
A New Loop Optimizer for GCC

Zdeněk Dvořák
SuSE Labs

dvorakz@suse.cz, http://atrey.karlin.mff.cuni.cz/˜rakdver/

Abstract

One of the most important compiler passes is
a loop optimization. The GCC’s current loop
optimizer is outdated and its performance, ro-
bustness and extendibility are unsatisfactory. A
goal of the project is to replace it with a new
better one. In this paper we discuss the design
decisions – the choice of used data structures
and algorithms, usage and updating of auxil-
iary information,. . . Then we describe the cur-
rent state with emphasis on still unsolved prob-
lems and outline the possibilities for further
continuation of the project, including replacing
the remaining parts of the old optimizer and in-
troducing new low-level (RTL based) and high-
level (AST based) optimizations.

Introduction

It is generally known that most of the time of
programs is spent in a small portion of code
([HP]). Those small but critical areas usually
consist of loops, therefore it makes sense to ex-
pect the optimizations that directly target loops
to have a great effect on program performance.
Indeed optimizations to improve the efficiency
of scheduling, decrease a loop overhead, op-
timize memory access patterns and exploit a
knowledge about a structure of loops in vari-
ous other ways were devised; see [BGS] for
a survey. Certainly no seriously meant com-
piler may ignore this. GCC contains a loop
optimizer that supports the following optimiza-

tions:

• Loop invariant motion that moves invari-
ant computations out of loops.

• Strength reduction, induction variable
elimination and various other manipula-
tions with induction variables like fitting
into machine addressing modes.

• Doloop optimization, i.e. usage of low
overhead loop instructions if a target ma-
chine provides them.

• Prefetching of arrays used inside loops to
reduce cache miss penalties.

• Unrolling of loops to reduce loop over-
heads, improve the efficiency of schedul-
ing and increase sequentiality of a code.

We refer to this loop optimizer as the old one
in the rest of the paper.

The importance of loop optimizations has been
recognized for a long time and the old loop
optimizer was added to GCC very early (a
copyright notice in theloop.c file dates it
to 1987). The lack of knowledge about the
optimization as well as the lack of computing
power lead to several design choices that were
unfortunate and today cause the optimizer to be
much less powerful than it could be. They also
cause other problems concerning its robust-
ness, extendibility and restrictions imposed on
the other optimizers. This lead us to decide to



44 • GCC Developers Summit

replace it by a new one by rewriting some parts,
adapting some parts for a new infrastructure
and extending it by new important optimiza-
tions. We refer to the goal of our efforts as the
new loop optimizer in the rest of this paper.

The paper is structured as follows: In the sec-
tion 1 we investigate the structure of the old
loop optimizer and problems with it. In the
section2 we discuss goals of the project to re-
place it and the high-level design choices of the
new loop optimizer. Then we continue by pro-
viding the detailed description of the current
state of the new loop optimizer, including the
changes made in the loop analysis. In the fol-
lowing section3 we describe used data struc-
tures and algorithms to update them. In the
section4 we summarize a status of the project,
provide some benchmark results and state our
future goals.

1 The Old Loop Optimizer

The loop optimizer was added to GCC very
early. Due to the lack of a computing power
(and partially also the lack of knowledge) in
those times, it has several features that are quite
unusual for modern compilers.

Firstly the loop discovery is based on notes
passed from the front-end. This approach is
very fast, but the considered loops are there-
fore required to form a contiguous interval in
the insn chain and to fit into one of a few spe-
cial shapes (of course covering all of the most
important cases). The loops created by non-
loop constructs (gotos, tail recursion, . . . ) are
not detected at all. Optimization passes before
the loop optimizer are required to preserve the
shape of loops and the placement of loop notes.
Most of them fortunately do not modify control
flow graph, but those few that do are compli-
cated and restricted by this need.

Additionally sometimes this information is not

updated correctly, therefore it must be verified
in the loop optimizer itself and the offending
loops are ignored. This makes us miss some
more optimization opportunities.

The second problem is the handling of jumps
inside loops. The global (not specific to a sin-
gle pass) control flow graph was introduced
into GCC very lately (2000), and the loop op-
timizer works over the insn chain only. Con-
sequently the effects of branches are estimated
mostly by simple heuristics and results of loop
invariant and induction variable analyses tend
to be overly conservative.

As a side issue, the unroller does not update
control flow graph, forcing us to rebuild it.
This prevents us to gather a profiling feedback
before the loop optimizer, as this information
is stored in control flow graph. Therefore we
cannot use it in the loop optimizer itself and in
the previous passes (most notably GCSE and
loop header duplication).

The unroller uses its own routines to copy the
insn stream, creating an unnecessary code du-
plication with the other parts of the compiler.

Any single of these problems could probably
be addressed separately by modifying the rele-
vant code. Considering them together it seems
to be easier to write most of the optimizer
again from scratch. Some parts can just be
adapted for a new infrastructure (the decision
heuristics and execution parts of the invariant
motion and induction variable optimizations,
the whole doloop optimization pass), but the
greatest part has too deeply inbuilt expecta-
tions about a loop shape with respect to the insn
chain to be usable. We discuss the plans con-
cerning this rewrite in more detail in the fol-
lowing sections.

The source of other complications is the low
level of RTL. During the translation to RTL,
some of the information about possibility to



GCC Developers Summit 2003 • 45

overflow and types of the registers is lost and
we are forced to either rediscover it through
nontrivial analysis, use conservative heuristics,
produce a suboptimal code containing unnec-
essary overflow checks or produce a possibly
incorrect code. None of these options is par-
ticularly good. It would also make dependency
analysis quite complicated – it is not present
in GCC yet, and the optimizations that require
it (the loop reorganization, the loop fusion,
. . . ) are missing. While the current project
is mostly RTL based, it will be necessary to
address these issues in near future. There are
already some efforts for moving the relevant
parts of the loop optimizer to the AST level in
progress; for more information see section4.

2 Overview of The New Loop Opti-
mizer

There are several basic principles we have de-
cided to follow:

• The passes that form the loop opti-
mizer should be completely independent
on each other. They must preserve the
common data structures and it should
be possible to run them any number
of times and in any order (although of
course not all orders are equally effec-
tive). This approach is completely dif-
ferent from the old loop optimizer one –
there the optimizers called each other in
non-transparent manner and most of them
had assumptions about information gath-
ered by the other ones. While this ap-
proach may be slightly more efficient and
perhaps simpler at some places with re-
spect to keeping the information up to date
during transformations, we prefer our ap-
proach due to its cleanness, extendibility
and robustness. We have also initially
made some parts of the optimizer quite

simplistic, and this approach enables us to
replace them later by more involved solu-
tions without greater problems.

• We have decided to generally reuse as
much of the existing code as possible
and eventually extend it for our purposes,
rather than creating our own variations
of the existing code. Most importantly
we used thecfglayout.c code for
duplicating basic blocks (this should re-
place two instances of a similar code,
one in unroll.c and the other one
in jump.c ) and of course the existing
cfgloop.c code for a loop analysis (af-
ter significant changes described below).
We are also currently using the code from
simplify-rtx.c when computing a
number of iterations of a loop. In this
case we were unfortunately forced to start
working on an alternative RTL simplifi-
cation code for this purpose. The reason
is that the goal ofsimplify-rtx.c is
in some sense opposite to what we would
need. While we need to simplify the
RTL expressions into a simple canonical
shape,simplify-rtx.c code tries to
transform it so that it is efficiently com-
putable. Some of the manipulations it
does for this purpose (expressing multi-
plication through shifts) make it unsuit-
able for our needs, and some conversion
we need to do (using distributive law on
products of sums) make the resulting code
possibly much less efficient than the orig-
inal one. The two approaches do not seem
to fit together very well.

• As much of the information as possi-
ble should be kept up to date at any
given time. This concerns mostly com-
plicated operations over loops (unrolling,
unswitching, . . . ), where we express them
as a composition of simpler operations
that preserve the consistent state rather



46 • GCC Developers Summit

than making them at once and updating
the structures afterwards. This makes
the code a bit slower, but much easier to
understand and debug (many bugs were
caught early due to a possibility to check
a consistency after every step).

The optimizer itself consists of the initializa-
tion, several optimization passes and the final-
ization. The finalization part is trivial, just
releasing the allocated structures. In the fol-
lowing paragraphs we examine the remaining
phases in a greater detail.

The initialization and finalization parts are
placed inloop-init.c . During the initial-
ization, we calculate the following information
(that is kept up to date till the finalization):

• A dominator relation is computed. The
dominators are used to define and find
natural loops and we use them during
loop transformations for several purposes,
most importantly during the simple loop
analysis to determine expressions (condi-
tions) that are executed (tested) in every it-
eration of the loop. Also we need them to
be able to update the loop structure when
parts of the code are removed. The de-
cision to keep the dominator relation al-
ways up to date turned out to be some-
what disputable. Having them ready at all
times is convenient and makes the parts
where they are used quite simple, but up-
dating them is relatively non-trivial and
quite costly. Most of their usages would
be simple to replace without using them
at a little extra cost, but their usage during
the removal of a code seems to be crucial.

• Natural loops are found. The natural loop
is defined as a part of a control flow graph
that is dominated by the loop’s header
block and backreachable from one of the
edges entering the header, called the latch

Figure 1: Creating nested loops from loops
with shared header.

Figure 2: Merging loops with a shared header.



GCC Developers Summit 2003 • 47

edge. Note that this definition makes it
possible for several loops to share the
same header block. We do not want to
have to handle them specially, so we split
the loop header in this case. There are
two ways to split the header (figures1
and 2) – one of them merges the loops
together, while the other one creates the
nested loops. It is impossible to recog-
nize which of these cases matches the re-
ality just from a control flow graph, and
even looking at the source code does not
help too much (this kind of loops is often
created by continue statements, and it is
hard to recognize what behavior describes
this situation better). If we have a profile
feedback available, we use it to determine
whether one of the latch edges is much
more frequent than the other ones, i.e. if it
behaves like an inner loop, and create the
inner loop in this case (this is sometimes
called the commando loop optimization).
Otherwise we just merge the loops.

• cfg_layout_initialize is called
to bring the instruction chain into a shape
that is more suitable for the transforma-
tions. This function removes the uncondi-
tional jumps from the instruction stream
(the information about them is already
included in the control flow graph) and
makes it possible to reorganize and ma-
nipulate basic blocks in much easier man-
ner.

• Loops are canonicalized so that they have
simple preheaders and latches. By this we
mean that:

– Every loop has just a single entry
edge and the source of this entry
edge has exactly one successor.

– The source of latch edge has exactly
one successor.

This makes moving a code out of the loop

easier, as there is exactly one place where
it must be put to (the preheader) and we
can put it there without a fear that it would
be executed if we do not enter the loop. It
also removes the singular case of a loop
that consists of just one block. A quite im-
portant fact is that the loop latch must now
belong directly to the loop (i.e. it cannot
belong to any subloop) and the preheader
belongs directly to the immediate super-
loop of the loop (it could belong to a sib-
ling loop if it had more than one succes-
sor).

• The irreducible regions are marked. A re-
gion of a control flow graph is considered
irreducible if it is strongly connected and
has more than one entry block (i.e. it con-
tains a depth first search back edge, but
the destination block of this edge does not
dominate its source, so the region fails to
be a natural loop). The irreducible re-
gions are quite infrequent (it is impossi-
ble to create them in structured languages
without use of a goto statement or a help
of the compiler), but we must be able to
handle them somehow. In the new loop
optimizer they are mostly ignored, just
taking them into account during various
analyses. The information about them is
quite easy to keep up to date unless we
affect their structure significantly. This
may occur in very rare cases during the
unswitching or the complete unrolling. In
some of these cases we have resigned on
updating the information and rather re-
compute them from scratch – it is quite
fast (just a depth first search over a con-
trol flow graph) and much less error prone
than to attempt to handle the case that we
would not be able to test properly (it is
almost impossible to construct a suitable
testcase).



48 • GCC Developers Summit

The optimization passes are placed in sepa-
rate files. The currently available optimization
passes are:

• Loop unswitching (in
loop-unswitch.c ) – if there is a
condition inside a loop that is invariant,
we may create a duplicate of the loop,
put a copy of the condition in front of
the loop and its duplicate that chooses
the appropriate loop and optimize the
loop bodies using the knowledge of a
result of this condition. There are a few
points worth the attention. The first is
a code growth – if there is a loop with
k unswitchable conditions, we end up
with 2k duplicates of the loop. This is
not really a problem in practice – the
opportunities for unswitching are rare.
Also in most of the cases when we have
more than one unswitchable condition
per loop the values tested in them are
identical and they are therefore eliminated
already during the first unswitching. (Just
for sure the number of unswitchings per
loop is limited). The other is testing for
invariantness of the condition. As the new
loop optimizer is placed after GCSE (and
also the old loop optimizer’s invariant
motion), it is sufficient to just test that
the arguments of the condition are not
modified anywhere inside the loop.

• Loop unrolling and loop peeling (placed
in loop-unroll.c ). While it would
correspond more to our philosophy to
have this pass split into several ones, the
code and computation sharing between
them is so large that it would be impracti-
cal. Anyway they are still completely in-
dependent and they could be split with a
little effort. We perform the following op-
timizations:

– Elimination of loops that do not roll

at all – this is somewhat exceptional,
as this does not increase code size (in
fact it decreases it). For this reason
we perform this transformation even
for non-innermost loops, unlike the
other ones.

– Complete unrolling of loops that it-
erate a small constant number of
times (a loop is eliminated in this
case too, but at the cost of a code size
growth).

– Unrolling loops with a constant
number of iterations—we may peel
a few iterations of the loop and thus
ensure that the loop may only exit in
a specified copy, therefore enabling
us to remove now useless exit tests.
For most of the loops we leave the
exit in the last copy of the loop
body—the exit is usually placed at
the end of loop body, and all copies
may be merged into a single block
in this case. In the rare cases when
this is not true we leave the exit in
the first copy—in this case it is a
bit easier to handle loops of a form
for (i=a; i < a+100; i++) ,
where the number of iterations may
be either100 or 0 (in the case of an
overflow).

– Unrolling loops for that the num-
ber of iterations may be determined
in runtime – the situation is similar
here, except that the number of it-
erations to perform before entering
the unrolled loop body must be de-
termined in runtime. The number
of iterations to be performed is cho-
sen through a switch statement-like
code.
According to some sources ([DJ]),
in both of these cases it is prefer-
able to place the extra iterations af-
ter the loop instead due to a better



GCC Developers Summit 2003 • 49

alignment of data (this might also be
important if we were doing autovec-
torisation). This can only be done
if the loop has just a single exit and
modifications of the loop are more
complicated. Also handling of over-
flows and other degenerate cases be-
comes much harder. It could how-
ever be done for constant time iterat-
ing loops with a little effort.

– Unrolling of all remaining loops –
this transformation is a bit contro-
versial. The gains tend not to be
large (scheduling may be improved
and rarely some computations from
two consecutive iterations may be
combined together), and sometimes
we even lose efficiency (due to neg-
ative effects of a code growth to
instruction caches and an increased
number of branches to branch pre-
diction). We only do this if specif-
ically asked to, and even then only if
the loop consists of just a single ba-
sic block.

– Loop peeling – the situation is simi-
lar (additionally we hope that the in-
formation about initial values of reg-
isters can be used to optimize the
few first iterations specially). We
gain most for loops that do not iter-
ate too much (optimally we should
not even enter the loop). To ver-
ify this, we use a profile feedback
and therefore perform this transfor-
mation only if it is present.

As was already mentioned, we perform
these transforms on innermost loops only.
This is not a principal restriction (the
passes are written so that they handle
subloops), but the ratio of a code size
growth to a performance gain is bad then,
and also duplicated subloops would be

more difficult for branch prediction in
processors.

The old loop unroller also performs the in-
duction variable splitting to remove long
dependency chains created by unrolling
that negatively impact scheduling and
other optimization passes. We instead
leave this work to the webizer pass that
is much more general.

There are three basic problems to solve.
Firstly there is the code growth. All of
the unrolling-type transformations natu-
rally increase a code size. While the
greater number of unrollings generally in-
creases effect of the optimization, it also
increases a pressure on code caches. It
is therefore important to limit the code
growth. There are adjustable thresholds
that limit the size of resulting loops as
well as the maximal number of unrollings.
We also use a profile feedback to optimize
only relevant parts and try to limit trans-
formations for that gains are questionable
in cases when we believe that they might
spoil the code instead (for example the
loop peeling is not performed without a
profile feedback that would suggest that
the loop does not roll too much).

A more appropriate solution might be a
loop rerolling pass run after scheduling
that would revert the effects of a loop un-
rolling in case we were not able to get any
benefits from it.

Secondly we need the analysis to deter-
mine a number of the loop’s iterations.
Currently we use a simplistic analysis that
for each exit from the loop that domi-
nates the latch (i.e. is executed in every
iteration) checks whether the exit condi-
tion is suitable – i.e. if it is comparison
where one of the operands is invariant in-
side the loop and the other one is set at
exactly one instruction that is executed ex-



50 • GCC Developers Summit

actly once per loop iteration. For such
condition we then check whether the vari-
able is increased by constant and attempt
to find its initial variable in an extended
preheader of the loop (i.e. basic blocks
that necessarily had to be executed before
entering the loop). Using the simplifica-
tion machinery fromsimplify-rtx.c
we then determine the number of itera-
tions. This turns out to be sufficient in
most cases, but things like multiple in-
creases of the induction variable prevents
us from detecting the variable. Also often
the initial value of the variable is assigned
to it earlier, preventing us from recogniz-
ing the loop as iterating a constant number
of times. Induction variables that iterate in
a mode that is narrower than their natural
mode are not handled, which causes prob-
lems on some of the 64 bit architectures
where int type is represented this way. We
are currently working on the full induction
variables analysis that solves all of these
problems.

Thirdly we must decide how much we
want to unroll the loop. Currently we take
into account just a code growth, thus we
unroll the bigger loops less times. For
constant times iterating loops we also at-
tempt to adjust the number of unrollings
so that the total size of the code is mini-
mal. In other cases we use the heuristic
that says that it is good to unroll number
of times that is a power of two (because of
better alignments and other factors). See
the section4 for discussion of the possi-
ble extensions of this scheme and the esti-
mation of gains obtainable by using some
better methods.

• Doloop optimization – this pass is just
an adaptation of the old loop optimizer’s
doloop pass that was written by Michael
Hayes. The structure of the pass was quite
clear and there were no major problems

with the transfer. This adaptation of the
pass is still only present on rtlopt-branch,
due to a bad interaction with the new loop
optimizer. This is caused by a overly
simplistic induction variable analysis used
and should be solved by the improved in-
duction variable analysis that is currently
being written.

3 The Data Structures

In this section, we discuss the structure to rep-
resent the loops as well as other auxiliary data
structures used in the new loop optimizer. We
also describe the algorithms used to update
them.

We consider a loopA a subloopof a loopB
if a set of basic blocks inside the loopA is a
strict subset of a set of basic blocks inside the
loopB. Because we have eliminated the loops
with shared headers, the Hasse diagram of a
partial ordering of loops by the subset relation
is a forest. To make some of the algorithms
more consistent, we add an artificial root loop
consisting of the whole function body (with an
entry block as a header and an exit block as a
latch). We maintain this loop tree explicitly.
For each of the nodes of the tree we remem-
ber the corresponding loop’s header and latch.
But we do not remember the set of basic blocks
that belong to it – if we need to enumerate the
whole loop body, we use a simple backward
depth first search from its latch, stopping at its
header.

To be able to test for the membership of a ba-
sic block to the loop we maintain the informa-
tion about the innermost loop that each basic
block belongs to. To speed up the testing for
a not necessarily immediate membership to a
loop (i.e. including membership to any subloop
of the loop), we also maintain the depth in the
loop tree and an array of parents for each node



GCC Developers Summit 2003 • 51

in the loop tree. Maintaining the arrays of par-
ents enables us to respond to these queries in
a constant time, but makes speed of all up-
dates proportional to the depth of the tree. This
works well in the practice, as the tree is usually
quite shallow and the structure of a loop tree
does not change very often.

Updating the loop tree is straightforward dur-
ing the control flow graph transformations we
use. Most of the optimizations do not change
the structure at all. The exception is the loop
unrolling and peeling type transformations if
some subloops are duplicated (it cannot really
occur just now because we optimize only in-
nermost loops, but the code can handle this sit-
uation for case we changed this decision) or the
unrolled loop is removed, but all of these cases
are easy to handle. Note that some of them
may create new loops if irreducible regions are
present. We ignore these newly created loops
(still having them marked as irreducible) – this
is conservatively correct and this situation is so
rare that it does not deserve any other special
handling.

As described in the previous section, there are
two further pieces of information we keep up-
to-date – the dominators of basic blocks and
the information about irreducible regions.

We represent the dominators as the in-
branching of immediate dominators. We rep-
resent this in-branching using ET-trees. This
structure was chosen due to its flexibility –
it enables us to perform all relevant opera-
tions asymptotically fast (updates and queries
for dominance in logarithmic time, finding the
nearest common dominator of a set of blocks
and enumerating all blocks that are immedi-
ately dominated by a given block in a time pro-
portional to the size of the relevant set times a
polylogarithmic time). The multiplicative con-
stants however turned out to be quite high and
we are considering replacing the structure by

some perhaps less theoretically nice but more
practical (e.g. a depth first search numbering
with holes).

Updating of the dominators in general is not
easy. During the transformations we perform
we are usually able to handle it by using the
fact that they are of a special kind (respecting
the loop structure that itself reflects the struc-
ture of dominators). In a small portion of cases
when we are not able to do it (or the rules to
determine how the dominators change would
be too complicated) we use a simple iterative
approach (similar to [PM]) to update the domi-
nators in the (usually) small set of basic blocks
where they could be affected. As already men-
tioned before, we also consider not keeping the
dominators at all and solving the cases when
they are currently used without them.

The irreducible regions are determined as
strongly connected components of a slightly al-
tered control flow graph. For each loop we cre-
ate a fake node. Entry edges of the loops are
redirected to these nodes, exit edges are redi-
rected to lead from them – this ensures that
the parts of the irreducible regions that pass
through some subloop are taken into account
only in the outer loop. We remember this in-
formation through flag placed on the edges that
are a part of those strongly connected compo-
nents. This is sufficient to update the informa-
tion effectively during the most of the control
flow graph transformations. The only difficult
case is when a loop that is a part of an irre-
ducible area is removed. We would have to
propagate the information about irreducibility
through the remnant of its body then. While
it could be done, it would be quite difficult
to handle all problems (subloops, other irre-
ducible regions). Instead, we simply remark
all irreducible regions using the algorithm de-
scribed above (this situation is quite rare and
the algorithm is sufficiently fast anyway).



52 • GCC Developers Summit

Estimated Estimated
Base Base Base Peak Peak Peak

Benchmarks Ref Time Run Time Ratio Ref Time Run Time Ratio
164.gzip 1400 306 458 1400 291 480*
175.vpr 1400 452 310 1400 452 310*
176.gcc 1100 306 360 1100 299 368*
181.mcf 1800 821 219 1800 815 221*
186.crafty 1000 174 574 1000 174 575*
197.parser 1800 534 337 1800 534 337*
252.eon 1300 201 648 1300 199 652*
253.perlbmk 1800 338 533 1800 335 538*
254.gap 1100 280 393 1100 277 398*
255.vortex 1900 414 459 1900 410 464*
256.bzip2 1500 431 348 1500 428 351*
300.twolf 3000 902 333 3000 878 342*
Est. SPECint_base2000 398
Est. SPECint2000 403
Base flags: -O2 -march=athlon -malign-double -fold-unroll-loops
Peak flags: -O2 -march=athlon -malign-double -funroll-loops

Figure 3: SPECint2000 results for rtlopt-branch on Athlon, 1.7 GHz

Estimated Estimated
Base Base Base Peak Peak Peak

Benchmarks Ref Time Run Time Ratio Ref Time Run Time Ratio
164.gzip 1400 621 225 1400 605 232
175.vpr 1400 857 163 1400 854 164
176.gcc 1100 624 176 1100 618 178
181.mcf 1800 1354 133 1800 1361 132
186.crafty 1000 285 350 1000 275 364
197.parser 1800 930 194 1800 932 193
252.eon 1300 321 405 1300 331 393
253.perlbmk 1800 538 335 1800 556 324
254.gap 1100 426 258 1100 420 262
255.vortex 1900 817 233 1900 810 235
256.bzip2 1500 770 195 1500 774 194
300.twolf 3000 1709 176 3000 1699 177
Est. SPECint_base2000 224
Est. SPECint2000 225
Base flags: -O2 -march=athlon -fold-unroll-loops
Peak flags: -O2 -march=athlon -funroll-loops

Figure 4: SPECint2000 results for mainline on Duron, 800 MHz



GCC Developers Summit 2003 • 53

4 The Current State And Further
Plans

Everything described above in the paper (ex-
cept for the doloop optimizer adaptation) is al-
ready merged in the GCC mainline and will
be in GCC 3.4. The new loop unroller in
connection with webizer and other improve-
ments present on rtlopt-branch outperforms the
old one on i686 and even without the webizer
the results are comparable (see figures3 and
4 for results on SPECint2000 testsuite). Its
simple procedure to count the number of it-
erations beats the old loop optimizer’s one (it
detects52 loops as iterating a constant num-
ber of times on the gap benchmark compilation
as opposed to39 loops the old loop optimizer
did). The total number of loops detected is a bit
surprisingly almost the same –3292 by the old
loop optimizer,3298 by the new one – writers
of GCC have apparently done very good job
in keeping the front-end information about the
loops accurate.

We are still quite far from our final goal –
fully replacing and removing the old loop op-
timizer. What remains is to replace or adapt
induction variable optimizations (the invariant
motion can be solved by GCSE instead) and to
solve the problems described below.

While the results from i686 look quite promis-
ing, the new loop optimizer has problems on
the other architectures. Some of the 64-bit
architectures must represent 32-bit integers as
subregs of 64-bit registers. The simplistic anal-
ysis to determine a number of iterations of the
loops is not yet able to handle this case, so the
unroller is useless here. This should be solved
by introducing the new induction analysis that
is needed to replace the induction variable op-
timization parts anyway.

On some other architectures quite important
performance regressions were reported. They

might be partially caused by absence of the we-
bizer pass in mainline. We are currently inves-
tigating other reasons.

The interesting problem with the new loop un-
roller is determining whether and how much
we should unroll or peel a given loop. There
are several possible criterion:

• To decide whether to optimize at all, we
use a profile feedback. Not optimizing in
cold areas reduces the code growth a lot.
To decide whether to peel or to unroll, we
try to estimate the number of iterations of
a loop using the feedback and to peel a
sufficient number of iterations from a loop
so that the loop is not entered at all most of
the times. We also measure histograms of
first few iterations of the loops and use it
to determine this more precisely on rtlopt-
branch, but the effects are not significant.

• The effects on instruction cache seem to
be quite important. There are some works
describing how to take them into account
([HBK]), but they would require a global
program analysis and it seems question-
able whether they would be useful at all.
For now we cannot do anything but to at-
tempt to limit the code size growth.

Similarly duplication of loops whose bod-
ies contain many branches may also affect
the performance negatively, as the created
jumps increase the pressure on the CPU’s
branch prediction mechanisms. Some-
times these jumps may also may behave
less predictably than the original ones.

• From a scheduling point of view, it would
make sense to prefer unrolling loops that
contain instructions with long latencies. It
might also be useful to take a register al-
location into account, attempting to min-
imize the number of registers needed for
computing simple recurrences.



54 • GCC Developers Summit

Currently we use only a very simple heuristics
to take some of the effects mentioned above
into account. To estimate the possible gains of
using better methods, we wrote a code that at-
tempts to determine the best possible number
of unrollings for each of the loops. It adds a
code for each of the loops that measures the
total time spent inside it. Then fori between
1 and some upper bound, we unroll all loops
i times and gather the profiling data. Finally
we choose the best of these times for every
loop as the right number of iterations to un-
roll. This is far from optimal (the added pro-
filing code changes the performance character-
istics of a compiled program a lot and the opti-
mal numbers are also dependent on how other
loops are unrolled, so measuring them when all
are unrolled the same number of times is not
completely right), still we achieved about 2%
speedup on SPEC2000 this way on i686.

Adapting the rest of old loop optimizer seems
to be quite straightforward now. New induc-
tion variable analysis pass is just being tested
on rtlopt-branch, the next step is either to use it
to produce induction variable descriptions suit-
able for the old induction variable optimization
pass, or (more likely) to write a new one, heav-
ily reusing the parts of the old one.

There are additional loop optimizations that
should be added to GCC, including

• loop reorganization that makes accesses to
arrays more sequential by swapping an or-
der of nested loops if possible.

• loop fusion that joins adjacent loops that
iterate the same number of times (perhaps
after a small adjustment), to reduce an
overhead of loop creating instructions.

• loop splitting that inversely splits the
loops into several smaller ones if we know
that we are able to optimize them better
this way.

• autovectorisation, i.e. usage of SIMD in-
structions on arrays processed in loops.

All of those (and several other less impor-
tant) optimizations require a dependency anal-
ysis to determine whether it is indeed possi-
ble to reorganize computations as needed. It
would be pretty painful to determine this on the
RTL level, as information about types of vari-
ables is almost lost here (partially recoverable
only through a complicated analysis) and so is
some of the information about overflows. Also
the loop reorganization needed would be quite
complicated on the RTL level. This makes
them more suitable for the AST level. We hope
to be able to start a work on them in a few
months.

Other optimizations should be better done on
AST level from similar reasons, including a
part of induction variable optimizations that
does not use a machine specific information
(like a knowledge of addressing modes etc.)
and possibly unrolling and unswitching. There
are already some efforts for moving the rel-
evant parts of the loop optimizer to the AST
level in progress (Pop Sébastian have recently
altered the loop recognition code to work both
on RTL and AST levels).

Acknowledgments

The project is based on the GCC code written
by hundreds of volunteers. The most of contri-
butions to the loop analysis code we have built
upon were by Daniel Berlin, Michael Hayes
and Michael Matz. Part of the new loop op-
timizer was written during the “Infrastruktura
pro profilemřízené optimalizace v GCC” (“In-
frastructure for profile driven optimizations in
GCC”) software project at Charles University,
Prague ([DHNZ], [DHNZ-doc]) together with
Josef Zlomek, Pavel Nejedlý and Jan Hubička
under leadership of David Bednárek and later



GCC Developers Summit 2003 • 55

continued with support of Suse Labs. I would
also like to thank Richard Henderson for pro-
viding a useful feedback during the merging of
the new loop optimizer to the mainline.

References

[BGS] David F. Bacon, Susan L. Graham and
Oliver J. Sharp,Compiler Transforma-
tions for High-Performance Computing,
ACM Computing Surveys 26 (1994) p.
345–420.

[DJ] Jack W. Davidson and Sanjay Jinturkar,
An Aggressive Approach to Loop Un-
rolling, Technical Report CS-95-26, De-
partment of Computer Science, Univer-
sity of Virginia, Charlottesville, June
1995.

[DHNZ] The “Infrastruktura pro profilem
řízené optimalizace v GCC” project
specification,
http://ksvi.mff.cuni.cz/
~holan/SWP/zadani/gccopt.
txt

[DHNZ-doc] The “Infrastruktura pro pro-
filem řízené optimalizace v GCC” project
documentation,
http://atrey.karlin.mff.
cuni.cz/~rakdver/projekt/

[HBK] K. Heydemann, F. Bodin, P. Knijnen-
burg,Global Trade-off between Code Size
and Performance for Loop Unrolling on
VLIW Architectures, Publication Interne
1390, IRISA, Institut de Recherche en
Informatique et Syst‘emes Al’eatoires,
March 2001.

[HP] J. L. Hennessy and D. A. Patterson,
Computer Architecture: A Quantitative
Approach, Morgan Kaufmann Publishers,
Inc, San Matea, CA, 1990.

[PM] Paul W. Purdom, Jr. , Edward F. Moore,
Immediate predominators in a directed
graph, Communications of the ACM,
v.15 n.8, p.777-778, Aug. 1972



56 • GCC Developers Summit


