
Fighting register pressure in GCC

Vladimir N. Makarov
Red Hat

vmakarov@redhat.com

Abstract

The necessity of decreasing register pressure
in compilers is discussed. Various approaches
to decreasing register pressure in compilers are
given, including different algorithms of regis-
ter live range splitting, register rematerializa-
tion, and register pressure sensitive instruction
scheduling before register allocation.

Some of the mentioned algorithms were tried
and rejected. Implementation of the rest, in-
cluding region based register live range split-
ting and rematerialization driven by the regis-
ter allocator, is in progress and probably will
be part of GCC. The effects of discussed op-
timizations will be reported. The possible di-
rections of improving the register allocation in
GCC will be given.

Introduction

Modern computers have several levels of stor-
age. The faster the storage, the smaller its size.
This is the consequence of a trade-off between
the computer speed and its price. The fastest
storage units are registers (orhard registers).
They are not enough to store the values of op-
erations and directly referred variables for any
serious program.

It is very hard to force any optimization in a
compiler (especially in a portable one) to use
the hard registers effectively. Therefore most
of compiler optimizations is written as if there

is infinite number of virtual registers called
pseudo-registers. The optimizations use them
to store intermediate values and values of small
variables. Although there is an untraditional
approach to use only memory to store the val-
ues. For both approaches we need a special
pass (or optimization) to map pseudo-registers
onto hard registers and memory; for the second
approach we need to map memory into hard-
registers instead of memory because most in-
structions work with hard-registers. This pass
is called register allocation.

A good register allocator becomes a very
significant component of an optimized com-
piler nowadays because the gap between ac-
cess times to registers and to first level mem-
ory (cache) widens for the high-end proces-
sors. Many optimizations (especially inter-
procedural and SSA-based ones) tend to cre-
ate lots of pseudo-registers. The number of
hard-registers is the same because it is a part of
architecture. Even processors with new archi-
tectures containing more hard-registers need a
good register allocator (although in less de-
gree) because the programs run on these com-
puters tend to be more complicated too.

The register allocator is one or more compiler
components that could be considered as ones
solving two major tasks (mostly in an inte-
grated way). The first and most interesting one
is to decrease register pressure to the level de-
fined by the number of hard registers by differ-
ent transformations. And the second one is to
assign hard registers to pseudo-registers effec-



86 • GCC Developers’ Summit

tively.

So what is register pressure? There are two
commonly used definitions. The wide one is
the number of hard registers needed to store
values of the pseudo-registers at given program
point. Another one is the number of living
pseudo-registers.

There are a lot of known transformations that
decrease register pressure. Some of these
transformations generate code which could and
should be corrected later. Some transforma-
tions are easily and naturally integrated with
other transformations, such as the ones de-
creasing register pressure, assigning hard reg-
isters, and fixing the pitfalls of the previous
transformations (such as register coalescing in
a colouring based register allocator). Some of
them are hard to integrate in one pass.

Currently GCC has two register allocators. The
new one was written about two years ago
and is described in details in [Matz03]. It
is based on the Chaitin, Briggs, and Appel
approaches to register allocation [Chaitin81,
Briggs94, Appel96].

The old register allocator (I will call itthe orig-
inal register allocator) has been existing since
the very first version of GCC. It was written by
Richard Stallman. Some of its important com-
ponents stayed practically unchanged since the
first version. Richard Stallman took the regis-
ter allocator design from a portable Pastel (an
extension of the programming language Pas-
cal) compiler written in Livermore Laborato-
ries [Stallman04]. The design of the Pastel
register allocator (which actually was a second
version for the Pastel compiler) is very similar
to the GCC one [Killian04]—they both have
the same separation on a pass assigning hard
registers to pseudo-registers and a pass which
actually changes the code following the assign-
ment and, if it is not possible, generates addi-
tional instructions to reload the registers.

Despite its lack of many modern optimizations
present in the new register allocator, the orig-
inal register allocator can easily compete with
the new one in terms of compiler speed, qual-
ity of the generated code and size of code. This
was a major reason for me to start work on im-
proving the original register allocator. After
thorough investigation, I found that the method
of assigning hard registers is very similar to
the priority based colouringregister allocator
[Chow84, Chow90], although it is more similar
to the modifications described in [Sorkin96]. It
was confirmed later.

Chow’s approach is a real competitor to the
Chaitin/Briggs approach. Some advantages
of Chow’s approach are acknowledged even
by Preston Briggs [Briggs89]. Chow’s algo-
rithm is used in SGI Pro64 [Pro64] compiler
and derived compilers like Open64 [Open64]
and ORC [ORC]. For example, as Briggs’
optimistic colouring, Chow’s algorithm easily
finds hard-registers for the diamond conflict
graph (see Figure 1).

a

b c

d

Figure 1: Diamond graph

All that was mentioned above was a major mo-
tivation to start work on improvement of the
original register allocator. This article is fo-
cused on improving the original GCC register
allocator. The first section describes the orig-
inal GCC register allocator. The second sec-
tion describes the method for decreasing the
register pressure for the original register al-
locator based on register live range splitting.
The third section describes decreasing regis-



GCC Developers’ Summit 2004 • 87

ter pressure based on the live range shrinking
approach. The fourth section describes other
possible improvements to the original register
allocator. The fifth section gives conclusions
from my work.

1 The original register allocator in
GCC

The original register allocator contains a lot of
passes. Figure 2 describes the major passes and
their order.

regclass
(regclass.c)

regmove
(regmove.c)

insn
scheduler

local
allocator

(local-alloc.c)

global
allocator
(global.c)

reload
(reload1.c,
reload.c)

post-reload
(postreload.c)

retry_global

Figure 2: The original register allocator

The regmove pass is usually not considered
to be a part of the original register al-
locator. I included it because the pass
solves one task (register coalescing) pe-
culiar to register allocators. The pass re-
moves some register moves if the registers
have the same value and it can be found in
a basic block scope. Although the major
task of regmove is to generate move in-
structions to satisfy two operand instruc-
tion constraints when the destination and
source registers should be the same. The

reload pass can solve this task too but in a
less effective manner.

If register coalescing and global value
numbering (mentioned in Section 4) are a
part of GCC, we could try to remove reg-
ister coalescing from this pass.

The instruction scheduler is not a part of the
original register allocator. It is present
just to show GCC’s major passes starting
with the regmove pass. Although the in-
struction scheduler could solve the task
of decreasing register pressure (see sec-
tion “register pressure sensitive instruc-
tion scheduling”).

Regclass.GCC has a very powerful model for
describing the target processor’s register
file. In this model there is the notion of
register class. The register class is a set of
hard registers. You can describe as many
register classes as possible. Of course,
they should reflect the target processor’s
register file. For example, some instruc-
tions can accept only a subset of all reg-
isters. In this case you should define a
register class for the subset. Any rela-
tions are possible between different regis-
ter classes: they can intersect or one regis-
ter class can be a subset of another register
class (there are reserved register classes
like NO_REGSwhich does not contain
any register orALL_REGSwhich con-
tains all registers).

The pass regclass (fileregclass.c )
mainly finds thepreferredandalternative
register classes for each pseudo-register.
The preferred class is the smallest class
containing the union of all register classes
which result in the minimal cost of their
usage for the given pseudo-register. The
alternative class is the smallest class con-
taining the union of all register classes,
the usage of which is still more profitable
than memory (the classNO_REGSis used



88 • GCC Developers’ Summit

for the alternative if there are no such reg-
isters besides the ones in the preferred
class).

It is interesting to note that the pass also
implicitly does code selection. Regclass
works in two passes. On the first pass,
it defines the preferred and alternative
classes without taking the possible classes
of other operands into account. For ex-
ample, an instruction with two operand
pseudo-registers exists in two variants;
one accepting classesA andB, and other
one acceptingC andD. On the first pass,
the algorithm does not see that the variant
with classesA andD will be more costly
because it will require the generation of
additional move instructions. On the sec-
ond pass, the algorithm will take it into
account. As a result the preferred or al-
ternative class of a pseudo-register could
change. This means two passes are not
enough to find the preferred and alterna-
tive classes accurately; but it is a good ap-
proximation.

The file regclass.c also contains func-
tions to scan the pseudo-registers to find
general information about them (like the
number of references and sets of pseudo-
registers, the first and last instructions ref-
erencing the pseudo-registers etc.).

The local allocator assigns hard-registers
only to pseudo-registers living in-
side one basic block. The result of
the work is stored in the global array
reg_renumber whose element values
indexed by pseudo-register numbers are
hard-registers assigned to the correspond-
ing pseudo-registers.

Besides assigning hard-registers, the local
allocator does some register coalescing
too: if two or more pseudo-registers shuf-
fled by move instructions do not conflict,
they always get the same hard-registers.

The global allocator also tries to do this
in a less general way. The local alloca-
tor also performs a simple copy and con-
stant propagation. It is implemented in the
functionupdate_reg_equiv .

Actually all hard-registers could be as-
signed in the global allocator. Such di-
vision between the local and global allo-
cator has historical roots. In my opinion
it is reasonable to remove the local al-
locator in the future because faster allo-
cation of local pseudo-registers does not
compensate the cost of an additional pass.
If all assigning hard-registers is done in
the global register allocator (but we still
call update_equiv_regs ), GCC is in
average 0.5% faster on SPEC2000 bench-
marks on Pentium 4.

The global allocator assigns hard-registers to
pseudo-registers living in more one ba-
sic block. It could change an assign-
ment made by the local allocator if it
finds that usage of the hard-register for a
global pseudo-register is more profitable
than one for the local pseudo-register.

The global allocator forms a bit-vector
for each pseudo-register containing hard
registers conflicting with the pseudo-
registers, builds a conflict graph for
pseudo-registers and sorts all pseudo-
registers according to the following prior-
ity:

log2 Nrefs · Freq

Live_Length
· Size

Here Nrefs is number of the pseudo-
register occurrences,Freq is the fre-
quency of its usage,Live_Length is the
length of the pseudo-register’s live range
in instructions, andSize is its size in hard-
registers.

Afterwards the global allocator tries to as-
sign hard-registers to the pseudo-registers



GCC Developers’ Summit 2004 • 89

with higher priority first. If the current
pseudo-register got a hard-register, the
hard-register is added to the hard-register
conflict bit-vectors of all pseudo-registers
conflicting with the given pseudo-register.
This algorithm is very similar to assigning
hard-registers in Chow’s priority-based
colouring [Chow84, Chow90].

The global allocator tries to coalesce
pseudo-registers with hard-registers met
in a move instruction by assigning the
hard-register to the pseudo-register. It
is made through a preference technique:
the hard-register will be preferred by the
pseudo-register if there is a copy instruc-
tion with them. In brief, the global allo-
cator is looking for a hard-register to as-
sign to a pseudo-register in the following
order:

1. a callee saved hard-register which
is in the pseudo-register’s preferred
class and which is preferred by
the pseudo-register while not be-
ing preferred by another conflicting
pseudo-register.

2. a callee saved hard-register which
is in the pseudo-register’s preferred
class and which is preferred by the
pseudo-register.

3. a callee saved hard-register which
is in the pseudo-register’s preferred
class.

4. as in 1-3 but a caller saved hard-
register (if it is profitable) instead of
callee-saved one.

5. as in 1-4 but the hard-register is
in the pseudo-register’s alternative
class.

The reload is a very complicated pass. Its
major goal is to transform RTL into a
form where all instruction constraints for

its operands are satisfied. The pseudo-
registers are transformed here into either
hard-registers, memory, or constants. The
reload pass follows the assignment made
by the global and local register alloca-
tors. But it can change the assignment if
needed.

For example, if the pseudo-register got
hard-registerA in the global allocator but
an instruction referring to the pseudo-
register requires a hard-register of another
class, the reload will generate a move of
A into the hard-registerB of the needed
classes. Sometimes, a direct move is
not possible; we need to use an inter-
mediate hard-registerC of the third class
or even memory. If the hard-registers
B and C are occupied by other pseudo-
registers, we expel the pseudo-registers
from the hard-registers. The reload will
ask the global allocator through function
retry_global to assign another hard-
register to the expelled pseudo-register. If
it fails, the expelled pseudo-register will
finally be placed on the program stack.

To choose the best register shuffling and
load/store memory, the reload uses the
costs of moving register of one class into
register of another class, loading or stor-
ing a register of the given class. To choose
the best pseudo-register for expelling, the
reload uses the frequency of the pseudo-
register’s usage.

Besides this major task, the reload also
does elimination of virtual hard-registers
(like the argument pointer) and real hard-
registers (like the frame pointer), assign-
ing stack slots for spilled hard-registers
and pseudo-registers which finally have
not gotten hard-registers, copy propaga-
tion etc.

The complexity of the reload is a conse-
quence of the very powerful model of tar-



90 • GCC Developers’ Summit

get processor’s register file, permitting to
describe practically any weird processor.

Postreload. The reload pass does most of its
work in a local scope; it generates redun-
dant moves, loads, stores etc. The post-
reload pass removes such redundant in-
structions in basic block context.

2 Live Range splitting

Live range splitting is based on idea that if
we split the live range of a pseudo-register
in several parts, the pseudo-register in each
live range part will conflict with fewer other
pseudo-registers; less hard-registers will be
needed for all the pseudo-registers. Figure 3 il-
lustrates this. Pseudo-registerA conflicts with
two pseudo-registersB andC, but in part 1 and
2 of its live range the pseudo-register conflicts
only with one other pseudo-register.

A C

B

1

2

Figure 3: Live range splitting for pseudo-
register A.

Live range splitting might require the gener-
ation of additional instructions; e.g. instruc-
tions storing/loading pseudo-register value
into/from memory, moving the pseudo-register
into/from a new pseudo-register, or just recal-
culation of the pseudo-register value. Cost of
such additional instructions can outweigh the
benefits of reducing the register pressure. So
any live range splitting algorithm should take
this problem into account.

2.1 Register renaming

Register renaming could be considered as no
cost live range splitting because no additional
instructions need to be generated. We can
change a pseudo-register into several ones if
there are multiple independent parts of the
pseudo-register’s usage. The following is a
high level example when register renaming
could be used.

for (i = 0; i < n; i++) { ... }
for (i = 0; i < k; i++) { ... }

After register renaming (the pseudo-register re-
named is the variablei ), the corresponding
code could look like

for (i = 0; i < n; i++) { ... }
for (i_1 = 0; i_1 < k; i_1++) { ... }

This optimization was written independently
by Jan Hubicka from SUSE and me. Jan’s vari-
ant is in GCC mainline now. Earlier it was
activated by using-fweb (independent part
of a pseudo-register is traditionally called web
in colouring based register allocator). After
solving the problem of generating correct de-
bugging information it is default for-O2 now.
Tables 1 and 2 contain SPEC2000 results for
Pentium 4 with and without register renam-
ing. Although the results are not impressive
for SPECInt2000 (mainly because of perlbmk),
this optimization is a “must be” for any opti-
mizing compiler. In most benchmarks it could
considerably increase the performance. The re-
sults look much better for SPECfp2000. The
reduced register pressure means less instruc-
tions for spilling and restoring registers and
shorter instructions because hard registers in-
stead of memory are used in more instructions.
As the result code size for Pentium 4 is 0.3%
and 0.6% less in average for SPECint2000 and
SPECfp2000 correspondingly.



GCC Developers’ Summit 2004 • 91

Benchmarks Base ratio Peak ratio Change
164.gzip 747 750 +0.40%
175.vpr 531 530 -0.19%
176.gcc 891 897 +0.90%
181.mcf 539 539 +0.00%
186.crafty 800 798 -0.25%
197.parser 649 648 -0.15%
252.eon 663 682 +2.87%
253.perlbmk 1019 939 -7.85%
254.gap 831 838 +0.84%
255.vortex 973 961 -1.23%
256.bzip2 621 628 +1.11%
300.twolf 665 671 +0.90%
SPECint2000 728 726 -0.27%

Table 1: SPECint2000 for Pentium 4 GCC
with -O2 -mtune=pentium4 without and
with register renaming.

Benchmarks Base ratio Peak ratio Change
168.wupwise 895 898 +0.33%
171.swim 617 621 +0.64%
172.mgrid 598 597 -0.17%
173.applu 636 637 +0.16%
177.mesa 654 656 +0.31%
179.art 245 250 +2.04%
183.equake 984 988 +0.40%
200.sixtrack 352 406 +15.34%
301.apsi 406 405 -0.25%
SPECfp2000 552 563 +1.99%

Table 2: SPECfp2000 for Pentium 4 GCC with
-O2 -mtune=pentium4 without and with
register renaming.

Register renaming also improves instruc-
tion scheduling by removing some anti-
dependencies. So it could be useful even for
architectures with many hard registers like IA-
64. Table 3 contains SPECfp2000 results for
Itanium 2 with and without register renaming.
The code size for SPECfp2000 was also 0.24%
less.

Andrew Macleod from RedHat also imple-
mented this optimization in the transformation
of SSA into normal form (this is made very
easy on this pass because the independent parts

Benchmarks Base ratio Peak ratio Change
168.wupwise 383 385 +0.52%
171.swim 388 395 +1.80%
172.mgrid 229 230 +0.44%
173.applu 293 297 +1.37%
177.mesa 660 658 -0.30%
179.art 1605 1583 -1.37%
183.equake 315 315 0.00%
200.sixtrack 157 161 +2.55%
301.apsi 266 267 +0.38%
SPECfp2000 373 375 +0.53%

Table 3: SPECfp2000 for Itanium2 GCC with
-O2 without and with register renaming.

of a variable usage are present naturally in
SSA). He reported about 2% improvement for
SPECint2000 for Pentium 4. When tree-SSA
branch becomes GCC mainline, Jan’s imple-
mentation probably should probably go away
because register renaming is made easier and
faster during the translation of SSA into nor-
mal form.

2.2 Live range splitting

The idea of this approach is to store a pseudo-
register living through a region but not used in
the region right before entering the region and
reload its value right after leaving the region.
It decreases register pressure in the region by
one.

I have implemented practically the same algo-
rithm described in [Morgan98]. Morgan’s al-
gorithm works as a separate compiler pass. It
starts work on the topmost loops with the reg-
ister pressure higher than the number of avail-
able hard-registers. It searches for pseudo-
registers living through the loop but not being
used there. It chooses a pseudo-register living
through a maximal number of loops (and basic
blocks) which are neighbors of the loop being
processed. Then it spills the pseudo-register
before the loop(s) and restore the pseudo-
register after the loop(s). After processing the



92 • GCC Developers’ Summit

loops the algorithm recursively processes sub-
loops. When all sub-loops are processed, the
algorithm tries to decrease register pressure in-
side basic blocks. Figure 4 illustrates how the
algorithm works.

loop 3:
P2 is used,

P1 is not used

Loop 1:
P1 and P2 are not used

Loop2:
P3 is not used

Reload P1

Spill P1

Spill P3

Reload P3

P3 is used here

P1 is used here

Figure 4: Illustration of Morgan’s algorithm of
live range splitting.

The current implementation is different from
Morgan’s in the following:

• Although our implementation also works
on loops, it could be easily modified to
work on any nested regions instead.

• Instead of spilling the pseudo-register into
memory before the loop(s) and reloading
it we create a new pseudo-register living
only in the loop(s) and inserting instruc-
tions shuffling the two pseudo-registers.
If both pseudo-registers get memory or
hard-registers (it really can happen in the
reload pass), the move instructions are
coalesced (see the section on coalescing
later in this article). If one pseudo-register
gets a hard-register and another one gets
memory, the move instructions will be
transformed into memory store and load
instructions.

• GCC has a complicated description model
for registers. A hard-register can belong
to more one register class. A pseudo-
register can get a hard-register from two
different classes (see the description of
the original register allocator above). To
calculate register pressure we consider a
pseudo-register belonging to the smallest
register class containing the two pseudo-
register classes (preferred and alternative
ones).

• We do not decrease register pressure in-
side the basic blocks. We found that on
most benchmarks this is not profitable.

The current SPECInt95 results for the opti-
mization usage for Pentium 4 are given in Ta-
ble 4. The improvement can be even more for
some benchmarks. For example, Fast Fourier
Transform became 6% faster for Pentium 4
with this optimization, a linear-space Local
similarity algorithm [Huang91] became 14%
faster, and fftbench [Ladd03] became more
30% faster.

Benchmarks Base ratio Peak ratio Change
099.go 68.6 67.8 -1.17%
124.m88ksim 72.3 71.8 -0.69%
126.gcc 75.2 74.8 -0.53%
129.compress 55.5 56.4 +1.62%
130.li 78.3 78.0 -0.38%
132.ijpeg 72.5 72.6 +0.14%
134.perl 68.5 79.8 +16.50%
147.vortex 68.1 68.6 +0.73%
SPECint95 69.6 70.9 +1.87%

Table 4: SPECInt95 for Pentium 4 GCC with
-O2 -mtune=pentium4 without and with
live range splitting.

I see the following possible improvements to
the implementation:

• Better utilization of profile information to
choose loops with many iterations.



GCC Developers’ Summit 2004 • 93

• Forming regions based on the profile in-
formation different from the loops for the
algorithm of live range splitting.

• Choosing pseudo-registers whose live
range splitting does not result in critical
edge splitting. As a consequence, no ad-
ditional branch instructions will be gener-
ated. It could be important for live range
splitting around loops with few iterations.

• More accurate evaluation of register pres-
sure for register classes to which a living
pseudo-register belongs.

2.3 Rematerialization

Instead of reloading a pseudo-register’s value
we could just recalculate it again if it is more
profitable. Such approach is called register re-
materialization. Preston Briggs believed that it
is a more promising approach than live range
splitting. It requires that all the pseudo regis-
ters used as operands are live and got hard reg-
isters because otherwise we will need to reload
the operand value too. Reloading the operand’s
value usually costs the same as reloading the
pseudo-register in question.

My current implementation of the register re-
materialization works between global register
allocation and reload passes. To rematerialize
a pseudo-register we insert an existing instruc-
tion setting up the pseudo-register’s value. To
know what instructions could be inserted we
define the partial availability of instruction pat-
terns according to the following equations.

P_PavIni =
⋃

j∈Pred(i)

P_PavOutj

P_PavOuti = (P_PavIni − P_Killi)
⋃

P_Geni

Here P_Killi is a set of patterns whose de-
fined and used locations (registers or memory)
are redefined or clobbered in basic blocki or

whose clobbered registers are live at the end of
basic block.P_Geni is a set of patterns in ba-
sic block whose defined or used locations are
not killed in the basic block after the pattern’s
occurrence and whose clobbered registers are
not live at the end of the basic block.

After we calculated partial availability of pat-
terns, we use it as an initial value to calculate
availability of patterns according to the follow-
ing equation.

P_AvIni =
⋂

j∈Pred(i)

P_AvOutj

P_AvOuti = (P_AvIni − P_Killi)
⋃

P_Geni

The algorithm itself looks like

foreach insn I defining the
only pseudo-register D do

if D got a hard-register then
foreach pseudo-register operand Op

of I do
if Op got memory then

Pat := a pattern with a minimal
cost available right before
I and whose the only
destination pseudo-register
is Op and whose all other
operand pseudo-registers
got hard-registers;

if there is Pat and its cost is less
than cost of loading Op then

insert insn before I with pattern
Pat changing Op on D;

change Op in I on D;
break ;

fi
fi

done
fi

done

e.g. if pseudo-registerA got memory and
pseudo-registersB, C andD got hard-registers,
the algorithm will work as follows

A <- op1 (B, C) ...
... -> ...
D <- op2 (A, E) D <- op1 (B, C)

D <- op2 (D, E)

If the second instruction in the example is



94 • GCC Developers’ Summit

move, the algorithm together with the dead
code elimination will work as

A <- op1 (B, C) ...
... -> ...
D <- A D <- op1 (B, C)

Table 5 contains results of the optimization for
SPECint2000 for Pentium 4.

Benchmark Base Peak Change
164.gzip 838 839 +0.12%
175.vpr 602 598 -0.66%
176.gcc 1137 1146 +0.79%
181.mcf 715 715 0.00%
186.crafty 874 875 +0.11%
197.parser 734 734 0.00%
252.eon 764 763 -0.13%
253.perlbmk 1145 1164 +1.66%
254.gap 954 951 -0.31%
255.vortex 1079 1080 +0.09%
256.bzip2 743 745 +0.27%
300.twolf 757 767 +1.32%
Est. SPECint2000 845 848 +0.36%

Table 5: SPECint2000 for Pentium 4 with-O2
-mtune=pentium4 without and with regis-
ter rematerialization.

Register rematerialization could be done in
a separate pass before the register allocation
[Simpson96]. In brief, Simpson’s algorithm
looks like

foreach basic block BB do
while the register pressure is too high

in BB do
P := a pattern available and live at

the end of BB with a result
pseudo-register is not used in BB
and its operands are live
at the end of BB;

if there is no such P then
break ;

fi
put insns with pattern P on edges

exiting from BB where P are live;
move the insns to the bottom of CFG as

far as possible along the paths
where P is still available, and P
and its operands are live;

update the register pressure in BB and
basic blocks we moved the insns
through;

done
done

The liveness of a pattern in a CFG point means
that a result register of the pattern is used in an-
other point achieved from the given point. Fig-
ure 5 illustrates how the algorithm works.

P: p3 <- op (p1, p2)

register pressure
is too high,
p3 is not used

... <-p3

... <- p3

P is available and live,
p1, p2 are live:
rematerial. of

p3 <- op (p1, p2)

p3 is dead

p3 is not used

Figure 5: Illustration of Simpson’s algorithm
of rematerialization.

I have implemented Simpson’s approach in
GCC. It gave about 1.3% improvement for
SPECint2000 for Pentium 4 on the tree-ssa
branch. And after deciding to implement Mor-
gan’s live range splitting, I rejected Simpson’s
implementation because I believe that Mor-



GCC Developers’ Summit 2004 • 95

gan’s live range splitting together with regis-
ter rematerialization after global register allo-
cation will work better. I see the following rea-
sons for this:

• It is difficult to know which operand
pseudo-registers will get hard-registers in
the end. Adding instruction rematerializ-
ing pseudo-register’s value might result in
generation of additional load instructions
in the reload pass if the operand pseudo-
registers do not get hard-registers.

• Morgan’s approach to live range split-
ting works in more cases than Simp-
son’s. The instructions shuffling pseudo-
registers generated in Morgan’s algorithm
are removed by coalescing and, if it is not
possible, rematerialized.

• Rematerialization could be done in more
cases. The single criterion is a profitabil-
ity not just high register pressure as in
Simpson’s approach.

3 Live range shrinking

The live range shrinking approach is to move
the definitions of pseudo-register as close as
possible to their usages. It decreases the num-
ber of conflicts for the pseudo-register and
consequently may decrease register pressure.
There are few articles devoted this approach
(one of them is [Balakrishnan01]). The rea-
son for this is in its constraints for modern
pipelined processors. Solving this problem
without taking instruction scheduling into ac-
count could worsen code in many cases. So
live range shrinking mainly became a part of
register pressure sensitive instruction sched-
ulers.

3.1 Register Pressure Sensitive Instruction
Scheduling

GCC uses a classical two pass instruction
scheduling approach: instruction scheduling
both before and after the register allocator. It
works well for RISC processors with a large
enough number of registers.

For processors with few registers, however, in-
struction scheduling before register allocation
creates such high pressure that it actually wors-
ens the code. Therefore it is switched off for
x86 and sh4.

One year ago Dale Johannesen from Apple
added a new heuristic right after the critical
path length heuristic. This heuristic prefers in-
structions with smaller contribution to register
pressure. He reported about 2% improvement
for SPECint2000 for PowerPC.

Sanjiv Gupta implemented machine-dependent
register pressure-sensitive instruction schedul-
ing for SH4. He reported a big improvement
for some benchmarks (Table 6) when the first
instruction scheduler with the register-pressure
heuristic was switched on. Unfortunately, he
did not compare instruction scheduling with
and without the heuristic (probably the re-
sults would be even better because earlier the
first instruction scheduling pass without any
register-pressure heuristic was switched off).

Sanjiv’s implementation is very similar to the
Hsu and Goodman approach [GooHsu88] to
register pressure sensitive instruction schedul-
ing: when the pressure becomes high, it uses
register pressure heuristic as major one in-
stead of the critical path length heuristic. I
have implemented Hsu’s approach in a ma-
chine independent way. My goal was to im-
prove x86 code by switching on the first in-
struction scheduling pass. Although GCC with
the register pressure sensitive approach in the
first pass generated a more 1% better code for



96 • GCC Developers’ Summit

Benchmark Base Peak Change
Gsm compression 31.83 26.16 +17%
Gsm decompression 17.72 16.94 +4.4%
cjpeg -dct int 2.30 2.34 -1.7%
cjpeg -dct float 2.12 2.19 -3%
djpeg -dct int 1.53 1.45 +5%
djpeg -dct float 1.69 1.42 +15%
gzip 225 222 +1%
gunzip 17.30 16.69 +3.5%
Mpg123 1.29 1.26 +2%

Table 6: Benchmarks for SH4 GCC with-O2
without the 1st instruction scheduling and with
the 1st register pressure sensitive instruction
scheduling.

SPECfp95 than with the standard first pass, the
results are disappointing in comparison with
GCC without any first instruction scheduling.
Table 7 contains SPEC95 results for the pro-
grams compiled without the first instruction
scheduling pass (default in GCC for x86) and
with Hsu’s approach in the first instruction
scheduler. I used Athlon MP because GCC still
has no pipeline description for Pentium 4.

The most interesting result is forfpppp:
the code became practically 3 times slower
(SPECfp95 results would be very close with-
out fpppp). The hot point offppppis the func-
tion with one huge basic block. The register
pressure reaches several hundred there for x86
GCC. It looks to me like the basic block was
optimized manually to minimize the register
pressure. Any rearrangement of the instruc-
tions results in a higher register pressure, es-
pecially for x87 floating point top stack regis-
ter. So in my opinion, to make a successful
register pressure sensitive instruction sched-
uler for x86, we need a more sophisticated ap-
proach than Hsu’s on-the-fly approach. These
approaches should be based on the evaluation
of all data flow graphs like a parallel interfer-
ence graph [Norris93] or a register reuse graph
[Berson98].

Benchmarks Base Peak Change
099.go 68.9 68.2 -0.73%
124.m88ksim 52.8 51.8 -1.89%
126.gcc 57.5 57.1 -0.70%
129.compress 28.0 27.9 -0.36%
130.li 58.9 59.0 +0.17%
132.ijpeg 53.1 50.6 -2.82%
134.perl 79.2 76.3 -3.66%
147.vortex 50.3 50.5 +0.40%
SPECint95 54.0 53.3 -1.30%
101.tomcatv 74.1 75.7 +2.16%
102.swim 139 139 0.00%
103.su2cor 22.4 21.8 -2.68%
104.hydro2d 24.5 24.3 -0.82%
107.mgrid 47.7 50.6 +6.08%
110.applu 28.2 27.4 -2.84%
125.turb3d 53.2 51.4 -3.38%
141.apsi 32.5 33.3 +2.46%
145.fpppp 148 54.0 -63.51%
146.wave5 77.3 73.7 -4.66%
SPECfp95 52.2 47.0 -9.96%

Table 7: SPEC95 results for Athlon MP with
-O2 -mtune=athlon without the first in-
struction scheduler and with Hsu’s register
pressure sensitive first instruction scheduling.

4 Other improvements of the GCC
original register allocator

4.1 Coalescing

Live range splitting tends to create unneces-
sary move instructions. As I mentioned above,
we generate additional pseudo-registers and in-
structions shuffling them instead of the tradi-
tional approach generating instructions spilling
registers to memory and restoring them. Even
if the live range splitting optimization is not
run, there are still unnecessary move instruc-
tion generated by the previous optimizations.
To remove them, pseudo-register coalescing
is run after the global register allocator. If
the pseudo-registers in a move instruction do
not conflict we could use one pseudo-register
and remove the move instructions. It is done
if both pseudo-registers got hard registers or



GCC Developers’ Summit 2004 • 97

both pseudo-registers were placed in memory
(it means that the move would have been trans-
formed into instructions moving the memory).
The following example describes the two situa-
tions (the number in the parentheses is the hard
register number given to the pseudo-register):

p256 (1) <- p128 (2)
or

p256 (Memory) <- p128 (Memory)

Sometimes, removing a pseudo-register move
instruction when one pseudo-register gets a
hard-register in the global register allocator
and another one gets memory could be prof-
itable too. The resulting pseudo-register will
be placed in memory after coalescing the two
pseudo-registers. Profitability is defined by
the execution frequency of the move instruc-
tion and the reference frequency of the pseudo-
register which got a hard-register. A typical sit-
uation when it is profitable is given on figure 6.
The pseudo-registerp128got the hard register
number 2 andp256was placed in memory.

Loop:
no reference for p128

p128 (2) <- ...

p256 (Memory) <- p128
 (p128 dies here)

Figure 6: Coalescing memory and register.

Even if there is no move instruction between
two pseudo-registers which are placed in mem-
ory (usually on the program stack), we can co-
alesce them. What is the sense of such an opti-
mization? Although the optimization does not
remove instructions, it decreases the size of the
used stack (it is very important for the Linux

kernel which usually has strict constraints for
the size of the program stack). For example,
the average decrease of function stack frames
is about 4% with this optimization for Linpack
x86 code. The optimization also improves data
locality and code locality for some architec-
tures like x86 because in many cases smaller
displacements in instruction are used (we are
using the first found stack slot approach). Ta-
ble 8 shows the text segment’s size decrease
for the SPECfp2000 benchmarks for Pentium
4. The improved code and data locality con-
siderably improves the code. Table 9 shows
the SPECfp2000 performance results for code
without and with the optimization for Pentium
4.

Benchmarks Base Peak Change
168.wupwise 25128 24648 -1.910%
171.swim 7078 7014 -0.904%
173.applu 58741 58453 -0.490%
177.mesa 443993 439369 -1.041%
179.art 12011 12011 0.000%
183.equake 17026 17026 0.000%
200.sixtrack 844452 815060 -3.481%
301.apsi 106317 103341 -2.799%
Average -1.33%

Table 8: SPECfp2000 benchmark code
sizes for Pentium 4 GCC with -O2
-mtune=pentium4 without and with
coalescing the program stack slots.

The patch improves code and data local-
ity, therefore GCC becomes a bit faster.
User time for x86 bootstrapping decreased
from 14m0.150s to 13m58.890s. The better
code and data locality improves SPECFP2000
benchmark results too (about 2.4%).

4.2 Register migration

When the reload pass needs a hard register for
a reload, it expels a living pseudo-register from
the hard register assigned to it by the local or
global register allocator. Then it tries to reas-



98 • GCC Developers’ Summit

Benchmarks Base ratio Peak ratio Change
168.wupwise 890 887 -0.34%
171.swim 604 609 +0.83%
173.applu 624 627 +0.48%
177.mesa 629 639 +1.59%
179.art 244 248 +1.64%
183.equake 964 963 -0.01%
200.sixtrack 337 385 +14.24%
301.apsi 401 407 +1.97%
SPECint2000 388 399 +2.83%

Table 9: SPECfp2000 for Pentium 4 GCC with
-O2 -mtune=pentium4 without and with
coalescing the program stack slots.

sign a free hard register to the pseudo-register
(functionretry_global_alloc ). Usually
it fails especially when the processor has few
registers or there is a high register pressure in
the function. So finally the pseudo-register is
placed in memory. Figure 7 shows an example
of such a situation (the pseudo-registerp128
is expelled from hard registerA because it is
needed for an instruction which is in the live
range ofp128).

p128

p512

p256

B

BA

Loop: p128
lives here

Figure 7: Case for the register migration.

Sometimes it is more profitable to use an-
other hard register (B in the example) instead
of memory for the pseudo-register. It might
be possible by expelling another rarely used
pseudo-register (p256 and p512 in the exam-
ple) from their hard registers. In their own turn
the expelled pseudo-registers can also migrate.

The optimization works well with processors
with irregular register files (which means gen-
eration of more reloads because of strict in-
struction constraints for input/output registers).

Tables 10 and 11 contain SPEC2000 results
for Pentium 4 for benchmarks whose codes are
different when the optimization is used. We
see that the code is smaller and the results are
better. Practically the single important degra-
dation is perlbmk (but it can be fixed by the
register rematerialization and live range split-
ting mentioned above). Significant improve-
ment for GCC is more important than perlbmk
degradation because it is more difficult to im-
prove GCC than perlbmk; 50% of all time of
perlbmk is spent in one very specific function.
It is regular expression matching. The SPEC95
perlbmk was a more fare benchmark because it
tested the interpreter itself, not regular expres-
sion matching.

Benchmarks Base ratio Peak ratio Change
175.vpr 594 596 +0.34%
176.gcc 1123 1133 +0.89%
186.crafty 869 877 +0.92%
197.parser 730 729 -0.14%
252.eon 765 764 -0.13%
253.perlbmk 1159 1133 -2.24%
254.gap 943 944 +0.11%
255.vortex 1052 1056 +0.38%
256.bzip2 737 735 -0.27%
300.twolf 753 763 +1.33%
173.applu 771 772 +0.13%
177.mesa 720 726 +0.83%
200.sixtrack 394 392 -0.51%
301.apsi 486 489 +0.62%

Table 10: SPEC2000 for Pentium 4 GCC with
-O2 -mtune=pentium4 without and with
the register migration.

This optimization makes GCC a bit faster too
(the compiler bootstrap test on Pentium 4 is
0.13% faster with the optimization). As for
architectures with more regular register files,
I found that three SPECfp95 test codes for



GCC Developers’ Summit 2004 • 99

Benchmarks Base Peak Change
175.vpr 128917 128949 0.025%
176.gcc 1241720 1241440 -0.022%
186.crafty 204846 204878 0.016%
197.parser 85436 85420 -0.019%
252.eon 480338 480354 0.003%
253.perlbmk 473971 473667 -0.064%
254.gap 421816 421592 -0.053%
255.vortex 568904 569128 0.039%
256.bzip2 28133 28117 -0.057%
300.twolf 181055 181055 0.000%
Average -0.013%

173.applu 58741 58741 0.000%
177.mesa 443993 443049 -0.213%
200.sixtrack 844452 843892 -0.066%
301.apsi 106317 106317 0.000%
Average -0.070%

Table 11: SPEC2000 benchmark code
sizes for Pentium 4 GCC with -O2
-mtune=pentium4 without and with
the register migration.

PowerPC were different (applu, turb3d, and
wave5). Test applu was sped up about 1% (two
others had the same result).

4.3 More accurate information about register
conflicts

The original register allocator used standard
live information to build a conflict graph.
This live information is based on the most
widely used definition of pseudo-register live-
ness: RegisterR lives at pointp if there is a
path fromp to some use ofR along whichR
is not redefined. The live information is de-
scribed by the following data flow equations:

LiveIni = (LiveOuti −Defi)
⋃

Usei

LiveOuti =
⋃

j∈Succ(i)

LiveInj

LiveIni andLiveOuti are sets of registers cor-
respondingly living at the start and at the end of
basic blocki. Usei is the set of registers used in
basic blocki and not redefined after the usage
in the basic block.Defi is the set of registers

defined or clobbered in basic blocki.

Loop:

p128 <- ...

... <- p128

no definition of p128

Figure 8: A typical case when accurate life in-
formation is different from the standard one.

This information is actually inaccurate because
according to it a pseudo-register may live be-
fore the first assignment to it. Figure 8 demon-
strates such situation. The first assignment to
pseudo-registerp128happens in the loop. Ac-
cording to GCC life analysis,p128will live in
any basic block where there is a path from the
basic block to the loop. Such inaccurate live
information results in bigger evaluated register
pressure and worse register allocation because
p128conflicts with all pseudo-registers in the
basic blocks preceding the loop.

To make the live information more accurate
(RealLive sets) in building conflict graphs we
could use the partial availability according to
the following equations:

PavIni =
⋃

j∈Pred(i)

PavOutj

PavOuti = (PavIni −Killi)
⋃

Geni

RealLiveIni = LiveIni

⋂
PavIni

RealLiveOuti = LiveOuti
⋂

PavOuti

PavIni andPavOuti are sets of registers cor-
respondingly partially available at the start and
at the end of basic blocki. Killi is the set
of registers killed (clobbered) in basic block



100 • GCC Developers’ Summit

i. Geni is the set of registers defined in ba-
sic blocki and not killed after their definition
in the basic block.

It seems that there are few cases where Real-
Live and Live sets are different. In reality there
are a lot of benchmarks whose code is differ-
ent when the accurate live information is used.
Tables 12 and 13 contains SPEC95 results for
tests which have a different code when more
accurate information is used.

Benchmarks Base ratio Peak ratio Change
126.gcc 80.8 81.4 +0.74%
130.li 86.4 86.6 +0.23%
132.ijpeg 79.5 80.0 +0.63%
134.perl 86.8 87.9 +1.27%
141.apsi 57.6 58.0 +0.69%
146.wave5 95.6 95.8 +0.21%

Table 12: SPEC95 for Pentium 4 GCC with
-O2 -mtune=pentium4 without and with
the accurate life information.

Benchmarks Base Peak Change
126.gcc 1102160 1101830 -0.030%
130.li 44047 44031 -0.036%
132.ijpeg 120904 120808 -0.079%
134.perl 233331 233315 -0.007%
141.apsi 103221 103205 -0.016%
146.wave5 96668 96668 0.000%
Average -0.028%

Table 13: SPEC95 benchmark code
sizes for Pentium 4 GCC with -O2
-mtune=pentium4 without and with
the accurate life information.

Another way to decrease the number of con-
flicts and as a consequence improve the reg-
ister allocation is to consider the values of
pseudo-registers. Pseudo-registers may get the
same hard-registers if they hold the same value
in every point where they live simultaneously.
Global value numbering [Simpson96] could be
used for this. I have tried a simplified ver-
sion of GVN where all operators except copies

are different. I believed that most cases be-
long to this category. GVN even in such
form is still an expensive optimization and a
bit complicated because reaching definitions
[Muchnick97] have to be used for this (usually
GVN is fulfilled in SSA). There are few tests
where GVN results in different code (e.g.eon
andperlbmkSPECint2000 tests for x86. Eon
had the same performance, perlbmk was about
0.2% faster). So I think the usage of such opti-
mization in GCC is not reasonable.

4.4 Better utilization of profiling information

The original register allocator mainly utilizes
profiling information in its work. But there are
some instances where it is not true. One such
place is the calculation of profitability of us-
age of caller-saved hard registers for pseudo-
registers crossing function calls. Currently it is
based on number of the crossed calls and num-
ber of the pseudo-register usages. Usage of the
frequencies of the crossed calls and the pseudo-
register usages instead of the numbers can im-
prove the generated code especially when the
execution profile is used. Tables 14 and 15 con-
tain SPECfp2000 results for Pentium 4 when
the profile is used.

Benchmarks Base ratio Peak ratio Change
168.wupwise 996 1006 +1.00%
171.swim 921 928 +0.75%
172.mgrid 702 703 +0.14%
173.applu 766 771 +0.65%
177.mesa 734 739 +0.68%
179.art 381 384 +0.78%
183.equake 1217 1226 +0.74%
200.sixtrack 454 456 +0.44%
301.apsi 450 479 +6.44%
SPECfp2000 688 696 +1.16%

Table 14: SPECfp2000 for Pentium 4 GCC
with -O2 without and with caller-saved regis-
ter profitability based on frequency. The profile
information is used.



GCC Developers’ Summit 2004 • 101

Benchmarks Base Peak Change
168.wupwise 25384 25320 -0.252%
171.swim 7174 7174 0.000%
172.mgrid 10015 10111 0.959%
173.applu 59405 59509 0.175%
177.mesa 433609 434105 0.114%
183.equake 16386 16418 0.195%
179.art 12123 12235 0.924%
200.sixtrack 835724 838972 0.389%
301.apsi 104573 104837 0.252%
Average 0.31%

Table 15: SPECfp2000 benchmark code sizes
for Pentium 4 GCC with-O2 without and with
caller-saved register profitability based on fre-
quency. The profile information is used.

The results could be better even without the
profile information. Tables 16 and 17 con-
tain analogous results without the profile for
Athlon.

Benchmarks Base ratio Peak ratio Change
168.wupwise 533 551 +3.38%
171.swim 428 441 +3.03%
172.mgrid 404 404 0.0%
173.applu 344 341 -0.87%
177.mesa 623 632 +1.44%
179.art 165 163 -1.21%
183.equake 404 403 -0.25%
200.sixtrack 369 368 -0.27%
301.apsi 282 287 +1.77%
SPECint2000 372 375 +0.81%

Table 16: SPECfp2000 for Athlon GCC with
-O2 -mtune=athlon without and with
caller-saved register profitability based on fre-
quency. Profile information is not used.

4.5 Global common subexpression elimination

As I wrote, the post-reload pass of the original
register allocator removes redundant instruc-
tions (mostly loads and stores) generated by
the reload pass. It uses the CSE (common sub-
expression elimination) library for this. This

Benchmarks Base Peak Change
168.wupwise 24872 24792 -0.322%
171.swim 7142 7142 0.000%
172.mgrid 9791 9807 0.163%
173.applu 58197 58317 0.206%
177.mesa 456005 458773 0.607%
179.art 13254 13494 1.811%
183.equake 16724 16788 0.383%
200.sixtrack 830268 831468 0.145%
301.apsi 103981 103773 -0.200%
Average 0.31%

Table 17: SPECfp2000 benchmark
code sizes for Athlon GCC with-O2
-mtune=athlon without and with caller-
saved register profitability based on frequency.
Profile information is not used.

permits to remove redundancy only in basic
blocks.

I was going to implement global redundancy
elimination as the next logical step. Fortu-
nately, it was already done independently by
Mostafa Hagog from IBM. For PowerPC G5 he
reported 1.4% improvement for SPECint2000
(with stunning 15% improvement for perlbmk)
and 0.5% degradation for SPECfp2000 (see ta-
ble 18).

5 Conclusions

As I wrote, the priority-based colouring
register allocator can compete with the
Chaitin/Briggs register allocators. Therefore I
believe we should work on the original register
allocator as much as on the new register allo-
cator. It is good to have two register allocators
to choose the better one, depending on archi-
tecture used.

There are a lot of ways to improve the origi-
nal register allocator’s code. The most inter-
esting one is live range splitting integrated with
the register allocator. This is the single impor-
tant part which is missed in the original GCC



102 • GCC Developers’ Summit

Benchmarks Base Peak The improvement
164.gzip 775 803 3.6%
175.vpr 513 504 -1.8%
181.mcf 500 500 0.0%
186.crafty 868 872 0.5%
197.parser 679 681 0.3%
252.eon 828 819 -1.1%
253.perlbmk 730 844 15.6%
254.gap 811 790 -2.6%
255.vortex 952 964 1.3%
256.bzip2 619 622 0.5%
300.twolf 605 606 0.2%
Est. SPECint 702.2 712.0 1.4%

168.wupwise 895 895 0.0%
171.swim 249 249 0.0%
172.mgrid 643 643 0.0%
173.applu 647 660 2.0%
177.mesa 904 905 0.1%
178.galgel 696 697 0.1%
179.art 624 590 -5.4%
183.equake 996 994 -0.2%
187.facerec 1142 1143 0.1%
188.ammp 398 398 0.0%
189.lucas 530 530 0.0%
191.fma3d 970 969 -0.1%
200.sixtrack 578 562 -2.8%
301.apsi 554 554 0.0%
Est. SPECfp 656 653 -0.5%

Table 18: SPEC2000 results for PowerPC G5
GCC with -O3 without and with postreload
global redundancy elimination.

register allocator from Chow’s algorithm. In
comparison with the Chaitin/Briggs approach,
the priority-based colouring register allocator
has an advantage, which is easier implementa-
tion of good live range splitting based on regis-
ter allocation information. It will probably re-
quire closer integration of the reload pass and
the global register allocator.

6 Acknowledgments

I would like to thank Richard Stallman and
Earl Killian for answering my questions about
GCC’s history and the Pastel compiler.

I am grateful to my company, RedHat, for the
attention to improving GCC and for permitting
me to work on this project. I would like to
thank my colleague Andrew MacLeod for pro-
viding interesting ideas and his reach experi-
ence in register allocation.

Last but not least, I would like to thank my son,
Serguei, for the help in proofreading the article.

References

[Appel96] L. George and A. Appel,Iterated
Register Coalescing, ACM TOPLAS,
Vol. 18, No. 3, pages 300-324, May,
1996.

[Balakrishnan01] Saisanthosh Balakrishnan
and Vinod Ganapathy,Splitting and
Shrinking Live Ranges, CS 701, Project
4, Fall 2001. The University of Wiscon-
sin. (http://www.cs.wisc.edu/
~saisanth/papers/liverange.
pdf ).

[Berson98] D. Berson, R. Gupta, and
M. Soffa, Integrated Instruction Schedul-
ing and Register Allocation Techniques,
Languages and Compilers for Parallel
Computing, pages 247-262, 1998.

[Briggs89] Articles of Preston Briggs in com-
piler newsgroup, Nov. 1989.

[Briggs94] P. Briggs, K. D. Cooper, and
L. Torczon.Improvements to graph color-
ing register allocation, ACM TOPLAS,
Vol. 16, No. 3, pages 428-455, May 1994.

[Chaitin81] G. J. Chaitin, et. al.,Register al-
location via coloring, Computer Lan-
guages, 6:47-57, Jan. 1981.

[Chow84] F. Chow and J. Henessy,Regis-
ter allocation by priority-based coloring,
In Proceedings of the ACM SIGPLAN



GCC Developers’ Summit 2004 • 103

84 Symposium on Compiler Construction
(Montreal, June 1984), ACM, New York,
1984, pages 222-232.

[Chow90] F. Chow and J. Hennessy.The
Priority-based Coloring Approach to
Register Allocation, TOPLAS, Vol. 12,
No. 4, 1990, pages 501-536.

[GooHsu88] J. R. Goodman and W. C. Hsu,
Code Scheduling and Register Allocation
in Large Basic Blocks, In Proc. of the 2nd
International Conference on Supercom-
puting, pages 442-452, 1988.

[Huang91] Xiaoqiu Huang and Webb Miller,
A Time-Efficient, Linear-Space Local
Similarity Algorithm, Adv. Appl. Math.
12 (1991), 337–357.

[Killian04] Private communications with Earl
Killian, March 2004.

[Ladd03] S. R. Ladd, ACOVEA.http://
www.coyotegulch.com

[Matz03] M. Matz, Design and Implementa-
tion of a Graph Coloring Register Allo-
cator for GCC, GCC Summit, 2003.

[Morgan98] Robert Morgan,Building an Op-
timizing Compiler, Digital Press, ISBN 1-
55558-179-X.

[Muchnick97] Steven S. Muchnick,Advanced
compiler design implementation, Aca-
demic Press (1995), ISBN 1-55860-320-
4.

[Norris93] C. Norris and L. Pollock, A
Scheduler-Sensitive Global Register Al-
locator, Proceedings of Supercomputing,
Portland, Oregon, November 1993.

[Open64] http://open64.
sourceforge.net .

[ORC] http://ipf-orc.
sourceforge.net .

[Pro64] http://oss.sgi.com/
projects/Pro64 .

[Simpson96] L. T. Simpson,Value-driven
redundancy elimination, Ph.D. thesis,
Computer Science Department, Rice
University.

[Sorkin96] A. Sorkin, Some Comments on
’The Priority-Based Coloring Approach
to Register Allocation’, ACM SIGPLAN
Notices, Vol. 31, No. 7, July 1996.

[Stallman04] Private email from Richard
Stallman, March 2004.



104 • GCC Developers’ Summit


