
MajoranaAlgebras
A package for constructing Majorana

algebras and representations

1.5.2

7 July 2024

Markus Pfeiffer

Madeleine Whybrow

Markus Pfeiffer
Email: markus.pfeiffer@st-andrews.ac.uk
Homepage: https://markusp.morphism.de/

Madeleine Whybrow
Email: mlw10@ic.ac.uk
Homepage: https://madeleinewhybrow.wordpress.com
Address: Department of Mathematics, Imperial College, South

Kensington, SW7 2AZ

mailto://markus.pfeiffer@st-andrews.ac.uk
https://markusp.morphism.de/
mailto://mlw10@ic.ac.uk
https://madeleinewhybrow.wordpress.com

MajoranaAlgebras 2

Copyright
© 2018 by Markus Pfeiffer and Madeleine Whybrow

MajoranaAlgebras package is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

https://www.fsf.org/licenses/gpl.html

Contents

1 Introduction 4
1.1 A quick guide . 4
1.2 Understanding the output . 5
1.3 Info levels . 6

2 Shapes of a Majorana representation 7
2.1 The shapes functions . 7

3 Majorana representations 9
3.1 The main function . 9
3.2 The n-closed function . 9

4 Functions for calculating with Majorana representations 11
4.1 Calculating products . 11
4.2 Basic functions . 12
4.3 The subalgebra structure . 12

5 Functions for testing Majorana representations 14
5.1 The main function . 14
5.2 Other functions . 14

6 Orbital Structures 16
6.1 Examples . 16

7 Signed Permutations 20
7.1 Different Representations . 21
7.2 Low-Level Descriptions . 21

Index 23

3

Chapter 1

Introduction

1.1 A quick guide

In order to construct the Majorana representation of a group G with respect to a set of involutions T ,
you must first call ShapesOfMajoranaRepresentation (2.1.1).

Example
gap> G := AlternatingGroup(5);;
gap> T := AsList(ConjugacyClass(G, (1,2)(3,4)));;
gap> input := ShapesOfMajoranaRepresentation(G,T);;

This function outputs a record. One component of this record is labelled shapes and contains the
possible shapes of a Majorana representation of the form (G,T,V).

Example
gap> input.shapes;
[["1A", "2B", "5A", "3C", "5A"], ["1A", "2B", "5A", "3A", "5A"],

["1A", "2A", "5A", "3C", "5A"], ["1A", "2A", "5A", "3A", "5A"]]

To construct the Majorana representation with shape at position i of this list, call the function
MajoranaRepresentation (3.1.1) with input as its first argument and i as its second.

Example
gap> rep := MajoranaRepresentation(input, 1);;
gap> rep.shape;
["1A", "2B", "5A", "3C", "5A"]

There are then a number of functions (see 4) that one case use on the (potentially incomplete)
Majorana representation that this function has outputted.

Example
gap> MAJORANA_IsComplete(rep);
true
gap> MAJORANA_Dimension(rep);
21

If an incomplete algebra is returned then the function NClosedMajoranaRepresentation (3.2.1)
can be used to attempt to find the 3-closed part of the algebra.

4

MajoranaAlgebras 5

Example
gap> G := AlternatingGroup(5);;
gap> T := AsList(ConjugacyClass(G, (1,2)(3,4)));;
gap> input := ShapesOfMajoranaRepresentation(G,T);;
gap> input.shapes;
[["1A", "2B", "5A", "3C", "5A"], ["1A", "2B", "5A", "3A", "5A"],

["1A", "2A", "5A", "3C", "5A"], ["1A", "2A", "5A", "3A", "5A"]]
gap> rep := MajoranaRepresentation(input, 2);;
gap> MAJORANA_IsComplete(rep);
false
gap> NClosedMajoranaRepresentation(rep);;
gap> MAJORANA_IsComplete(rep);
true
gap> MAJORANA_Dimension(rep);
46

1.2 Understanding the output

Note that all vectors and matrices are given in sparse matrix format, as provided by the GAP package
Gauss. If mat is such a matrix then the integers in mat!.indices refer to a spanning set of the
algebra indexed by the list rep.setup.coords. The list mat!.entries give their corresponding
coefficients.

The function MajoranaRepresentation (3.1.1) outputs a record that encodes the information
required to perform calculations in the Majorana representation that has been calculated. The record
contains the following components.

group
The group G , as inputted by the user.

involutions
The set T , as inputted by the user.

shape
The shape of the representation, as chosen by the user in the input of
MajoranaRepresentation (3.1.1).

eigenvalues
A list whose values give the eigenvalues of the adjoint action of the axes of the algebra. In this
case, it must be equal to (or a subset of) [0, 1/4, 1/32] . Note that we omit the eigenvalue 1
as we assume the algebra to be primitive.

axioms
A string representing the axiomatic setting of the algebra’s construction, potentially chosen by
the user with the options record in the input of MajoranaRepresentation (3.1.1).

setup
Is itself a record, containing (among others) the following components.

coords
A list whose elements index a spanning set of the algebra.

MajoranaAlgebras 6

nullspace
Again a record such that nullspace.vectors gives a basis of the nullspace of the algebra
(as the elements rep.setup.coords are not necessarily linearly independent).

orbitreps
A list of indices giving the representatives of the orbits of the action of the group G on T .

pairreps
A list of pairs of indices giving representatives of the orbitals of the action of the group G
on rep.setup.coords .

algebraproducts
A list where the vector at position i denotes the algebra product of the two spanning set vec-
tors whose indices (in rep.setup.coords) are given by rep.setup.pairreps[i] . If the
i th entry is set to false then this algebra product has not yet been found and the algebra is
incomplete.

innerproducts
Performs the same role as algebraproducts except that, instead of vectors, the entries are
rational numbers denoting the inner product between two spanning set vectors.

evecs
A list where if i is contained in rep.setup.orbitreps then rep.evecs[i] is bound
to a record. This record has components "ev" where ev is an eigenvalue contained in
rep.eigenvalues . This component gives a basis for the eigenspace of the axis corresponding
to rep.involutions[i] with eigenvalue ev .

1.3 Info levels

1.3.1 InfoMajorana

▷ InfoMajorana (info class)

The default info level of InfoMajorana is 0. No information is printed at this level. If the info
level is at least 10 then Success is printed if the algorithm has produced a complete Majorana algebra,
otherwise Fail is printed. If the info level is at least 20 then more information is printed about the
progress of the algorithm, up to a maximum info level of 100.

Chapter 2

Shapes of a Majorana representation

2.1 The shapes functions

2.1.1 ShapesOfMajoranaRepresentation

▷ ShapesOfMajoranaRepresentation(G, T) (function)

Returns: a record with a component shapes
Takes a group G and a G-invariant set of generating involutions T . Returns a list of possible

shapes of a Majorana Representation of the form (G,T,V) that is stored in the shapes component of
the output.

2.1.2 ShapesOfMajoranaRepresentationAxiomM8

▷ ShapesOfMajoranaRepresentationAxiomM8(G, T) (function)

Returns: a record with a component shapes
Performs exactly the same function as ShapesOfMajoranaRepresentation (2.1.1) but gives

only those shapes at obey axiom M8. That is to say, we additionally assume that if t,s ∈ T such that
|ts| = 2 then the dihedral subalgebra ⟨⟨at ,as⟩⟩ is of type 2A if and only if ts ∈ T (and otherwise is of
type 2B).

2.1.3 MAJORANA_IsSixTranspositionGroup

▷ MAJORANA_IsSixTranspositionGroup(G, T) (function)

Returns: true if (G,T) is a 6-transposition group, otherwise returns false
For a group G and a subset T of G , returns true if all of the following conditions are satisfied: *T

is a set of involutions that generate G ; *T is closed under conjugation by G ; *the order of the product
of two elements of T is at most 6.

2.1.4 MAJORANA_RemoveDuplicateShapes

▷ MAJORANA_RemoveDuplicateShapes(input) (function)

If an automorphism of the group G stabilises the set T then it induces an action on the pairs of
elements of T and therefore on the shapes of a possible Majorana representation of the form (G,T,V) .
If one shape is mapped to another in this way then their corresponding algebras must be isomorphic.

7

MajoranaAlgebras 8

This function takes the record input as produced by the function
ShapesOfMajoranaRepresentation (2.1.1) or ShapesOfMajoranaRepresentationAxiomM8
(2.1.2) and replaces input.shapes with a list of shapes such that no two can be mapped to each
other by an automorphism of G .

Chapter 3

Majorana representations

3.1 The main function

3.1.1 MajoranaRepresentation

▷ MajoranaRepresentation(input, index[, options]) (function)

Returns: a record giving a Majorana representation
This takes two or three arguments, the first of which must be the output of the function

ShapesOfMajoranaRepresentation (2.1.1) and the second of which is the index of the desired
shape in list input.shapes .

If the optional argument options is given then it must be a record. The following components of
options are recognised:

axioms
This component must be bound to the string "AllAxioms" or "NoAxioms" . If bound to
"AllAxioms" then the algorithm assumes the axioms 2Aa, 2Ab, 3A, 4A and 5A as in Ser-
ess (2012). If bound to "NoAxioms" then the algorithm only assumes the Majorana axioms M1
- M7. The default value is "AllAxioms" .

form
If this is bound to true then the algorithm assume the existence of an inner product (as in
the definition of a Majorana algebra). Otherwise, if bound to false then no inner product is
assumed (and we are in fact constructing an axial algebra that satisfies the Majorana fusion law).
The default value is true .

embedding
If this is bound to true then the algorithm first attempts to construct large subalgebras of the
final representation before starting the main construction. The default value is false .

3.2 The n-closed function

A Majorana algebra V generated by a set of axes A is called n-closed if it is spanned as a vector space
by products of elements of A of length at most n. As most known Majorana algebras are 2-closed, the
function MajoranaRepresentation (3.1.1) only attempts to construct the 2-closed part.

9

MajoranaAlgebras 10

If it is not successful then the output is a partial Majorana representation, i.e. a Majorana represen-
tation with some missing algebra products. In this case, the function MAJORANA_IsComplete (4.2.1)
returns false.

If the user wishes, they may then pass this incomplete Majorana representation to the function
NClosedMajoranaRepresentation (3.2.1) in order to attempt construction of the 3-closed part.
This process may then be repeated as many times as the user wishes.

3.2.1 NClosedMajoranaRepresentation

▷ NClosedMajoranaRepresentation(rep) (function)

Takes as its input an incomplete Majorana representation rep that has been generated using the
function MajoranaRepresentation (3.1.1). Again runs the main algorithm in order to attempt con-
struction of the 3-closed part of the algebra. If the function NClosedMajoranaRepresentation is
called n times on the same Majorana representation rep then this representation will be the n+2-closed
part of the algebra.

Chapter 4

Functions for calculating with Majorana
representations

4.1 Calculating products

4.1.1 MAJORANA_AlgebraProduct

▷ MAJORANA_AlgebraProduct(u, v, algebraproducts, setup) (function)

Returns: the algebra product of vectors u and v
The arguments u and v must be row vectors in sparse matrix format. The arguments

algebraproducts and setup must be the components with these names of a representation as out-
putted by MajoranaRepresentation (3.1.1). The output is the algebra product of u and v , also in
sparse matrix format.

4.1.2 MAJORANA_InnerProduct

▷ MAJORANA_InnerProduct(u, v, innerproducts, setup) (function)

Returns: the inner product of vectors u and v
The arguments u and v must be row vectors in sparse matrix format. The arguments

innerproducts and setup must be the components with these names of a representation as out-
putted by MajoranaRepresentation (3.1.1). The output is the inner product of u and v .

Example
gap> G := AlternatingGroup(5);;
gap> T := AsList(ConjugacyClass(G, (1,2)(3,4)));;
gap> input := ShapesOfMajoranaRepresentation(G,T);;
gap> rep := MajoranaRepresentation(input, 1);;
gap> Size(rep.setup.coords);
21
gap> u := SparseMatrix(1, 21, [[1]], [[1]], Rationals);;
gap> v := SparseMatrix(1, 21, [[17]], [[1]], Rationals);;
gap> MAJORANA_AlgebraProduct(u, v, rep.algebraproducts, rep.setup);
<a 1 x 21 sparse matrix over Rationals>
gap> MAJORANA_InnerProduct(u, v, rep.innerproducts, rep.setup);
-1/8192

11

MajoranaAlgebras 12

4.2 Basic functions

4.2.1 MAJORANA_IsComplete

▷ MAJORANA_IsComplete(rep) (function)

Returns: true is all algebra products have been found, otherwise returns false
Takes a Majorana representation rep , as outputted by MajoranaRepresentation (3.1.1). If

the representation is complete, that is to say, if the vector space spanned by the basis vectors
indexed by the elements in rep.setup.coords is closed under the algebra product given by
rep.algebraproducts , return true. Otherwise, if some products are not known then return false.

4.2.2 MAJORANA_Dimension

▷ MAJORANA_Dimension(rep) (function)

Returns: the dimension of the representation rep as an integer
Takes a Majorana representation rep , as outputted by MajoranaRepresentation (3.1.1)

and returns its dimension as a vector space. If the representation is not complete (cf.
MAJORANA_IsComplete (4.2.1)) then this value might not be the true dimension of the algebra.

4.2.3 MAJORANA_Eigenvectors

▷ MAJORANA_Eigenvectors(index, eval, rep) (function)

Returns: a basis of the eigenspace of the axis as position index with eigenvalue eval as a sparse
matrix

4.2.4 MAJORANA_Basis

▷ MAJORANA_Basis(rep) (function)

Returns: a sparse matrix that gives a basis of the algebra

4.2.5 MAJORANA_AdjointAction

▷ MAJORANA_AdjointAction(axis, basis, rep) (function)

Returns: a sparse matrix representing the adjoint action of axis on basis
Takes a Majorana representation rep , as outputted by MajoranaRepresentation (3.1.1), a row

vector axis in sparse matrix format and a set of basis vectors, also in sparse matrix format. Returns a
matrix, also in sparse matrix format, that represents the adjoint action of axis on basis .

4.3 The subalgebra structure

4.3.1 MAJORANA_Subalgebra

▷ MAJORANA_Subalgebra(vecs, rep) (function)

Returns: the subalgebra of the representation rep that is generated by vecs
Takes a Majorana representation rep , as outputted by MajoranaRepresentation (3.1.1) and a

set of vectors vecs in sparse matrix format and returns the subalgebra generated by vecs , also in
sparse matrix format.

MajoranaAlgebras 13

4.3.2 MAJORANA_IsJordanAlgebra

▷ MAJORANA_IsJordanAlgebra(subalg, rep) (function)

Returns: true if the subalgebra subalg is a Jordan algebra, otherwise returns false
Takes a Majorana representation rep , as outputted by MajoranaRepresentation (3.1.1) and a

subalgebra subalg of rep. If this subalgebra is a Jordan algebra then function returns true, otherwise
returns false.

Example
gap> G := G := AlternatingGroup(5);;
gap> T := AsList(ConjugacyClass(G, (1,2)(3,4)));;
gap> input := ShapesOfMajoranaRepresentation(G,T);;
gap> rep := MajoranaRepresentation(input, 2);;
gap> MAJORANA_IsComplete(rep);
false
gap> NClosedMajoranaRepresentation(rep);;
gap> MAJORANA_IsComplete(rep);
true
gap> MAJORANA_Dimension(rep);
46
gap> basis := MAJORANA_Basis(rep);
<a 46 x 61 sparse matrix over Rationals>
gap> subalg := MAJORANA_Subalgebra(basis, rep);
<a 46 x 61 sparse matrix over Rationals>
gap> MAJORANA_IsJordanAlgebra(subalg, rep);
false

Chapter 5

Functions for testing Majorana
representations

The output of the function MajoranaRepresentation (3.1.1) is guaranteed to be a commutative
algebra generated by idempotents whose eigenspaces obey the Majorana fusion law. To check that the
output is truly a Majorana algebra, one must also check that

• the inner product is a Frobenius form (see MAJORANA_TestFrobeniusForm (5.2.1));

• the inner product is positive definite (see MAJORANA_TestInnerProduct (5.2.2));

• the inner product obeys axiom M2 (Norton’s inequality) (see MAJORANA_TestAxiomM2 (5.2.3));

• the algebra is primitive (see MAJORANA_TestPrimitivity (5.2.4)).

5.1 The main function

5.1.1 MajoranaAlgebraTest

▷ MajoranaAlgebraTest(rep) (function)

Returns: true if the algebra given by rep is indeed a Majorana algebra.
Note: does not check that the algebra obeys axiom M2 (Norton’s inequality), this can be separately

tested using MAJORANA_TestAxiomM2 (5.2.3).

5.2 Other functions

5.2.1 MAJORANA_TestFrobeniusForm

▷ MAJORANA_TestFrobeniusForm(rep) (function)

Returns: true if the inner product given by rep.innerproducts is a Frobenius form, otherwise
returns false.

5.2.2 MAJORANA_TestInnerProduct

▷ MAJORANA_TestInnerProduct(rep) (function)

Returns: true if the inner product given by rep.innerproducts is positive definite, otherwise
returns false.

14

MajoranaAlgebras 15

5.2.3 MAJORANA_TestAxiomM2

▷ MAJORANA_TestAxiomM2(rep) (function)

Returns: true if the inner product given by rep.innerproducts obeys axiom M2 (Norton’s
inequality), otherwise returns false.

5.2.4 MAJORANA_TestPrimitivity

▷ MAJORANA_TestPrimitivity(rep) (function)

Returns: true if the 1-eigenspaces of all axes are 1-dimensional, otherwise returns false.
Example

gap> G := AlternatingGroup(5);;
gap> T := AsList(ConjugacyClass(G, (1,2)(3,4)));;
gap> input := ShapesOfMajoranaRepresentation(G,T);;
gap> rep := MajoranaRepresentation(input, 2);;
gap> NClosedMajoranaRepresentation(rep);;
gap> MAJORANA_IsComplete(rep);
true
gap> MajoranaAlgebraTest(rep);
true
gap> MAJORANA_TestFrobeniusForm(rep);
true
gap> MAJORANA_TestInnerProduct(rep);
true
gap> MAJORANA_TestAxiomM2(rep);
true
gap> MAJORANA_TestPrimitivity(rep);
true

Chapter 6

Orbital Structures

The functions for orbital structures are based on recent work in permutation group algorithms. An
orbital structure contains information about orbits and stabilisers of a group acting on a set for the
purposes of quickly determining representatives, canonising elements, and transversal elements (di-
rected) orbitals (orbits of ordered pairs of elements of the domain), and undirected orbitals, i.e. orbits
of sets of size two.

6.1 Examples

To create an orbital structure we need generators for a group, a set, and an action
Example

gap> os := OrbitalStructure([
> (1,13,4,14,5)(2,10,12,9,8)(3,7,15,6,11)(16,17,18,20,19),
> (1,2,3)(4,6,5)(7,10,13)(8,12,14)(9,11,15)(16,18,21)(17,19,20)],
> [1..21],
> OnPoints);;
gap> OrbitalRepresentative(os, [16,15]);
[16, 1]
gap> c := OrbitalCanonizingElement(os, [16, 15]);
(1,10,9,5,15)(2,7,6,8,4)(3,13,14,11,12)(17,20,18,19,21)
gap> OnTuples(c, [16,15]);
[16, 1]
gap> UnorderedOrbitalRepresentative(os, [16,2]);
[1, 16]
gap> c := UnorderedOrbitalCanonizingElement(os, [16,15]);
(1,15)(2,4)(3,12)(5,10)(7,8)(11,13)(17,21)(19,20)
gap> OnSets(c, Set([16,15]));
[1, 16]
gap> AllOrbitalRepresentatives(os)
[[1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 16],

[1, 18], [1, 20], [16, 1], [16, 2], [16, 3], [16, 16], [16, 17]]
gap> AllUnorderedOrbitalRepresentatives(os)
[[1, 1], [1, 2], [1, 4], [1, 5], [1, 6], [1, 16], [1, 18],

[1, 20], [16, 16], [16, 17]]

16

MajoranaAlgebras 17

6.1.1 IsOrbitalStructure (for IsObject)

▷ IsOrbitalStructure(arg) (filter)

Returns: true or false

6.1.2 OrbitalStructure

▷ OrbitalStructure(gens, domain, act) (function)

Returns: An orbital structure
Given generators, a set, and an action function create an orbital structure. An orbital structure

contains a list of orbits of the group generated by gens on domain , a hashmap that maps any element
of domain to the index of its orbit in the list of orbits. We choose the smallest element of each orbit
as representative. For each orbit, the orbital structure also contains the stabilizer of the chosen orbit
representative, together with all orbits of that stabilizer on domain with chosen representatives.

6.1.3 OS_OrbitRepresentative

▷ OS_OrbitRepresentative(arg) (function)

6.1.4 OS_CanonisingElement

▷ OS_CanonisingElement(arg) (function)

6.1.5 OS_CanonisingElementAndRepresentative

▷ OS_CanonisingElementAndRepresentative(arg) (function)

6.1.6 OS_StabilizerOf

▷ OS_StabilizerOf(arg) (function)

6.1.7 OrbitalRepresentative

▷ OrbitalRepresentative(os, pair) (function)

Returns: pair
Given an orbital structure os and a pair pair of elements of the domain that os is defined on,

returns a canonical representative of pair in its orbit of ordered pairs.

6.1.8 AllOrbitalRepresentatives

▷ AllOrbitalRepresentatives(os) (function)

Return the set of canonical representatives of orbits of pairs under the action of the orbital struc-
ture.

MajoranaAlgebras 18

6.1.9 OrbitalCanonizingElement

▷ OrbitalCanonizingElement(os, pair) (function)

Returns: a group element
Given an orbital structure os and the pair pair returns an element g of the group that maps pair

to OrbitalRepresentative(os, pair).

6.1.10 OrbitalCanonizingElementInverse

▷ OrbitalCanonizingElementInverse(arg) (function)

6.1.11 OrbitalTransversalIterator

▷ OrbitalTransversalIterator(os, pair) (function)

Returns: an iterator
Given an orbital structure os and a pair pair , returns an iterator that produces an element g for

every element e in the orbit such that OnTuples(OrbitalRepresentative(os, pair), g) = e.

6.1.12 UnorderedOrbitalRepresentative

▷ UnorderedOrbitalRepresentative(os, pair) (function)

Returns: pair
Given an orbital structure os and a pair pair of elements of the domain that os is defined on,

returns a canonical representative of pair in its orbit of sets.

6.1.13 AllUnorderedOrbitalRepresentatives

▷ AllUnorderedOrbitalRepresentatives(os) (function)

Return the set of canonical representatives of orbits of sets of size two under the action of the
orbital structure.

6.1.14 UnorderedOrbitalTransversalIterator

▷ UnorderedOrbitalTransversalIterator(os, pair) (function)

Returns: an iterator
Given an orbital structure os and a pair pair , returns an iterator that produces an element g for

every element e in the orbit such that OnSets(UnorderedOrbitalRepresentative(os, pair),
g) = e.

6.1.15 UnorderedOrbitalCanonizingElement

▷ UnorderedOrbitalCanonizingElement(os, pair) (function)

Returns: a group element
Given an orbital structure os and the pair pair returns an element g of the group that maps pair

to UnorderedOrbitalRepresentative(os, pair).

MajoranaAlgebras 19

6.1.16 UnorderedOrbitalCanonizingElementInverse

▷ UnorderedOrbitalCanonizingElementInverse(arg) (function)

Chapter 7

Signed Permutations

We provide signed permutations, that is permutations that can additionally change the sign of their
result.

Assume n ∈N, then a signed permutation on n points is a permutation π on {1 . . .n} together with
signs sgn : {1..n} → {−1,1}. A signed permutation on n points acts on the set {−n . . .1,1 . . .n} by
ω(π,sgn) = sgn(ω) · sgn(|ω|π) · (|ω|π).

We provide two representations of signed permutations, one as a list of images
IsSignedPermListRep (7.2.8) and one formed as pair of a permutation and a sign map
IsSignedPermRep (7.2.7). Our benchmarks indicate that a list of images is the better representa-
tion, and hence this is the default.

To get started with signed permutations consider the following example
Example

gap> s := SignedPerm([2,-1]);
<signed permutation in list rep>
gap> 1 ^ s;
2
gap> 2 ^ s;
-1
gap> OnPoints(2, s);
-1

One can form groups out of signed permutations
Example

gap> r := SignedPerm([-1,3,-2,4]);; t := SignedPerm([3,1,4,2]);;
gap> G := Group(r,t);
<group with 2 generators>
gap> Size(G);
32
gap> Orbit(G, 1, OnPoints);
[1, -1, 3, -3, -2, 4, 2, -4]
gap> Stabilizer(G, 1, OnPoints);
<group of size 4 with 9 generators>

Note that currently the package does not make an effort to exploit the special structure of signed
permutation groups as permutation groups.

20

MajoranaAlgebras 21

7.1 Different Representations

To create signed permutations in the different representations, we provide a constructor.
Example

gap> r := NewSignedPerm(IsSignedPermRep, [-1,3,-2,4]);;
gap> t := SignedPerm(IsSignedPermRep, [3,1,4,2]);;
gap> G := Group(r,t);
<group with 2 generators>
gap> Size(G);
32
gap> r := NewSignedPerm(IsSignedPermListRep, [-1,3,-2,4]);;
gap> t := SignedPerm(IsSignedPermListRep, [3,1,4,2]);;
gap> G := Group(r,t);
<group with 2 generators>
gap> Size(G);
32

7.2 Low-Level Descriptions

7.2.1 IsSignedPerm (for IsAssociativeElement andIsExtLElement andIsExtRElement
andIsMultiplicativeElement andIsMultiplicativeElementWithOne andIsMulti-
plicativeElementWithInverse andIsFiniteOrderElement)

▷ IsSignedPerm(arg) (filter)

Returns: true or false
Category of signed permutations

7.2.2 ListSignedPerm (for IsSignedPerm)

▷ ListSignedPerm(perm) (operation)

Convert a signed permutation into a list of images, equivalent to List([1..LargestMovedPoint(s)],
x -> x^s);

7.2.3 ListSignedPerm (for IsSignedPerm, IsPosInt)

▷ ListSignedPerm(arg1, arg2) (operation)

Convert a signed permutation to a list of images of length len . Arguments perm, len

7.2.4 SignedPerm

▷ SignedPerm(arg) (function)

Given a list of signed images create a signed permutation object in IsSignedPermListRep
(7.2.8).

MajoranaAlgebras 22

7.2.5 NewSignedPerm (for IsSignedPerm, IsList)

▷ NewSignedPerm(arg1, arg2) (constructor)

7.2.6 NewSignedPerm (for IsSignedPerm, IsPerm, IsList)

▷ NewSignedPerm(arg1, arg2, arg3) (constructor)

7.2.7 IsSignedPermRep (for IsSignedPerm and IsPositionalObjectRep)

▷ IsSignedPermRep(arg) (filter)

Returns: true or false
Representation of signed permutations as a permutation and a vector of signs.

7.2.8 IsSignedPermListRep (for IsSignedPerm and IsPositionalObjectRep)

▷ IsSignedPermListRep(arg) (filter)

Returns: true or false
Representation of signed permutations as a list of signed images

7.2.9 OnPosPoints

▷ OnPosPoints(arg) (function)

Only act as a permutation on {1 . . .n}

7.2.10 LargestMovedPoint (for IsSignedPerm)

▷ LargestMovedPoint(arg) (attribute)

The largest point that is moved by the signed permutation, where moving includes changing the
sign.

7.2.11 RandomSignedPermList

▷ RandomSignedPermList(arg) (function)

Create a random list of images that can be used to create a signed permutation.

7.2.12 RandomSignedPerm

▷ RandomSignedPerm(arg) (function)

Create a random signed permutation

Index

AllOrbitalRepresentatives, 17
AllUnorderedOrbitalRepresentatives, 18

InfoMajorana, 6
IsOrbitalStructure

for IsObject, 17
IsSignedPerm

for IsAssociativeElement andIsExtLElement
andIsExtRElement andIsMultiplica-
tiveElement andIsMultiplicativeEle-
mentWithOne andIsMultiplicativeEle-
mentWithInverse andIsFiniteOrderEle-
ment, 21

IsSignedPermListRep
for IsSignedPerm and IsPositionalObjec-

tRep, 22
IsSignedPermRep

for IsSignedPerm and IsPositionalObjec-
tRep, 22

LargestMovedPoint
for IsSignedPerm, 22

ListSignedPerm
for IsSignedPerm, 21
for IsSignedPerm, IsPosInt, 21

MajoranaAlgebraTest, 14
MajoranaRepresentation, 9
MAJORANA_AdjointAction, 12
MAJORANA_AlgebraProduct, 11
MAJORANA_Basis, 12
MAJORANA_Dimension, 12
MAJORANA_Eigenvectors, 12
MAJORANA_InnerProduct, 11
MAJORANA_IsComplete, 12
MAJORANA_IsJordanAlgebra, 13
MAJORANA_IsSixTranspositionGroup, 7
MAJORANA_RemoveDuplicateShapes, 7
MAJORANA_Subalgebra, 12
MAJORANA_TestAxiomM2, 15

MAJORANA_TestFrobeniusForm, 14
MAJORANA_TestInnerProduct, 14
MAJORANA_TestPrimitivity, 15

NClosedMajoranaRepresentation, 10
NewSignedPerm

for IsSignedPerm, IsList, 22
for IsSignedPerm, IsPerm, IsList, 22

OnPosPoints, 22
OrbitalCanonizingElement, 18
OrbitalCanonizingElementInverse, 18
OrbitalRepresentative, 17
OrbitalStructure, 17
OrbitalTransversalIterator, 18
OS_CanonisingElement, 17
OS_CanonisingElementAndRepresentative,

17
OS_OrbitRepresentative, 17
OS_StabilizerOf, 17

RandomSignedPerm, 22
RandomSignedPermList, 22

ShapesOfMajoranaRepresentation, 7
ShapesOfMajoranaRepresentationAxiomM8,

7
SignedPerm, 21

UnorderedOrbitalCanonizingElement, 18
UnorderedOrbitalCanonizingElement-

Inverse, 19
UnorderedOrbitalRepresentative, 18
UnorderedOrbitalTransversalIterator, 18

23

	Introduction
	A quick guide
	Understanding the output
	Info levels

	Shapes of a Majorana representation
	The shapes functions

	Majorana representations
	The main function
	The n45closed function

	Functions for calculating with Majorana representations
	Calculating products
	Basic functions
	The subalgebra structure

	Functions for testing Majorana representations
	The main function
	Other functions

	Orbital Structures
	Examples

	Signed Permutations
	Different Representations
	Low45Level Descriptions

	Index

