base::fmtflags __flags)
00670     { return __int_to_char(__out, __size, __v, __lit, __flags, false); }
00671 
00672 #ifdef _GLIBCPP_USE_LONG_LONG
00673   template<typename _CharT>
00674     inline int
00675     __int_to_char(_CharT* __out, const int __size, long long __v,
00676                const _CharT* __lit, ios_base::fmtflags __flags)
00677     { 
00678       unsigned long long __ull = static_cast<unsigned long long>(__v);
00679       bool __neg = false;
00680       if (__v < 0) 
00681     {
00682       __ull = -__ull;
00683       __neg = true;
00684     }
00685       return __int_to_char(__out, __size, __ull, __lit, __flags, __neg); 
00686     }
00687 
00688   template<typename _CharT>
00689     inline int
00690     __int_to_char(_CharT* __out, const int __size, unsigned long long __v,
00691                const _CharT* __lit, ios_base::fmtflags __flags)
00692     { return __int_to_char(__out, __size, __v, __lit, __flags, false); }
00693 #endif
00694       
00695   template<typename _CharT, typename _ValueT>
00696     int
00697     __int_to_char(_CharT* __out, const int __size, _ValueT __v,
00698           const _CharT* __lit, ios_base::fmtflags __flags, bool __neg)
00699     {
00700       // Don't write base if already 0.
00701       const bool __showbase = (__flags & ios_base::showbase) && __v;
00702       const ios_base::fmtflags __basefield = __flags & ios_base::basefield;
00703       _CharT* __buf = __out + __size - 1;
00704       _CharT* __bufend = __out + __size;
00705 
00706       if (__builtin_expect(__basefield != ios_base::oct &&
00707                __basefield != ios_base::hex, true))
00708     {
00709       // Decimal.
00710       do 
00711         {
00712           *__buf-- = __lit[(__v % 10) + __num_base::_S_digits];
00713           __v /= 10;
00714         } 
00715       while (__v != 0);
00716       if (__neg)
00717         *__buf-- = __lit[__num_base::_S_minus];
00718       else if (__flags & ios_base::showpos)
00719         *__buf-- = __lit[__num_base::_S_plus];
00720     }
00721       else if (__basefield == ios_base::oct)
00722     {
00723       // Octal.
00724       do 
00725         {
00726           *__buf-- = __lit[(__v & 0x7) + __num_base::_S_digits];
00727           __v >>= 3;
00728         } 
00729       while (__v != 0);
00730       if (__showbase)
00731         *__buf-- = __lit[__num_base::_S_digits];
00732     }
00733       else
00734     {
00735       // Hex.
00736       const bool __uppercase = __flags & ios_base::uppercase;
00737       int __case_offset = __uppercase
00738                           ? __num_base::_S_udigits : __num_base::_S_digits;
00739       do 
00740         {
00741           *__buf-- = __lit[(__v & 0xf) + __case_offset];
00742           __v >>= 4;
00743         } 
00744       while (__v != 0);
00745       if (__showbase)
00746         {
00747           // 'x' or 'X'
00748           *__buf-- = __lit[__num_base::_S_x + __uppercase];
00749           // '0'
00750           *__buf-- = __lit[__num_base::_S_digits];
00751         }
00752     }
00753       int __ret = __bufend - __buf - 1;
00754       return __ret;
00755     }
00756 
00757   template<typename _CharT, typename _OutIter>
00758     void
00759     num_put<_CharT, _OutIter>::
00760     _M_group_int(const string& __grouping, _CharT __sep, ios_base& __io, 
00761          _CharT* __new, _CharT* __cs, int& __len) const
00762     {
00763       // By itself __add_grouping cannot deal correctly with __ws when
00764       // ios::showbase is set and ios_base::oct || ios_base::hex.
00765       // Therefore we take care "by hand" of the initial 0, 0x or 0X.
00766       // However, remember that the latter do not occur if the number
00767       // printed is '0' (__len == 1).
00768       streamsize __off = 0;
00769       const ios_base::fmtflags __basefield = __io.flags() 
00770                                          & ios_base::basefield;
00771       if ((__io.flags() & ios_base::showbase) && __len > 1)
00772     if (__basefield == ios_base::oct)
00773       {
00774         __off = 1;
00775         *__new = *__cs;
00776       }
00777     else if (__basefield == ios_base::hex)
00778       {
00779         __off = 2;
00780         *__new = *__cs;
00781         *(__new + 1) = *(__cs + 1);
00782       }
00783       _CharT* __p;
00784       __p = __add_grouping(__new + __off, __sep, 
00785                __grouping.c_str(),
00786                __grouping.c_str() + __grouping.size(),
00787                __cs + __off, __cs + __len);
00788       __len = __p - __new;
00789     }
00790 
00791   template<typename _CharT, typename _OutIter>
00792     template<typename _ValueT>
00793       _OutIter
00794       num_put<_CharT, _OutIter>::
00795       _M_convert_int(_OutIter __s, ios_base& __io, _CharT __fill, 
00796              _ValueT __v) const
00797       {
00798     typedef numpunct<_CharT>  __facet_type;
00799     typedef __locale_cache<numpunct<_CharT> > __cache_type;
00800     const locale& __loc = __io._M_getloc();
00801     const __cache_type& __lc = __use_cache<__facet_type>(__loc);
00802     const _CharT* __lit = __lc._M_atoms_out;
00803 
00804     // Long enough to hold hex, dec, and octal representations.
00805     int __ilen = 4 * sizeof(_ValueT);
00806     _CharT* __cs = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) 
00807                                  * __ilen));
00808     // [22.2.2.2.2] Stage 1, numeric conversion to character.
00809     // Result is returned right-justified in the buffer.
00810     int __len;
00811     __len = __int_to_char(&__cs[0], __ilen, __v, __lit, __io.flags());
00812     __cs = __cs + __ilen - __len;
00813     
00814     // Add grouping, if necessary. 
00815     _CharT* __cs2;
00816     if (__lc._M_use_grouping)
00817       {
00818         // Grouping can add (almost) as many separators as the
00819         // number of digits, but no more.
00820         __cs2 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) 
00821                               * __len * 2));
00822         _M_group_int(__lc._M_grouping, __lc._M_thousands_sep, __io, 
00823              __cs2, __cs, __len);
00824         __cs = __cs2;
00825       }
00826     
00827     // Pad.
00828     _CharT* __cs3;
00829     streamsize __w = __io.width();
00830     if (__w > static_cast<streamsize>(__len))
00831       {
00832         __cs3 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) 
00833                               * __w));
00834         _M_pad(__fill, __w, __io, __cs3, __cs, __len);
00835         __cs = __cs3;
00836       }
00837     __io.width(0);
00838 
00839     // [22.2.2.2.2] Stage 4.
00840     // Write resulting, fully-formatted string to output iterator.
00841     return __write(__s, __cs, __len);
00842       } 
00843 
00844   template<typename _CharT, typename _OutIter>
00845     void
00846     num_put<_CharT, _OutIter>::
00847     _M_group_float(const string& __grouping, _CharT __sep, const _CharT* __p, 
00848            _CharT* __new, _CharT* __cs, int& __len) const
00849     {
00850 #ifdef _GLIBCPP_RESOLVE_LIB_DEFECTS
00851       //282. What types does numpunct grouping refer to?
00852       // Add grouping, if necessary. 
00853       _CharT* __p2;
00854       int __declen = __p ? __p - __cs : __len;
00855       __p2 = __add_grouping(__new, __sep, 
00856                 __grouping.c_str(),
00857                 __grouping.c_str() + __grouping.size(),
00858                 __cs, __cs + __declen);
00859       
00860       // Tack on decimal part.
00861       int __newlen = __p2 - __new;
00862       if (__p)
00863     {
00864       char_traits<_CharT>::copy(__p2, __p, __len - __declen);
00865       __newlen += __len - __declen;
00866     }    
00867       __len = __newlen;
00868 #endif
00869     }
00870 
00871   // The following code uses snprintf (or sprintf(), when
00872   // _GLIBCPP_USE_C99 is not defined) to convert floating point values
00873   // for insertion into a stream.  An optimization would be to replace
00874   // them with code that works directly on a wide buffer and then use
00875   // __pad to do the padding.  It would be good to replace them anyway
00876   // to gain back the efficiency that C++ provides by knowing up front
00877   // the type of the values to insert.  Also, sprintf is dangerous
00878   // since may lead to accidental buffer overruns.  This
00879   // implementation follows the C++ standard fairly directly as
00880   // outlined in 22.2.2.2 [lib.locale.num.put]
00881   template<typename _CharT, typename _OutIter>
00882     template<typename _ValueT>
00883       _OutIter
00884       num_put<_CharT, _OutIter>::
00885       _M_convert_float(_OutIter __s, ios_base& __io, _CharT __fill, char __mod,
00886                _ValueT __v) const
00887       {
00888     // Use default precision if out of range.
00889     streamsize __prec = __io.precision();
00890     if (__prec < static_cast<streamsize>(0))
00891       __prec = static_cast<streamsize>(6);
00892     
00893     const int __max_digits = numeric_limits<_ValueT>::digits10;
00894 
00895     typedef numpunct<_CharT>  __facet_type;
00896     typedef __locale_cache<numpunct<_CharT> > __cache_type;
00897     const locale __loc = __io._M_getloc();
00898     const __cache_type& __lc = __use_cache<__facet_type>(__loc);
00899 
00900     // [22.2.2.2.2] Stage 1, numeric conversion to character.
00901     int __len;
00902     // Long enough for the max format spec.
00903     char __fbuf[16];
00904 
00905 #ifdef _GLIBCPP_USE_C99
00906     // First try a buffer perhaps big enough (probably sufficient
00907     // for non-ios_base::fixed outputs)
00908     int __cs_size = __max_digits * 3;
00909     char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
00910 
00911     _S_format_float(__io, __fbuf, __mod, __prec);
00912     __len = __convert_from_v(__cs, __cs_size, __fbuf, __v,
00913                  _S_c_locale, __prec);
00914 
00915     // If the buffer was not large enough, try again with the correct size.
00916     if (__len >= __cs_size)
00917       {
00918         __cs_size = __len + 1; 
00919         __cs = static_cast<char*>(__builtin_alloca(__cs_size));
00920         __len = __convert_from_v(__cs, __cs_size, __fbuf, __v,
00921                      _S_c_locale, __prec);
00922       }
00923 #else
00924     // Consider the possibility of long ios_base::fixed outputs
00925     const bool __fixed = __io.flags() & ios_base::fixed;
00926     const int __max_exp = numeric_limits<_ValueT>::max_exponent10;
00927 
00928     // ios_base::fixed outputs may need up to __max_exp+1 chars
00929     // for the integer part + up to __prec chars for the
00930     // fractional part + 3 chars for sign, decimal point, '\0'. On
00931     // the other hand, for non-fixed outputs __max_digits * 2 chars
00932     // + __prec are largely sufficient.
00933     const int __cs_size = __fixed ? __max_exp + __prec + 4 
00934                                   : __max_digits * 2 + __prec;
00935     char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
00936 
00937     _S_format_float(__io, __fbuf, __mod, __prec);
00938     __len = __convert_from_v(__cs, 0, __fbuf, __v, _S_c_locale, __prec);
00939 #endif
00940 
00941       // [22.2.2.2.2] Stage 2, convert to char_type, using correct
00942       // numpunct.decimal_point() values for '.' and adding grouping.
00943       const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
00944 
00945       _CharT* __ws = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) 
00946                                * __len));
00947       __ctype.widen(__cs, __cs + __len, __ws);
00948       
00949       // Replace decimal point.
00950       const _CharT __cdec = __ctype.widen('.');
00951       const _CharT __dec = __lc._M_decimal_point;
00952       const _CharT* __p;
00953       if (__p = char_traits<_CharT>::find(__ws, __len, __cdec))
00954     __ws[__p - __ws] = __dec;
00955 
00956       // Add grouping, if necessary. 
00957       _CharT* __ws2;
00958       if (__lc._M_use_grouping)
00959     {
00960         // Grouping can add (almost) as many separators as the
00961         // number of digits, but no more.
00962         __ws2 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
00963                               * __len * 2));
00964         _M_group_float(__lc._M_grouping, __lc._M_thousands_sep, __p,
00965                __ws2, __ws, __len);
00966         __ws = __ws2;
00967     }
00968 
00969       // Pad.
00970       _CharT* __ws3;
00971       streamsize __w = __io.width();
00972       if (__w > static_cast<streamsize>(__len))
00973     {
00974       __ws3 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) * __w));
00975       _M_pad(__fill, __w, __io, __ws3, __ws, __len);
00976       __ws = __ws3;
00977     }
00978       __io.width(0);
00979       
00980       // [22.2.2.2.2] Stage 4.
00981       // Write resulting, fully-formatted string to output iterator.
00982       return __write(__s, __ws, __len);
00983       }
00984 
00985   template<typename _CharT, typename _OutIter>
00986     _OutIter
00987     num_put<_CharT, _OutIter>::
00988     do_put(iter_type __s, ios_base& __io, char_type __fill, bool __v) const
00989     {
00990       ios_base::fmtflags __flags = __io.flags();
00991       if ((__flags & ios_base::boolalpha) == 0)
00992         {
00993           unsigned long __uv = __v;
00994           __s = _M_convert_int(__s, __io, __fill, __uv);
00995         }
00996       else
00997         {
00998       typedef numpunct<_CharT>  __facet_type;
00999       typedef __locale_cache<numpunct<_CharT> > __cache_type;
01000       const locale __loc = __io._M_getloc();
01001       const __cache_type& __lc = __use_cache<__facet_type>(__loc);
01002 
01003       typedef basic_string<_CharT>  __string_type;
01004       __string_type __name;
01005           if (__v)
01006         __name = __lc._M_truename;
01007           else
01008         __name = __lc._M_falsename;
01009 
01010       const _CharT* __cs = __name.c_str();
01011       int __len = __name.size();
01012       _CharT* __cs3;
01013       streamsize __w = __io.width();
01014       if (__w > static_cast<streamsize>(__len))
01015         {
01016           __cs3 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) 
01017                                 * __w));
01018           _M_pad(__fill, __w, __io, __cs3, __cs, __len);
01019           __cs = __cs3;
01020         }
01021       __io.width(0);
01022       __s = __write(__s, __cs, __len);
01023     }
01024       return __s;
01025     }
01026 
01027   template<typename _CharT, typename _OutIter>
01028     _OutIter
01029     num_put<_CharT, _OutIter>::
01030     do_put(iter_type __s, ios_base& __io, char_type __fill, long __v) const
01031     { return _M_convert_int(__s, __io, __fill, __v); }
01032 
01033   template<typename _CharT, typename _OutIter>
01034     _OutIter
01035     num_put<_CharT, _OutIter>::
01036     do_put(iter_type __s, ios_base& __io, char_type __fill,
01037            unsigned long __v) const
01038     { return _M_convert_int(__s, __io, __fill, __v); }
01039 
01040 #ifdef _GLIBCPP_USE_LONG_LONG
01041   template<typename _CharT, typename _OutIter>
01042     _OutIter
01043     num_put<_CharT, _OutIter>::
01044     do_put(iter_type __s, ios_base& __b, char_type __fill, long long __v) const
01045     { return _M_convert_int(__s, __b, __fill, __v); }
01046 
01047   template<typename _CharT, typename _OutIter>
01048     _OutIter
01049     num_put<_CharT, _OutIter>::
01050     do_put(iter_type __s, ios_base& __io, char_type __fill,
01051            unsigned long long __v) const
01052     { return _M_convert_int(__s, __io, __fill, __v); }
01053 #endif
01054 
01055   template<typename _CharT, typename _OutIter>
01056     _OutIter
01057     num_put<_CharT, _OutIter>::
01058     do_put(iter_type __s, ios_base& __io, char_type __fill, double __v) const
01059     { return _M_convert_float(__s, __io, __fill, char(), __v); }
01060 
01061   template<typename _CharT, typename _OutIter>
01062     _OutIter
01063     num_put<_CharT, _OutIter>::
01064     do_put(iter_type __s, ios_base& __io, char_type __fill, 
01065        long double __v) const
01066     { return _M_convert_float(__s, __io, __fill, 'L', __v); }
01067 
01068   template<typename _CharT, typename _OutIter>
01069     _OutIter
01070     num_put<_CharT, _OutIter>::
01071     do_put(iter_type __s, ios_base& __io, char_type __fill,
01072            const void* __v) const
01073     {
01074       ios_base::fmtflags __flags = __io.flags();
01075       ios_base::fmtflags __fmt = ~(ios_base::showpos | ios_base::basefield
01076                    | ios_base::uppercase | ios_base::internal);
01077       __io.flags(__flags & __fmt | (ios_base::hex | ios_base::showbase));
01078       try 
01079     {
01080       __s = _M_convert_int(__s, __io, __fill, 
01081                    reinterpret_cast<unsigned long>(__v));
01082       __io.flags(__flags);
01083     }
01084       catch (...) 
01085     {
01086       __io.flags(__flags);
01087       __throw_exception_again;
01088     }
01089       return __s;
01090     }
01091 
01092 
01093   template<typename _CharT, typename _InIter>
01094     _InIter
01095     money_get<_CharT, _InIter>::
01096     do_get(iter_type __beg, iter_type __end, bool __intl, ios_base& __io, 
01097        ios_base::iostate& __err, long double& __units) const
01098     { 
01099       string_type __str;
01100       __beg = this->do_get(__beg, __end, __intl, __io, __err, __str); 
01101 
01102       const int __cs_size = __str.size() + 1;
01103       char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
01104       const locale __loc = __io.getloc();
01105       const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc); 
01106       const _CharT* __wcs = __str.c_str();
01107       __ctype.narrow(__wcs, __wcs + __cs_size, char(), __cs);      
01108       __convert_to_v(__cs, __units, __err, _S_c_locale);
01109       return __beg;
01110     }
01111 
01112   template<typename _CharT, typename _InIter>
01113     _InIter
01114     money_get<_CharT, _InIter>::
01115     do_get(iter_type __beg, iter_type __end, bool __intl, ios_base& __io, 
01116        ios_base::iostate& __err, string_type& __units) const
01117     { 
01118       // These contortions are quite unfortunate.
01119       typedef moneypunct<_CharT, true>      __money_true;
01120       typedef moneypunct<_CharT, false>     __money_false;
01121       typedef money_base::part          part;
01122       typedef typename string_type::size_type   size_type;
01123 
01124       const locale __loc = __io.getloc();
01125       const __money_true& __mpt = use_facet<__money_true>(__loc); 
01126       const __money_false& __mpf = use_facet<__money_false>(__loc); 
01127       const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc); 
01128 
01129       const money_base::pattern __p = __intl ? __mpt.neg_format() 
01130                          : __mpf.neg_format();
01131 
01132       const string_type __pos_sign =__intl ? __mpt.positive_sign() 
01133                        : __mpf.positive_sign();
01134       const string_type __neg_sign =__intl ? __mpt.negative_sign() 
01135                        : __mpf.negative_sign();
01136       const char_type __d = __intl ? __mpt.decimal_point() 
01137                            : __mpf.decimal_point();
01138       const char_type __sep = __intl ? __mpt.thousands_sep() 
01139                          : __mpf.thousands_sep();
01140 
01141       const string __grouping = __intl ? __mpt.grouping() : __mpf.grouping();
01142 
01143       // Set to deduced positive or negative sign, depending.
01144       string_type __sign;
01145       // String of grouping info from thousands_sep plucked from __units.
01146       string __grouping_tmp; 
01147       // Marker for thousands_sep position.
01148       int __sep_pos = 0;
01149       // If input iterator is in a valid state.
01150       bool __testvalid = true;
01151       // Flag marking when a decimal point is found.
01152       bool __testdecfound = false; 
01153 
01154       // The tentative returned string is stored here.
01155       string_type __temp_units;
01156       __temp_units.reserve(20);
01157 
01158       char_type __c = *__beg;
01159       char_type __eof = static_cast<char_type>(char_traits<char_type>::eof());
01160       for (int __i = 0; __beg != __end && __i < 4 && __testvalid; ++__i)
01161     {
01162       part __which = static_cast<part>(__p.field[__i]);
01163       switch (__which)
01164         {
01165         case money_base::symbol:
01166           if (__io.flags() & ios_base::showbase 
01167               || __i < 2 || __sign.size() > 1
01168               || ((static_cast<part>(__p.field[3]) != money_base::none)
01169               && __i == 2)) 
01170             {
01171               // According to 22.2.6.1.2.2, symbol is required
01172               // if (__io.flags() & ios_base::showbase),
01173               // otherwise is optional and consumed only if
01174               // other characters are needed to complete the
01175               // format.
01176               const string_type __symbol = __intl ? __mpt.curr_symbol()
01177                                  : __mpf.curr_symbol();
01178               size_type __len = __symbol.size();
01179               size_type __j = 0;
01180               while (__beg != __end 
01181                  && __j < __len && __symbol[__j] == __c)
01182             {
01183               __c = *(++__beg);
01184               ++__j;
01185             }
01186               // When (__io.flags() & ios_base::showbase)
01187               // symbol is required.
01188               if (__j != __len && (__io.flags() & ios_base::showbase))
01189             __testvalid = false;
01190             }
01191           break;
01192         case money_base::sign:          
01193           // Sign might not exist, or be more than one character long.
01194           if (__pos_sign.size() && __c == __pos_sign[0])
01195             {
01196               __sign = __pos_sign;
01197               __c = *(++__beg);
01198             }
01199           else if (__neg_sign.size() && __c == __neg_sign[0])
01200             {
01201               __sign = __neg_sign;
01202               __c = *(++__beg);
01203             }         
01204           else if (__pos_sign.size() && __neg_sign.size())
01205             {
01206               // Sign is mandatory.
01207               __testvalid = false;
01208             }
01209           break;
01210         case money_base::value:
01211           // Extract digits, remove and stash away the
01212           // grouping of found thousands separators.
01213           while (__beg != __end 
01214              && (__ctype.is(ctype_base::digit, __c) 
01215                  || (__c == __d && !__testdecfound)
01216                  || __c == __sep))
01217             {
01218               if (__c == __d)
01219             {
01220               __grouping_tmp += static_cast<char>(__sep_pos);
01221               __sep_pos = 0;
01222               __testdecfound = true;
01223             }
01224               else if (__c == __sep)
01225             {
01226               if (__grouping.size())
01227                 {
01228                   // Mark position for later analysis.
01229                   __grouping_tmp += static_cast<char>(__sep_pos);
01230                   __sep_pos = 0;
01231                 }
01232               else
01233                 {
01234                   __testvalid = false;
01235                   break;
01236                 }
01237             }
01238               else
01239             {
01240               __temp_units += __c;
01241               ++__sep_pos;
01242             }
01243               __c = *(++__beg);
01244             }
01245           break;
01246         case money_base::space:
01247         case money_base::none:
01248           // Only if not at the end of the pattern.
01249           if (__i != 3)
01250             while (__beg != __end 
01251                && __ctype.is(ctype_base::space, __c))
01252               __c = *(++__beg);
01253           break;
01254         }
01255     }
01256 
01257       // Need to get the rest of the sign characters, if they exist.
01258       if (__sign.size() > 1)
01259     {
01260       size_type __len = __sign.size();
01261       size_type __i = 1;
01262       for (; __c != __eof && __i < __len; ++__i)
01263         while (__beg != __end && __c != __sign[__i])
01264           __c = *(++__beg);
01265       
01266       if (__i != __len)
01267         __testvalid = false;
01268     }
01269 
01270       // Strip leading zeros.
01271       while (__temp_units.size() > 1 && __temp_units[0] == __ctype.widen('0'))
01272     __temp_units.erase(__temp_units.begin());
01273 
01274       if (__sign.size() && __sign == __neg_sign)
01275     __temp_units.insert(__temp_units.begin(), __ctype.widen('-'));
01276 
01277       // Test for grouping fidelity.
01278       if (__grouping.size() && __grouping_tmp.size())
01279     {
01280       if (!__verify_grouping(__grouping, __grouping_tmp))
01281         __testvalid = false;
01282     }
01283 
01284       // Iff no more characters are available.      
01285       if (__c == __eof)
01286     __err |= ios_base::eofbit;
01287 
01288       // Iff valid sequence is not recognized.
01289       if (!__testvalid || !__temp_units.size())
01290     __err |= ios_base::failbit;
01291       else
01292     // Use the "swap trick" to copy __temp_units into __units.
01293     __temp_units.swap(__units);
01294 
01295       return __beg; 
01296     }
01297 
01298   template<typename _CharT, typename _OutIter>
01299     _OutIter
01300     money_put<_CharT, _OutIter>::
01301     do_put(iter_type __s, bool __intl, ios_base& __io, char_type __fill,
01302        long double __units) const
01303     { 
01304       const locale __loc = __io.getloc();
01305       const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
01306 #ifdef _GLIBCPP_USE_C99
01307       // First try a buffer perhaps big enough.
01308       int __cs_size = 64;
01309       char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
01310       // _GLIBCXX_RESOLVE_LIB_DEFECTS
01311       // 328. Bad sprintf format modifier in money_put<>::do_put()
01312       int __len = __convert_from_v(__cs, __cs_size, "%.0Lf", __units, 
01313                    _S_c_locale);
01314       // If the buffer was not large enough, try again with the correct size.
01315       if (__len >= __cs_size)
01316     {
01317       __cs_size = __len + 1;
01318       __cs = static_cast<char*>(__builtin_alloca(__cs_size));
01319       __len = __convert_from_v(__cs, __cs_size, "%.0Lf", __units, 
01320                    _S_c_locale);
01321     }
01322 #else
01323       // max_exponent10 + 1 for the integer part, + 2 for sign and '\0'.
01324       const int __cs_size = numeric_limits<long double>::max_exponent10 + 3;
01325       char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
01326       int __len = __convert_from_v(__cs, 0, "%.0Lf", __units, _S_c_locale);
01327 #endif
01328       _CharT* __ws = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) 
01329                                * __cs_size));
01330       __ctype.widen(__cs, __cs + __len, __ws);
01331       const string_type __digits(__ws, __len);
01332       return this->do_put(__s, __intl, __io, __fill, __digits); 
01333     }
01334 
01335   template<typename _CharT, typename _OutIter>
01336     _OutIter
01337     money_put<_CharT, _OutIter>::
01338     do_put(iter_type __s, bool __intl, ios_base& __io, char_type __fill,
01339        const string_type& __digits) const
01340     { 
01341       typedef typename string_type::size_type   size_type;
01342       typedef money_base::part          part;
01343 
01344       const locale __loc = __io.getloc();
01345       const size_type __width = static_cast<size_type>(__io.width());
01346 
01347       // These contortions are quite unfortunate.
01348       typedef moneypunct<_CharT, true> __money_true;
01349       typedef moneypunct<_CharT, false> __money_false;
01350       const __money_true& __mpt = use_facet<__money_true>(__loc); 
01351       const __money_false& __mpf = use_facet<__money_false>(__loc); 
01352       const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc); 
01353 
01354       // Determine if negative or positive formats are to be used, and
01355       // discard leading negative_sign if it is present.
01356       const char_type* __beg = __digits.data();
01357       const char_type* __end = __beg + __digits.size();
01358       money_base::pattern __p;
01359       string_type __sign;
01360       if (*__beg != __ctype.widen('-'))
01361     {
01362       __p = __intl ? __mpt.pos_format() : __mpf.pos_format();
01363       __sign =__intl ? __mpt.positive_sign() : __mpf.positive_sign();
01364     }
01365       else
01366     {
01367       __p = __intl ? __mpt.neg_format() : __mpf.neg_format();
01368       __sign =__intl ? __mpt.negative_sign() : __mpf.negative_sign();
01369       ++__beg;
01370     }
01371       
01372       // Look for valid numbers in the current ctype facet within input digits.
01373       __end = __ctype.scan_not(ctype_base::digit, __beg, __end);
01374       if (__beg != __end)
01375     {
01376       // Assume valid input, and attempt to format.
01377       // Break down input numbers into base components, as follows:
01378       //   final_value = grouped units + (decimal point) + (digits)
01379       string_type __value;
01380       __value.reserve(20);
01381 
01382       const int __frac = __intl ? __mpt.frac_digits() 
01383                         : __mpf.frac_digits();
01384 
01385       // Add thousands separators to non-decimal digits, per
01386       // grouping rules.
01387       const int __paddec = __frac - (__end - __beg);
01388       if (__paddec < 0)
01389         {
01390           const string __grouping = __intl ? __mpt.grouping() 
01391                            : __mpf.grouping();
01392           if (__grouping.size())
01393         {
01394           const char_type __sep = __intl ? __mpt.thousands_sep() 
01395                                  : __mpf.thousands_sep();
01396           const char* __gbeg = __grouping.data();
01397           const char* __gend = __gbeg + __grouping.size();
01398           const int __n = (__end - __beg) * 2;
01399           _CharT* __ws2 =
01400                   static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) * __n));
01401           _CharT* __ws_end = __add_grouping(__ws2, __sep, __gbeg, 
01402                             __gend, __beg,
01403                             __end - __frac);
01404           __value.assign(__ws2, __ws_end - __ws2);
01405         }
01406           else
01407         __value.assign(__beg, -__paddec);
01408         }
01409 
01410       // Deal with decimal point, decimal digits.
01411       if (__frac > 0)
01412         {
01413           const char_type __d = __intl ? __mpt.decimal_point() 
01414                        : __mpf.decimal_point();
01415           __value += __d;
01416           if (__paddec <= 0)
01417         __value.append(__end - __frac, __frac);
01418           else
01419         {
01420           // Have to pad zeros in the decimal position.
01421           const char_type __zero = __ctype.widen('0');
01422           __value.append(__paddec, __zero);
01423           __value.append(__beg, __end - __beg);
01424         }
01425         }
01426 
01427       const string_type __symbol = __intl ? __mpt.curr_symbol() 
01428                               : __mpf.curr_symbol();
01429 
01430       // Calculate length of resulting string.
01431       ios_base::fmtflags __f = __io.flags() & ios_base::adjustfield;
01432       size_type __len = __value.size() + __sign.size();
01433       __len += (__io.flags() & ios_base::showbase) ? __symbol.size() : 0;
01434 
01435       string_type __res;
01436       __res.reserve(__len);
01437 
01438       bool __testipad = __f == ios_base::internal && __len < __width;
01439 
01440       // Fit formatted digits into the required pattern.
01441       for (int __i = 0; __i < 4; ++__i)
01442         {
01443           part __which = static_cast<part>(__p.field[__i]);
01444           switch (__which)
01445         {
01446         case money_base::symbol:
01447           if (__io.flags() & ios_base::showbase)
01448             __res += __symbol;
01449           break;
01450         case money_base::sign:          
01451           // Sign might not exist, or be more than one
01452           // charater long. In that case, add in the rest
01453           // below.
01454           if (__sign.size())
01455             __res += __sign[0];
01456           break;
01457         case money_base::value:
01458           __res += __value;
01459           break;
01460         case money_base::space:
01461           // At least one space is required, but if internal
01462           // formatting is required, an arbitrary number of
01463           // fill spaces will be necessary.
01464           if (__testipad)
01465             __res += string_type(__width - __len, __fill);
01466           else
01467             __res += __ctype.widen(__fill);
01468           break;
01469         case money_base::none:
01470           if (__testipad)
01471             __res += string_type(__width - __len, __fill);
01472           break;
01473         }
01474         }
01475 
01476       // Special case of multi-part sign parts.
01477       if (__sign.size() > 1)
01478         __res += string_type(__sign.begin() + 1, __sign.end());
01479 
01480       // Pad, if still necessary.
01481       __len = __res.size();
01482       if (__width > __len)
01483         {
01484           if (__f == ios_base::left)
01485         // After.
01486         __res.append(__width - __len, __fill);
01487           else
01488         // Before.
01489         __res.insert(0, string_type(__width - __len, __fill));
01490           __len = __width;
01491         }
01492 
01493       // Write resulting, fully-formatted string to output iterator.
01494       __s = __write(__s, __res.data(), __len);
01495     }
01496       __io.width(0);
01497       return __s; 
01498     }
01499 
01500 
01501   // NB: Not especially useful. Without an ios_base object or some
01502   // kind of locale reference, we are left clawing at the air where
01503   // the side of the mountain used to be...
01504   template<typename _CharT, typename _InIter>
01505     time_base::dateorder
01506     time_get<_CharT, _InIter>::do_date_order() const
01507     { return time_base::no_order; }
01508 
01509   template<typename _CharT, typename _InIter>
01510     void
01511     time_get<_CharT, _InIter>::
01512     _M_extract_via_format(iter_type& __beg, iter_type& __end, ios_base& __io,
01513               ios_base::iostate& __err, tm* __tm, 
01514               const _CharT* __format) const
01515     {  
01516       locale __loc = __io.getloc();
01517       __timepunct<_CharT> const& __tp = use_facet<__timepunct<_CharT> >(__loc);
01518       const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc); 
01519       size_t __len = char_traits<_CharT>::length(__format);
01520 
01521       for (size_t __i = 0; __beg != __end && __i < __len && !__err; ++__i)
01522     {
01523       if (__ctype.narrow(__format[__i], 0) == '%')
01524         {
01525           // Verify valid formatting code, attempt to extract.
01526           char __c = __ctype.narrow(__format[++__i], 0);
01527           int __mem = 0;
01528           if (__c == 'E' || __c == 'O')
01529         __c = __ctype.narrow(__format[++__i], 0);
01530           switch (__c)
01531         {
01532           const char* __cs;
01533           _CharT __wcs[10];
01534         case 'a':
01535           // Abbreviated weekday name [tm_wday]
01536           const char_type*  __days1[7];
01537           __tp._M_days_abbreviated(__days1);
01538           _M_extract_name(__beg, __end, __tm->tm_wday, __days1, 7, 
01539                   __err);
01540           break;
01541         case 'A':
01542           // Weekday name [tm_wday].
01543           const char_type*  __days2[7];
01544           __tp._M_days(__days2);
01545           _M_extract_name(__beg, __end, __tm->tm_wday, __days2, 7, 
01546                   __err);
01547           break;
01548         case 'h':
01549         case 'b':
01550           // Abbreviated month name [tm_mon]
01551           const char_type*  __months1[12];
01552           __tp._M_months_abbreviated(__months1);
01553           _M_extract_name(__beg, __end, __tm->tm_mon, __months1, 12, 
01554                   __err);
01555           break;
01556         case 'B':
01557           // Month name [tm_mon].
01558           const char_type*  __months2[12];
01559           __tp._M_months(__months2);
01560           _M_extract_name(__beg, __end, __tm->tm_mon, __months2, 12, 
01561                   __err);
01562           break;
01563         case 'c':
01564           // Default time and date representation.
01565           const char_type*  __dt[2];
01566           __tp._M_date_time_formats(__dt);
01567           _M_extract_via_format(__beg, __end, __io, __err, __tm, 
01568                     __dt[0]);
01569           break;
01570         case 'd':
01571           // Day [01, 31]. [tm_mday]
01572           _M_extract_num(__beg, __end, __tm->tm_mday, 1, 31, 2, 
01573                  __ctype, __err);
01574           break;
01575         case 'D':
01576           // Equivalent to %m/%d/%y.[tm_mon, tm_mday, tm_year]
01577           __cs = "%m/%d/%y";
01578           __ctype.widen(__cs, __cs + 9, __wcs);
01579           _M_extract_via_format(__beg, __end, __io, __err, __tm, 
01580                     __wcs);
01581           break;
01582         case 'H':
01583           // Hour [00, 23]. [tm_hour]
01584           _M_extract_num(__beg, __end, __tm->tm_hour, 0, 23, 2,
01585                  __ctype, __err);
01586           break;
01587         case 'I':
01588           // Hour [01, 12]. [tm_hour]
01589           _M_extract_num(__beg, __end, __tm->tm_hour, 1, 12, 2, 
01590                  __ctype, __err);
01591           break;
01592         case 'm':
01593           // Month [01, 12]. [tm_mon]
01594           _M_extract_num(__beg, __end, __mem, 1, 12, 2, __ctype, 
01595                  __err);
01596           if (!__err)
01597             __tm->tm_mon = __mem - 1;
01598           break;
01599         case 'M':
01600           // Minute [00, 59]. [tm_min]
01601           _M_extract_num(__beg, __end, __tm->tm_min, 0, 59, 2,
01602                  __ctype, __err);
01603           break;
01604         case 'n':
01605           if (__ctype.narrow(*__beg, 0) == '\n')
01606             ++__beg;
01607           else
01608             __err |= ios_base::failbit;
01609           break;
01610         case 'R':
01611           // Equivalent to (%H:%M).
01612           __cs = "%H:%M";
01613           __ctype.widen(__cs, __cs + 6, __wcs);
01614           _M_extract_via_format(__beg, __end, __io, __err, __tm, 
01615                     __wcs);
01616           break;
01617         case 'S':
01618           // Seconds.
01619           _M_extract_num(__beg, __end, __tm->tm_sec, 0, 59, 2,
01620                  __ctype, __err);
01621           break;
01622         case 't':
01623           if (__ctype.narrow(*__beg, 0) == '\t')
01624             ++__beg;
01625           else
01626         __err |= ios_base::failbit;
01627           break;
01628         case 'T':
01629           // Equivalent to (%H:%M:%S).
01630           __cs = "%H:%M:%S";
01631           __ctype.widen(__cs, __cs + 9, __wcs);
01632           _M_extract_via_format(__beg, __end, __io, __err, __tm, 
01633                     __wcs);
01634           break;
01635         case 'x':
01636           // Locale's date.
01637           const char_type*  __dates[2];
01638           __tp._M_date_formats(__dates);
01639           _M_extract_via_format(__beg, __end, __io, __err, __tm, 
01640                     __dates[0]);
01641           break;
01642         case 'X':
01643           // Locale's time.
01644           const char_type*  __times[2];
01645           __tp._M_time_formats(__times);
01646           _M_extract_via_format(__beg, __end, __io, __err, __tm, 
01647                     __times[0]);
01648           break;
01649         case 'y':
01650           // Two digit year. [tm_year]
01651           _M_extract_num(__beg, __end, __tm->tm_year, 0, 99, 2, 
01652                  __ctype, __err);
01653           break;
01654         case 'Y':
01655           // Year [1900). [tm_year]
01656           _M_extract_num(__beg, __end, __mem, 0, 
01657                  numeric_limits<int>::max(), 4, 
01658                  __ctype, __err);
01659           if (!__err)
01660             __tm->tm_year = __mem - 1900;
01661           break;
01662         case 'Z':
01663           // Timezone info.
01664           if (__ctype.is(ctype_base::upper, *__beg))
01665             {
01666               int __tmp;
01667               _M_extract_name(__beg, __end, __tmp, 
01668                       __timepunct<_CharT>::_S_timezones, 
01669                       14, __err);
01670               
01671               // GMT requires special effort.
01672               char_type __c = *__beg;
01673               if (!__err && __tmp == 0 
01674               && (__c == __ctype.widen('-') 
01675                   || __c == __ctype.widen('+')))
01676             {
01677               _M_extract_num(__beg, __end, __tmp, 0, 23, 2,
01678                       __ctype, __err);
01679               _M_extract_num(__beg, __end, __tmp, 0, 59, 2,
01680                       __ctype, __err);
01681             }       
01682               }
01683               else
01684             __err |= ios_base::failbit;
01685               break;
01686             default:
01687               // Not recognized.
01688               __err |= ios_base::failbit;
01689             }
01690         }
01691           else
01692         {
01693           // Verify format and input match, extract and discard.
01694           if (__format[__i] == *__beg)
01695             ++__beg;
01696           else
01697             __err |= ios_base::failbit;
01698         }
01699     }
01700     }
01701 
01702   template<typename _CharT, typename _InIter>
01703     void
01704     time_get<_CharT, _InIter>::
01705     _M_extract_num(iter_type& __beg, iter_type& __end, int& __member,
01706            int __min, int __max, size_t __len, 
01707            const ctype<_CharT>& __ctype, 
01708            ios_base::iostate& __err) const
01709     {
01710       size_t __i = 0;
01711       string __digits;
01712       bool __testvalid = true;
01713       char_type __c = *__beg;
01714       while (__beg != __end && __i < __len 
01715          && __ctype.is(ctype_base::digit, __c)) 
01716     {
01717       __digits += __ctype.narrow(__c, 0);
01718       __c = *(++__beg);
01719       ++__i;
01720     }
01721       if (__i == __len)
01722     {
01723       int __value = atoi(__digits.c_str());
01724       if (__min <= __value && __value <= __max)
01725         __member = __value;
01726       else
01727         __testvalid = false;
01728     }
01729       else
01730     __testvalid = false;
01731       if (!__testvalid)
01732     __err |= ios_base::failbit;
01733     }
01734 
01735   // Assumptions:
01736   // All elements in __names are unique.
01737   template<typename _CharT, typename _InIter>
01738     void
01739     time_get<_CharT, _InIter>::
01740     _M_extract_name(iter_type& __beg, iter_type& __end, int& __member,
01741             const _CharT** __names, size_t __indexlen, 
01742             ios_base::iostate& __err) const
01743     {
01744       typedef char_traits<_CharT>       __traits_type;
01745       int* __matches = static_cast<int*>(__builtin_alloca(sizeof(int) 
01746                               * __indexlen));
01747       size_t __nmatches = 0;
01748       size_t __pos = 0;
01749       bool __testvalid = true;
01750       const char_type* __name;
01751 
01752       char_type __c = *__beg;
01753       // Look for initial matches.
01754       for (size_t __i1 = 0; __i1 < __indexlen; ++__i1)
01755     if (__c == __names[__i1][0])
01756       __matches[__nmatches++] = __i1;
01757       
01758       while (__nmatches > 1)
01759     {
01760       // Find smallest matching string.
01761       size_t __minlen = 10;
01762       for (size_t __i2 = 0; __i2 < __nmatches; ++__i2)
01763         __minlen = min(__minlen,
01764                __traits_type::length(__names[__matches[__i2]]));
01765       
01766       if (__pos < __minlen && __beg != __end)
01767         {
01768           ++__pos;
01769           __c = *(++__beg);
01770           for (size_t __i3 = 0; __i3 < __nmatches; ++__i3)
01771         {
01772           __name = __names[__matches[__i3]];
01773           if (__name[__pos] != __c)
01774             __matches[__i3] = __matches[--__nmatches];
01775         }
01776         }
01777       else
01778         break;
01779     }
01780 
01781       if (__nmatches == 1)
01782     {
01783       // Make sure found name is completely extracted.
01784       __name = __names[__matches[0]];
01785       const size_t __len = __traits_type::length(__name);
01786       while (__pos < __len && __beg != __end && __name[__pos] == *__beg)
01787         ++__beg, ++__pos;
01788 
01789       if (__len == __pos)
01790         __member = __matches[0];
01791       else
01792         __testvalid = false;
01793     }
01794       else
01795     __testvalid = false;
01796       if (!__testvalid)
01797     __err |= ios_base::failbit;
01798     }
01799 
01800   template<typename _CharT, typename _InIter>
01801     _InIter
01802     time_get<_CharT, _InIter>::
01803     do_get_time(iter_type __beg, iter_type __end, ios_base& __io,
01804         ios_base::iostate& __err, tm* __tm) const
01805     {
01806       _CharT __wcs[3];
01807       const char* __cs = "%X";
01808       locale __loc = __io.getloc();
01809       ctype<_CharT> const& __ctype = use_facet<ctype<_CharT> >(__loc);
01810       __ctype.widen(__cs, __cs + 3, __wcs);
01811       _M_extract_via_format(__beg, __end, __io, __err, __tm, __wcs);
01812       if (__beg == __end)
01813     __err |= ios_base::eofbit;
01814       return __beg;
01815     }
01816 
01817   template<typename _CharT, typename _InIter>
01818     _InIter
01819     time_get<_CharT, _InIter>::
01820     do_get_date(iter_type __beg, iter_type __end, ios_base& __io,
01821         ios_base::iostate& __err, tm* __tm) const
01822     {
01823       _CharT __wcs[3];
01824       const char* __cs = "%x";
01825       locale __loc = __io.getloc();
01826       ctype<_CharT> const& __ctype = use_facet<ctype<_CharT> >(__loc);
01827       __ctype.widen(__cs, __cs + 3, __wcs);
01828       _M_extract_via_format(__beg, __end, __io, __err, __tm, __wcs);
01829       if (__beg == __end)
01830     __err |= ios_base::eofbit;
01831       return __beg;
01832     }
01833 
01834   template<typename _CharT, typename _InIter>
01835     _InIter
01836     time_get<_CharT, _InIter>::
01837     do_get_weekday(iter_type __beg, iter_type __end, ios_base& __io, 
01838            ios_base::iostate& __err, tm* __tm) const
01839     {
01840       typedef char_traits<_CharT>       __traits_type;
01841       locale __loc = __io.getloc();
01842       __timepunct<_CharT> const& __tp = use_facet<__timepunct<_CharT> >(__loc);
01843       const char_type*  __days[7];
01844       __tp._M_days_abbreviated(__days);
01845       int __tmpwday;
01846       _M_extract_name(__beg, __end, __tmpwday, __days, 7, __err);
01847 
01848       // Check to see if non-abbreviated name exists, and extract.
01849       // NB: Assumes both _M_days and _M_days_abbreviated organized in
01850       // exact same order, first to last, such that the resulting
01851       // __days array with the same index points to a day, and that
01852       // day's abbreviated form.
01853       // NB: Also assumes that an abbreviated name is a subset of the name. 
01854       if (!__err)
01855     {
01856       size_t __pos = __traits_type::length(__days[__tmpwday]);
01857       __tp._M_days(__days);
01858       const char_type* __name = __days[__tmpwday];
01859       if (__name[__pos] == *__beg)
01860         {
01861           // Extract the rest of it.
01862           const size_t __len = __traits_type::length(__name);
01863           while (__pos < __len && __beg != __end 
01864              && __name[__pos] == *__beg)
01865         ++__beg, ++__pos;
01866           if (__len != __pos)
01867         __err |= ios_base::failbit;
01868         }
01869       if (!__err)
01870         __tm->tm_wday = __tmpwday;
01871     }
01872       if (__beg == __end)
01873     __err |= ios_base::eofbit;
01874       return __beg;
01875      }
01876 
01877   template<typename _CharT, typename _InIter>
01878     _InIter
01879     time_get<_CharT, _InIter>::
01880     do_get_monthname(iter_type __beg, iter_type __end,
01881                      ios_base& __io, ios_base::iostate& __err, tm* __tm) const
01882     {
01883       typedef char_traits<_CharT>       __traits_type;
01884       locale __loc = __io.getloc();
01885       __timepunct<_CharT> const& __tp = use_facet<__timepunct<_CharT> >(__loc);
01886       const char_type*  __months[12];
01887       __tp._M_months_abbreviated(__months);
01888       int __tmpmon;
01889       _M_extract_name(__beg, __end, __tmpmon, __months, 12, __err);
01890 
01891       // Check to see if non-abbreviated name exists, and extract.
01892       // NB: Assumes both _M_months and _M_months_abbreviated organized in
01893       // exact same order, first to last, such that the resulting
01894       // __months array with the same index points to a month, and that
01895       // month's abbreviated form.
01896       // NB: Also assumes that an abbreviated name is a subset of the name. 
01897       if (!__err)
01898     {
01899       size_t __pos = __traits_type::length(__months[__tmpmon]);
01900       __tp._M_months(__months);
01901       const char_type* __name = __months[__tmpmon];
01902       if (__name[__pos] == *__beg)
01903         {
01904           // Extract the rest of it.
01905           const size_t __len = __traits_type::length(__name);
01906           while (__pos < __len && __beg != __end 
01907              && __name[__pos] == *__beg)
01908         ++__beg, ++__pos;
01909           if (__len != __pos)
01910         __err |= ios_base::failbit;
01911         }
01912       if (!__err)
01913         __tm->tm_mon = __tmpmon;
01914     }
01915  
01916       if (__beg == __end)
01917     __err |= ios_base::eofbit;
01918       return __beg;
01919     }
01920 
01921   template<typename _CharT, typename _InIter>
01922     _InIter
01923     time_get<_CharT, _InIter>::
01924     do_get_year(iter_type __beg, iter_type __end, ios_base& __io, 
01925         ios_base::iostate& __err, tm* __tm) const
01926     {
01927       locale __loc = __io.getloc();
01928       const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc); 
01929 
01930       char_type __c = *__beg;
01931       size_t __i = 0;
01932       string __digits;
01933       while (__i < 4 && __beg != __end && __ctype.is(ctype_base::digit, __c))
01934     {
01935       __digits += __ctype.narrow(__c, 0);
01936       __c = *(++__beg);
01937       ++__i;
01938     }
01939       if (__i == 2 || __i == 4)
01940     {
01941       long __l;
01942       __convert_to_v(__digits.c_str(), __l, __err, _S_c_locale);
01943       if (!(__err & ios_base::failbit) && __l <= INT_MAX)
01944         {
01945           __l = __i == 2 ? __l : __l - 1900; 
01946           __tm->tm_year = static_cast<int>(__l);
01947         }
01948     }
01949       else
01950     __err |= ios_base::failbit;
01951       if (__beg == __end)
01952     __err |= ios_base::eofbit;
01953       return __beg;
01954     }
01955 
01956   template<typename _CharT, typename _OutIter>
01957     _OutIter
01958     time_put<_CharT, _OutIter>::
01959     put(iter_type __s, ios_base& __io, char_type, const tm* __tm, 
01960     const _CharT* __beg, const _CharT* __end) const
01961     {
01962       locale __loc = __io.getloc();
01963       ctype<_CharT> const& __ctype = use_facet<ctype<_CharT> >(__loc);
01964       while (__beg != __end)
01965     {
01966       char __c = __ctype.narrow(*__beg, 0);
01967       ++__beg;
01968       if (__c == '%')
01969         {
01970           char __format;
01971           char __mod = 0;
01972           size_t __len = 1; 
01973           __c = __ctype.narrow(*__beg, 0);
01974           ++__beg;
01975           if (__c == 'E' || __c == 'O')
01976         {
01977           __mod = __c;
01978           __format = __ctype.narrow(*__beg, 0);
01979           ++__beg;
01980         }
01981           else
01982         __format = __c;
01983           __s = this->do_put(__s, __io, _CharT(), __tm, __format, __mod);
01984         }
01985       else
01986         {
01987           *__s = __c;
01988           ++__s;
01989         }
01990     }
01991       return __s;
01992     }
01993 
01994   template<typename _CharT, typename _OutIter>
01995     _OutIter
01996     time_put<_CharT, _OutIter>::
01997     do_put(iter_type __s, ios_base& __io, char_type, const tm* __tm, 
01998        char __format, char __mod) const
01999     { 
02000       locale __loc = __io.getloc();
02001       ctype<_CharT> const& __ctype = use_facet<ctype<_CharT> >(__loc);
02002       __timepunct<_CharT> const& __tp = use_facet<__timepunct<_CharT> >(__loc);
02003 
02004       // NB: This size is arbitrary. Should this be a data member,
02005       // initialized at construction?
02006       const size_t __maxlen = 64;
02007       char_type* __res = static_cast<char_type*>(__builtin_alloca(sizeof(char_type) * __maxlen));
02008 
02009       // NB: In IEE 1003.1-200x, and perhaps other locale models, it
02010       // is possible that the format character will be longer than one
02011       // character. Possibilities include 'E' or 'O' followed by a
02012       // format character: if __mod is not the default argument, assume
02013       // it's a valid modifier.
02014       char_type __fmt[4];
02015       __fmt[0] = __ctype.widen('%'); 
02016       if (!__mod)
02017     {
02018       __fmt[1] = __format;
02019       __fmt[2] = char_type();
02020     }
02021       else
02022     {
02023       __fmt[1] = __mod;
02024       __fmt[2] = __format;
02025       __fmt[3] = char_type();
02026     }
02027 
02028       __tp._M_put(__res, __maxlen, __fmt, __tm);
02029 
02030       // Write resulting, fully-formatted string to output iterator.
02031       return __write(__s, __res, char_traits<char_type>::length(__res));
02032     }
02033 
02034 
02035   // Generic version does nothing.
02036   template<typename _CharT>
02037     int
02038     collate<_CharT>::_M_compare(const _CharT*, const _CharT*) const
02039     { return 0; }
02040 
02041   // Generic version does nothing.
02042   template<typename _CharT>
02043     size_t
02044     collate<_CharT>::_M_transform(_CharT*, const _CharT*, size_t) const
02045     { return 0; }
02046 
02047   template<typename _CharT>
02048     int
02049     collate<_CharT>::
02050     do_compare(const _CharT* __lo1, const _CharT* __hi1, 
02051            const _CharT* __lo2, const _CharT* __hi2) const
02052     { 
02053       // strcoll assumes zero-terminated strings so we make a copy
02054       // and then put a zero at the end.
02055       const string_type __one(__lo1, __hi1);
02056       const string_type __two(__lo2, __hi2);
02057 
02058       const _CharT* __p = __one.c_str();
02059       const _CharT* __pend = __one.c_str() + __one.length();
02060       const _CharT* __q = __two.c_str();
02061       const _CharT* __qend = __two.c_str() + __two.length();
02062 
02063       // strcoll stops when it sees a nul character so we break
02064       // the strings into zero-terminated substrings and pass those
02065       // to strcoll.
02066       for (;;)
02067     {
02068       int __res = _M_compare(__p, __q);
02069       if (__res)
02070         return __res;
02071 
02072       __p += char_traits<_CharT>::length(__p);
02073       __q += char_traits<_CharT>::length(__q);
02074       if (__p == __pend && __q == __qend)
02075         return 0;
02076       else if (__p == __pend)
02077         return -1;
02078       else if (__q == __qend)
02079         return 1;
02080 
02081       __p++;
02082       __q++;
02083     }
02084     }
02085 
02086  template<typename _CharT>
02087     typename collate<_CharT>::string_type
02088     collate<_CharT>::
02089     do_transform(const _CharT* __lo, const _CharT* __hi) const
02090     {
02091       // strxfrm assumes zero-terminated strings so we make a copy
02092       string_type __str(__lo, __hi);
02093 
02094       const _CharT* __p = __str.c_str();
02095       const _CharT* __pend = __str.c_str() + __str.length();
02096 
02097       size_t __len = (__hi - __lo) * 2;
02098 
02099       string_type __ret;
02100 
02101       // strxfrm stops when it sees a nul character so we break
02102       // the string into zero-terminated substrings and pass those
02103       // to strxfrm.
02104       for (;;)
02105     {
02106       // First try a buffer perhaps big enough.
02107       _CharT* __c =
02108         static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) * __len));
02109       size_t __res = _M_transform(__c, __p, __len);
02110       // If the buffer was not large enough, try again with the
02111       // correct size.
02112       if (__res >= __len)
02113         {
02114           __len = __res + 1;
02115           __c = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) 
02116                               * __len));
02117           __res = _M_transform(__c, __p, __res + 1);
02118         }
02119 
02120       __ret.append(__c, __res);
02121       __p += char_traits<_CharT>::length(__p);
02122       if (__p == __pend)
02123         return __ret;
02124 
02125       __p++;
02126       __ret.push_back(_CharT());
02127     }
02128     }
02129 
02130  template<typename _CharT>
02131     long
02132     collate<_CharT>::
02133     do_hash(const _CharT* __lo, const _CharT* __hi) const
02134     { 
02135       unsigned long __val = 0;
02136       for (; __lo < __hi; ++__lo)
02137     __val = *__lo + ((__val << 7) | 
02138                (__val >> (numeric_limits<unsigned long>::digits - 7)));
02139       return static_cast<long>(__val);
02140     }
02141 
02142   // Construct correctly padded string, as per 22.2.2.2.2
02143   // Assumes 
02144   // __newlen > __oldlen
02145   // __news is allocated for __newlen size
02146   // Used by both num_put and ostream inserters: if __num,
02147   // internal-adjusted objects are padded according to the rules below
02148   // concerning 0[xX] and +-, otherwise, exactly as right-adjusted
02149   // ones are.
02150 
02151   // NB: Of the two parameters, _CharT can be deduced from the
02152   // function arguments. The other (_Traits) has to be explicitly specified.
02153   template<typename _CharT, typename _Traits>
02154     void 
02155     __pad<_CharT, _Traits>::_S_pad(ios_base& __io, _CharT __fill, 
02156                    _CharT* __news, const _CharT* __olds, 
02157                    const streamsize __newlen, 
02158                    const streamsize __oldlen, const bool __num)
02159     {
02160       const size_t __plen = static_cast<size_t>(__newlen - __oldlen);
02161       const ios_base::fmtflags __adjust = __io.flags() & ios_base::adjustfield;
02162 
02163       // Padding last.
02164       if (__adjust == ios_base::left)
02165     {
02166       _Traits::copy(__news, const_cast<_CharT*>(__olds), __oldlen);
02167       _Traits::assign(__news + __oldlen, __plen, __fill);
02168       return;
02169     }
02170 
02171       size_t __mod = 0;
02172       if (__adjust == ios_base::internal && __num)
02173     {
02174       // Pad after the sign, if there is one.
02175       // Pad after 0[xX], if there is one.
02176       // Who came up with these rules, anyway? Jeeze.
02177           const locale& __loc = __io.getloc();
02178       const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc); 
02179       const _CharT __minus = __ctype.widen('-');
02180       const _CharT __plus = __ctype.widen('+');
02181       const bool __testsign = _Traits::eq(__olds[0], __minus)
02182                               || _Traits::eq(__olds[0], __plus);
02183 
02184       const bool __testhex = (_Traits::eq(__ctype.widen('0'), __olds[0])
02185                   && __oldlen > 1
02186                   && (_Traits::eq(__ctype.widen('x'), __olds[1])
02187                       || _Traits::eq(__ctype.widen('X'),
02188                              __olds[1])));
02189       if (__testhex)
02190         {
02191           __news[0] = __olds[0]; 
02192           __news[1] = __olds[1];
02193           __mod = 2;
02194           __news += 2;
02195         }
02196       else if (__testsign)
02197         {
02198           __news[0] = __olds[0];
02199           __mod = 1;
02200           ++__news;
02201         }
02202       // else Padding first.
02203     }
02204       _Traits::assign(__news, __plen, __fill);
02205       _Traits::copy(__news + __plen, const_cast<_CharT*>(__olds + __mod),
02206             __oldlen - __mod);
02207     }
02208 
02209   template<typename _CharT>
02210     bool
02211     __verify_grouping(const basic_string<_CharT>& __grouping, 
02212               basic_string<_CharT>& __grouping_tmp)
02213     { 
02214       const size_t __n = __grouping_tmp.size() - 1;
02215       const size_t __min = std::min(__n, __grouping.size() - 1);
02216       size_t __i = __n;
02217       bool __test = true;
02218 
02219       // Parsed number groupings have to match the
02220       // numpunct::grouping string exactly, starting at the
02221       // right-most point of the parsed sequence of elements ...
02222       for (size_t __j = 0; __j < __min && __test; --__i, ++__j)
02223     __test = __grouping_tmp[__i] == __grouping[__j];
02224       for (; __i && __test; --__i)
02225     __test = __grouping_tmp[__i] == __grouping[__min];
02226       // ... but the last parsed grouping can be <= numpunct
02227       // grouping.
02228       __test &= __grouping_tmp[0] <= __grouping[__min];
02229       return __test;
02230     }
02231 
02232   template<typename _CharT>
02233     _CharT*
02234     __add_grouping(_CharT* __s, _CharT __sep,  
02235            const char* __gbeg, const char* __gend, 
02236            const _CharT* __first, const _CharT* __last)
02237     {
02238       if (__last - __first > *__gbeg)
02239         {
02240           __s = __add_grouping(__s,  __sep, 
02241                    (__gbeg + 1 == __gend ? __gbeg : __gbeg + 1),
02242                    __gend, __first, __last - *__gbeg);
02243           __first = __last - *__gbeg;
02244           *__s++ = __sep;
02245         }
02246       do
02247     *__s++ = *__first++;
02248       while (__first != __last);
02249       return __s;
02250     }
02251 
02252 #if 1
02253       // XXX GLIBCXX_ABI Deprecated, compatibility only.
02254   template<typename _CharT, typename _OutIter>
02255     template<typename _ValueT>
02256       _OutIter
02257       num_put<_CharT, _OutIter>::
02258       _M_convert_int(_OutIter __s, ios_base& __io, _CharT __fill, char __mod,
02259              char __modl, _ValueT __v) const
02260       {
02261     // [22.2.2.2.2] Stage 1, numeric conversion to character.
02262 
02263     // Long enough for the max format spec.
02264     char __fbuf[16];
02265     _S_format_int(__io, __fbuf, __mod, __modl);
02266 #ifdef _GLIBCPP_USE_C99
02267     // First try a buffer perhaps big enough.
02268     int __cs_size = 64;
02269     char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
02270     int __len = __convert_from_v(__cs, __cs_size, __fbuf, __v, 
02271                      _S_c_locale);
02272     // If the buffer was not large enough, try again with the correct size.
02273     if (__len >= __cs_size)
02274       {
02275         __cs_size = __len + 1;
02276         __cs = static_cast<char*>(__builtin_alloca(__cs_size));
02277         __len = __convert_from_v(__cs, __cs_size, __fbuf, __v, 
02278                      _S_c_locale);
02279       }
02280 #else
02281     // Leave room for "+/-," "0x," and commas. This size is
02282     // arbitrary, but should be largely sufficient.
02283     char __cs[128];
02284     int __len = __convert_from_v(__cs, 0, __fbuf, __v, _S_c_locale);
02285 #endif
02286     return _M_widen_int(__s, __io, __fill, __cs, __len);
02287       }
02288 
02289   template<typename _CharT, typename _OutIter>
02290     _OutIter
02291     num_put<_CharT, _OutIter>::
02292     _M_widen_float(_OutIter __s, ios_base& __io, _CharT __fill, char* __cs, 
02293            int __len) const
02294     {
02295       typedef char_traits<_CharT>       __traits_type;
02296       // [22.2.2.2.2] Stage 2, convert to char_type, using correct
02297       // numpunct.decimal_point() values for '.' and adding grouping.
02298       const locale __loc = __io.getloc();
02299       const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
02300       _CharT* __ws = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) 
02301                                * __len));
02302       // Grouping can add (almost) as many separators as the number of
02303       // digits, but no more.
02304       _CharT* __ws2 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) 
02305                                 * __len * 2));
02306       __ctype.widen(__cs, __cs + __len, __ws);
02307       
02308       // Replace decimal point.
02309       const _CharT* __p;
02310       const numpunct<_CharT>& __np = use_facet<numpunct<_CharT> >(__loc);
02311       if (__p = __traits_type::find(__ws, __len, __ctype.widen('.')))
02312     __ws[__p - __ws] = __np.decimal_point();
02313 
02314 #ifdef _GLIBCPP_RESOLVE_LIB_DEFECTS
02315 //282. What types does numpunct grouping refer to?
02316       // Add grouping, if necessary. 
02317       const string __grouping = __np.grouping();
02318       if (__grouping.size())
02319     {
02320       _CharT* __p2;
02321       int __declen = __p ? __p - __ws : __len;
02322       __p2 = __add_grouping(__ws2, __np.thousands_sep(), 
02323                 __grouping.c_str(),
02324                 __grouping.c_str() + __grouping.size(),
02325                 __ws, __ws + __declen);
02326       int __newlen = __p2 - __ws2;
02327     
02328       // Tack on decimal part.
02329       if (__p)
02330         {
02331           __traits_type::copy(__p2, __p, __len - __declen);
02332           __newlen += __len - __declen;
02333         }    
02334 
02335       // Switch strings, establish correct new length.
02336       __ws = __ws2;
02337       __len = __newlen;
02338     }
02339 #endif
02340       return _M_insert(__s, __io, __fill, __ws, __len);
02341     }
02342 
02343   template<typename _CharT, typename _OutIter>
02344     _OutIter
02345     num_put<_CharT, _OutIter>::
02346     _M_widen_int(_OutIter __s, ios_base& __io, _CharT __fill, char* __cs, 
02347          int __len) const
02348     {
02349       // [22.2.2.2.2] Stage 2, convert to char_type, using correct
02350       // numpunct.decimal_point() values for '.' and adding grouping.
02351       const locale __loc = __io.getloc();
02352       const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
02353       _CharT* __ws = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) 
02354                                * __len));
02355       // Grouping can add (almost) as many separators as the number of
02356       // digits, but no more.
02357       _CharT* __ws2 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) 
02358                                 * __len * 2));
02359       __ctype.widen(__cs, __cs + __len, __ws);
02360 
02361       // Add grouping, if necessary. 
02362       const numpunct<_CharT>& __np = use_facet<numpunct<_CharT> >(__loc);
02363       const string __grouping = __np.grouping();
02364       if (__grouping.size())
02365     {
02366       // By itself __add_grouping cannot deal correctly with __ws when
02367       // ios::showbase is set and ios_base::oct || ios_base::hex.
02368       // Therefore we take care "by hand" of the initial 0, 0x or 0X.
02369       // However, remember that the latter do not occur if the number
02370       // printed is '0' (__len == 1).
02371       streamsize __off = 0;
02372       const ios_base::fmtflags __basefield = __io.flags() 
02373                              & ios_base::basefield;
02374       if ((__io.flags() & ios_base::showbase) && __len > 1)
02375         if (__basefield == ios_base::oct)
02376           {
02377         __off = 1;
02378         *__ws2 = *__ws;
02379           }
02380         else if (__basefield == ios_base::hex)
02381           {
02382         __off = 2;
02383         *__ws2 = *__ws;
02384         *(__ws2 + 1) = *(__ws + 1);
02385           }
02386       _CharT* __p;
02387       __p = __add_grouping(__ws2 + __off, __np.thousands_sep(), 
02388                    __grouping.c_str(),
02389                    __grouping.c_str() + __grouping.size(),
02390                    __ws + __off, __ws + __len);
02391       __len = __p - __ws2;
02392       // Switch strings.
02393       __ws = __ws2;
02394     }
02395       return _M_insert(__s, __io, __fill, __ws, __len);
02396     }
02397 
02398   // For use by integer and floating-point types after they have been
02399   // converted into a char_type string.
02400   template<typename _CharT, typename _OutIter>
02401     _OutIter
02402     num_put<_CharT, _OutIter>::
02403     _M_insert(_OutIter __s, ios_base& __io, _CharT __fill, const _CharT* __ws, 
02404           int __len) const
02405     {
02406       typedef char_traits<_CharT>       __traits_type;
02407       // [22.2.2.2.2] Stage 3.
02408       // If necessary, pad.
02409       streamsize __w = __io.width();
02410       _CharT* __ws2 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) 
02411                                 * __w));
02412       if (__w > static_cast<streamsize>(__len))
02413     {
02414       __pad<_CharT, __traits_type>::_S_pad(__io, __fill, __ws2, __ws, 
02415                            __w, __len, true);
02416       __len = static_cast<int>(__w);
02417       // Switch strings.
02418       __ws = __ws2;
02419     }
02420       __io.width(0);
02421 
02422       // [22.2.2.2.2] Stage 4.
02423       // Write resulting, fully-formatted string to output iterator.
02424       return __write(__s, __ws, __len);
02425     }
02426 #endif
02427 
02428   template<typename _CharT>
02429     __locale_cache<numpunct<_CharT> >::__locale_cache(const locale& __loc)
02430       : _M_truename(0), _M_falsename(0), _M_use_grouping(false),
02431     _M_grouping(0)
02432     {
02433       if (has_facet<numpunct<_CharT> >(__loc))
02434     {
02435       const numpunct<_CharT>& __np = use_facet<numpunct<_CharT> >(__loc);
02436       _M_decimal_point = __np.decimal_point();
02437       _M_thousands_sep = __np.thousands_sep();
02438 
02439       string_type __false = __np.falsename();
02440       _CharT* __falsename = new _CharT[__false.length() + 1];
02441       __false.copy(__falsename, __false.length());
02442       __falsename[__false.length()] = _CharT();
02443       _M_falsename = __falsename;
02444 
02445       string_type __true = __np.truename();
02446       _CharT* __truename = new _CharT[__true.length() + 1];
02447       __true.copy(__truename, __true.length());
02448       __truename[__true.length()] = _CharT();
02449       _M_truename = __truename;
02450 
02451       string __grouping = __np.grouping();
02452       char* __group = new char[__grouping.length() + 1];
02453       __grouping.copy(__group, __grouping.length());
02454       __group[__grouping.length()] = 0;
02455       _M_grouping = __group;
02456 
02457       _M_use_grouping = __grouping.length() != 0 
02458         && __grouping.data()[0] != 0;
02459     }
02460 
02461       if (has_facet<ctype<_CharT> >(__loc))
02462     {
02463       const ctype<_CharT>& __ct = use_facet<ctype<_CharT> >(__loc);
02464       __ct.widen(__num_base::_S_atoms_out,
02465              __num_base::_S_atoms_out + __num_base::_S_end, 
02466              _M_atoms_out);
02467     }
02468     }
02469 
02470   // Static locale cache initialization.  Only instantiated with char
02471   // and wchar_t, so no need to check has_facet.
02472   template<typename _CharT>
02473     __locale_cache<numpunct<_CharT> >::
02474     __locale_cache(const locale& __loc, bool)
02475     {
02476       // Grab pointers to numpunct static strings
02477       const numpunct<_CharT>& __np = use_facet<numpunct<_CharT> >(__loc);
02478       _M_thousands_sep = __np._M_thousands_sep;
02479       _M_decimal_point = __np._M_decimal_point;
02480       _M_falsename = __np._M_falsename;
02481       _M_truename = __np._M_truename;
02482       _M_grouping = __np._M_grouping;
02483       _M_use_grouping = false;
02484 
02485       const ctype<_CharT>& __ct = use_facet<ctype<_CharT> >(__loc);
02486       __ct.widen(__num_base::_S_atoms_out,
02487          __num_base::_S_atoms_out + __num_base::_S_end, 
02488          _M_atoms_out);
02489     }
02490 
02491   // Inhibit implicit instantiations for required instantiations,
02492   // which are defined via explicit instantiations elsewhere.  
02493   // NB: This syntax is a GNU extension.
02494 #if _GLIBCPP_EXTERN_TEMPLATE
02495   extern template class moneypunct<char, false>;
02496   extern template class moneypunct<char, true>;
02497   extern template class moneypunct_byname<char, false>;
02498   extern template class moneypunct_byname<char, true>;
02499   extern template class money_get<char>;
02500   extern template class money_put<char>;
02501   extern template class numpunct<char>;
02502   extern template class numpunct_byname<char>;
02503   extern template class num_get<char>;
02504   extern template class num_put<char>; 
02505   extern template class __timepunct<char>;
02506   extern template class time_put<char>;
02507   extern template class time_put_byname<char>;
02508   extern template class time_get<char>;
02509   extern template class time_get_byname<char>;
02510   extern template class messages<char>;
02511   extern template class messages_byname<char>;
02512   extern template class ctype_byname<char>;
02513   extern template class codecvt_byname<char, char, mbstate_t>;
02514   extern template class collate<char>;
02515   extern template class collate_byname<char>;
02516 
02517   extern template
02518     const codecvt<char, char, mbstate_t>& 
02519     use_facet<codecvt<char, char, mbstate_t> >(const locale&);
02520 
02521   extern template
02522     const collate<char>& 
02523     use_facet<collate<char> >(const locale&);
02524 
02525   extern template
02526     const numpunct<char>& 
02527     use_facet<numpunct<char> >(const locale&);
02528 
02529   extern template 
02530     const num_put<char>& 
02531     use_facet<num_put<char> >(const locale&);
02532 
02533   extern template 
02534     const num_get<char>& 
02535     use_facet<num_get<char> >(const locale&);
02536 
02537   extern template
02538     const moneypunct<char, true>& 
02539     use_facet<moneypunct<char, true> >(const locale&);
02540 
02541   extern template
02542     const moneypunct<char, false>& 
02543     use_facet<moneypunct<char, false> >(const locale&);
02544 
02545   extern template 
02546     const money_put<char>& 
02547     use_facet<money_put<char> >(const locale&);
02548 
02549   extern template 
02550     const money_get<char>& 
02551     use_facet<money_get<char> >(const locale&);
02552 
02553   extern template
02554     const __timepunct<char>& 
02555     use_facet<__timepunct<char> >(const locale&);
02556 
02557   extern template 
02558     const time_put<char>& 
02559     use_facet<time_put<char> >(const locale&);
02560 
02561   extern template 
02562     const time_get<char>& 
02563     use_facet<time_get<char> >(const locale&);
02564 
02565   extern template 
02566     const messages<char>& 
02567     use_facet<messages<char> >(const locale&);
02568 
02569   extern template 
02570     bool
02571     has_facet<ctype<char> >(const locale&);
02572 
02573   extern template 
02574     bool
02575     has_facet<codecvt<char, char, mbstate_t> >(const locale&);
02576 
02577   extern template 
02578     bool
02579     has_facet<collate<char> >(const locale&);
02580 
02581   extern template 
02582     bool
02583     has_facet<numpunct<char> >(const locale&);
02584 
02585   extern template 
02586     bool
02587     has_facet<num_put<char> >(const locale&);
02588 
02589   extern template 
02590     bool
02591     has_facet<num_get<char> >(const locale&);
02592 
02593   extern template 
02594     bool
02595     has_facet<moneypunct<char> >(const locale&);
02596 
02597   extern template 
02598     bool
02599     has_facet<money_put<char> >(const locale&);
02600 
02601   extern template 
02602     bool
02603     has_facet<money_get<char> >(const locale&);
02604 
02605   extern template 
02606     bool
02607     has_facet<__timepunct<char> >(const locale&);
02608 
02609   extern template 
02610     bool
02611     has_facet<time_put<char> >(const locale&);
02612 
02613   extern template 
02614     bool
02615     has_facet<time_get<char> >(const locale&);
02616 
02617   extern template 
02618     bool
02619     has_facet<messages<char> >(const locale&);
02620 
02621 #ifdef _GLIBCPP_USE_WCHAR_T
02622   extern template class moneypunct<wchar_t, false>;
02623   extern template class moneypunct<wchar_t, true>;
02624   extern template class moneypunct_byname<wchar_t, false>;
02625   extern template class moneypunct_byname<wchar_t, true>;
02626   extern template class money_get<wchar_t>;
02627   extern template class money_put<wchar_t>;
02628   extern template class numpunct<wchar_t>;
02629   extern template class numpunct_byname<wchar_t>;
02630   extern template class num_get<wchar_t>;
02631   extern template class num_put<wchar_t>;
02632   extern template class __timepunct<wchar_t>;
02633   extern template class time_put<wchar_t>;
02634   extern template class time_put_byname<wchar_t>;
02635   extern template class time_get<wchar_t>;
02636   extern template class time_get_byname<wchar_t>;
02637   extern template class messages<wchar_t>;
02638   extern template class messages_byname<wchar_t>;
02639   extern template class ctype_byname<wchar_t>;
02640   extern template class codecvt_byname<wchar_t, char, mbstate_t>;
02641   extern template class collate<wchar_t>;
02642   extern template class collate_byname<wchar_t>;
02643 
02644   extern template
02645     const codecvt<wchar_t, char, mbstate_t>& 
02646     use_facet<codecvt<wchar_t, char, mbstate_t> >(locale const&);
02647 
02648   extern template
02649     const collate<wchar_t>& 
02650     use_facet<collate<wchar_t> >(const locale&);
02651 
02652   extern template
02653     const numpunct<wchar_t>& 
02654     use_facet<numpunct<wchar_t> >(const locale&);
02655 
02656   extern template 
02657     const num_put<wchar_t>& 
02658     use_facet<num_put<wchar_t> >(const locale&);
02659 
02660   extern template 
02661     const num_get<wchar_t>& 
02662     use_facet<num_get<wchar_t> >(const locale&);
02663 
02664   extern template
02665     const moneypunct<wchar_t, true>& 
02666     use_facet<moneypunct<wchar_t, true> >(const locale&);
02667 
02668   extern template
02669     const moneypunct<wchar_t, false>& 
02670     use_facet<moneypunct<wchar_t, false> >(const locale&);
02671  
02672   extern template 
02673     const money_put<wchar_t>& 
02674     use_facet<money_put<wchar_t> >(const locale&);
02675 
02676   extern template 
02677     const money_get<wchar_t>& 
02678     use_facet<money_get<wchar_t> >(const locale&);
02679 
02680   extern template
02681     const __timepunct<wchar_t>& 
02682     use_facet<__timepunct<wchar_t> >(const locale&);
02683 
02684   extern template 
02685     const time_put<wchar_t>& 
02686     use_facet<time_put<wchar_t> >(const locale&);
02687 
02688   extern template 
02689     const time_get<wchar_t>& 
02690     use_facet<time_get<wchar_t> >(const locale&);
02691 
02692   extern template 
02693     const messages<wchar_t>& 
02694     use_facet<messages<wchar_t> >(const locale&);
02695 
02696  extern template 
02697     bool
02698     has_facet<ctype<wchar_t> >(const locale&);
02699 
02700   extern template 
02701     bool
02702     has_facet<codecvt<wchar_t, char, mbstate_t> >(const locale&);
02703 
02704   extern template 
02705     bool
02706     has_facet<collate<wchar_t> >(const locale&);
02707 
02708   extern template 
02709     bool
02710     has_facet<numpunct<wchar_t> >(const locale&);
02711 
02712   extern template 
02713     bool
02714     has_facet<num_put<wchar_t> >(const locale&);
02715 
02716   extern template 
02717     bool
02718     has_facet<num_get<wchar_t> >(const locale&);
02719 
02720   extern template 
02721     bool
02722     has_facet<moneypunct<wchar_t> >(const locale&);
02723 
02724   extern template 
02725     bool
02726     has_facet<money_put<wchar_t> >(const locale&);
02727 
02728   extern template 
02729     bool
02730     has_facet<money_get<wchar_t> >(const locale&);
02731 
02732   extern template 
02733     bool
02734     has_facet<__timepunct<wchar_t> >(const locale&);
02735 
02736   extern template 
02737     bool
02738     has_facet<time_put<wchar_t> >(const locale&);
02739 
02740   extern template 
02741     bool
02742     has_facet<time_get<wchar_t> >(const locale&);
02743 
02744   extern template 
02745     bool
02746     has_facet<messages<wchar_t> >(const locale&);
02747 #endif
02748 #endif
02749 } // namespace std
02750 
02751 #endif

Generated on Wed Feb 23 02:33:34 2005 for libstdc++-v3 Source by doxygen 1.3.6