
Fortran 95 support in GCC

Paul Brook
paul@nowt.org

Abstract

This paper details the current status of Fortran
95 language support in GCC, with reference to
the future targets and goals of the g95 project.
Some of the problems encountered and design
decisions made in the process of interfacing
with the GCC backend code generator will also
be discussed.

1 The Evolution of Fortran

Fortran is a programming language primarily
designed for performing computationaly inten-
sive mathematical tasks. Indeed the name itself
is derived from the words FORmula TRANsla-
tion.

Common uses include Finite Element and
Computational Fluid Dynamics codes. Au-
thors of Fortran programs are often not pro-
fessional software developers. It is commonly
used in academic research situations where the
primary goal is the analysis and solution of the
problem, rather than the development of the
software itself.

Fortran was originally implemented by IBM as
an alternative to assembly language for pro-
gramming its 704 systems. The development
of the language started in 1954, with a man-
ual published in 1956 (there are rumors that
the first customer got a preview compiler with-
out manual in December 1955). The first ISO
Fortran Standard was released in 1966. Since
then, the standard has undergone four major re-

visions. These are typically named by the year
they were released.

Possibly the most significant changes were in-
troduced in the Fortran 90 standard. Many new
features were introduced, with the aim of en-
suring the language remained viable for use on
modern computing systems.

Fortran 90 introduces powerfull array handling
facilities. It allows operations to be performed
on whole arrays or sections of arrays in a single
expression. From the compiler writer’s view
this is the most complex feature of the language
from, as these must be converted into a collec-
tion of scalar operations. It also provides op-
portunities for the compiler to apply more ad-
vanced optimization strategies.

The concept of derived types (analagous to C
struct types) was also introduced. While many
Fortran vendors had previously provided ways
to access and manage dynamically allocated
storage areas these were only standardized in
the Fortran 90 standard.

As well as these additions to the functional ca-
pabilities of language, several other syntacti-
cal additions were made. These include mod-
ules to aid code modularity and reuse, explicit
procedure prototypes, block based flow control
constructs and the removal of restrictions on
the source form imposed by the use of punch
paper cards (so-called Hollerith cards).

Fortran 95 contains mostly minor changes rel-
ative to Fortran 90, and removes some of the
features that were deprecated with the advent



36 • GCC Developers Summit

of Fortran 90. However the majority of Fortran
77 code is still legal under Fortran 95 rules.

2 The g95 project

The existing GNU Fortran compiler is widely
respected, and a very competent compiler.
However this is limited to Fortran 77 code.
Even the author of g77 didn’t believe that one
could make a full Fortran 95 compiler based on
the existing g77 code. Writing a new frontend
from scratch means g95 is not restricted by de-
sign decisions made in g77, and is more easily
able to take advantage of new technologies in-
troduced into the common GCC middle- and
back-ends.

Thus Andy Vaught created the GNU Fortan 95
project. Initial work concentrated on parsing
and correctly resolving Fortran 95 source code.

Only in June 2002, when the parser and re-
solver were mostly complete, did work begin
on the code generation pass and interfacing to
the rest of GCC. For this reason g95 is able
to correctly parse and verify almost all Fortran
code, however it is only able to generate exe-
cutable code for some of it.

Work is currently concentrated on implement-
ing the few remaining constructs, and comple-
tion of the IO and runtime libraries.

Steven Bosscher and I created a fork from the
original g95 code in January 2003. This is done
in an attempt to achieve closer integration be-
tween GCC and g95, and to promote a more
open development environment.

3 The Parser and Resolver

Fortran grammar predates most modern pars-
ing techniques. It does not distinguish between
keywords and identifiers, and in some cases

the meaning of an identifier can only be deter-
mined from the way it is used. In other cases
the same line of code can have different mean-
ings depending on the context in which it is
encountered. It is possibly to write automat-
ically generated parsers for fortran. However
these are qute complicated as there is not a
clean seperation between lexical, syntactic and
semantics analysis. G95 uses a hand crafted
pattern matching parser which often operated
in a recursive manner.

The majority of error checking and name reso-
lution is done in this first pass. During this pro-
cess a tree structure is contructed to represent
the code. Each statement is represented by a
node. These are linked together in lists to form
code blocks. These are referenced by flow con-
trol statements. For example an IF statement
node contains pointers to an expression node
for the condition, and expression nodes for the
true and ELSE blocks.

Constant folding and simplification of intrinsic
functions is also performed while building this
tree.

This tree is then traversed in a second pass
to perform type checking, insert implicit type
conversions where necessary, and to resolve
overloaded functions. We also resolve calls
to intrinsic function calls to the corresponding
runtime library function.

After these two passes, the code tree is fully
resolved, and any errors will already have been
rejected. The completed tree is passed to the
code generation interface one program unit at
a time. A program unit is a module, top level
subroutine or function, or PROGRAM block.

The first two passes are now almost complete,
with legal code being parsed correctly. Most
illegal code is detected and rejected, however
there are still some constraints which are not
enforced.



GCC Developers Summit 2003 • 37

4 Interfacing to GCC

G95 uses the GCC middle end and back ends
to perform code generation and optimization.
It is currently targeted at the tree-ssa branch of
GCC. This uses a language independant, tree
based intermediate representation of the code.
This is very similar to the tree produced by the
parser, except it can only represents scalar op-
erations.

The GCC tree-ssa branch also provides a
cleaner seperation between the language spe-
cific fontends and the common backend. Pre-
vious versions were still quite closely tied to
the C frontend.

The translation of scalar code is mostly straigh-
forward. After some initial setup this is simply
a matter of transcribing the tree from one data
format to the other. This is done by recursively
walking the code tree, building the equivalent
GCC tree as this is done.

The main complication is that some expres-
sions require additional code to be associated
with them. The solution is to use a state struc-
ture when translating expressions. This state
structure contains the expression itself, and two
code blocks. The pre block contains setup code
which must be executed before the expression
is evaluated. The post block contains code to
clean up after the value is no longer needed.

For the majority of scalar operations both the
pre and post blocks will be empty. However
Fortran allows more complex operations which
may require additional code. One example of
this is passing the concatenation of two strings
as the actual argument of a function. The pre
block will contain code to allocate temporary
string storage and perform the concatenation.
The expression itself will consist of the func-
tion call with the temporary as the actual argu-
ment. The post block will contain code to free
the temporary storage.

The same state structure is also used to hold in-
formation needed for the scalarization of array
expressions.

5 Arrays

Modern computer systems employ a one di-
mensionsal memory space. Higher dimen-
sioned arrays are transformed into this space by
multiplying the index by the stride, or spacing,
between consecutive elements of the corre-
sponding dimension. These values are summed
to obtain the offset of the element relative to the
origin of the array. In g95 two pointers are used
to manipulate array data. A pointer to the first
element of data is required for memory man-
agement when allocating and freeing the array
data. To access the array a biased base pointer
is used. This pointer points to the location of
element zero of the array. In this way the ar-
ray can be accessed without needing to involve
the lower bound of the array. It may be the
case that element zero of the array does not ex-
ist. This does not matter, as it is only used as a
base point for the offsets; no non-existing ele-
ment of the array is ever referenced.

For fully contiguous arrays, where elements of
the array are stored in consecutive memory lo-
cations, the stride of a dimension is equal to the
size of all lower dimensions. This often speeds
up access to the array as these values may be
known at compile time.

The array descriptors used to pass actual argu-
ments (what C calls “parameters”) consist of
a pointer to the first element of the array, the
upper and lower bounds and the stride of each
dimension. Array pointer variables are handled
using the same structure. Array sections are ac-
comodated by calculating the origin and strides
to match the section, avoiding the need to make
temporary copies of the data.



38 • GCC Developers Summit

6 Scalarization

Array expressions introduce significantly com-
plications. The first problem is that of scalar-
ization. The Fortran language allows expres-
sions involving operations on sections of arrays
or whole arrays. In practical terms an operation
on a whole array is simply a special case of an
array section where the bounds of the section
are the bounds of the array.

In order to evaluate array expressions it is nec-
cessary to break them down into a set of scalar
operations. This is done by generating loops,
and using the implicit loop variables as indices
into the array sections. The evaluation of ar-
ray expressions involves several stages and two
passes of the expression tree.

First the expression tree is traversed to iden-
tify which terms are scalar, and which are ar-
rays. During this pass a list of subexpressions
is constructed. Operators whose operands are
all scalar result in a single scalar value. These
subexpressions will be evaluated outside the
scalarization loop, so the operands do not re-
quire individual processing. If an operator in-
volves has an array valued result, its operands
must be considered by the scalarizer.

The next task is to evaluate the bounds of the
implicit loops. The array terms in the expres-
sion are examined, and one of these is used to
determine the bounds of the scalarization loop.
Constant bounds are picked by preference as
this gives most potential possibilities for opti-
mization. All the terms in an array expression
must have the same shape, so the number of
elements in each dimension can be determined
from a single term.

For each array term an offset and stride relative
to the implicit loop are evaluated. It is not nec-
cessary to evaluate the upper bound of all the
array sections, except for runtime error check-
ing purposes.

The main body of the scalarization loop is gen-
erated using the same routines as are used for
scalar expressions. The translation of the ex-
pression is performed in the same order as the
initial walking, so only the next term in the
list needs to be examined during the translation
pass.

Operators which have not been marked as
specific subexpressions are translated in the
normal way after their operands have been
processed. When a scalar subexpression is
reached, the precalculated value is substituted.

When array expressions are reached, the im-
plicit loop variables are used to index into the
array to get a single scalar value. The offset
and scaling factor calculated earlier are used to
translate from the loop indices to individual ar-
ray indices.

A naive implementation of this algoritm would
require calculation of the offsets for all array
indices on every access. However we traverse
higher dimension array sections one dimension
at a time. Within the inner scalarization loop
the offset due to outer dimensions will be con-
stant. We take advantage of this by calculating
this offset before entering the inner scalariza-
tion loops.

7 Data Dependencies

The Fortran 95 standard specifies that all val-
ues on the right hand side of an assignment
statement must be evaluated before any assign-
ments take place. This is known as the “load-
before-store” principle. In many cases this re-
striction has no impact as the source terms of
the expression and the target variable are not
related. However more care must be taken
where both the source and target contain the
same elements.

Where the source and target elements are not



GCC Developers Summit 2003 • 39

identically matched, the order in which the as-
signments are performed may effect the result.
In some cases these data dependencies may be
resolved by ensuring the assignments are per-
formed in the correct order. In other cases an
array temporary is required.

The behaviour of g95 in this area is currently
quite simplistic. If any unmatched data depen-
dencies are detected, or the expression is too
complex to determine the exact dependencies,
an array temporary will be used for the whole
assignment. In this case two sets of scalariza-
tion loops are generated. The first evaluates the
source expressions, and stores the result in a
temporary array. The second copies the con-
tents of the temporary array to the target array.

There are many optimization techniques that
can be applied in order to reduce the size of
the temporary required, and to improve mem-
ory access patterns within scalarized assign-
ments. G95 currently only contains a partial
implementation of the simpler of these.

8 Intrinsic Functions

Fortran includes many intrinsic functions for
performing common mathematical and array
operations, as well as operations on data which
are impossible to implement using the Fortran
language itself. Intrinsic functions and subrou-
tines are implemented with a combination of
inline code and runtime library calls.

Where inline code is required the expression
state structure is used to hold the code to be
execured in order to evaluate the expression.

Most of the required library functions have
been implemented. However only the generic
versions of there have been written. There is
still significant scope for optimized versions to
take advantage of simpler cases, processor spe-
cific features and more advanced algorithms.

9 IO Library

The IO library is currently one of the least com-
plete parts of g95. Most of the infrastructure
for the IO library is in place, as is parsing of
format strings. However there is still a signif-
icant quantity of work required before this is
completed. Formatted IO of integers is possi-
ble, however IO of real values is still limited.

10 Incomplete Features

The WHERE and FORALL constructs only
work for simple cases where no data dependen-
cies exist.

The WHERE construct performs masked array
assignments. These are similar to normal array
assignments except a third array expression is
used as a mask. Only the assignments where
the coresponding element of the mask array is
true are preformed.

The FORALL construct allows assignments to
be performed for all permutations of a set of
loop variables. This is equivalent to enclos-
ing the assignment in multiple DO loops except
that “load-before-store” semantics apply to the
entire set of assignments. An array expression
may be used to mask these assignments. The
situation is further complicated by the ability
to nest additional FORALL and WHERE con-
stucts inside a FORALL block.

Arrays of character strings are not imple-
mented. Some combinations of derived types
and character strings are also incomplete.

Large array constructors used as variable ini-
tializers are not implemented. These typically
contain large implicit DO loops. The simplest
solution is to expand these loops at compile
time as we do will small constructors. How-
ever this process would consume an unreason-
ably large amount of CPU time and memory.



40 • GCC Developers Summit

The solution is to initialize these variables at
runtime.

11 Extensions

There are several extensions to the Fortran 95
standard which we would like to see included
in g95. The first seven of these will included in
the upcoming Fortran 200x standard.

1. Floating point exception handling

2. Allocatable arrays as structure compo-
nents, dummy arguments, and function re-
sults.

3. Interoperability with the C programming
language.

4. Parametrized data types.

5. Derived type I/O.

6. Asynchronous I/O.

7. Procedure variables.

8. OpenMP—provides multi-platform
shared-memory parallel programming.

9. Cray pointers—provides functionality
similar to C pointers.

12 Calling Conventions

The default behavior of g95 is to pass all ac-
tual arguments by reference. In many cases this
is neccessary as procedures may be called via
implicit interfaces. In this case the worst case
calling convention must be assumed.

In some cases, eg. elemental procedures or
procedures with assumed shape arguments, an
explicit intarface must always be used. For
these procedures optimizations such as passing

INTENT(IN) parameters by value are possible.
Although these optimizations are not currently
preformed to simplify debugging, they are lik-
ley to be implemented in future revisions.

By default all array arguments are passed us-
ing an array descriptor. The advantage of this
is that it allows discontiguous array section to
be passed without requiring an array tempo-
rary. The disadvantage of is that such code
will not be binary compatible with Fortran 77
code compiled by g77 or other Fortran compil-
ers. To accomodate this, a compile time option
is available to force g95 to use a g77 compat-
ible calling convention. Procedures which use
features which were not available in Fortran 77
(eg. POINTER arguments or assumed shape
arrays) are still passed using the default calling
convention.

While passing discontiguous arrays may re-
duce the overhead of a procedure call, it intro-
duces a penalty every time the parameter is ac-
cessed. This is acceptable if only a small pro-
portion of the passed data is accessed. How-
ever if the passed array is heavily used it is ben-
eficial to copy the array data into a contiguous
array temporary and access it from there. If the
array is INTENT(OUT) or INTENT(INOUT)
it may also be neccessary to copy the modified
data back to the original array.

The default behavior is to automatically add
code to the start of a procedure to test for
discontiguous arrays and repack them, as this
matches the behaviour of most other Fortran
compilers. Users are able to inhibit this be-
haviour when the cost of repacking the array
is likley to exceed the increased cost of access-
ing the array. For cases where the shape of the
array is not known at compile time the data is
not repacked when the first dimension is con-
tiguous, as this is unlikley to provide any per-
formance gain.



GCC Developers Summit 2003 • 41

13 Release dates

The tree-ssa branch of GCC is currently slated
for mainline integration in GCC 3.5. The cur-
rent release date for this, and hence the earliest
realistic release date for g95, is late 2004.

G95 only generated its first piece of executable
code in June 2002, and significant progress
has been made since then. It is hoped that by
Q4 2003 g95 will be functionaly complete and
standards compliant.

We believe that all the major obstacles to in-
clusion in the GCC source tree have now been
overcome. Inclusion in a non-release branch of
GCC is expected in the very near future. It is
expected that a seperate parallel development
tree will still be maintained for the convenience
of developers.

14 Acknowledgments

The g95 project was founded by Andy Vaught,
without whom g95 would not exist. He also
wrote a large portion of the code, braving the
more esoteric aspects of fortran grammar and
semantics.

Thanks should also be given to Steven Boss-
cher, Arnaud Desitter and everyone else who
has contributed code, patches, ideas or even
just support to the project. Also thanks to g77
maintainer Toon Moene for his assistance and
support.



42 • GCC Developers Summit


