
syslog-ng reference manual

Balázs Scheidler

syslog-ng reference manual
by Balázs Scheidler

Copyright © 1999-2000 by Balázs Scheidler

This manual is free software; you may redistribute it and/or modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2, or (at your option) any later version.

This is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty of

merchantability or fitness for a particular purpose. See the GNU General Public License for more details.

Table of Contents
1. Introduction to syslog-ng...5

2. Message paths...6

2.1. Sources..6
2.2. Filters ..8
2.3. Destinations...10
2.4. Log paths...11
2.5. Options..11

3. Reference ..14

3.1. Source drivers ...14
3.1.1. internal()...14
3.1.2. unix-stream() and unix-dgram()...14
3.1.3. tcp() and udp()..16
3.1.4. file()..17
3.1.5. pipe() ..18
3.1.6. sun-streams() driver ...18

3.2. Destination drivers ..19
3.2.1. file()..19
3.2.2. pipe() ..22
3.2.3. unix-stream() & unix-dgram() ...22
3.2.4. udp() & tcp() ..22
3.2.5. usertty() ..22
3.2.6. program() ...23

3.3. Filter functions ..23
3.4. Options..23

4. Performance tuning in syslog-ng ..24

4.1. Setting garbage collector parameters ..24
4.1.1. gc_idle_threshold() ..24
4.1.2. gc_busy_threshold()...24

4.2. Setting output queue size ..24
4.3. Setting sync parameter..25

3

List of Tables
2-1. Communication method between syslogd and its clients...6
2-2. Available source drivers in syslog-ng ...7
2-3. Available filter functions in syslog-ng..9
2-4. Available destination drivers in syslog-ng..10
2-5. List of supported global options in syslog-ng ..12
3-1. Available options for unix-stream & unix-dgram...15
3-2. Available options for unix-stream & unix-dgram...17
3-3. Available macros in filename expansion ..19
3-4. Available options for file()..20

List of Examples
2-1. Source statement on a Linux based operating system ..7
2-2. A filter statement finding the messages containing the word deny coming from the

host blurp ...9
3-1. Using the internal() driver ..14
3-2. Using the unix-stream() and unix-dgram() drivers ...16
3-3. Using the udp() and tcp() drivers..17
3-4. example script to feed a growing logfile into syslog-ng...17
3-5. Using the file() driver..18
3-6. Using the pipe() driver..18

4

Chapter 1. Introduction to syslog-ng
One of the most neglected area of Unix is handling system events. Daily checks for
system messages is crucial for the security and health conditions of a computer system.

System logs contain much "noise" - messages which have no importance - and on the
contrary important events, which should not be lost in the load of messages. With
current tools it’s difficult to select which messages we are interested in.

A message is sent to different destinations based on the assigned facility/priority pair.
There are 12+8 (12 real and 8 local) predefined facilities (mail, news, auth etc.), and 8
different priorities (ranging from alert to debug).

One problem is that there are facilities which are too general (daemon), and these
facilities are used by many programs, even if they do not relate each other. It is difficult
to find the interesting bits from the enourmous amount of messages.

A second problem is that there are very few programs which allow setting their "facility
code" to log under. It’s at best a compile time parameter.

So using facilities as a means of filtering is not the best way. For it to be a good solution
would require runtime option for all applications, which specifies the log facility to log
under, and the ability to create new facilities in syslogd. Neither of these are available,
and the first is neither feasible.

One of the design principles of syslog-ng was to make message filtering much more
finegrained. syslog-ng is able to filter messages based on the contents of messages in
addition to the priority/facility pair. This way only the messages we are really interested
in get to a specific destination. Another design principle was to make logforwarding
between firewalled segments easier: long hostname format, which makes it easy to find
the originating and chain of forwarding hosts even if a log message traverses several
computers. And last principle was a clean and powerful configuration file format.

5

Chapter 2. Message paths
In syslog-ng a message path (or message route) consist of one or more sources, one or
more filtering rules and one or more destinations (sinks). A message is entered to
syslog-ng in one of its sources, if that message matches the filtering rules it goes out
using one of the destinations.

2.1. Sources
A source is a collection of source drivers, which collect messages using a given
method. For instance there’s a source driver for AF_UNIX, SOCK_STREAM style
sockets, which is used by the Linux syslog() call.

To declare a source, you’ll need to use the source statement in the configuration file
with the following syntax:

source <identifier> { source-driver(params); source-
driver(params); ... };

The identifier has to uniquely identify this given source and of course may not clash
with any of the reserved words (in case you had a nameclash, simply enclose the
identifier in quotation marks)

You can control exactly which drivers are used to gather log messages, thus you’ll have
to know how your system and its native syslogd communicate. Here’s a introduction to
the inner workings of syslogd on some of the platforms I tested:

Table 2-1. Communication method between syslogd and its clients

Platform Method

Linux A SOCK_STREAM unix socket named
/dev/log

6

Chapter 2. Message paths

Platform Method

BSD flavors A SOCK_DGRAM unix socket named
/var/run/log

Solaris (2.5 or below) An SVR4 style STREAMS device named
/dev/log

Solaris (2.6 or above) In addition to the STREAMS device used
in versions below 2.6, uses a new
multithreaded IPC method called door. By
default the door used by syslogd is
/etc/.syslog_door

Each possible communication mechanism has the corresponding source driver in
syslog-ng. For instance to open a unix socket with SOCK_DGRAM style
communication you use the driver unix-dgram, the same with SOCK_STREAM style -
as used under Linux - is called unix-stream.

Example 2-1. Source statement on a Linux based operating system

source src { unix-
stream("/dev/log"); internal(); udp(ip(0.0.0.0) port(514)); };

Each driver may take parameters, some of them required, some of them optional. The
required parameters are usually positional, which means that they have to come first.
See the unix-stream driver specification above, as it refers to the file /dev/log.

Table 2-2. Available source drivers in syslog-ng

Name Description

internal Messages generated internally in syslog-ng

7

Chapter 2. Message paths

Name Description

unix-stream Opens the specified unix socket in
SOCK_STREAM mode, and listens for
messages.

unix-dgram Opens the specified unix socket in
SOCK_DGRAM mode, and listens for
messages.

file Opens the specified file, and reads
messages.

pipe, fifo Opens the specified named pipe and reads
messages

udp Listens on the specified UDP port for
messages.

tcp Listens on the specified TCP port for
messages.

sun-stream, sun-streams Opens the specified STREAMS device on
Solaris systems, and reads messages.

For a complete descriptions on the above drivers, see the reference section.

2.2. Filters
Filters perform log routing inside syslog-ng. You can write a boolean expression using
internal functions, which has to evaluate to true for the message to pass.

Filters have also a uniquely identifying name, so you can refer to filters in your log
statements. Syntax for the filter statement:

filter <identifier> { expression; };

An expression may contain the operators "and", "or" and "not", and any of the
functions listed below.

8

Chapter 2. Message paths

Example 2-2. A filter statement finding the messages containing the word deny
coming from the host blurp

filter f_blurp_deny { host("blurp") and match("deny"); };

Table 2-3. Available filter functions in syslog-ng

Function Description

facility() Selects messages based on their facility
code

level() or priority() Selects messages based on their priority

program() Tries to match a regular expression to the
program name field of log messages

host() Tries to match a regular expression to the
hostname field of log messages

match() Tries to match a regular expression to the
message itself.

filter() Call another filter rule and evaluate its
value

For a complete description on the above functions, see the Reference chapter.

There’s a special filter identifier "DEFAULT" which allows you to catch
not-yet-handled messages. For example, consider the following configuration:

options { keep_hostname(yes); };

source src { unix-stream("proba2"); internal(); };

destination ftpd { file("ftplog"); };
destination named { file("namedlog"); };
destination daemon { file("daemonlog"); };

9

Chapter 2. Message paths

filter f_ftpd { match("ftp"); };
filter f_named { match("named"); };
filter f_daemon { facility(daemon); };

log { source(src); filter(f_ftpd); destination(ftpd); };
log { source(src); filter(f_named); destination(named); };
log { source(src); filter(f_daemon); filter(DEFAULT); destina-

tion(daemon); };

The default filter above catches all facility=daemon messages which are not caught by
the filter f_ftpd and f_named.

2.3. Destinations
A destination is a message sink, where log is sent if filtering rules match. Similarly to
sources, destinations may include several drivers which define how messages are
dispatched. To declare a destination in the configuration file, you’ll need a destination
statement, whose syntax is as following:

destination <identifier> { destination-
driver(params); destination-driver(params); ... };

Table 2-4. Available destination drivers in syslog-ng

Name Description>

file Writes messages to the given file

fifo, pipe Writes messages to the given named pipe

unix-stream Sends messages to the given unix socket in
SOCK_STREAM style (Linux)

10

Chapter 2. Message paths

Name Description>

unix-dgram Sends messages to the given unix socket in
SOCK_DGRAM style (BSD)

udp Sends messages to specified host and UDP
port

tcp Sends messages to specified host and TCP
port

usertty Sends messages to specified user if logged
in

program Forks and launches given program, and
sends messages to its standard input.

For detailed list of the supported drivers, see the Reference chapter.

2.4. Log paths
In the previous chapters we learnt how to define sources, filters and destinations. We’ll
need to connect those together, which is accomplished by the log statement. Any
message coming from one of the listed sources, matching the filters (each of them) are
sent to the listed destinations. The needed syntax is here:

log { source(s1); source(s2); ...
filter(f1); filter(f2); ...
destination(d1); destination(d2); ... };

Members on the logpath are evaluated in order, e.g. the only filter invokations applied
to a source are those which are after the source reference.

2.5. Options

11

Chapter 2. Message paths

There are several options you can specify, which modifies the behaviour of syslog-ng.
For an exact list of possible options see the chapter Reference. The general syntax is
here:

options { option1(params); option2(params); ... };

Each option may have parameters, just like in driver specification.

Table 2-5. List of supported global options in syslog-ng

Name Accepted values Description

time_reopen() number The time to wait before a
died connection is
reestablished

time_reap() number The time to wait before an
idle destination file is closed.

sync_freq() number The number of lines
buffered before written to
file

mark_freq() number The number of seconds
between two MARK lines.
NOTE: not implemented yet.

log_fifo_size() number The number of lines fitting
to the output queue

chain_hostnames() yes or no Enable or disable the
chained hostname format.

use_time_recvd() yes or no Use the time a message is
received instead of the one
specified in the message.

12

Chapter 2. Message paths

Name Accepted values Description

use_dns() yes or no Enable or disable DNS
usage. syslog-ng blocks on
DNS queries, so enabling
DNS may lead to a Denial of
Service attack. To prevent
DoS, protect your syslog-ng
network endpoint with
firewall rules, and make sure
that all hosts, which may get
to syslog-ng is resolvable.

use_fqdn() yes or no Add Fully Qualified
Domain Name instead of
short hostname.

gc_idle_threshold() number Sets the threshold value for
the garbage collector, when
syslog-ng is idle. GC phase
starts when the number of
allocated objects reach this
number. Default: 100.

gc_busy_threshold() number Sets the threshold value for
the garbage collector, when
syslog-ng is busy. GC phase
starts when the number of
allocated objects reach this
number. Default: 3000.

13

Chapter 3. Reference
This chapter documents the drivers and options you may specify in the configuration
file.

3.1. Source drivers
The following drivers may be used in the source statement, as described in the previous
chapter.

3.1.1. internal()
All internally generated messages "come" from this special source. If you want
warnings, errors and notices from syslog-ng itself, you have to include this source in
one of your source statement.

Declaration: internal()

Syslog-ng will print you a warning, if this driver is not referenced.

Example 3-1. Using the internal() driver

source s_local { internal(); };

3.1.2. unix-stream() and unix-dgram()
This two drivers behave similarly: they open the given AF_UNIX socket, and start
listening on them for messages. unix-stream() is primarily used on Linux, and uses
SOCK_STREAM semantics (connection oriented, no messages are lost), unix-dgram()

14

Chapter 3. Reference

is used on BSDs, and uses SOCK_DGRAM semantics, this may result in lost local
messages, if the system is overloaded.

To avoid denial of service attacks when using connection-oriented protocols, the
number of simoultaneously accepted connections should be limited. This can be
achieved using the max-connections() parameter.

Declaration:
unix-stream(filename [options]);
unix-dgram(filename [options]);

The following options can be specified:

Table 3-1. Available options for unix-stream & unix-dgram

Name Type Description Default

owner() string Set the uid of the
socket.

root

group() string Set the gid of the
socket. Default: root.

root

perm() number Set the permission
mask. For octal
numbers prefix the
number with ’0’, e.g.
use 0755 for
rwxr-xr-x.

0666

keep-alive() yes or no Selects whether to
keep connections
opened when
syslog-ng is restarted,
can be used only with
unix-stream().
Default: yes.

yes

15

Chapter 3. Reference

Name Type Description Default

max-connections() number Limits the number of
simoultaneously
opened connections.
Can be used only
with unix-stream().

10

Example 3-2. Using the unix-stream() and unix-dgram() drivers

source s_stream { unix-stream("/dev/log" max-
connections(10)); };

source s_dgram { unix-dgram("/var/run/log"); };

3.1.3. tcp() and udp()
These drivers let you receive messages from the network, and as the name of the drivers
show, you can use both UDP and TCP.

UDP is a simple datagram protocol, which provides "best possible service" to transfer
messages between hosts. It may lose messages, and no attempt is made to retransmit
such lost messages at the protocol level.

TCP provides connection-oriented service, which basically means flow-controlled
message pipeline. In this pipeline, each message is acknowledged, and retransmission
is done for each lost packet. Generally it’s safer to use TCP, because lost connections
can be detected, and no messages get lost, but traditionally syslogd protocol uses UDP.

None of tcp() and udp() drivers require positional parameters. By default they bind to
0.0.0.0:514, which means that syslog-ng will listen on all available interfaces. To limit
accepted connections to one interface only, use the localip() parameter as described
below.

NOTE: the tcp port 514 is reserved for use with rshell, so you have to pick another port
if you intend to use syslog-ng and rshell at the same time.

16

Chapter 3. Reference

Declaration:
tcp([options]);
udp([options]);

The following options are valid for udp() and tcp()

Table 3-2. Available options for unix-stream & unix-dgram

Name Type Description Default

ip or localip string The IP address to
bind to.

0.0.0.0

Example 3-3. Using the udp() and tcp() drivers

source s_tcp { tcp(ip(127.0.0.1) port(1999); max-
connections(10)); };

source s_udp { udp(); };

3.1.4. file()
Usually the kernel presents its messages in a special file (/dev/kmsg on BSDs,
/proc/kmsg on Linux), so to read such special files, you’ll need the file() driver. Please
note that you can’t use this driver to follow a file like tail -f does. To feed a growing
logfile into syslog-ng (HTTP access.log for instance), use a script like this:

Example 3-4. example script to feed a growing logfile into syslog-ng

#!/bin/sh
tail -f | logger -p local4.info

17

Chapter 3. Reference

NOTE: on Linux, the klogd daemon reads kernel messages, and forwards them to the
syslogd process. klogd preprocesses kernel messages and replaces addresses with
symbolic names (from /boot/System.map). If you don’t want to lose this functionality
you’ll have to run klogd with syslog-ng as well.

Declaration:
file(filename);

Example 3-5. Using the file() driver

source s_file { file("/proc/kmsg"); };

3.1.5. pipe()
The pipe driver opens a named pipe with the specified name, and listens for messages.
It’s used as the native message getting protocol on HP-UX.

Declaration:
pipe(filename);

NOTE: you’ll need to create this pipe using mkfifo(1).

Example 3-6. Using the pipe() driver

source s_pipe { pipe("/dev/log"); };

3.1.6. sun-streams() driver
Solaris uses its STREAMS API to send messages to the syslogd process. You’ll have to
compile syslog-ng with this driver compiled in (see ./configure --help).

18

Chapter 3. Reference

Newer versions of Solaris (2.5.1 and above), in addition to STREAMS uses a new IPC
called door to confirm delivery of a message. Syslog-ng supports this new IPC
mechanism with the door() option (see below).

3.2. Destination drivers
Destination drivers output log messages to somewhere outside syslog-ng: a file or a
network socket.

3.2.1. file()
The file driver is one of the most important destination drivers in syslog-ng. It allows
you to output logmessages to the named file, or as you’ll see to a set of files.

The destination filename may include macros which gets expanded when the message
is written, thus a simple file() driver may result in several files to be created. Macros
can be included by prefixing the macro name with a ’$’ sign (without the quotes), just
like in Perl/PHP.

If the expanded filename refers to a directory which doesn’t exist, it’ll be created
depending on the create_dirs() setting (both global and a per destination option)

Warning: since the state of each created file must be tracked by syslog-ng, it consumes
some memory for each file. If no new messages are written to a file within 60 seconds
(controlled by the time_reap global option), it’s closed, and its state is freed.

Exploiting this a DoS attack can be mounted against your system. If the number of
possible destination files and its needed memory is more than the amount your
logserver has.

The most suspicious macro is $PROGRAM, where the possible variations is quite high,
so in untrusted environments $PROGRAM usage should be avoided.

19

Chapter 3. Reference

Table 3-3. Available macros in filename expansion

Name Description

HOST The name of the source host where the
message is originated from. If the message
traverses several hosts, and
chain_hostnames() is on, the first one is
used.

FACILITY The name of the facility, the message is
tagged as coming from.

PRIORITY or LEVEL The priority of the message.

PROGRAM The name of the program the message was
sent by.

YEAR The year the message was sent. Time
expansion macros can either use the time
specified in the log message, e.g. the time
the log message is sent, or the time the
message was received by the log server.
This is controlled by the use_time_recvd()
option.

MONTH The month the message was sent.

DAY The day of month the message was sent.

HOUR The hour of day the message was sent.

MIN The minute the message was sent.

SEC The second the message was sent.

Table 3-4. Available options for file()

Name Type Description Default

20

Chapter 3. Reference

Name Type Description Default

log_fifo_size() number The number of
entries in the output
fifo.

Use global setting.

sync_freq() number The logfile is synced
when this number of
messages has been
written to it.

Use global setting.

encrypt() yes or no Encrypt the resulting
file. NOTE: this is
not implemented as
of 1.3.14.

Use global setting.

compress() yes or no Compress the
resulting logfile using
zlib. NOTE: this is
not implemented as
of 1.3.14.

Use global setting.

owner() string Set the owner of the
created filename to
the one specified.

root

group() string Set the group of the
created filename to
the one specified.

root

perm() number The permission
mask of the file if it is
created by syslog-ng.

0600

21

Chapter 3. Reference

Name Type Description Default

dir_perm() number The permission
mask of directories
created by syslog-ng.
Log directories are
only created if a file
after macro
expansion refers to a
non-existing
directory, and dir
creation is enabled
using create_dirs().

0600

create_dirs() yes or no Enable creating
non-existing
directories.

no

3.2.2. pipe()
This driver sends messages to a named pipe like /dev/xconsole

3.2.3. unix-stream() & unix-dgram()
This driver sends messages to a unix socket in either SOCK_STREAM or
SOCK_DGRAM mode.

3.2.4. udp() & tcp()
This driver sends messages to another host on the local intranet or internet using either
UDP or TCP protocol.

22

Chapter 3. Reference

3.2.5. usertty()
This driver writes messages to the terminal of a logged-in user.

3.2.6. program()
This driver fork()’s executes the given program with the given arguments and sends
messages down to the stdin of the child.

3.3. Filter functions
The following functions may be used in the filter statement, as described in the
previous chapter.

3.4. Options
The following options can be specified in the options statement, as described in the
previous chapter.

23

Chapter 4. Performance tuning in
syslog-ng

There are several settings available you can finetune the behaviour of syslog-ng. The
defaults should be adequate for a single server or workstation installation, but for a
central loghost receiving the logs from multiple computers it may not be enough.

4.1. Setting garbage collector parameters
Syslog-ng uses a garbage collector internally, and while the garbage collector is
running it does not accept messages. This may cause problems if some non-connection
oriented transport protocol is used, like unix-dgram() or udp(). There are two settings
which control the garbage collection phase:

4.1.1. gc_idle_threshold()
With this option you can specify the idle threshold of the gc. If the number of allocated
objects reach this number, and the system is idle (no message arrived within 100msec),
a gc phase starts. Since the system is idle, presumably no messages will be lost if the gc
is ran. Therefore this value should be low, but higher than the minimally allocated
objects. The minimum number of objects allocated depends on your configuration, but
you can get exact numbers by specifying the -v command line option.

4.1.2. gc_busy_threshold()
This threshold is used when syslog-ng is busy accepting messages (this means that
within 100msec an I/O event occured), however to prevent syslog-ng eating all your
memory, gc should be ran in these cases as well. Set this value high, so that your log
bursts don’t get interrupted by the gc.

24

Chapter 4. Performance tuning in syslog-ng

4.2. Setting output queue size
Syslog-ng always reads its incoming log channels to prevent your running daemons
from blocking. This may result in lost messages if the output queue is full. It’s therefore
important to set the output queue size (termed in number of messages), which you can
do globally, or on a per destination basis.

options { log_fifo_size(1000); };

or

destina-
tion d_messages { file("/var/log/messages" log_fifo_size(1000); };

You should set your fifo size to the estimated number of messages in a message burst.
If bursts extend the bandwidth of your destination pipe, syslog-ng can feed messages
into the destination pipe after the burst has collapsed.

Of course syslog-ng cannot widen your network bandwidth, so if your destination host
lives on a noisy network, and your logtraffic extends the bandwidth of this network,
syslog-ng can’t do anything. It’ll do its best however.

4.3. Setting sync parameter
The sync parameter doesn’t exactly do what you might expect. As you have seen
messages to be sent are buffered in an output queue. The sync parameter specifies the
number of messages held in this buffer before anything is written.

Note that it doesn’t write all buffered messages in one single chunk, it writes each
distinct message with a single write() system call.

25

