| v

ERLANG

Erlang/OTP System Documentation

Copyright © 1997-2016 Ericsson AB. All Rights Reserved.
Erlang/OTP System Documentation 7.2.1
November 17, 2016

Copyright © 1997-2016 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

November 17, 2016

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 1

1.1 Installing the Binary Release

1 Installation Guide

This section describes how to install Erlang/OTP on UNIX and Windows.

1.1 Installing the Binary Release

1.1.1 Windows
The system is delivered as a Windows I nstaller executable. Get it from http://www.erlang.org/download.html

Installing
Theinstallation procedure is automated. Double-click the . exe fileicon and follow the instructions.

Verifying
e Start Erlang/OTP by double-clicking on the Erlang shortcut icon on the desktop.
Expect a command-line window to pop up with an output looking something like this:

Erl ang/ OTP 17 [erts-6.0] [64-bit] [snp:2:2]

Eshell V6.0 (abort with ~"QG
1>

» Exit by entering the command hal t () .

2> halt ().

This closes the Erlang/OTP shell.

1.2 Building and Installing Erlang/OTP

1.2.1 Introduction

This document describes how to build and install Erlang/OTP-18. Erlang/OTP should be possible to build from source
on any Unix/Linux system, including OS X. Y ou are advised to read the whole document before attempting to build
and install Erlang/OTP.

The source code can be downloaded from the official site of Erlang/OTP or GitHub.

e http://lwww.erlang.org
e https://github.com/erlang/otp

1.2.2 Required Utilities
These are the tools you need in order to unpack and build Erlang/OTP.

2 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href

1.2 Building and Installing Erlang/OTP

Warning:

Please have alook at the Known platform issues chapter before you start.

Unpacking
e GNU unzip, or amodern uncompress.
e A TAR program that understands the GNU TAR format for long filenames.

Building

e GNU make

e Compiler -- GNU C Compiler, gcc or the C compiler frontend for LLVM, ¢l ang.
e Pelb

« GNU m -- If HiPE (native code) support is enabled. HiPE can be disabled using - - di sabl e- hi pe

e ncurses,terncap,orternib -- Thedevelopment headers and libraries are needed, often known as
ncur ses-devel .Use--w t hout - t er ntap to build without any of these libraries. Note that in this case
only the old shell (without any line editing) can be used.

* sed -- Stream Editor for basic text transformation.

Building in Git

* GNU aut oconf of at least version 2.59. Note that aut oconf isnot needed when building an unmodified
version of the released source.

Buildingon OS X
e Xcode-- Download and install viathe Mac App Store. Read about Building on a Mac before proceeding.

Installing
« Aninstall program that can take multiple file names.

1.2.3 Optional Utilities

Some applications are automatically skipped if the dependencies aren't met. Hereis alist of utilities needed for those
applications. You will also find the utilities needed for building the documentation.

Building

e OpenSSL -- The opensource toolkit for Secure Socket Layer and Transport Layer Security. Required for building
the application cr ypt o. Further, ssl and ssh require aworking crypto application and will aso be skipped if
OpenSSL ismissing. The publ i c_key application will available without cr ypt o, but the functionality will
be very limited.

The development package of OpenSSL including the header files are needed as well as the binary command
program openssl| . At least version 0.9.8 of OpenSSL is required. Read more and download from http://
www.openssl.org.

* Oracle Java SE JDK -- The Java Development Kit (Standard Edition). Required for building the application
jinterface andpartsof i c andor ber . Atleast version 1.5.0 of the JDK isrequired.

Download from http://www.or acle.com/technetwor k/java/javase/downloads. We have also tested with IBM's
JDOK 1.5.0.

e X Windows -- Development headers and libraries are needed to build the Erlang/OTP application gs on Unix/
Linux.

« fl ex -- Headersand libraries are needed to build the flex scanner for the megaco application on Unix/Linux.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 3

href
href
href

1.2 Building and Installing Erlang/OTP

* wxWidgets -- Toolkit for GUI applications. Required for building the wx application. At least version 3.0 of
wxWidgetsis required.

Download from http://sour cefor ge.net/projects/wxwindows/files/3.0.0/ or get it from GitHub: https://
github.com/wxWidgets/wxWidgets

Further instructions on wxWidgets, read Building with wxErlang.
Building Documentation
e Xxsltproc -- A command line XSLT processor.

A tool for applying XSLT stylesheets to XML documents. Download xdtproc from http://xmlsoft.org/XSLT/
xdtproc2.html.

» fop -- Apache FOP print formatter (requires Java). Can be downloaded from http://xmlgraphics.apache.or g/
fop.
1.2.4 How to Build and Install Erlang/OTP

The following instructions are for building the released sour ce tar ball.

The variable $ERL_TOP will be mentioned a lot of times. It refers to the top directory in the source tree. More
information about $ERL_ TOP can be found in the make and $ERL_TOP section below. If you are building in git you
probably want to take alook at the Building in Git section below before proceeding.

Unpacking
Start by unpacking the Erlang/OTP distribution file with your GNU compatible TAR program.

$ tar -zxf otp_src_18.2.3.tar.gz # Assumi ng bash/sh

Now change directory into the base directory and set the SERL_TOP variable.

$ cd otp_src_18.2.3
$ export ERL_TOP=" pwd’ # Assumi ng bash/sh

Configuring

Run the following commands to configure the build:

$./configure [options]

Note:

If you are building Erlang/OTP from git you will need to run . / ot p_bui | d aut oconf to generate the
configure scripts.

By default, Erlang/OTP release will beinstalledin/ usr /|1 ocal / { bi n, I i b/ er | ang} . If you for instance don't
have the permission to install in the standard location, you can install Erlang/OTP somewhere else. For example,
to install in /opt/erlang/18.2.3/{bin,lib/erlang}, use the --prefix=/opt/erlang/18.2.3
option.

4 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href
href
href
href
href
href

1.2 Building and Installing Erlang/OTP

On some platforms Perl may behave strangely if certain locales are set. If you get errors when building, try setting
the LANG variable:

$ export LANG=C # Assuni ng bash/sh

Building
Build the Erlang/OTP release.

$ make

Testing

Before installation you should test whether your build isworking properly by running our smoke test. The smoke test
isasubset of the complete Erlang/OTP test suites. First you will need to build and release the test suites.

$ nmake rel ease_tests

This creates an additional folder in $ERL_TOP/ r el ease calledt est s. Now, it'stimeto start the smoke test.

$ cd rel ease/tests/test_server
$ $ERL_TOP/bin/erl -s ts install -s ts snoke_test batch -s init stop

To verify that everything is ok you should open $ERL_TOP/ r el ease/ t est s/ test _server/i ndex. ht
in your web browser and make sure that there are zero failed test cases.

Note:

Onbuildswithout cr ypt 0, ssl andssh thereisafailed test case for undefined functions. Verify that thefailed
test case log only shows calls to skipped applications.

Installing

You are now ready to install the Erlang/OTP release! The following command will install the release on your system.

$ make install

Running

Y ou should now have aworking release of Erlang/OTP! Jump to System Principlesfor instructions on running Erlang/
OTP.

How to Build the Documentation

Make sure you're in the top directory in the source tree.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 5

1.2 Building and Installing Erlang/OTP

$ cd $ERL_TOP

If you have just built Erlang/OTP in the current source tree, you have already ran conf i gur e and do not need to
do this again; otherwise, run conf i gur e.

$./configure [Configure Args]

When building the documentation you need a full Erlang/OTP-18.2.3 system in the $PATH.

$ export PATH=$ERL_TOP/ bi n: $PATH # Assum ng bash/sh

For the FOP print formatter, two steps must be taken:
» Adding thelocation of your installation of f op in $FOP_HOVE.

$ export FOP_HOVE=/path/to/fop/dir # Assum ng bash/sh

e Addingthef op script (in $FOP_HQVE) to your $PATH, either by adding $FOP_HOVE to $PATH, or by copying
thef op script to adirectory aready in your $PATH.

Build the documentation.

$ make docs

Build I ssues

We have sometimes experienced problemswith Oracle's| ava running out of memory when running f op. Increasing
the amount of memory available as follows has in our case solved the problem.

$ export FOP_OPTS="-Xnx<Installed amount of RAMin MB>n{

More information can be found at
e http://xmigraphics.apache.or g/fop/0.95/r unning.html#memory.

How to Install the Documentation
The documentation can be installed either using thei nst al | - docs target, or using ther el ease_docs target.

* |If you have installed Erlang/OTP using the i nst al | target, install the documentation using the i nst al | -
docs target. Install locations determined by conf i gur e will be used. $DESTDI R can be used the same way
aswhen doing meke install .

$ make install-docs

e Ifyouhaveinstalled Erlang/OTPusingther el ease target, install the documentationusingther el ease_docs
target. You typically want to use the same RELEASE ROOT aswhen invoking meke r el ease.

6 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

1.2 Building and Installing Erlang/OTP

$ make rel ease_docs RELEASE ROOT=<r el ease dir>

Accessing the Documentation
After installation you can access the documentation by

* Reading man pages. Make surethat er | isreferring to the installed version. For example/ usr /| ocal / bi n/
er| . Try viewing at the man page for Mnesia

$ erl -man mesi a

» Browsing the html pages by loading thepage/ usr /1 ocal /1 i b/ erl ang/ doc/ er| ang/i ndex. ht m or
<BaseDir>/1i b/ erl ang/ doc/ erl ang/ i ndex. ht m if the prefix option has been used.

How to Install the Pre-formatted Documentation

Pre-formatted html documentation and man pages can be downloaded from
e http://www.erlang.or g/download.html.

Extract the html archive in the installation directory.

$ cd <Rel easeDir>
$ tar -zxf otp_htnl _18.2.3.tar.gz

Forerl -man <page> towork the Unix manual pages haveto beinstalled in the sameway, i.e.

$ cd <Rel easeDir>
$ tar -zxf otp_man_18.2.3.tar.gz

Where<Rel easeDi r > is

o <PrefixDir>/1ib/erlangifyouhaveinstalled Erlang/OTP using make instal | .

e $DESTDI R<PrefixDir>/1ib/erlangif youhaveinstaled Erlang/OTP using neke i nst al |
DESTDI R=<Tnpl nstal | Di r>.

e RELEASE_ROOT if you haveinstalled using make rel ease RELEASE ROOT=<Rel easeDi r>.

1.2.5 Advanced configuration and build of Erlang/OTP

If youwant totailor your Erlang/OTP build and install ation, please read on for detailed information about theindividual
steps.

make and $ERL_TOP

All the makefiles in the entire directory tree use the environment variable ERL_TOP to find the absolute path of the
installation. The conf i gur e script will figure this out and set it in the top level Makefile (which, when building, it
will pass on). However, when developing it is sometimes convenient to be able to run make in a subdirectory. To do
this you must set the ERL_ TOP variable before you run make.

For example, assume your GNU make program is called mak e and you want to rebuild the application STDLI B, then
you could do:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 7

href
href
href

1.2 Building and Installing Erlang/OTP

$ cd lib/stdlib; env ERL_TOP=<Di r> nake

where <Di r > would be what you find ERL_TOP is set to in the top level Makefile.

otp_build vs configure/make

Building Erlang/OTP can be done either by using the SERL_TOP/ ot p_bui | d script, or by invoking $ERL_ TOP/

confi gure and make directly. Building using ot p_bui | d is easier since it involves fewer steps, but the
ot p_bui I d build procedure is not as flexible as the conf i gur e/nake build procedure. The binary releases for
Windows that we deliver are built using ot p_bui | d.

Configuring

The configure script is created by the GNU autoconf utility, which checks for system specific features and then creates
anumber of makefiles.

The configure script allows you to customize a number of parameters; type ./ configure --help or./
configure --hel p=recursive for details. . / confi gure --hel p=recursive will give help for all
confi gur e scriptsin al applications.

One of the things you can specify iswhere Erlang/OTP should be installed. By default Erlang/OTP will beinstalled in
lusr/local/{bin,lib/erlang}.Tokeepthesame structure but install in a different place, <Di r > say, use
the- - prefi x argument likethis.. / confi gure --prefix=<Dir>.

Some of the available conf i gur e options are;
o --prefix=PATH- Specify installation prefix.
e --{enabl e, di sabl e} -t hreads - Thread support. Thisis enabled by default if possible.

« --{enabl e, di sabl e} - snp-support - SMP support (enabled by default if a usable POSIX thread library
or native Windows threads is found)

e --{enabl e, di sabl e} -kernel - pol | -Kernel poll support (enabled by default if possible)
« --{enabl e, di sabl e} - hi pe - HiPE support (enabled by default on supported platforms)

» --{enabl e, di sabl e} - f p- excepti ons - Floating point exceptions (an optimization for floating point
operations). The default differs depending on operating system and hardware platform. Note that by enabling this
you might get a seemingly working system that sometimes fail on floating point operations.

e --enabl e-darw n-uni ver sal - Build universa binaries on darwin i386.
e --enabl e-darw n- 64bi t - Build 64-bit binaries on darwin

e --enabl e- nb4- bui | d - Build 64-bit binaries using the - n64 flagto (g) cc
e --enabl e- B82- bui | d - Build 32-bit binaries using the - nB2 flagto (g) cc

e --wth-assuned-cache-1ine-si ze=Sl| ZE - Set assumed cache-line size in bytes. Default is 64. Valid
values are powers of two between and including 16 and 8192. The runtime system use thisvalue in order to try to
avoid false sharing. A too large value wastes memory. A to small value will increase the amount of false sharing.

e --{with,without}-terntap -termcap (without impliesthat only the old Erlang shell can be used)

e --wth-javac=JAVAC- Specify Javacompiler to use

e --{with,without}-javac - Java compiler (without implies that the j i nt er f ace application won't be
built)

e --{enabl e, di sabl e}-dynani c-ssl -1i b - Dynamic OpenSSL libraries

e ~--{enabl e, di sabl e}-builtin-zlib-Usethebuilt-in source for zlib.

e --w th-ssl =PATH- Specify location of OpenSSL include and lib

e --{with,w thout}-ssl -OpenSSL (without impliesthat thecr ypt 0, ssh, and ssl won't be built)

8 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.2 Building and Installing Erlang/OTP

e ~--with-1ibatom c_ops=PATH - Use the | i bat o c_ops library for atomic memory accesses. If
conf i gur e should inform you about no native atomic implementation available, you typically want to try using
thel i bat omi c_ops library. It can be downloaded from https://github.com/ivmai/libatomic_ops.

e --disable-snp-require-native-atom cs - By default confi gur e will fal if an SMP runtime
systemisabout to be built, and no implementation for native atomic memory accesses can befound. If thishappens,
you are encouraged to find a native atomic implementation that can be used, e.g., using | i bat oni ¢_ops, but
by passing - - di sabl e- snp-requi re-nati ve-at oni cs you can build using afallback implementation
based on mutexes or spinlocks. Performance of the SMP runtime system will however suffer immensely without
an implementation for native atomic memory accesses.

e ~--enable-static-{nifs,drivers} - To alow usage of nifs and drivers on OSs that do not support
dynamic linking of libraries it is possible to statically link nifs and drivers with the main Erlang VM binary.
Thisis done by passing a comma separated list to the archives that you want to statically link. e.g. - - enabl e-
stati c-ni fs=/ hone/ $USER/ ny_ni f . a. The path has to be absolute and the name of the archive has to
bethe sameasthemodule, i.e. my_ni f inthe example above. Thisisalso truefor drivers, but then it isthe driver
name that has to be the same as the filename. You also have to define STATI C_ERLANG { NI F, DRI VER}
when compiling the .o files for the nif/driver. If your nif/driver depends on some other dynamic library, you now
have to link that to the Erlang VM binary. Thisis easily achived by passing LI BS=-1 | i bnare to configure.

e --without- $app - By default all applicationsin Erlang/OTP will beincluded in arelease. If thisis not wanted
it ispossibleto specify that Erlang/OTP should be compiled without one or more applications, i.e. - - wi t hout -
wx. Thereis no automatic dependency handling between applications. If you disable an application that another
application depends on, you a so have to disable the dependant application.

e --enabl e-gettineof day-as-os-systemtinme - Forceusageof getti neof day() for OS system
time.

e --enabl e-prefer-el apsed-nonot oni c-ti me-during-suspend - Prefer an OS monotonic time
source with elapsed time during suspend.

e --disabl e-prefer-el apsed-nonotonic-tine-during-suspend - Do not prefer an OS
monoatonic time source with elapsed time during suspend.

e --wth-clock-resol ution=hi gh| | ow-Trytofindclock sourcesfor OS systemtime, and OS monotonic

time with higher or lower resolution than chosen by default. Note that both alternatives may have a negative
impact on the performance and scalability compared to the default clock sources chosen.

e« --disabl e-saved- conpi | e-ti ne - Disable saving of compile date and time in the emulator binary.

e ~--enabl e-dirty-schedul ers - Enable the experimental dirty schedulers functionality. Note that the
dirty schedulers functionality is experimental, and not supported. This functionality will be subject to backward
incompatible changes. Note that you should not enable the dirty scheduler functionality on production systems.
It isonly provided for testing.

If you or your system has special requirements please read the Makef i | e for additional configuration information.
Atomic Memory Operations and the VM

The VM with SMP support makes quite a heavy use of atomic memory operations. An implementation providing
native atomic memory operations is therefore very important when building Erlang/OTP. By default the VM will
refuse to build if native atomic memory operations are not available.

Erlang/OTP itself provides implementations of native atomic memory operations that can be used when compiling
with a gcc compatible compiler for 32/64-bit x86, 32/64-bit SPARC V9, 32-bit PowerPC, or 32-bit Tile. When
compiling with agcc compatible compiler for other architectures, the VM may be able to make use of native atomic
operationsusingthe __at omni ¢_* builtins (may be available when using agcc of at least version 4.7) and/or using
the __sync_* builtins (may be available when using agcc of at least version 4.1). If only thegcc's __sync_*
builtins are available, the performance will suffer. Such a configuration should only be used as a last resort. When
compiling on Windows using a MicroSoft Visual C++ compiler native atomic memory operations are provided by
Windows APIs.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 9

href

1.2 Building and Installing Erlang/OTP

Native atomic implementation in the order preferred:

e Theimplementation provided by Erlang/OTP.

* TheAPI provided by Windows.

e Theimplementation based onthegcc __at omi c_* builtins.

» If none of the above are available for your architecture/compiler, you are recommended to build and install
libatomic_ops before building Erlang/OTP. Thel i bat o ¢_ops library provides native atomic memory
operations for avariety of architectures and compilers. When building Erlang/OTP you need to inform the build
system of wherethel i bat oni c¢_ops library isinstalled usingthe- - wi t h- | i bat omi ¢_ops=PATH
confi gur e switch.

e Asalast resort, the implementation solely based onthegcc __sync_* builtins. Thiswill however cause lots
of expensive and unnecessary memory barrier instructions to beissued. That is, performance will suffer. The
conf i gur e script will warn at the end of its execution if it cannot find any other alternative than this.

Building

Building Erlang/OTP on arelatively fast computer takes approximately 5 minutes. To speed it up, you can utilize
parallel make with the - j <num _j obs> option.

$ export MAKEFLAGS=-j 8 # Assumi ng bash/sh
$ nmake

If you've upgraded the source with a patch you may need to clean up from previous builds before the new build. Make
sure to read the Pre-built Source Release section below before doing anake cl ean.

Within Git
When building in a Git working directory you also have to have a GNU aut oconf of at least version 2.59 on your
system, because you need to generate the conf i gur e scripts before you can start building.

Theconfi gur e scripts are generated by invoking . / ot p_bui | d aut oconf inthe $ERL_TOP directory. The
conf i gur e scripts also have to be regenerated when aconf i gur e. i n or acl ocal . m4 file has been modified.
Note that when checking out abranch aconfi gure. i n or acl ocal . n4 file may change content, and you may
therefore have to regenerate the conf i gur e scripts when checking out a branch. Regenerated conf i gur e scripts
imply that you haveto run conf i gur e and build again.

Note:

Running. / ot p_bui | d aut oconf isnot needed when building an unmodified version of the rel eased source.

Other useful information can be found at our GitHub wiki:
* http://wiki.github.com/erlang/otp
OS X (Darwin)

Make sure that the command host nane returns a valid fully qualified host name (this is configured in / et c/
host conf i g). Otherwise you might experience problems when running distributed systems.

If you develop linked-in drivers (shared library) you need to link using gcc and the flags - bundl e -
flat_nanespace -undefined suppress. Youalsoinclude-f no- conmon in CFLAGS when compiling.
Use. so asthelibrary suffix.

10 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href

1.2 Building and Installing Erlang/OTP

If you have Xcode 4.3, or later, you will aso need to download "Command Line Tools" viathe Downloads preference
panein Xcode.

Building with wxErlang

If you want to build the wx application, you will need to get wxWidgets-3.0 (WwxW dget s-3. 0. 0. tar. bz2 from
http://sour cefor ge.net/pr oj ects’wxwindows/files/3.0.0/) or get it from github with bug fixes:

$ git clone --branch WK_3_0_BRANCH gi t @i t hub. com wxW dget s/ wxW dget s. gi t

Be aware that the wxWidgets-3.0 is a new release of wxWidgets, it is not as mature as the old releases and the OS
X port till lags behind the other ports.

Configure and build wxWidgets (on Mavericks - 10.9):

$./configure --wth-cocoa --prefix=/usr/local

or without support for old versions and with static |ibs

$./configure --wth-cocoa --prefix=/usr/local --wth-macosx-version-m n=10.9 --disabl e-shared
$ make

$ sudo make install

$ export PATH=/usr/ | ocal / bi n: $PATH

Check that you got the correct wx-config

$ which wx-config & wx-config --version-full

Build Erlang/OTP

$ export PATH=/usr/ | ocal /bi n: $PATH
$ cd $ERL_TOP

$./configure

$ make

$ sudo nmeke install

Pre-built Sour ce Release

The sourcereleaseisdelivered with alot of platform independent build results already pre-built. If you want to remove
these pre-built files, invoke . / ot p_buil d renove_prebuilt_fil es fromthe $SERL_TOP directory. After
you have done this, you can build exactly the same way as before, but the build process will take a much longer time.

Warning:
Doing make cl ean in an arbitrary directory of the source tree, may remove files needed for bootstrapping
the build.

Doing . / ot p_bui | d save_boot st r ap from the $ERL_TOP directory before doing make cl ean will
ensure that it will be possible to build after doing nake cl ean../otp_build save_boot st rap will
be invoked automatically when make isinvoked from $ERL_ TOP with either the cl ean target, or the default
target. It is also automatically invoked if . / ot p_bui | d renove_prebuilt _fil es isinvoked.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 11

href

1.2 Building and Installing Erlang/OTP

How to Build a Debug Enabled Erlang RunTime System

After completing all the normal building steps described above a debug enabled runtime system can be built. To do
this you have to change directory to $ERL_TOP/ er t s/ enul at or .

In this directory execute:

$ nmake debug FLAVOR=$FLAVOR

where $FLAVQR is either pl ai n or snp. The flavor options will produce a beam.debug and beam.smp.debug
executable respectively. Thefiles areinstalled along side with the normal (opt) versionsbeam snp and beam

To start the debug enabled runtime system execute:

$ $ERL_TOP/ bi n/cerl -debug

The debug enabled runtime system features lock violation checking, assert checking and various sanity checksto help
a developer ensure correctness. Some of these features can be enabled on anormal beam using appropriate configure
options.

There are other types of runtime systems that can be built as well using the similar steps just described.

$ make $TYPE FLAVOR=$FLAVOR

where $TYPE is opt , gcov, gpr of , debug, val gri nd, or | cnt . These different beam types are useful for
debugging and profiling purposes.

Installing

e Staged install using DESTDIR. You can perform the install phase in atemporary directory and later move the
installation into its correct location by use of the DESTDI Rvariable:

$ make DESTDI R=<tnp install dir> install

The installation will be created in a location prefixed by $DESTDI R. It can, however, not be run from there.
It needs to be moved into the correct location before it can be run. If DESTDI R have not been set but
| NSTALL_PREFI X has been set, DESTDI Rwill be set to | NSTALL_PREFI X. Notethat | NSTALL_PREFI X
in pre R13B04 was buggy and behaved as EXTRA_PREFI X (see below). There are lots of areas of use for an
installation procedure using DESTDI R, e.g. when creating a package, cross compiling, etc. Here is an example
where the installation should be located under / opt / | ocal :

$./configure --prefix=/opt/local
make
make DESTDI R=/tnp/erlang-build install
cd /tnp/erlang-buil d/ opt/| ocal

gnu-tar is used in this exanple
tar -zcf /honme/me/ nmy-erlang-build.tgz *
su -
Password: ***x*
$ cd /opt/l ocal

R R A T

12 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

1.2 Building and Installing Erlang/OTP

$ tar -zxf /hone/ ne/ ny-erlang-build.tgz

Install using ther el ease target. Instead of doing make i nst al | you can create the installation in whatever
directory you like using the r el ease target and run the | nst al | script yourself. RELEASE ROOT is used
for specifying the directory where the installation should be created. This is what by default ends up under /
usr/local /lib/erlangif youdotheinstall using make i nstal | .All installation paths provided in the
conf i gur e phaseareignored, aswell asDESTDI R, and | NSTALL_PREFI X. If you want links from a specific
bi n directory to the installation you have to set those up yourself. An example where Erlang/OTP should be
located at / horre/ me/ OTP:

./ configure

meke

make RELEASE ROOT=/ hone/ ne/ OTP r el ease
cd / hone/ me/ OTP

.Ilnstall -mniml /hone/ne/ OTP

nkdir -p /home/ me/ bin

cd / hone/ e/ bi n

In -s /home/ me/ OTP/ bin/erl erl

In -s /home/ me/ OTP/ bin/erlc erlc

I'n -s /home/ me/ OTP/ bi n/ escript escript

R R R

Thel nst al | script should currently be invoked as followsin the directory where it resides (the top directory):

$./Install [-cross] [-mnimal|-sasl] <ERL_ROOT>

where:

* -mni mal Createsan installation that starts up aminimal amount of applications, i.e., only ker nel and
stdl i b are started. The minimal system is normally enough, and iswhat make i nstal | uses.

e -sasl Createsaninstalation that also starts up the sas| application.
e -cross For cross compilation. Informsthe install script that it is run on the build machine.
e <ERL_RQOOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same as the

current working directory, but does not have to be. It can follow any other path through the file system to
the same directory.

If neither - m ni mal , nor - sasl is passed as argument you will be prompted.

Testinstall using EXTRA_PREFI X. The content of the EXTRA PREFI X variablewill prefix al installation paths
when doing make i nstal | . Notethat EXTRA_PREFI Xissimilar to DESTDI R, but it does not have the same
effect as DESTDI R. The installation can and have to be run from the location specified by EXTRA PREFI X.
That is, it can be useful if you want to try the system out, running test suites, etc, before doing the real install
without EXTRA_PREFI X.

Symbolic Linksin --bindir

When doing make i nst al | and the default installation prefix is used, relative symbolic links will be created from
/usr/ | ocal / bi ntoal public Erlang/OTP executablesin/ usr/ 1 ocal /1i b/ er| ang/ bi n. Theinstalation
phase will try to create relative symbolic links aslong as - - bi ndi r and the Erlang bin directory, located under - -
I i bdi r, both have - - exec- pr ef i x as prefix. Where - - exec- prefi x defaultsto - - prefi x. --prefix,
--exec-prefix,--bindir,and--1i bdir areal argumentsthat can bepassedtoconfi gur e. Onecanforce
relative, or absolute links by passing Bl NDI R_SYM_I NKS=r el ati ve| absol ut e asargumentsto make during
theinstall phase. Note that such arequest might cause afailure if the request cannot be satisfied.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 13

1.2 Building and Installing Erlang/OTP

Running
Using HiPE
HiPE supports the following system configurations:
* x86: All 32-bit and 64-bit mode processors should work.
* Linux: Fedora Coreis supported. Both 32-bit and 64-bit modes are supported.

NPTL glibcis strongly preferred, or a LinuxThreads glibc configured for "floating stacks'. Old non-floating
stacks glibcs have a fundamental problem that makes HiPE support and threads support mutually exclusive.

» Solaris: Solaris 10 (32-bit and 64-hit) and 9 (32-bit) are supported. The build requiresaversion of the GNU C
compiler (gec) that has been configured to use the GNU assembler (gas). Sun's x86 assembler isemphatically
not supported.

* FreeBSD: FreeBSD 6.1 and 6.2 in 32-bit and 64-bit modes should work.
« OS X/Darwin: Darwin 9.8.0 in 32-bit mode should work.

» PowerPC: All 32-bit 6xx/7xx(G3)/74xx(G4) processors should work. 32-bit mode on 970 (G5) and POWERS
processors should work.

e Linux (Yellow Dog) and OS X 10.4 are supported.
e SPARC: All UltraSPARC processors running 32-bit user code should work.

e Solaris9issupported. The build requiresagcc that has been configured to use Sun's assembler and linker.
Using the GNU assembler but Sun's linker has been known to cause problems.

e Linux (Aurora) is supported.
* ARM: ARMV5TE (i.e. XScale) processors should work. Both big-endian and little-endian modes are supported.

e Linuxissupported.
HiPE is automatically enabled on the following systems:

* x86 in 32-bit mode: Linux, Solaris, FreeBSD
e X86 in 64-bit mode: Linux, Solaris, FreeBSD
e PowerPC: Linux, Mac OSX

e SPARC: Linux

e ARM: Linux

On other supported systems, see Advanced Configure on how to enable HiPE.

If you are running on a platform supporting HiPE and if you have not disabled HiPE, you can compile a module into
native code like this from the Erlang shell:

1> c(Mdul e, native).

or

1> c(Mdul e, [native| QherOptions]).

Using the erlc program, write like this

$ erlc +native Mdul e.erl

14 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.2 Building and Installing Erlang/OTP

The native code will be placed into the beam file and automatically loaded when the beam file isloaded.

To add hipe options, write like this from the Erlang shell:

1> c(Mdul e, [native, {hipe, H peOpti ons}| MoreOpti ons]).

Use hi pe: hel p_opti ons/ 0 to print out the available options.

1> hi pe: hel p_options().

Running with GS
The gs application requires the GUI toolkit Tcl/Tk to run. At least version 8.4 is required.

1.2.6 Known platform issues

Suselinux 9.1 isshipped with apatched GCC version 3.3.3, havingtherpmnamedgcc- 3. 3. 3- 41. That version
has a serious optimization bug that makes it unusable for building the Erlang emulator. Please upgrade GCC to a
newer version before building on Suse 9.1. Suse Linux Enterprise edition 9 (SLES9) hasgcc- 3. 3. 3-43 and
is not affected.

gcc- 4. 3. 0 has a serious optimizer bug. It produces an Erlang emulator that will crash immediately. The bug
issupposed to befixedingcc- 4. 3. 1.

FreeBSD had a bug which caused kqueue/pol | /sel ect tofail todetect thatawri t ev() onapipe hasbeen
made. This bug should have been fixed in FreeBSD 6.3 and FreeBSD 7.0. NetBSD and DragonFlyBSD probably
have or have had the same bug. More information can be found at:

e http://www.freebsd.org/cgi/cvsweb.cgi/sr c/sys’kern/sys pipe.c
« http://lists.freebsd.or g/piper mail/fr eebsd-ar ch/2007-September/006790.html

get cwd() on Solaris9 can causean emulator crash. If you have async-threads enabled you can increase the stack
size of the async-threads as a temporary workaround. See the +a command-line argument in the documentation
of er | (1) . Without async-threads the emulator is not as vulnerable to this bug, but if you hit it without async-
threads the only workaround available is to enable async-threads and increase the stack size of the async-threads.
Oracle has however released patches that fixes the issue:

Problem Description: 6448300 large mnttab can cause stack overrun during Solaris 9 getcwd
More information can be found at:

e https://getupdates.or acle.com/readme/112874-40
« https://getupdates.or acle.com/readme/114432-29

sed on Solaris seem to have some problems. For example on Solaris 8, the BSD sed and XPG4 sed should be
avoided. Make sure/ bi n/ sed or/ usr/ bi n/ sed isused on the Solaris platform.

1.2.7 Daily Build and Test

Solaris 8, 9

e Sparc32
e Sparctd
Solaris 10

e Sparc32
e Sparctd

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 15

href
href
href
href

1.2 Building and Installing Erlang/OTP

e x86
e SUSELinux/GNU 9.4, 10.1
e x86
e SuSE Linux/GNU 10.0, 10.1, 11.0
e x86
* Xx86 64

e 0penSuSE 11.4 (Celadon)
* x86_64 (vagrind)

 Fedora7
 PowerPC
* Fedoral6
e X86 64
e Gentoo Linux/GNU 1.12.11.1
e X86
e Ubuntu Linux/GNU 7.04, 10.04, 10.10, 11.04, 12.04
* Xx86 64
« MontaVistaLinux/GNU 4.0.1
PowerPC
e FreeBSD 10.0
e x86
e OpenBSD 54
* Xx86 64
* 0OSX 10.5.8 (Leopard), 10.7.5 (Lion), 10.9.1 (Mavericks)
e x86
e Windows XP SP3, 2003, Vista, 7
e X86
« Windows7
* Xx86 64

We aso have the following "Daily Cross Builds':

e SUSE Linux/GNU 10.1 x86 -> SuSE Linux/GNU 10.1 x86_64
e SUSE Linux/GNU 10.1 x86_64 -> Linux/GNU TILEPro64

and the following "Daily Cross Build Tests':
* SUSE Linux/GNU 10.1 x86_64

1.2.8 Authors

Authors are mostly listed in the application's AUTHORS files, that is $ERL_TOP/ | i b/ */ AUTHORS and
$ERL_TOP/ er t s/ AUTHORS, not in the individual sourcefiles.

1.2.9 Copyright and License

Copyright Ericsson AB 1998-2015. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. Y ou may obtain a copy of the License at

16 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.3 Cross Compiling Erlang/OTP

http://ww. apache. org/ | i censes/ LI CENSE- 2. 0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"ASIS' BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

1.3 Cross Compiling Erlang/OTP

Table of Contents

e Introduction
» otp_build Versus configure/make
e Cross Configuration
* What can be Cross Compiled?
e Compatibility
e Patches
» Build and Install Procedure
e Building With configure/make Directly
e Building a Bootstrap System
e CrossBuilding the System
* Installing
e Installing Using Paths Determined by configure
e Installing Manually
e Building With the otp_build Script
e Building and Installing the Documentation
e Testing the cross compiled system
e Currently Used Configuration Variables
* Variablesfor otp_build Only
e Cross Compiler and Other Tools
e Dynamic Erlang Driver Linking
e LargeFile Support
e Other Tools
» Cross System Root Locations
e Optional Feature, and Bug Tests
e Copyright and License

1.3.1 Introduction

This document describes how to cross compile Erlang/OTP-18. Y ou are advised to read the whole document before
attempting to cross compile Erlang/OTP. However, before reading this document, you should read the $ERL_TOP/
HOWTO/INSTALL.md document which describes building and installing Erlang/OTP in general. $ERL_TCOP is the
top directory in the source tree.

otp_build Versus configure/make

Building Erlang/OTP can be done either by using the SERL_TOP/ ot p_bui | d script, or by invoking $ERL_TOP/
configure and make directly. Building using ot p_bui | d is easier since it involves fewer steps, but the
ot p_bui I d build procedure is not as flexible as the conf i gur e/make build procedure. Note that ot p_bui | d

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 17

1.3 Cross Compiling Erlang/OTP

conf i gur e will produce a default configuration that differs from what conf i gur e will produce by default. For
example, currently - - di sabl e- dynami c- ssl -1 i bisaddedtotheconf i gur e command lineargumentsunless
- -enabl e- dynani c- ssl - 1i b has been explicitly passed. The binary releases that we deliver are built using
ot p_bui I d. Thedefaultsused by ot p_bui | d confi gur e may change a any time without prior notice.

Cross Configuration

The $SERL_TOP/ xconp/ er | - xconp. conf . t enpl at e file contains all available cross configuration variables
and can be used as a template when creating a cross compilation configuration. All cross configuration
variables are aso listed at the end of this document. For examples of working cross configurations see the
$ERL_TOP/ xconp/ erl - xconp-Ti | eraMDE2. O-ti | epro. conf file and the $ERL_TOP/ xconp/ er| -
xconp- x86_64-saf -1 i nux- gnu. conf file. If the default behavior of a variable is satisfactory, the variable
does not need to be set. However, the conf i gur e script will issue a warning when a default value is used. When
avariable has been set, no warning will be issued.

A cross configuration file can be passed to ot p_bui | d confi gur e using the - - xconp- conf command line
argument. Note that conf i gur e does not accept this command line argument. When using the conf i gur e script
directly, pass the configuration variables as arguments to conf i gur e using a <VARI ABLE>=<VALUE> syntax.
Variables can also be passed as environment variablesto conf i gur e. However, if you pass the configuration in the
environment, make sureto unset all of these environment variables beforeinvoking mak e; otherwise, the environment
variables might set make variables in some applications, or parts of some applications, and you may end up with an
erroneously configured build.

What can be Cross Compiled?

All Erlang/OTP applications except the wx application can be cross compiled. The build of thewx driver will currently
be automatically disabled when cross compiling.

Compatibility

The build system, including cross compilation configuration variables used, may be subject to non backward
compatible changes without prior notice. Current cross build system has been tested when cross compiling some
Linux/GNU systems, but has only been partly tested for more esoteric platforms. The VxWorks examplefileishighly
dependent on our environment and is here more or less only for internal use.

Patches

Please submit any patches for cross compiling in away consistent with this system. All input is welcome as we have
avery limited set of cross compiling environments to test with. If a new configuration variable is needed, add it to
$ERL_TOP/ xconp/ er | - xconp. conf . tenpl at e, and useitinconfi gur e. i n. Other files that might need
to be updated are:

e $ERL_TOP/ xconp/ erl -xconp-vars. sh

e S$ERL_TOP/erl-build-tool -vars. sh

« $ERL TOP/erts/aclocal .

e $ERL_TOP/ xconp/ README. nd

e $ERL_TOP/ xconp/ erl - xconp-*. conf

Note that this might be an incomplete list of files that need to be updated.

General information on how to submit patches can be found at: http://wiki.github.com/erlang/otp/submitting-
patches

1.3.2 Build and Install Procedure

If you are building in Git, you want to read the Building in Git section of $ERL_TOP/HOWTO/INSTALL.md before
proceeding.

18 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href

1.3 Cross Compiling Erlang/OTP

We will first go through the conf i gur e/make build procedure which people probably are most familiar with.
Building With configure/make Directly
1

Change directory into the top directory of the Erlang/OTP source tree.

$ cd $ERL_TOP

In order to compile Erlang code, asmall Erlang bootstrap system has to be built, or an Erlang/OTP system of the same
release as the one being built has to be provided in the $PATH. The Erlang/OTP for the target system will be built
using this Erlang system, together with the cross compilation tools provided.

If you want to build using a compatible Erlang/OTP system in the $PATH, jump to (3).
Building a Bootstrap System

2

$./configure --enabl e-boot strap-only
$ nake

The- - enabl e- boot st rap- onl y argument to conf i gur e isn't strictly necessary, but will speed things up. It
will only run conf i gur e in applications necessary for the bootstrap, and will disable alot of things not needed by
the bootstrap system. If you run conf i gur e without - - enabl e- boost r ap- onl y you also have to run make as
make boot st r ap; otherwise, the whole system will be built.

Cross Building the System
©)

$./configure --host=<HOST> --build=<BUI LD> [& her Config Args]
$ make

<HOST> is the host/target system that you build for. It does not have to be a full CPU- VENDOR- OS triplet, but can
be. The full CPU- VENDOR- CS triplet will be created by executing $ERL_TOP/ ert s/ aut oconf/ confi g. sub
<HOST>. If conf i g. sub fails, you need to be more specific.

<BUI LD> should equal the CPU- VENDOR- CS triplet of the system that you build on. If you execute SERL_ TOP/
ert s/ aut oconf/confi g. guess, it will in most cases print the triplet you want to use for this.

Pass the cross compilation variables as command line argumentsto conf i gur e using a<VARI ABLE>=<VALUE>
syntax.

Note:
You can not pass a configuration file using the - - xconp- conf argument when you invoke conf i gur e
directly. The - - xconp- conf argument can only be passedtoot p_bui | d confi gure.

make will verify that the Erlang/OTP system used when building is of the same release as the system being

built, and will fail if this is not the case. It is possible, however not recommended, to force the cross

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 19

1.3 Cross Compiling Erlang/OTP

compilation even though the wrong Erlang/OTP system is used. This by invoking make like this. make
ERL_XCOWP_FORCE_DI FFERENT_OTP=yes.

Warning:

Invoking make ERL_XCOMP_FORCE DI FFERENT OTP=yes might fail, silently produce suboptimal code,
or silently produce erroneous code.

Installing
Y ou can either install using the installation paths determined by conf i gur e (4), or install manually using (5).
Installing Using Paths Determined by configure

(4)

$ make install DESTDI R=<TEMPORARY_PREFI X>

make install will install at alocation specified when doing conf i gur e. conf i gur e arguments specifying
where the installation should reside are for example: - - prefi x, - -exec-prefi x,--1ibdir,--bindir,etc.
By default it will install under / usr /1 ocal . You typically do not want to install your cross build under / usr/

I ocal onyour build machine. Using DESTDIR will cause the installation paths to be prefixed by $DESTDI R. This
makes it possible to install and package the installation on the build machine without having to place the installation
in the same directory on the build machine asit should be executed from on the target machine.

When meke i nstall hasfinished, change directory into $DESTDI R, package the system, move it to the target
machine, and unpack it. Note that theinstallation will only beworking on the target machine at the location determined
by confi gure.

Installing Manually
®)

$ nmeke rel ease RELEASE ROOT=<RELEASE DI R>

make rel ease will copy what you have built for the target machine to <RELEASE DI R>. Thel nst al | script
will not be run. The content of <RELEASE_DI R> iswhat by default endsupin/ usr/ 1 ocal /1i b/ erl ang.

Thel nst al | script used when installing Erlang/OTP requires common Unix tools such assed to be present in your
$PATH. If your target system does not have such tools, you need to run the | nst al | script on your build machine
before packaging Erlang/OTP. The | nst al | script should currently be invoked as follows in the directory where
it resides (the top directory):

$./Install [-cross] [-mnimal|-sasl] <ERL_ROOT>

where:

 -m ni mal Createsan instalation that starts up aminimal amount of applications, i.e., only ker nel and
stdl i b are started. The minimal system isnormally enough, andiswhat nake i nstal | uses.

e -sasl Createsaninstalation that also starts up the sas| application.

e -cross For cross compilation. Informsthe install script that it is run on the build machine.

20 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

1.3 Cross Compiling Erlang/OTP

e <ERL_ROOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same as the
current working directory, but does not have to be. It can follow any other path through the file system to the
same directory.

If neither - m ni mal , nor - sasl is passed as argument you will be prompted.
Y ou can now either do:
(6)

« Decide where the installation should be located on the target machine, run the | nst al | script on the build
machine, and package the installed installation. The installation just need to be unpacked at the right location on
the target machine:

$ cd <RELEASE Dl R>
$./Install -cross [-mninal|-sasl] <ABSCOLUTE_| NSTALL_DI R_ON_TARGET>

or:

()
« Packagetheinstallation in <RELEASE_DI R>, place it wherever you want on your target machine, and run the
I nst al | script on your target machine:

$ cd <ABSOLUTE_ | NSTALL_DI R_ON TARGET>
$./Install [-mnimal|-sasl] <ABSOLUTE_|I NSTALL_DI R_ON TARGET>

Building With the otp_build Script
®

$ cd $ERL_TOP

©)

$./otp_build configure --xconmp-conf=<FILE> [CQher Config Args]

aternatively:

$./otp_build configure --host=<HOST> --buil d=<BUI LD> [& her Config Args]

If you have your cross compilation configuration in afile, pass it using the - - xconp- conf =<FI LE> command
line argument. If not, pass - - host =<HOST>, - - bui | d=<BUI LD>, and the configuration variables using a
<VARI ABLE>=<VALUE> syntax on the command line (same asin (3)). Notethat <HOST> and <BUI LD> haveto be
passed one way or the other; either by using er| _xconp_host =<HOST> and er | _xconp_bui | d=<BUI LD>
in the configuration file, or by using the - - host =<HOST>, and - - bui | d=<BUI LD> command line arguments.

ot p_bui I d confi gur e will configureboth for the boostrap system on the build machine and the crosshost system.
(10)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 21

1.3 Cross Compiling Erlang/OTP

$./otp_build boot -a

ot p_buil d boot -a will first build a bootstrap system for the build machine and then do the cross build of the
system.

(11)
$./otp_build rel ease -a <RELEASE DI R>

otp_build rel ease -a will dothe same as (5), and you will after this have to do a manual install either by
doing (6), or (7).

1.3.3 Building and Installing the Documentation

After the system has been cross built you can build and install the documentation the same way as after a native build
of the system. See the How to Build the Documentation section in the SERL_TOP/HOWTO/INSTALL.md document
for information on how to build the documentation.

1.3.4 Testing the cross compiled system

$ nmake rel ease_tests

or

$./otp_build tests

The tests will be released into SERL_TOP/ r el ease/ t est s. After releasing the tests you have to install the tests
on the build machine. Y ou supply the same xcomp fileasto . / ot p_bui | d in(9).

$ cd $ERL_TOP/rel ease/tests/test_server/
$ $ERL_TOP/ boot strap/bin/erl -eval 'ts:install([{xconp,"<FILE>"}])" -s ts conpile_testcases -s init stop

You should get alot of printouts as the testcases are compiled. Once done you should copy the entire SERL_ TOP/
rel ease/ t est s folder to the cross host system.

Then go to the cross host system and setup the erlang installed in (4) or (5) to be in your $PATH. Then go to what
previously was SERL_TOP/ r el ease/ t est s/t est _server and issue the following command.

$ erl -s tsinstall -s ts run all _tests -s init stop

The configure should be skipped and all tests should hopefully pass. For more details about how to use tsrun er |
-s ts help -s init stop

22 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.3 Cross Compiling Erlang/OTP

1.3.5 Currently Used Configuration Variables

Note that you cannot define arbitrary variables in a cross compilation configuration file. Only the ones listed below
will be guaranteed to be visible throughout the whole execution of al conf i gur e scripts. Other variables needs to
be defined as argumentsto conf i gur e or exported in the environment.

Variables for otp_build Only

Variables in this section are only used, when configuring Erlang/OTP for cross compilation using $ERL_TOP/
otp_build configure.

Note:

These variables currently have no effect if you configure using the conf i gur e script directly.

e erl _xconp_bui | d - Thebuild system used. Thisvaluewill be passed as- - bui | d=$er| _xconp_bui I d
argument to the confi gure script. It does not have to be a full CPU- VENDOR- OS triplet, but can
be. The full CPU- VENDOR- CS triplet will be created by $ERL_TOP/ ert s/ aut oconf/ confi g. sub
$erl _xconp_buil d. If set to guess, the build system will be guessed using $ERL_TOP/ ert s/
aut oconf/confi g. guess.

e erl_xconmp_host - Cross host/target system to build for. This value will be passed as - - host =
$er| _xconp_host argument to the confi gur e script. It does not have to be a full CPU- VENDOR- OS
triplet, but can be. The full CPU- VENDOR- CS triplet will be created by $ERL_TOP/ ert s/ aut oconf/
config.sub $erl _xconp_host.

« erl_xconp_configure_fl ags - Extraconfigure flagsto passto theconf i gur e script.

Cross Compiler and Other Tools

If the crosscompilation toolsareprefixed by <HOST>- you probably do not need to set these variables (where<HOST>
iswhat has been passed as - - host =<HOST> argument to conf i gur e).

All variablesin this section can also be used when native compiling.
+ CC- Ccompiler.

e CFLAGS - C compiler flags.

* STATI C_CFLAGS - Static C compiler flags.

e CFLAG _RUNTI ME_LI BRARY_PATH - Thisflag should set runtime library search path for the shared libraries.
Note that this actually isalinker flag, but it needs to be passed via the compiler.

e CPP- C pre-processor.

e CPPFLAGS - C pre-processor flags.
e CXX- C++ compiler.

e CXXFLAGS - C++ compiler flags.

e LD-Linker.

e LDFLAGS - Linker flags.

e LI BS- Libraries.

Dynamic Erlang Driver Linking

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 23

1.3 Cross Compiling Erlang/OTP

Note:
Either set all or none of the DED _LD* variables.

 DED_LD- Linker for Dynamically loaded Erlang Drivers.

e DED _LDFLAGS - Linker flagsto usewith DED_LD.

e DED LD FLAG RUNTI ME_LI BRARY_PATH - This flag should set runtime library search path for shared
libraries when linking with DED_LD.

LargeFile Support

Note:
Either set all or none of the LFS_* variables.

e LFS _CFLAGS - Largefile support C compiler flags.
e LFS LDFLAGS - Largefile support linker flags.
e LFS LI BS- Largefilesupport libraries.

Other Tools
e RANLIB-ranli b archiveindex tool.

* AR-ar archiving tool.

 CETCONF - get conf system configuration inspectiontool. get conf iscurrently used for finding out largefile
support flags to use, and on Linux systems for finding out if we have an NPTL thread library or not.

Cross System Root Locations

* erl_xconp_sysr oot - Theabsolute path to the system root of the cross compilation environment. Currently,
the cr ypt o, odbc, ssh and ss| applications need the system root. These applications will be skipped if the
system root has not been set. The system root might be needed for other things too. If this is the case and the
system root has not been set, conf i gur e will fail and request you to set it.

* erl_xconp_isysroot - The absolute path to the system root for includes of the cross compilation
environment. If not set, this value defaults to $erl _xconp_sysr oot , i.e, only set this value if the include
system root path is not the same as the system root path.

Optional Feature, and Bug Tests
Thesetests cannot (always) be done automatically when cross compiling. Y ou usually do not need to set these variabl es.

Warning:

Setting these variables wrong may cause hard to detect runtime errors. If you need to change these values, really
make sure that the values are correct.

24 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.3 Cross Compiling Erlang/OTP

Note:

Some of these values will override results of tests performed by conf i gur e, and some will not be used until
conf i gur e issurethat it cannot figure the result out.

Theconf i gur e script will issue awarning when a default value is used. When a variable has been set, no warning
will beissued.

e erl_xconp_after_norecore_hook - yes| no. Defaults to no. If yes, the target system must have a
working __after_norecore_hook that can be used for tracking used mal | oc() implementations core
memory usage. Thisis currently only used by unsupported features.

e erl _xconp_bi gendi an - yes| no. No default. If yes, the target system must be big endian. If no, little
endian. This can often be automatically detected, but not always. If not automatically detected, conf i gur e will
fail unlessthisvariableisset. Since no default valueisused, conf i gur e will try to figure this out automaticaly.

« erl_xconp_doubl e_ni ddl e - yes| no. Defaults to no. If yes, the target system must have doubles in
"middle-endian” format. If no, it has"regular" endianness.

e erl_xconmp_clock gettime_cpu_tine-yes|no.Defaultstono. If yes, the target system must have
aworkingcl ock_getti me() implementation that can be used for retrieving process CPU time.

 erl_xconp_getaddrinfo - yes| no. Defaults to no. If yes, the target system must have a working
get addri nf o() implementation that can handle both IPv4 and I1Pv6.

e erl_xconp_gethrvtinme_procfs_ioctl -yes| no.Defaultstono. If yes, thetarget system must have
aworking get hr vt i ne() implementation and is used with procfsi oct | ().

e erl_xconp_dl sym brk_wrappers - yes| no. Defaults to no. If yes, the target system must have a
working dl sym(RTLD_NEXT, <S>) implementation that can be used on br k and sbr k symbols used by the
mal | oc() implementation in use, and by thistrack the mal | oc() implementations core memory usage. This
iscurrently only used by unsupported features.

e erl_xconp_kqueue - yes| no. Defaultsto no. If yes, the target system must have aworking kqueue()
implementation that returns a file descriptor which can be used by pol | () and/or sel ect () . If no and the
target system has not got epol | () or/ dev/ pol I , the kernel-poll feature will be disabled.

e erl_xconmp_linux_clock gettine _correction -yes| no. Defaults to yes on Linux; otherwise,
no. If yes, cl ock_getti me(CLOCK_MONOTONI C,) on the target system must work. This variable is
recommended to be set to no on Linux systems with kernel versions less than 2.6.

e erl_xconp_linux_nptl -yes| no. Defaultsto yes on Linux; otherwise, no. If yes, the target system
must have NPTL (Native POSIX Thread Library). Older Linux systems have LinuxThreads instead of NPTL
(Linux kernel versionstypically lessthan 2.6).

« erl_xconp_linux_usabl e_sigal tstack-yes| no.Defaultstoyes on Linux; otherwise, no. If yes,
si gal t st ack() must be usable on the target system. si gal t st ack() on Linux kernel versions less than
2.4 are broken.

e erl_xconp_linux_usabl e_sigusrx -yes| no. Defaultstoyes. If yes, the SI GUSR1 and SI GUSR2
signals must be usable by the ERTS. Old LinuxThreads thread libraries (Linux kernel versionstypically lessthan
2.2) used these signals and made them unusable by the ERTS.

« erl_xconp_poll -yes| no. Defaultsto no on Darwin/MacOSX; otherwise, yes. If yes, the target system
must have a working pol | () implementation that also can handle devices. If no, sel ect () will be used
instead of pol | ().

e erl_xconp_put env_copy - yes| no. Defaults to no. If yes, the target system must have a put env()
implementation that stores a copy of the key/value pair.

e erl_xcomp_reliable fpe-yes|no.Defaultstono.If yes, thetarget system must have reliable floating
point exceptions.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 25

1.4 How to Build Erlang/OTP on Windows

« erl_xconp_posi x_memnalign - yes| no. Defaults to yes if posi x_nemal i gn system call exists;
otherwise no. If yes, thetarget system must haveaposi x_mnenal i gn implementation that accepts larger than
page size alignment.

e erl_xconp_ose_| dfl ags_pass1 - Linker flags for the OSE module (pass 1)

e erl_xconp_ose_| df | ags_pass?2 - Linker flags for the OSE module (pass 2)

* erl_xconp_ose_OSEROOT - OSE installation root directory
 erl_xconp_ose_STRI P - Strip utility shipped with the OSE distribution
 erl_xconp_ose_LM POST_LI NK- OSE postlink tool

e erl_xconp_ose LM SET_ CONF - Setsthe configuration for an OSE load module

e erl_xconp_ose_ LM ELF_SI ZE - Prints the section size information for an OSE load module
e erl_xconp_ose LM LCF - OSE load module linker configuration file

« erl_xconp_ose_ BEAM LM CONF - Beam OSE load module configuration file

e erl_xconp_ose EPMD LM CONF - EPMD OSE load module configuration file

e erl_xconp_ose RUN ERL LM CONF - runerlim OSE load module configuration file

1.3.6 Copyright and License
Copyright Ericsson AB 2009-2014. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. Y ou may obtain a copy of the License at

http://ww. apache. org/ | i censes/ LI CENSE- 2. 0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"ASIS' BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

1.4 How to Build Erlang/OTP on Windows

Table of Contents

e Introduction

e Short Version

e Frequently Asked Questions

» Toolsyou Need and Their Environment
e The Shell Environment

e Building and Installing

» Development

e UsingGIT

» Copyright and License

1.4.1 Introduction

This section describes how to build the Erlang emulator and the OTP libraries on Windows. Note that the Windows
binary releases are still a preferred alternative if one does not have Microsoft’s development tools and/or don’t want
toinstal Cygwin, MSYS or MSY S2.

26 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 How to Build Erlang/OTP on Windows

Theinstructions apply to versions of Windows supporting the Cygwin emulated gnuish environment or the MSY S or
MSY S2 ditto. We've built on the following platforms: Windows 2012, Windows 7, Windows 8 and Windows 10. It's
probably possible to build on older platforms too, but you might not be able to install the appropriate Microsoft SDK,
Visual Studio or OpenSSL, in which case you will need to go back to earlier compilers etc.

The procedure described uses either Cygwin, MSY S or MSY S2 as a build environment. Y ou run the bash shell in
Cygwin/MSY SIMSY S2 and use the gnu make/configure/autoconf etc to do the build. The emulator C-source code
is, however, mostly compiled with Microsoft Visual C++™, producing a native Windows binary. This is the same
procedure as we use to build the pre-built binaries. Why we use VC++ and not gcc is explained further in the FAQ
section.

If you are not familiar with Cygwin, MSY S, MSY S2 or a Unix environment, you'’ I probably need to read up a bit on
how that works. There are plenty of documentation about this online.

These instructions apply for both 32-bit and 64-bit Windows. Note that even if you build a 64-bit version of Erlang,
most of the directories and files involved are still named win32. Some occurances of the name win64 are however
present. The installation file for a 64-bit Windows version of Erlang, for example, isot p_w n64_18. exe.

If you feel comfortable with the environment and build system, and have all the necessary tools, you have a great
opportunity to make the Erlang/OTP distribution for Windows better. Please submit any suggestions to our JIRA
and patches to our git project to let them find their way into the next version of Erlang. If making changes to
the build system (like makefiles etc) please bear in mind that the same makefiles are used on Unix/VxWorks, so
that your changes don't break other platforms. That of course goes for C-code too; system specific code resides
inthe$ERL_TOP/ ert s/ enul at or/ sys/w n32 and $ERL_TOP/ ert s/ et ¢/ wi n32 directoriesmostly. The
$ERL_TOP/ ert s/ emul at or / beamdirectory isfor common code.

We've used this build procedure for a couple of releases, and it hasworked fine for us. Still, there might be all sorts of
troubles on different machinesand with different setups. Welll try to give hintswherever we've encountered difficulties,
but please share your experiences by using the erlang-questions mailing list. We cannot, of course, help everyone
with al their issues, so please try to solve such issues and submit solutions/workarounds.

Lets go then! We'll start with a short version of the setup procedure, followed by some FAQ, and then we'll go into
more details of the setup.

1.4.2 Short Version

Thisisthe short story though, for the experienced and impatient:
e Get andinstal complete Cygwin (latest), complete MinGW with MSY S or complete MSY S2

e Install Visua Studio 12.0 (2013)

e Install Microsofts Windows SDK 8.1

e Getandingtal Sun'sJDK 1.6.0 or later

e Getandinstal NSIS2.01 or later (up to 2.46 tried and working)

e Get, build and install OpenSSL 0.9.8r or later (up to 1.0.2d tried & working) with static libs.

e GettheErlang sourcedistribution (from http://www.er lang.or g/download.html) and unpack with Cygwin's/
MSYSYMSYS2'st ar .

e Set ERL_TOPR to where you unpacked the source distribution
* $ cd $ERL_TOP

e Modify PATH and other environment variables so that all these tools are runnable from a bash shell. Still
standing in $ERL_TOP, issue the following commands (for 32-bit Windows, remove the x64 from the first
row and changeot p_wi n64_18 toot p_wi n32_18 onthelast row):

$ eval “./otp_build env_w n32 x64°
$./otp_build autoconf

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 27

href
href
href
href

1.4 How to Build Erlang/OTP on Windows

$./otp_build configure

$./otp_build boot -a

$./otp_build rel ease -a

$./otp_build installer_w n32

$ rel ease/win32/otp_win64 18 /S

Voilal St art->Prograns->Erl ang OTP 18- >Er| ang starts the Erlang Windows shell.

1.4.3 Frequently Asked Questions

Q: So, now | can build Erlang using GCC on Windows?

A: No, unfortunately not. Y ou'll need Microsoft's Visual C++ still. A Bourne-shell script (cc.sh) wrapsthe Visual
C++ compiler and runs it from within the Cygwin environment. All other tools needed to build Erlang are free-
ware/open source, but not the C compiler. The Windows SDK is however enough to build Erlang, you do not
need to buy Visual C++, just download the SDK (SDK version 8.1 == Visual studio 2013).

Q: Why haven't you got rid of VC++ then, you ******?

A: Well, partly becauseit'sagood compiler - really! Actually it'sbeen possiblein late R11-releasesto build using
mingw instead of visual C++ (you might see the remnants of that in some scripts and directories). Unfortunately
the development of the SMP version for Windows broke the mingw build and we chose to focus on the VC++
build as the performance has been much better in the VC++ versions. The mingw build will possibly be back, but
aslong as VC++ gives better performance, the commercial build will be aVC++ one.

Q: OK, you need V C++, but now you've started to demand a quite recent (and expensive) version of Visual Studio.
Why?

A: Well, it's not expensive, it's free (as in free beer). Just download and install the latest Windows SDK from
Microsoft and al the tools you need are there. The included debugger (WinDhbg) is also quite usable. That's
what | used when porting Erlang to 64bit Windows. Another reason to use later Microsoft compilers is DLL
compatibility. DLL'susing anew version of the standard library might not load if the VM is compiled with an old
V C++ version. So we should aim to use the latest freely available SDK and compiler.

Q: Can/will | build a Cygwin binary with the procedure you describe?

A: No, the result will be a pure Windows binary, and as far as| know, it's not possible to make a Cygwin binary
yet. That is of course something desirable, but there are till some problems with the dynamic linking (dynamic
Erlang driver loading) as well as the TCP/IP emulation in Cygwin, which, I'm sure of, will improve, but still has
some problems. Fixing those problems might be easy or might be hard. | suggest you try yourself and share your
experience. No one would be happier if asimple ./ confi gure && nake would produce a fully fledged
Cygwin binary.

Q: Hah, | saw you, you used GCC even though you said you didn't!

A: OK, | admit, one of the files is compiled using Cygwin's or MinGW's GCC and the resulting object
code is then converted to MS VC++ compatible coff using a small C hack. It's because that particular file,
beam enu. ¢ benefits immensely from being able to use the GCC labels-as-values extension, which boosts
emulator performance by up to 50%. That does unfortunately not (yet) mean that all of OTP could be compiled
using GCC. That particular source code does not do anything system specific and actually is adopted to the fact
that GCC is used to compile it on Windows.

Q: So now there'saMS VC++ project file somewhere and | can build OTP using the nifty VC++ GUI?
A: No, never. The hassle of keeping the project files up to date and do all the steps that constitute an OTP build

from within the VC++ GUI is simply not worth it, maybe even impossible. A VC++ project file for Erlang/OTP
will never happen.

Q: So how doesit all work then?

A: Cygwin, MSY S or MSY S2 is the environment, which closely resembles the environment found on any Unix
machine. It's almost like you had a virtual Unix machine inside Windows. Configure, given certain parameters,

28 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 How to Build Erlang/OTP on Windows

then creates makefiles that are used by the environment's gnu-make to built the system. Most of the actual
compilers etc are not, however, Cygwin/MSY SMSY S2 tools, so we've written a couple of wrappers (Bourne-
shell scripts), which reside in $ERL_TOP/ et ¢/ wi n32/ cygwi n_t ool s and $ERL_TOP/ et ¢/ wi n32/

nmsys_t ool s. They al do conversion of parameters and switches common in the Unix environment to fit the
native Windows tools. Most notable is of course the paths, which in Cygwin/MSY SIMSY S2 are Unix-like paths
with "forward slashes' (/) and no drive letters. The Cygwin specific command cygpat h isused for most of the
path conversions in a Cygwin environment. Other tools are used (when needed) in the corresponding MSY S and
MSY S2 environment. Luckily most compilers accept forward slashes instead of backslashes as path separators,
but one till have to get the drive letters etc right, though. The wrapper scripts are not general in the sense that, for
example, cc.sh would understand and trans ate every possible gcc option and pass correct options to cl.exe. The
principle is that the scripts are powerful enough to alow building of Erlang/OTP, ho more, no less. They might
need extensions to cope with changes during the development of Erlang, and that's one of the reasons we made
them into shell-scripts and not Perl-scripts. We believe they are easier to understand and change that way.

INSERL_TOP, thereisascriptcaledot p_bui | d. That script handlesthe hassle of giving all theright parameters
toconfi gur e/make and aso helpsyou set up the correct environment variablesto work with the Erlang source
under Cygwin/MSY SIMSY S2.

Q: You use and need Cygwin, but then you haven't taken the time to port Erlang to the Cygwin environment but
instead focus on your commercial release, isthat realy ethical?

A: No, not really, but see this as a step in the right direction.
Q: Can | build something that looks exactly as the commercial release?

A: Yes, we use the exact same build procedure.
Q: Which version of Cygwin/MSY S/MSY S2 and other tools do you use then?

A: For Cygwin, MSY Sand MSY S2 alike, wetry to use the | atest rel eases avail able when building. What versions
you use shouldn't really matter. We try to include workarounds for the bugs we've found in different Cygwin/
MSY SIMSY S2 releases. Please help us add workarounds for new Cygwin/MSY S'MSY S2-related bugs as soon
as you encounter them. Also please do submit bug reports to the appropriate Cygwin, MSY S and/or MSY S2
developers. The GCC we used for 18 wasversion 4.8.1 (MinGW 32bit) and 4.8.5 (MSY S2 64bit). We used VC++
12.0 (i.e. Visua studio 2013), Sun's JDK 1.6.0_45 (32bit) and Sun's JDK 1.7.0_1 (64bit), NSIS 2.46, and Win32
OpenSSL 1.0.2d. Please read the next section for details on what you need.

Q: Canyou help me setup X in Cygwin/MSY SIMSY S2?

A: No, unfortunately we haven't got time to help with Cygwin/MSY SIMSY S2 related user problems, please read
related websites, newsgroups and mailing lists.

1.4.4 Tools you Need and Their Environment

Y ou need sometool sto be ableto build Erlang/OTP on Windows. Most notably you'll need Cygwin, MSY Sor MSY S2,
Visual Studio and Microsofts Windows SDK, but you might also want a Java compiler, the NSIS install system and
OpenSSL. Well, here's some information about the different tools:

Cygwin, the very latest is usually best. Get all the devel opment tools and of course all the basic ditto. Make sure
to get jar and also make sure not to install a Cygwin'ish Java, since the Cygwin jar command is used but Sun's
Java compiler and virtual machine.

If you are going to build a 64bit Windows version, you should make sure to get MinGW's 64bit gcc installed with
Cygwin. It'sin one of the development packages.

URL: http://www.cygwin.com

Get the installer from the website and useiit to install Cygwin. Be sure to have fair privileges. If youreonan NT
domain you should consider running nkpasswd - d and mkgr oup - d after the installation to get the user
databases correct. See their respective manual pages.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 29

href

1.4 How to Build Erlang/OTP on Windows

When you start your first bash shell, you will get an awful prompt. Y ou might also have a PATH environment
variable that contains backslashes and such. Edit $HOVE/ . pr of i | e and $HOVE/ . bashr ¢ to set fair prompts
and acorrect PATH. Alsodoanexport SHELL in. profi | e. For some non-obvious reason the environment
variable $SHELL is not exported in bash. Also note that . prof i | e isrun at login time and . bashr ¢ when
sub shells are created. You'll need to explicitly source . bashr ¢ from . profi | e if you want the commands
there to be run at login time (like setting up aliases, shell functions and the like). You can for example do like
thisattheend of . profil e:

ENV=$HOVE/ . bashr c
export ENV
. $ENV

Y ou might also want to setup X-windows (XFree86). That might be as easy as running startx from the command
prompt and it might be much harder. Use Google to find help.

If you don't use X-windows, you might want to setup the Windows console window by selecting properties in
the console system menu (upper left corner of the window, the Cygwin icon in the title bar). Especialy setting
alarger screen buffer size (lines) is useful asit gets you a scrollbar so you can see whatever error messages that
might appear.

There are afew other shells available, but in all examples below we assume that you use bash.
e Alternatively you download MinGW and MSY S. You'll find the latest installer at:

URL.: http://sour cefor ge.net/projectsmingw/files/I nstaller /mingw-get-inst/

Make sureto install the basic dev tools, but avoid the MinGW autoconf and install the msys one instead.
To be able to build the 64bit VM, you will also need the 64bit MinGW compiler from:

URL: http://sour cefor ge.net/pr oj ects/mingw-w64/files/latest/download ?sour ce=files

Wevetried up to 1.0, but the latest version should do. Make sure you download the m ngw w64- bi n_i 686-
m ngw_<sormet hi ng>. zi p, not alinux version. Y ou unzip the package on top of your MinGW installation
(c:\' M nGW and that'siit.

e A third alternative is to download and install MSY S2 from:
URL: https://msys2.github.io/

When you've followed the instructions there, you aso need to install these packages: autoconf, make, perl, and
tar. You do so by running the following in the msys console:

pacman -S nsys/ aut oconf nsys/nake nsys/per|l nsys/tar

You also need agcc. If you installed the 64 bit MSY S2 you run:

m ngw64/ m ngw we4- x86_64- gcc

And for 32 bit MSY S2:

pacman -S m ngw32/ m ngw we4- i 686-gcc
pacman -S m ngw w64-i 686-editrights

30 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href

1.4 How to Build Erlang/OTP on Windows

Visual Studio 2013 (Visual Studio 12.0). Download and run the web installer from:

https://ww. vi sual st udi o. com

Microsofts Windows SDK version 8.1 (corresponding to VC++ 12.0 and Visual Studio 2013). You'll find it here:

URL: https://msdn.micr osoft.com/en-us/windows/desktop/bg162891.aspx

To help setup the environment, there is a bat file, YPROGRAMFI LES%A M rosoft Visual Studio
12. 0\ VC\ vcvarsal | . bat, that set's the appropriate environment for a Windows command prompt.
This is not appropriate for bash, so you'll need to convert it to bash-style environments by editing your
. bash_profil e.Inmy case, wherethe SDK isinstalled in the default directory and %°ROGRAMFI LES%is
C:\ Program Fi | es, the commands for setting up a 32bit build environment (on a 64bit or 32bit machine)
look like this (in Cygwin):

Sone common pat hs
C _DRV=/cygdrive/c
PRG FLS=$C DRV/ Program Files

nsis

NSI S Bl N=$PRG FLS/ NSI S

java

JAVA Bl N=$PROGRAMFI LES/ Java/j dk1. 7. 0_02/ bi n

##
M5 SDK
##

CYGW N=nowi nsynl i nks

VI SUAL_STUDI O ROOT=$PRG FLS/ M crosoft\ Visual\ Studio\ 12.0

W N_VI SUAL_STUDI O ROOT="C: \\ Program Fi | es\\ M crosoft Visual Studio 12.0"
SDK=$PRG _FLS/ W ndows\ Kits/8.1

W N_SDK="C: \\ Program Fi | es\\ Wndows Kits\\8.1"

PATH="$NSI S_BI N: \

$VI SUAL_STUDI O ROOT/ VI bi n: \

$VI SUAL_STUDI O_ROOT/ VT vepackages: \

$VI SUAL_STUDI O ROOT/ Conmon7/ | DE: \

$VI SUAL_STUDI O_ROOT/ Common7/ Tool s: \

$SDK/ bi n/ x86

[usr/local/bin:/usr/bin:/bin:\

[cygdri ve/ c/ WNDONS/ syst enB2: / cygdri ve/ c/ W NDOAS: \
[cygdri ve/ c/ W NDONS/ syst enB2/ Woem \

$JAVA Bl N'

LI BPATH=" $W N_VI SUAL_STUDI O ROOT\\ VQ\\ | i b"
LI B="$W N_VI SUAL_STUDI O ROOT\\ VQ\\ 1 i b\\ ; $W N_SDK\\ | i b\\ wi nv6. 3\\ um \ x86"

| NCLUDE="$W N_VI SUAL_STUDI O ROOT\\ VQ\\'i ncl ude\\ ; $W N_SDK\\ i ncl ude\\ shar ed\\ ;
$W N_SDK\ \i ncl ude\ \ um $W N_SDK\ \'i ncl ude\\wi nrt\\; $W N_SDK\\i ncl ude\\ um \ gl "

export CYGN N PATH LI BPATH LI B | NCLUDE

If you're using MinGW's MSY Sinstead, you need to change the C_DRV setting, which would read:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 31

href

1.4 How to Build Erlang/OTP on Windows

C DRV=/c¢c

and you also need to change the PATH environment variable to:

M NGW BI N=/ ¢/ M nGW bi n

PATH="$NSI S_BI N: \

$VI SUAL_STUDI O_ROOT/ VC bi n: \

$VI SUAL_STUDI O_ROOT/ VT vepackages: \
$VI SUAL_STUDI O ROOT/ Cormon7/ | DE: \

$VI SUAL_STUDI O_ROOT/ Conmon7/ Tool s: \
$SDK/ bi n/ x86: / usr/| ocal / bi n: \

$M NGW BI N: \

/ bi n:/c/ Wndows/ syst enB2: / c/ W ndows: \
/ c/ W ndows/ Syst enB82/ Woem \

$JAVA BI N

For MSY S2 you use the same C_DRV and PATH asfor MSY S, only update the M NGW BI N:

M NGW BI N=/ mi ngwa2/ bi n

If you are building a 64 hit version of Erlang, you should set up PATHS etc a little differently. We have two
templates to make things work in both Cygwin and MSY'S but needs editing to work with MSY S2 (see the
commentsin the script). The following oneisfor 32 bits:

make_wi npat h()

P=$1
if ["$INCYGAN' = "true"]; then
cygpath -d "$P"
el se
(cd "$P" && /bin/cmd //C "for % in (".") do @cho %fsi")
fi
}

make_upat h()

P=$1
if ["$INCYGANN' = "true"]; then
cygpath "$P"
el se
echo "$P" | /bin/sed 's,M\([a-zA-Z]\):\\,/\L\1/,;s,\\,/,¢d"
fi
}

Some conmon pat hs

if [-x /usr/bin/msys-?.0.dll]; then
Wthout this the path conversion won't work
COVBPEC=' C:\ W ndows\ Syst enB82\ cnd. exe'
MSYSTEM=M NGWB2 # Comment out this line if in MSYS2
export MSYSTEM COVSPEC
For MSYS2: Change /mingw bin to the nsys bin dir on the line bel ow
PATH=/ usr /1 ocal / bi n: / mi ngw/ bi n: / bi n: / ¢/ W ndows/ syst enB2: \
/ ¢/ W ndows: / ¢/ W ndows/ Syst enB2/ Whem
C DRV=/c¢c
I N_CYGW N=f al se

32| Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 How to Build Erlang/OTP on Windows

el se
PATH=/ | di sk/ overrides:/usr/local/bin:/usr/bin:/bin:\
[usr/ X11R6/ bi n: / cygdri ve/ c/ wi ndows/ syst enB2: \
/ cygdri vel/ ¢/ wi ndows: / cygdri ve/ ¢/ wi ndows/ syst enB82/ Whem
C DRvV=/ cygdrive/c
I N_CYGW N=t rue
fi

obe_ot p_gcc_vsn_nap="
.*=>def aul t
obe_otp_64_gcc_vsn_nmap="
.*=>def aul t
Program Fil es
PRG FLS=$C DRV/ Programl Fil es

Visual Studio
VI SUAL_STUDI O_ROOT=$PRG FLS/ M crosoft\ Visual\ Studio\ 12.0
W N_VI SUAL_STUDI O ROOT="C: \\ Program Fi | es\\ M crosoft Visual Studio 12.0"

SDK
SDK=$PRG FLS/ W ndows\ Kits/8.1
W N_SDK="C:\\ Program Fi | es\\ Wndows Kits\\8.1"

NSI S
NSI S_BI N=$PROGRAMFI LES/ NSI S

Java
JAVA Bl N=$PROCGRAMFI LES/ Java/ j dk1. 7. 0_02/ bi n

The PATH vari abl e shoul d be Cygwi n'i sh
VCPATH=

$VI SUAL_STUDI O_ROOT/ VC/ bi n: \

$VI SUAL_STUDI O _ROOT/ VT vepackages: \

$VI SUAL_STUDI O_ROOT/ Common7/ | DE: \

$VI SUAL_STUDI O_ROOT/ Common7/ Tool s: \

$SDK/ bi n/ x86

M crosoft SDK libs
LI BPATH=$W N_VI SUAL_STUDI O ROO\\ VQ\ l'i b

LI B=$W N_VI SUAL_STUDI O ROOT\\ VQ\ i b\ \; $W N_KI TS\ \ | i b\ \ wi nv6. 3\ \ um \ x86
| NCLUDE=$W N_VI SUAL_STUDI O ROCT\\ VQ\\'i ncl ude\\ ; \

$W N_KI TS\\i ncl ude\\ shared\\ ; $W N_KI TS\\i ncl ude\\ um \

$WN_KITS\\i ncl ude\\wi nrt\\; $WN_KI TS\\i ncl ude\\ um \ gl

Put nsis, c conpiler and java in path
export PATH=$VCPATH: $PATH: $JAVA BI N: $NSI S _BI N

Make sure LIB and I NCLUDE is avail able for others
export LIBPATH LI B | NCLUDE

The first part of the 64 bit template is identical to the 32 bit one, but there are some environment variable
differences:

Program Fil es
PRG _FLS64=$C DRV/ Program Files
PRG_FLS32=$C DRV/ Program Fil es\ \(x86\)

Visual Studio

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 33

1.4 How to Build Erlang/OTP on Windows

VI SUAL_STUDI O ROOT=$PRG FLS32/ M crosoft\ Visual\ Studio\ 12.0
W N_VI SUAL_STUDI O ROOT="C: \\ Program Fil es (x86)\\M crosoft Visual Studio 12.0"

SDK
SDK=$PRG FLS32/ W ndows\ Kits/8.1
W N_SDK="C:\\ Program Fi | es (x86)\\W ndows Kits\\8.1"

NSI S

NSI S_BI N=$PROGRAMFI LES/ NSI S

Java

JAVA Bl N=$PROGRAMFI LES/ Java/ j dk1. 7. 0_02/ bin

The PATH vari abl e shoul d be Cygwi n'i sh
VCPATH=

$VI SUAL_STUDI O_ROOT/ VC/ bi n/ and64: \

$VI SUAL_STUDI O _ROOT/ VC vepackages: \

$VI SUAL_STUDI O_ROOT/ Common7/ | DE: \

$VI SUAL_STUDI O_ROOT/ Common7/ Tool s: \

$SDK/ bi n/ x86

M crosoft SDK |ibs
LI BPATH=$W N_VI SUAL_STUDI O ROOT\\ VQ\\ | i b\ \ and64

LI B=$W N_WVI SUAL_STUDI O ROOT\\ V& \ | i b\ \ and64\\ ; \
SW N _KI TS\\ i b\\wi nv6. 3\ \ um \ x64

| NCLUDE=$W N_VI SUAL_STUDI O ROOT\\ VQ\\'i ncl ude\\ ; \
$W N_KI TS\\i ncl ude\\ shared\\ ; $W N_KI TS\\'i ncl ude\\ um \
$WN_KITS\\i ncl ude\\wi nrt\\; $WN_KI TS\\i ncl ude\\ um \ gl

Put nsis, c conpiler and java in path
export PATH=$VCPATH: $PATH: $JAVA BI N: $NSI S _BI N

Make sure LIB and I NCLUDE is avail able for others
export LIBPATH LI B | NCLUDE

Make sure to set the PATH so that NSIS and Microsoft SDK is found before the MSY S/Cygwin tools and that
Javaislast in the PATH.

Make a simple hello world and try to compile it with the cl command from within bash. If that does not work,
your environment needs fixing. Remember, there should be no backslashes in your path environment variable
in Cygwin bash, but LIB and INCLUDE should contain Windows style paths with semicolon, drive letters and
backslashes.

e Sun'sJavaJDK 1.6.0or later. Our Javacode (jinterface, ic) iswritten for JDK 1.6.0. Get it for Windows and install
it, the JRE is not enough. If you don't care about Java, you can skip this step. The result will be that jinterface
is not built.

URL: http://java.sun.com
Add javac LAST to your path environment in bash, in my case this means:

" PATH="$PATH: / cygdri ve/ c/ Program Fi | es/ Java/j dk1. 7. 0_02/ bi n""

No CLASSPATHor anythingisneeded. Typej avac inthe bash prompt and you should get alist of available Java
options. Make sure, e.g by typingt ype j ava, that you use the Javayou installed. Note however that Cygwin's/
MinGW'MSY S2'sj ar . exe isused. That's why the JDK bin-directory should be added last in the PATH.

e Nullsoft NSISinstaller system. Y ou need this to build the self installing package. It's a free open source installer
that's much nicer to use than the commercial Wise and Install shield installers. This is the installer we use for
commercia releases aswell.

34 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

1.4 How to Build Erlang/OTP on Windows

URL: http://nsis.sour cefor ge.net/download

Install the lot, especially the modern user interface components, asit's definitely needed. Put makensi s inyour
path, in my case:

PATH=/ cygdri ve/ c/ Program Fil es/ NSI S: $PATH

Type makensis at the bash prompt and you should get alist of optionsif everything is OK.

OpenSSL. Thisisif you want the SSL and crypto applications to compile (and run). There are prebuilt binaries,
which you can just download and install, available here:

URL: http://openssl.or g/lcommunity/binaries.html

We would recommend using 1.0.2d.
Building with wxWidgets. Download wxWidgets-3.0.2 or higher.

Install or unpack it to the pgm folder: Cygwin: DRI VE: / PATH cygw n/ opt /| ocal / pgm MSYS:
DRI VE: / PATH M nGW nsys/ 1. 0/ opt /| ocal / pgmMSYS2: DRI VE: / PATH nsys<32/ 64>/ opt /
| ocal / pgm

If the wxUSE_POSTSCRI PT isn't enabled in <pat h\t o\ pgne\ wxMSW 3. 0. 2\'i ncl ude\ wx\ nsw
\ set up. h, enableit.

build: From a command prompt with the VC tools available (See the instructions for OpenSSL build above for
help on starting the proper command prompt in REL EASE mode):

.\> cd <pat h\t o\ pgne\ wxMSW 3. 0. 2\ bui | d\ nsw

C\..
C:\...\> nmake BU LD-=rel ease SHARED=0 DI R_SUFFI X CPU= -f makefile.vc

Or - if building a 64bit version:

.\> cd <pat h\to\ pgne\ wxMSW 3. 0. 2\ bui | d\ nsw
.\> nmake TARGET CPU=and64 BUl LD=r el ease SHARED=0 DI R SUFFI X CPU= -f makefile.vc

C\..
C\..
Get the Erlang source distribution (from http://www.erlang.or g/download.html). The same as for Unix
platforms. Preferably use tar from within Cygwin, MSYS or MSY S2 to unpack the source tar.gz (t ar zxf
otp_src_18.tar.gz).

Set theenvironment ERL_ TOP to point to theroot directory of the sourcedistribution. Let'ssay | stood in SHOVE/
src and unpacked ot p_src_18. tar. gz, | then add thefollowingto. profi | e:

ERL_TOP=$HOME/ src/ ot p_src_18
export S$ERL_TOP

1.4.5 The Shell Environment

So, if you have followed the instructions above, when you start a bash shell, you should have an INCLUDE
environment with a Windows style path, a LIB environment variable also in Windows style, and finally aPATH that
let's you reach cl, makensis, javac etc from the command prompt (usewhi ch cl etc to verify from bash).

Y ou should also have an ERL_TOP environment variable that is Cygwin style, and points to a directory containing,
among other files, the script ot p_bui | d.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 35

href
href
href

1.4 How to Build Erlang/OTP on Windows

A final massage of the environment is needed, and that is done by the script SERL_TOP/ ot p_bui | d. Start bash
and do the following, note the "back-ticks" (*), can be quite hard to get on some keyboards, but pressing the back-
tick key followed by the space bar might doit...

$ cd $ERL_TOP
$ eval "./otp_build env_w n32

If you're unable to produce back-ticks on your keyboard, you can use the ksh variant:

$ cd $ERL_TOP
$ eval $(./otp_build env_wi n32)

If you are building a 64 bit version, you supply ot p_bui | d with an architecture parameter:

$ cd $ERL_TOP
$ eval “./otp_build env_w n32 x64°

Thisshould do thefinal touch to the environment and building should be easy after this. Youcouldrun. / ot p_bui | d
env_wi n32 without eval just to see what it does, and to see that the environment it sets seems OK. The path is
cleaned of spacesif possible (using DOS style short namesinstead), the variables OVERRI DE_TARGET, CC, CXX, AR
and RANL| B are set to their respective wrappers and the directories SERL_TOP/ ert s/ et ¢/ wi n32/ <cygwi n/
nsys> tool s/vcand$ERL_TOP/ erts/etc/w n32/ <cygwi n/ meys>_t ool areaddedfirstinthe PATH.

Now you can check which erlc you have by writingt ype er | ¢ inyour shell. It should residein SERL_TOP/ ert s/
et c/wi n32/ cygwi n_t ool s or $ERL_TOP/ ert s/ et ¢/ wi n32/ nsys_t ool s.

1.4.6 Building and Installing
Building is easiest using the ot p_bui | d script:

$./otp_build autoconf # Ignore the warning bl ob about versions of autoconf
$./otp_build configure <optional configure options>

$./otp_build boot -a

$./otp_build release -a <installation directory>

$./otp_build installer_w n32 <installation directory> # optional

Now you will have a file called ot p_wi n32_18. exe or ot p_wi n64_18. exe in the <instal | ati on
directory>,i.e. SERL_TOP/ r el ease/ wi n32.

Lets get into more detail:

e $./otp_build autoconf - Thisstep rebuildsthe configure scriptsto work correctly in your environment.
In an ideal world, this would not be needed, but alas, we have encountered several incompatibilities between
our distributed configure scripts (generated on a Linux platform) and the Cygwin/MSY SIMSY S2 environment
over the years. Running autoconf in Cygwin/MSY SIMSY S2 ensures that the configure scripts are generated in a
compatible way and that they will work well in the next step.

e $./otp_build configure-Thisrunsthenewly generated configure scriptswith options making configure
behave nicely. Thetarget machinetypeisplainly wi n32, so alot of the configure-scripts recognize this awkward
target name and behave accordingly. The CC variable also makes the compiler becc. sh, which wraps MSVC+

36 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 How to Build Erlang/OTP on Windows

+, so all configure tests regarding the C compiler gets to run the right compiler. A lot of the tests are not needed
on Windows, but we thought it best to run the whole configure anyway.

e $./otp_build boot -a - This uses the bootstrap directory (shipped with the source, $ERL_TOP/
boot st r ap) to build a complete OTP system. When this is done you can run erl from within the source tree;
just type SERL_TOP/ bi n/ er | and you whould have the prompt.

* $./otp_build rel ease -a-Buildsacommercial releasetree from the sourcetree. The default isto put it
iNSERL_TOP/ r el ease/ wi n32. You can give any directory as parameter (Cygwin style), but it doesn't really
matter if you're going to build a self extracting installer too.

« $./otp_build installer_w n32 - Creates the self extracting installer executable. The executable
otp_w n32_18. exe or ot p_wi n64_18. exe will be placed in the top directory of the release created in
the previous step. If no release directory is specified, the release is expected to have been built to $ERL_TOP/
rel ease/ wi n32, which also will be the place where the installer executable will be placed. If you specified
some other directory for the release (i.e. . /otp_build release -a /tnp/erl _rel ease), youre
expected to givethe same parameter here, (i.e.. /ot p_buil d i nstall er_wi n32 /tnp/erl _rel ease).
You need to have a full NSIS installation and makensi s. exe in your path for this to work. Once you have
created the installer, you can run it to install Erlang/OTP in the regular way, just run the executable and follow
the stepsin the installation wizard. To get all default settings in the installation without any questions asked, you
run the executable with the parameter / S (capital S) likein:

$ cd $ERL_TOP
$ rel ease/wi n32/otp Wi n32 18 /S

or

$ cd $ERL_TOP
$ rel ease/wi n32/otp_w n64_18 /S

and after awhile Erlang/OTP-18 will havebeeninstalledinC: \ Program Fi | es\ er| 7. 2. 1\ , with shortcuts
in the menu etc.

1.4.7 Development

Once the system is built, you might want to change it. Having a test release in some nice directory might be useful,
but you can also run Erlang from within the sourcetree. Thetarget | ocal _set up, makesthe program SERL_TOP/
bi n/ erl . exe usableand it also uses al the OTP librariesin the source tree.

If you hack the emulator, you can build the emulator executable by standingin $ERL_TOP/ ert s/ enul at or and
doasimple

$ neke opt

Note that you need to haverun (cd $ERL_TOP && eval ~./otp_build env_wi n32") intheparticular
shell before building anything on Windows. After doing a make opt you can test your result by running $ERL_TOP/
bi n/ erl . If you want to copy the result to a release directory (say / t np/ er| _r el ease), you do this (still in
$ERL_TOP/ ert s/ emul at or)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 37

1.4 How to Build Erlang/OTP on Windows

$ make TESTROOT=/tnp/erl _rel ease rel ease

That will copy the emulator executables.

To make a debug build of the emulator, you need to recompile both beam dlI | (the actual runtime system) and
erl exec. dl | . Dolikethis

cd $ERL_TOP

rm bi n/ wi n32/ er | exec. dl
cd erts/enul at or

make debug

cd ../etc

make debug

R R e R

and sometimes

$ cd $ERL_TOP
$ make | ocal _setup

So now when you run $ERL_TOP/ er | . exe, you should have a debug compiled emulator, which you will see if
you do a

1> erl ang: system i nfo(system version).

in the erlang shell. If the returned string contains [debug] , you got a debug compiled emulator.
To hack the erlang libraries, you simply do anake opt inthe specific "applications” directory, like:

$ cd $ERL_TOP/Iib/stdlib
$ make opt

or even in the source directory...

$ cd $ERL_TOP/lib/stdlib/src
$ make opt

Note that you're expected to have a fresh Erlang in your path when doing this, preferably the plain 18 you have built
in the previous steps. You could also add $ERL_TOP/ boot st r ap/ bi n to your PATH before rebuilding specific
libraries. That would give you a good enough Erlang system to compile any OTP erlang code. Setting up the path
correctly is alittle bit tricky. You still need to have $ERL_TOP/ ert s/ et ¢/ wi n32/ cygwi n_t ool s/ vc and
$ERL_TOP/ erts/etc/w n32/ cygw n_t ool s before the actual emulator in the path. A typical setting of the
path for using the bootstrap compiler would be:

$ export PATH=$ERL_TOP/ erts/ et c/wi n32/cygw n_t ool s/ vc\

:$ERL_TOP/ ert s/ et ¢/ wi n32/ cygw n_t ool s: $ERL_TOP/ boot st rap/ bi n: $PATH

That should make it possible to rebuild any library without hassle...

38| Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 How to Build Erlang/OTP on Windows

If you want to copy alibrary (an application) newly built, to arelease area, you do like with the emulator:

$ cd $ERL_TOP/Ilib/stdlib
$ make TESTROOT=/tnp/erlang_rel ease rel ease

Remember that:

e Windows specific C-code goes in the $SERL_TOP/ ert s/ enul at or/ sys/wi n32, $ERL_TOP/ ert s/
emul ator/drivers/w n32or$ERL_TOP/ ert s/ et c/ wi n32.

e Windows specific erlang code should be used conditionally and the host OS tested in runtime, the exactly same
beam files should be distributed for every platform! So write code like:

case os:type() of

{wi n32, } ->
do_wi ndows_speci fic();
O her ->

do_fal | back_or_exit()
end,

That's basically all you need to get going.

1.4.8 Using GIT

Y ou might want to check out versions of the source code from GitHUB. That is possible directly in Cygwin, but not
in MSYS. Thereisaproject MsysGIT:

URL :http://code.google.com/p/msysgit/

that makes a nice Git port. The msys prompt you get from MsysGIT is however not compatible with the full version
from MinGW, so you will need to check out files using MsysGIT's command prompt and then switch to a common
MSY S command prompt for building. Also all test suites cannot be built as M sysGIT/MSY S does not handle symbolic
links.

1.4.9 Copyright and License
Copyright Ericsson AB 2003-2015. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. Y ou may obtain a copy of the License at

http://ww. apache. org/ | i censes/ LI CENSE- 2. 0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"ASIS' BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 39

href

1.5 Patching OTP Applications

1.5 Patching OTP Applications

1.5.1 Introduction

This document describes the process of patching an existing OTP installation with one or more Erlang/OTP
applications of newer versions than aready installed. The tool ot p_pat ch_appl y is available for this specific
purpose. It resides in the top directory of the Erlang/OTP source tree.

Theot p_pat ch_appl y tool utilizestheruntime_dependenciestagin theapplication resourcefile. Thisinformation
is used to determine if the patch can be installed in the given Erlang/OTP installation directory.

Read more about the version handling introduced in Erlang/OTP release 17, which a so describes how to determine
if an installation includes one or more patched applications.

If you want to apply patches of multiple OTP applications that resides in different OTP versions, you have to apply
these patches in multiple steps. It is only possible to apply multiple OTP applications from the same OTP version
at once.

1.5.2 Prerequisites

It's assumed that the reader is familiar with building and installing Erlang/OTP. To be able to patch an application,
the following must exist:

e AnErlang/OTP ingtalation.

» An Erlang/OTP source tree containing the updated applications that you want to patch into the existing Erlang/
OTPinstalation.

1.5.3 Using otp_patch_apply

Warning:
Patching applicationsisaone-way process. Create abackup of your OTPinstallation directory before proceeding.

First of all, build the OTP source tree at $ERL_ TOP containing the updated applications.

Note:
Before applying a patch you need to do afull build of OTP in the source directory.

If you arebuildingingi t you first need to generate the conf i gur e scripts:

$./otp_build autoconf

Configure and build all applicationsin OTP:

$ configure
$ make

40 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.5 Patching OTP Applications

or

$./otp_build configure
$./otp_build boot -a

If you have installed documentation in the OTP installation, also build the documentation:

$ nmake docs

After the successful build it's time to patch. The source tree directory, the directory of the installation and the
applications to patch are given as arguments to ot p_pat ch_appl y. The dependencies of each application are
validated against the applications in the installation and the other applications given as arguments. If a dependency
error is detected, the script will be aborted.

Theot p_pat ch_appl y syntax:

$ otp_patch _apply -s <Dir> -i <Dir> [-l <Dir>] [-c] [-f] [-h] \
[-n] [-v] <Appl> [... <AppN-]

-s <Dir> -- OIP source directory that contains build results.
-i <Dir> -- OIP installation directory to patch.
-l <Dir> -- Aternative OIP source library directory path(s)

containing build results of OTP applications.
Mul ti pl e paths should be col on separ at ed.

-C -- Ceanup (renove) old versions of applications
patched in the installation.
-f -- Force patch of application(s) even though

dependencies are not fulfilled (should only be
considered in a test environnent).

-h -- Print help then exit.

-n -- Do not install docunentation.
-V -- Print version then exit.
<AppX> -- Application to patch.

Envi ronnent Vari abl e:
ERL LIBS -- Alternative OTP source library directory path(s)
containing build results of OTP applications.
Miul ti pl e paths should be col on separ at ed.

Note:

The complete build environment is required while running ot p_pat ch_appl y.

Note:

All source directoriesidentified by - s and - | should contain build results of OTP applications.

For example, if the user wants to install patched versions of esi a and ssl built in/ hone/ e/ gi t/ ot p into
the OTPinstallation located in/ opt / er | ang/ ny_ ot p type

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 41

1.5 Patching OTP Applications

$ otp_patch_apply -s /home/ne/git/otp -i /opt/erlang/ny_otp \
mesi a ssl

Note:

If thelist of applications contains core applications, i.eert s, kernel ,stdl i b orsasl ,thel nstal | script
in the patched Erlang/OTP installation must be rerun.

The patched applications are appended to the list of installed applications. Take a look at <l nstal | Di r >/
rel eases/ OTP-REL/i nstal | ed_application_versions.

1.5.4 Sanity check

The application dependencies can be checked using the Erlang shell. Application dependencies are verified among
installed applications by ot p_pat ch_appl y, but these are not necessarily those actually loaded. By calling
system i nfornation: sanity_check() onecan validate dependencies among applications actually |oaded.

1> system.information: sanity_check().

ok

Please take alook at the reference of sanity _check() for more information.

42 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.1 System Principles

2 System Principles

2.1 System Principles
2.1.1 Starting the System

An Erlang runtime system is started with command er | :

% erl
Erl ang/ OTP 17 [erts-6.0] [hipe] [snp:8:8]

Eshell V6.0 (abort with ~"Q
1>

er | understands a number of command-line arguments, see the erl(1) manual page in ERTS. Some of them are also
described in this chapter.

Application programs can access the values of the command-line arguments by calling the function
i nit:get_argunent (Key) orinit:get_argunents().Seetheinit(3) manual pagein ERTS.
2.1.2 Restarting and Stopping the System

The runtime system is halted by calling hal t / 0, 1. For details, see the erlang(3) manual pagein ERTS.
Themodulei ni t contains functions for restarting, rebooting, and stopping the runtime system:

init:restart()
init:reboot ()
init:stop()
For details, see the init(3) manual pagein ERTS.
The runtime system terminatesif the Erlang shell is terminated.

2.1.3 Boot Scripts

The runtime system is started using a boot script. The boot script contains instructions on which code to load and
which processes and applicationsto start.

A boot script file has the extension . scri pt . The runtime system uses a binary version of the script. This binary
boot script file has the extension . boot .

Which boot script to use is specified by the command-line flag - boot . The extension . boot isto be omitted. For
example, using the boot script st art _al | . boot :

% erl -boot start_all

If no boot script is specified, it defaultsto ROOT/ bi n/ st art , see Default Boot Scripts.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 43

2.1 System Principles

The command-line flag - i ni t _debug makesthei ni t process write some debug information while interpreting
the boot script:

% erl -init_debug

{progress, prel oaded}

{progress, kernel _| oad_conpl et ed}
{progress, nodul es_| oaded}
{start, heart}

{start,error_| ogger}

For a detailed description of the syntax and contents of the boot script, seethescri pt (4) manual pagein SASL.
Default Boot Scripts

Erlang/OTP comes with these boot scripts:

e« start_cl ean. boot - Loadsthe code for and starts the applications Kernel and STDLIB.
e start_sasl. boot - Loadsthe codefor and starts the applications Kernel, STDLIB, and SASL).

e no_dot_erl ang. boot - Loadsthe codefor and starts the applications Kernel and STDLIB. Skips
loading thefile. er | ang. Useful for scripts and other tools that are to behave the same irrespective of user
preferences.

Which of start _cl ean and st art _sasl to use as default is decided by the user when installing Erlang/OTP
using | nst al | . The user isasked "Do you want to use aminimal system startup instead of the SASL startup”. If the
answer isyes, thenst art _cl ean isused, otherwise st art _sasl| isused. A copy of the selected boot script is
made, named st art . boot and placed in directory ROOT/ bi n.

User-Defined Boot Scripts

It is sometimes useful or necessary to create a user-defined boot script. Thisis true especially when running Erlang
in embedded mode, see Code Loading Srategy.

A boot script can be written manually. However, it is recommended to create a boot script by generating it from a
releaseresourcefileName. r el , using thefunctionsyst ool s: make_scri pt/ 1, 2. Thisrequiresthat the source
code is structured as applications according to the OTP design principles. (The program does not have to be started
in terms of OTP applications, but can be plain Erlang).

For moreinformation about . r el files, see OTP Design Principles and the rel(4) manual pagein SASL.

The binary boot script file Nane. boot is generated from the boot script file Nane. scri pt, using the function
syst ool s: scri pt 2boot (Fil e).

2.1.4 Code Loading Strategy

The runtime system can be started in either embedded or interactive mode. Which one is decided by the command-
lineflag - node.

% erl -nmode enbedded

Default modeisi nt er acti ve.
The mode properties are as follows:

* Inembedded mode, al code isloaded during system startup according to the boot script. (Code can also be
loaded later by explicitly ordering the code server to do so.)

44 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.2 Error Logging

* Ininteractive mode, the code is dynamically loaded when first referenced. When a call to afunction in amodule
is made, and the module is not loaded, the code server searches the code path and loads the module into the
system.

Initially, the code path consists of the current working directory and all object code directories under ROOT/ | i b,
where ROOT is the installation directory of Erlang/OTP. Directories can be named Name[- Vsn] . The code server,
by default, chooses the directory with the highest version number among those which have the same Nane. The -

Vsn suffix is optiona. If an ebi n directory exists under the Narre[- Vsn] directory, this directory is added to the
code path.

The code path can be extended by using the command-lineflags-pa Directories and-pz Directories.
Theseadd Di r ect or i es to the head or the end of the code path, respectively. Example:

% erl -pa /home/arne/ mycode

The code server module code contains a number of functions for modifying and checking the search path, see the
code(3) manual pagein Kernel.

2.1.5 File Types
The following file types are defined in Erlang/OTP:

File Type File Name/Extension Documented in

Module .erl Erlang Reference Manual
Includefile .hrl Erlang Reference Manual
Release resource file .rel rel(4) manual pagein SASL
Application resource file . app app(4) manual pagein Kernel
Boot script .script script(4) manual pagein SASL
Binary boot script . boot -

Configuration file .config config(4) manual pagein Kernel
Application upgradefile . appup appup(4) manual pagein SASL
Release upgrade file relup relup(4) manual pagein SASL

Table 1.1: File Types

2.2 Error Logging

2.2.1 Error Information From the Runtime System

Error information from the runtime system, that is, information about a process terminating because of an uncaught
error exception, is by default written to terminal (tty):

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 45

2.2 Error Logging

=ERROR REPORT==== 9- Dec-2003::13: 25: 02 ===
Error in process <0.27.0> with exit value: {{badmatch,[1,2,3]},[{mf, 1}, {shell, eval _| oop, 2}]}

The error information is handled by the error logger, a system process registered aser r or _| ogger . This process
receives all error messages from the Erlang runtime system as well as from the standard behaviours and different
Erlang/OTP applications.

The exit reasons (such asbadar g) used by the runtime system are described in Errors and Error Handling.

For information about the process error | ogger and its user interface (with the same name), see the
error_logger(3) manua pagein Kernel. The system can be configured so that error information iswritten to file or to
tty, or both. In addition, user-defined applications can send and format error information using er r or _| ogger .

2.2.2 SASL Error Logging

The standard behaviours (super vi sor, gen_server, and so on) send progress and error information to
error _| ogger . If the SASL application is started, thisinformation is written to tty as well. For more information,
see SASL Error Logging in the SASL User's Guide.

% erl -boot start_sasl
Erl ang (BEAM emul ator version 5.4.13 [hipe] [threads: 0] [kernel-poll]

=PROGRESS REPORT==== 31- Mar - 2006: : 12: 45: 58 ===
supervi sor: {local, sasl _safe_sup}
started: [{pid,<0.33.0>},
{nane, al ar m handl er},
{nfa, {alarmhandl er,start_link,[]}},
{restart _type, permanent},
{ shut down, 2000},
{child_type, worker}]

=PROGRESS REPORT==== 31- Mar - 2006: : 12: 45: 58 ===
supervi sor: {local, sasl _safe_sup}
started: [{pid, <0.34.0>},

{nane, over | oad},
{nfa, {overload,start _link,[]}},
{restart _type, permanent},
{ shut down, 2000},
{child_type, worker}]

=PROGRESS REPORT==== 31- Mar - 2006: : 12: 45: 58 ===
supervi sor: {local, sasl_sup}
started: [{pid,<0.32.0>},
{nane, sasl _saf e_sup},
{nfa, {supervi sor,
start_link,
[{l ocal , sasl _saf e_sup}, sasl, safe]}},
{restart _type, permanent},
{shut down, i nfinity},
{chil d_type, supervisor}]

=PROGRESS REPORT==== 31- Mar - 2006: : 12: 45: 58 ===
supervi sor: {local, sasl_sup}
started: [{pid, <0.35.0>},

{nane, rel ease_handl er},
{nfa,{rel ease_handl er,start _link,[]}},
{restart _type, permanent},
{ shut down, 2000},
{child_type, worker}]

46 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Creating and Upgrading a Target System

=PROGRESS REPORT==== 31- Mar - 2006: : 12: 45: 58 ===
application: sasl
started_at: nonode@ohost
Eshel|l V5.4.13 (abort with ~"Q
1>

2.3 Creating and Upgrading a Target System

When creating a system using Erlang/OTP, the simplest way is to install Erlang/OTP somewhere, install the
application-specific code somewhere else, and then start the Erlang runtime system, making sure the code path includes
the application-specific code.

It is often not desirable to use an Erlang/OTP system as is. A developer can create new Erlang/OTP-compliant
applications for a particular purpose, and several original Erlang/OTP applications can be irrelevant for the purpose
in question. Thus, there is a need to be able to create a new system based on a given Erlang/OTP system, where
dispensabl e applications are removed and new applications are included. Documentation and source codeisirrelevant
and is therefore not included in the new system.

This chapter is about creating such a system, which is called atarget system.
The following sections deal with target systems with different requirements of functionality:
* A basictarget systemthat can be started by calling the ordinary er | script.

« A simpletarget system where also code replacement in runtime can be performed.

e Anembedded target system where there is also support for logging output from the system to file for later
inspection, and where the system can be started automatically at boot time.

Hereisonly considered the case when Erlang/OTP is running on a UNIX system.

The sas!| application includes the example Erlang module t ar get _syst em er |, which contains functions for
creating and installing atarget system. Thismodule is used in the following examples. The source code of the module
islistedin Listing of target_system.er|

2.3.1 Creating a Target System
It is assumed that you have aworking Erlang/OTP system structured according to the OTP design principles.

Sep 1. Create a. rel file (see the rel(4) manual page in SASL), which specifies the ERTS version and lists all
applicationsthat are to be included in the new basic target system. An exampleisthefollowingmysyst em r el file:

%6 nysystem rel
{rel ease,
{"MYSYSTEM', "FIRST"},
{erts, "5.10.4"},
[{kernel, "2.16.4"},
{stdlib, "1.19.4"},
{sasl, "2.3.4"},

{pea, "1.0"}]}.

Thelisted applications are not only original Erlang/OTP applications but possibly also new applicationsthat you have
written (here exemplified by the application Pea (pea)).

Sep 2. Start Erlang/OTP from the directory wherethe mysyst em r el fileresides:

os> erl -pa /hone/user/target_systenl nmyapps/ pea-1. 0/ ebin

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 47

2.3 Creating and Upgrading a Target System

Here also the path to the pea- 1. 0 ebin directory is provided.
Sep 3. Create the target system:

1> target_system create("nysysteni).

Thefunctiont ar get _syst em cr eat e/ 1 performs the following:
* Readsthefilenysyst em r el andcreatesanew filepl ai n. r el that isidentical to the former, except that
it only liststhe Kernel and STDLIB applications.

e Fromthefilesnysystem rel andpl ai n. rel createsthefilesnmysyst em scri pt, mysyst em boot,
pl ai n.scri pt,andpl ai n. boot through acall tosyst ool s: make_scri pt/ 2.

e Creates the file nysystem tar. gz by acal to syst ool s: make_t ar/ 2. That file has the following
contents:

erts-5.10. 4/ bi n/

rel eases/ Fl RST/ start . boot
rel eases/ FI RST/ nysystem rel
rel eases/ mysystemrel

I'i b/ kernel -2.16. 4/
l'ib/stdlib-1.19.4/

l'i b/ sasl -2.3. 4/

|'i b/ pea-1. 0/

Thefiler el eases/ FI RST/ st art . boot isacopy of our nysyst em boot

The release resource file mysyst em r el is duplicated in the tar file. Originally, this file was only stored in
ther el eases directory to make it possible for ther el ease_handl er to extract this file separately. After
unpacking thetar file,r el ease_handl er would automatically copy thefiletor el eases/ FI RST. However,
sometimes the tar file is unpacked without involving ther el ease_handl er (for example, when unpacking
thefirst target system). The fileistherefore now instead duplicated in the tar file so no manual copying is needed.

e Createsthe temporary directory t mp and extractsthetar filemysyst em t ar . gz into that directory.

* Deletesthefileser| andstart fromt np/ erts-5. 10. 4/ bi n. These files are created again from source
when installing the release.

* Createsthedirectory t np/ bi n.
» Copiesthe previously created filepl ai n. boot tot np/ bi n/ start. boot .

» Copiesthefilesepnd,run_erl ,andt o_erl| fromthedirectory t mp/ erts-5. 10. 4/ bi n to the directory
t np/ bi n.

e Createsthedirectory t np/ | 0g, which isused if the system is started as embedded with the bi n/ st ar t
script.

* Createsthefilet np/ rel eases/ start _erl . dat a with the contents "5.10.4 FIRST". Thisfileisto be
passed as datafiletothest art _er| script.

» Recreatesthefilenysyst em t ar. gz from the directoriesin the directory t np and removest np.

2.3.2 Installing a Target System
Sep 4. Install the created target system in a suitable directory.

2> target _systeminstall ("mysystem', "/usr/local/erl-target").

48 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Creating and Upgrading a Target System

Thefunctiont ar get _system i nst al | / 2 performs the following:

« Extractsthetar filemysyst em t ar. gz into thetarget directory / usr/ 1 ocal / erl -t ar get .

* Inthetarget directory readsthefiler el eases/ start _er| . dat a tofind the Erlang runtime system
version ("5.10.4").

e Substitutes %I NAL_ROOTDI R%and ¥&EMJ%for / usr/ | ocal / er| -t ar get and beam respectively, in
thefileserl.src,start.src,andstart_erl.src of thetargetert s-5. 10. 4/ bi n directory, and
putstheresulting fileser | ,start,andrun_er| inthetarget bi n directory.

* Findly thetargetr el eases/ RELEASES fileis created from datain thefiler el eases/ nysystemrel .

2.3.3 Starting a Target System

Now we have atarget system that can be started in various ways. We start it as a basic target system by invoking:

os> /usr/local/erl-target/bin/erl

Here only the Kernel and STDLIB applications are started, that is, the system is started as an ordinary devel opment
system. Only two files are needed for all thisto work:

* Dbin/erl (obtainedfromerts-5.10.4/bin/erl.src)
e bin/start.boot (acopy of pl ai n. boot)

We can aso start a distributed system (requires bi n/ epnd).
To start all applications specified inthe origina nysyst em r el file, useflag - boot asfollows:

os> /usr/local/erl-target/bin/erl -boot /usr/local/erl-target/rel eases/FlI RST/start

We start a simple target system as above. The only difference isthat aso thefiler el eases/ RELEASES is present
for code replacement in runtime to work.

To start an embedded target system, the shell script bi n/ st art isused. The script calsbi n/ run_er | , whichin
turncallsbi n/ start _erl (roughly,start erl| isanembedded variant of er |).

The shell script st ar t , which is generated from erts-5.10.4/bin/start.src during installation, is only an example. Edit
it to suite your needs. Typicaly it is executed when the UNIX system boots.

run_erl isawrapper that provides logging of output from the runtime system to file. It also provides a simple
mechanism for attaching to the Erlang shell (t o_er |).

start _erl requires:

e Theroot directory ("/ usr/ 1l ocal /erl-target")

* Thereleasesdirectory ("/ usr/ 1 ocal /erl -target/rel eases”
e Thelocation of thefilestart _erl . data

It performs the following:

* Readsthe runtime system version (" 5. 10. 4") and release version (" FI RST") from thefile
start _erl.data.
e Startsthe runtime system of the version found.

* Providestheflag - boot specifying the boot file of the release version found (" r el eases/ FI RST/
start. boot").

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 49

2.3 Creating and Upgrading a Target System

start _erl also assumes that there is sys. confi g in the release version directory (" r el eases/ FI RST/
sys. confi g"). That isthetopic of the next section.

Thest art _er| shell scriptisnormally not to be altered by the user.

2.3.4 System Configuration Parameters

As was mentioned in the previous section, st art _er| requiresasys. confi g in the release version directory
("rel eases/ FI RST/ sys. confi g"). If there is no such file, the system start fails. Such a file must therefore
also be added.

If you have system configuration datathat is neither file-location-dependent nor site-dependent, it can be convenient to
createsys. confi g early, soit becomespart of thetarget systemtar filecreatedby t ar get _system creat e/ 1.
Infact, if youinthe current directory create not only thefilenysyst em rel , butasofilesys. confi g, thelatter
fileistacitly put in the appropriate directory.

2.3.5 Differences From the Install Script

The previous i nst al | / 2 procedure differs somewhat from that of the ordinary | nst al | shell script. In fact,
cr eat e/ 1 makesthe release package as complete as possible, and leave to thei nst al | / 2 procedure to finish by
only considering |l ocation-dependent files.

2.3.6 Creating the Next Version
In this exampl e the Pea application has been changed, and so are the applications ERTS, Kernel, STDLIB and SASL.
Sep 1. Create thefile. rel :

%6 nysyst en?. rel
{rel ease,

{" MYSYSTEM', " SECOND'},
{erts, "6. O 1,
[{kernel, "3.0"},

{stdlib, "2.0"},

{sasl, "2.4"},

{pea, "2.0"}]1}.
Sep 2. Create the application upgrade file (see the appup(4) manual pagein SASL) for Pea, for example:

%% pea. appup
{"2.0",

[{"21.0",[{| oad_nodul e, pea_lib}]}],
({"1.0"[{

| oad_nodul e, pea_lib}]}]}.

Sep 3. From the directory where the filemysyst en®. r el resides, start the Erlang/OTP system, giving the path to
the new version of Pea

os> erl -pa /hone/user/target_systenl nmyapps/ pea-2. 0/ ebin

Sep 4. Create the release upgrade file (see the relup(4) manual pagein SASL):

1> syst ool s: nake_rel up("nysysten", ["nysysteni'], ["nysysteni],

50 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Creating and Upgrading a Target System

[{path, ["/hone/user/target systenl myapps/ pea-1. 0/ ebin",
“/nylold/erlang/lib/*/ebin"]}]).

Here" nysyst ent' isthebasereleaseand " mysyst enR" isthe release to upgrade to.

Thepat h option is used for pointing out the old version of all applications. (The new versions are already in the code
path - assuming of coursethat the Erlang node on which thisis executed is running the correct version of Erlang/OTP.)

Sep 5. Create the new release:

2> target_system create("nysysten?").

Given that the filer el up generated in Step 4 is now located in the current directory, it is automatically included in
the rel ease package.

2.3.7 Upgrading the Target System

This part is done on the target node, and for this example we want the node to be running as an embedded system with
the- heart option, allowing automatic restart of the node. For more information, see Starting a Target System.

Weadd - heart tobin/start:

#! / bi n/ sh
ROOTDI R=/ usr/ | ocal / erl -target/

if [-z "$RELDIR']
t hen

RELDI R=$ROOTDI R/ r el eases
fi

START_ERL_DATA=${1: - $RELDI R/ start _er| . dat a}
$ROOTDI R/ bi n/run_erl -daenon /tnp/ $ROOTDI R/ | og "exec $ROOTDI R/ bin/start_erl $ROOTDI R\
$RELDI R $START_ERL_DATA - heart

We use the simplest possible sys. conf i g, whichwestoreinr el eases/ Fl RST:

%6 sys. config
[1.

Finally, to prepare the upgrade, we must put the new release package in the r el eases directory of the first target
system:

0s> cp mysystenR.tar.gz /usr/local/erl-target/rel eases

Assuming that the node has been started as follows:

os> /usr/local/erl-target/bin/start

It can be accessed as follows:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 51

2.3 Creating and Upgrading a Target System

os> /usr/local/erl-target/bin/to_erl /tnp/erlang.pipe.l

Logscanbefoundin/ usr/ | ocal / erl -target/| og. Thisdirectory isspecified asan argumenttor un_er | in
the start script listed above.

Sep 1. Unpack the release:

1> {ok, Vsn} = rel ease_handl er: unpack_r el ease(" mysyst en2")

Sep 2. Ingtall the release:

2> rel ease_handl er:install_rel ease(Vsn).

{continue_after_restart,"FIRST",[]}

heart: Tue Apr 1 12:15:10 2014: Erlang has cl osed

heart: Tue Apr 1 12:15:11 2014: Executed "/usr/local/erl-target/bin/start /usr/local/erl-target/rel eases/ new st
[End]

The above return value and output after the call tor el ease_handl er: i nstal | _rel ease/ 1 means that the
rel ease_handl er has restarted the node by using heart . This is aways done when the upgrade involves a
change of the applications ERTS, Kernel, STDLIB, or SASL. For more information, see Upgrade when Erlang/OTP
has Changed.

The node is accessible through a new pipe:

os> /usr/local/erl-target/bin/to_erl /tnp/erlang.pipe.2

Check which releases there are in the system:

1> rel ease_handl er: whi ch_rel eases().

[{" MYSYSTEM', " SECOND" ,
["kernel -3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
current},

{" MYSYSTEM', " FI RST" ,
["kernel -2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],
per manent }]

Our new release, "SECOND", isnow the current release, but we can also seethat our "FIRST" releaseis still permanent.
Thismeansthat if the node would be restarted now, it would come up running the "FIRST" release again.

Sep 3. Make the new release permanent:

2> rel ease_handl er: make_per manent (" SECOND")

Check the releases again:

3> rel ease_handl er: whi ch_r el eases() .
[{" MYSYSTEM', " SECOND"
["kernel -3.0","stdlib-2.0","sasl-2.4","pea-2.0"],

52 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Creating and Upgrading a Target System

per manent },

{" MYSYSTEM', " FI RST",
["kernel -2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],
ol d}]

We see that the new release version isper manent , so it would be safe to restart the node.

2.3.8 Listing of target_system.erl
This module can also be found in the exanpl es directory of the SASL application.

-modul e(target _system.
-export([create/1l, create/2, install/2]).

%%b Not e: Rel Fil eName below is the *stent without trailing .rel,
%6 . script etc.
%96

%% cr eat e(Rel Fi | eNane)

9o

create(Rel Fil eNane) ->
create(Rel Fil eNane, []).

creat e(Rel Fi | eNane, Syst ool sOpts) ->
RelFile = Rel Fil eNane ++ ".rel",
Dir = filenane: dirnane(Rel Fil eNane),
Pl ai nRel Fi l eNane = filenane:join(Dir,"plain"),
PlainRel File = PlainRel Fil eNane ++ ".rel",

io:fwite("Reading file: ~tp ...~n", [RelFile]),
{ok, [Rel Spec]} = file:consult(RelFile),
io:fwite("Creating file: ~tp from~tp ...~n",

[PlainRel File, RelFile]),
{rel ease,
{Rel Nane, Rel Vsn},
{erts, ErtsVsn},
AppVsns} = Rel Spec,
Pl ai nRel Spec = {rel ease,
{Rel Nane, Rel Vsn},
{erts, ErtsVsn},

lists:filter(fun({kernel, _}) ->
true;
({stdlib, _}) ->
true;
() ->
fal se

end, AppVsns)
I
{ok, Fd} = file:open(PlainRelFile, [wite]),
io:fwite(Fd, "~p.~n", [Pl ainRel Spec]),
file:close(Fd),

io:fwite("Making \"~ts.script\" and \"~ts. boot\" files ...~n",
[Pl ai nRel Fi | eNane, Pl ai nRel Fi | eNane]),
make_scri pt (Pl ai nRel Fi | eNane, Syst ool sOpt s) ,

io:fwite("Making \"~ts.script\" and \"~ts. boot\" files ...~n",
[Rel Fi | eNane, Rel FileNane]),
make_scri pt (Rel Fi | eNane, Syst ool sOpt s) ,

TarFi |l eNane = Rel Fil eName ++ ".tar.gz",
io:fwite("Creating tar file ~tp ...~n", [TarFil eNane]),

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 53

2.3 Creating and Upgrading a Target System

make_t ar (Rel Fi | eNane, Syst ool sOpt s) ,

TrpDir = filenane:join(Dir,"tnp"),
io:fwite("Creating directory ~tp ...~n",[TnpDir]),
file:make_dir(TnpDir),

io:fwite("Extracting ~tp into directory ~tp ...~n", [TarFileNane, TnpDir]),
extract_tar(TarFil eName, TrpDir),

TmpBinDir = filenanme:join([TmpDir, "bin"]),

ErtsBinDir = filenane:join([TnpDir, "erts-" ++ ErtsVsn, "bin"]),

io:fwite("Deleting \"erI\" and \"start\" in directory ~tp ...~n",
[ErtsBinDir]),

file:delete(filenane:join([ErtsBinDir, "erl"])),

file:delete(filenane:join([ErtsBinDir, "start"])),

io:fwite("Creating tenporary directory ~tp ...~n", [TnpBinDir]),
file:make_dir(TnpBinDir),

io:fwite("Copying file \"~ts.boot\" to ~tp ...~n",
[Pl ai nRel Fi | eNarme, filenane:join([TmpBinDir, "start.boot"])]),
copy_fil e(Pl ai nRel Fi | eName++".boot", fil enane:join([TnpBinDir, "start.boot"])),

io:fwite("Copying files \"epnd\", \"run_erl\" and \"to_erl\" from\n"
"~tp to ~tp ...~n",
[ErtsBinDir, TnpBinDir]),
copy_file(filenanme:join([ErtsBinDir, "epmd"]),
filenane:join([TmpBinDir, "epnd"]), [preserve]),
copy_file(filename:join([ErtsBinDir, "run_erl"]),
filenane:join([TmpBinDir, “run_erl"]), [preserve]),
copy_file(filename:join([ErtsBinDir, "to_erl"]),
filenane:join([TrpBinDir, "to_erl"]), [preserve]),

%WoThis is needed if 'start' script created from'start.src' shall
%bbe used as it points out this directory as log dir for 'run_erl'’
TrpLogDir = filenanme:join([TmpDir, "log"]),

io:fwite("Creating tenporary directory ~tp ...~n", [TnpLogDir]),
ok = file:make_dir(TnpLogDir),

StartErl DataFile = filenane:join([TnrpDir, "rel eases", "start_erl.data"]),
io:fwite("Creating ~tp ...~n", [StartErl DataFile]),

StartErlData = io_|lib:fwite("~s ~s~n", [ErtsVsn, RelVsn]),

wite file(StartErlDataFile, StartErlData),

io:fwite("Recreating tar file ~tp fromcontents in directory ~tp ...~n",
[Tar Fi | eNane, TnpDir]),

{ok, Tar} = erl _tar:open(TarFileNanme, [wite, conpressed]),

%6 {ok, Onmd} = file:get_cwd(),

Wofile:set_cwd("tmp"),

ErtsDir = "erts-"++ErtsVsn,

er|l _tar:add(Tar, filenanme:join(TmpDir,"bin"), "bin", []),

erl tar:add(Tar, filenane:join(TnpDir,ErtsDir), ErtsDr, []),

erl tar:add(Tar, filenane:join(TnpDir,"rel eases"), "rel eases", []),

er|l _tar:add(Tar, filename:join(TmpDir,"lib"), "lib", []),

erl _tar:add(Tar, filenane:join(TmpDir,"log"), "log", []),

erl _tar:close(Tar),

Wofile:set_cwd(Ond),

io:fwite("Renoving directory ~tp ...~n",[TmpDir]),

remove_dir_tree(TnpDir),

ok.

instal |l (Rel Fil eName, RootDir) ->
TarFile = Rel Fil eName ++ ".tar.gz",
io:fwite("Extracting ~tp ...~n", [TarFile]),

54 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Creating and Upgrading a Target System

extract _tar(TarFile, RootDir),

StartErlDataFile = filenane:join([RootDir, "rel eases", "start_erl.data"]),

{ok, StartErlData} = read_txt file(StartErlDataFile),

[ErlVsn, _RelVsn| _] = string:tokens(StartErlData, " \n"),

ErtsBinDir = filenane:join([RootDir, "erts-" ++ ErlVsn, "bin"]),

BinDir = filenane:join([RootDir, "bin"]),

io:fwite("Substituting in erl.src, start.src and start_erl.src to "

"formerl, start and start_erl ...\n"),

subst_src_scripts(["erl", "start", "start_erl"], ErtsBinDir, BinDr,
[{"FINAL ROOTDIR', RootDir}, {"EMJ', "beant}],
[preserve]),

%4 Workaround for pre OTP 17.0: start.src and start_erl.src did

%48 not have correct perm ssions, so the above 'preserve' option did not help

ok = file:change_node(fil enane:join(BinDir,"start"), 8#0755),

ok = file:change_node(filenanme:join(BinDr,"start_erl"), 8#0755),

io:fwite("Creating the RELEASES file ...\n"),

create RELEASES(RootDir, filenane:join([RootDir, "rel eases",

fil enane: basenane(Rel Fi |l eNane)])).

%% LOCALS

%% make_scri pt (Rel Fi | eName, Opt s)

make_scri pt (Rel Fi | eNane, Opts) ->

syst ool s: make_scri pt (Rel Fil eName, [no_nodul e_tests,
{outdir, fil enane: di rname(Rel Fi | eNane) }

| Opts]).

%% make_t ar (Rel Fi | eNane, Opt s)

make_tar (Rel Fi | eNane, Opts) ->

Root Dir = code:root _dir(),
systool s: make_tar(Rel Fil eName, [{erts, RootDir},
{outdir, fil enane: di rnane(Rel Fi | eNane) }

| Opts]).

%Woextract _tar(TarFile, DestDir)

extract _tar(TarFile, DestDir) ->

erl _tar:extract(TarFile, [{cwd, DestDir}, conpressed]).

create RELEASES(DestDir, Rel Fil eNane) ->

rel ease_handl er: creat e RELEASES(DestDir, Rel FileNane ++ ".rel").

subst _src_scripts(Scripts, SrcDir, DestDir, Vars, Opts) ->

l'ists:foreach(fun(Script) ->
subst _src_script(Script, SrcDir, DestDr,
Vars, Opts)
end, Scripts).

subst _src_script(Script, SrcDir, DestDir, Vars, Opts) ->

subst _file(filenanme:join([SrcDir, Script ++ ".src"]),
filenane:join([DestDir, Script]),
Vars, Opts).

subst _file(Src, Dest, Vars, Opts) ->

{ok, Conts} = read_txt file(Src),
NConts = subst (Conts, Vars),
wite file(Dest, NConts),
case |ists: menber (preserve, Opts) of
true ->
{ok, Filelnfo} = file:read file_info(Src),
filecwite_file_info(Dest, Filelnfo);
fal se ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 55

2.3 Creating and Upgrading a Target System

ok
end.

%6 subst (Str, Vars)
Wb Vars = [{Var, Val}]
9%bVar = Val = string()
%6 Substitute all occurrences of War%for Val in Str, using the list
%% of variables in Vars.
%o
subst (Str, Vars) ->
subst(Str, Vars, []).

subst ([$% C| Rest], Vars, Result) when $A =< C, C =< $Z ->
subst _var([C Rest], Vars, Result, []);

subst ([$% C| Rest], Vars, Result) when $a =< C, C =< $z ->
subst _var([C Rest], Vars, Result, []);

subst ([$% C| Rest], Vars, Result) when C==$ ->
subst _var([C Rest], Vars, Result, []);

subst ([C] Rest], Vars, Result) ->
subst (Rest, Vars, [C] Result]);

subst ([], _Vars, Result) ->
lists:reverse(Result).

subst _var([$% Rest], Vars, Result, VarAcc) ->
Key = lists:reverse(VarAcc),
case |ists: keysearch(Key, 1, Vars) of
{val ue, {Key, Value}} ->
subst (Rest, Vars, lists:reverse(Value, Result));
fal se ->
subst (Rest, Vars, [$% VarAcc ++ [$% Result]])
end;
subst_var([C Rest], Vars, Result, VarAcc) ->
subst _var(Rest, Vars, Result, [C VarAcc]);
subst _var([], Vars, Result, VarAcc) ->
subst ([], Vars, [VarAcc ++ [$% Result]]).

copy_file(Src, Dest) ->
copy_file(Src, Dest, []).

copy_file(Src, Dest, Opts) ->
{ok, _} = file:copy(Src, Dest),
case |ists: menber (preserve, Opts) of
true ->
{ok, Filelnfo} = file:read file_info(Src),
filecwite_file_info(Dest, Filelnfo);
fal se ->
ok
end.

wite file(FNane, Conts) ->
Enc = file: native_nane_encoding(),
{ok, Fd} = file:open(FNanme, [wite]),
file:wite(Fd, unicode: characters_to_bi nary(Conts, Enc, Enc)),
file:close(Fd).

read_txt_file(File) ->
{ok, Bin} =file:read_file(File),
{ok, binary_to_list(Bin)}.

remove dir_tree(Dir) ->
renove_al |l _files(".", [Dir]).

renove_al |l _files(Dir, Files) ->

lists:foreach(fun(File) ->
FilePath = filenane:join([Dir, File]),

56 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.4 Upgrade when Erlang/OTP has Changed

case filelib:is_dir(FilePath) of
true ->
{ok, DirFiles} = file:list_dir(FilePath),
renove_al |l _files(FilePath, DirFiles),
file:del _dir(FilePath);
->

file:del ete(FilePath)

end

end, Files).

2.4 Upgrade when Erlang/OTP has Changed

2.4.1 Introduction

As of Erlang/OTP 17, most applications deliver a valid application upgrade file (appup). In earlier releases,
a majority of the applications in Erlang/OTP did not support upgrade. Many of the applications use the
restart_applicati oninstruction. These are applicationsfor whichitisnot crucial to support real soft upgrade,
for example, tools and library applications. Ther est art _appl i cat i on instruction ensures that all modulesin
the application are reloaded and thereby running the new code.

2.4.2 Upgrade of Core Applications

ThecoreapplicationsERTS, Kernel, STDLIB, and SASL never allow real soft upgrade, but requirethe Erlang emul ator
toberestarted. Thisisindicatedtother el ease_handl er by theupgradeinstructionr est art _new_enul at or .
Thisinstruction is aways the very first instruction executed, and it restarts the emulator with the new versions of the
above mentioned core applications and the old versions of all other applications. When the node is back up, all other
upgrade instructions are executed, making sure each application is finally running its new version.

It might seem strange to do a two-step upgrade instead of just restarting the emulator with the new version of all
applications. The reason for this design decision is to allow code_change functions to have side effects, for
example, changing data on disk. It also guarantees that the upgrade mechanism for non-core applications does not
differ depending on whether or not core applications are changed at the same time.

If, however, the more brutal variant is preferred, the the rel ease upgrade file can be handwritten using only the single
upgradeinstructionr est art _ermul at or . Thisinstruction, in contrasttor est art _new_emnul at or , causesthe
emulator to restart with the new versions of all applications.

Note: If other instructions are included before r est art _ernul at or in the handwritten r el up file, they are
executed in the old emulator. This is a big risk since there is no guarantee that new beam code can be loaded into
the old emulator. Adding instructions after r est art _enul at or has no effect asther el ease_handl er will
not execute them.

For information about the release upgrade file, see the relup(4) manual page in SASL. For more information about
upgrade instructions, see the appup(4) manual pagein SASL.

2.4.3 Applications that Still do Not Allow Code Upgrade

A few applications, such as HiPE, do not support upgrade. Thisisindicated by an application upgrade file containing
only {Vsn,[],[]1}.Any attempt at creating a release upgrade file with such input fails. The only way to force an
upgrade involving applications like thisis to handwrite the file r el up, preferably as described above with only the
restart_emul at or instruction.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 57

2.5 Versions

2.5 Versions

2.5.1 OTP Version

Asof OTPrelease 17, the OTP release number corresponds to the major part of the OTP version. The OTP version as
aconcept was introduced in OTP 17. The version scheme used is described in detail in Version Scheme.

OTP of a specific version is a set of applications of specific versions. The application versions identified by an OTP
version corresponds to application versions that have been tested together by the Erlang/OTP team at Ericsson AB.
An OTP system can, however, be put together with applications from different OTP versions. Such a combination
of application versions has not been tested by the Erlang/OTP team. It is therefore always preferred to use OTP
applications fromone single OTP version.

Release candidates have an - r c<N> suffix. The suffix - r cO is used during development up to the first release
candidate.

Retrieving Current OTP Version

Inan OTP source code tree, the OTP version can beread from thetext file<OTP sour ce r oot >/ OTP_VERSI ON.
The absolute path to the file can be constructed by caling fil enane:joi n([code:root_dir(),
"OTP_VERSI ON']) .

In an installed OTP development system, the OTP version can be read from the text file <OTP
installation root>/releases/<OIP release nunber>/ OTP_VERSI ON. The absolute path
to the file can by constructed by calling fil enane:join([code:root_dir(), "rel eases”,
erl ang: system.info(otp_release), "OIP_VERSION']).

If the version read from the OTP_VERSI ONfilein adevelopment systemhasa* * suffix, the system has been patched
using the ot p_pat ch_appl y tool. In this case, the system consists of application versions from multiple OTP
versions. Theversion preceding the* * suffix correspondsto the OTP version of the base system that has been patched.
Notice that if a development system is updated by other meansthan ot p_pat ch_appl y, the file OTP_VERSI ON
can identify an incorrect OTP version.

No OTP_VERSI ONfileis placed in a target system created by OTP tools. This since one easily can create a target
system where it is hard to even determine the base OTP version. You can, however, place such afile there if you
know the OTP version.

OTP Versions Table

The text file <OTP source root>/otp_versions.table, whichis part of the source code, contains
information about all OTP versions from OTP 17.0 up to the current OTP version. Each line contains information
about application versionsthat are part of a specific OTP version, and has the following format:

<Ot pVersi on> : <ChangedAppVer si ons> # <UnchangedAppVer si ons> :

<t pVer si on> hasthe format OTP- <VSN>, that is, the same as the git tag used to identify the source.

<ChangedAppVer si ons> and <UnchangedAppVer si ons> are space-separated lists of application versions
and hasthe format <appl i cat i on>- <vsn>.

» <ChangedAppVer si ons> corresponds to changed applications with new version numbersin this OTP
version.

e <UnchangedAppVer si ons> corresponds to unchanged application versionsin this OTP version.

Both of them can be empty, but not at the sametime. If <ChangedAppVer si ons> isempty, no changes have been
made that change the build result of any application. This could, for example, be a pure bug fix of the build system.

58 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.5 Versions

The order of lines is undefined. All white-space characters in this file are either space (character 32) or line-break
(character 10).

By using ordinary UNIX toolslike sed and gr ep one can easily find answers to various questions like:
e Which OTPversionsareker nel - 3. 0 part of?

$ grep ' kernel-3\.0 ' otp_versions.table
e Inwhich OTPversionwasker nel - 3. 0 introduced?

$ sed "s/#. *//;] kernel-3\.0 /!d" otp_versions.table

The above commands give a bit more information than the exact answers, but adequate information when manually
searching for answers to these questions.

Warning:
The format of theot p_ver si ons. t abl e might be subject to changes during the OTP 17 release.

2.5.2 Application Version

Asof OTP 17.0 application versions use the same version scheme as the OTP version. Application versions part of a
release candidate will however not have an - r c<N> suffix as the OTP version. Also note that a major increment in
an application version does not necessarily imply a major increment of the OTP version. This depends on whether the
major change in the application is considered as a major change for OTP as awhole or not.

2.5.3 Version Scheme

Note:

The version scheme was changed as of OTP 17.0. Thisimplies that application versions used prior to OTP 17.0
do not adhere to this version scheme. A list of application versions used in OTP 17.0 is included at the end of
this section

In the normal case, a version is constructed as <Maj or >. <M nor >. <Pat ch>, where <Maj or > is the most
significant part.

However, more dot-separated parts than this can exist. The dot-separated parts consist of non-negative
integers. If al parts less significant than <M nor > equals 0, they are omitted. The three norma parts
<Maj or >. <M nor >. <Pat ch> are changed as follows:

e <Mnj or > - Increases when major changes, including incompatibilities, are made.
e <M nor > - Increases when new functionality is added.
e <Pat ch> - Increases when pure bug fixes are made.

When apart in the version number increases, all less significant parts are set to 0.

An application version or an OTP version identifies source code versions. That is, it implies nothing about how the
application or OTP has been built.

Order of Versions

Version numbersin genera are only partially ordered. However, normal version numbers (with three parts) as of OTP
17.0 have atotal or linear order. This applies both to normal OTP versions and normal application versions.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 59

2.5 Versions

When comparing two version numbers that have an order, one compare each part as ordinary integers from the most
significant part to less significant parts. The order is defined by the first parts of the same significance that differ.
An OTP version with alarger version includes all changes that are part of a smaller OTP version. The same goes for
application versions.

In general, versions can have more than three parts. The versions are then only partially ordered. Such versions are
only used in exceptional cases. When an extra part (out of the normal three parts) is added to a version number, anew
branch of versionsis made. The new branch hasalinear order against the base version. However, versions on different
branches have no order, and therefore one can only conclude that they all include what is included in their closest
common ancestor. When branching multiple times from the same base version, 0 parts are added between the base
version and the least significant 1 part until a unique version is found. Versions that have an order can be compared
as described in the previous paragraph.

Anexampleof branched versions: Theversion6. 0. 2. 1 isabranched versionfromthebaseversion6. 0. 2. Versions
ontheform 6. 0. 2. <X> can be compared with normal versions smaller than or equal to 6. 0. 2, and other versions
on the form 6. 0. 2. <X>. The version 6. 0. 2. 1 will include al changesin 6. 0. 2. However, 6. 0. 3 will most
likely not include all changesin 6. 0. 2. 1 (note that these versions have no order). A second branched version from
the base version 6. 0. 2 will beversion 6. 0. 2. 0. 1, and athird branched version will be 6. 0. 2. 0. 0. 1.

2.5.4 OTP 17.0 Application Versions

The following list details the application versions that were part of OTP 17.0. If the normal part of an application
version number compares as smaller than the corresponding application versionin thelist, the version number does not
adhere to the version scheme introduced in OTP 17.0 and is to be considered as not having an order against versions
used as of OTP 17.0.

e asnl-3.0

e common_test-1.8

e conpiler-5.0

e cosEvent-2.1.15

e cosEventDonmain-1.1.14

e cosFileTransfer-1.1.16

e cosNotification-1.1.21

e cosProperty-1.1.17

e cosTinme-1.1.14

e cosTransactions-1.2.14

e cCcrypto-3.3

* debugger-4.0

« dialyzer-2.7

e dianeter-1.6

e edoc-0.7.13

e eldap-1.0.3

e erl_docgen-0.3.5

e erl_interface-3.7.16

e erts-6.0

e et-1.5
e eunit-2.2.7
* (@¢s-1.5.16

e hipe-3.10.3

60 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.5 Versions

ic-4.3.5

i nets-5.10
jinterface-1.5.9
kernel -3.0
megaco-3.17.1
mesi a-4. 12
observer-2.0
odbc- 2. 10. 20

or ber - 3. 6. 27
os_non-2.2.15
ose-1.0

otp_ mbs-1.0.9
parsetool s-2.0. 11
percept-0.8.9
public_key-0.22
reltool-0.6.5
runtine_tools-1.8.14
sasl-2.4
snnp-4.25. 1
ssh-3.0.1
ssl-5.3.4
stdlib-2.0
syntax_tool s-1.6. 14
test _server-3.7
tool s-2.6.14

typer-0.9.6
webt ool - 0. 8. 10
wx-1.2

xnmerl-1.3.7

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 61

3.1 Embedded Solaris

3 Embedded Systems User's Guide

This section describes the issues that are specific for running Erlang on an embedded system. It describes the
differencesin installing and starting Erlang compared to how it is done for a non-embedded system.

Note:
Thisis a supplementary section. Y ou aso need to read Section 1 Installation Guide.

Thereis also target architecture-specific information in the top-level README file of the Erlang distribution.

3.1 Embedded Solaris

This section describes the operating system-specific parts of OTP that relate to Solaris.

3.1.1 Memory Use

Solaris takes about 17 MB of RAM on a system with 64 MB of total RAM. This leaves about 47 MB for the
applications. If the system uses swapping, these figures cannot be improved because unnecessary daemon processes
are swapped out. However, if swapping isdisabled, or if the swap spaceisof limited resourcein the system, it becomes
necessary to kill off unnecessary daemon processes.

3.1.2 Disk Space Use

The disk space required by Solaris can be minimized by using the Core User support installation. It requires about 80
MB of disk space. Thisinstalls only the minimum software required to boot and run Solaris. The disk space can be
further reduced by deleting unnecessary individual files. However, unless disk space is a critical resource the effort
required and the risks involved cannot be justified.

3.1.3 Installing an Embedded System
This section is about installing an embedded system. The following topics are considered:

* Creating user and installation directory

e Instaling an embedded system

» Configuring automatic start at boot

* Making a hardware watchdog available

e Changing permission for reboot

* Setting TERM environment variable

e Adding patches

* Installing module os_sup in application os_mon

Several of the procedures in this section require expert knowledge of the Solaris operating system. For most of them
super user privilege is needed.

62 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 Embedded Solaris

Creating User and Installation Directory

It is recommended that the embedded environment is run by an ordinary user, that is, a user who does not have super
user privileges.

In this section, it is assumed that the usernameisot puser and that the home directory of that user is:

/ export/ hone/ ot puser

It is also assumed that in the home directory of ot puser , thereisadirectory named ot p, the full path of whichis:

/ expor t/ hone/ ot puser/ ot p

This directory isthe installation directory of the embedded environment.

Installing an Embedded System

The procedure for installing an embedded system isthe same asfor an ordinary system (see I nstallation Guide), except
for the following:

» The (compressed) tape archive file isto be extracted in the installation directory defined above.
e Itisnot needed to link the start script to a standard directory like/ usr /| ocal / bi n.
Configuring Automatic Start at Boot

A true embedded system must start when the system boots. This section accounts for the necessary configurations
needed to achieve that.

The embedded system and all the applications start automatically if the script file shown below is added to directory
/ et c/rc3. d. Thefilemust be owned and readable by r oot . Its name cannot be arbitrarily assigned; the following
name is recommended:

S750t p. system

For more details on initialization (and termination) scripts, and naming thereof, see the Solaris documentation.

#! / bi n/ sh

#

File nanme: S75o0tp.system

Purpose: Automatically starts Erlang and applications when the
system starts

Aut hor: janne@r| ang. eri csson. se

Resides in: /etc/rc3.d

#

if [! -d /usr/bin]

t hen # /usr not nounted
exit

fi

killproc() { # kill the nanmed process(es)
pid="/usr/bin/ps -e |
[usr/bin/grep -w $1 |
/usr/bin/sed -e 's/* *[[' -e 's/ .*[['"

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 63

3.1 Embedded Solaris

["$pid" !'="" 1 & kill $pid
}

Start/stop processes required for Erlang

case "$1" in
"start')
Start the Erlang enul ator
#
su - otpuser -c "/export/hone/otpuser/otp/bin/start" &

"stop')
ki |l proc beam

*)
echo "Usage: $0 { start | stop }"

esac
File/ export/ home/ ot puser/ ot p/ bi n/ st art referred to in the above script is precisely the st art script

described in Starting Erlang. The script variable OTP_ROOT in that st art script corresponds to the following
example path used in this section:

/ expor t / hone/ ot puser/ ot p

Thest art scriptisto be edited accordingly.

Useof theki | | pr oc procedure in the above script can be combined withacall toer| _cal | , for example:

$SOVE_PATH erl _call -n Node init stop

To take Erlang down gracefully, seetheer| _cal | (1) manual pageiner| _i nt er f ace for details on the use of
erl _cal | . However, that requires that Erlang runs as a distributed node, which is not always the case.

Theki I | pr oc procedure is not to be removed. The purpose is here to move from run level 3 (multi-user mode with
networking resources) to run level 2 (multi-user mode without such resources), in which Erlang is not to run.

Making Hardware Watchdog Available

For Solarisrunning on VME boards from Force Computers, the onboard hardware watchdog can be activated, provided
aVME busdriver is added to the operating system (see also Installation Problems).

Seealsotheheart (3) manual pageinker nel .

Changing Permissions for Reboot

If the HEART _COMVAND environment variableisto be setinthest art script in Starting Erlang, and if thevalueis
to be set to the path of the Solarisr eboot command, that is:

HEART _COWMMAND=/ usr / sbi n/ r eboot

then the ownership and file permissionsfor / usr/ sbi n/ r eboot must be changed as follows:

chown 0 /usr/sbin/reboot

64 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 Embedded Solaris

chnod 4755 /usr/ sbin/reboot

Seealsotheheart (3) manual pageinker nel .

Setting TERM Environment Variable

When the Erlang runtime system is automatically started from the S750t p. syst emscript, the TERMenvironment
variable must be set. The following isaminimal setting:

TERM=sun

Thisisto be added tothe st art script.

Adding Patches

For proper functioning of flushing file system data to disk on Solaris 2.5.1, the version-specific patch with number
103640-02 must be added to the operating system. Other patches might be needed, see the release README file
<ERL_| NSTALL_DI R>/ README.

Installing Module os_sup in Application os_mon
The following four installation procedures require super user privilege:

Installation
* Makea copy of the Solaris standard configuration file for sysl ogd:

« Make acopy of the Solaris standard configuration file for sysl ogd. Thisfileis usually named
sysl og. conf andfoundin directory / et c.

* Thefilename of the copy must besysl og. conf . ORI G Thedirectory location is optional; usualy itis/
et c. A simple way to do thisisto issue the following command:

cp /etc/syslog.conf /etc/syslog.conf.OR G

» Make an Erlang-specific configuration file for sysl ogd:
* Make an edited copy of the backup copy previously made.
« Thefilename must besysl og. conf . OTP. The path must be the same as the backup copy.

e Theformat of the configuration fileisfound inthesysl og. conf (5) manual page, by issuing the
command nan sysl og. conf.

e Usualy alineisadded that is to state:
e Which types of information that is to be supervised by Erlang
* Thename of thefile (actually a named pipe) that is to receive the information

» If, for example, only information originating from the UNIX kernel isto be supervised, the lineisto begin
with ker n. LEVEL. For the possible values of LEVEL, seesysl og. conf (5).

e After at least one tab-character, the line added is to contain the full name of the named pipe where
sysl ogd writesitsinformation. The path must be the same as for thefilessysl og. conf . ORI Gand
sysl og. conf . OTP. Thefilename must be sysl og. ot p.

« |f thedirectory for thefilessysl og. conf . ORI Gand sysl og. conf. OTPis/ et c, thelinein
sysl og. conf . OTPisasfollows:

kern. LEVEL [etc/ sysl og. otp

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 65

3.1 Embedded Solaris

Check the file privileges of the configuration files:
e Theconfiguration filesisto haver w-r - - r - - file privileges and be owned by root.
* A simpleway to do thisisto issue these commands:

chnod 644 /etc/sysl og. conf
chnod 644 /etc/syslog.conf. ORI G
chnod 644 /etc/syslog.conf. OTP

* Noticethat if thefilessysl og. conf . ORI Gandsysl og. conf. OTP arenot in directory / et c, the
file path in the second and third command must be modified.

Modify file privileges and ownership of the nod_sysl og utility:
» Thefile privileges and ownership of the nod_sysl og utility must be modified.

e The full name of the binary executable file is derived from the position of application os_non in the file
system by adding / pri v/ bi n/ nod_sysl og. The generic full name of the binary executable fileisthus:

<OTP_ROOT>/ | i b/ os_non- <REV>/ pri v/ bi n/ nod_sysl og

Example: If the pathto ot p- r oot is/ usr/ ot p, then the path to the os_non applicationis/ usr/ ot p/
i b/ os_non-1. 0 (assuming revision 1.0) and the full name of the binary executablefileis/ usr/ ot p/
i b/os_non-1.0/priv/bin/nmd_sysl og.

» Thebinary executable file must be owned by root, haver wsr - xr - x file privileges, in particular the
set ui d bit of the user must be set.

* A simpleway to do thisisto issue the following commands:

cd <OTP_ROOT>/1i b/ os_non- <REV>/ pri v/ bi n/ mod_sysl og
chnod 4755 nod_sysl og
chown root nod_sysl og

Testing the Application Configuration File

The following procedure does not require root privilege:

Ensure that the configuration parameters for the os_sup moduleinthe os_mon application are correct.
Browse the application configuration file (do not edit it). The full name of the application configuration file is
derived from the position of theos_non application in the file system by adding / ebi n/ os_non. app.

The generic full name of thefileisthus:

<OTP_ROOT>/ | i b/ os_non- <REV>/ ebi n/ os_non. app

Example: If the path to ot p-r oot is/ usr/ ot p, then the path to the os_non application is/ usr/ ot p/
lib/os _non-1.0 (assuming revision 1.0) and the full name of the binary executable fileis/ usr/ ot p/
i b/ os_non-1. 0/ ebi n/ os_non. app.

Ensure that the following configuration parameters have correct values:

Parameter Function Sandard value

66 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 Embedded Solaris

t r ue for thefirst instance on the
hardware; f al se for the other
instances

Specifiesif os_sup isto be started

start_os_sup of not

The directory for (1) back-up copy
0S_Ssup_own and (2) Erlang-specific configuration | "/ et c"
filefor sysl ogd

The full name for the Solaris

os_sup_sysl ogconf standard configuration file for "/etc/sysl og. conf"
sysl ogd
The tag for the messages that are

error_tag sent to the error logger inthe Erlang |std_error

runtime system

Table 1.1: Configuration Parameters

If thevalueslistedinos_non. app do not suit your needs, do not edit that file. Instead overridethe valuesin asystem
configuration file, the full pathname of which is given on the command linetoer | .

Example: Contents of an application configuration file:

[{os_non, [{start_os_sup, true}, {os_sup_own, "/etc"},
{os_sup_sysl ogconf, "/etc/syslog.conf"}, {os_sup_ errortag, std_error}]}].

Related Documents

Seethe os_non(3) application, theappl i cati on(3) manual pageinker nel ,andtheer!| (1) manual page
inerts.

Installation Problems

The hardware watchdog timer, which is controlled by the hear t port program, requires package FORCEv e, which
contains the VME bus driver, to be installed. However, this driver can clash with the Sun ncp driver and cause the
system to refuse to boot. To cure this problem, the following lines areto be added to / et ¢/ syst em

e exclude: drv/ntp
e exclude: drv/ntpzsa
e« exclude: drv/ntpp

Warning:

It is recommended to add these lines to avoid a clash. The clash can make it impossible to boot the system.

3.1.4 Starting Erlang

This section describes how an embedded system is started. Four programs are involved and they normally residein the
directory <ERL_| NSTALL_DI R>/ bi n. Theonly exceptionisthest art program, which can be located anywhere,
and is also the only program that must be modified by the user.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 67

3.1 Embedded Solaris

In an embedded system, thereis usually no interactive shell. However, an operator can attach to the Erlang system by
commandt o_er | . The operator is then connected to the Erlang shell and can give ordinary Erlang commands. All
interaction with the system through this shell islogged in a specia directory.

Basically, the procedure is as follows:

 Thestart programis called when the machineis started.
e ltcalsrun_erl , which setsup things so the operator can attach to the system.

e ltcalsstart_erl,whichcalsthecorrect version of er | exec (whichislocated in
<ERL_| NSTALL_DI R>/ ert s- EVsn/ bi n) with the correct boot and confi g files.

3.1.5 Programs

start

This program is called when the machineis started. It can be modified or rewritten to suit a special system. By default,
it must be called st art and residein <ERL_I NSTALL_DI R>/ bi n. Another start program can be used, by using
configuration parameter st art _pr g in application sasl .

The start program must call r un_er | as shown below. It must also take an optional parameter, which defaults to
<ERL_I NSTALL_DI R>/rel eases/start _erl . data.

This program is to set static parameters and environment variables such as - snane Nane and HEART _COVIVAND
to reboot the machine.

The<RELDI R> directory iswhere new rel ease packets are installed, and where the rel ease handler keepsinformation
about releases. For more information, seether el ease_handl er (3) manual pageinsasl .

The following script illustrates the default behaviour of the program:

#! / bi n/ sh

Usage: start [DataFile]
#

ROOTDI R=/ usr/ | ocal / ot p

if [-z "$RELDIR"]
t hen

RELDI R=$ROOTDI R/ r el eases
fi

START_ERL_DATA=${1: - $RELDI R/ st art _er| . dat a}

$ROOTDI R/ bi n/run_erl /tnp/ $ROOTDI R/ | og "exec $ROOTDI R/ bin/start_erl \
$ROOTDI R $RELDI R $START_ERL_DATA" > /dev/null 2>&1 &

The following script illustrates a modification where the node is given the name cp1, and where the environment
variables HEART _COVIMAND and TERMhave been added to the previous script:

#! / bi n/ sh

Usage: start [DataFile]

#

HEART _COWMMAND=/ usr / shi n/ r eboot
TERMESUN

export HEART_COMVAND TERM
ROOTDI R=/ usr/ | ocal / ot p

if [-z "$RELDIR']

68 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 Embedded Solaris

t hen
RELDI R=$ROOTDI R/ r el eases
fi

START_ERL_DATA=$%${1: - $RELDI R/ start _er| . dat a}

$ROOTDI R/ bi n/run_erl /tnp/ $ROOTDI R/ | og "exec $ROOIDI R/ bin/start_erl \
$ROOTDI R $RELDI R $START_ERL_DATA -heart -snane cpl" > /dev/null 2>&1 &

If adiskless and/or read-only client node is about to start, filest art _er| . dat a islocated in the client directory
at the master node. Thus, the START_ERL _DATA lineisto look like:

CLI ENTDI R=$ROOTDI R/ cl i ent s/ cl i ent nane
START_ERL_DATA=${ 1: - $CLI ENTDI R/ bi n/ start _er| . dat a}

run_erl

This program is used to start the emulator, but you will not be connected to the shell. t o_er | is used to connect
to the Erlang shell.

Usage: run_erl pipe_dir/ log_dir "exec command [paraneters ...]"

Here:

e pipe_dir/ istobe/tnp/ (to_erl usesthisname by default).
* | og_dir iswherethelog files are written.

« command [paranet er s] isexecuted.

e Everything writtento st di n and st dout isloggedinl og_di r.

Log filesare written in| og_di r . Each log file has a name of the form er | ang. | og. N, where N is a generation
number, ranging from 1 to 5. Each log file holds up to 100 kB text. Astime goes by, the following log files are found
inthelog file directory:

erl ang. | og.
erl ang. | og.
erl ang. | og.
erl ang. | og.
erl ang. | og.
erl ang. | og.

erl ang. | og. 2

erlang.log.2, erlang.log.3

erlang.log.2, erlang.log.3, erlang.log.4
erlang.log.3, erlang.log.4, erlang.log.5
erlang.log.4, erlang.log.5, erlang.log.1

GOPPFPEPF

The most recent log file is the rightmost in each row. That is, the most recent file is the one with the highest number,
or if there are already four files, the one before the skip.

When alog fileis opened (for appending or created), atime stamp iswritten to thefile. If nothing has been written to
thelog filesfor 15 minutes, arecord isinserted that says that we are still alive.

to_erl

This program is used to attach to arunning Erlang runtime system, started withr un_er | .

Usage: to_erl [pipe_nanme | pipe_dir]

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 69

3.2 Windows NT

Here pi pe_nane defaultsto/ t np/ er | ang. pi pe. N.
To disconnect from the shell without exiting the Erlang system, typeCt r | - D.

start_erl

This program starts the Erlang emulator with parameters - boot and - conf i g set. It reads data about where these
filesarelocated fromafilenamedst art _er| . dat a, whichislocated in <RELDI R>. Each new release introduces
anew datafile. Thisfileis automatically generated by the release handler in Erlang.

The following script illustrates the behaviour of the program:

#! / bi n/ sh

This programis called by run_erl. It starts

the Erlang emul ator and sets -boot and -config paraneters.
It should only be used at an enbedded target system

Usage: start_erl RootDir RelDir DataFile [ErlFlags ...]

H o H HH H R

ROOTDI R=$1
shi ft

RELDI R=$1
shi ft

Dat aFi | e=$1
shi ft

ERTS VSN="awk '{print $1}' $DataFile
VSN="awk '{print $2}' S$DataFile

Bl NDI R=$ROOTDI R/ er t s- $ERTS_VSN bi n
EMJ=beam

PROGNAME="echo $0 | sed "'s/.*\///'"®
export EMJ

export ROOTDI R

export BIND R

export PROGNAVE

export RELDI R

exec $BINDI R/ erl exec -boot $RELDI R/ $VSN start -config $RELDI R/ $VSN sys $*

If adiskless and/or read-only client node with the sas| configuration parameter st ati ¢_enul at or settot rue
is about to start, the - boot and - conf i g flags must be changed.

Assuch aclient cannot read anew st art _er | . dat a file (the file cannot be changed dynamically). The boot and
config files are aways fetched from the same place (but with new contents if a new release has been installed).

Ther el ease_handl er copiesthesefilestothebi n directory in the client directory at the master nodes whenever
anew release is made permanent.

Assuming the same CLI ENTDI R as above, the last lineisto look like:

exec $BINDI R/ erl exec -boot $CLIENTDI R/ bin/start \
-confi g $CLI ENTDI R/ bi n/ sys $*

3.2 Windows NT

This section describes the operating system-specific parts of OTP that relate to Windows NT.

70 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.2 Windows NT

A normal installation of Windows NT 4.0, with Service Pack 4 or later, is required for an embedded Windows NT
running OTP.

3.2.1 Memory Use

RAM memory of 96 MB is recommended to run OTP on Windows NT. A system with less than 64 MB of RAM is
not recommended.

3.2.2 Disk Space Use

A minimum Windows NT installation with networking needs 250 MB, and an extra 130 MB for the swap file.

3.2.3 Installing an Embedded System

Normal Windows NT installation is performed. No additional application programs are needed, such as Internet
Explorer or web server. Networking with TCP/IP is required.

Service Pack 4 or later must be installed.
Hardware Watchdog

For Windows NT running on standard PCs with ISA and/or PCI bus, an extension card with a hardware watchdog
can beinstalled.

For moreinformation, seethe hear t (3) manual pagein ker nel .

3.2.4 Starting Erlang

On an embedded system, theer | srv moduleisto be used to install the Erlang process as a Windows system service.
This service can start after Windows NT has booted.

For moreinformation, seetheer | srv manua pageinerts.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 71

4.1 Introduction

4 Getting Started With Erlang

4.1 Introduction

This section is a quick start tutorial to get you started with Erlang. Everything in this section is true, but only part of
thetruth. For example, only the simplest form of the syntax is shown, not all esoteric forms. Also, partsthat are greatly
simplified are indicated with *manual*. This means that a lot more information on the subject is to be found in the
Erlang book or in Erlang Reference Manual.

4.1.1 Prerequisites
The reader of this section is assumed to be familiar with the following:

e Computersin general
e Basicson how computers are programmed

4.1.2 Omitted Topics

The following topics are not treated in this section:

* References.

» Local error handling (catch/throw).

e Singledirection links (monitor).

* Handling of binary data (binaries/ bit syntax).
e List comprehensions.

e How to communicate with the outside world and software written in other languages (ports); thisis described in
Interoperability Tutorial.

* Erlang libraries (for example, file handling).

e OTPand (in consequence) the Mnesia database.
* Hashtablesfor Erlang terms (ETS).

e Changing code in running systems.

4.2 Sequential Programming

4.2.1 The Erlang Shell

Most operating systems have acommand interpreter or shell, UNIX and Linux have many, Windows hasthe command
prompt. Erlang hasits own shell wherebits of Erlang code can bewritten directly, and be eval uated to see what happens
(see the shell(3) manual pagein STDLIB).

Start the Erlang shell (in Linux or UNIX) by starting a shell or command interpreter in your operating system and
typing er | . You will see something like this.

% er |
Erl ang R15B (erts-5.9.1) [source] [snp:8:8] [rq:8] [async-threads: 0] [hipe] [kernel-poll:false]

Eshell V5.9.1 (abort with "G

72 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

1>

Type "2 + 5." in the shell and then press Enter (carriage return). Notice that you tell the shell you are done entering
code by finishing with afull stop "." and a carriage return.

1> 2 + 5.
7
2>

As shown, the Erlang shell numbers the lines that can be entered, (as 1> 2>) and that it correctly saysthat 2 + 5is 7.
If you make writing mistakes in the shell, you can delete with the backspace key, as in most shells. There are many
more editing commands in the shell (seetty - A command line interface in ERTS User's Guide).

(Notice that many line numbers given by the shell in the following examples are out of sequence. Thisis because this
tutorial was written and code-tested in separate sessions).

Here is abit more complex calculation:

2> (42 + 77) * 66 / 3.
2618.0

Notice the use of brackets, the multiplication operator "*", and the division operator "/*, asin normal arithmetic (see
Expressions).

Press Control-C to shut down the Erlang system and the Erlang shell.
The following output is shown:

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (I)oaded
(v)ersion (k)ill (D)yb-tables (d)istribution

a

%

Type"a" to leave the Erlang system.
Another way to shut down the Erlang system is by entering hal t () :

3> hal t ().
%

4.2.2 Modules and Functions

A programming language is not much use if you only can run code from the shell. So here is asmall Erlang program.
Enteritinto afilenamedt ut . er| using a suitable text editor. The filenamet ut . er | isimportant, and a so that
it is in the same directory as the one where you started er |). If you are lucky your editor has an Erlang mode that
makes it easier for you to enter and format your code nicely (see The Erlang mode for Emacsin Tools User's Guide),
but you can manage perfectly well without. Here is the code to enter:

-nmodul e(tut).
-export ([double/1]).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 73

4.2 Sequential Programming

doubl e(X) ->
2 * X

It is not hard to guess that this program doubles the value of numbers. The first two lines of the code are described
later. Let us compile the program. This can be done in an Erlang shell as follows, where ¢ means compile:

3> c(tut).
{ok, tut}

The { ok, t ut } means that the compilation is OK. If it says "error" it means that there is some mistake in the text
that you entered. Additional error messages gives an idea to what is wrong so you can modify the text and then try
to compile the program again.

Now run the program:

4> tut: doubl e(10).
20

As expected, double of 10is 20.

Now let us get back to thefirst two lines of the code. Erlang programs are written in files. Each file contains an Erlang
module. Thefirst line of code in the module is the module name (see Modul es):

-nmodul e(tut).

Thus, themoduleiscalled tut. Notice thefull stop"." at the end of theline. Thefileswhich are used to store the module
must have the same name as the module but with the extension ".erl". In this case the filenameist ut . er | . When
using a function in another module, the syntax modul e_nane: f uncti on_nane(ar gunent s) isused. So the
following means call function doubl e in modulet ut with argument "10".

4> tut: doubl e(10).

The second line says that the module t ut contains a function called doubl e, which takes one argument (X in our
example):

-export ([double/1]).

The second line also says that this function can be called from outside the modulet ut . More about this later. Again,
noticethe"." at the end of theline.

Now for a more complicated example, the factorial of a number. For example, the factorial of 4is4* 3* 2* 1,
which equals 24.

Enter the following codein afilenamedt ut 1. er| :

-nmodul e(tutl).
-export([fac/1]).

74 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

fac(1) ->
1;
fac(N ->

N * fac(N - 1).

So thisisamodule, called t ut 1 that contains afunction called f ac>, which takes one argument, N.
Thefirst part saysthat the factorial of 1is1.:

fac(1) ->
1;

Notice that this part ends with asemicolon ;" that indicates that there is more of the function f ac> to come.

The second part says that the factorial of N is N multiplied by the factorial of N - 1:

fac(N ->
N * fac(N - 1).

Notice that this part endswith a"." saying that there are no more parts of this function.
Compilethefile:

5> c(tutl).
{ok, tut1}

And now calculate the factorial of 4.

6> tutl:fac(4).
24

Here the function f ac> in modulet ut 1 is called with argument 4.

A function can have many arguments. Let us expand the modulet ut 1 with the function to multiply two numbers:

-nmodul e(tutl).
-export([fac/1, mult/2]).

fac(1) ->
s
fac(N) ->

N * fac(N - 1).
mlt(X, Y) ->
X * Y.

Notice that it is also required to expand the - expor t line with the information that there is another function nul t
with two arguments.

Compile:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 75

4.2 Sequential Programming

7> c(tutl).
{ok, tut 1}

Try out the new function mul t :

8> tutl:mult(3,4).
12

In this example the numbers areintegers and the argumentsin the functionsin the code N, X, and Y are called variables.
Variables must start with a capital letter (see Variables). Examples of variables are Nunber , ShoeSi ze, and Age.

4.2.3 Atoms

Atomisanother datatypein Erlang. Atomsstart with asmall letter (see Atom), for example, char | es,cent i net er,
and i nch. Atoms are simply names, nothing else. They are not like variables, which can have avalue.

Enter the next program in afile named t ut 2. er |). It can be useful for converting from inches to centimeters and
conversely:

-modul e(tut2).
-export([convert/2]).

convert(M inch) ->
M/ 2.54;

convert (N, centineter) ->
N * 2.54.

Compile:

9> c(tut2).
{ ok, tut2}

Test:

10> tut 2: convert (3, inch).
1.1811023622047243

11> tut 2: convert (7, centinmeter).
17.78

Notice the introduction of decimals (floating point numbers) without any explanation. Hopefully you can cope with
that.

Let us see what happensif something other than cent i et er ori nch isenteredintheconvert function:;

12> tut 2: convert (3, mles).
** exception error: no function clause matching tut2:convert(3,mles) (tut2.erl, line 4)

76 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

The two parts of the conver t function are called its clauses. As shown, mi | es isnot part of either of the clauses.
The Erlang system cannot match either of the clauses so an error messagef unct i on_cl ause isreturned. The shell
formats the error message nicely, but the error tuple is saved in the shell's history list and can be output by the shell
command v/ 1:

13> v(12).
{"EXIT ,{function_cl ause, [{tut2, convert,
[3,mles],
[{file,"tut2.erl"},{line, 4}]},
{erl _eval ,do_apply,5,[{file,"erl _eval.erl"},{line, 482}]}
{shell,exprs, 7,[{file,"shell.erl"},{line, 666}]},
{shell,eval _exprs,7,[{file,"shell.erl"}, {line, 621}]},
{shell,eval _|oop, 3,[{file,"shell.erl"},{line, 606}]}]}}
4.2.4 Tuples

Now thet ut 2 program is hardly good programming style. Consider:

tut2: convert(3, inch)

Does this mean that 3 isin inches? Or does it mean that 3 isin centimeters and is to be converted to inches? Erlang
has away to group things together to make things more understandable. These are called tuples and are surrounded
by curly brackets, "{" and "}".

So, {i nch, 3} denotes 3 inchesand { centi met er, 5} denotes 5 centimeters. Now let us write a new program
that converts centimeters to inches and conversely. Enter the following codein afilecalledt ut 3. er |):

- modul e(tut 3).
-export([convert _length/1]).

convert _|ength({centineter, X}) ->
{inch, X/ 2.54};

convert _length({inch, Y}) ->
{centineter, Y * 2.54}.

Compile and test:

14> c(tut3).

{ ok, tut3}

15> tut 3: convert _| ength({inch, 5}).

{centineter, 12. 7}

16> tut 3: convert_| ength(tut3: convert_l ength({inch, 5})).
{inch, 5.0}

Notice on line 16 that 5 inches is converted to centimeters and back again and reassuringly get back to the
origina value. That is, the argument to a function can be the result of another function. Consider how line 16
(above) works. The argument given to the function {i nch, 5} is first matched against the first head clause of
convert | ength,thatis convert | ength({centineter, X}).Itcanbeseenthat {centineter, X}
does not match {i nch, 5} (the head is the hit before the "->"). This having failed, let us try the head of the next
clausethatis, convert | engt h({i nch, Y}) . Thismatches, and Y getsthe value5.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 77

4.2 Sequential Programming

Tuples can have more than two parts, in fact as many parts as you want, and contain any valid Erlang term. For
example, to represent the temperature of various cities of the world:

{nmoscow, {c, -10}}
{cape_town, {f, 70}}
{paris, {f, 28}}

Tuples have a fixed number of items in them. Each item in a tuple is called an element. In the tuple { roscow,
{c,-10}},element lisnoscowand element 2is{ c, - 10} . Here ¢ represents Celsiusand f Fahrenheit.

425 Lists

Whereas tuples group things together, it is also needed to represent lists of things. Lists in Erlang are surrounded by
sguare brackets, "[" and "]". For example, alist of the temperatures of various cities in the world can be:

[{moscow, {c, -10}}, {cape_town, {f, 70}}, {stockholm {c, -4}},
{paris, {f, 28}}, {london, {f, 36}}]

Notice that this list was so long that it did not fit on one line. This does not matter, Erlang allows line breaks at all
"sensible places' but not, for example, in the middle of atoms, integers, and others.

A useful way of looking at parts of lists, isby using "|". Thisis best explained by an example using the shell:

17> [First | TheRest] =1[1,2,3,4,5].
[1,2,3,4,5]

18> First.

1

19> TheRest .

[2,3,4,5]

To separate the first elements of the list from the rest of the list, | isused. Fi r st has got value 1 and TheRest
has got the value [2,3,4,5].

Another example:

20> [E1, E2 | R =1[1,2,3,4,5,6,7].
[1,2,3,4,5,6,7]

21> El.

1

22> E2.

2

23> R

[3,4,5,6,7]

Hereyou seethe use of | to get the first two elements from the list. If you try to get more elements from the list than
there are elementsin the list, an error is returned. Notice also the special case of the list with no elements, []:

24> [A, B| C =11, 2].
[1,2]

25> A

1

78 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

26> B.
2
27> C.
[]

In the previous examples, new variable names are used, instead of reusing the old ones: Fi r st , TheRest , E1, E2,
R, A, B, and C. Thereason for thisisthat a variable can only be given avalue once in its context (scope). More about
thislater.

The following example shows how to find the length of alist. Enter the following codein afilenamedt ut 4. er |l):

-nmodul e(tut4).
-export([list_length/1]).
list_length([]) ->

0;

list_length([First | Rest]) ->
1 + list_length(Rest).

Compile and test:

28> c(tut4).

{ ok, tut4}

29> tut4:list_length([1,2,3,4,56,7]).
7

Explanation:

list_length([]) ->
0;

The length of an empty list isobviously 0.

list_length([First | Rest]) ->
1 + list_length(Rest).

The length of alist with the first element Fi r st and the remaining elements Rest is1 + the length of Rest .
(Advanced readers only: Thisis not tail recursive, there is a better way to write this function.)

In genera, tuples are used where "records’ or "structs' are used in other languages. Also, lists are used when
representing things with varying sizes, that is, where linked lists are used in other languages.

Erlang does not have a string data type. Instead, strings can be represented by lists of Unicode characters. Thisimplies
for example that thelist [97, 98, 99] is equivalent to "abc". The Erlang shell is"clever" and guesses what list you
mean and outputsit in what it thinks is the most appropriate form, for example:

30> [97, 98, 99] .
e

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 79

4.2 Sequential Programming

4.2.6 Maps

Maps are a set of key to value associations. These associations are encapsulated with "#{" and "}". To create an
association from "key" to value 42;

> #{ "key" => 42 }.
#{"key" => 42}

Let usjump straight into the deep end with an example using some interesting features.

Thefollowing example shows how to cal culate al pha blending using mapsto reference color and a phachannels. Enter
thecodeinafilenamedcol or. erl):

- modul e(col or) .
-export ([new 4, blend/2]).
-define(is_channel (V), (is_float(V) andalso V >= 0.0 andalso V =< 1.0)).
new R G B, A) when ?is_channel (R), ?is_channel (G,
?i s_channel (B), ?is_channel (A) ->
#{red => R green => G blue => B, al pha => A}.

bl end(Src, Dst) ->
bl end(Src, Dst, al pha(Src, Dst)).

bl end(Src, Dst, Al pha) when Alpha > 0.0 ->

Dst #{
red =red(Src,Dst) / Al pha,
green := green(Src,Dst) / Al pha,
bl ue = blue(Src,Dst) / Al pha,
al pha : = Al pha
}s
bl end(_, Dst,) ->
Dst #{
red = 0.0,
green := 0.0,
bl ue = 0.0,
alpha := 0.0
}.
al pha(#{al pha := SA}, #{alpha := DA}) ->
SA + DA*(1.0 - SA).
red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).
green(#{green := SV, alpha := SA}, #{green := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).
bl ue(#{blue := SV, alpha := SA}, #{blue := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).
Compile and test:
> c(color).
{ ok, col or}
> Cl = color:new(0.3,0.4,0.5,1.0).
#{al pha => 1.0,blue => 0.5,green => 0.4,red => 0. 3}
> C2 = color:new1.0,0.8,0.1,0.3).

80 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

#{al pha => 0.3,blue => 0.1,green => 0.8,red => 1.0}

> col or: bl end(C1, C2).

#{al pha => 1.0, blue => 0.5,green => 0.4,red => 0. 3}

> col or: bl end(C2, Cl1).

#{al pha => 1.0, blue => 0.38,green => 0.52,red => 0.51}

This example warrants some explanation:

-define(is_channel (V), (is_float(V) andalso V >= 0.0 andalso V =< 1.0)).

Firstamacroi s_channel isdefined to help with the guard tests. Thisis only here for convenience and to reduce
syntax cluttering. For more information about macros, see The Preprocessor.

new(R G B, A) when ?is_channel (R), ?is_channel (G,
?i s_channel (B), ?is_channel (A) ->
#{red => R green => G blue => B, al pha => A}.

The function new 4 creates a new map term and lets the keysr ed, gr een, bl ue, and al pha be associated with
an initial value. In this case, only float values between and including 0.0 and 1.0 are allowed, as ensured by the ?
i s_channel / 1 macro for each argument. Only the => operator is allowed when creating a new map.

By calling bl end/ 2 on any color term created by new 4, the resulting color can be calculated as determined by
the two map terms.

Thefirst thing bl end/ 2 doesisto calculate the resulting alpha channel:

al pha(#{al pha := SA}, #{alpha := DA}) ->
SA + DA*(1.0 - SA).

The value associated with key al pha isfetched for both arguments using the : = operator. The other keysin the map
areignored, only the key al pha isrequired and checked for.

Thisisaso the case for functionsr ed/ 2, bl ue/ 2, and gr een/ 2.

red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).

The difference here is that a check is made for two keys in each map argument. The other keys are ignored.

Finally, let usreturn the resulting color in bl end/ 3:

bl end(Src, Dst, Al pha) when Alpha > 0.0 ->

Dst #{
red =red(Src,Dst) / Al pha,
green := green(Src,Dst) / Al pha,
blue := blue(Src,Dst) / Al pha,
al pha : = Al pha

}s

The Dst map is updated with new channel values. The syntax for updating an existing key with a new value is with
the : = operator.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 81

4.2 Sequential Programming

4.2.7 Standard Modules and Manual Pages

Erlang has many standard modules to help you do things. For example, the module i o contains many functions that
help in doing formatted input/output. To look up information about standard modules, the command er | - man can
be used at the operating shell or command prompt (the same place as you started er |). Try the operating system
shell command:

%erl -man io
ERLANG MODULE DEFI NI TI ON io(3)

MODULE
io - Standard I/O Server |nterface Functions

DESCRI PTI ON
This nodul e provides an interface to standard Erlang |O
servers. The output functions all return ok if they are suc-

If this does not work on your system, the documentation isincluded asHTML in the Erlang/OTPrelease. Y ou can also
read the documentation asHTML or download it as PDF from either of the sites www.erlang.se (commercial Erlang)
or www.erlang.org (open source). For example, for Erlang/OTP release R9B:

http://wwv erl ang. or g/ doc/ r 9b/ doc/ i ndex. ht m

4.2.8 Writing Output to a Terminal

Itisniceto beableto do formatted output in exampl es, so the next example showsasimpleway tousethei o: f or mat
function. Like all other exported functions, you can test thei o: f or mat function in the shell:

31> io:format("hell o world~n", []).

hello world

ok

32> io:format("this outputs one Erlang term ~w-n", [hello]).

this outputs one Erlang term hello

ok

33> jo:format ("this outputs two Erlang terns: ~w-w-n", [hello, world]).
this outputs two Erlang terns: helloworld

ok

34> jo:format ("this outputs two Erlang terns: ~w ~w-n", [hello, world]).
this outputs two Erlang terns: hello world

ok

The function f or mat / 2 (that is, f or mat with two arguments) takes two lists. The first one is nearly always alist
written between " ". Thislist is printed out as it is, except that each ~w is replaced by aterm taken in order from the
second list. Each ~n isreplaced by anew line. Thei o: f or mat / 2 function itself returns the atom ok if everything
goes as planned. Like other functions in Erlang, it crashes if an error occurs. This is not a fault in Erlang, it isa
deliberate policy. Erlang has sophisticated mechanisms to handle errors which are shown later. As an exercise, try to
makei o: f or mat crash, it should not be difficult. But notice that although i o: f or mat crashes, the Erlang shell
itself does not crash.

82 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

4.2.9 A Larger Example

Now for a larger example to consolidate what you have learnt so far. Assume that you have a list of temperature
readings from a number of citiesin the world. Some of them arein Celsius and some in Fahrenheit (asin the previous
list). First let us convert them all to Celsius, then let us print the data neatly.

%6 This nodule is in file tut5.erl

-modul e(tutb).
-export([format _tenps/1]).

%WoOnly this function is exported

format _temps([])-> % No output for an enpty list
ok;

format _temps([City | Rest]) ->
print_tenp(convert _to_celsius(CGty)),
format _tenps(Rest).

convert_to_cel sius({Nane, {c, Tenp}}) -> % No conversi on needed
{Nane, {c, Tenp}};

convert_to_cel sius({Nane, {f, Tenp}}) -> % Do the conversion
{Nanme, {c, (Tenp - 32) * 5/ 9}}.

print_tenp({Name, {c, Tenp}}) ->
io:format("~-15w ~w c~n", [Nane, Tenp]).

35> c(tuth).

{ ok, tut 5}

36> tut5: format _tenps([{nmoscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).

nmoscow -10 c

cape_t own 21.11111111111111 ¢
st ockhol m -4 ¢

paris -2.2222222222222223 ¢
| ondon 2.2222222222222223 ¢
ok

Before looking at how this program works, notice that afew comments are added to the code. A comment starts with
a %-character and goes on to the end of the line. Notice also that the- export ([f or mat _t enps/ 1]). lineonly
includes the function f or mat _t enps/ 1. The other functions are local functions, that is, they are not visible from
outside the module t ut 5.

Notice also that when testing the program from the shell, the input is spread over two lines as the line was too long.

When f or mat _t enps iscaledthefirsttime, Ci t y getsthevaue{ noscow, { ¢, - 10} } and Rest istherest of
thelist. Sothefunction pri nt _tenp(convert to_cel si us({nmoscow, {c,-10}})) iscaled.

Here is a function call as convert to_cel si us({noscow, {c, -10}}) as the argument to the function
print _t enp. When function calls are nested like this, they execute (evaluate) from the inside out. That is, first
convert _to_cel sius({noscow, {c,-10}}) is evauated, which gives the value { roscow, {c, - 10} }
as the temperature is aready in Celsius. Then pri nt _t enp({noscow, {c, - 10} }) isevauated. The function
convert _to_cel si us worksinasimilar way totheconvert _I engt h function in the previous example.

print_tenpsimply calsi o: f or mat inasimilar way to what has been described above. Notice that ~-15w says
to print the "term" with afield length (width) of 15 and left justify it. (see the io(3)) manual page in STDLIB.

Now f ormat _t enps(Rest) is caled with the rest of the list as an argument. This way of doing things is
similar to the loop constructs in other languages. (Y es, thisis recursion, but do not let that worry you.) So the same

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 83

4.2 Sequential Programming

format _t enps function is called again, thistime Ci t y gets the value { cape_t own, {f, 70} } and the same
procedure is repeated as before. This is done until the list becomes empty, that is [], which causes the first clause
format _tenps([]) tomatch. Thissimply returns (resultsin) the atom ok, so the program ends.

4.2.10 Matching, Guards, and Scope of Variables

It can be useful to find the maximum and minimum temperature in lists like this. Before extending the program to do
this, let uslook at functions for finding the maximum value of the elementsin alist:

-nmodul e(tut6).
-export([list_max/1]).

l'ist_max([Head| Rest]) ->
i st_max(Rest, Head).

list_max([], Res) ->
Res;

i st_max([Head| Rest], Result_so _far) when Head > Result_so far ->
i st_max(Rest, Head);

l'ist_max([Head| Rest], Result_so far) ->
l'ist_max(Rest, Result_so _far).

37> c(tuth).

{ ok, tut 6}

38> tut6:list_max([1,2,3,4,5,7,4,3,2,1]).
7

First notice that two functions have the sasme name, | i st _nax. However, each of these takes a different number of
arguments (parameters). In Erlang these are regarded as completely different functions. Where you need to distinguish
between these functions, you write Name/Arity, where Name is the function name and Arity is the number of
arguments, inthiscasel i st _max/ 1 andli st_max/ 2.

In this example you walk through a list "carrying" avalue, in thiscase Resul t _so_far.list_max/ 1 simply
assumes that the max value of the list is the head of the list and calls| i st _max/ 2 with the rest of the list and the
value of the head of the list. In the above thiswould bel i st _max([2, 3,4,5,7, 4, 3,2,1],1).If you tried
tousel i st _nmax/ 1 with an empty list or tried to use it with something that is not alist at all, you would cause an
error. Notice that the Erlang philosophy is not to handle errors of this type in the function they occur, but to do so
elsewhere. More about this |ater.

In i st_max/2, you wak down the list and use Head instead of Result_so_far when Head >
Resul t _so_far.when isaspecia word used before the -> in the function to say that you only use this part of
the function if the test that follows istrue. A test of thistypeis called guard. If the guard is false (that is, the guard
fails), the next part of the function istried. In this case, if Head is not greater than Resul t _so_f ar, then it must
be smaller or equal to it. This means that a guard on the next part of the function is not needed.

Some useful operatorsin guards are:

e <lessthan

e > greater than

e ==equd

e >=greater or equal
* =<lessorequd

e /=not equa

84 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

(see Guard Sequences).

To change the above program to one that works out the minimum value of the element in alist, you only need to write
<instead of >. (But it would be wise to change the name of the functiontol i st _ni n.)

Earlier it was mentioned that a variable can only be given a value once in its scope. In the above you see that
Resul t _so_far isgiven severa vaues. Thisis OK since every time you call | i st _nax/ 2 you create a new
scope and one can regard Resul t _so_f ar asadifferent variable in each scope.

Another way of creating and giving a variable a value is by using the match operator = . So if you writeM = 5, a
variable called Mis created with the value 5. If, in the same scope, you then write M = 6, an error isreturned. Try
this out in the shell:

39> M= 5
5
40> M = 6.

** exception error: no match of right hand side value 6
41> M= M + 1.

** exception error: no match of right hand side value 6
42> N =M+ 1.

6

The use of the match operator is particularly useful for pulling apart Erlang terms and creating new ones.

43> {X, Y} = {paris, {f, 28}}.
{paris, {f, 28}}

44> X.

paris

45> Y.

{f, 28}

Here X getsthevaluepari s and Y{f, 28}.

If you try to do the same again with another city, an error isreturned:

46> {X, Y} = {london, {f, 36}}.
** exception error: no match of right hand side val ue {london, {f, 36}}

Variables can also be used to improve the readability of programs. For example, in function | i st _nax/ 2 above,
you can write;

list_max([Head| Rest], Result_so far) when Head > Result_so far ->
New result_far = Head,
list_max(Rest, New result far);

Thisis possibly alittle clearer.

4.2.11 More About Lists
Remember that the | operator can be used to get the head of alist:

47> [ML| T1] = [paris, |ondon, rone].

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 85

4.2 Sequential Programming

[paris, | ondon, rone]
48> ML.

paris

49> T1.

[ondon, r one]

The | operator can also be used to add ahead to alist:

50> L1 = [nadrid | T1].
[madri d, | ondon, r one]
51> L1.

[madri d, | ondon, r one]

Now an example of thiswhen working with lists - reversing the order of alist:

- modul e(tut8).
-export([reverse/1]).

reverse(List) ->
reverse(List, []).

reverse([Head | Rest], Reversed_List) ->
reverse(Rest, [Head | Reversed_List]);
reverse([], Reversed_List) ->
Reversed_Li st .

52> c(tut8).

{ ok, tut 8}

53> tut8:reverse([1,2,3]).
[3,2,1]

Consider how Rever sed_Li st isbuilt. It starts as [], then successively the heads are taken off of the list to be
reversed and added to the the Rever sed_Li st , asshown in the following:

reverse([1]2,3], []) =>
reverse([2,3], [1][11])

reverse([2]| 3], [1]) =>
reverse([3], [2|[1])

reverse([3|[]], [2,1]) =>
reverse([], [3|[2,1]])

reverse([], [3,2,1]) =>
[3,2,1]

Themodulel i st s contains many functionsfor manipulating lists, for example, for reversing them. So beforewriting
a list-manipulating function it is a good idea to check if one not already is written for you (see the lists(3) manual
pagein STDLIB).

Now let us get back to the cities and temperatures, but take a more structured approach thistime. First let us convert
thewholelist to Celsius as follows:

86 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

-nmodul e(tut?7).
-export([format _tenps/1]).

format _tenps(List_of cities) ->
convert _list_to c(List_of cities).

convert _list_to_c([{Nane, {f, F}} | Rest]) ->
Converted _City = {Name, {c, (F -32)* 5/ 9}},
[Converted City | convert list _to c(Rest)];

convert list _to c([City | Rest]) ->
[Cty | convert_ list to c(Rest)];

convert _list_to c([]) ->

[1.

Test the function:

54> c(tut7).

{ok, tut7}.

55> tut7: format _tenps([{moscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
[{noscow, {c, - 10} },

{cape_town, {c,21.11111111111111}},

{stockhol m {c, -4}},

{paris,{c,-2.2222222222222223}},

{l ondon, {c, 2. 2222222222222223} }]

Explanation:

format _tenps(List_of _cities) ->
convert _list_to_c(List_of_cities).

Heref ormat _tenps/ 1 callsconvert list to _c/1.convert |ist _to_c/1 takes off the head of the
Li st _of cities, converts it to Celsius if needed. The | operator is used to add the (maybe) converted to the
converted rest of the list:

[Converted City | convert list to c(Rest)];

or:

[City | convert_list to c(Rest)];

Thisisdone until the end of thelist isreached, that is, the list is empty:
convert _list_to_c([]) ->
[1.

Now when the list is converted, afunction to print it is added:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 87

4.2 Sequential Programming

-modul e(tut?7).
-export([format _tenps/1]).

format _tenps(List_of cities) ->
Converted_List = convert _list _to c(List_of cities),
print_tenp(Converted List).

convert _list_to_c([{Nane, {f, F}} | Rest]) ->
Converted City = {Name, {c, (F -32)* 5/ 9}},
[Converted City | convert list _to c(Rest)];

convert list to c([City | Rest]) ->
[Cty | convert_ list to c(Rest)];

convert _list_to c([]) ->

(1.

print_tenmp([{Name, {c, Tenp}} | Rest]) ->
io:format("~-15w ~w c~n", [Nanme, Tenp]),
print_tenp(Rest);

print_tenp([]) ->
ok.

56> c(tut7).

{ok, tut7}

57> tut7: format _tenps([{nmoscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).

nmoscow -10 ¢

cape_t own 21.11111111111111 ¢
st ockhol m -4 ¢

paris -2.2222222222222223 ¢
| ondon 2.2222222222222223 ¢
ok

Now afunction hasto be added to find the cities with the maximum and minimum temperatures. Thefollowing program
isnot the most efficient way of doing this asyou walk through thelist of citiesfour times. But it is better to first strive
for clarity and correctness and to make programs efficient only if needed.

-nmodul e(tut?).
-export([format_tenps/1]).

format _tenps(List_of _cities) ->
Converted_List = convert_|list_to c(List_of_cities),
print_tenp(Converted_List),
{Max_city, Mn_city} = find_nax_and_m n(Converted_List),
print_max_and_m n(Max_city, Mn_city).

convert_list_to_c([{Name, {f, Tenmp}} | Rest]) ->
Converted_City = {Nane, {c, (Tenp -32)* 5/ 9}},
[Converted City | convert_ |list_to c(Rest)];

convert_list_to c([Cty | Rest]) ->
[City | convert_list _to c(Rest)];

convert _list_to c([]) ->

(1.

print_tenp([{Nanme, {c, Tenp}} | Rest]) ->

88 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

io:format("~-15w ~w c~n", [Nane, Tenp]),
print_tenp(Rest);

print_tenp([]) ->
ok.

find_max_and_mn([Cty | Rest]) ->
find_max_and_mn(Rest, Cty, Cty).

find_max_and_m n([{Nanme, {c, Tenp}} | Rest],
{Max_Nane, {c, Max_Tenp}},
{M n_Nane, {c, Mn_Tenp}}) ->
if
Tenp > Max_Tenp ->

Max_City = {Name, {c, Tenp}}; % Change
true ->
Max_City = {Max_Nane, {c, Max_Tenp}} % Unchanged
end,
if
Tenp < M n_Tenp ->
Mn Gty = {Name, {c, Tenp}}; % Change
true ->
Mn Cty = {Mn_Nane, {c, Mn_Tenp}} % Unchanged
end,

find_max_and_m n(Rest, Max_Cty, Mn _Cty);

find_max_and_mn([], Max_Cty, Mn_City) ->
{Max_City, Mn_City}.

print_max_and_m n({Max_nane, {c, Max_tenp}}, {Mn_name, {c, Mn_tenp}}) ->
io:format ("Max tenperature was ~w ¢ in ~wn", [Max_tenp, Max_nane]),
io:format ("M n tenperature was ~w ¢ in ~wn", [Mn_tenp, Mn_nane]).

58> c(tut7).

{ok, tut7}

59> tut7: format _tenps([{nmoscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).

nmoscow -10 ¢

cape_t own 21.11111111111111 ¢
st ockhol m -4 ¢

paris -2.2222222222222223 ¢
| ondon 2.2222222222222223 ¢

Max tenperature was 21.11111111111111 c in cape_t own
Mn tenperature was -10 ¢ in npbscow
ok

4.2.12 If and Case

The function f i nd_rmax_and_mi n works out the maximum and minimum temperature. A new construct, i f , is
introduced here. If works as follows:

Condition 1 ->
Action 1;
Condition 2 ->
Action 2;
Condition 3 ->
Action 3;
Condition 4 ->
Action 4

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 89

4.2 Sequential Programming

end

Notice that there is no ";" before end. Conditions do the same as guards, that is, tests that succeed or fail. Erlang
starts at the top and tests until it finds a condition that succeeds. Then it evaluates (performs) the action following
the condition and ignores all other conditions and actions before the end. If no condition matches, a run-time failure
occurs. A condition that always succeeds isthe atom t r ue. Thisis often used last inani f , meaning, do the action
following thet r ue if all other conditions have failed.

Thefollowing is a short program to show the workings of i f .

-nmodul e(tut9).
-export([test_if/2]).

test _if(A B) ->
if
A == ==
io:format ("A == 5~n", []),
a_equal s_5;
B == ==
io:format ("B == 6~n", []),
b_equal s_6;
A==2, B == -> % hat is A equals 2 and B equals 3
io:format ("A == 2, B == 3~n", []),
a_equal s_2 b _equal s_3;
A == B == -> % hat is A equals 1 or B equals 7
io:format("A==1; B==7~-n", []),
a_equals_1 or_b_equals_ 7
end.

Testing this program gives:

60> c(tut9).

{ ok, tut 9}

61> tut9:test_if(5,33).

A==25

a_equal s_5

62> tut9:test_if(33,6).

B==26

b_equal s_6

63> tut9:test_if(2, 3).

A == 2’ B ==3

a_equal s_2_b_equal s_3

64> tut9:test_if (1, 33).

A==1 ; B==7

a_equals_1 or_b_equal s_7

65> tut9:test_if(33, 7).

A==1 ; B==7

a_equals_1 or_b_equal s_7

66> tut9:test_if(33, 33).

** exception error: no true branch found when evaluating an if expression
in function tut9:test_if/2 (tut9.erl, line 5)

Notice that t ut 9: test i f (33, 33) does not cause any condition to succeed. This leads to the run time error
i f_cl ause, here nicely formatted by the shell. See Guard Sequences for details of the many guard tests available.

case isanother construct in Erlang. Recall that theconvert _| engt h function was written as:

90 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

convert | ength({centineter,
{inch, X/ 2.54};
convert_l ength({inch, Y}) ->

{centineter, Y * 2.54}.

->

X)

The same program can also be written as:

- modul e(tut 10).

-export([convert_l ength/1]).

convert_| ength(Length) ->
case Length of
{centineter, X} ->

{inch, X/ 2.54};

{inch, Y} ->
{centineter,
end.

67> c(tut10).
{ ok, tut 10}

Y * 2.54}

68> tut 10: convert _| ength({i nch, 6}).

{centineter, 15. 24}

69> tut 10: convert _| ength({centineter,

{inch, 0. 984251968503937}

2.5}).

Both case and i f have return values, that is, in the above example case returned either {i nch, X/ 2. 54} or
{centineter, Y*2. 54} . The behaviour of case can aso be modified by using guards. The following example
clarifies this. It tells us the length of a month, given the year. The year must be known, since February has 29 days

inaleap year.

-modul e(tut 11).
-export ([nonth_l ength/2]).

mont h_| engt h(Year
%6 Al l
%% Years divisible by
%% Years divisible by
Leap = if
trunc(Year / 400) *
| eap;
trunc(Year / 100) *
not _I| eap;
trunc(Year / 4) *
| eap;
true ->
not _| eap

Mont h)

4

4

end,

case Month of
sep -> 30;
apr -> 30;
jun -> 30;
nov -> 30;

->
years divisible by 400 are | eap
100 are not

| eap (except the 400 r

ul e above)

are | eap (except the 100 rul e above)

400 == Year ->
100 == Year ->

== Year ->

feb when Leap == leap -> 29;

feb ->
jan ->
mar ->
my ->

28;
31;
31;
31;

Ericsson AB. All Rights Reserved

.. Erlang/OTP System Documentation | 91

4.2 Sequential Programming

jul -> 31;

aug -> 31;

oct -> 31;

dec -> 31
end.

70> c(tut1l).

{ok, tut11}

71> tut11: nont h_| engt h(2004, feb).
29

72> tut11: nont h_| engt h(2003, feb).
28

73> tut11l: nont h_| engt h(1947, aug).
31

4.2.13 Built-In Functions (BIFS)

BIFs are functions that for some reason are built-in to the Erlang virtual machine. BIFs often implement functionality
that isimpossible or istoo inefficient to implement in Erlang. Some BIFs can be called using the function name only
but they are by default belonging to theer | ang module. For example, the call tothe BIFt r unc below isequivalent
toacdltoerl ang: trunc.

As shown, first it is checked if ayear isleap. If ayear is divisible by 400, it is a leap year. To determine this, first
divide the year by 400 and use the BIF t r unc (more about this later) to cut off any decimals. Then multiply by 400
again and see if the same value is returned again. For example, year 2004:

2004 / 400 = 5.01
trunc(5.01) =5
5 * 400 = 2000

2000 is not the same as 2004, so 2004 is not divisible by 400. Y ear 2000:

2000 / 400 = 5.0
trunc(5.0) =5
5 * 400 = 2000

That is, aleap year. The next two t r unc-tests evaluate if the year is divisible by 100 or 4 in the same way. The first
i f returns| eap or not _| eap, which lands up in the variable Leap. Thisvariable is used in the guard for f eb in
the following case that tells us how long the month is.

This example showed the use of t r unc. It is easier to use the Erlang operator r emthat gives the remainder after
division, for example:

74> 2004 rem 400.
4

So instead of writing:

trunc(Year / 400) * 400 == Year ->

92 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

| eap;

it can be written:

Year rem 400 == 0 ->
| eap;

There are many other BIFssuch ast r unc. Only afew BIFs can be used in guards, and you cannot use functions you
have defined yourself in guards. (see Guard Sequences) (For advanced readers: This is to ensure that guards do not
have side effects.) Let us play with afew of these functionsin the shell:

75> trunc(5.6).

5

76> round(5. 6) .

6

77> length([a,b,c,d]).

4

78> fl oat (5).

5.0

79> is_aton(hello).

true

80> is_aton("hello").

fal se

81> is_tuple({paris, {c, 30}}).
true

82> is_tuple([paris, {c, 30}]).
fal se

All of these can be used in guards. Now for some BIFs that cannot be used in guards:

83> atomto_list(hello).

"hel | 0"

84> |ist_to_aton("goodbye").
goodbye

85> integer to_ list(22).
woon

These three BIFs do conversions that would be difficult (or impossible) to do in Erlang.

4.2.14 Higher-Order Functions (Funs)

Erlang, like most modern functional programming languages, has higher-order functions. Here is an example using
the shell:

86> Xf = fun(X) -> X * 2 end
#Fun<er| _eval . 5. 123085357>
87> Xf(5).

10

Here is defined a function that doubles the value of a number and assigned this function to a variable. Thus Xf (5)
returns value 10. Two useful functions when working with listsaref or each and map, which are defined asfollows:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 93

4.2 Sequential Programming

foreach(Fun, [First|Rest]) ->
Fun(First),
foreach(Fun, Rest);
foreach(Fun, []) ->
ok.

map(Fun, [First|Rest]) ->

[Fun(First) | map(Fun, Rest)];
map(Fun, []) ->

[1.

These two functions are provided in the standard module | i st s. f or each takes alist and applies a fun to every
element in the list. map creates a new list by applying afun to every element in alist. Going back to the shell, map
isused and afun to add 3 to every element of alist:

88> Add_3 = fun(X) -> X + 3 end.
#Fun<er| _eval . 5. 123085357>

89> lists:map(Add_3, [1,2,3]).
[4,5,6]

Let us (again) print the temperaturesin alist of cities:

90> Print_City = fun({Gty, {X Tenp}}) -> io:format("~- 15w ~w ~w-n",
[Cty, X, Tenp]) end.

#Fun<er| _eval . 5. 123085357>

91> lists:foreach(Print_City, [{mpbscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).

nmoscow c -10
cape_t own f 70
st ockhol m c -4
paris f 28
| ondon f 36
ok

Let usnow defineafun that can be used to go through alist of citiesand temperatures and transform them all to Celsius.

-nmodul e(tut13).
-export([convert_list_to_c/1]).

convert_to_c({Nane, {f, Tenp}}) ->

{Nane, {c, trunc((Tenp - 32) * 5/ 9)}};
convert_to_c({Nane, {c, Tenp}}) ->

{Nare, {c, Tenp}}.

convert _list_to_c(List) ->
lists: map(fun convert_to_c/1, List).

92> tutl13:convert_list_to_c([{nmoscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]1).
[{moscow, {c, -10}},

{cape_town, {c, 21}},

{stockhol m{c, -4}},

94 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

{paris,{c,-2}},
{l ondon, {c, 2} }]

Theconvert _to_c functionisthe same as before, but here it is used as afun:

l'ists: map(fun convert_to_c/1, List)

When a function defined elsewhere is used as a fun, it can be referred to as Functi on/ Ari ty (remember that
Arity = number of arguments). So in the map-call | i sts: map(fun convert_to_c/1, List) iswritten.
Asshown, convert |i st _to_c becomesmuch shorter and easier to understand.

The standard modulel i st s also containsafunctionsort (Fun, Li st) where Fun isafun with two arguments.
Thisfun returnst r ue if the first argument is less than the second argument, or elsef al se. Sorting is added to the
convert list _to_c:

- modul e(tut 13).
-export([convert list_to_c/1]).

convert_to_c({Nane, {f, Tenp}}) ->

{Name, {c, trunc((Tenp - 32) * 5/ 9)}};
convert_to_c({Nane, {c, Tenp}}) ->

{Nanme, {c, Tenp}}.

convert _list_to_c(List) ->
New | ist = lists:map(fun convert_to_c/1, List),
lists:sort(fun({_, {c, Tenpl}}, {_, {c, Tenp2}}) ->
Tenpl < Tenp2 end, New_ |ist).

93> c(tut13).

{ ok, tut 13}

94> tut13:convert _list_to_c([{mscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
[{rmoscow, {c, - 10} },

{stockhol m{c, -4}},

{paris,{c,-2}},

{l ondon, {c, 2}},

{cape_town, {c, 21}}]

Insort thefunis used:

fun({_, {c, Tenpl}}, {_, {c, Tenp2}}) -> Tenpl < Tenp2 end,

Here the concept of an anonymous variable" " isintroduced. Thisissimply shorthand for avariable that getsavalue,

but the value is ignored. This can be used anywhere suitable, not just in funs. Tenpl < Tenp2 returnstr ue if
Tenpl islessthan Tenp2.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 95

4.3 Concurrent Programming

4.3 Concurrent Programming

4.3.1 Processes

One of themain reasonsfor using Erlang instead of other functional languagesis Erlang's ability to handle concurrency
and distributed programming. By concurrency is meant programs that can handle several threads of execution at the
same time. For example, modern operating systems allow you to use a word processor, a spreadsheet, a mail client,
and aprint job all running at the same time. Each processor (CPU) in the system is probably only handling one thread
(or job) at atime, but it swaps between the jobs at such arate that it gives theillusion of running them all at the same
time. It iseasy to create parallel threads of execution in an Erlang program and to allow these threads to communicate
with each other. In Erlang, each thread of execution is called a process.

(Aside: the term "process’ is usually used when the threads of execution share no data with each other and the term
"thread" when they share datain some way. Threads of execution in Erlang share no data, that is why they are called
processes).

The Erlang BIF spawn is used to create a new process. spawn(Modul e, Exported_Function, List of
Ar gunent s) . Consider the following module:

-nmodul e(tut 14).
-export([start/0, say_sonething/2]).

say_sonet hi ng(What, 0) ->
done

say_sonet hi ng(What, Tines) ->
io:format ("~p~n", [Wat]),
say_sonet hi ng(What, Tines - 1).

start() ->
spawn(tut 14, say_sonething, [hello, 3]),
spawn(tut 14, say_sonet hi ng, [goodbye, 3]).

5> c(tutl4).

{ ok, tut 14}

6> tut 14: say_sonet hi ng(hell o, 3).
hel |l o

hel |l o

hel |l o

done

Asshown, thefunctionsay_sormnet hi ng writesitsfirst argument the number of times specified by second argument.
The function st ar t starts two Erlang processes, one that writes "hello" three times and one that writes "goodbye"
three times. Both processes use the function say_sonet hi ng. Notice that a function used in this way by spawn,
to start a process, must be exported from the module (that is, in the - expor t at the start of the module).

9> tutld:start()
hel | o

goodbye

<0. 63. 0>

hel | o

goodbye

hel | o

goodbye

96 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

Noticethat it did not write"hello" threetimesand then "goodbye" threetimes. Instead, thefirst processwrotea"hello",
the second a "goodbye", the first another "hello" and so forth. But where did the <0.63.0> come from? The return
value of afunction isthe return value of the last "thing" in the function. The last thing in the function st ar t is

spawn(tut 14, say_sonet hi ng, [goodbye, 3]).

spawn returns a processidentifier, or pid, which uniquely identifies the process. So <0.63.0> isthe pid of the spawn
function call above. The next example shows how to use pids.

Notice also that ~p is used instead of ~w ini o: f or mat . To quote the manual: "~p Writes the data with standard
syntax in the same way as ~w, but breaks terms whose printed representation is longer than one line into many lines
and indents each line sensibly. It also triesto detect lists of printable characters and to output these as strings'.

4.3.2 Message Passing

In the following example two processes are created and they send messages to each other a number of times.

- modul e(tut 15) .
-export([start/0, ping/2, pong/0]).

pi ng(0, Pong_PID) ->
Pong_PID ! finished
io:format ("ping finished~n", []);

pi ng(N, Pong_PID) ->
Pong_PID ! {ping, self()}
recei ve
pong - >
io:format ("Ping received pong~n", [])
end
ping(N - 1, Pong_PID).

pong() ->
receive
finished ->
io:format ("Pong finished~n", []);
{ping, Ping_PID ->
i o:format ("Pong received ping~n", []),
Ping_PID ! pong
pong()
end

start() ->
Pong_PI D = spawn(tut 15, pong, []

)
spawn(tut 15, ping, [3, Pong_PID]).

1> c(tut1b).

{ ok, tut 15}

2> tut15: start().
<0. 36. 0>

Pong recei ved pi ng
Pi ng recei ved pong
Pong recei ved pi ng
Pi ng recei ved pong
Pong recei ved pi ng

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 97

4.3 Concurrent Programming

Pi ng recei ved pong
ping finished
Pong fi ni shed

Thefunctionst art first creates a process, let us call it "pong":

Pong_PI D = spawn(tut 15, pong, [])

This process executes t ut 15: pong() . Pong_PI D is the process identity of the "pong" process. The function
st art now creates another process "ping":

spawn(tut 15, ping, [3, Pong_PID]),

This process executes:

tut 15: pi ng(3, Pong_PI D)

<0.36.0> isthereturn value from the st ar t function.

The process "pong" now does:

recei ve
finished ->
io:format ("Pong finished~n", []);
{ping, Ping PID} ->
i o:format ("Pong received ping~n", []),
Ping PID! pong
pong()
end

Ther ecei ve construct is used to alow processes to wait for messages from other processes. It has the following
format:

receive
patternl ->
actionsl
pattern2 ->
actions2;

patternN
actionsN
end

Noticethereisno";" beforethe end.

M essages between Erlang processes are simply valid Erlang terms. That is, they can be lists, tuples, integers, atoms,
pids, and so on.

Each process has its own input queue for messages it receives. New messages received are put at the end of the
gueue. When a process executes ar ecei ve, the first message in the queue is matched against the first pattern in

98 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

ther ecei ve. If this matches, the message is removed from the queue and the actions corresponding to the pattern
are executed.

However, if the first pattern does not match, the second pattern istested. If this matches, the messageisremoved from
the queue and the actions corresponding to the second pattern are executed. If the second pattern does not match, the
third is tried and so on until there are no more patterns to test. If there are no more patterns to test, the first message
is kept in the queue and the second message is tried instead. If this matches any pattern, the appropriate actions are
executed and the second message is removed from the queue (keeping the first message and any other messages in
the queue). If the second message does not match, the third message is tried, and so on, until the end of the queue
is reached. If the end of the queue is reached, the process blocks (stops execution) and waits until a new message is
received and this procedure is repeated.

The Erlang implementation is "clever" and minimizes the number of times each message is tested against the patterns
ineachr ecei ve.

Now back to the ping pong example.

"Pong" iswaiting for messages. If theatom f i ni shed isreceived, "pong" writes"Pong finished" to the output and,
asit has nothing more to do, terminates. If it receives a message with the format:

{pi ng, Ping_PID}

it writes "Pong received ping" to the output and sends the atom pong to the process "ping":

Ping_PID ! pong

Notice how the operator "!" is used to send messages. The syntax of "!" is:

Pid ! Message

That is, Message (any Erlang term) is sent to the process with identity Pi d.

After sending the message pong to the process "ping", "pong" calls the pong function again, which causesit to get
back to ther ecei ve again and wait for another message.

Now let uslook at the process "ping". Recall that it was started by executing:

tut 15: pi ng(3, Pong_PI D)

Looking at the function pi ng/ 2, the second clause of pi ng/ 2 is executed since the value of the first argument is 3
(not 0) (first clause head is pi ng(0, Pong_PI D), second clause head is pi ng(N, Pong_PI D), so N becomes 3).

The second clause sends a message to "pong":

Pong_PID ! {ping, self()},

sel f () returns the pid of the process that executes sel f (), in this case the pid of "ping". (Recall the code for
"pong", thislands up in the variable Pi ng_PI Dinther ecei ve previously explained.)

"Ping" now waits for areply from "pong":

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 99

4.3 Concurrent Programming

receive
pong ->
io:format ("Ping recei ved pong~n", [])
end,

It writes "Ping received pong" when this reply arrives, after which "ping” callsthe pi ng function again.

pi ng(N - 1, Pong_PI D)

N 1 causes the first argument to be decremented until it becomes 0. When this occurs, the first clause of pi ng/ 2
is executed:

pi ng(0, Pong_PID) ->
Pong_PID ! finished
io:format ("ping finished~n", []);

Theatomfi ni shed issent to "pong" (causing it to terminate as described above) and "ping finished" is written to
the output. "Ping" then terminates as it has nothing left to do.

4.3.3 Registered Process Names

In the above example, "pong" wasfirst created to be able to give the identity of "pong" when "ping" was started. That
is, in some way "ping" must be able to know the identity of "pong" to be able to send a message to it. Sometimes
processes which need to know each other's identities are started independently of each other. Erlang thus provides a
mechanism for processes to be given names so that these names can be used as identitiesinstead of pids. Thisisdone
by using ther egi st er BIF:

regi ster(sone_atom Pid)

Let us now rewrite the ping pong example using this and give the name pong to the "pong" process.

-nmodul e(tut 16) .
-export([start/0, ping/1l, pong/0]).

ping(0) ->
pong ! finished
io:format ("ping finished~n", []);

ping(N) ->
pong ! {ping, self()},
receive
pong ->
io:format ("Ping recei ved pong~n", [])
end
ping(N - 1).

pong() S
receive
finished ->
io:format ("Pong finished~n", []);
{ping, Ping PID} ->

100 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

i o:format ("Pong received ping~n", []),
Ping_PID ! pong

pong()
end

start() ->
regi ster(pong, spawn(tut16, pong, [])),
spawn(tut 16, ping, [3]).

2> c(tut16).

{ok, tut16}

3> tutl6:start().
<0. 38. 0>

Pong recei ved ping
Pi ng recei ved pong
Pong recei ved ping
Pi ng recei ved pong
Pong recei ved ping
Pi ng recei ved pong
ping finished

Pong fi ni shed

Herethest ar t / O function,

regi ster(pong, spawn(tutl16, pong, []))

both spawns the "pong" process and givesit the name pong. In the "ping" process, messages can be sent to pong by:

pong ! {ping, self()},
pi ng/ 2 now becomes pi ng/ 1 astheargument Pong_PI Dis not needed.

4.3.4 Distributed Programming

Let us rewrite the ping pong program with "ping" and "pong" on different computers. First a few things are needed
to set up to get this to work. The distributed Erlang implementation provides a basic security mechanism to prevent
unauthorized access to an Erlang system on another computer. Erlang systems which talk to each other must have
the same magic cookie. The easiest way to achieve thisis by having afile called . er | ang. cooki e in your home
directory on all machines on which you are going to run Erlang systems communicating with each other:

* On Windows systems the home directory is the directory pointed out by the environment variable $HOME -
you may need to set this.

e OnLinux or UNIX you can safely ignore this and smply create afilecaled . er | ang. cooki e inthe
directory you get to after executing the command cd without any argument.

The. er | ang. cooki e fileisto contain aline with the same atom. For example, on Linux or UNIX, in the OS shell:

$ cd

$ cat > .erlang. cookie
this_is_very secret

$ chnod 400 . erl ang. cooki e

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 101

4.3 Concurrent Programming

Thechnod above makesthe. er | ang. cooki e file accessible only by the owner of thefile. Thisisarequirement.

When you start an Erlang system that is going to talk to other Erlang systems, you must give it aname, for example:

$ erl -sname ny_nane

We will see more details of this later. If you want to experiment with distributed Erlang, but you only have one
computer to work on, you can start two separate Erlang systems on the same computer but give them different names.
Each Erlang system running on a computer is called an Erlang node.

(Note: er| - sname assumes that al nodes are in the same IP domain and we can use only the first component of
the IP address, if we want to use nodes in different domains we use - nane instead, but then all 1P address must be
giveninfull.)

Here is the ping pong example modified to run on two separate nodes:

-modul e(tut 17).
-export([start_ping/1, start_pong/0, ping/2, pong/0]).

pi ng(0, Pong_Node) ->
{pong, Pong_Node} ! fi nished,
io:format ("ping finished~n", []);

pi ng(N, Pong_Node) ->
{pong, Pong_Node} ! {ping, self()},
recei ve
pong - >
io:format ("Ping recei ved pong~n", [])
end,
ping(N - 1, Pong_Node).

pong() ->
recei ve
finished ->
io:format ("Pong finished~n", []);
{ping, Ping_PID ->
i o:format ("Pong received ping~n", []),
Ping_PID ! pong,
pong()
end.

start_pong() ->
regi ster(pong, spawn(tutl?7, pong, [])).

start _pi ng(Pong_Node) ->
spawn(tut 17, ping, [3, Pong_Node]).

Let us assume there are two computers called gollum and kosken. First a node is started on kosken, called ping, and
then a node on gollum, called pong.

On kosken (on a Linux/UNIX system):

kosken> erl| -sname ping
Erl ang (BEAM emul ator version 5.2.3.7 [hipe] [threads:0]

Eshell V5.2.3.7 (abort with ~"Q

102 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

(pi ng@osken) 1>

On gollum:

gol lum> erl -sname pong
Erl ang (BEAM enul ator version 5.2.3.7 [hipe] [threads: 0]

Eshell V5.2.3.7 (abort with "G
(pong@ol | um 1>

Now the "pong" process on gollum is started:

(pong@ol | um) 1> tut 17: start_pong() .
true

And the "ping" process on kosken is started (from the code above you can see that a parameter of thest art _pi ng
function is the node name of the Erlang system where "pong" is running):

(pi ng@osken) 1> tut17:start_pi ng(pong@ol | un.
<0. 37. 0>

Pi ng recei ved pong

Pi ng recei ved pong

Pi ng recei ved pong

ping finished

As shown, the ping pong program has run. On the "pong" side:

(pong@ol | um 2>
Pong recei ved ping
Pong recei ved ping
Pong recei ved ping
Pong fi ni shed
(pong@ol | um 2>

Looking at thet ut 17 code, you seethat the pong function itself is unchanged, the following lines work in the same
way irrespective of on which node the "ping" processis executes:

{ping, Ping_PID} ->
i o:format ("Pong received ping~n", []),
Ping_PID ! pong

Thus, Erlang pids contain information about where the process executes. So if you know the pid of a process, the "!"
operator can be used to send it a message disregarding if the processis on the same node or on a different node.

A differenceis how messages are sent to aregistered process on another node:

{pong, Pong_Node} ! {ping, self()},

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 103

4.3 Concurrent Programming

Atuple{regi st ered_name, node_nane} isusedinstead of just ther egi st er ed_nane.

In the previous example, "ping" and "pong" were started from the shells of two separate Erlang nodes. spawn can
also be used to start processes in other nodes.

The next example is the ping pong program, yet again, but thistime "ping" is started in another node:

-nmodul e(tut18).
-export([start/1, ping/2, pong/0])

pi ng(0, Pong_Node) ->
{pong, Pong_Node} ! fi ni shed,
io:format ("ping finished~n", []);

pi ng(N, Pong_Node) ->
{pong, Pong_Node} ! {ping, self()},
recei ve
pong -~>
io:format ("Ping received pong~n", [])
end
pi ng(N - 1, Pong_Node)

pong() ->
receive
finished ->
io:format ("Pong finished~n", []);
{ping, Ping_PID} ->
i o:format ("Pong received ping~n", []),
Ping_PID ! pong
pong()
end

start (Pi ng_Node) ->
regi ster(pong, spawn(tutl18, pong, []))
spawn(Pi ng_Node, tut18, ping, [3, node()])

Assuming an Erlang system called ping (but not the " ping" process) has already been started on kosken, then on gollum
thisis done:

(pong@ol | unm) 1> tut 18: start (pi ng@osken).
<3934. 39. 0>

Pong recei ved pi ng

Pi ng recei ved pong

Pong recei ved pi ng

Pi ng recei ved pong

Pong recei ved pi ng

Pi ng recei ved pong

Pong fi ni shed

ping finished

Noticethat al the output is received on gollum. Thisis because the I/O system finds out where the processis spawned
from and sends all output there.

4.3.5 A Larger Example

Now for a larger example with a simple "messenger”. The messenger is a program that allows users to log in on
different nodes and send simple messages to each other.

104 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

Before starting, notice the following:

e Thisexample only shows the message passing logic - no attempt has been made to provide a nice graphical user
interface, although this can also be donein Erlang.

» Thissort of problem can be solved easier by use of thefacilitiesin OTP, which also provide methods for updating
code on the fly and so on (see OTP Design Principles).

» Thefirst program contains some inadequacies regarding handling of nodes which disappear. These are corrected
in alater version of the program.

The messenger is set up by allowing "clients" to connect to a central server and say who and where they are. That is,
auser does not need to know the name of the Erlang node where another user islocated to send a message.

Filemessenger. erl :

9% Message passing utility.
%86 User interface:
%806 | ogon(Nane)

9% One user at a time can log in fromeach Erlang node in the
%80 system nessenger: and choose a suitable Nane. If the Nane
%80 is already | ogged in at another node or if sonmeone else is
%80 already | ogged in at the sane node, login will be rejected
%80 with a suitable error nessage.

%86 | ogof f ()
%80 Logs of f anybody at that node
%80 message(ToNane, Message)

%80 sends Message to ToNane. Error nessages if the user of this
9% function is not logged on or if ToNanme is not | ogged on at
%80 any node.

986

%806 One node in the network of Erlang nodes runs a server which maintains

%80 dat a about the | ogged on users. The server is registered as "nmessenger"
%806 Each node where there is a user |ogged on runs a client process registered
%80 as "nmess_client"

986

%806 Prot ocol between the client processes and the server

986

%B80 To server: {dientPid, |ogon, UserNane}

%B0 Repl y {messenger, stop, user_exists_at_other_node} stops the client
%80 Repl y {messenger, |ogged_on} |ogon was successful

986

%80 To server: {CientPid, |ogoff}

%®80 Repl y: {nmessenger, |ogged off}

986

%80 To server: {CientPid, |ogoff}

%86 Repl y: no reply

986

%80 To server: {dientPid, nessage_to, ToNane, Message} send a nessage
%80 Repl y: {nmessenger, stop, you_are_not_| ogged_on} stops the client
%®0 Repl y: {messenger, receiver_not_found} no user with this nane | ogged on
%mB0 Repl y: {nmessenger, sent} Message has been sent (but no guarantee)
986

%80 To client: {nessage_from Nane, Message},

986

%8 Prot ocol between the "commands" and the client

986

%B0 St art ed: nmessenger: client (Server _Node, Nane)

%8B To client: |ogoff

%m®0 To client: {nessage_to, ToNane, Message}

986

%®06 Confi guration: change the server_node() function to return the

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 105

4.3 Concurrent Programming

%@ name of the node where the nessenger server runs

- modul e(messenger) .
-export([start_server/0, server/1, logon/1l, |ogoff/0, nessage/2, client/2]).

%86 Change the function below to return the name of the node where the
%86 nessenger server runs
server_node() ->

messenger @i | | .

%m®o This is the server process for the "messenger"

%P6 the user list has the format [{CientPidl, Nanmel},{CdientPid22, Name2},...]
server (User _List) ->

receive

{From |ogon, Nane} ->
New User List = server_l ogon(From Nanme, User List),
server (New _User_List);

{From |ogoff} ->
New User List = server_logoff(From User List),
server (New User_List);

{From nessage_to, To, Message} ->
server_transfer(From To, Message, User_List),
io:format("list is now ~p~n", [User_List]),
server (User _List)

end.

%086 Start the server
start_server() ->
regi ster (messenger, spawn(nessenger, server, [[]])).

%®06 Server adds a new user to the user list
server_| ogon(From Nane, User List) ->

%6 check if | ogged on anywhere el se

case |ists: keymenber (Nanme, 2, User_List) of

true ->
From ! {messenger, stop, user_exists_at_other_node}, % eject |ogon
User List;
fal se ->
From ! {messenger, |ogged_on},
[{From Nane} | User_List] % dd user to the |ist

end.

%80 Server del etes a user fromthe user |ist
server_| ogof f (From User_List) ->
lists: keydelete(From 1, User_List).

%MB06 Server transfers a nessage between user
server_transfer(From To, Message, User_List) ->
%6 check that the user is |ogged on and who he is
case |ists: keysearch(From 1, User_List) of
fal se ->
From ! {messenger, stop, you_are_not_| ogged_on};
{val ue, {From Nane}} ->
server_transfer(From Name, To, Message, User_Li st)
end.
%80 | f the user exists, send the nmessage
server_transfer(From Nanme, To, Message, User_List) ->
%% Fi nd the receiver and send the nessage
case |lists: keysearch(To, 2, User_List) of
fal se ->
From ! {messenger, receiver_not_found};
{val ue, {ToPid, To}} ->
ToPid ! {nessage_from Nane, Message},

106 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

From! {nessenger, sent}
end.

%86 User Commands
| ogon(Nane) ->
case whereis(nmess_client) of
undefined ->
regi ster(mess_client,
spawn(messenger, client, [server_node(), Nane]));
_ -> already_| ogged_on
end.

| ogoff() ->
nmess_client ! |ogoff.

message(ToNane, Message) ->
case whereis(mess_client) of % Test if the client is running
undefined ->
not _| ogged_on;
_ ->ness_client ! {message_to, ToNane, Message},
ok
end.

%mB0 The client process which runs on each server node
client(Server_Node, Nane) ->
{nmessenger, Server_Node} ! {self(), |ogon, Nane},
await_result(),
client(Server_Node).

client(Server_Node) ->
receive
| ogoff ->
{nmessenger, Server_Node} ! {self(), logoff},
exit(normal);
{nmessage_to, ToNanme, Message} ->
{nessenger, Server_Node} ! {self(), message_to, ToNane, Message},
await_result();
{nessage_from FromNane, Message} ->
io:format ("Message from ~p: ~p~n", [FronmNane, Message])
end,
client(Server_Node).

%WBowait for a response fromthe server
await_result() ->
receive
{nessenger, stop, Wiy} -> % Stop the client
io:format ("~p~n", [Wy]),
exit(normal);
{nmessenger, What} -> % Nornal response
io:format ("~p~n", [Wat])
end.

To use this program, you need to:

e Configuretheser ver _node() function.
» Copy the compiled code (messenger . beam to the directory on each computer where you start Erlang.

In the following example using this program, nodes are started on four different computers. If you do not have that
many machines available on your network, you can start several nodes on the same machine.

Four Erlang nodes are started up: messenger@super, c1@bilbo, c2@kosken, c3@gollum.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 107

4.3 Concurrent Programming

First the server at messenger@super is started up:

(messenger @uper) 1> nmessenger:start_server().
true

Now Peter logs on at c1@hilbo:

(cl1@il bo) 1> messenger: | ogon(peter).
true
| ogged_on

Jameslogs on at c2@kosken:

(c2@osken) 1> nmessenger: | ogon(j anes)
true
| ogged_on

And Fred logs on at c3@gollum:

(c3@ol | um 1> nmessenger: | ogon(fred).
true
| ogged_on

Now Peter sends Fred a message:

(cl1@il bo) 2> messenger: nessage(fred, "hello").
ok
sent

Fred receives the message and sends a message to Peter and logs off:

Message from peter: "hello"

(c3@ol | um) 2> nessenger: nessage(peter, "go away, |'m busy")
ok

sent

(c3@ol | um) 3> nmessenger: | ogoff ()

| ogof f

James now tries to send a message to Fred:

(c2@osken) 2> nessenger: nessage(fred, "peter doesn't |ike you").
ok
recei ver_not _f ound

But thisfails as Fred has already logged off.
First let uslook at some of the new concepts that have been introduced.

108 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

There are two versions of the ser ver _t r ansf er function: one with four arguments (ser ver _transfer/ 4)
and onewith five (ser ver _tr ansf er/5). These are regarded by Erlang as two separate functions.

Notice how to write the ser ver function so that it calls itself, through ser ver (User _Li st), and thus creates
aloop. The Erlang compiler is "clever" and optimizes the code so that this really is a sort of loop and not a proper
function call. But this only works if there is no code after the call. Otherwise, the compiler expects the call to return
and make a proper function call. This would result in the process getting bigger and bigger for every loop.

Functionsinthel i st s moduleareused. Thisisavery useful module and astudy of the manual page isrecommended
(erl -man lists).lists: keymenber (Key, Position, Li sts) looksthrough alist of tuples and looks
at Posi tionineachtupleto seeif itisthe same asKey. Thefirst element is position 1. If it finds a tuple where the
element at Posi ti on isthesameasKey, it returnst r ue, otherwisef al se.

3> |ists: keymenber(a, 2, [{x,y,z},{b,b,b},{b,a,c},{qg,r,s}])
true

4> |ists: keymenber (p, 2, [{x,y,z},{b,b,b},{b,a,c},{qg,r,s}])
fal se

lists: keydel et e worksin the same way but deletes the first tuple found (if any) and returns the remaining list:

5> |ists: keydelete(a, 2, [{x,y,z},{b,b,b}, {b,a,c},{q,r,s}]).
[{x,y,z},{b, b, b}, {q,r,s}]

|ists: keysearchislikel i sts: keynenber, butitreturns{val ue, Tupl e_Found} ortheatomf al se.
There are many very useful functionsinthel i st s module.

An Erlang process (conceptually) runs until it doesar ecei ve and there is no message which it wants to receivein
the message queue. "conceptually" is used here because the Erlang system shares the CPU time between the active
processes in the system.

A process terminates when there is nothing more for it to do, that is, the last function it calls ssimply returns and does
not call another function. Another way for a process to terminateisfor it to call exi t/ 1. Theargumenttoexi t/ 1
has a special meaning, which is discussed later. In thisexample, exi t (nor mal) isdone, which has the same effect
as a process running out of functionsto call.

The BIF wher ei s(Regi st er edNane) checks if a registered process of name Regi st er edNane exists. If it
exists, the pid of that processis returned. If it does not exist, the atom undef i ned isreturned.

Y ou should by now be able to understand most of the code in the messenger-module. Let us study one case in detail:
amessage is sent from one user to another.

Thefirst user "sends" the message in the example above by:

messenger : nessage(fred, "hello")

After testing that the client process exists:

wher ei s(nmess_cl i ent)

And amessageissenttonmess_cl i ent:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 109

4.3 Concurrent Programming

mess_client ! {nmessage to, fred, "hello"}

The client sends the message to the server by:

{messenger, nessenger @uper} ! {self(), nessage_to, fred, "hello"},

And waits for areply from the server.

The server receives this message and calls:

server_transfer(From fred, "hello", User_List),

This checks that the pid Fr omisinthe User _Li st :

l'i sts: keysearch(From 1, User_List)

If keysear ch returnsthe atom f al se, some error has occurred and the server sends back the message:

From ! {nmessenger, stop, you_are_not_ | ogged_on}
Thisisreceived by the client, whichinturn doesexi t (nor mal) andterminates. If keysear ch returns{ val ue,

{ From Nane}} itiscertain that the user islogged on and that his name (peter) isin variable Nane.
Let usnow call:

server_transfer(From peter, fred, "hello", User_List)

Notice that asthisisser ver _t r ansf er/ 5, it is not the same as the previous function ser ver _t r ansf er/ 4.
Another keysear ch isdoneon User _Li st to find the pid of the client corresponding to fred:

lists: keysearch(fred, 2, User_List)

This time argument 2 is used, which is the second element in the tuple. If this returns the atom f al se, fred is not
logged on and the following message is sent:

From ! {messenger, receiver_not_found};

Thisisreceived by the client.
If keysear ch returns:

{value, {ToPid, fred}}

110 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.4 Robustness

The following message is sent to fred's client:

ToPid ! {nessage_from peter, "hello"},

The following message is sent to peter's client:

From ! {nessenger, sent}

Fred's client receives the message and printsiit:

{message_from peter, "hello"} ->

i o:format ("Message from ~p: ~p~n", [peter, "hello"])

Peter's client receives the messageintheawai t _r esul t function.

4.4 Robustness

Several things are wrong with the messenger example in A Larger Example. For example, if a node where a user is
logged on goes down without doing alogoff, the user remains in the server'sUser _Li st , but the client disappears.
This makesit impossible for the user to log on again as the server thinks the user already is logged on.

Or what happensif the server goesdown in the middle of sending amessage, leaving the sending client hanging forever

intheawai t _resul t function?

4.4.1 Time-outs

Before improving the messenger program, let us look at some general principles, using the ping pong program as an
example. Recall that when "ping" finishes, it tells "pong" that it has done so by sending the atom f i ni shed asa
message to "pong" so that "pong” can aso finish. Another way to let "pong” finish is to make "pong" exit if it does
not receive a message from ping within a certain time. This can be done by adding a time-out to pong as shown in

the following example:

- modul e(tut 19).

-export([start_ping/1, start_pong/0, ping/2, pong/0]).

pi ng(0, Pong_Node) ->
io:format ("ping finished~n", []);

pi ng(N, Pong_Node) ->
{pong, Pong_Node} ! {ping, self()},
recei ve
pong - >
io:format ("Ping recei ved pong~n", [])
end,
ping(N - 1, Pong_Node).

pong() ->
recei ve
{ping, Ping_PID ->
i o:format ("Pong received ping~n", []),
Ping_PID ! pong,

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 111

4.4 Robustness

pong()
after 5000 ->

io:format ("Pong tined out~n", [])
end

start_pong() ->
regi ster(pong, spawn(tutl19, pong, [])).

start_pi ng(Pong_Node) ->
spawn(tut 19, ping, [3, Pong_Node]).

After this is compiled and the file t ut 19. beamis copied to the necessary directories, the following is seen on
(pong@kosken):

(pong@osken) 1> tut19: start_pong()
true

Pong recei ved ping

Pong recei ved ping

Pong recei ved ping

Pong tined out

And the following is seen on (ping@gollum):

(pi ng@ol | um) 1> tut 19: start_pi ng(pong@osken) .
<0. 36. 0>

Pi ng recei ved pong

Pi ng recei ved pong

Pi ng recei ved pong

ping finished

Thetime-out isset in:

pong() S
receive
{ping, Ping PID} ->
i o:format ("Pong received ping~n", []),
Ping_PID ! pong

pong()
after 5000 ->

io:format ("Pong tined out~n", [])
end

Thetime-out (af t er 5000) isstarted whenr ecei ve isentered. Thetime-out iscanceledif { pi ng, Pi ng_PI D}
is received. If {pi ng, Pi ng_PI D} is not received, the actions following the time-out are done after 5000
milliseconds. af t er must belastinther ecei ve, that is, preceded by all other message reception specificationsin
ther ecei ve. Itisalso possible to call afunction that returned an integer for the time-out:

after pong_tinmeout() ->

In general, there are better ways than using time-outs to supervise parts of adistributed Erlang system. Time-outs are
usually appropriate to supervise external events, for example, if you have expected a message from some external

112 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.4 Robustness

system within a specified time. For example, atime-out can be used to log a user out of the messenger system if they
have not accessed it for, say, ten minutes.

4.4.2 Error Handling

Before going into details of the supervision and error handling in an Erlang system, let us see how Erlang processes
terminate, or in Erlang terminology, exit.

A process which executes exi t (nor mal) or simply runs out of things to do has anormal exit.

A process which encounters aruntime error (for example, divide by zero, bad match, trying to call afunction that does
not exist and so on) exits with an error, that is, has an abnormal exit. A process which executes exit(Reason) where
Reason isany Erlang term except the atom nor nal , also has an abnormal exit.

An Erlang process can set up linksto other Erlang processes. If aprocess callslink(Other_Pid) it setsup abidirectional
link between itself and the process called & her _Pi d. When a process terminates, it sends something called asignal
to al the processesit has links to.

The signal carries information about the pid it was sent from and the exit reason.
The default behaviour of aprocess that receives anormal exit is to ignore the signal.
The default behaviour in the two other cases (that is, abnormal exit) aboveisto:

e Bypassal messagesto the receiving process.
» Kill the receiving process.
» Propagate the same error signal to the links of the killed process.

In thisway you can connect al processesin atransaction together using links. If one of the processes exits abnormally,
all the processesin the transaction are killed. Asit is often wanted to create a process and link to it at the same time,
thereis a specia BIF, spawn_link that does the same as spawn, but also creates alink to the spawned process.

Now an example of the ping pong example using links to terminate "pong":

- modul e(t ut 20) .
-export([start/1, ping/2, pong/0]).

pi ng(N, Pong_Pid) ->
I'i nk(Pong_Pi d),
pi ngl(N, Pong_Pid).

pi ngl(0, _) ->
exit(ping);

pi ngl(N, Pong_Pid) ->
Pong_Pid ! {ping, self()},
recei ve
pong ->
io:format ("Ping recei ved pong~n", [])
end,
pingl(N - 1, Pong_Pid).

pong() ->
recei ve
{ping, Ping_PID} ->
i o:format ("Pong received ping~n", []),
Ping_PID ! pong,
pong()
end.

start (Pi ng_Node) ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 113

4.4 Robustness

PongPl D = spawn(tut20, pong, []),
spawn(Pi ng_Node, tut20, ping, [3, PongPlD]).

(s1@ill)3> tut20:start(s2@osken).
Pong recei ved ping

<3820. 41. 0>

Pi ng recei ved pong

Pong recei ved ping

Pi ng recei ved pong

Pong recei ved ping

Pi ng recei ved pong

Thisis a dlight modification of the ping pong program where both processes are spawned from the samestart/ 1
function, and the "ping" process can be spawned on a separate node. Notice the use of the | i nk BIF. "Ping" calls
exi t (pi ng) when it finishes and this causes an exit signal to be sent to "pong", which also terminates.

It is possible to modify the default behaviour of a process so that it does not get killed when it receives abnormal
exit signals. Instead, all signals are turned into normal messagesontheformat {' EXI T' , Fr onPI D, Reason} and
added to the end of the receiving process message queue. This behaviour is set by:

process flag(trap_exit, true)

There are several other process flags, see erlang(3). Changing the default behaviour of aprocessin thisway is usually
not donein standard user programs, but is|eft to the supervisory programsin OTP. However, the ping pong program

ismodified to illustrate exit trapping.

- modul e(tut 21).
-export([start/1, ping/2, pong/0]).

pi ng(N, Pong_Pid) ->
I'i nk(Pong_Pi d),
pi ngl(N, Pong_Pid).

pi ngl(0, _) ->
exit(ping);

pi ngl(N, Pong_Pid) ->
Pong_Pid ! {ping, self()}
recei ve
pong - >
io:format ("Ping received pong~n", [])
end
pi ngl(N - 1, Pong_Pid).

pong() ->
process_flag(trap_exit, true),

pong1().

pongl() ->
recei ve
{ping, Ping_PID ->
io:format ("Pong received ping~n", []),
Ping_PID ! pong
pongl();
{"EXIT', From Reason} ->

114 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.4 Robustness

io:format ("pong exiting, got ~p~n", [{'EXIT', From Reason}])
end.

start (Pi ng_Node) ->
PongPl D = spawn(tut21, pong, []),
spawn(Pi ng_Node, tut2l, ping, [3, PongPlD]).

(s1@ill)1> tut2l:start(s2@ol | un).
<3820. 39. 0>

Pong recei ved ping

Pi ng recei ved pong

Pong recei ved ping

Pi ng recei ved pong

Pong recei ved ping

Pi ng recei ved pong

pong exiting, got {'EX T, <3820.39.0>, pi ng}

4.4.3 The Larger Example with Robustness Added

Let usreturn to the messenger program and add changes to make it more robust:

%86 Message passing utility.
%8 User interface:
%86 | ogi n(Nane)

%806 One user at a tine can log in fromeach Erlang node in the
%806 system messenger: and choose a suitable Nane. If the Nane
%806 is already | ogged in at another node or if someone else is
%806 al ready | ogged in at the sane node, login will be rejected
%806 with a suitable error nmessage.

%86 | ogof f ()

%806 Logs of f anybody at that node

%86 message(ToNane, Message)

%86 sends Message to ToNane. Error nessages if the user of this
%806 function is not |logged on or if ToNanme is not |ogged on at
%806 any node.

986

%86 One node in the network of Erlang nodes runs a server which maintains

%806 dat a about the | ogged on users. The server is registered as "messenger"
%86 Each node where there is a user |logged on runs a client process registered
%86 as "nmess_client"

986

%6 Prot ocol between the client processes and the server

986

%86 To server: {CientPid, |ogon, UserNane}

%86 Repl y {messenger, stop, user_exists_at_other_node} stops the client
%86 Repl y {messenger, |ogged_on} |ogon was successful

986

%86 When the client term nates for some reason

%86 To server: {'EXIT', CientPid, Reason}

986

%86 To server: {CientPid, nessage_to, ToNanme, Message} send a nmessage
%80 Repl y: {messenger, stop, you_are_not_| ogged_on} stops the client
%M@6 Repl y: {messenger, receiver_not_found} no user with this name | ogged on
%m0 Repl y: {messenger, sent} Message has been sent (but no guarantee)

%806

%®86 To client: {nessage_from Nanme, Message},

%806

% 8% Pr ot ocol between the "commands" and the client
R

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 115

4.4 Robustness

%86

%B06 St art ed: nmessenger: client (Server _Node, Nane)

9%®%6 To client: |ogoff

%®0 To client: {nessage_to, ToNane, Message}

%886

% @06 Confi guration: change the server_node() function to return the
%@ name of the node where the nessenger server runs

- modul e(messenger) .
-export([start_server/0, server/O,
l ogon/ 1, |ogoff/0, message/2, client/2]).

%86 Change the function below to return the name of the node where the
%86 nessenger server runs
server_node() ->

messenger @Guper .

%m®6o This is the server process for the "messenger"
%P6 the user list has the format [{CientPidl, Namel},{CdientPid22, Name2},...]
server() ->

process_flag(trap_exit, true),

server([]).

server (User _List) ->
receive

{From |ogon, Nane} ->
New User List = server_l ogon(From Nanme, User List),
server (New User_List);

{"EXIT", From _} ->
New User List = server_logoff(From User List),
server (New User_List);

{From nessage_to, To, Message} ->
server_transfer(From To, Message, User_List),
io:format("list is now ~p~n", [User_List]),
server (User _List)

end.

%086 Start the server
start_server() ->
regi ster (nmessenger, spawn(nessenger, server, [])).

%®6 Server adds a new user to the user list
server_| ogon(From Nane, User List) ->

%6 check if | ogged on anywhere el se

case |ists: keymenber (Nanme, 2, User_List) of

true ->
From ! {messenger, stop, user_exists_at_other_node}, % eject |ogon
User List;
fal se ->
From! {messenger, |ogged_on},
I'i nk(From,
[{From Nane} | User_List] %dd user to the |ist

end.

%80 Server del etes a user fromthe user |ist
server_| ogof f (From User_List) ->
lists: keydelete(From 1, User_List).

%MB06 Server transfers a nessage between user
server_transfer(From To, Message, User_List) ->
%6 check that the user is |ogged on and who he is
case |ists: keysearch(From 1, User_List) of
fal se ->
From ! {messenger, stop, you_are_not_| ogged_on};

116 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.4 Robustness

{value, {_, Nane}} ->
server_transfer(From Name, To, Message, User_List)
end.

%801 f the user exists, send the nmessage
server_transfer(From Nanme, To, Message, User_List) ->
%% Fi nd the receiver and send the nessage
case |lists: keysearch(To, 2, User_List) of
fal se ->
From ! {messenger, receiver_not_found};
{val ue, {ToPid, To}} ->
ToPid ! {nessage_from Nanme, Message},
From! {nessenger, sent}
end.

%86 User Commands
| ogon(Nane) ->
case whereis(nmess_client) of
undefined ->
regi ster(mess_client,
spawn(messenger, client, [server_node(), Nane]));
_ -> already_| ogged_on
end.

| ogoff() ->
nmess_client ! |ogoff.

message(ToNane, Message) ->
case whereis(nmess_client) of % Test if the client is running
undefined ->
not _| ogged_on;
_ ->ness_client ! {message_to, ToNane, Message},
ok
end.

%m®6 The client process which runs on each user node
client(Server_Node, Nane) ->
{nmessenger, Server_Node} ! {self(), |ogon, Nane},
await_result(),
client(Server_Node).

client(Server_Node) ->
receive
| ogoff ->
exit(normal);
{nmessage_to, ToNane, Message} ->
{nmessenger, Server_Node} ! {self(), message to, ToNane, Message},
await_result();
{nessage_from FromNane, Message} ->
io:format ("Message from ~p: ~p~n", [FronmNane, Message])
end,
client(Server_Node).

%WBowait for a response fromthe server
await_result() ->
receive
{nessenger, stop, Wiy} -> % Stop the client
io:format ("~p~n", [Wy]),
exit(normal);
{nmessenger, What} -> % Nornal response
io:format ("~p~n", [Wat])
after 5000 ->
io:format ("No response from server~n", []),
exit(timeout)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 117

4.5 Records and Macros

end.

The following changes are added:

The messenger server traps exits. If it receives an exit signal, {' EXI T' , Fr om Reason}, this means that a client
process has terminated or is unreachable for one of the following reasons:

» Theuser haslogged off (the "logoff" message is removed).

* The network connection to the client is broken.

» The node on which the client process resides has gone down.
e Theclient processes has done someillegal operation.

If an exit signal is received as above, the tuple { Fr om Nane} is deleted from the servers User _Li st using the
server _| ogof f function. If the node on which the server runs goes down, an exit signal (automatically generated
by the system) is sent to all of the client processes: {' EXI T' , Messenger Pl D, noconnect i on} causing al the
client processesto terminate.

Also, atime-out of five seconds has been introduced intheawai t _r esul t function. That is, if the server does not
reply within five seconds (5000 ms), the client terminates. Thisis only needed in the logon sequence before the client
and the server are linked.

An interesting case is if the client terminates before the server links to it. This is taken care of because linking to a
non-existent process causes an exit signal, {' EXI T' , Fr om nopr oc}, to be automatically generated. Thisis asif
the process terminated immediately after the link operation.

4.5 Records and Macros

Larger programs are usually written as a collection of files with awell-defined interface between the various parts.

4.5.1 The Larger Example Divided into Several Files
To illustrate this, the messenger example from the previous section is divided into the following five files:
« mess_config. hrl

Header file for configuration data
e mess_interface. hrl

Interface definitions between the client and the messenger
e user _interface.erl

Functions for the user interface
e ness_client.erl

Functions for the client side of the messenger
e ness_server.erl

Functions for the server side of the messenger

While doing this, the message passing interface between the shell, the client, and the server is cleaned up and isdefined
using records. Also, macros are introduced:

%®% - --Fl LE mess_config. hrl----

%8 Configure the | ocation of the server node,
-define(server_node, nessenger @uper).

118 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.5 Records and Macros

%86 - - - END FI LE- - - -

%@6 - --FI LE nmess_interface. hrl----

%80 Message interface between client and server and client shell for
%86 nessenger program

%Bedvkessages fromClient to server received in server/1 function.
-record(l ogon, {client_pid, usernane}).

-record(nessage, {client_pid, to_nane, nessage}).

%Weo{' EXIT', CientPid, Reason} (client term nated or unreachabl e.

%86 Messages from Server to Client, received in await_result/0 function
-record(abort_client, {nessage}).

%86 Messages are: user_exi sts_at_ot her_node,

%80 you_are_not _| ogged_on

-record(server_reply, {nessage}).

%806 Messages are: | ogged_on

%80 recei ver _not _found

%80 sent (Message has been sent (no guarantee)

%80 Messages from Server to Client received in client/1 function
-record(nessage_from {from nane, nessage}).

%86 Messages fromshell to Cient received in client/1 function
%86 spawn(ness_client, client, [server_node(), Nane])
-record(nessage_to, {to_name, nessage}).

9%8% | ogof f

%86 - - - END FI LE- - - -

%M®6 - - - FI LE user _interface.erl----

%B80 User interface to the nmessenger program
%806 | ogi n(Nane)

9% One user at a tinme can log in fromeach Erlang node in the
%80 system nessenger: and choose a suitable Nane. If the Nane
%80 is already | ogged in at another node or if someone else is
%80 already | ogged in at the sane node, login will be rejected
%80 with a suitable error nessage.

%86 | ogof f ()
%80 Logs of f anybody at that node

%80 message(ToNane, Message)

%80 sends Message to ToNane. Error nessages if the user of this
9% function is not |ogged on or if ToNanme is not | ogged on at
%80 any node.

-modul e(user _i nterface).
-export([logon/1, |ogoff/0, nessage/2]).
-include("ness_interface. hrl").
-include("mess_config.hrl").

| ogon(Nane) ->
case whereis(nmess_client) of
undefined ->
regi ster(mess_client,
spawn(nmess_client, client, [?server_node, Nane]));
_ -> already_| ogged_on
end.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 119

4.5 Records and Macros

| ogoff() ->
nmess_client ! |ogoff.

message(ToNane, Message) ->
case whereis(nmess_client) of % Test if the client is running
undefined ->
not _| ogged_on;
_ ->ness_client | #message_to{to_nane=ToNane, nessage=Message},
ok
end.

%86 - - - END FI LE- - - -

%M®6 ---FILE mess_client.erl----
%m®06 The client process which runs on each user node

-modul e(ness_client).
-export([client/2]).
-include("ness_interface. hrl").

client(Server_Node, Nane) ->
{nmessenger, Server_Node} ! #l ogon{client_pid=self(), usernane=Nane},
await_result(),
client(Server_Node).

client(Server_Node) ->
receive
| ogoff ->
exit(normal);
#nmessage_t o{t o_nane=ToNanme, nessage=Message} ->
{nmessenger, Server_Node} !
#nmessage{client_pid=self(), to_nane=ToNane, nessage=Message},
await_result();
{nmessage_from FromNane, Message} ->
io:format ("Message from ~p: ~p~n", [FronmNane, Message])
end,
client(Server_Node).

%WBowait for a response fromthe server
await_result() ->
receive
#abort _cl i ent { nessage=Wy} ->
io:format ("~p~n", [Wy]),
exit(normal);
#server _repl y{nessage=\Wat} ->
io:format ("~p~n", [Wat])
after 5000 ->
io:format ("No response from server~n", []),
exit(timeout)
end.

%86 ---END FI LE-- -

9%®% - - - FI LE mess_server.erl----
%Bo This is the server process of the nessenger service

- modul e(mess_server).

120 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.5 Records and Macros

-export([start_server/0, server/0]).
-include("ness_interface. hrl").

server() ->
process_flag(trap_exit, true),
server([]).

9%Bbthe user list has the format [{CientPidl, Namel},{CdientPid22, Nanme2},...]

server (User _List) ->
io:format ("User list = ~p~n", [User_List]),
receive

#l ogon{cl i ent _pi d=From user nane=Nane} ->
New User List = server_l ogon(From Nane, User List),
server (New _User_List);

{"EXIT", From _} ->
New User List = server_logoff(From User List),
server (New _User_List);

#nmessage{client _pi d=From to_nane=To, nessage=Message} ->
server_transfer(From To, Message, User_List),
server (User _List)

end.

%86 Start the server
start_server() ->
regi ster (nmessenger, spawn(?MODULE, server, [])).

%®0 Server adds a new user to the user list
server _| ogon(From Nane, User List) ->

%6 check if | ogged on anywhere el se

case |ists: keymenber (Nanme, 2, User_List) of

true ->
From ! #abort _client{message=user_exi sts_at_ot her _node},
User _List;
fal se ->
From ! #server_repl y{message=Il ogged_on},
I'i nk(From,
[{From Nane} | User_List] %dd user to the |ist

end.

%806 Server del etes a user fromthe user |ist
server_| ogof f (From User_List) ->
lists: keydelete(From 1, User_List).

%B0 Server transfers a nessage between user
server_transfer(From To, Message, User_List) ->
%% check that the user is |logged on and who he is
case |ists: keysearch(From 1, User_List) of
fal se ->
From ! #abort _client{message=you_are_not | ogged_on};
{value, {_, Nane}} ->
server_transfer(From Name, To, Message, User_List)
end.
%801 f the user exists, send the nessage
server_transfer(From Nanme, To, Message, User_List) ->
%% Fi nd the receiver and send the nessage
case |lists: keysearch(To, 2, User_List) of
fal se ->
From ! #server _repl y{nessage=recei ver_not _found};
{val ue, {ToPid, To}} ->
ToPid ! #nessage_from{from nane=Nane, nessage=Message},
From ! #server_repl y{ message=sent}
end.

%86 ---END FI LE-- -

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 121

4.5 Records and Macros

4.5.2 Header Files
As shown above, somefiles have extension . hr | . These are header filesthat areincludedinthe. er | filesby:
-incl ude("File_Name").

for example:

-include("nmess_interface. hrl").

Inthe case abovethefileisfetched from the samedirectory asall the other filesin the messenger example. (* manual*).

.hrl files can contain any valid Erlang code but are most often used for record and macro definitions.

4.5.3 Records
A record is defined as:

-record(nane_of record, {field nanel, field nane2, field_nanme3, 1).

For example:

-record(nessage_to, {to_nanme, nessage}).

Thisisequivalent to:

{nessage_to, To_Nanme, Message}

Creating arecord is best illustrated by an example:

#nmessage_t o{ nessage="hel | 0", to_nanme=fred)

This creates:

{nmessage_to, fred, "hello"}

Notice that you do not have to worry about the order you assign values to the various parts of the records when you
create it. The advantage of using recordsisthat by placing their definitionsin header files you can conveniently define
interfaces that are easy to change. For example, if you want to add anew field to the record, you only have to change
the code where the new field is used and not at every place the record is referred to. If you leave out a field when
creating arecord, it gets the value of the atom undef i ned. (*manual*)

Pattern matching with recordsis very similar to creating records. For example, insideacase orr ecei ve:

122 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.5 Records and Macros

#nmessage_t o{t o_nane=ToNanme, nessage=Message} ->

Thisisthe same as:

{message_t o, ToNane, Message}

4.5.4 Macros

Another thing that has been added to the messenger isamacro. Thefileness_confi g. hr| containsthe definition:

% B0 Configure the |location of the server node
-define(server_node, nessenger @uper) .

Thisfileisincludedinmess_server. erl:

-include("mess_config.hrl").

Every occurrence of ?ser ver _node inness_server. erl isnow replaced by nessenger @uper .

A macro is aso used when spawning the server process:

spawn(?MODULE, server, [])

Thisis a standard macro (that is, defined by the system, not by the user). ?MODULE is always replaced by the name
of the current module (that is, the - nodul e definition near the start of the file). There are more advanced ways of
using macros with, for example, parameters (* manual*).

Thethree Erlang (. er |) filesin the messenger example areindividually compiled into object codefile (. bean). The
Erlang system loads and links these files into the system when they are referred to during execution of the code. In
this case, they are simply put in our current working directory (that is, the place you have done "cd" to). There are
ways of putting the . beamfilesin other directories.

In the messenger example, no assumptions have been made about what the message being sent is. It can be any valid
Erlang term.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 123

5.1 Introduction

5 Erlang Reference Manual

5.1 Introduction

This section is the Erlang reference manual. It describes the Erlang programming language.

5.1.1 Purpose

Thefocusof the Erlang reference manual ison thelanguageitself, not theimplementation of it. Thelanguage constructs
are described in text and with examples rather than formally specified. Thisisto make the manual more readable. The
Erlang reference manual is not intended as a tutorial.

Information about implementation of Erlang can, for example, be found, in the following:
e SystemPrinciples
Starting and stopping, boot scripts, code loading, error logging, creating target systems
» Efficiency Guide
Memory consumption, system limits
* ERTSUser'sGuide
Crash dumps, drivers

5.1.2 Prerequisites

It is assumed that the reader has done some programming and is familiar with concepts such as data types and
programming language syntax.

5.1.3 Document Conventions

In this section, the following terminology is used:

» A sequenceisone or more items. For example, a clause body consists of a sequence of expressions. This means
that there must be at least one expression.

e Alistisany number of items. For example, an argument list can consist of zero, one, or more arguments.
If afeature has been added recently, in Erlang 5.0/0TP R7 or later, thisis mentioned in the text.

5.1.4 Complete List of BIFs

For acomplete list of BIFs, their arguments and return values, see erlang(3) manual pagein ERTS.

5.1.5 Reserved Words

The following are reserved wordsin Erlang:

after and andal so band begi n bnot bor bsl bsr bxor case catch cond div end fun
if let not of or orelse receive remtry when xor

124 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Character Set and Source File Encoding

5.2 Character Set and Source File Encoding

5.2.1 Character Set

Since Erlang 4.8/0TP R5A, the syntax of Erlang tokensis extended to allow the use of the full 1SO-8859-1 (Latin-1)
character set. Thisis noticeable in the following ways:

e All the Latin-1 printable characters can be used and are shown without the escape backslash convention.
e Atomsand variables can use al Latin-1 |etters.

Octal Decimal Class
200 - 237 128 - 159 Control characters
240 - 277 160 - 191 - ¢ | Punctuation characters
300 - 326 192 - 214 A-0 Uppercase letters

327 215 X Punctuation character
330 - 336 216 - 222 a-p Uppercase letters
337 - 366 223 - 246 k-6 Lowercase letters

367 247 + Punctuation character
370- 377 248 - 255 g-y Lowercase letters

Table 2.1: Character Classes

In Erlang/OTP R16B the syntax of Erlang tokens was extended to handle Unicode. The support is limited to string
literals and comments. Atoms, module names, and function names are restricted to the | SO-L atin-1 range. More about
the usage of Unicode in Erlang source files can be found in STDLIB's User's Guide.

5.2.2 Source File Encoding

The Erlang source file encodi ng is selected by a comment in one of the first two lines of the source file. The first
string that matches the regular expression codi ng\ s*[: =]\ s* ([- a- zA- Z0- 9]) + selects the encoding. If the
matching string is an invalid encoding, it isignored. The valid encodings are Lat i n- 1 and UTF- 8, where the case
of the characters can be chosen freely.

The following example selects UTF-8 as default encoding;:

%hb codi ng: utf-8

Two more examples, both selecting Latin-1 as default encoding:

%6 For this file we have chosen encoding = Latin-1

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 125

5.3 Data Types

%Wh-*- coding: latin-1 -*-

The default encoding for Erlang source filesis changed from Latin-1 to UTF-8 since Erlang/OTP 17.0.

5.3 Data Types

Erlang provides a number of datatypes, which are listed in this section.

5.3.1 Terms
A piece of data of any datatypeis called aterm.

5.3.2 Number

There are two types of numeric literals, integers and floats. Besides the conventional notation, there are two Erlang-
specific notations:

e S$char
ASCII value or unicode code-point of the character char .

* base#val ue
Integer with the base base, that must be an integer in the range 2..36.
In Erlang 5.2/0OTP R9B and earlier versions, the allowed rangeis 2..16.

Examples:

1> 42.

42

2> $A.

65

3> $\n.
10

4> 2#101.
5

5> 16#1f.
31

6> 2. 3.
2.3

7> 2. 3e3.
2.3e3

8> 2. 3e-3.
0. 0023

5.3.3 Atom

An atom is aliteral, a constant with name. An atom is to be enclosed in single quotes () if it does not begin with a
lower-case letter or if it contains other characters than alphanumeric characters, underscore (), or @.

Examples:

hel | o
phone_numnber

' Monday’

' phone nunber’

126 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Data Types

5.3.4 Bit Strings and Binaries

A bit string is used to store an area of untyped memory.

Bit strings are expressed using the bit syntax.

Bit strings that consist of a number of bitsthat are evenly divisible by eight, are called binaries
Examples:

1> <<10, 20>>
<<10, 20>>

2> <<" ABC'>>
<<" ABC' >>

1> <<1:1, 0: 1>>
<<2: 2>>

For more examples, see Programming Examples.

5.3.5 Reference

A reference isaterm that is unique in an Erlang runtime system, created by calling make_r ef / 0.

5.3.6 Fun

A funisafunctional object. Funs make it possible to create an anonymous function and pass the function itself -- not
its name -- as argument to other functions.

Example:

1> Funl = fun (X) -> X+1 end
#Fun<er| _eval . 6. 39074546>

2> Funl(2).

3

Read more about funsin Fun Expressions. For more examples, see Programming Examples.

5.3.7 Port Identifier

A port identifier identifies an Erlang port.

open_port/ 2, whichisused to create ports, returns avalue of this data type.
Read more about portsin Ports and Port Drivers.

5.3.8 Pid
A process identifier, pid, identifies a process.
The following BIFs, which are used to create processes, return values of this data type:

e spawn/1,2,3,4

e spawn_link/1,2, 3,4
e spawn_opt/4

Example:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 127

5.3 Data Types

1> spawn(m f, []).
<0.51. 0>

In the following example, the BIF sel f () returnsthe pid of the calling process:

-nmodul e(m) .
-export ([l oop/0])

| oop() ->
recei ve
who_are_you ->
io:format ("l am ~p~n", [self()]),

| oop()
end

1> P = spawmn(m loop, [])
<0. 58. 0>

2> P ! who_are_you

I am <0. 58. 0>

who_ar e_you

Read more about processes in Processes.

5.3.9 Tuple

A tupleis acompound data type with afixed number of terms:

{Termt, ..., Ter mi\}

Each term Ter min the tupleis called an element. The number of elementsis said to be the size of the tuple.
There exists anumber of BIFs to manipulate tuples.

Examples:

1> P = {adam 24, {j uly, 29}}.
{adam 24, {j ul y, 29} }

2> element (1, P).

adam

3> elenment(3,P).

{july, 29}

4> P2 = setel ement (2, P, 25).
{adam 25, {j ul y, 29} }

5> tupl e_size(P)

3

6> tupl e_size({})
0

5.3.10 Map

A map is acompound data type with a variable number of key-value associations:

128 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Data Types

#{Keyl=>Val uel, ..., KeyN=>Val ueN}

Each key-value association in the map is called an association pair. The key and value parts of the pair are called
elements. The number of association pairsis said to be the size of the map.

There exists anumber of BIFs to manipul ate maps.
Examples:

1> M #{ name=>adam age=>24, dat e=>{j ul y, 29} }.
#{age => 24,date => {july, 29}, nane => adant
2> maps: get (nanme, ML) .

adam

3> naps: get (date, ML) .

{july, 29}

4> M2 = nmps: updat e(age, 25, ML) .

#{age => 25,date => {july, 29}, nane => adant
5> map_si ze(M.

6> map_si ze(#{}).
0

A collection of maps processing functions can be found in maps manual pagein STDLIB.
Read more about mapsin Map Expressions.

Note:
Maps are considered to be experimental during Erlang/OTP R17.

5.3.11 List

A list isacompound data type with a variable number of terms.

Each term Ter min thelist is called an element. The number of elementsis said to be the length of thelist.
Formally, alist is either the empty list [] or consists of ahead (first element) and atail (remainder of the list). The

tail isalso alist. The latter can be expressed as[H| T] . The notation [Ter ni, . . ., Ter m\] aboveis equivalent
withthelist[TermL| [...|[TermNI []]11].

Example:

[] isaligt, thus

[cl[]] isalist, thus
[bl[c|[]1]] isalig, thus
[al[b][c|[]1]1]] isalist,orinshort| a, b, c]

A list wherethetail isalist is sometimes called a proper list. It is allowed to have alist where the tail isnot alist, for
example, [a| b] . However, thistype of list is of little practical use.

Examples:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 129

5.3 Data Types

1> L1 = [a, 2,{c, 4}].
[a 2, {c, 4}]
2> [HT] = L1.
[a 2, {c, 4}]
3> H

a

4> T.
[2,{c,4}]

5> L2 = [d|T].
[d, 2, {c,4}]
6> | ength(L1).
3

7> length([]).
0

A collection of list processing functions can be found in the lists manual pagein STDLIB.

5.3.12 String

Strings are enclosed in double quotes ("), but is not adatatype in Erlang. Instead, astring " hel | 0" is shorthand for
thelist [$h, $e, $I, $I , $0] , thatis, [104, 101, 108, 108, 111].

Two adjacent string literals are concatenated into one. Thisisdonein the compilation, thus, does not incur any runtime
overhead.

Example:

"string" "42"

isequivaent to

"string42"

5.3.13 Record

A record is a data structure for storing a fixed number of elements. It has named fields and is similar to a struct in
C. However, arecord is not a true data type. Instead, record expressions are translated to tuple expressions during
compilation. Therefore, record expressions are not understood by the shell unless special actions are taken. For details,
see the shell(3) manual pagein STDLIB).

Examples:

- modul e(person).
-export ([new 2]).

-record(person, {name, age}).

new(Nane, Age) ->
#per son{ namre=Nane, age=Age}.

1> person: new(ernie, 44).

{person, erni e, 44}

Read more about records in Records. More examples can be found in Programming Examples.

130 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Data Types

5.3.14 Boolean

There is no Boolean data type in Erlang. Instead the atomst r ue and f al se are used to denote Boolean values.

Examples:

1> 2 =< 3.

true

2> true or false
true

5.3.15 Escape Sequences
Within strings and quoted atoms, the following escape sequences are recognized:

Sequence Description

\b Backspace

\d Delete

\e Escape

\f Form feed

\n Newline

\r Carriage return

\s Space

\t Tab

\v Vertica tab

\XYZ,\YZ,\Z Character with octal representation XYZ, YZ or Z

\XXY Character with hexadecimal representation XY

WX} Character with hgxadeci mal representation; X... isone
or more hexadecimal characters

Q:Z\C ,\ZZ Control A to control Z

\' Single quote

\" Double quote

\ Backdash

Table 3.1: Recognized Escape Sequences

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 131

5.4 Pattern Matching

5.3.16 Type Conversions
There are anumber of BIFsfor type conversions.
Examples:

1> atomto_list(hello).

"hel | 0"

2> list_to_atom("hello").

hel | o

3> binary_to_list(<<"hello">>).

"hel | 0"

4> binary_to_list(<<104, 101, 108, 108, 111>>).
"hel | 0"

5> |list_to_binary("hello").
<<104, 101, 108, 108, 111>>

6> float_to_list(7.0).
"7.00000000000000000000e+00"
7> list_to_float("7.000e+00").

7.0

8> integer_to_list(77).
wgn

9> |list_to_integer("77").
77

10> tuple_to_list({a,b,c}).
[a, b, c]

11> list_to_tuple([a,b,c]).
{a, b, c}

12> termto_binary({a,b,c}).
<<131, 104, 3, 100, 0, 1, 97, 100, 0, 1, 98, 100, O, 1, 99>>
13> binary_to_term <<131, 104, 3, 100, 0, 1, 97, 100, 0, 1, 98, 100, O, 1, 99>>) .

{a, b, c}

14> binary_to_i nteger (<<"77">>).
77

15> integer_to_binary(77).
<<"T77">>

16> float_to_binary(7.0).
<<"7.00000000000000000000e+00" >>

17> binary_to_fl oat (<<"7.000e+00>>").
7.0

5.4 Pattern Matching
5.4.1 Pattern Matching

Variables are bound to values through the pattern matching mechanism. Pattern matching occurs when evaluating a
function call, case-r ecei ve-t r y- expressions and match operator (=) expressions.

In apattern matching, aleft-hand side pattern is matched against aright-hand side term. If the matching succeeds, any
unbound variables in the pattern become bound. If the matching fails, a run-time error occurs.

Examples:

1> X

** 1. variable 'X is unbound **
2> X = 2.

2

3> X + 1.

3

132 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.5 Modules

4> {X, Y} = {1, 2}.

** exception error: no match of right hand side value {1, 2}
5> {X, Y} = {2, 3}.

{2,3}

6> Y.

3

5.5 Modules
5.5.1 Module Syntax

Erlang code is divided into modules. A module consists of a sequence of attributes and function declarations, each
terminated by period (.).

Example:
- modul e(m) . % nodul e attribute
-export([fact/1]). % nodul e attribute

fact(N) when N>0 -> 9% begi nning of function declaration
N * fact(N-1); % |

fact(0) -> % |
1. % end of function declaration

For a description of function declarations, see Function Declaration Syntax.

5.5.2 Module Attributes

A module attribute defines a certain property of amodule.
A module attribute consists of atag and avalue:

- Tag(Val ue) .

Tag must be an atom, while Val ue must be aliteral term. As a convenience in user-defined attributes, if the literal
term Val ue hasthe syntax Nane/ Ari t y (where Nane isan atom and Ar i t y apositive integer), the term Nane/
Arity istrandatedto { Nane, Arity}.

Any module attribute can be specified. The attributes are stored in the compiled code and can be retrieved by calling
Modul e: modul e_i nfo(attri butes), or by using the module beam lib(3) in STDLIB.

Several module attributes have predefined meanings. Some of them have arity two, but user-defined modul e attributes
must have arity one.

Pre-Defined Module Attributes
Pre-defined module attributes is to be placed before any function declaration.
- modul e(Modul e) .

M odul e declaration, defining the name of the module. The name Mbdul e, an atom, isto be same asthe file name
minus the extension . er | . Otherwise code loading does not work as intended.

This attribute is to be specified first and is the only mandatory attribute.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 133

5.5 Modules

-export (Functions).

Exported functions. Specifies which of the functions, defined within the module, that are visible from outside
the module.

Functions isalist [Namel/ Arityl, ..., NanmeN ArityN], where each Nanel is an atom and
Arityl aninteger.

-i nport (Modul e, Functi ons).

Imported functions. Can be called the same way aslocal functions, that is, without any module prefix.

Modul e, anatom, specifieswhich moduletoimport functionsfrom. Funct i ons isalist similar asforexport .
-conpi l e(Options).

Compiler options. Opt i ons isasingle option or alist of options. This attribute is added to the option list when
compiling the module. See the compile(3) manual page in Compiler.

-vsn(Vsn).

Module version. Vsn is any literal term and can be retrieved using beam | i b: versi on/ 1, see the
beam lib(3) manual pagein STDLIB.

If this attribute is not specified, the version defaults to the MD5 checksum of the module.
-on_| oad(Function).

This attribute names a function that is to be run automatically when a module is loaded. For more information,
see Running a Function When a Module is Loaded.

Behaviour Module Attribute
It is possible to specify that the module is the callback module for a behaviour:

- behavi our (Behavi our) .

Theatom Behavi our givesthe name of the behaviour, which can be auser-defined behaviour or one of thefollowing
OTP standard behaviours:

e gen_server
« gen_fsm
 gen_event
e supervisor

The spelling behavi or isalso accepted.
The callback functions of the module can be specified either directly by the exported functionbehavi our _i nf o/ 1:

behavi our _i nfo(cal | backs) -> Cal | backs.

or by a- cal | back attribute for each callback function:

-cal |l back Name(Arguments) -> Result.

Here, Ar gunent s isalist of zero or more arguments. The - cal | back attribute is to be preferred since the extra
type information can be used by tools to produce documentation or find discrepancies.

134 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.5 Modules

Read more about behaviours and callback modulesin OTP Design Principles.

Record Definitions

The same syntax as for module attributes is used for record definitions:

-record(Record, Fi el ds) .

Record definitions are allowed anywhere in amodule, aso among the function declarations. Read more in Records.

Preprocessor

The same syntax as for module attributes is used by the preprocessor, which supports file inclusion, macros, and
conditional compilation:;

-include("SoneFile.hrl").
- defi ne(Macr o, Repl acenent) .

Read more in Preprocessor.

Setting File and Line

The same syntax as for modul e attributes is used for changing the pre-defined macros ?FI LE and ?LI1 NE:

-file(File, Line).

This attribute is used by tools, such as Y ecc, to inform the compiler that the source program is generated by another
tool. It aso indicates the correspondence of source filesto lines of the original user-written file, from which the source
program is produced.

Types and function specifications

A similar syntax as for module attributes is used for specifying types and function specifications:

-type my_type() :: aton() | integer().
-spec my_function(integer()) -> integer().

Read more in Types and Function specifications.
The description is based on EEP8 - Types and function specifications, which is not to be further updated.

5.5.3 Comments

Comments can be placed anywhere in a module except within strings and quoted atoms. A comment begins with the
character "%", continues up to, but does not include the next end-of-line, and has no effect. Notice that the terminating
end-of-line has the effect of white space.

5.5.4 module_info/0 and module_info/1 functions

The compiler automatically inserts the two special, exported functions into each module:

e Modul e: nodul e_info/0

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 135

href

5.6 Functions

e Modul e: modul e_info/ 1

These functions can be called to retrieve information about the module.

module_info/0

The nodul e_i nf o/ 0 function in each module, returns alist of { Key, Val ue} tupleswith information about the
module. Currently, the list contain tuples with the following Keys: nodul e, attri but es, conpi | e, exports,
nd5 and nat i ve. The order and number of tuples may change without prior notice.

module_info/1
Thecal nodul e_i nf o(Key) , where Key is an atom, returns a single piece of information about the module.
The following values are allowed for Key:
nmodul e
Returns an atom representing the module name.
attributes

Returns a list of { Attri but eNane, Val uelLi st} tuples, where Attri but eName is the name of an
attribute, and Val uelLi st isalist of values. Notice that a given attribute can occur more than once in the list
with different values if the attribute occurs more than once in the module.

Thelist of attributes becomes empty if the module is stripped with the beam |ib(3) module (in STDLIB).
conpile

Returns a list of tuples with information about how the module was compiled. Thislist is empty if the module
has been stripped with the beam 1ib(3) module (in STDLIB).

nd5

Returns a binary representing the MD5 checksum of the module. If the module has native code loaded, this will
be the MD5 of the native code, not the BEAM bytecode.

exports

Returnsalist of { Name, Ari t y} tupleswith al exported functions in the module.
functions

Returnsalist of { Nane, Ari ty} tupleswith all functionsin the module.
native

Return t r ue if the module has native compiled code. Return f al se otherwise. In a system compiled without
HiPE support, theresultisalwaysf al se

5.6 Functions

5.6.1 Function Declaration Syntax
A function declaration is a sequence of function clauses separated by semicolons, and terminated by period (.).
A function clause consists of a clause head and a clause body, separated by - >.

A clause head consists of the function name, an argument list, and an optional guard sequence beginning with the
keyword when:

Nane(Patternll, ..., PatternlN) [when CGuardSeql] ->
Body1;

136 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.6 Functions

Name(PatternKi, ..., Patt ernKN) [when CQuardSeqK] ->
BodyK.

The function name is an atom. Each argument is a pattern.

The number of arguments Nisthe arity of the function. A function is uniquely defined by the module name, function
name, and arity. That is, two functions with the same name and in the same module, but with different arities are two
different functions.

A function named f in the module mand with arity Nis often denoted asm f / N.

A clause body consists of a sequence of expressions separated by comma(,):

Expr 1,
Expr N
Valid Erlang expressions and guard sequences are described in Expressions.

Example:

fact(N) when NSO -> % first clause head
N * fact(N-1); % first clause body

fact(0) -> % second cl ause head
1. % second cl ause body

5.6.2 Function Evaluation

When afunctionm f / Niscalled, first the code for the function islocated. If the function cannot be found, an undef
runtime error occurs. Notice that the function must be exported to be visible outside the module it is defined in.

If the function is found, the function clauses are scanned sequentially until a clause is found that fulfills both of the
following two conditions:

* The patternsin the clause head can be successfully matched against the given arguments.
e Theguard sequence, if any, istrue.
If such aclause cannot be found, af unct i on_cl ause runtime error occurs.

If such aclauseisfound, the corresponding clause body is evaluated. That is, the expressionsin the body are evaluated
sequentially and the value of the last expression is returned.

Consider the function f act :

-nmodul e(m) .
-export([fact/1]).

fact(N when N>O ->
N * fact(N-1);

fact(0) ->
1.

Assume that you want to calculate the factoria for 1:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 137

5.6 Functions

1> mfact(1).

Evaluation starts at thefirst clause. The pattern Nis matched against argument 1. The matching succeeds and the guard
(N>0) istrue, thus Nis bound to 1, and the corresponding body is evaluated:

N * fact(N-1) => (N is bound to 1)
1 * fact(0)

Now, f act (0) is caled, and the function clauses are scanned sequentially again. First, the pattern N is matched
against 0. The matching succeeds, but the guard (N>0) isfal se. Second, the pattern 0 ismatched against 0. The matching
succeeds and the body is evaluated:

1 * fact(0) =>
1* 1 =>
1

Evaluation has succeed and m f act (1) returns 1.

Ifm f act/ 1 iscalled with anegative number asargument, no clause head matches. A f unct i on_cl ause runtime
€rror occurs.

5.6.3 Tail recursion

If the last expression of afunction body isafunction call, atail recursive call is done. Thisisto ensure that no system
resources, for example, call stack, are consumed. This means that an infinite loop can be doneif it uses tail-recursive
cals.

Example:

loop(N) ->
io:format("~w-n", [N]),
| oop(N+1) .

The earlier factorial example can act as a counter-example. It is not tail-recursive, since a multiplication is done on
theresult of the recursivecall tof act (N- 1) .

5.6.4 Built-In Functions (BIFs)

BIFs are implemented in C code in the runtime system. BIFs do things that are difficult or impossible to implement
in Erlang. Most of the BIFs belong to the module er | ang but there are also BIFs belonging to afew other modules,
for examplel i sts andet s.

The most commonly used BIFs belonging to er | ang(3) are auto-imported. They do not need to be prefixed with
the module name. Which BIFs that are auto-imported is specified in the erlang(3) module in ERTS. For example,
standard-type conversion BIFs likeat om t o _| i st and BIFs allowed in guards can be called without specifying
the module name.

Examples:

1> tupl e_size({a,b,c}).
3

138 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Types and Function Specifications

2> atomto_list('Erlang').
"Erl ang"

Noticethat it is normally the set of auto-imported BIFsthat are referred to when talking about 'BIFS.

5.7 Types and Function Specifications

5.7.1 The Erlang Type Language

Erlang is a dynamically typed language. Still, it comes with a notation for declaring sets of Erlang terms to form a
particular type. This effectively forms specific subtypes of the set of all Erlang terms.

Subsequently, these types can be used to specify types of record fields and also the argument and return types of
functions.

Type information can be used for the following:

e Todocument function interfaces
* To provide moreinformation for bug detection tools, such asDi al yzer
* To be exploited by documentation tools, such as EDac, for generating program documentation of various forms

It is expected that the type language described in this section supersedes and replaces the purely comment-based
@ ype and @pec declarations used by EDoc.

5.7.2 Types and their Syntax

Types describe sets of Erlang terms. Types consist of, and are built from, a set of predefined types, for example,
i nteger(),aton(),andpi d() . Predefined types represent atypically infinite set of Erlang terms that belong to
thistype. For example, the type at on{() standsfor the set of all Erlang atoms.

For integersand atoms, it isallowed for singleton types; for example, theintegers- 1 and 42, or theatoms' f oo’ and
"bar '). All other types are built using unions of either predefined types or singleton types. In atype union between a
type and one of its subtypes, the subtype is absorbed by the supertype. Thus, the union isthen treated asif the subtype
was not a constituent of the union. For example, the type union:

atom() | 'bar' | integer() | 42
describes the same set of terms as the type union:

aton() | integer()

Because of subtyperelationsthat exist between types, typesform alattice where the top-most element, any() , denotes
the set of all Erlang terms and the bottom-most element, none() , denotes the empty set of terms.

The set of predefined types and the syntax for types follows:

Type :: any() %6 The top type, the set of all Erlang terns
| none() %% The bottom type, contains no terns
| pid()
| port()
| reference()
| [] 996 ni |
| Atom
| Bitstring
I

float()

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 139

5.7 Types and Function Specifications

| Fun
| Integer
| List
| Map
| Tuple
| Union
| UserDefined %% descri bed in Type Decl arations of User-Defined Types
Atom :: atom()
| Erlang_Atom %Wh6' foo', 'bar',
Bitstring :: <<>>
| <<_:M> W Mis a positive integer
| <<_: *N>> %WoNis a positive integer
| <<:M _:_*N>>
Fun :: fun() %% any function
| fun((...) -> Type) %hbany arity, returning Type

| fun(() -> Type)
| fun((TList) -> Type)

Integer :: integer()

| Erlang_| nteger W ..., -1, 0, 1, ... 42 ...

| Erlang_lnteger..Erlang_|Integer %hb speci fies an integer range
List :: list(Type) %% Proper list ([]-term nated)

| maybe_i nproper _list(Typel, Type2) %6 Typel=contents, Type2=term nation
| nonenpty_i nproper_Ilist(Typel, Type2) %6 Typel and Type2 as above

| nonenpty_list(Type) %% Proper non-enpty |ist
Map :: map() %6 stands for a map of any size
| #{} %6 stands for a map of any size
| #{PairlList}
Tuple :: tuple() %6 stands for a tuple of any size
| {}
| {TList}

PairList :: Type => Type
| Type => Type, PairlList

TList :: Type
| Type, TList

Union :: Typel | Type2

The general form of bitstringsis<<_: M _: _*N>>, where Mand N are positive integers. It denotes a bitstring that
isM + (k*N) bitslong (that is, a bitstring that starts with Mbits and continues with k segments of N bits each,
wherek is also apositive integer). The notations<<_: _*N>>, <<_: M>>, and <<>> are convenient shorthands for
the cases that Mor N, or both, are zero.

Because lists are commonly used, they have shorthand type notations. The types list(T) and
nonenpty | ist(T) havetheshorthands[T] and[T, .. .], respectively. The only difference between the two
shorthandsisthat [T] canbeanempty listbut[T, ...] cannot.

Notice that the shorthand for | i st (), that is, the list of elements of unknown type, is[_] (or[any()]),not[].
Thenotation [] specifiesthe singleton type for the empty list.

For convenience, the following types are aso built-in. They can be thought as predefined aliases for the type unions
also shown in thetable.

Built-in type Defined as

140 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Types and Function Specifications

term() any()

bi nary() << 1 *8>>

bitstring() << 1 _*1>>

bool ean() 'false' | 'true'

byte() 0..255

char () 0..16#10f f f f

nil() []

nunber () integer() | float()

list() [any()]

maybe i nproper |ist() maybe i nproper _list(any(), any())
nonenpty i st () nonenpty i st (any())

string() [char ()]

nonenpty_string() [char(),...]

i odat a() iolist() | binary()

lollst() ot binary0) 1
function() fun()

modul e() at o)

nfa() {rmodul e(), aton(), arity()}
arity() 0..255

identifier() pid() | port() | reference()
node() at om()

ti meout () "infinity' | non_neg_integer()
no_return() none()

Table 7.1: Built-in types, predefined aliases

In addition, the following three built-in types exist and can be thought as defined below, though strictly their "type
definition” is not valid syntax according to the type language defined above.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 141

5.7 Types and Function Specifications

Built-in type Can be thought defined by the syntax
non_neg_i nt eger () 0..

pos_integer () 1..

neg i nteger () .o-1

Table 7.2: Additional built-in types

Users are not allowed to define types with the same names as the predefined or built-in ones. Thisis checked by the
compiler and its violation results in a compilation error.

Note:
Thefollowing built-in list types also exist, but they are expected to be rarely used. Hence, they have long names:

nonenpty_maybe_i nmproper_list() :: nonenpty_nmybe_inproper_list(any(), any())
nonenpty_i nproper _I|ist(Typel, Type2)
nonenpty_maybe_i nproper _I|i st(Typel, Type2)

where the last two types define the set of Erlang terms one would expect.
Also for convenience, record notation is allowed to be used. Records are shorthands for the corresponding tuples:

Record :: #Erlang_Aton{}
| #Erlang_At on{Fi el ds}

Records are extended to possibly contain type information. This is described in Type Information in Record
Declarations.

Note:

Map types, both map() and#{ . . . }, are considered experimental during OTP 17.
No type information of maps pairs, only the containing map types, are used by Dialyzer in OTP 17.

5.7.3 Type Declarations of User-Defined Types

As seen, the basic syntax of atype is an atom followed by closed parentheses. New types are declared using - t ype
and - opaque attributes as in the following:

-type nmy_struct_type() :: Type.
-opaque ny_opaqg_type() :: Type.

142 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Types and Function Specifications

Thetype nameistheatomny_struct _t ype, followed by parentheses. Type is atype as defined in the previous
section. A current restriction is that Type can contain only predefined types, or user-defined types which are either
of the following:

e Module-local type, that is, with adefinition that is present in the code of the module
« Remotetype, that is, type defined in, and exported by, other modules; more about this soon.

For module-local types, the restriction that their definition existsin the module is enforced by the compiler and results
in acompilation error. (A similar restriction currently exists for records.)

Type declarations can also be parameterized by including type variables between the parentheses. The syntax of type
variables is the same as Erlang variables, that is, starts with an upper-case letter. Naturally, these variables can - and
isto - appear on the RHS of the definition. A concrete example follows:

-type orddict(Key, Val) :: [{Key, Val}l].

A module can export some types to declare that other modules are allowed to refer to them as remote types. This
declaration has the following form:

-export_type([T1/ AL, ..., Tk/AK]).

Here the Ti's are atoms (the name of the type) and the Ai's are their arguments
Example:

-export_type([nmy_struct _type/0, orddict/2]).

Assuming that these types are exported from module ' nod' , you can refer to them from other modules using remote
type expressions like the following:

mod: ny_struct _type()
nmod: orddi ct (atom(), tern())

It isnot allowed to refer to types that are not declared as exported.

Types declared as opaque represent sets of terms whose structureis not supposed to be visible from outside of their
defining module. That is, only the module defining them is allowed to depend on their term structure. Consequently,
such types do not make much sense as module local - module local types are not accessible by other modules anyway
- and is aways to be exported.

5.7.4 Type Information in Record Declarations

The types of record fields can be specified in the declaration of the record. The syntax for thisis as follows:

-record(rec, {fieldl :: Typel, field2, field3 :: Type3}).

For fields without type annotations, their type defaults to any(). That is, the previous example is a shorthand for the
following:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 143

5.7 Types and Function Specifications

-record(rec, {fieldl :: Typel, field2 :: any(), field3 :: Type3}).

In the presence of initial values for fields, the type must be declared after the initialization, as follows:

-record(rec, {fieldl =[] :: Typel, field2, field3 = 42 :: Type3}).

Theinitial valuesfor fields are to be compatible with (that is, a member of) the corresponding types. This is checked
by the compiler and results in a compilation error if a violation is detected. For fields without initial values, the
singleton type ' undef i ned" isadded to all declared types. In other words, the following two record declarations
have identical effects:

-record(rec, {fl = 42 :: integer(),
f2 i float(),
f3 r'a' | 'b'}).
-record(rec, {fl = 42 :: integer(),
f2 ;1 'undefined | float(),
f3 :: 'undefined | 'a | 'b'}).

For this reason, it is recommended that records contain initializers, whenever possible.
Any record, containing type information or not, once defined, can be used as a type using the following syntax:

#rec{}

In addition, the record fields can be further specified when using arecord type by adding type information about the
field asfollows:

#rec{sone_field :: Type}

Any unspecified fields are assumed to have the type in the original record declaration.

5.7.5 Specifications for Functions

A specification (or contract) for afunction is given using the - spec attribute. The general format is asfollows:
-spec Modul e: Function(ArgTypel, ..., ArgTypeN) -> ReturnType.

The arity of the function must match the number of arguments, else a compilation error occurs.

Thisform can also be used in header files (.hrl) to declare type information for exported functions. Then these header
files can beincluded in files that (implicitly or explicitly) import these functions.

Within a given module, the following shorthand sufficesin most cases:

-spec Function(ArgTypel, ..., ArgTypeN) -> ReturnType.

Also, for documentation purposes, argument names can be given:

144 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Types and Function Specifications

-spec Function(ArgNanmel :: Typel, ..., ArgNameN :: TypeN) -> RT.

A function specification can be overloaded. That is, it can have several types, separated by a semicolon (;):

-spec foo(T1, T2) -> T3
; (T4, T5) -> T6.

A current restriction, which currently results in a warning (not an error) by the compiler, is that the domains of the
argument types cannot overlap. For example, the following specification results in a warning:

-spec foo(pos_integer()) -> pos_integer()
; (integer()) -> integer().

Type variables can be used in specifications to specify relations for the input and output arguments of a function. For
example, the following specification defines the type of a polymorphic identity function:

-spec id(X) -> X

Noticethat the above specification does not restrict theinput and output typein any way. Thesetypes can be constrained
by guard-like subtype constraints and provide bounded quantification:

-spec id(X) -> X when X :: tuple().

Currently, the: : constraint (read asi s_subt ype) isthe only guard constraint that can be used inthe' when' part
of a' - spec' attribute.

Note:

The above function specification uses multiple occurrences of the same type variable. That provides more type
information than the following function specification, where the type variables are missing:

-spec id(tuple()) -> tuple().

The latter specification says that the function takes some tuple and returns some tuple. The specification with the
X type variable specifies that the function takes a tuple and returns the same tuple.

However, it is up to the tools that process the specificationss to choose whether to take this extra information
into account or not.

Thescopeof a:: constraintisthe(...) -> Ret Type specification after which it appears. To avoid confusion,
it is suggested that different variables are used in different constituents of an overloaded contract, as shown in the
following example:

-spec foo({X, integer()}) -> X when X :: atom()

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 145

5.8 Expressions

; ([Y]) -> Y when Y :: nunber().

Note:

For backwards compatibility the following form is also allowed:
-spec id(X) -> X when is_subtype(X, tuple()).

but its useis discouraged. It will be removed in afuture Erlang/OTP release.

Some functions in Erlang are not meant to return; either because they define servers or because they are used to throw
exceptions, as in the following function:

my_error(Err) -> erlang:throw{error, Err}).

For such functions, it is recommended to use the special no_r et ur n() type for their "return”, through a contract
of the following form:

-spec my_error(term()) -> no_return().

5.8 Expressions

In this section, all valid Erlang expressions are listed. When writing Erlang programs, it is also allowed to use macro-
and record expressions. However, these expressions are expanded during compilation and are in that sense not true
Erlang expressions. Macro- and record expressions are covered in separate sections:

* Preprocessor
* Records
5.8.1 Expression Evaluation

All subexpressions are evaluated before an expression itself is evaluated, unless explicitly stated otherwise. For
example, consider the expression:

Exprl + Expr2

Expr 1 and Expr 2, which are also expressions, are evaluated first - in any order - before the addition is performed.

Many of the operators can only be applied to arguments of a certain type. For example, arithmetic operators can only
be applied to numbers. An argument of the wrong type causes abadar g runtime error.

5.8.2 Terms

The simplest form of expression is aterm, that is an integer, float, atom, string, list, map, or tuple. The return value
istheterm itself.

146 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

5.8.3 Variables

A variable is an expression. If a variable is bound to a value, the return value is this value. Unbound variables are
only alowed in patterns.

Variables start with an uppercase letter or underscore (). Variables can contain alphanumeric characters, underscore
and @

Examples:

X

Nanmel
PhoneNunber
Phone_nunber

" Hei ght

Variables are bound to values using pattern matching. Erlang uses single assignment, that is, a variable can only be
bound once.

The anonymous variable is denoted by underscore () and can be used when a variable is required but its value can
be ignored.

Example:

[H_ =1[12373]

Variables starting with underscore (), for example, _Hei ght, are normal variables, not anonymous. They are
however ignored by the compiler in the sense that they do not generate any warnings for unused variables.

Example:
The following code:

can be rewritten to be more readable:
menber (Elem []) ->

This causes a warning for an unused variable, El em if the code is compiled with the flag war n_unused_var s
set. Instead, the code can be rewritten to:

nenber (_Elem []) ->

Notice that since variables starting with an underscore are not anonymous, this matches:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 147

5.8 Expressions

{3 ={12

But thisfails:

{N_N ={1,2}

The scope for avariableisits function clause. Variables bound in abranch of ani f , case, orr ecei ve expression
must be bound in all branches to have a value outside the expression. Otherwise they are regarded as 'unsafe' outside
the expression.

For thet r y expression introduced in Erlang 5.4/OTP R10B, variable scoping islimited so that variables bound in the
expression are always 'unsafe’ outside the expression. Thisisto be improved.

5.8.4 Patterns

A pattern has the same structure as aterm but can contain unbound variables.
Example:

Nanmel
[HT]

{error, Reason}

Patterns are allowed in clause heads, case and r ecei ve expressions, and match expressions.

Match Operator = in Patterns
If Patt er n1 and Pat t er n2 arevalid patterns, the following is also avalid pattern:

Patternl = Pattern2

When matched against aterm, both Pat t er n1 and Pat t er n2 are matched against the term. The idea behind this
feature isto avoid reconstruction of terms.

Example:

f ({connect, From To, Nunber, Opti ons}, To) ->
Si gnal = {connect, From To, Nunber, Opti ons},

f(signal, To) ->
i gnor e.
can instead be written as

f({connect, _,To,_,_} = Signal, To) ->

f(Signal, To) ->
i gnore.

148 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

String Prefix in Patterns
When matching strings, the following is avalid pattern:

f("prefix" ++ Str) -> ...

Thisis syntactic sugar for the equivalent, but harder to read:

f([$p, $r, $e, $f, $i , $x | Str]) -> ...

Expressions in Patterns
An arithmetic expression can be used within a pattern if it meets both of the following two conditions:

* Itusesonly numeric or bitwise operators.
e Itsvalue can be evaluated to a constant when complied.

Example:

case {Value, Result} of
{?THRESHOLD+1, ok} -> ...

This feature was added in Erlang 5.0/0TP R7.

5.8.5 Match
The following matches Expr 1, a pattern, against Expr 2:

Exprl = Expr2

If the matching succeeds, any unbound variable in the pattern becomes bound and the value of Expr 2 isreturned.

If the matching fails, abadmat ch run-time error occurs.
Examples:

1> {A B} = {answer, 42}.

{answer, 42}

2> A

answer

3> {C D =1[1, 2].

** exception error: no match of right-hand side value [1,2]

5.8.6 Function Calls

Expr F(Expr1, ..., Expr N)
Expr M Expr F(Expr1, ..., Expr N)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 149

5.8 Expressions

In the first form of function calls, Expr M Expr F(Expr 1, . .., Expr N), each of Expr Mand Expr F must be an
atom or an expression that evaluates to an atom. The function is said to be called by using the fully qualified function
name. Thisis often referred to as a remote or external function call.

Example:

lists: keysearch(Nane, 1, List)

In the second form of function calls, Expr F(Expr 1, . . ., Expr N) , Expr F must be an atom or evaluate to afun.

If Expr F is an atom, the function is said to be called by using the implicitly qualified function name. If the
function Expr F is locally defined, it is called. Alternatively, if Expr F is explicitly imported from the Mmodule,
M Expr F(Exprl, ..., ExprN) iscaled. If Expr F is neither declared locally nor explicitly imported, Expr F
must be the name of an automatically imported BIF.

Examples:

handl e(Msg, State)
spawn(m init, [])

Examples where Expr F isafun:

Funl = fun(X) -> X+1 end
Funl(3)
= 4

fun lists:append/ 2([1,2], [3,4])
= [1,2,3,4]

Notice that when calling alocal function, thereis a difference between using the implicitly or fully qualified function
name. The latter always refersto the latest version of the module. See Compilation and Code Loading and Function
Evaluation.

Local Function Names Clashing With Auto-Imported BIFs

If alocal function has the same name as an auto-imported BIF, the semanticsis that implicitly qualified function calls
are directed to the locally defined function, not to the BIF. To avoid confusion, thereis acompiler directive available,
-conpi l e({no_auto_i nport, [F/ A]}),that makesaBIF not being auto-imported. In certain situations, such
a compile-directive is mandatory.

150 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

Warning:

Before OTP R14A (ERTS version 5.8), an implicitly qualified function call to afunction having the same name
as an auto-imported BIF always resulted in the BIF being called. In newer versions of the compiler, the local
function is called instead. Thisis to avoid that future additions to the set of auto-imported BIFs do not silently
change the behavior of old code.

However, to avoid that old (pre R14) code changed its behavior when compiled with OTP version R14A or later,
the following restriction applies: If you override the name of a BIF that was auto-imported in OTP versions prior
to R14A (ERTS version 5.8) and have an implicitly qualified call to that function in your code, you either need
to explicitly remove the auto-import using a compiler directive, or replace the call with afully qualified function
call. Otherwise you get a compilation error. See the following example:

-export([length/1,f/1]).
-conpil e({no_auto_inport,[length/1]}). %erlang:|ength/1 no | onger autoi nported
l'ength([]) ->

0

length([HT]) ->
1+ length(T). %o Calls the |local function |length/1

f(X) when erlang:length(X) >3 -> %o Calls erlang:length/1,

%6 which is allowed in guards
| ong.

The same logic applies to explicitly imported functions from other modules, as to locally defined functions. It is not
allowed to both import afunction from another module and have the function declared in the modul e at the sametime:

-export ([f/1]).
-conpil e({no_auto_inport,[length/1]}). %erlang:length/1 no | onger autoinported
-inport(nod,[length/1]).

f(X) when erlang:length(X) > 33 -> W6 Calls erlang:length/1,
%6 which is allowed in guards

erl ang: | engt h(X); %6 Explicit call to erlang:length in body
f(xX) ->
I engt h(X). %6 nod: |l ength/1 is called

For auto-imported BIFsadded in Erlang/OTP R14A and thereafter, overriding the namewith alocal function or explicit
import is aways allowed. However, if the - conpi | e({no_aut o_i nport, [F/ A]) directiveis not used, the
compiler issues awarning whenever the function is called in the module using the implicitly qualified function name.

5.8.7 If

if
GuardSeql ->
Body1;

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 151

5.8 Expressions

Quar dSeqgN - >
BodyN
end

The branches of an i f -expression are scanned sequentially until a guard sequence Guar dSeq that evaluates to true
isfound. Then the corresponding Body (sequence of expressions separated by ',') is evaluated.

Thereturn value of Body isthereturn value of thei f expression.

If no guard sequence is evaluated astrue, ani f _cl ause run-time error occurs. |f necessary, the guard expression
t r ue can be used in the last branch, as that guard sequence is awaystrue.

Example:

is_greater_than(X, Y) ->
if

XY ->
true;
true -> % wrks as an 'el se' branch
fal se
end
5.8.8 Case

case Expr of
Patternl [when GuardSeql] ->
Body1;

PatternN [when GuardSegN] ->
BodyN
end

The expression Expr is evauated and the patterns Pat t er n are sequentially matched against the result. If amatch
succeeds and the optional guard sequence Guar dSeq istrue, the corresponding Body is evaluated.

Thereturn value of Body isthe return value of the case expression.

If thereis no matching pattern with atrue guard sequence, acase_cl ause run-time error occurs.
Example:

is_valid_signal (Signal) ->
case Signal of
{signal, _Wat, _From _To} ->
true;
{signal, _Wat, _To} ->
true;
_Else ->
fal se
end.

5.8.9 Send

152 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

Exprl ! Expr2

Sends the value of Expr 2 as a message to the process specified by Expr 1. The value of Expr 2 is aso the return
value of the expression.

Expr 1 must evaluate to a pid, a registered name (atom), or atuple { Nane, Node} . Nane is an atom and Node is
anode name, also an atom.

e |f Expr 1 evaluatesto aname, but this nameis not registered, abadar g run-time error occurs.

» Sending amessage to a pid never fails, even if the pid identifies a non-existing process.

» Distributed message sending, that is, if Expr 1 evaluatesto atuple { Narme, Node} (or apid located at another
node), also never fails.

5.8.10 Receive

receive
Patternl [when GuardSeql] ->
Body1;

Patt ernN [when GuardSegN] ->
BodyN
end

Receives messages sent to the process using the send operator (!). The patterns Pat t er n are sequentially matched
against the first message in time order in the mailbox, then the second, and so on. If a match succeeds and the optional
guard sequence Guar dSeq is true, the corresponding Body is evaluated. The matching message is consumed, that
is, removed from the mailbox, while any other messages in the mailbox remain unchanged.

The return value of Body isthereturn value of ther ecei ve expression.

r ecei ve never fails. The execution is suspended, possibly indefinitely, until a message arrives that matches one of
the patterns and with a true guard sequence.

Example:

wai t _for_onhook() ->
receive
onhook ->
di sconnect (),
idle();
{connect, B} ->
B ! {busy, self()},
wai t _f or _onhook()
end.

Ther ecei ve expression can be augmented with a timeout:

receive
Patternl [when CGuardSeql] ->
Body1,;
Patt ernN [when GuardSegN] ->
BodyN
after
ExprT ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 153

5.8 Expressions

BodyT
end

Expr T is to evaluate to an integer. The highest allowed value is 16#FFFFFFFF, that is, the value must fit in 32
bits.r ecei ve. . af t er worksexactly asr ecei ve, except that if no matching message has arrived within Expr T
milliseconds, then BodyT is evaluated instead. The return value of Body T then becomes the return value of the
recei ve. . af t er expression.

Example:

wai t _for_onhook() ->
recei ve
onhook ->
di sconnect ()
idle();
{connect, B} ->
B! {busy, self()},
wai t _for_onhook()
after
60000 ->
di sconnect ()
error()
end

Itislegal tousear ecei ve. . af t er expression with no branches:

receive
after
ExprT ->
Body T
end

This construction does not consume any messages, only suspends execution in the process for Expr T milliseconds.
This can be used to implement simple timers.

Example:

timer() ->
spawn(m tinmer, [self()]).

timer(Pid) ->

receive
after
5000 ->
Pid ! tinmeout
end

There are two special cases for the timeout value Expr T:

infinity
The processisto wait indefinitely for a matching message; thisis the same as not using atimeout. This can be
useful for timeout values that are calculated at runtime.

If there is no matching message in the mailbox, the timeout occurs immediately.

154 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

5.8.11 Term Comparisons

Exprl op Expr2

Description

Equal to

Not equal to

Lessthan or equal to

Lessthan

Greater than or equal to

\%

Greater than

Exactly equal to

=/=

Exactly not equal to

Table 8.1: Term Comparison Operators.

The arguments can be of different data types. The following order is defined:

nunber < atom < reference < fun < port < pid < tuple < map < nil <list < bit string

Listsare compared element by element. Tuplesare ordered by size, two tupleswith the same size are compared el ement

by element.

Maps are ordered by size, two maps with the same size are compared by keys in ascending term order and then by
valuesin key order. In maps key order integers types are considered |ess than floats types.

When comparing an integer to afloat, the term with the lesser precision is converted into the type of the other term,
unless the operator is one of =: = or =/ =. A float is more precise than an integer until al significant figures of the
float are to the left of the decimal point. This happens when the float is larger/smaller than +/-9007199254740992.0.
The conversion strategy is changed depending on the size of the float because otherwise comparison of large floats

and integers would lose their transitivity.

Term comparison operators return the Boolean value of the expression, t r ue or f al se.

Examples:

1> 1==1.0.
true

2> 1=:=1.0.
fal se

3> 1 > a.
fal se

4> #{c => 3} > #a => 1, b => 2}.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 155

5.8 Expressions

fal se

4> #{a => 1, b => 2} == #{a => 1.0, b => 2.0}.

true

5.8.12 Arithmetic Expressions

op Expr
Exprl op Expr2

Operator Description Argument Type
+ Unary + Number
- Unary - Number
+ number
- Number
* Number
/ Floating point division Number
bnot Unary bitwise NOT Integer
div Integer division Integer
rem Integer remainder of X/Y Integer
band Bitwise AND Integer
bor Bitwise OR Integer
bxor Arithmetic bitwise XOR Integer
bs Arithmetic bitshift left Integer
bsr Bitshift right Integer

Table 8.2: Arithmetic Operators.

Examples:

1> +1.

2> -1,
-1
3> 1+1.

4> 4] 2.
2.0

156 | Ericsson AB. All Rights Reserved

.. Erlang/OTP System Documentation

5.8 Expressions

5> 5 div 2
2
6> 5 rem 2
1
7> 2#10 band 2#01.
0
8> 2#10 bor 2#01.
3
9> a + 10
** exception error: an error occurred when evaluating an arithnmetic expression
in operator +/2
called as a + 10
10> 1 bsl (1 bsl 64).
** exception error: a systemlimt has been reached
in operator bsl/2
called as 1 bsl 18446744073709551616

5.8.13 Boolean Expressions

op Expr
Exprl op Expr2

Operator Description

not Unary logical NOT
and Logica AND

or Logica OR

xor Logical XOR

Table 8.3: Logical Operators.

Examples:

1> not true
fal se
2> true and fal se
fal se
3> true xor false
true
4> true or garbage
** exception error: bad argunent
in operator or/2
called as true or garbage

5.8.14 Short-Circuit Expressions

Expr1l orel se Expr2
Expr1 andal so Expr 2

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 157

5.8 Expressions

Expr 2 isevaluated only if necessary. That is, Expr 2 isevauated only if:

« Exprlevauatestof al seinanorel se expression.

or

e Exprlevauatestotrue inanandal so expression.

Returns either the value of Expr 1 (thatis, t rue or f al se) or the value of Expr 2 (if Expr 2 is evauated).
Example 1:

case A >= -1.0 andal so mat h: sqrt (A+1) > B of

Thisworkseven if Aislessthan- 1. 0, sincein that case, mat h: sqrt/ 1 is never evaluated.
Example 2:

OnlyOne = is_aton(L) orel se
(is_list(L) andalso length(L) == 1),

From Erlang/OTP R13A, Expr 2 isno longer required to evaluate to a Boolean value. As a consequence, andal so
and or el se are now tail-recursive. For instance, the following function is tail-recursive in Erlang/OTP R13A and
later:

all (Pred, [Hd| Tail]) ->
Pred(Hd) andalso all(Pred, Tail);
all(_, [I) ->

true.

5.8.15 List Operations

Exprl ++ Expr2
Exprl -- Expr2
The list concatenation operator ++ appends its second argument to its first and returns the resulting list.

The list subtraction operator - - produces a list that is a copy of the first argument. The procedure is a follows: for
each element in the second argument, the first occurrence of this element (if any) is removed.

Example:

1> [1,2,3]++[4,5].

[1,2 3, 4,5]
2>101,2,3,2,1,2]--[2,1, 2].
[3,1,2]

158 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

Warning:

The complexity of A - - Bisproportional tol engt h(A) *| engt h(B) . That is, it becomes very slow if both
Aand B arelong lists.

5.8.16 Map Expressions
Creating Maps

Constructing a new map is done by letting an expression K be associated with another expression V:
K=>V}

New maps can include multiple associations at construction by listing every association:
#{ KL => V1, .., Kn => Vn }

An empty map is constructed by not associating any terms with each other:
#}

All keys and values in the map are terms. Any expression is first evaluated and then the resulting terms are used as
key and value respectively.

Keys and values are separated by the => arrow and associations are separated by acomma, .

Examples:

M = #{}, % enpty map

ML = #{a => <<"hell0">>}, % single association with literals

M = #1=>2, b => b}, % multiple associations with literals

MB = #{k => {A B}}, % singl e associ ation with vari abl es

ME = #{{"w', 1} => f()}. % conpound key associated with an eval uated expression

Here, A and B are any expressions and MD through M4 are the resulting map terms.
If two matching keys are declared, the latter key takes precedence.
Example:

1> #{1 => a, 1 => b}.
#{1 => b }

2> #{1.0 => a, 1 => b}.
#1 => b, 1.0 => a}

The order in which the expressions constructing the keys (and their associated values) are evaluated is not defined.
The syntactic order of the key-value pairsin the construction is of no relevance, except in the recently mentioned case
of two matching keys.

Updating Maps

Updating a map has asimilar syntax as constructing it.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 159

5.8 Expressions

An expression defining the map to be updated, is put in front of the expression defining the keys to be updated and
their respective values:

MH{ K => V}

Here Mis aterm of type map and K and V are any expression.
If key K does not match any existing key in the map, a new association is created from key K to value V.

If key K matches an existing key in map M its associated value is replaced by the new value V. In both cases, the
evaluated map expression returns a new map.

If Mis not of type map, an exception of type badmap is thrown.
To only update an existing value, the following syntax is used:

MH{ K=V}

Here Mis aterm of type map, V is an expression and K is an expression that evaluates to an existing key in M

If key K does not match any existing keysin map M an exception of typebadar g istriggered at runtime. If amatching
key K is present in map M its associated value is replaced by the new value V, and the evaluated map expression
returns a new map.

If Mis not of type map, an exception of type badmap is thrown.

Examples:

M = #},

ML = MD#{a => 0},

M = Mi#{a => 1, b => 2},

MB = M#{"function" => fun() -> f() end},

M = MB#{a := 2, b :=3}. %'a and 'b' was added in "ML" and ~M2"

Here MD isany map. It followsthat ML .. M4 are maps aswell.
More Examples:

1> M= #{1 => a}.

#{1 => a }

2> M#{1.0 => b}.

#{1 => a, 1.0 => b}.

3> MH1 := b}.

#{1 => b}

4> MH1.0 : = b}.

** exception error: bad argunent

Asin construction, the order in which the key and value expressions are evaluated is not defined. The syntactic order
of the key-value pairs in the update is of no relevance, except in the case where two keys match. In that case, the
latter value is used.

Maps in Patterns

Matching of key-value associations from mapsis done as follows:

160 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

#H K:=V} =M

Here Mis any map. The key K must be an expression with bound variables or literals. VV can be any pattern with either
bound or unbound variables.

If the variable V is unbound, it becomes bound to the value associated with the key K, which must exist in the map M
If the variable V is bound, it must match the value associated with Kin M

Example:

1> M= #{"tuple" => {1,2}}.
#{"tuple" => {1,2}}

2> #{"tuple" := {1,B}} = M
#{"tuple" => {1, 2}}

3> B.

2.

This binds variable B to integer 2.
Similarly, multiple values from the map can be matched:

#H KL:=VL, .., Kn:=Vn} =M
HerekeysK1 .. Kn areany expressionswith literals or bound variables. If all keys exist in map M all variablesin

V1 .. Vnismatched to the associated values of their respective keys.
If the matching conditions are not met, the match fails, either with:
« A badmat ch exception.

Thisisif it is used in the context of the matching operator as in the example.
» Or resulting in the next clause being tested in function heads and case expressions.

Matching in maps only alowsfor : = as delimiters of associations.
The order in which keys are declared in matching has no relevance.
Duplicate keys are allowed in matching and match each pattern associated to the keys:

#H K:=Vl, K:=V2} =M
Matching an expression against an empty map literal, matches its type but no variables are bound:
#{} = Expr

This expression matches if the expression Expr isof type map, otherwise it fails with an exception badmat ch.
Matching Syntax
Matching of literals as keys are allowed in function heads:

%Whoonly start if not_started
handl e_cal | (start, From #{ state := not_started } = S) ->

{reply, ok, S#{ state := start }};

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 161

5.8 Expressions

%o only change if started
handl e_cal | (change, From #{ state := start } = 9S) ->

{reply, ok, S#{ state := changed }};

Maps in Guards
Maps are allowed in guards as long as all subexpressions are valid guard expressions.
Two guard BIFs handle maps:

e is map/lintheer| ang module
 map _size/lintheer| ang module

5.8.17 Bit Syntax Expressions

Each element Ei specifies a segment of the bit string. Each element Ei is a value, followed by an optional size
expression and an optional type specifier list.

Ei = Value |
Val ue: Si ze |
Val ue/ TypeSpeci fi erList |
Val ue: Si ze/ TypeSpeci fi erLi st

Used in abit string construction, Val ue is an expression that is to evaluate to an integer, float, or bit string. If the
expression is not asingle literal or variable, it isto be enclosed in parenthesis.

Used in abit string matching, Val ue must be avariable, or an integer, float, or string.

Notice that, for example, using a string literal asin <<" abc" >> is syntactic sugar for <<$a, $b, $c>>.
Used in abit string construction, Si ze is an expression that isto evaluate to an integer.

Used in a bit string matching, Si ze must be an integer, or a variable bound to an integer.

The value of Si ze specifies the size of the segment in units (see below). The default value depends on the type (see
below):

e« Forinteger itis8.

« Forfloat itis64.

e« Forbinary andbi t stri ng itisthewholebinary or bit string.

In matching, this default valueisonly valid for the last element. All other bit string or binary elementsin the matching
must have a size specification.

Fortheut f 8, ut f 16, and ut f 32 types, Si ze must not be given. The size of the segment isimplicitly determined
by the type and value itself.

TypeSpeci fi erLi st isalist of type specifiers, in any order, separated by hyphens (-). Default values are used
for any omitted type specifiers.
Type=integer |float |binary |bytes |bitstring|bits|utf8|utfl6|utf32
Thedefaultisi nt eger . byt es isashorthand for bi nary and bi t s isashorthand for bi t st ri ng. See
below for more information about the ut f types.

162 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

Si gnedness=si gned |unsi gned
Only matters for matching and when the typeisi nt eger . The default isunsi gned.

Endi anness=big|little|native
Native-endian means that the endianness is resolved at load time to be either big-endian or little-endian,
depending on what is native for the CPU that the Erlang machine is run on. Endianness only matters when the
Typeiseitheri nt eger,ut f 16, utf 32, orfl oat . Thedefaultisbi g.

Unit=unit:IntegerlLiteral
The allowed range is 1..256. Defaultsto 1 for i nt eger ,fl oat,andbi t stri ng, andto8for bi nary. No
unit specifier must be given for the typesut f 8, ut f 16, and ut f 32.

The value of Si ze multiplied with the unit gives the number of bits. A segment of type bi nar y must have asize
that isevenly divisible by 8.

Note:

When constructing binaries, if the size N of an integer segment istoo small to contain the given integer, the most
significant bits of the integer are silently discarded and only the N |east significant bits are put into the binary.

Thetypesut f 8, ut f 16, and ut f 32 specifies encoding/decoding of the Unicode Transformation Formats UTF-8,
UTF-16, and UTF-32, respectively.

When constructing a segment of a utf type, Val ue must be an integer in the range 0..16#D7FF or
16#E000....16#10FFFF. Construction failswith abadar g exceptionif Val ue isoutside the allowed ranges. Thesize
of the resulting binary segment depends on the type or Val ue, or both:

e Forutf 8, Val ue isencoded in 1-4 bytes.
e« Forutf 16, Val ue isencodedin 2 or 4 bytes.
e Forutf 32, Val ue isaways be encoded in 4 bytes.

When constructing, aliteral string can be given followed by one of the UTF types, for example: <<" abc"/ ut f 8>>
which is syntactic sugar for <<$a/ ut f 8, $b/ ut f 8, $c/ ut f 8>>.

A successful match of asegment of aut f type, resultsin aninteger intherange 0..16#D7FF or 16#E£000..16#10FFFF.
The match fails if the returned value falls outside those ranges.

A segment of type ut f 8 matches 1-4 bytesin the binary, if the binary at the match position contains a valid UTF-8
sequence. (See RFC-3629 or the Unicode standard.)

A segment of type ut f 16 can match 2 or 4 bytes in the binary. The match fails if the binary at the match position
does not contain alegal UTF-16 encoding of a Unicode code point. (See RFC-2781 or the Unicode standard.)

A segment of type ut f 32 can match 4 bytesin the binary in the sasmeway asani nt eger segment matches 32 bits.
The match fails if the resulting integer is outside the legal ranges mentioned above.

Examples:

1> Binl = <<1, 17, 42>>.

<<1, 17, 42>>

2> Bin2 = <<"abc">>.

<<97, 98, 99>>

3> Bin3 = <<1, 17, 42: 16>>.

<<1, 17,0, 42>>

4> <<A B, C 16>> = <<1, 17, 42: 16>>.
<<1, 17,0, 42>>

5> C.

42

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 163

5.8 Expressions

6> <<D: 16, E, F>> = <<1, 17, 42: 16>>
<<1, 17, 0, 42>>

7> D.

273

8> F.

42

9> <<G H bi nary>> = <<1,17, 42: 16>>
<<1, 17, 0, 42>>

10> H

<<17, 0, 42>>

11> <<G H bi tstring>> = <<1, 17, 42: 12>>
<<1, 17,1, 10: 4>>

12> H

<<17, 1, 10: 4>>

13> <<1024/ ut f 8>>

<<208, 128>>

Notice that bit string patterns cannot be nested.

Notice also that "B=<<1>>" isinterpreted as "B =<<1>>" which is a syntax error. The correct way is to write a
space after '="; "B= <<1>>,

More examples are provided in Programming Examples.

5.8.18 Fun Expressions

fun
[Nane] (Patternll, ..., PatternlN) [when CGuardSeql] ->
Body1;
[Nane] (PatternkKi, ..., Patt ernKN) [when CuardSeqK] ->
BodyK
end

A fun expression begins with the keyword f un and ends with the keyword end. Between them is to be a function
declaration, similar to aregular function declaration, except that the function name is optional and isto be avariable,
if any.

Variables in afun head shadow the function name and both shadow variables in the function clause surrounding the
fun expression. Variables bound in afun body are local to the fun body.

The return value of the expression is the resulting fun.
Examples:

1> Funl = fun (X) -> X+1 end
#Fun<er| _eval . 6. 39074546>

2> Funl(2).

3

3> Fun2 = fun (X) when X>=5 -> gt; (X) -> It end
#Fun<er| _eval . 6. 39074546>

4> Fun2(7).

gt

5> Fun3 = fun Fact (1) -> 1; Fact(X) when X > 1 -> X * Fact(X - 1) end
#Fun<er| _eval . 6. 39074546>

6> Fun3(4).

24

164 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

The following fun expressions are also allowed:

fun Nane/Arity
fun Modul e: Nane/ Arity

InNanme/ Arity, Name isanatomand Ari ty isaninteger. Nane/ Ari t y must specify an existing local function.
The expression is syntactic sugar for:

fun (Argl, ..., ArgN) -> Nane(Argl, ..., ArgN) end

InModul e: Nane/ Ari ty, Modul e, and Nanme areatomsand Ar i t y isaninteger. Starting from Erlang/OTP R15,
Modul e, Nane, and Ari t y can also be variables. A fun defined in this way refers to the function Nane with arity
Ari ty inthelatest version of module Modul e. A fun defined in thisway is not dependent on the code for the module
inwhich it is defined.

More examples are provided in Programming Examples.

5.8.19 Catch and Throw

catch Expr

Returns the value of Expr unless an exception occurs during the evaluation. In that case, the exception is caught.
For exceptions of classer r or , that is, run-timeerrors, {' EXI T' , { Reason, St ack}} isreturned.

For exceptions of classexi t , that is, thecodecalledexi t (Term),{' EXI T' , Ter n} isreturned.

For exceptions of classt hr ow, that isthe code called t hr ow(Ter nj , Ter misreturned.

Reason depends on thetype of error that occurred, and St ack isthe stack of recent function calls, see Exit Reasons.

Examples:

1> catch 1+2.

3
2> catch 1l+a.
{"EXIT ,{badarith,[...]}}

Notice that cat ch has low precedence and catch subexpressions often needs to be enclosed in a block expression
or in parenthesis:

3> A = catch 1+2.

** 1. syntax error before: 'catch' **
4> A = (catch 1+2).

3

TheBIFt hr ow(Any) can be used for non-local return from afunction. It must be evaluated withinacat ch, which
returns the value Any.

Example:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 165

5.8 Expressions

5> catch throw hell o).
hel | o

If t hr ow 1 isnot evaluated within a catch, anocat ch run-time error occurs.

5.8.20 Try

try Exprs
catch
[assl:] ExceptionPatternl [when ExceptionCuardSeql] ->
Excepti onBody1;
[assN:] Excepti onPatternN [when Excepti onCGuardSeqN ->
Excepti onBodyN
end

Thisis an enhancement of catch that appeared in Erlang 5.4/OTP R10B. It gives the possibility to:

» Distinguish between different exception classes.
» Chooseto handle only the desired ones.
e Passing the othersonto anenclosingt ry or cat ch, or to default error handling.

Notice that although the keyword cat ch isused inthet r y expression, thereisnot acat ch expression within the
t ry expression.

It returns the value of Expr s (a sequence of expressions Expr1, ..., ExprN) unless an exception occurs
during the evaluation. In that case the exception is caught and the patterns Except i onPat t er n with the right
exception class Cl ass are sequentially matched against the caught exception. An omitted Cl ass is shorthand for
t hr ow. If a match succeeds and the optional guard sequence Except i onGuar dSeq is true, the corresponding
Except i onBody isevauated to become the return value.

If an exception occurs during evaluation of Expr s but there is no matching Except i onPat t er n of the right
d ass with atrue guard sequence, the exception ispassed on asif Expr s had not been enclosedinat r y expression.

If an exception occurs during evaluation of Except i onBody, it isnot caught.

Thet ry expression can have an of section:

try Exprs of
Patternl [when QuardSeql] ->
Body1;

PatternN [when GuardSeqN ->
BodyN
catch
[C assl:] ExceptionPatternl [when ExceptionGuardSeql] ->
Except i onBody1;

[C assN:] Excepti onPatternN [when ExceptionGuardSegN ->

Except i onBodyN
end

If theevaluation of Expr s succeedswithout an exception, the patternsPat t er n are sequentially matched against the
result in the sameway asfor acase expression, except that if thematching fails, at r y_cl ause run-timeerror occurs.

An exception occurring during the evaluation of Body is not caught.

166 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

Thet ry expression can also be augmented with an af t er section, intended to be used for cleanup with side effects:

try Exprs of
Patternl [when GuardSeql] ->
Body1;

Patt ernN [when GuardSegN] ->
BodyN
cat ch
[assl:] ExceptionPatternl [when ExceptionCuardSeql] ->
Except i onBody1;

[A assN:] Excepti onPatternN [when ExceptionCuardSeqN ->
Excepti onBodyN
after
Af t er Body
end

Af t er Body is evaluated after either Body or Except i onBody, no matter which one. The evaluated value of
Af t er Body islogt; thereturn value of thet r y expression isthe samewith an af t er section as without.

Even if an exception occurs during evaluation of Body or Except i onBody, Af t er Body isevaluated. In thiscase
the exception is passed on after Af t er Body has been evaluated, so the exception from the t ry expression is the
samewith an af t er section as without.

If an exception occursduring evaluation of Af t er Body itself, itisnot caught. Soif Af t er Body isevaluated after an
exceptionin Expr s, Body, or Except i onBody, that exceptionislost and masked by theexceptionin Af t er Body.

Theof , cat ch, and af t er sectionsare all optional, aslong asthereisat least acat ch or anaf t er section. So
thefollowing arevalidt r y expressions:

try Exprs of
Pattern when GuardSeq ->
Body
after
Af t er Body
end

try Exprs
catch
Expressi onPattern ->
Expr essi onBody
after
Af t er Body
end

try Exprs after AfterBody end

Next is an example of using af t er . This closes the file, even in the event of exceptionsinfil e: read/ 2 orin
bi nary_to_terni 1. The exceptions are the same aswithout thet ry...af t er ...end expression:

term ze_fil e(Nanme) ->
{ok, F} = file:open(Nane, [read, binary]),
try
{ok,Bin} = file:read(F, 1024*1024),
bi nary_to_t ermn(Bin)
after

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 167

5.8 Expressions

file:close(F)
end.

Next isan example of usingt r y to emulatecat ch Expr:

try Expr
catch

throw Term-> Term

exit: Reason -> {'EXIT', Reason}

error: Reason -> {'EXIT', {Reason, erl ang: get _stacktrace()}}
end

5.8.21 Parenthesized Expressions

(Expr)

Parenthesized expressions are useful to override operator precedences, for example, in arithmetic expressions:

1> 1 + 2 * 3.
7

2> (1 +2) * 3.
9

5.8.22 Block Expressions

begi n
Expr 1,

Expr N

end

Block expressions provide away to group a sequence of expressions, similar to aclause body. The return valueis the
value of the last expression Expr N.

5.8.23 List Comprehensions

List comprehensions is a feature of many modern functional programming languages. Subject to certain rules, they
provide a succinct notation for generating elementsin alist.

List comprehensions are anal ogousto set comprehensionsin Zermel o-Frankel set theory and are called ZF expressions
in Miranda. They are analogous to the set of andfi ndal | predicatesin Prolog.

List comprehensions are written with the following syntax:

[Expr || Qalifierl,..., QualifierN

Here, Expr isan arbitrary expression, and each Qual i f i er iseither agenerator or afilter.
e A generator iswritten as:

168 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

Pattern <- ListExpr.
Li st Expr must be an expression, which evaluatesto alist of terms.

e A bit string generator iswritten as:
BitstringPattern <= BitStringExpr.
Bi t St ri ngExpr must be an expression, which evaluates to a bitstring.

« Afilter isan expression, which evaluatestot r ue or f al se.
The variablesin the generator patterns, shadow variables in the function clause, surrounding the list comprehensions.

A list comprehension returns a list, where the elements are the result of evaluating Expr for each combination of
generator list elements and hit string generator elements, for which all filters are true.

Example:

1> [X2 || X< [1,23]].
[2, 4, 6]

More examples are provoded in Programming Examples.

5.8.24 Bit String Comprehensions

Bit string comprehensions are analogous to List Comprehensions. They are used to generate bit strings efficiently and
succinctly.

Bit string comprehensions are written with the following syntax:

<< BitString || Qualifierd,..., QualifierN >>

Here, Bi t St ri ng isabit string expression and each Qual i fi er iseither a generator, a bit string generator or a
filter.

e A generator iswritten as:
Pattern <- ListExpr.
Li st Expr must be an expression that evaluatesto alist of terms.

e A bit string generator iswritten as:
BitstringPattern <= BitStringExpr.
Bi t St ri ngExpr must be an expression that evaluates to a bitstring.

» Afilter isan expression that evaluatestot r ue or f al se.

The variables in the generator patterns, shadow variables in the function clause, surrounding the bit string
comprehensions.

A bit string comprehension returnsabit string, which iscreated by concatenating theresultsof evaluatingBi t St ri ng
for each combination of bit string generator elements, for which all filters are true.

Example:

1> << << (X*2) >> |
<<X>> <= << 1,2,3 >> >>
<<2,4, 6>>

More examples are provided in Programming Examples.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 169

5.8 Expressions

5.8.25 Guard Sequences

A guard sequence is a sequence of guards, separated by semicolon (;). The guard sequenceistrueif at least one of the
guardsistrue. (The remaining guards, if any, are not evaluated.)

A guardisasequence of guard expressions, separated by comma(,). Theguard istrueif all guard expressions evaluate

Guardil;...; GuardK
totrue.
Quar dExpr1l, ..., GuardExprN

The set of valid guard expressions (sometimes called guard tests) is a subset of the set of valid Erlang expressions.
The reason for restricting the set of valid expressions is that evaluation of a guard expression must be guaranteed to
be free of side effects. Valid guard expressions are the following:

Theatomt r ue

Other constants (terms and bound variables), al regarded as false

Cdllsto the BIFs specified intable Type Test

Term comparisons

Arithmetic expressions
Boolean expressions
Short-circuit expressions (andal so/or el se)

Bl Fs

s _atonm 1

s_binary/1

s_bitstring/1

s_bool ean/ 1

s float/1

s function/1

s_function/2

s_integer/1

s list/1

s_map/ 1

S_nunber/1

s_pid/1l

s _port/1

s_record/ 2

s_record/3

170 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

is referencel/l

is_tuplel/l

Table 8.4: Type Test BlFs

Notice that most type test BIFs have older equivaents, without the i s_ prefix. These old BIFs are retained for
backwards compatibility only and are not to be used in new code. They are also only allowed at top level. For example,
they are not allowed in Boolean expressions in guards.

abs(Nunmber)

bit_size(Bitstring)

byte_size(Bitstring)

el ement (N, Tupl e)

float(Term

hd(Li st)

| engt h(Li st)

map_si ze(Map)

node()

node(Pi d| Ref | Port)

round(Nunber)

sel f ()

size(Tupl e| Bitstring)

tl(List)

trunc(Nunber)

tupl e_size(Tupl e)

Table 8.5: Other BIFs Allowed in Guard Expressions

If an arithmetic expression, a Boolean expression, a short-circuit expression, or acall to aguard BIF fails (because of
invalid arguments), the entire guard fails. If the guard was part of a guard sequence, the next guard in the sequence
(that is, the guard following the next semicolon) is evaluated.

5.8.26 Operator Precedence
Operator precedence in falling priority:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 171

5.9 Preprocessor

#

Unary + - bnot not

/* div rem band and Left associative
+ - bor bxor bsl bsr or xor Left associative
++-- Right associative
== /==<<>=>===/=

andalso

orelse

=1 Right associative
catch

Table 8.6: Operator Precedence

When evaluating an expression, the operator with the highest priority isevaluated first. Operatorswith the samepriority
are evaluated according to their associativity.

Example:
The left associative arithmetic operators are evaluated | eft to right:

6 +5* 4 - 3/ 2 evaluates to
6 + 20 - 1.5 evaluates to

26 - 1.5 evaluates to

24.5

5.9 Preprocessor
5.9.1 File Inclusion

A file can be included as follows:

-include(File).
-include_lib(File).

Fi | e, astring, isto point out afile. The contents of thisfile areincluded asis, at the position of the directive.

Includefilesaretypically used for record and macro definitions that are shared by several modules. It isrecommended
to use the file name extension . hr | for include files.

172 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.9 Preprocessor

Fi | e can start with a path component $VAR, for some string VAR If that is the case, the value of the environment
variable VAR as returned by os: get env(VAR) is substituted for $VAR. If os: get env(VAR) returnsf al se,
$VARIs|eft asis.

If the filename Fi | e is absolute (possibly after variable substitution), the include file with that name is included.
Otherwise, the specified file is searched for in the following directories, and in this order:

* The current working directory
e Thedirectory where the moduleis being compiled
e Thedirectories given by thei ncl ude option

For details, seethe erlc(1) manua page in ERTS and compile(3) manual page in Compiler.

Examples:

-include("ny_records. hrl").
-include("incdir/nmy_records. hrl").
-include("/home/ user/proj/my_records. hrl").
-incl ude("$PRQJ_ROOT/ ny_records. hrl").

i nclude_I|ibissmilartoi ncl ude, but is not to point out an absolute file. Instead, the first path component
(possibly after variable substitution) is assumed to be the name of an application.

Example:

-include_lib("kernel/include/file.hrl").

The code server usescode: | i b_di r (ker nel) tofind the directory of the current (latest) version of Kernel, and
then the subdirectory i ncl ude is searched for thefilefil e. hrl .

5.9.2 Defining and Using Macros

A macro is defined as follows:

-defi ne(Const, Replacenent).
-define(Func(Varl,..., VarN), Repl acenent).

A macro definition can be placed anywhere among the attributes and function declarations of a module, but the
definition must come before any usage of the macro.

If amacro isused in several modules, it is recommended that the macro definition is placed in an include file.

A macro isused as follows:
2Const

?Func(Argl, ..., Ar gN)

Macros are expanded during compilation. A simple macro ?Const isreplaced with Repl acemnent .

Example:

-def i ne(TI MEQUT, 200).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 173

5.9 Preprocessor

cal | (Request) ->
server:call (refserver, Request, ?TIMEQUT).

Thisis expanded to:

cal | (Request) ->
server:call (refserver, Request, 200).

A macro ?Func(Argl, ..., ArgN) isreplaced with Repl acenent , where al occurrences of a variable Var
from the macro definition are replaced with the corresponding argument Ar g.

Example:

-define(MACROL(X, Y), {a, X b, V}).
bar (X) ->

?MACROL(a, b),

2MACROL(X, 123)

Thisis expanded to:

bar(X) ->
{a, a, b, b},
{a, X b, 123} .

Itis good programming practice, but not mandatory, to ensure that amacro definition isavalid Erlang syntactic form.

To view the result of macro expansion, a module can be compiled with the' P' option. conpil e: fil e(Fil e,
['P"]).Thisproducesalisting of the parsed code after preprocessing and parse transforms, inthefileFi | e. P.

5.9.3 Predefined Macros
The following macros are predefined:

?MODULE

The name of the current module.
?MODULE_STRI NG

The name of the current module, as a string.
?FI LE.

The file name of the current module.
?LI NE.

The current line number.
?MACHI NE.

The machine name, ' BEAM .

5.9.4 Macros Overloading

It is possible to overload macros, except for predefined macros. An overloaded macro has more than one definition,
each with a different number of arguments.

The feature was added in Erlang 5.7.5/0TP R13B04.

174 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.9 Preprocessor

A macro ?Func(Argl, ..., ArgN) with a(possibly empty) list of arguments results in an error message if there
is at least one definition of Func with arguments, but none with N arguments.

Assuming these definitions:

-define(FO(), c).
-define(F1(A), A.
-define(C, mf).

the following does not work:

fo() ->
?F0. % No, an enpty |ist of arguments expected.

f1(A) ->
?F1(A, A). % No, exactly one argument expected.

On the other hand,

f() ->
20().

is expanded to

f() ->
mf().

5.9.5 Flow Control in Macros
The following macro directives are supplied:

- undef (Macr o) .
Causes the macro to behave as if it had never been defined.
-i fdef (Macro).
Evaluate the following lines only if Macr o is defined.
-i fndef (Macr o).
Evaluate the following lines only if Macr o is not defined.
- el se.
Only allowed after ani f def ori f ndef directive. If that condition isfalse, the linesfollowing el se are
evaluated instead.
-endif.
Specifiestheend of ani f def ori f ndef directive.

Note:

The macro directives cannot be used inside functions.

Example:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 175

5.10 Records

- modul e(m) .

-i fdef (debug) .
-define(LOX X), io:format("{~p, ~p}: ~p~n", [?MODULE, ?LINE, X])).
-el se.

-define(LOE X), true).

-endif.

When trace output is desired, debug isto be defined when the module mis compiled:

% erlc -Ddebug merl
or

1> c¢(m {d, debug}).
{ok, n}

?LOG Ar g) isthenexpandedto acall toi o: f or mat / 2 and provide the user with some simple trace outpuit.

5.9.6 Stringifying Macro Arguments

The construction ??Ar g, where Ar g is a macro argument, is expanded to a string containing the tokens of the
argument. Thisissimilar to the #ar g stringifying constructionin C.

The feature was added in Erlang 5.0/OTP RY7.
Example:

-define(TESTCALL(Call), io:format("Call ~s: ~w-n", [??Call, Call])).

?TESTCALL(myfunction(1,2)),
?TESTCALL(you: function(2,1)).

resultsin

io:format("Call ~s: ~w-n",["nyfunction (1, 2)",nyfunction(1,2)]),
io:format("Call ~s: ~w-n",["you : function (2, 1)",you:function(2,1)]).

That is, atrace output, with both the function called and the resulting value.

5.10 Records

A record is a data structure for storing a fixed number of elements. It has named fields and is similar to a struct in
C. Record expressions are transated to tuple expressions during compilation. Therefore, record expressions are not
understood by the shell unless specia actions are taken. For details, see the shell(3) manual pagein STDLIB.

More examples are provided in Programming Examples.

176 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.10 Records

5.10.1 Defining Records

A record definition consists of the name of therecord, followed by thefield names of therecord. Record and field names
must be atoms. Each field can be given an optional default value. If no default valueis supplied, undef i ned isused.

-record(Nane, {Fieldl [= Val uel],

Fi el dN [= Val ueN| }).

A record definition can be placed anywhere among the attributes and function declarations of a module, but the
definition must come before any usage of the record.

If arecord isused in several modules, it is recommended that the record definition is placed in an include file.

5.10.2 Creating Records

Thefollowing expression creates anew Nane record where the value of each field Fi el dI isthe value of evaluating
the corresponding expression Expr | :

#Nanme{ Fi el d1=Expr1, ..., Fi el dK=Expr K}

The fields can be in any order, not necessarily the same order as in the record definition, and fields can be omitted.
Omitted fields get their respective default value instead.

If several fields are to be assigned the same value, the following construction can be used:

#Nane{ Fi el d1=Expr1, ..., Fi el dK=Expr K, _=ExprL}

Omitted fields then get the value of evaluating Expr L instead of their default values. Thisfeature was added in Erlang
5.1/0TP R8 and is primarily intended to be used to create patterns for ETS and Mnesia match functions.

Example:

-record(person, {nane, phone, address}).

| ookup(Nanme, Tab) ->
ets: mat ch_obj ect (Tab, #person{nanme=Nanme, ="_'}).

5.10.3 Accessing Record Fields

Expr #Nane. Fi el d

Returns the value of the specified field. Expr isto evaluate to a Name record.
The following expression returns the position of the specified field in the tuple representation of the record:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 177

5.10 Records

#Nane. Fi el d

Example:

-record(person, {name, phone, address}).

| ookup(Nane, List) ->
| i sts: keysearch(Nane, #person. nane, List).

5.10.4 Updating Records

Expr #Nane{ Fi el d1=Expr1, ..., Fi el dK=Expr K}

Expr istoevaluateto aName record. A copy of thisrecord isreturned, with the value of each specified field Fi el dl
changed to the value of evaluating the corresponding expression Expr | . All other fieldsretain their old values.

5.10.5 Records in Guards

Since record expressions are expanded to tuple expressions, creating records and accessing record fields are allowed
in guards. However all subexpressions, for example, for field initiations, must be valid guard expressions as well.

Examples:

handl e(Msg, State) when Msg==#nsg{to=void, no=3} ->

handl e(Msg, State) when State#state.runni ng==true ->

Thereisasoatypetest BIFi s_record(Term RecordTag).
Example:

is_person(P) when is_record(P, person) ->
true;

is_person(_P) ->
fal se.

5.10.6 Records in Patterns

A pattern that matches a certain record is created in the same way as arecord is created:

#Name{ Fi el d1=Expr1, ..., Fi el dK=Expr K}

In this case, one or more of Expr 1...Expr K can be unbound variables.

178 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.10 Records

5.10.7 Nested Records

Beginning with Erlang/OTP R14, parentheses when accessing or updating nested records can be omitted. Assume the
following record definitions:

-record(nrecO, {nane
-record(nrecl, {nanme
-record(nrec2, {nanme

"nested0"}).
"nestedl", nrecO=#nrec0{}}).
"nested2", nrecl=#nrecl{}}).

N2 = #nrec2{},
Before R14, parentheses were needed as follows:

"nested0" = ((N2#nrec2.nrecl)#nrecl. nrecO)#nrec0. nane,
NOn = ((N2#nrec2. nrecl)#nrecl. nrecO)#nrecO{nane = "nestedOa"},

Since R14, the following can a so be written:

"nest ed0" = N2#nrec?2. nrecl#nrecl. nrecO#nrecO. nane,
NOn = N2#nrec2. nrecl#nrecl. nrecO#nrecO{name = "nestedOa"},

5.10.8 Internal Representation of Records
Record expressions are translated to tuple expressions during compilation. A record defined as:
-record(Nanme, {Field1,..., Fi el dN}) .

isinternally represented by the tuple:

{Nane, Val uel, ..., Val ueN}
Here each Val uel isthedefault valuefor Fi el dI .

To each module using records, a pseudo function is added during compilation to obtain information about records:

record_i nfo(fields, Record) -> [Field]
record_i nfo(size, Record) -> Size

Si ze isthe size of the tuple representation, that is, one more than the number of fields.
In addition, #Recor d. Nane returns the index in the tuple representation of Nane of the record Recor d.
Narme must be an atom.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 179

5.11 Errors and Error Handling

5.11 Errors and Error Handling
5.11.1 Terminology

Errors can roughly be divided into four different types:

e Compile-time errors

* Logical errors

* Run-timeerrors

e Generated errors

A compile-time error, for example a syntax error, does not cause much trouble as it is caught by the compiler.

A logical error iswhen aprogram does not behave asintended, but does not crash. An exampleisthat nothing happens
when a button in agraphical user interfaceis clicked.

A run-time error is when a crash occurs. An example is when an operator is applied to arguments of the wrong type.
The Erlang programming language has built-in features for handling of run-time errors.

A run-time error can also be emulated by calling er | ang: error (Reason) or erl ang: error (Reason,
Ar gs) (those appeared in Erlang 5.4/0TP-R10).

A run-time error is another name for an exception of classer r or .

A generated error is when the code itself callsexi t/ 1 ort hr ow 1. Notice that emulated run-time errors are not
denoted as generated errors here.

Generated errors are exceptions of classesexi t andt hr ow.

When a run-time error or generated error occurs in Erlang, execution for the process that evaluated the erroneous
expression is stopped. This is referred to as a failure, that execution or evaluation fails, or that the process fails,
terminates, or exits. Notice that a process can terminate/exit for other reasons than afailure.

A process that terminates emits an exit signal with an exit reason that says something about which error has occurred.
Normally, some information about the error is printed to the terminal.

5.11.2 Exceptions

Exceptions are run-time errors or generated errors and are of three different classes, with different origins. The try
expression (new in Erlang 5.4/0TP R10B) can distinguish between the different classes, whereas the catch expression
cannot. They are described in Expressions.

Class Origin

error Run-time error, for example, 1_+a, or the process called
erlang: error/ 1, 2 (new in Erlang 5.4/OTP R10B)

exit Theprocesscaledexit/ 1

t hr ow The processcalledt hr ow 1

Table 11.1: Exception Classes.

An exception consists of its class, an exit reason (see Exit Reason), and a stack trace (which aids in finding the code
location of the exception).

180 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.11 Errors and Error Handling

The stack trace can beretrieved using er | ang: get _st ackt r ace/ 0 (new in Erlang 5.4/0OTP R10B) from within
atry expression, and isreturned for exceptions of classer r or fromacat ch expression.

An exception of classer r or isaso known as arun-time error.

5.11.3 Handling of Run-time Errors in Erlang

Error Handling Within Processes

It is possible to prevent run-time errors and other exceptions from causing the process to terminate by using cat ch
ortry, see Expressions about catch and try.

Error Handling Between Processes

Processes can monitor other processes and detect process terminations, see Processes.

5.11.4 Exit Reasons

When a run-time error occurs, that is an exception of class er r or . The exit reason is atuple { Reason, St ack},
where Reason isaterm indicating the type of error:

Reason Type of Error

badar Bad argument. The argument is of wrong datatype, or is
9 otherwise badly formed.

badarith Bad argument in an arithmetic expression.

Evaluation of a match expression failed. The value V

{ badmat ch, V} did not match.

No matching function clause is found when evaluating a

function_cl ause .
- function call.

No matching branch is found when evaluating acase

{case_cl ause, V} expression. The value V did not match.

No true branch is found when evaluating an i f

if clause -
_ expression.

No matching branch is found when evaluating the of-

{try_cl ause, V}

section of at r y expression. The value V did not match.

undef

The function cannot be found when evaluating a
function call.

{badf un, F}

Something iswrong with afun F.

{badarity, F}

A funis applied to the wrong number of arguments. F
describes the fun and the arguments.

ti meout val ue

Thetimeout valueinar ecei ve. . af t er expression
is evaluated to something else than an integer or
infinity.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 181

5.12 Processes

nopr oc Trying to link to a non-existing process.

Trying to evaluate at hr ow outsideacat ch. Visthe

{nocat ch, V} thrown term.

A system limit has been reached. See Efficiency Guide

system|init for information about system limits.

Table 11.2: Exit Reasons

St ack is the stack of function calls being evaluated when the error occurred, given as a list of tuples
{ Modul e, Nane, Ari ty} with the most recent function call first. The most recent function call tuple can in some
casesbe{ Modul e, Nane, [Arg] }.

5.12 Processes

5.12.1 Processes

Erlang is designed for massive concurrency. Erlang processes are lightweight (grow and shrink dynamically) with
small memory footprint, fast to create and terminate, and the scheduling overhead is low.

5.12.2 Process Creation
A processis created by calling spawn:

spawn(Modul e, Nane, Args) -> pid()
Modul e = Nane = aton()
Args = [Argl, ..., ArgN|
Argl = term)

Spawn creates a new process and returns the pid.

The new process starts executing in Modul e: Name(Ar g1, . .., ArgN) where the arguments are the elements of
the (possible empty) Ar gs argument list.

There exist anumber of other spawn BIFs, for example, spawn/ 4 for spawning a process at another node.

5.12.3 Registered Processes

Besides addressing a process by using its pid, there are also BIFs for registering a process under a name. The name
must be an atom and is automatically unregistered if the process terminates:

BIF Description

Associates the name Nane, an atom, with the process

regi st er(Name, Pid) Pi d

Returns alist of names that have been registered using

regi stered() register/ 2.

182 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.12 Processes

Returns the pid registered under Nane, or undef i ned

wher ei s(Nane) if the nameis not registered.

Table 12.1: Name Registration BIFs

5.12.4 Process Termination
When a process terminates, it always terminates with an exit reason. The reason can be any term.

A processissaid to terminate normally, if the exit reason istheatomnor mal . A processwith no more code to execute
terminates normally.

A process terminates with an exit reason { Reason, St ack} when arun-time error occurs. See Exit Reasons.
A process can terminate itself by calling one of the following BIFs:

e exit(Reason)
« erlang: error(Reason)
e erlang: error(Reason, Args)

The process then terminates with reason Reason for exi t / 1 or { Reason, St ack} for the others.
A processcan also beterminated if it receivesan exit signal with another exit reason thannor mal , see Error Handling.

5.12.5 Message Sending

Processes communicate by sending and receiving messages. Messages are sent by using the send operator ! and
received by calling receive.

Message sending is asynchronous and safe, the message is guaranteed to eventually reach the recipient, provided that
the recipient exists.

5.12.6 Links

Two processes can be linked to each other. A link between two processes Pi d1 and Pi d2 iscreated by Pi d1 calling
the BIF | i nk(Pi d2) (or conversely). There also exist a number of spawn_I i nk BIFs, which spawn and link to
aprocess in one operation.

Links are bidirectional and there can only be one link between two processes. Repeated callsto | i nk(Pi d) have
no effect.

A link can be removed by calling the BIF unl i nk(Pi d) .
Links are used to monitor the behaviour of other processes, see Error Handling.

5.12.7 Error Handling

Erlang has a built-in feature for error handling between processes. Terminating processes emit exit signals to all
linked processes, which can terminate as well or handle the exit in some way. This feature can be used to build
hierarchical program structures where some processes are supervising other processes, for example, restarting them
if they terminate abnormally.

See OTP Design Principles for more information about OTP supervision trees, which use this feature.
Emitting Exit Signals

When a process terminates, it terminates with an exit reason as explained in Process Termination. This exit reason
isemitted in an exit signal to all linked processes.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 183

5.12 Processes

A process can also call the function exi t (Pi d, Reason) . Thisresultsin an exit signal with exit reason Reason
being emitted to Pi d, but does not affect the calling process.

Receiving Exit Signals

The default behaviour when a process receives an exit signal with an exit reason other than nor mal , isto terminate
and in turn emit exit signals with the same exit reason to its linked processes. An exit signal with reason nor nal
isignored.

A process can be set to trap exit signals by calling:

process _flag(trap_exit, true)

When aprocessistrapping exits, it does not terminate when an exit signal isreceived. Instead, the signal istransformed
into amessage {' EXI T' , FronPi d, Reason}, which is put into the mailbox of the process, just like a regular

message.

An exception to the above is if the exit reason is ki | | , that is if exi t (Pid, kill) has been called. This
unconditionally terminates the process, regardless of if it is trapping exit signals.

5.12.8 Monitors

An dternative to links are monitors. A process Pi d1 can create a monitor for Pi d2 by cdling the BIF
erl ang: noni t or (process, Pi d2). Thefunction returns areference Ref .

If Pi d2 terminates with exit reason Reason, a'DOWN' messageis sent to Pi d1:

{' DOMN' , Ref, process, Pid2, Reason}

If Pi d2 doesnot exist, the ' DOWN' message is sent immediately with Reason set to nopr oc.

Monitors are unidirectional. Repeated callsto er | ang: noni t or (process, Pi d) creates severa independent
monitors, and each one sends a'DOWN' message when Pi d terminates.

A monitor can be removed by calling er | ang: denoni t or (Ref) .
Monitors can be created for processes with registered names, also at other nodes.

5.12.9 Process Dictionary

Each process has its own process dictionary, accessed by calling the following BIFs:

put (Key, Val ue)
get (Key)

get ()

get _keys(Val ue)
er ase(Key)
erase()

184 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.13 Distributed Erlang

5.13 Distributed Erlang
5.13.1 Distributed Erlang System

A distributed Erlang system consists of a number of Erlang runtime systems communicating with each other. Each
such runtime system is called a node. Message passing between processes at different nodes, as well as links and
monitors, are transparent when pids are used. Registered names, however, arelocal to each node. This means that the
node must be specified as well when sending messages, and so on, using registered names.

Thedistribution mechanismisimplemented using TCP/I P sockets. How to implement an alternative carrier isdescribed
in the ERTS User's Guide.

5.13.2 Nodes

A nodeis an executing Erlang runtime system that has been given aname, using the command-line flag - nane (long
names) or - snarre (short names).

The format of the node nameisan atom name@ost . nane isthe name given by theuser. host isthefull host name
if long names are used, or thefirst part of the host nameif short namesare used. node() returnsthe name of the node.

Example:

% erl -nanme dil bert
(di |l bert @ab. eri csson. se) 1> node() .
"di |l bert @ab. eri csson. se'

% erl -snane dil bert
(di | bert @ab) 1> node() .
di | bert @ab

Note:

A node with along node name cannot communicate with a node with a short node name.

5.13.3 Node Connections

The nodes in a distributed Erlang system are loosely connected. The first time the name of another node is used,
for example, if spawn(Node, M F, A) or net _adm pi ng(Node) is called, a connection attempt to that node
is made.

Connectionsare by default transitive. If anode A connectsto node B, and node B has a connection to node C, then node
A aso tries to connect to node C. This feature can be turned off by using the command-line flag - connect _al |
f al se, seethe erl(1) manual pagein ERTS.

If a node goes down, all connections to that node are removed. Calling er | ang: di sconnect _node(Node)
forces disconnection of anode.

Thelist of (visible) nodes currently connected to isreturned by nodes() .

5.13.4 epmd

The Erlang Port Mapper Daemon epmd is automatically started at every host where an Erlang node is started. It is
responsible for mapping the symbolic node names to machine addresses. See the epmd(1) manual pagein ERTS.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 185

5.13 Distributed Erlang

5.13.5 Hidden Nodes

In adistributed Erlang system, it is sometimes useful to connect to a node without also connecting to all other nodes.
An example is some kind of O& M functionality used to inspect the status of a system, without disturbing it. For this
purpose, a hidden node can be used.

A hidden node is a node started with the command-line flag - hi dden. Connections between hidden nodes and other
nodesare not transitive, they must be set up explicitly. Also, hidden nodes does not show up inthelist of nodes returned
by nodes() . Instead, nodes(hi dden) or nodes(connect ed) must be used. This means, for example, that
the hidden node is not added to the set of nodes that gl obal iskeeping track of.

This feature was added in Erlang 5.0/0TP R7.

5.13.6 C Nodes

A C nodeis a C program written to act as a hidden node in a distributed Erlang system. The library Erl_Interface
contains functions for this purpose. For more information about C nodes, see the Erl_Interface application and
Interoperability Tutorial..

5.13.7 Security

Authentication determines which nodes are allowed to communi cate with each other. In anetwork of different Erlang
nodes, it is built into the system at the lowest possible level. Each node has its own magic cookie, which is an Erlang
atom.

When a hode tries to connect to another node, the magic cookies are compared. If they do not match, the connected
node rejects the connection.

At start-up, a node has a random atom assigned as its magic cookie and the cookie of other nodes is assumed to
be nocooki e. The first action of the Erlang network authentication server (aut h) is then to read a file named
$HOME/ . er | ang. cooki e. If the file does not exist, it is created. The UNIX permissions mode of the file is set
to octal 400 (read-only by user) and its contents are a random string. An atom Cooki e is created from the contents
of the file and the cookie of the local nodeis set to thisusing er | ang: set _cooki e(node(), Cooki e). This
also makes the local node assume that all other nodes have the same cookie Cooki e.

Thus, groups of userswith identical cookiefilesget Erlang nodesthat can communicate freely and without interference
from the magic cookie system. Users who want to run nodes on separate file systems must make certain that their
cookiefiles areidentical on the different file systems.

For a node Nodel with magic cookie Cooki e to be able to connect to, or accept a connection from, another node
Node?2 with a different cookie Di f f Cooki e, the function er | ang: set _cooki e(Node2, Diff Cooki e)
must first be called at Nodel. Distributed systems with multiple user IDs can be handled in thisway.

The default when a connection is established between two nodes, isto immediately connect all other visible nodes as
well. Thisway, thereisawaysafully connected network. If there are nodes with different cookies, this method can be
inappropriate and the command-lineflag - connect _al | f al se must be set, seethe erl(1) manual pagein ERTS.

The magic cookie of the local node isretrieved by calling er | ang: get _cooki e() .

5.13.8 Distribution BIFs
Some useful BIFs for distributed programming (for more information, see the erlang(3) manual pagein ERTS:

BIF Description

erl ang: di sconnect node(Node) Forces the disconnection of anode.

186 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.13 Distributed Erlang

erl ang: get _cooki e()

Returns the magic cookie of the current node.

is_alive()

Returnst r ue if the runtime system is anode and can
connect to other nodes, f al se otherwise.

nmoni t or _node(Node, true|false)

Monitors the status of Node. A message{ nodedown,
Node} isreceived if the connectionto it islost.

Returns the name of the current node. Allowed in

node() guards.

Returns the node where Ar g, apid, reference, or port, is
node(Ar g) located. g.ap P

Returns alist of al visible nodes this node is connected
nodes() to

Depending on Ar g, this function can return alist
nodes(Ar Q) not only of visible nodes, but also hidden nodes and

previously known nodes, and so on.

Sets the magic cookie used when connecting to Node.

Functi onNane, Args)

erl ang: set _cooki e(Node, Cooki e) If Node isthe current node, Cooki e is used when
connecting to all new nodes.

spawn[_| i nk| _opt] (Node, Fun) Creates a process at a remote node.

spawn|[_| i nk| opt] (Node, Modul e,

Creates a process at aremote node.

Table 13.1: Distribution BIFs

5.13.9 Distribution Command-Line Flags

Examples of command-line flags used for distributed programming (for moreinformation, seetheerl(1) manual page

in ERTS:

Command-Line Flag

Description

-connect _all false

Only explicit connection set-ups are used.

- hi dden

Makes a node into a hidden node.

-nanme Name

Makes a runtime system into a node, using long node
names.

- set cooki e Cooki e

Sameascalinger | ang: set _cooki e(node(),
Cooki e) .

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 187

5.14 Compilation and Code Loading

Makes a runtime system into a node, using short node
-sname Nane

names.
Table 13.2: Distribution Command-Line Flags
5.13.10 Distribution Modules
Examples of modules useful for distributed programming:
In the Kernel application:
Module Description
gl obal A global name registration facility.
gl obal _group Grouping nodes to global name registration groups.
net _adm Various Erlang net administration routines.
net _ker nel Erlang networking kernel.
Table 13.3: Kernel Modules Useful For Distribution.
Inthe STDLIB application:
Module Description
sl ave Start and control of slave nodes.

Table 13.4: STDLIB Modules Useful For Distribution.

5.14 Compilation and Code Loading

How codeis compiled and loaded is not alanguage issue, but is system-dependent. This section describes compilation
and code loading in Erlang/OTP with references to relevant parts of the documentation.

5.14.1 Compilation

Erlang programs must be compiled to object code. The compiler can generate a new file that contains the object code.
The current abstract machine, which runs the object code, is called BEAM, therefore the object files get the suffix
. beam The compiler can also generate a binary which can be loaded directly.

The compiler islocated in the module conpi | e (see the compile(3) manual page in Compiler).
conpi |l e: fil e(Mdul e)

conpi l e:fil e(Mdule, Options)

The Erlang shell understands the command ¢ (Modul e) which both compiles and loads Mbdul e.

188 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.14 Compilation and Code Loading

There is also a module make, which provides a set of functions similar to the UNIX type Make functions, see the
make(3) manual pagein Tools.

The compiler can also be accessed from the OS prompt, see the erl(1) manual pagein ERTS.

% erl -conpile Mdulel...MduleN
% erl -make

The er | ¢ program provides an even better way to compile modules from the shell, see the erlc(1) manual pagein
ERTS. It understands a number of flagsthat can be used to define macros, add search paths for include files, and more.

%erlc <flags> Filel.erl...FileN er

5.14.2 Code Loading

The object code must be loaded into the Erlang runtime system. This is handled by the code server, see the code(3)
manual pagein Kernel.

The code server |oads code according to a code loading strategy, which is either interactive (default) or embedded. In
interactive mode, code is searched for in a code path and loaded when first referenced. In embedded mode, code is
loaded at start-up according to a boot script. Thisis described in System Principles.

5.14.3 Code Replacement

Erlang supports change of code in arunning system. Code replacement is done on module level.

The code of amodule can exist in two variantsin a system: current and old. When amoduleisloaded into the system
for the first time, the code becomes 'current'. If then a new instance of the module is loaded, the code of the previous
instance becomes 'old' and the new instance becomes ‘current'.

Both old and current code is valid, and can be evaluated concurrently. Fully qualified function calls always refer to
current code. Old code can still be evaluated because of processes lingering in the old code.

If athird instance of the module isloaded, the code server removes (purges) the old code and any processes lingering
in it isterminated. Then the third instance becomes 'current’ and the previously current code becomes 'old'.

To change from old code to current code, a process must make afully qualified function call.
Example:

- modul e(m) .
-export ([l oop/0])

loop() ->
receive
code_sw tch ->
m | oop() ;
Msg ->

I 0op()
end

To make the process change code, send the message code_swi t ch to it. The process then makes a fully qualified
cal tom | oop() and changesto current code. Notice that m | oop/ 0 must be exported.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 189

5.15 Ports and Port Drivers

For code replacement of funs to work, use the syntax f un Modul e: Funct i onName/ Arity.

5.14.4 Running a Function When a Module is Loaded

Warning:
Theon_| oad feature is to be considered experimental as there are a number of known weak points in current
semantics, which therefore might change in future Erlang/OTP releases:

e Doing externa call inon_| oad to the moduleitself leads to deadl ock.

e At module upgrade, other processes calling the module get suspended waiting for on_| oad to finish. This
can be very bad for applications with demands on realtime characteristics.

e At module upgrade, no rollback is done if the on_I| oad function fails. The system is left in a bad limbo
state without any working and reachable instance of the module.

The problems with modul e upgrade described above can be fixed in future Erlang/OTP releases by changing the
behaviour to not make the module reachable until after the on_| oad function has successfully returned.

The-on_| oad() directive namesafunction that isto be run automatically when amodule is |loaded.
Its syntax is as follows:;

-on_| oad(Nane/ 0) .

It is not necessary to export the function. It is called in a freshly spawned process (which terminates as soon as the
function returns). The function must return ok if the module is to remain loaded and become callable, or any other
value if the module is to be unloaded. Generating an exception also causes the module to be unloaded. If the return
value is not an atom, awarning error report is sent to the error logger.

A process that calls any function in a module whose on_| oad function has not yet returned, is suspended until the
on_| oad function has returned.

In embedded mode, first all modules are loaded. Then all on_| oad functions are called. The system is terminated
unless all of theon_| oad functions return ok

Example:

- modul e(m) .
-on_|l oad(l oad_ny_nifs/0).

load_ny_nifs() ->
NifPath = ..., %set up the path to the NIF library.

Info = ..., %nitialize the Info term
erlang:load_nif(N fPath, Info).

If thecall toer | ang: | oad_ni f/ 2 fails, the module is unloaded and awarning report is sent to the error loader.

5.15 Ports and Port Drivers

Examples of how to use ports and port drivers are provided in Interoperability Tutorial. For information about the
BIFs mentioned, see the erlang(3) manual pagein ERTS.

190 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.15 Ports and Port Drivers

5.15.1 Ports

Ports provide the basic mechanism for communication with the external world, from Erlang's point of view. They
provide abyte-oriented interface to an external program. When a port has been created, Erlang can communicate with
it by sending and receiving lists of bytes, including binaries.

The Erlang process creating aport issaid to be the port owner, or the connected process of the port. All communication
to and from the port must go through the port owner. If the port owner terminates, so does the port (and the external
program, if it iswritten correctly).

The external program resides in another OS process. By default, it reads from standard input (file descriptor 0) and
writes to standard output (file descriptor 1). The external program is to terminate when the port is closed.

5.15.2 Port Drivers

Itispossibleto writeadriver in C according to certain principles and dynamically link it to the Erlang runtime system.
The linked-in driver looks like a port from the Erlang programmer's point of view and is called a port driver.

Warning:
An erroneous port driver causes the entire Erlang runtime system to leak memory, hang or crash.

For information about port drivers, seetheerl_driver(4) manual pagein ERTS, driver_entry(1) manual pagein ERTS,
and erl_ddlI(3) manual page in Kernel.

5.15.3 Port BIFs
To create a port:

Returns a port identifier Por t asthe result of opening a
new Erlang port. Messages can be sent to, and received
open_port (PortNanme, PortSettings from, aport identifier, just like apid. Port identifiers
canalso belinkedtousing | i nk/ 1, or registered under
anameusingregi ster/ 2.

Table 15.1: Port Creation BIF

Por t Name isusualy atuple{ spawn, Comrand} , where the string Command is the name of the external program.
The externa program runs outside the Erlang workspace, unless a port driver with the name Command is found. If
Command isfound, that driver is started.

Port Set ti ngs isalist of settings (options) for the port. The list typically contains at least atuple { packet , N},
which specifies that data sent between the port and the external program are preceded by an N-byte length indicator.
Validvaluesfor N arel, 2, or 4. If binariesareto be used instead of lists of bytes, the option bi nar y must beincluded.

The port owner Pi d can communicate with the port Por t by sending and receiving messages. (In fact, any process
can send the messages to the port, but the port owner must be identified in the message).

As of Erlang/OTP R16, messages sent to ports are delivered truly asynchronously. The underlying implementation
previously delivered messages to ports synchronously. Message passing has however always been documented as an
asynchronous operation. Hence, this is not to be an issue for an Erlang program communicating with ports, unless
fal se assumptions about ports have been made.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 191

5.15 Ports and Port Drivers

In the following tables of examples, Dat a must bean 1/Olist. An1/Olistisabinary or a(possibly deep) list of binaries
or integersin the range 0..255:

Message Description

{Pi d, {command, Dat a}} Sends Dat a to the port.

Closes the port. Unless the port is already closed, the
{Pid, cl ose} port replieswith{ Por t , cl osed} when al buffers
have been flushed and the port really closes.

Sets the port owner of Por t to NewPi d. Unless

the port is already closed, the port replies

{Pi d, {connect, NewPi d}} with{ Por t , connect ed} totheold port owner. Note
that the old port owner is till linked to the port, but the
new port owner is not.

Table 15.2: Messages Sent To a Port

Message Description

{Port,{data, Data}} Dat a isreceived from the external program.
{Port, cl osed} ReplytoPort ! {Pid,cl ose}.

{Port, connect ed} ReplytoPort ! {Pid, {connect, NewPi d}}.
{"EXIT, Port, Reason} If the port has terminated for some reason.

Table 15.3: Messages Received From a Port

Instead of sending and receiving messages, there are also a number of BIFsthat can be used:

Port BIF Description
port _conmand(Port, Dat a) Sends Dat a to the port.
port _cl ose(Port) Closes the port.

Sets the port owner of Por t to NewPi d. The old
port _connect (Port, NewPi d) port owner Pi d stays linked to the port and must call
unl i nk(Port) if thisisnot desired.

erlang: port _info(Port,Itenm Returnsinformation as specified by | t em

erl ang: ports() Returns alist of all ports on the current node.

Table 15.4: Port BIFs

192 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.15 Ports and Port Drivers

Some additional BIFsthat apply to port drivers: port _control /3 anderl ang: port_cal | /3.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 193

6.1 Records

6 Programming Examples

This section contains examples on using records, funs, list comprehensions, and the bit syntax.

6.1 Records

6.1.1 Records and Tuples

The main advantage of using records rather than tuplesisthat fieldsin arecord are accessed by name, whereas fields
in atuple are accessed by position. To illustrate these differences, suppose that you want to represent a person with
thetuple{ Nane, Address, Phone}.

To write functions that manipulate this data, remember the following:

» TheNane field isthefirst element of the tuple.
e TheAddr ess field is the second element.
e ThePhone field isthe third element.

For example, to extract data from a variable P that contains such a tuple, you can write the following code and then
use pattern matching to extract the relevant fields:

Name = el ement (1, P),
Address = elenent(2, P),

Such codeisdifficult to read and understand, and errors occur if the numbering of the elementsin the tupleiswrong. If
the data representation of thefieldsis changed, by re-ordering, adding, or removing fields, al referencesto the person
tuple must be checked and possibly modified.

Records allow references to the fields by name, instead of by position. In the following example, a record instead of
atupleis used to store the data:

-record(person, {name, phone, address}).

This enables references to the fields of the record by name. For example, if P isavariable whose valueisaper son
record, the following code access the name and address fields of the records:

Name = P#person. nane,
Addr ess = P#per son. addr ess

Internally, records are represented using tagged tuples:

{person, Name, Phone, Address}

194 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.1 Records

6.1.2 Defining a Record

This following definition of aper son isused in several examples in this section. Three fields are included, nane,
phone, and addr ess. The default values for nane and phone is"" and [], respectively. The default value for
addr ess istheatom undef i ned, since no default value is supplied for thisfield:

-record(person, {nane = "", phone = [], address}).

The record must be defined in the shell to enable use of the record syntax in the examples:

> rd(person, {name = "", phone =[], address})
per son

Thisisbecause record definitions are only available at compiletime, not at runtime. For details on recordsin the shell,
see the shell(3) manual pageinstdl i b.
6.1.3 Creating a Record

A new per son record is created as follows:

> #person{phone=[0, 8, 2, 3,4,3,1,2], name="Robert"}.
#per son{nane = "Robert", phone = [0, 8, 2, 3,4, 3,1, 2], address = undefi ned}

Astheaddr ess field was omitted, its default value is used.

From Erlang 5.1/JOTP R8B, a vaue to al fields in a record can be set with the special field . _ means "all fields
not explicitly specified".

Example:
> #person{nane = "Jakob", _ ="'_'}.
#person{name = "Jakob", phone = '_', address = '_'}

It is primarily intended to be used in et s: nmat ch/ 2 and resi a: mat ch_obj ect / 3, to set record fields to the
atom' _' . (Thisisawildcardinet s: mat ch/ 2.)

6.1.4 Accessing a Record Field

The following example shows how to access arecord field:

> P = #person{nanme = "Joe", phone =1[0,8,2,3,4,3,1,2]}.

#per son{nane = "Joe", phone = [0, 8, 2,3,4,3,1, 2], address = undefi ned}
> P#per son. nane

"Joe"

6.1.5 Updating a Record

The following example shows how to update a record:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 195

6.1 Records

> P1 = #person{nane="Joe", phone=[1, 2,3], address="A street"}.
#person{name = "Joe", phone = [1,2,3],address = "A street"}

> P2 = Pl#person{nanme="Robert"}.

#person{nanme = "Robert", phone = [1, 2, 3],address = "A street"}

6.1.6 Type Testing

The following example shows that the guard succeeds if P isrecord of type per son:

foo(P) when is_record(P, person) -> a_person;
foo(_) -> not_a_person.

6.1.7 Pattern Matching

Matching can be used in combination with records, as shown in the following example:

> P3 = #person{nane="Joe", phone=[0,0,7], address="A street"}.

#per son{nane = "Joe", phone = [0,0,7],address = "A street"}
> #person{name = Nane} = P3, Nane.
"Joe"

Thefollowing function takesalist of per son records and searchesfor the phone number of aperson with a particular
name:

find_phone([#per son{ name=Nane, phone=Phone} | _], Nane) ->
{found, Phone};

find_phone([_| T], Nane) ->
find_phone(T, Nane);

find_phone([], Nanme) ->
not _f ound.

Thefields referred to in the pattern can be given in any order.

6.1.8 Nested Records

The value of afield in arecord can be an instance of a record. Retrieval of nested data can be done stepwise, or in
asingle step, as shown in the following example:

-record(nane, {first = "Robert", last = "Ericsson"}).
-record(person, {name = #name{}, phone}).

deno() ->
P = #person{nanme= #name{first="Robert",last="Virding"}, phone=123},
Fi rst = (P#person. nane) #nane. first.

Here, denmo() evaluatesto" Robert".

6.1.9 A Longer Example

Comments are embedded in the following example:

196 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.2 Funs

%% Fi |l e: person. hrl

%% Dat a Type: person

%% wher e:

%o name: A string (default is undefined).
%o age: An integer (default is undefined).
W phone: A list of integers (default is []).

W dict: A dictionary containing various information

9% about the person.
%o A {Key, Value} list (default is the enpty list).
o meomesome00055065005506505550600555060065505006550500555050

-record(person, {name, age, phone =[], dict =[]}).

- modul e(person).
-include("person.hrl").
-conpil e(export_all). % For test purposes only.

%b This creates an instance of a person.
%6 Note: The phone nunmber is not supplied so the
%o default value [] will be used.

make_hacker _wi t hout _phone(Nanme, Age) ->
#person{nane = Nane, age = Age,

dict = [{conputer_know edge, excellent},

{drinks, coke}]l}.
%b Thi s denonstrates matching in arguments
print (#person{nane = Nane, age = Age,

phone = Phone, dict = Dict}) ->
io:format ("Name: ~s, Age: ~w, Phone: ~w ~n"

"Dictionary: ~w. ~n", [Nanme, Age, Phone,

%% Denpnstrates type testing, selector, updating.

bi rt hday(P) when record(P, person) ->
P#per son{ age = P#person. age + 1}.

regi ster_two_hackers() ->
Hacker1l = nmake_hacker _wi t hout phone("Joe", 29),
A dHacker = birthday(Hacker1),
% The central _register_server should have
% an interface function for this.

Dict]).

central _register_server ! {register_person, Hacker1},

central register_server ! {register_person,
A dHacker #per son{ name = "Robert",

phone = [0,8,3,2,4,5,3,1]}}.

6.2 Funs
6.2.1 map

The following function, doubl e, doubles every element in alist:

doubl e([H T]) -> [2*H doubl e(T)];

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 197

6.2 Funs

doubl e([]) ->[].

Hence, the argument entered as input is doubled as follows:

> doubl e([1, 2,3, 4]).
(2,4 6,8]

The following function, add_one, adds oneto every element in alist:

add_one([H T]) -> [H+1l]| add_one(T)];
add_one([]) ->[].

The functions doubl e and add_one have a similar structure. This can be used by writing a function map that
expresses this similarity:

mep(F, [HT]) -> [F(H|mp(F, T)];
mep(F, [1) ->[1.

The functionsdoubl e and add_one can now be expressed in terms of map asfollows:

doubl e(L) -> map(fun(X) -> 2*X end, L).
add_one(L) -> map(fun(X) -> 1 + X end, L).

map(F, List) isafunction that takes afunction F and alist L as arguments and returns a new list, obtained by
applying F to each of the elementsin L.

The process of abstracting out the common features of anumber of different programsis called procedural abstraction.
Procedural abstraction can be used to write several different functions that have asimilar structure, but differ in some
minor detail. Thisis done as follows:

* Sep 1. Write one function that represents the common features of these functions.
* Sep 2. Parameterize the difference in terms of functions that are passed as arguments to the common function.

6.2.2 foreach

This section illustrates procedural abstraction. Initialy, the following two examples are written as conventional
functions.

Thisfunction prints all elements of alist onto a stream:

print_list(Stream [HT]) ->
io:format (Stream "~p~n", [H),
print_list(Stream T);
print_list(Stream []) ->
true.

This function broadcasts a messageto alist of processes:

198 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.2 Funs

br oadcast (Msg, [Pid|Pids]) ->
Pid ! Mg,
br oadcast (Msg, Pids);
broadcast(_, []) ->
true.

These two functions have asimilar structure. They both iterate over alist and do something to each element in thelist.
The "something” is passed on as an extra argument to the function that does this.

Thefunction f or each expresses this similarity:

foreach(F, [HT]) ->
F(H),
foreach(F, T);
foreach(F, []) ->
ok.

Using the function f or each, thefunctionpri nt _I i st becomes:

foreach(fun(H ->io:format(S, "~p~n",[H) end, L)

Using the function f or each, the function br oadcast becomes:

foreach(fun(Pid) -> Pid ! Mend, L)

f or each is evaluated for its side-effect and not its value. f or each(Fun , L) cals Fun(X) for each element
Xin L and the processing occurs in the order that the elements were defined in L. map does not define the order in
which its elements are processed.

6.2.3 Syntax of Funs
Funs are written with the following syntax (see Fun Expressions for full description):
F =fun (Argl, Arg2, ... ArgN) ->

end

This creates an anonymous function of N arguments and binds it to the variable F.

Another function, Funct i onName, written in the same module, can be passed as an argument, using the following
syntax:

F = fun FunctionNane/Arity

With this form of function reference, the function that is referred to does not need to be exported from the module.

It isalso possible to refer to afunction defined in a different module, with the following syntax:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 199

6.2 Funs

F = fun Modul e: Functi onNane/ Arity

In this case, the function must be exported from the module in question.
The following program illustrates the different ways of creating funs:

-nmodul e(fun_test).
-export([t1/0, t2/0]).
-inport(lists, [map/2]).

t1() -> map(fun(X) -> 2 * X end, [1,2,3,4,5]).
t2() -> map(fun double/1, [1,2,3,4,5]).

doubl e(X) -> X * 2.

The fun F can be evaluated with the following syntax:

F(Argl, Arg2, ..., Argn)

To check whether atermisafun, usethetesti s_f uncti on/ 1 inaguard.
Example:

f(F, Args) when is_function(F) ->

appl y(F, Args);
f(N, _) when is_integer(N) ->
N.

Funs are adistinct type. The BIFser | ang: fun_i nf o/ 1, 2 can be used to retrieve information about a fun, and
theBIFerl ang: fun_to_|i st/ 1 returnsatextual representation of afun. Thecheck _process_code/ 2 BIF
returnst r ue if the process contains funs that depend on the old version of amodule.

6.2.4 Variable Bindings Within a Fun

The scope rules for variables that occur in funs are as follows:

« All variables that occur in the head of afun are assumed to be "fresh" variables.

* Variablesthat are defined before the fun, and that occur in function calls or guard tests within the fun, have the
values they had outside the fun.

» Variables cannot be exported from afun.
The following examplesillustrate these rules:

print _list(File, List) ->
{ok, Streant = file:open(File, wite),
foreach(fun(X) -> io:format(Stream"~p~n",[X]) end, List),
file:close(Strean).

200 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.2 Funs

Here, the variable X, defined in the head of the fun, is a new variable. The variable St r eam which is used within
thefun, getsitsvaluefromthefi | e: open line.

Asany variable that occursin the head of afun is considered a new variable, it is equally valid to write as follows:

print_list(File, List) ->
{ok, Strean} = file:open(File, wite),
foreach(fun(File) ->
io:format (Stream"~p~n",[File])
end, List),
file:close(Streamn.

Here, Fi | e isused asthe new variable instead of X. Thisis not so wise because code in the fun body cannot refer to
thevariable Fi | e, which is defined outside of the fun. Compiling this example gives the following diagnostic:

./ FileNane.erl:Line: Warning: variable 'File'
shadowed in ' fun'

This indicates that the variable Fi | e, which is defined inside the fun, collides with the variable Fi | e, which is
defined outside the fun.

The rules for importing variables into a fun has the consequence that certain pattern matching operations must be
moved into guard expressions and cannot be written in the head of the fun. For example, you might write the following
codeif you intend the first clause of F to be evaluated when the value of itsargument isY:

f(...) ->
Y = ...
map(fun(X) when X ==Y ->
0 ->

end,)
instead of writng the following code:

F(..) ->
Y = ...
map(fun(y) ->

) ->

end,)

6.2.5 Funs and Module Lists

The following examples show a dialogue with the Erlang shell. All the higher order functions discussed are exported
fromthemodulel i st s.

map

map takes afunction of one argument and alist of terms:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 201

6.2 Funs

mep(F, [HT]) -> [F(H|mp(F, T)I;
mep(F, [1) ->[1.

It returns the list obtained by applying the function to every argument in the list.
When anew fun is defined in the shell, the value of the funis printed as Fun#<er | _eval >:

> Double = fun(X) -> 2 * X end.
#Fun<er| _eval . 6. 72228031>

> |ists:map(Double, [1,2,3,4,5]).
[2,4,6,8,10]

any

any takes apredicate P of one argument and alist of terms:

any(Pred, [HT]) ->
case Pred(H) of
true -> true;
false -> any(Pred, T)
end;
any(Pred, []) ->
fal se.

A predicate is afunction that returnst r ue or f al se. any istrue if thereisaterm X in the list such that P(X)
istrue.

A predicate Bi g(X) isdefined, whichist r ue if itsargument is greater that 10:

>Big= fun(X) ->if X > 10 -> true; true -> fal se end end.
#Fun<er| _eval . 6. 72228031>

> |lists:any(Big, [1,2,3,4]).
fal se

> |lists:any(Big, [1,2,3,12,5]).
true

all

al | hasthe same argumentsasany:

all (Pred, [HT]) ->
case Pred(H) of
true -> all(Pred, T);
false -> false
end;
all (Pred, []) ->
true.

Itist r ue if the predicate applied to all elementsinthelistist r ue.

202 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.2 Funs

> lists:all(Big, [1,2,3,4,12,6]).
fal se
> |lists:all(Big, [12,13,14,15]).
true

foreach

f or each takes afunction of one argument and alist of terms:

foreach(F, [HT]) ->
F(H),
foreach(F, T);
foreach(F, []) ->
ok.

The function is applied to each argument in thelist. f or each returnsok. It isonly used for its side-effect:

> |ists:foreach(fun(X) -> io:format("~wn",[X]) end, [1,2,3,4]).
1
2
3
4
ok

foldl

f ol dI takesafunction of two arguments, an accumulator and a list:

foldl (F, Accu, [Hd|Tail]) ->
foldl (F, F(Hd, Accu), Tail);
foldl (F, Accu, []) -> Accu.

The function is called with two arguments. The first argument is the successive elements in the list. The second
argument is the accumulator. The function must return a new accumulator, which is used the next time the function
iscaled.

If you havealist of lis,sL = ["I","like","Erlang"], then you can sum the lengths of all the stringsin L
asfollows:

>L =["I","like","Erlang"].

["1", "like", "Erlang"]

10> lists:foldl (fun(X, Sun) -> length(X) + Sumend, 0, L).

11

f ol dl workslikeawhi | e loop in an imperative language:

[“1","l'ike","Erlang"],
:O’
e(LI=1D{

um
il

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 203

6.2 Funs

Sum += | engt h(head(L)),
L =tail (L)
end

mapfold|

mapf ol dl simultaneously maps and folds over alist:

mapfol dl (F, AccuO, [Hd| Tail]) ->
{R Accul} = F(Hd, Accu0),
{Rs, Accu2} = mapfoldl (F, Accul, Tail),
{[R Rs], Accu2};

mapfol dl (F, Accu, []) -> {[], Accu}.

The following example shows how to change al lettersin L to upper case and then count them.
First the change to upper case:

> Upcase = fun(X) when $a =< X, X =< $z -> X + $A - $a;
(X ->X

end.

#Fun<er| _eval . 6. 72228031>

> Upcase_word =

fun(X) ->
l'i sts: map(Upcase, X)
end.

#Fun<er| _eval . 6. 72228031>
> Upcase_word("Erl ang").

" ERLANG'
> |ists: map(Upcase_word, L).
["I","LI KE", " ERLANG']

Now, the fold and the map can be done at the same time:

> |ists:mapfoldl (fun(Word, Sum ->
{Upcase_word(Word), Sum + | ength(Wrd)}

end, 0, L).
{["1","LIKE", "ERLANG'], 11}
filter

filter takesapredicate of one argument and alist and returns all elementsin thelist that satisfy the predicate:

filter(F, [HT]) ->
case F(H) of
true -> [Hfilter(F, T)];
false -> filter(F, T)
end;
filter(F, [1) ->[I.

204 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.2 Funs

> lists:filter(Big, [500,12,2,645,6,7]).
[500, 12, 45]

Combining maps and filters enables writing of very succinct code. For example, to define a set difference function
di ff(L1, L2) tobethedifferencebetweenthelistsL1 and L2, the code can be written as follows:

diff(L1, L2) ->
filter(fun(X) -> not nenber(X, L2) end, L1).

Thisgivesthelist of all elementsin L1 that are not contained in L2.
The AND intersection of thelist L1 and L2 is also easily defined:

intersection(L1,L2) -> filter(fun(X) -> nmenber (X, L1) end, L2).

takewhile
t akewhi | e(P, L) takeselements X from alist L aslong asthe predicate P(X) istrue:

takewhil e(Pred, [HT]) ->
case Pred(H) of
true -> [Htakewhile(Pred, T)];
false -> []
end;
t akewhi l e(Pred, []) ->
[1.

> |ists:takewhil e(Big, [200,500,45,5,3,45,6]).
[200, 500, 45]

dropwhile

dr opwhi | e isthe complement of t akewhi | e:

dropwhil e(Pred, [HT]) ->
case Pred(H) of
true -> dropwhile(Pred, T);
false -> [H T]
end;
dropwhi l e(Pred, []) ->
[1.

> |ists:dropwhile(Big, [200,500,45,5,3,45,6]).
[5, 3, 45, 6]

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 205

6.2 Funs

splitwith

splitwith(P, L) splitsthelistL intothetwo sublists{L1, L2},whereL = takewhile(P, L) andL2
= dropwhil e(P, L):

splitwith(Pred, L) ->
splitwith(Pred, L, []).

splitwith(Pred, [HT], L) ->
case Pred(H) of
true -> splitwith(Pred, T, [HL]);
false -> {reverse(L), [HT]}
end;
splitwith(Pred, [], L) ->
{reverse(L), []}.

> lists:splitwith(Big, [200,500,45,5,3,45,6]).
{[200, 500, 45] , [5, 3, 45, 6] }

6.2.6 Funs Returning Funs

So far, only functions that take funs as arguments have been described. More powerful functions, that themselves
return funs, can also be written. The following examplesillustrate these type of functions.

Simple Higher Order Functions
Adder (X) isafunction that given X, returns a new function Gsuch that G(K) returnsK + X:

> Adder = fun(X) -> fun(Y) -> X + Y end end.
#Fun<er| _eval . 6. 72228031>

> Add6é = Adder (6).

#Fun<er| _eval . 6. 72228031>

> Add6(10) .

16

Infinite Lists

The ideaisto write something like:

- modul e(| azy) .
-export([ints_from1]).
ints_fromN) ->
fun() ->
[Nints_from N+1)]
end.

Then proceed as follows:

> XX = lazy:ints_fronm(1).
#Fun<| azy. 0. 29874839>
> XX() .

206 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.2 Funs

[1] #Fun<l azy. 0. 29874839>]
> hd(XX()) .
1

> Y =t (XX()).
#Fun<l azy. 0. 29874839>

> hd(Y()).
2

And so on. Thisis an example of "lazy embedding”.

Parsing

The following examples show parsers of the following type:

Parser (Toks) -> {ok, Tree, Toksl} | fai

Toks isthelist of tokensto be parsed. A successful parsereturns{ ok, Tree, Toks1l}.

e Treeisaparsetree.
 Tokslisatail of Tr ee that contains symbols encountered after the structure that was correctly parsed.

An unsuccessful parse returnsf ai | .
The following example illustrates a simple, functional parser that parses the grammar:

(a] b) & (c| d

The following code defines a function pconst (X) inthe module f unpar se, which returns afun that parses alist
of tokens:

pconst (X) ->

fun (T) ->
case T of
[X T1] -> {ok, {const, X}, T1i};
_ -> fai
end
end

This function can be used as follows:

> P1 = funparse: pconst(a).
#Fun<f unpar se. 0. 22674075>
> Pl([a, b, c]).

{ok, {const,a},[b,c]}

> P1([x,y,2]).

fail

Next, the two higher order functions pand and por are defined. They combine primitive parsers to produce more
complex parsers.

First pand:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 207

6.2 Funs

pand(P1, P2) ->
fun (T) ->
case P1(T) of
{ok, R1, T1} ->
case P2(T1l) of
{ok, R2, T2} ->
{ok, {*and', Rl, R2}};
fail ->
fail
end;
fail ->
fail
end
end.

Given a parser P1 for grammar Gl, and a parser P2 for grammar G2, pand(P1, P2) returns a parser for the
grammar, which consists of sequences of tokens that satisfy GL1, followed by sequences of tokens that satisfy G2.

por (P1l, P2) returnsa parser for the language described by the grammar Gl or &:

por(P1, P2) ->
fun (T) ->
case P1(T) of
{ok, R T1} ->
{ok, {'or',1, R, Ti};
fail ->
case P2(T) of
{ok, R1, T1} ->
{ok, {'or',2, R1}, T1};
fail ->
fail
end
end
end.

The original problem wasto parsethegrammar (a | b) & (¢ | d).Thefollowing code addressesthis problem:

granmar () ->
pand(
por (pconst (a), pconst(b)),
por (pconst(c), pconst(d))).

The following code adds a parser interface to the grammar:

parse(List) ->
(granmmar ()) (List).

The parser can be tested as follows:

> funparse: parse([a,c]).

208 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.3 List Comprehensions

{ok,{'and" ,{'or',1,{const,a}},{"'or',1,{const,c}}}}
> funparse: parse([a,d]).

{ok,{'and" ,{'or',1,{const,a}},{"'or', 2, {const,d}}}}
> funparse: parse([b,c]).

{ok,{"and" ,{'or', 2,{const,b}},{"'or',1,{const,c}}}}
> funparse: parse([b,d]).

{ok,{'and" ,{'or', 2,{const,b}},{"'or', 2, {const,d}}}}
> funparse: parse([a, b]).

fail

6.3 List Comprehensions

6.3.1 Simple Examples

This section starts with a simple example, showing a generator and afilter:

> [X || X< [1,2,a38,4,b,5,6], X> 3].

[a 4,Db,5,6]

Thisisread asfollows: Thelist of X such that X istaken fromthelist[1, 2, a, . . .] and X isgreater than 3.
Thenotation X <- [1, 2, a, ...] isagenerator and the expression X > 3 isafilter.

An additional filter, i nt eger (X) , can be added to restrict the result to integers:

>[X || X<-[1,2,a,3,4,b,5,6], integer(X), X > 3].
[4,5,6]

Generators can be combined. For example, the Cartesian product of two lists can be written as follows:

>[{X Y} || X< [1,23], Y<- [ab]].
[{1 a},{1,b},{2 a},{2 b}, {3, a} {3, b}]

6.3.2 Quick Sort

The well-known quick sort routine can be written as follows:

sort([Pivot|T]) ->
sort([X || X<- T, X< Pivot]) ++
[Pivot] ++
sort([X || X<- T, X>= Pivot]);
sort([]1) ->1[I.

Theexpression[X || X <- T, X < Pivot] isthelistof al elementsin T that are lessthan Pi vot .
[X]| X <- T, X >= Pivot] isthelist of al elementsin T that are greater than or equal to Pi vot .
A list sorted as follows:

e Thefirst elementinthelistisisolated and the list is split into two sublists.
e Thefirst sublist contains al elements that are smaller than the first element in the list.
* Thesecond sublist contains all elements that are greater than, or equal to, the first element in the list.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 209

6.3 List Comprehensions

* Thenthe sublists are sorted and the results are combined.

6.3.3 Permutations

The following example generates all permutations of the elementsin alist:

11;
HT || H<- L T<- perms(L--[H])].

perms([])

-> [
perms(L) -> [[

This takes Hfrom L in all possible ways. The result is the set of al lists[H| T] , where T is the set of al possible
permutations of L, with Hremoved:

> pernms([b,u,g]).
[[b,ug]l,[b,gu],[ub,gl,[ugb], [gbu],[g ub]]

6.3.4 Pythagorean Triplets
Pythagorean triplets are sets of integers{ A, B, C} suchthat A**2 + B**2 = C:*2.

The function pyt h(N) generatesalist of al integers{ A, B, C} suchthat A**2 + B**2 = C**2 and wherethe
sum of the sidesis equal to, or lessthan, N:

pyth(N) ->
[{ABC ||
A <- lists:seq(1l, N
B <- lists:seq(1, N
C <- lists:seq(1,N)
A+B+C =< N
A*A+B*B == C*C

> pyth(3).
[1.
> pyth(11).

[1.

> pyth(12).
[{3,4,5}, {4, 3, 5}]
> pyt h(50).
[{3,4, 5},
4k & Bl
{5, 12, 13},
{6, 8, 10},
{8, 6, 10},
{8, 15, 17},
{9, 12, 15},
{12, 5, 13},
{12, 9, 15},
{12, 16, 20},
{15, 8, 17},
{16, 12, 20}]

The following code reduces the search space and is more efficient:

210 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.3 List Comprehensions

pythi(N) ->
[{ABC ||
A <- lists:seq(1, N-2),
B <- lists:seq(A+1l, N-1),
C <- lists:seq(B+1, N),
A+B+C =< N,
A*A+B*B == C*C].

6.3.5 Simplifications With List Comprehensions

As an example, list comprehensions can be used to simplify some of the functionsinl i sts. erl :

append(L) -> [X || L1 <~ L, X <- L1J.
map(Fun, L) -> [Fun(X) || X <- L].
filter(Pred, L) ->[X || X <- L, Pred(X].

6.3.6 Variable Bindings in List Comprehensions
The scope rules for variables that occur in list comprehensions are as follows:

e All variablesthat occur in agenerator pattern are assumed to be "fresh” variables.

« Any variablesthat are defined before the list comprehension, and that are used in filters, have the values they
had before the list comprehension.

e Variables cannot be exported from alist comprehension.

As an example of these rules, suppose you want to write the function sel ect , which selects certain elements from a
list of tuples. Supposeyouwritesel ect (X, L) -> [Y || {X Y} <- L]. withtheintention of extracting
al tuplesfrom L, where the first item is X.

Compiling this gives the following diagnostic:
./ FileName. erl:Line: Warning: variable 'X shadowed in generate
This diagnostic warnsthat the variable X in the pattern is not the same asthe variable X that occursin the function head.

Evaluating sel ect givesthe following result:

> select(b,[{a, 1},{b, 2},{c,3},{b, 7}1).
[1,2,3,7]

Thisis not the wanted result. To achieve the desired effect, sel ect must be written as follows:

select(X, L) -> [Y[] {XI, Y} < L, X ==x1].

The generator now contains unbound variables and the test has been moved into the filter.

This now works as expected:

> select(b,[{a, 1},{b, 2},{c,3},{b, 7}]).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 211

6.4 Bit Syntax

[2,7]

A consequence of therulesfor importing variablesinto alist comprehensionsisthat certain pattern matching operations
must be moved into the filters and cannot be written directly in the generators.

Toillustrate this, do not write as follows:

i(0oo) =2
Y=...
[Expression || Patternlnvolving Y <- Expr, ...]

Instead, write as follows:

fC...) ->
Y= ...
[Expression || Patternlnvolving Y1 <- Expr, Y == VY1, ...]

6.4 Bit Syntax

6.4.1 Introduction

In Erlang, a Bin is used for constructing binaries and matching binary patterns. A Bin is written with the following
syntax:

<<El, E2, ... En>>

A Binisalow-level sequence of bits or bytes. The purpose of a Binisto enable construction of binaries:

Bin = <<E1, E2, ... En>>

All elements must be bound. Or match a binary:

<<El, E2, ... En>> = Bin

Here, Bi n isbound and the elements are bound or unbound, as in any match.
Since Erlang R12B, a Bin does not need to consist of awhole number of bytes.

A bitstring is a sequence of zero or more bits, where the number of bits does not need to be divisible by 8. If the
number of bitsisdivisible by 8, the bitstring is also a binary.

Each element specifies a certain segment of the bitstring. A segment is a set of contiguous bits of the binary (not
necessarily on a byte boundary). The first element specifies the initial segment, the second element specifies the
following segment, and so on.

Thefollowing examplesillustrate how binaries are constructed, or matched, and how elements and tails are specified.

212 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.4 Bit Syntax

Examples

Example 1. A binary can be constructed from a set of constants or a string literal:

Bi n11
Bi n12

<<1, 17, 42>>,
<<"abc">>

This gives two binaries of size 3, with the following evaluations:

e binary to_list(Binll) evaluatesto[1, 17, 42].

e binary_to_list(Binl2) evaluatesto[97, 98, 99].

Example 2: Similarly, a binary can be constructed from a set of bound variables:

A=1 B =17, C= 42,
Bin2 = <<A, B, C 16>>

Thisgivesabinary of size 4. Here, asize expression is used for the variable Cto specify a 16-bits segment of Bi n2.
binary_to_list(Bin2) evaluatesto[1, 17, 00, 42].

Example 3: A Bin can also be used for matching. D, E, and F are unbound variables, and Bi n2 isbound, asin Example
2

<<D: 16, E, F/binary>> = Bin2

ThisgivesD = 273,E = 00, and F bindsto abinary of sizel:bi nary_to_list(F) = [42].

Example 4: The following is a more elaborate example of matching. Here, Dgr amis bound to the consecutive bytes
of an IP datagram of |P protocol version 4. The ambition is to extract the header and the data of the datagram:

-define(l P_VERSI ON, 4).
-define(IP_M N_HDR LEN, 5).

Dgranti ze = byte_si ze(Dgranj,
case Dgram of
<<?| P_VERSI ON: 4, HLen: 4, SrvcType:8, TotlLen: 16,
ID:16, Flgs:3, FragOif: 13,
TTL: 8, Proto:8, HdrChkSum 16,
Srcl P: 32,
Dest | P: 32, Rest Dgr am bi nary>> when HLen>=5, 4*HLen=<Dgr anSi ze ->
ot sLen = 4*(HLen - ?IP_M N_HDR LEN),
<<Opt s: Opt sLen/ bi nary, Dat a/ bi nary>> = Rest Dgr am

end.

Here, the segment corresponding to the Opt s variable has atype modifier, specifying that Opt s isto bind to abinary.
All other variables have the default type equal to unsigned integer.

An | P datagram header is of variable length. Thislength is measured in the number of 32-bit wordsand isgiveninthe
segment corresponding to HLen. The minimum value of HLen is 5. It is the segment corresponding to Opt s that is
variable, so if HLen isequal to 5, Opt s becomes an empty binary.

Thetail variables Rest Dgr amand Dat a bind to binaries, asal tail variables do. Both can bind to empty binaries.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 213

6.4 Bit Syntax

The match of Dgr amfailsif one of the following occurs:

* Thefirst 4-bits segment of Dgr amis not equal to 4.
* HLenislessthan 5.
e Thesizeof Dgr amislessthan 4* HLen.

6.4.2 Lexical Note

Notice that "B=<<1>>" will beinterpreted as"B =< <1>>", which isasyntax error. The correct way to write the
expressionis. B = <<1>>,

6.4.3 Segments

Each segment has the following general syntax:

Val ue: Si ze/ TypeSpeci fi erLi st

The Si ze or the TypeSpeci fi er, or both, can be omitted. Thus, the following variants are allowed:

 Val ue
 Val ue: Si ze
e Val ue/ TypeSpeci fi erlLi st

Default values are used when specifications are missing. The default values are described in Defaults.

The Val ue part is any expression, when used in binary construction. Used in binary matching, the Val ue part must
be aliteral or avariable. For more information about the Val ue part, see Constructing Binaries and Bitstrings and
Matching Binaries.

The Si ze part of the segment multiplied by the unit in TypeSpeci fi er Li st (described later) gives the number
of bitsfor the segment. In construction, Si ze isany expression that evaluates to an integer. In matching, Si ze must
be a constant expression or avariable.

The TypeSpeci fi er Li st isalist of type specifiers separated by hyphens.

Type
Thetypecan bei nt eger,fl oat,orbi nary.

Signedness
The signedness specification can be either si gned or unsi gned. Notice that signedness only matters for
matching.

Endianness
The endianness specification can be either bi g, i tt1 e, or nat i ve. Native-endian means that the endian is
resolved at |oad time, to be either big-endian or little-endian, depending on what is "native" for the CPU that
the Erlang machineisrun on.

Unit
Theunitsizeisgivenasuni t: I nt eger Li t er al . Thealowed rangeis 1-256. It ismultiplied by the Si ze
specifier to give the effective size of the segment. Since Erlang R12B, the unit size specifies the alignment for
binary segments without size.

Example:

X:4/1ittle-signed-integer-unit:8

This element has atotal size of 4*8 = 32 hits, and it contains asigned integer in little-endian order.

214 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.4 Bit Syntax

6.4.4 Defaults

The default type for a segment is integer. The default type does not depend on the value, even if the value is aliteral.
For example, the default type in <<3. 14>> isinteger, not float.

Thedefault Si ze dependson thetype. For integeritis8. For float itis64. For binary itisall of thebinary. In matching,
thisdefault valueisonly valid for thelast element. All other binary elementsin matching must have asize specification.

The default unit depends on the the type. For i nt eger ,fl oat ,andbi t stri ngitisl. Forbinaryitis8.
The default signednessisunsi gned.

The default endiannessisbi g.

6.4.5 Constructing Binaries and Bitstrings

This section describes therules for constructing binaries using the bit syntax. Unlike when constructing lists or tuples,
the construction of abinary can fail with abadar g exception.

There can be zero or more segmentsin abinary to be constructed. The expression <<>> constructsazero length binary.

Each segment in a binary can consist of zero or more bits. There are no alignment rules for individual segments of
typei nt eger andf | oat . For binaries and bitstrings without size, the unit specifies the alignment. Since the default
alignment for the bi nar y typeis8, the size of abinary segment must be amultiple of 8 bits, that is, only whole bytes.

Example:

<<Bi n/ bi nary, Bi tstring/bitstring>>

Thevariable Bi n must contain awhole number of bytes, becausethe bi nar y type defaultstouni t : 8. A badar g
exception is generated if Bi n consist of, for example, 17 bits.

TheBi t st ri ng variable can consist of any number of bits, for example, 0, 1, 8, 11, 17, 42, and so on. Thisisbecause
the default uni t for bitstringsis 1.

For clarity, it is recommended not to change the unit size for binaries. Instead, use bi nary when you need byte
alignment and bi t st r i ng when you need bit alignment.

The following example successfully constructs a bitstring of 7 bits, provided that al of X and Y are integers:

<<X:1,Y:6>>

As mentioned earlier, segments have the following general syntax:
Val ue: Si ze/ TypeSpeci fi erLi st

When constructing binaries, Val ue and Si ze can be any Erlang expression. However, for syntactical reasons, both
Val ue and Si ze must be enclosed in parenthesis if the expression consists of anything more than a single literal or
avariable. The following gives a compiler syntax error:

<<X+1: 8>>

This expression must be rewritten into the following, to be accepted by the compiler:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 215

6.4 Bit Syntax

<<(X+1) : 8>>

Including Literal Strings

A literal string can be written instead of an element:

<<"hel | 0" >>

Thisis syntactic sugar for the following:

<<$h, $e, $I, $I , $0>>

6.4.6 Matching Binaries

This section describes the rules for matching binaries, using the bit syntax.

There can be zero or more segments in a binary pattern. A binary pattern can occur wherever patterns are allowed,
including inside other patterns. Binary patterns cannot be nested. The pattern <<>> matches a zero length binary.

Each segment in abinary can consist of zero or morebits. A segment of typebi nar y must haveasizeevenly divisible
by 8 (or divisible by the unit size, if the unit size has been changed). A segment of typebi t st ri ng hasno restrictions
on thesize.

As mentioned earlier, segments have the following general syntax:
Val ue: Si ze/ TypeSpeci fi erLi st

When matching Val ue, value must be either a variable or an integer, or a floating point literal. Expressions are not
allowed.

Si ze must be an integer literal, or a previously bound variable. The following is not allowed:

foo(N, <<X: N, T/ bi nary>>) ->
{X T}.

The two occurrences of N are not related. The compiler will complain that the Nin the size field is unbound.

The correct way to write this example is as follows:

foo(N, Bin) ->
<<X: N, T/ bi nary>> = Bin
{X.T}.

Getting the Rest of the Binary or Bitstring
To match out the rest of abinary, specify abinary field without size:

foo(<<A: 8, Rest/bi nary>>) ->

The size of the tail must be evenly divisible by 8.
To match out the rest of a bitstring, specify afield without size:

216 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.4 Bit Syntax

foo(<<A:8,Rest/bitstring>>) ->

There are no restrictions on the number of bitsin the tail.

6.4.7 Appending to a Binary
Since Erlang R12B, the following function for creating a binary out of alist of triples of integersis efficient:
triples_to bin(T) ->

triples_to_bin(T, <<>>).

triples_to bin([{X Y,2} | T], Acc) ->

triples_to_bin(T, <<Acc/binary, X:32,Y:32,Z:32>>); % inefficient before R12B
triples_to bin([], Acc) ->
Acc.

In previous releases, this function was highly inefficient, because the binary constructed so far (Acc) was copied in
each recursion step. That is no longer the case. For more information, see Efficiency Guide.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 217

7.1 Introduction

7 Efficiency Guide

7.1 Introduction

7.1.1 Purpose
"Premature optimization isthe root of al evil" (D.E. Knuth)

Efficient code can be well-structured and clean, based on a sound overall architecture and sound algorithms. Efficient
caode can be highly implementation-code that bypasses documented interfaces and takes advantage of obscure quirks
in the current implementation.

Ideally, your code only contains the first type of efficient code. If that turns out to be too slow, profile the application
to find out where the performance bottlenecks are and optimize only the bottlenecks. Let other code stay as clean as
possible.

Fortunately, compiler and runtime optimizations introduced in Erlang/OTP R12B makesit easier to write codethat is
both clean and efficient. For example, the ugly workarounds needed in R11B and earlier releases to get the most speed
out of binary pattern matching are no longer necessary. In fact, the ugly code is slower than the clean code (because
the clean code has become faster, not because the uglier code has become slower).

This Efficiency Guide cannot really teach you how to write efficient code. It can give you afew pointers about what to
avoid and what to use, and some understanding of how certain language features are implemented. This guide does not
include general tips about optimization that worksin any language, such as moving common cal cul ations out of loops.

7.1.2 Prerequisites

It is assumed that you are familiar with the Erlang programming language and the OTP concepts.

7.2 The Eight Myths of Erlang Performance

Some truths seem to live on well beyond their best-before date, perhaps because "information” spreads faster from
person-to-person than a single rel ease note that says, for example, that funs have become faster.

This section triesto kill the old truths (or semi-truths) that have become myths.

7.2.1 Myth: Funs are Slow

Funs used to be very slow, slower than appl y/ 3. Originaly, funs were implemented using nothing more than
compiler trickery, ordinary tuples, appl y/ 3, and agreat deal of ingenuity.

But that is history. Funs was given its own data type in R6B and was further optimized in R7B. Now the cost for afun
call falsroughly between the cost for acall to alocal function and appl y/ 3.
7.2.2 Myth: List Comprehensions are Slow

List comprehensions used to be implemented using funs, and in the old days funs were indeed slow.

Nowadays, the compiler rewrites list comprehensions into an ordinary recursive function. Using a tail-recursive
function with areverse at the end would be still faster. Or would it? That leads us to the next myth.

218 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.2 The Eight Myths of Erlang Performance

7.2.3 Myth: Tail-Recursive Functions are Much Faster Than Recursive
Functions

According to the myth, recursive functions leave references to dead terms on the stack and the garbage collector has
to copy al those dead terms, while tail-recursive functions immediately discard those terms.

That used to be true before R7B. In R7B, the compiler started to generate code that overwrites references to terms
that will never be used with an empty list, so that the garbage collector would not keep dead values any longer than
necessary.

Even after that optimization, atail-recursive function is still most of the times faster than a body-recursive function.
Why?

It has to do with how many words of stack that are used in each recursive call. In most cases, arecursive function uses
more words on the stack for each recursion than the number of words atail-recursive would allocate on the heap. As
more memory is used, the garbage collector is invoked more frequently, and it has more work traversing the stack.

In R12B and later releases, there is an optimization that in many cases reduces the number of words used on the stack
in body-recursive calls. A body-recursive list function and atail-recursive function that callslists:reverse/1 at the end
will use the same amount of memory. | i sts: map/ 2,1ists:filter/2,list comprehensions, and many other
recursive functions now use the same amount of space as their tail-recursive equivaents.

So, which isfaster? It depends. On Solaris/Sparc, the body-recursive function seemsto be dightly faster, even for lists
with alot of elements. On the x86 architecture, tail-recursion was up to about 30% faster.

So, the choice is now mostly a matter of taste. If you really do need the utmost speed, you must measure. Y ou can no
longer be sure that the tail-recursive list function aways is the fastest.

Note:

A tail-recursive function that does not need to reverse the list at the end is faster than a body-recursive function,
as aretail-recursive functions that do not construct any terms at al (for example, afunction that sums all integers
inalist).

7.2.4 Myth: Operator "++" is Always Bad

The ++ operator has, somewhat undeservedly, got a bad reputation. It probably has something to do with code like
the following, which is the most inefficient way thereisto reverse alist:

DO NOT

nai ve_reverse([H T]) ->
nai ve_reverse(T)++[H| ;
nai ve_reverse([]) ->

(1.

Asthe ++ operator copiesits |eft operand, the result is copied repeatedly, leading to quadratic complexity.
But using ++ asfollows s not bad:
OK

nai ve_but _ok_reverse([H T], Acc) ->
nai ve_but _ok_reverse(T, [H ++Acc);

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 219

7.3 Common Caveats

nai ve_but_ok _reverse([], Acc) ->
Acc.

Each list element is copied only once. The growing result Acc is the right operand for the ++ operator, and it is not
copied.

Experienced Erlang programmers would write as follows:
DO

vanilla_reverse([H T], Acc) ->
vani |l a_reverse(T, [H Acc]);
vanilla_reverse([], Acc) ->
Acc.

This is dightly more efficient because here you do not build alist element only to copy it directly. (Or it would be
more efficient if the compiler did not automatically rewrite[H] ++Acc to[H Acc] .)

7.2.5 Myth: Strings are Slow

String handling can be slow if done improperly. In Erlang, you need to think a little more about how the strings are
used and choose an appropriate representation. If you use regular expressions, use the re module in STDLIB instead
of the obsoleter egexp module.

7.2.6 Myth: Repairing a Dets File is Very Slow

The repair time is till proportional to the number of records in the file, but Dets repairs used to be much slower in
the past. Dets has been massively rewritten and improved.

7.2.7 Myth: BEAM is a Stack-Based Byte-Code Virtual Machine (and
Therefore Slow)

BEAM isaregister-based virtual machine. It has 1024 virtual registersthat are used for holding temporary values and
for passing arguments when calling functions. Variables that need to survive afunction call are saved to the stack.

BEAM is a threaded-code interpreter. Each instruction is word pointing directly to executable C-code, making
instruction dispatching very fast.
7.2.8 Myth: Use " " to Speed Up Your Program When a Variable is Not Used

That was once true, but from R6B the BEAM compiler can see that avariableis not used.

7.3 Common Caveats

This section lists afew modules and BIFs to watch out for, not only from a performance point of view.

7.3.1 Timer Module

Creating timers using erlang: send_after/3 and erlang:start_timer/3 , is much more efficient than using the timers
provided by the timer module in STDLIB. Thet i mer module uses a separate process to manage the timers. That
process can easily become overloaded if many processes create and cancel timers frequently (especially when using
the SMP emulator).

The functionsin the t i mer module that do not manage timers (suchastiner:tc/ 3 ortiner: sl eep/ 1), do
not call the timer-server process and are therefore harmless.

220 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.3 Common Caveats

7.3.2 list_to_atom/1

Atoms are not garbage-collected. Once an atom is created, it is never removed. The emulator terminates if the limit
for the number of atoms (1,048,576 by default) is reached.

Therefore, converting arbitrary input strings to atoms can be dangerous in a system that runs continuougly. If only
certain well-defined atoms are allowed as input, list_to_existing_atorm/1 can be used to to guard against a denial-of-
service attack. (All atoms that are allowed must have been created earlier, for example, by simply using all of them
in amodule and loading that module.)

Using | i st _to_at oni 1 to construct an atom that is passed to appl y/ 3 as follows, is quite expensive and not
recommended in time-critical code:

appl y(list_to_aton("sone_prefix"++Var), foo, Args)

7.3.3 length/1

The time for calculating the length of alist is proportional to the length of the list, asopposed tot upl e_si ze/ 1,
byte size/1,andbit _size/ 1, whichall executein constant time.

Normally, there is no need to worry about the speed of | engt h/ 1, because it is efficiently implemented in C. In
time-critical code, you might want to avoid it if the input list could potentially be very long.

Some uses of | engt h/ 1 can be replaced by matching. For example, the following code:
foo(L) when length(L) >= 3 ->

can be rewritten to:

foo([_, _,_|_1=L) ->

One dlight differenceisthat | engt h(L) failsif L isan improper list, while the pattern in the second code fragment
accepts an improper list.

7.3.4 setelement/3

setelement/3 copies the tuple it modifies. Therefore, updating atuplein aloop using set el enent / 3 creates a new
copy of the tuple every time.

There is one exception to the rule that the tuple is copied. If the compiler clearly can see that destructively updating
the tuple would give the sameresult as if the tuple was copied, the call to set el enent / 3 isreplaced with a special
destructiveset el ermrent instruction. Inthe following code sequence, thefirst set el enent / 3 call copiesthetuple
and modifies the ninth element:

mul ti pl e_setel ement (TO) ->
Tl = setelenent (9, TO, bar),
T2 = setelement (7, T1, foobar),
set el ement (5, T2, new_val ue).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 221

7.3 Common Caveats

Thetwo following set el enent / 3 calls modify the tuplein place.
For the optimization to be applied, all the followings conditions must be true:

* Theindices must be integer literals, not variables or expressions.
* Theindices must be given in descending order.
» Theremust be no callsto another function in between the callsto set el enent / 3.

» Thetuplereturned from oneset el ermrent / 3 call must only be used in the subsequent call to
set el enent/ 3.

If the code cannot be structured asinthenul ti pl e_set el ement/ 1 example, the best way to modify multiple
elementsin alargetupleisto convert the tuple to alist, modify the list, and convert it back to atuple.
7.3.5 size/l

si ze/ 1 returns the size for both tuples and binaries.

Using thenew BIFst upl e_si ze/ 1 and byt e_si ze/ 1, introduced in R12B, gives the compiler and the runtime
system more opportunities for optimization. Another advantage is that the new BIFs can help Dialyzer to find more
bugs in your program.

7.3.6 split_binary/2

It is usually more efficient to split a binary using matching instead of calling the spl i t _bi nary/ 2 function.
Furthermore, mixing bit syntax matching and spl i t _bi nary/ 2 can prevent some optimizations of bit syntax
matching.

DO
<<Bi n1: Num bi nary, Bi n2/ bi nary>> = Bin,

DO NOT

{Bi n1, Bin2} = split_binary(Bin, Num

7.3.7 Operator "--"

The "- - " operator has a complexity proportional to the product of the length of its operands. This means that the
operator isvery slow if both of its operands are long lists:

DO NOT
HugeLi st1 -- HugeLi st2
Instead use the ordsets modulein STDLIB:

DO

HugeSet 1 = ordsets:from|i st (HugeListl),
HugeSet 2 = ordsets:from|i st (HugeLi st2),
ordsets: subtract (HugeSet 1, HugeSet 2)

222 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.4 Constructing and Matching Binaries

Obviously, that code does not work if the original order of thelistisimportant. If the order of thelist must be preserved,
do asfollows:

DO
Set = gb_sets:from.list(Hugelist?2),
[E || E <- HugeListl, not gb_sets:is_elenment(E Set)]
Note:
This code behaves differently from "- - " if the lists contain duplicate elements (one occurrence of an element in
Hugel ist2 removes all occurrencesin Hugel ist1.)
Also, this code compares lists elements using the "==" operator, while "- - " uses the "=: =" operator. If that

differenceisimportant, set s canbeusedinstead of gb_set s,butset s: from | i st/ 1 ismuch slower than
gb_sets:fromlist/1forlonglists.

Using the"- - " operator to delete an element from alist is not a performance problem:
OK

HugeListl -- [El enment]

7.4 Constructing and Matching Binaries

In R12B, the most natural way to construct and match binariesis significantly faster than in earlier releases.
To construct a binary, you can simply write as follows:

DO (in R12B) / REALLY DO NOT (in earlier releases)

my_list_to_binary(List) ->
ny_list_to_binary(List, <<>>).

my_list_to_binary([H T], Acc) ->
ny_list_to_binary(T, <<Acc/binary, H>>);
my_list_to_binary([], Acc) ->
Acc.

In releases before R12B, Acc iscopied in every iteration. In R12B, Acc is copied only in the first iteration and extra
spaceisallocated at the end of the copied binary. In the next iteration, Hiswritten into the extra space. When the extra
space runs out, the binary is reallocated with more extra space. The extra space allocated (or reallocated) is twice the
size of the existing binary data, or 256, whichever islarger.

The most natural way to match binariesis now the fastest:
DO (in R12B)

ny_binary_to_list(<<H T/binary>>) ->
[H my_binary_to_list(T)];

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 223

7.4 Constructing and Matching Binaries

ny_binary_to_list(<<>>) ->[].

7.4.1 How Binaries are Implemented

Internally, binaries and bitstrings are implemented in the same way. In this section, they are called binaries because
that iswhat they are called in the emulator source code.

Four types of binary objects are available internally:
* Two are containers for binary data and are called:
» Refc binaries (short for reference-counted binaries)
e Heap binaries
e Two are merely referencesto apart of abinary and are called:
e subbinaries
e match contexts
Refc Binaries
Refc binaries consist of two parts:

» Anobject stored on the process heap, called a ProcBin
e Thebinary object itself, stored outside all process heaps

The binary object can be referenced by any number of ProcBins from any number of processes. The object contains a
reference counter to keep track of the number of references, sothat it can beremoved when thelast reference disappears.

All ProcBin objects in a process are part of a linked list, so that the garbage collector can keep track of them and
decrement the reference counters in the binary when a ProcBin disappears.

Heap Binaries

Heap binaries are small binaries, up to 64 bytes, and are stored directly on the process heap. They are copied when
the process is garbage-collected and when they are sent as a message. They do not require any special handling by
the garbage collector.

Sub Binaries

The reference objects sub binaries and match contexts can reference part of arefc binary or heap binary.

A sub binaryiscreated by spl it _bi nary/ 2 and when abinary is matched out in abinary pattern. A sub binary is
areferenceinto a part of another binary (refc or heap binary, but never into another sub binary). Therefore, matching
out abinary isrelatively cheap because the actual binary datais never copied.

Match Context

A match context issimilar to asub binary, but isoptimized for binary matching. For example, it containsadirect pointer
to the binary data. For each field that is matched out of a binary, the position in the match context is incremented.

In R11B, a match context was only used during a binary matching operation.

In R12B, the compiler triesto avoid generating code that creates a sub binary, only to shortly afterwards create a new
match context and discard the sub binary. Instead of creating a sub binary, the match context is kept.

The compiler can only do this optimization if it knows that the match context will not be shared. If it would be shared,
the functional properties (also called referential transparency) of Erlang would break.

7.4.2 Constructing Binaries
In R12B, appending to a binary or bitstring is specially optimized by the runtime system:

224 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.4 Constructing and Matching Binaries

<<Bi nary/ bi nary, ...>>
<<Binary/bitstring, ...>>

As the runtime system handles the optimization (instead of the compiler), there are very few circumstances in which
the optimization does not work.

To explain how it works, et us examine the following code line by line;

Bi n0 = <<0>>, %0 1
Bi n1 = <<Bi n0/ bi nary, 1, 2, 3>>, 9 2
Bi n2 = <<Bi nl/bi nary, 4, 5, 6>>, %0 3
Bi n3 = <<Bi n2/ bi nary, 7, 8, 9>>, W 4
Bi n4 = <<Bi nl/ binary, 17>>, %Woe5 !
{Bi n4, Bi n3} %% 6

e Linel (marked with the %86 1 comment), assigns a heap binary to the Bi nO variable.

e Line2isan append operation. AsBi n0 has not been involved in an append operation, anew refc binary is
created and the contents of Bi n0 iscopied into it. The ProcBin part of the refc binary hasits size set to the size
of the data stored in the binary, while the binary object has extra space allocated. The size of the binary object is
either twice the size of Bi n1 or 256, whichever islarger. In this caseit is 256.

* Line3ismoreinteresting. Bi n1 has been used in an append operation, and it has 252 bytes of unused storage
at the end, so the 3 new bytes are stored there.

e Line4. The same applies here. There are 249 bytes left, so there is no problem storing another 3 bytes.

e Line5. Here, something interesting happens. Notice that the result is not appended to the previous
result in Bi n3, but to Bi nl. It is expected that Bi n4 will be assigned thevalue<<0, 1, 2, 3, 17>>.
It is also expected that Bi n3 will retain itsvalue (<<0, 1, 2, 3, 4, 5, 6, 7, 8, 9>>). Clearly, the
runtime system cannot write byte 17 into the binary, because that would change the value of Bi n3 to
<<0,1,2,3,4,17,6,7, 8, 9>>,

The runtime system sees that Bi nl is the result from a previous append operation (not from the latest append
operation), so it copies the contents of Bi nl to anew binary, reserve extra storage, and so on. (Here is not explained
how the runtime system can know that it isnot allowed to writeinto Bi n1; itisleft asan exerciseto the curious reader
to figure out how it is done by reading the emulator sources, primarily er| _bits. c.)

Circumstances That Force Copying

The optimization of the binary append operation requires that there is a single ProcBin and a single reference to the
ProcBin for the binary. The reason is that the binary object can be moved (reallocated) during an append operation,
and when that happens, the pointer in the ProcBin must be updated. If there would be more than one ProcBin pointing
to the binary object, it would not be possible to find and update all of them.

Therefore, certain operations on abinary mark it so that any future append operation will be forced to copy the binary.
In most cases, the binary object will be shrunk at the same time to reclaim the extra space allocated for growing.

When appending to a binary as follows, only the binary returned from the latest append operation will support further
cheap append operations:

Bin = <<BinO,...>>

In the code fragment in the beginning of this section, appending to Bi n will be cheap, while appending to Bi n0 will
force the creation of anew binary and copying of the contents of Bi nO.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 225

7.4 Constructing and Matching Binaries

If abinary issent asamessageto aprocessor port, the binary will be shrunk and any further append operation will copy
the binary data into a new binary. For example, in the following code fragment Bi n1 will be copied in the third line:

Bi nl = <<BinoO, ...>>,
PortOrPid ! Binl,
Bin = <<Binl,...> 9%6Binl will be COPIED

The same happens if you insert a binary into an Ets table, send it to aport using er | ang: port _comrand/ 2, or
passit to enif_inspect_binaryinaNIF.

Matching a binary will also cause it to shrink and the next append operation will copy the binary data:

Binl = <<Bi no,...>>,
<<X, Y, Z, T/ bi nary>> = Bin1l,
Bin = <<Binl,...>> %6oBinl will be COPI ED

The reason isthat a match context contains a direct pointer to the binary data.

If a process simply keeps binaries (either in "loop data"' or in the process dictionary), the garbage collector can
eventually shrink the binaries. If only one such binary is kept, it will not be shrunk. If the process later appendsto a
binary that has been shrunk, the binary object will be reallocated to make place for the data to be appended.

7.4.3 Matching Binaries
Let usrevisit the example in the beginning of the previous section:
DO (in R12B)

ny_binary_to_list(<<H T/binary>>) ->
[H my_binary_to_ list(T)];
ny_binary_to_list(<<>>) -> [].

Thefirsttimenmy_bi nary_to_li st/ 1iscalled, amatch context is created. The match context points to the first
byte of the binary. 1 byte is matched out and the match context is updated to point to the second byte in the binary.

In R11B, at this point a sub binary would be created. In R12B, the compiler sees that there is no point in creating
a sub binary, because there will soon be a call to afunction (in thiscase, tomy_bi nary_to_li st/ 1 itself) that
immediately will create a new match context and discard the sub binary.

Therefore, inR12B, ny_binary_to_|i st/ 1 calsitself with the match context instead of with asub binary. The
instruction that initializes the matching operation basically does nothing when it seesthat it was passed a match context
instead of abinary.

When the end of the binary is reached and the second clause matches, the match context will simply be discarded
(removed in the next garbage collection, as there is no longer any reference to it).

Tosummarize, my_binary to_|ist/1inR12B only needs to create one match context and no sub binaries. In
R11B, if the binary contains N bytes, N+ 1 match contexts and N sub binaries are created.

In R11B, the fastest way to match binariesis as follows:
DO NOT (in R12B)

my_conpl i cated_binary_to_list(Bin) ->

226 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.4 Constructing and Matching Binaries

nmy_conplicated_binary to list(Bin, 0).

nmy_conpl i cated_binary_to_list(Bin, Skip) ->
case Bin of
<<_:Ski p/bi nary, Byte, _/ bi nary>> ->
[Byte| my_conplicated_binary_ to_list(Bin, Skip+l)];
<<_: Ski p/ bi nary>> ->

[]

end.

This function cleverly avoids building sub binaries, but it cannot avoid building a match context in each recursion
step. Therefore, in both R11B and R12B, my_conpl i cat ed_bi nary_to_l i st/ 1 builds N+1 match contexts.
(In afuture Erlang/OTP release, the compiler might be able to generate code that reuses the match context.)

Returning tony_binary _to |i st/ 1, notice that the match context was discarded when the entire binary had
been traversed. What happens if the iteration stops before it has reached the end of the binary? Will the optimization
still work?

after_zero(<<0, T/ bi nary>>) ->
T

after_zero(<<_, T/ bi nary>>) ->
after_zero(T);

after_zero(<<>>) ->
<<>3>,

Yes, it will. The compiler will remove the building of the sub binary in the second clause:

after_zero(<<_, T/ bi nary>>) ->
after_zero(T);

But it will generate code that builds a sub binary in the first clause:

after_zero(<<0, T/ bi nary>>) ->
T;

Therefore, af t er _zer o/ 1 builds one match context and one sub binary (assuming it is passed abinary that contains
azero byte).

Code like the following will also be optimized:

all _but_zeroes_to_list(Buffer, Acc, 0) ->
{lists:reverse(Acc),Buffer};

al | _but_zeroes_to_list(<<0,T/binary>> Acc, Renmining) ->
all _but_zeroes_to_list(T, Acc, Rermining-1);

al | _but_zeroes_to_list(<<Byte, T/ bi nary>>, Acc, Renumining) ->
al | _but_zeroes_to_list(T, [Byte|Acc], Renmining-1).

The compiler removes building of sub binaries in the second and third clauses, and it adds an instruction to the first
clause that converts Buf f er from amatch context to a sub binary (or do nothing if Buf f er isabinary already).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 227

7.4 Constructing and Matching Binaries

Before you begin to think that the compiler can optimize any binary patterns, the following function cannot be
optimized by the compiler (currently, at least):

non_opt _eq([H T1], <<H, T2/binary>>) ->
non_opt _eq(T1, T2);

non_opt _eq([_| _], <<_, _/binary>>) ->
fal se;

non_opt_eq([], <<>>) ->
true.

It was mentioned earlier that the compiler can only delay creation of sub binariesiif it knows that the binary will not
be shared. In this case, the compiler cannot know.

Soon it is shown how to rewrite non_opt _eq/ 2 so that the delayed sub binary optimization can be applied, and
more importantly, it is shown how you can find out whether your code can be optimized.

Option bin_opt_info

Usethebi n_opt _i nf o option to have the compiler print alot of information about binary optimizations. It can be
given either to the compiler orer | c:

erlc +bin_opt_info Md.erl

or passed through an environment variable:

export ERL_COWPI LER_OPTI ONS=bi n_opt _i nfo

Notice that the bi n_opt _i nf o is not meant to be a permanent option added to your Makef i | es, because all
messages that it generates cannot be eliminated. Therefore, passing the option through the environment is in most
cases the most practical approach.

The warnings look as follows:

.lefficiency_guide.erl:60: Warning: NOT OPTIM ZED: sub binary is used or returned
.lefficiency_guide.erl:62: Warning: OPTIM ZED: creation of sub binary del ayed

To make it clearer exactly what code the warnings refer to, the warnings in the following examples are inserted as
comments after the clause they refer to, for example:

after_zero(<<0, T/ bi nary>>) ->
%%6 NOT OPTI M ZED: sub binary is used or returned
T
after_zero(<<_, T/ bi nary>>) ->
%%b OPTI M ZED: creation of sub binary del ayed
after_zero(T);
after_zero(<<>>) ->
<<>>,

The warning for the first clause says that the creation of a sub binary cannot be delayed, because it will be returned.
The warning for the second clause says that a sub binary will not be created (yet).

228 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.4 Constructing and Matching Binaries

Let usrevisit the earlier example of the code that could not be optimized and find out why:

non_opt _eq([H T1], <<H, T2/ binary>>) ->
%% | NFO mat chi ng anything el se but a plain variable to
%6 the left of binary pattern will prevent del ayed
%6 sub binary optim zation;
%6 SUGGEST changi ng ar gument or der
%% NOT OPTI M ZED: cal |l ed functi on non_opt _eq/2 does not
%6 begin with a suitabl e binary matching instruction
non_opt _eq(T1, T2);
non_opt_eq([_|_], <<_, _/binary>>) ->
fal se;
non_opt_eq([], <<>>) ->
true.

The compiler emitted two warnings. Thel NFOwarning refersto thefunctionnon_opt _eq/ 2 asacallee, indicating
that any function that call non_opt _eq/ 2 cannot make delayed sub binary optimization. There is also a suggestion
to change argument order. The second warning (that happens to refer to the same line) refers to the construction of
the sub binary itself.

Soon another examplewill show the difference between the | NFOand NOT OPTI M ZEDwarnings somewhat clearer,
but let usfirst follow the suggestion to change argument order:

opt _eq(<<H, T1/bi nary>>, [H T2]) ->
%% OPTI M ZED: creation of sub binary del ayed
opt _eq(T1, T2);
opt _eq(<<_, /binary>> [_|_]) ->
fal se;
opt_eq(<<>>, []) ->
true.

The compiler gives awarning for the following code fragment:

mat ch_body([0| _], <<H, /binary>>) ->
%6 | NFO mat ching anything el se but a plain variable to
% the left of binary pattern will prevent del ayed
% sub binary optim zati on;
% SUGGEST changi ng ar gunment or der
done;

The warning means that if thereis a call to mat ch_body/ 2 (from another clause in mat ch_body/ 2 or another
function), the delayed sub binary optimization will not be possible. More warnings will occur for any place where a
sub binary is matched out at the end of and passed as the second argument to mat ch_body/ 2, for example:

mat ch_head(Li st, <<_:10, Dat a/ bi nary>>) ->
%% NOT OPTI M ZED: cal | ed functi on match_body/2 does not
%6 begin with a suitabl e binary matching instruction
mat ch_body(List, Data).

Unused Variables

The compiler figures out if avariable is unused. The same code is generated for each of the following functions:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 229

7.5 List Handling

count 1(<<_, T/ bi nary>>, Count) -> count1(T, Count+1);
count 1(<<>>, Count) -> Count.

count 2(<<H, T/ bi nary>>, Count) -> count2(T, Count+1);
count 2(<<>>, Count) -> Count.

count 3(<<_H, T/ bi nary>>, Count) -> count3(T, Count+1);
count 3(<<>>, Count) -> Count.

In each iteration, the first 8 bitsin the binary will be skipped, not matched out.

7.5 List Handling
7.5.1 Creating a List

Lists can only be built starting from the end and attaching list elements at the beginning. If you use the "++" operator
asfollows, anew list is created that isa copy of the elementsin Li st 1, followed by Li st 2:

Listl ++ List2

Lookingat how | i st s: append/ 1 or ++ would be implemented in plain Erlang, clearly the first list is copied:

append([H T], Tail) ->
[H append(T, Tail)];
append([], Tail) ->
Tail .

When recursing and building alist, it is important to ensure that you attach the new elements to the beginning of the
list. In thisway, you will build one list, not hundreds or thousands of copies of the growing result list.

Let usfirst see how it is not to be done:
DO NOT

bad_fib(N) ->
bad_fib(N, 0, 1, []).

bad_fib(0, _Current, _Next, Fibs) ->
Fi bs;
bad_fib(N, Current, Next, Fibs) ->
bad_fib(N - 1, Next, Current + Next, Fibs ++ [Current]).

Here more than one list is built. In each iteration step a new list is created that is one element longer than the new
previous list.

To avoid copying the result in each iteration, build the list in reverse order and reverse the list when you are done:
DO

tail_recursive fib(N) ->
tail_recursive_fib(N, 0, 1, []).

230 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.5 List Handling

tail _recursive fib(0, _Current, _Next, Fibs) ->
lists:reverse(Fibs);

tail _recursive_fib(N, Current, Next, Fibs) ->
tail_recursive fib(N- 1, Next, Current + Next, [Current|Fibs]).

7.5.2 List Comprehensions

Lists comprehensions till have a reputation for being slow. They used to be implemented using funs, which used
to be slow.

In recent Erlang/OTP releases (including R12B), alist comprehension:

[Expr(E) || E <- List]

isbasically trandated to alocal function:

"lchO' ([E| Tail], Expr) ->
[Expr(E)| 'l c”r0' (Tail, Expr)];
“lerot ([T, _Expr) ->[].

In R12B, if the result of the list comprehension will obviously not be used, alist will not be constructed. For example,
in this code:

[io:put_chars(E) || E <- List],
ok.

or in this code:

case Var of
.=
[io:put_chars(E) || E <- List];
.=
end,
sone_function(...),

the value is not assigned to a variable, not passed to another function, and not returned. This means that there is no
need to construct alist and the compiler will simplify the code for the list comprehension to:

"I cAO' ([E|Tail], Expr) ->
Expr (E),
"I c”0' (Tail, Expr);
"ler0 ([, _Expr) ->[].

7.5.3 Deep and Flat Lists

lists:flatten/1 builds an entirely new list. It is therefore expensive, and even more expensive than the ++ operator
(which copiesits left argument, but not its right argument).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 231

7.5 List Handling

In the following situations, you can easily avoid callingl i sts: fl atten/ 1:

* When sending data to a port. Ports understand deep lists so there is no reason to flatten the list before sending it
to the port.

* When calling BIFs that accept deep lists, such aslist_to _binary/1 or iolist_to_binary/1.
* When you know that your list is only one level deep, you can use lists:append/1.

Port Example
DO

port _command(Port, DeeplLi st)

DO NOT

port_conmand(Port, |ists:flatten(DeepList))

A common way to send a zero-terminated string to a port is the following:
DO NOT

TerminatedStr = String ++ [0], % String="foo" => [$f, $0, $o, 0]
port _command(Port, Term natedStr)

Instead:
DO

TerminatedStr = [String, 0], % String="foo" => [[$f, $0, $0], O]
port _command(Port, Termi natedStr)

Append Example

DO
> |ists:append([[1], [2], [3]]).
[1,2,3]
>

DO NOT

> lists:flatten([[1], [2], [3]]).

232 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.6 Functions

[1,2,3]
>

7.5.4 Recursive List Functions
In Section 7.2, the following myth was exposed: Tail-Recursive Functionsare Much Faster Than Recursive Functions.

To summarize, in R12B thereis usually not much difference between a body-recursive list function and tail-recursive
function that reverses the list at the end. Therefore, concentrate on writing beautiful code and forget about the
performance of your list functions. In the time-critical parts of your code (and only there), measure before rewriting
your code.

Note:

This section is about list functions that construct lists. A tail-recursive function that does not construct alist runs
in constant space, while the corresponding body-recursive function uses stack space proportional to the length
of thelist.

For example, afunction that sums alist of integers, is not to be written as follows:
DO NOT

recursive_sun([H T]) -> Htrecursive_sun(T);
recursive_sun([]) -> 0.

Instead:
DO

sum(L) -> sum(L, 0).

sum([H T], Sum) -> sum(T, Sum + H);
sunm([], Sum -> Sum

7.6 Functions

7.6.1 Pattern Matching

Pattern matching in function head as well asin case andr ecei ve clauses are optimized by the compiler. With a
few exceptions, there is nothing to gain by rearranging clauses.

One exception is pattern matching of binaries. The compiler does not rearrange clauses that match binaries. Placing
the clause that matches against the empty binary last is usually slightly faster than placing it first.

Thefollowing is arather unnatural example to show another exception:
DO NOT

atom mapl(one) -> 1;
atom mapl(two) -> 2;
atom mapl(three) -> 3;

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 233

7.6 Functions

atom mapl(lnt) when is_integer(lnt) -> Int;
atom mapl(four) -> 4;
atom mapl(five) -> 5;
at om mapl(six) -> 6.

The problem isthe clause with the variable | nt . Asavariable can match anything, including the atomsf our ,f i ve,
andsi x, whichthefollowing clausesa so match, the compiler must generate suboptimal codethat executesasfollows:

e Fird, theinput value is compared to one, t wo, and t hr ee (using asingle instruction that does a binary
search; thus, quite efficient even if there are many values) to select which one of the first three clausesto
execute (if any).

« >If none of the first three clauses match, the fourth clause match as a variable always matches.
« |Iftheguardtesti s_i nt eger (| nt) succeeds, the fourth clauseis executed.

» |If theguard test fails, the input valueis compared to f our , f i ve, and si x, and the appropriate clause is
selected. (Thereisaf uncti on_cl ause exception if none of the values matched.)

Rewriting to either:
DO

at om map2(one) -> 1;

atom map2(two) -> 2;

atom map2(three) -> 3;

atom map2(four) -> 4;

atom map2(five) -> 5;

at om _map2(si x) -> 6;

atom map2(lnt) when is_integer(lnt) -> Int.

or:
DO

atom map3(Int) when is_integer(lnt) -> Int;
atom map3(one) -> 1;

atom map3(two) -> 2;

atom map3(three) -> 3;

atom map3(four) -> 4;

atom map3(five) -> 5;

at om map3(si x) -> 6.

gives slightly more efficient matching code.
Another example:
DO NOT

map_pai rs1(_Map, [], Ys) ->
Ys;

map_pai rs1(_Map, Xs, []) ->
Xs;

map_pai rs1(Map, [X] Xs], [VY]Ys]) ->
[Map(X, Y)|map_pairsi(Map, Xs, Ys)].

234 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.6 Functions

Thefirst argument is not a problem. It isvariable, but it isavariable in all clauses. The problem isthe variable in the
second argument, Xs, in the middle clause. Because the variable can match anything, the compiler is not allowed to
rearrange the clauses, but must generate code that matches them in the order written.

If the function is rewritten as follows, the compiler is free to rearrange the clauses:

DO

map_pai rs2(_Map, [], Ys) ->
Ys;

mep_pai rs2(_Map, [_|_]=Xs, []) ->
Xs;

map_pai rs2(Map, [X| Xs], [Y|Ys]) ->
[Map(X, Y)| map_pairs2(Map, Xs, Ys)].

The compiler will generate code similar to this:
DO NOT (already done by the compiler)

explicit_map_pairs(Map, XsO, Ys0) ->
case XsO of

[X Xs] ->
case YsO of
[Y]Ys] ->

[Map(X, Y)|explicit_map_pairs(Mp, Xs, Ys)];
(1 ->

Xs0

end;

[1 ->
Ys0
end.

Thisis dlightly faster for probably the most common case that the input lists are not empty or very short. (Another
advantage isthat Dialyzer can deduce a better type for the Xs variable.)

7.6.2 Function Calls

Thisis an intentionally rough guide to the relative costs of different calls. It is based on benchmark figures run on
Solaris/Sparc:
e Cadllstolocal or external functions (f oo(), m f oo()) are the fastest calls.

e Cdling or applying afun (Fun() ,appl y(Fun, [])) isabout threetimes as expensive as calling alocal
function.

e Applying an exported function (Mod: Nane() , appl y(Mdd, Nane, [])) isabout twice asexpensive as
calling afun or about six times as expensive as calling alocal function.

Notes and Implementation Details

Calling and applying afun does not involve any hash-table lookup. A fun contains an (indirect) pointer to the function
that implements the fun.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 235

7.6 Functions

Warning:

Tuples are not fun(s). A "tuple fun”, { Modul e, Funct i on}, isnot afun. The cost for calling a "tuple fun" is
similar to that of appl y/ 3 or worse. Using "tuple funs" is strongly discouraged, as they might not be supported
in a future Erlang/OTP release, and because there exists a superior aternative from R10B, namely the f un
Modul e: Functi on/ Ari ty syntax.

app! y/ 3 must look up the code for the function to execute in a hash table. It istherefore always slower than a direct
cal or afun call.

It no longer matters (from a performance point of view) whether you write:

Modul e: Functi on(Argl, Arg2)

or:

appl y(Modul e, Function, [Argl, Arg2])

The compiler internally rewrites the latter code into the former.

The following codeis slightly slower because the shape of the list of arguments is unknown at compile time.

appl y(Modul e, Function, Argunents)

7.6.3 Memory Usage in Recursion

When writing recursive functions, it is preferable to make them tail-recursive so that they can execute in constant
memory space:

DO

list_length(List) ->
l'ist_length(List, 0).

list_length([], AccLen) ->
AcclLen; % Base case

list_length([_| Tail], AccLen) ->

list_length(Tail, AccLen + 1). % Tail -recursive

DO NOT

list_length([]) ->
0. % Base case
list_length([_| Tail]l) ->
list_length(Tail) + 1. % Not tail-recursive

236 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.7 Tables and Databases

7.7 Tables and Databases

7.7.1 Ets, Dets, and Mnesia

Every example using Ets hasacorresponding examplein Mnesia. In general, all Etsexamplesalso apply to Detstables.

Select/Match Operations

Select/match operations on Ets and Mnesia tables can become very expensive operations. They usually need to scan
the complete table. Try to structure the data to minimize the need for select/match operations. However, if you require
a select/match operation, it is still more efficient than usingt ab2l i st . Examples of thisand of how to avoid select/
match are provided in the following sections. The functions et s: sel ect/ 2 and rmesi a: sel ect/ 3 areto be
preferred over et s: mat ch/ 2, et s: mat ch_obj ect/ 2, and mesi a: mat ch_obj ect/ 3.

In some circumstances, the select/match operations do not need to scan the complete table. For example, if part of the
key isbound when searching an or der ed_set table, or if it isaMnesiatable and there is a secondary index on the
field that is selected/matched. If the key is fully bound, there is no point in doing a select/match, unless you have a
bag table and are only interested in a subset of the elements with the specific key.

When creating arecord to be used in a select/match operation, you want most of the fields to havethevalue"_". The
easiest and fastest way to do that is asfollows:

#person{age = 42, _ ="' _'}.

Deleting an Element

The del et e operation is considered successful if the element was not present in the table. Hence all attempts to
check that the element is present in the EtsMnesia table before deletion are unnecessary. Here follows an example
for Etstables:

DO

ets: del ete(Tab, Key),

DO NOT

case ets:|ookup(Tab, Key) of

[
ets: del et e(Tab, Key)
end

Fetching Data
Do not fetch data that you already have.

Consider that you have a module that handles the abstract data type Per son. You export the interface
function print_person/ 1, which uses the interna functions print_nane/1, print_age/1l, and
print_occupation/1.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 237

7.7 Tables and Databases

Note:

If thefunctionpr i nt _name/ 1, and so on, had been interface functions, the situation would have been different,
as you do not want the user of the interface to know about the internal data representation.

DO

9%®% | nterface function
print _person(Personld) ->
%% Look up the person in the nanmed tabl e person,
case ets:|ookup(person, Personld) of
[Person] ->
pri nt _name(Person),
print _age(Person),
print _occupati on(Person);
(1 ->
io:format ("No person with ID = ~p~n", [PersonlD])
end.

9%®% | nternal functions
print _name(Person) ->
io:format ("No person ~p~n", [Person#person.nane]).

print _age(Person) ->
io:format ("No person ~p~n", [Person#person.age]).

print _occupati on(Person) ->
io:format ("No person ~p~n", [Person#person.occupation]).

DO NOT

%®0 | nterface function
print_person(Personld) ->
%% Look up the person in the naned tabl e person,
case ets:|ookup(person, Personld) of
[Person] ->
print_nane(Personl D),
pri nt _age(Personl D),
print_occupati on(Personl D);
[1->
io:format ("No person with ID = ~p~n", [PersonlD])
end.

%m®06 | nternal functionss

print_nane(Personl D) ->
[Person] = ets: | ookup(person, Personld),
io:format ("No person ~p~n", [Person#person.nane]).

print_age(Personl D) ->
[Person] = ets: | ookup(person, Personld),
io:format ("No person ~p~n", [Person#person.age]).

print_occupati on(Personl D) ->

[Person] = ets: | ookup(person, Personld),
io:format ("No person ~p~n", [Person#person.occupation]).

238 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.7 Tables and Databases

Non-Persistent Database Storage

For non-persistent database storage, prefer Ets tables over Mnesia | ocal _cont ent tables. Even the Mnesia
dirty_wit e operationscarry afixed overhead compared to Etswrites. Mnesiamust check if thetableisreplicated
or has indices, thisinvolves at least one Ets lookup for each di rty_wri t e. Thus, Etswritesis always faster than

Mnesiawrites.

tab2list

Assuming an Etstable that usesi dno as key and contains the following:

[#person{idno = 1, name = "Adanf, age = 31, occupation =
#person{idno = 2, nane = "Bryan", age = 31, occupation =
#person{idno = 3, nane = "Bryan", age = 35, occupation =
#person{idno = 4, nane = "Carl", age = 25, occupation =

"mai | man"},
"cashier"},
"banker"},

"mai | man"}]

If you must return al data stored in the Ets table, you can use et s: t ab2l i st/ 1. However, usually you are only
interested in a subset of the information in which caseet s: t ab2l i st/ 1 isexpensive. If you only want to extract

one field from each record, for example, the age of every person, then:
DO

ets:sel ect(Tab, [{ #person{idno='_",
name="_",
age=' $1',
occupation ="' _'},

(1,
['$1]1]),

DO NOT

TabLi st = ets:tab2list(Tab),
lists: map(fun(X) -> X#person.age end, TabList),

If you are only interested in the age of all persons named "Bryan”, then:

DO

ets:sel ect(Tab, [{ #person{idno="_",
name="Bryan",
age=' $1',
occupation ="' _'},

[1.
['$1°]11]),

DO NOT

Ericsson AB. All Rights Reserved

.. Erlang/OTP System Documentation | 239

7.7 Tables and Databases

TabLi st = ets:tab2list(Tab),
lists:foldl (fun(X, Acc) -> case X#person. name of
"Bryan" ->
[X#per son. age| Acc] ;
->

Acc
end
end, [], TabList),
REALLY DO NOT
.T.a.bLi st = ets:tab2list(Tab),
BryanList = lists:filter(fun(X) -> X#person.nane == "Bryan" end,

TablLi st),
l'ists: map(fun(X) -> X#person.age end, BryanList),

If you need al information stored in the Ets table about persons named "Bryan”, then:
DO

ets: sel ect (Tab, [{#person{idno="_",
nane="Bryan",
age="_",
occupation ="' "'}, [1, ['$_'1}11),

DO NOT

TabLi st = ets:tab2list(Tab),
lists:filter(fun(X) -> X#person.nanme == "Bryan" end, Tablist),

Ordered_set Tables

If the data in the table is to be accessed so that the order of the keys in the table is significant, the table type
order ed_set can be used instead of the more usual set table type. An or der ed_set isaways traversed in
Erlang term order regarding the key field so that the return values from functionssuch assel ect , mat ch_obj ect ,
andf ol dl areordered by the key values. Traversing an or der ed_set withthefi r st and next operationsalso
returns the keys ordered.

Note:

An or der ed_set only guarantees that objects are processed in key order. Results from functions such as
et s: sel ect/ 2 appear in key order even if the key is not included in the result.

240 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.7 Tables and Databases

7.7.2 Ets-Specific

Using Keys of Ets Table

An Etstable is asingle-key table (either a hash table or atree ordered by the key) and is to be used as one. In other
words, use the key to look up things whenever possible. A lookup by aknown key inaset Etstableisconstant and
foranor der ed_set EtstableitisO(logN). A key lookup is always preferable to a call where the whole table has
to be scanned. In the previous examples, the field i dno isthe key of the table and all lookups where only the name
is known result in a complete scan of the (possibly large) table for a matching result.

A simple solution would be to use the nane field as the key instead of thei dno field, but that would cause problems
if the names were not unique. A more general solution would be to create a second table with name askey andi dno
as data, that is, to index (invert) the table regarding the nane field. Clearly, the second table would have to be kept
consistent with the master table. Mnesiacan do thisfor you, but ahome brew index table can be very efficient compared
to the overhead involved in using Mnesia.

An index table for the table in the previous examples would have to be a bag (as keys would appear more than once)
and can have the following contents:

[#i ndex_ent ry{ nane="Adan{, idno=1},

#i ndex_ent ry{ name="Bryan", idno=2},
#i ndex_ent ry{ name="Bryan", idno=3},
#i ndex_ent ry{name="Car | ", idno=4}]

Given thisindex table, alookup of the age fields for all persons named "Bryan" can be done as follows:

Mat chi ngl Ds = et s: | ookup(| ndexTabl e, "Bryan"),
l'ists: map(fun(#i ndex_entry{idno = ID}) ->
[#per son{age = Age}] = ets:|ookup(PersonTable, |D),
Age
end,
Mat chi ngl Ds) ,

Notice that this code never uses et s: mat ch/ 2 but instead uses the et s: | ookup/ 2 call. Thel i sts: map/ 2
call is only used to traverse the i dnos matching the name "Bryan" in the table; thus the number of lookups in the
master table is minimized.

K eeping an index tabl e introduces some overhead when inserting recordsin the table. The number of operations gained
from the table must therefore be compared against the number of operations inserting objects in the table. However,
notice that the gain is significant when the key can be used to lookup elements.

7.7.3 Mnesia-Specific

Secondary Index

If you frequently do alookup on afield that is not the key of the table, you lose performance using "mnesia select/
match_object” as this function traverses the whole table. You can create a secondary index instead and use
"mnesiaindex_read" to get faster access, however this requires more memory.

Example

-record(person, {idno, nane, age, occupation}).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 241

7.8 Processes

{atom c, ok} =
mmesi a: creat e_t abl e(person, [{index, [#person. age]},
{attributes,
record_i nfo(fields, person)}]),
{atom c, ok} = mmesi a: add_t abl e_i ndex(person, age),

Per sonsAge42 =
mesi a: dirty_i ndex_read(person, 42, #person.age),

Transactions

Using transactions is a way to guarantee that the distributed Mnesia database remains consistent, even when many
different processes updateit in parallel. However, if you have real-time requirementsitisrecommendedtousedi rt y
operations instead of transactions. When using di r t y operations, you lose the consistency guarantee; thisis usually
solved by only letting one process update the table. Other processes must send update requests to that process.

Example

% Usi ng transaction
Fun = fun() ->
[mesi a: read({Tabl e, Key}),
mesi a: read({ Tabl e2, Key2})]
end,

{atomic, [Resultl, Result2]} = mmesia:transaction(Fun),
% Same thing using dirty operations

Resul t 1
Resul t 2

mesi a:dirty_read({Tabl e, Key}),
mesi a: dirty_read({Tabl e2, Key2}),

7.8 Processes

7.8.1 Creating an Erlang Process
An Erlang processis lightweight compared to threads and processes in operating systems.

A newly spawned Erlang process uses 309 words of memory in the non-SMP emulator without HiPE support. (SMP
support and HiPE support both add to this size.) The size can be found as follows:

Erl ang (BEAM emul ator version 5.6 [async-threads: 0] [kernel-poll:false]

Eshell V5.6 (abort with ~"Q

1> Fun = fun() -> receive after infinity -> ok end end.
#Fun<...>

2> {_,Bytes} = process_info(spawn(Fun), nenory).
{menory, 1232}

3> Bytes div erlang: system i nfo(wordsize).

309

242 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.8 Processes

The size includes 233 words for the heap area (which includes the stack). The garbage collector increases the heap
as needed.

The main (outer) loop for a process must be tail-recursive. Otherwise, the stack grows until the process terminates.
DO NOT

l'oop() ->
receive
{sys, Msg} ->
handl e_sys_nsg(MsQ)
loop();
{From Msg} ->
Reply = handl e_nsg(Msg),
From! Reply

| oop()
end
io:format ("Message i s processed~n", []).

Thecall toi o: f or mat / 2 will never be executed, but a return address will still be pushed to the stack each time
| oop/ 0 iscaled recursively. The correct tail-recursive version of the function looks as follows:

DO

l'oop() ->
recei ve
{sys, Mg} ->
handl e_sys_nsg(Msg),
I'oop();
{From Msg} ->
Reply = handl e_nmsg(Msg),
From! Reply

| oop()
end

Initial Heap Size

The default initial heap size of 233 words is quite conservative to support Erlang systems with hundreds of thousands
or even millions of processes. The garbage collector grows and shrinks the heap as needed.

In asystem that use comparatively few processes, performance might be improved by increasing the minimum heap
size using either the +h option for erl or on a process-per-process basis using the m n_heap_si ze option for
spawn_opt/4.

The gainistwofold:

« Although the garbage collector grows the heap, it grows it step-by-step, which is more costly than directly
establishing alarger heap when the process is spawned.

e The garbage collector can also shrink the heap if it is much larger than the amount of data stored on it; setting
the minimum heap size prevents that.

Warning:

The emulator probably uses more memory, and because garbage collections occur less frequently, huge binaries
can be kept much longer.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 243

7.8 Processes

In systemswith many processes, computation tasksthat run for ashort time can be spawned off into anew processwith
a higher minimum heap size. When the process is done, it sends the result of the computation to another process and
terminates. If the minimum heap size is calculated properly, the process might not have to do any garbage collections
at al. This optimization is not to be attempted without proper measurements.

7.8.2 Process Messages
All datain messages between Erlang processes is copied, except for refc binaries on the same Erlang node.

When amessage is sent to a process on another Erlang node, it isfirst encoded to the Erlang External Format before
being sent through a TCP/IP socket. The receiving Erlang node decodes the message and distributes it to the correct
process.

Constant Pool

Constant Erlang terms (also called literals) are now kept in constant pools; each loaded module hasits own pool. The
following function does no longer build the tuple every timeit is called (only to have it discarded the next time the
garbage collector was run), but the tupleis located in the module's constant pool:

DO (in R12B and later)

days_in_month(M ->
el enent (M {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}).

But if aconstant is sent to another process (or stored in an Etstable), it is copied. The reason isthat the runtime system
must be able to keep track of al referencesto constants to unload code containing constants properly. (When the code
is unloaded, the constants are copied to the heap of the processes that refer to them.) The copying of constants might
be eliminated in a future Erlang/OTP release.

Loss of Sharing
Shared subterms are not preserved in the following cases:

* When aterm is sent to another process

* When atermis passed as the initial process argumentsin the spawn call
Whenatermisstored in an Etstable

That is an optimization. Most applications do not send messages with shared subterms.

The following example shows how a shared subterm can be created:

kilo_byte() ->
kil o_byte(10, [42]).

kil o_byte(0, Acc) ->
Acc;
kil o_byte(N, Acc) ->
kil o_byte(N-1, [Acc|Acc]).

kil o _byte/ 1l createsadeep list. If | i st _to_bi nary/ 1 iscaled, the deep list can be converted to a binary
of 1024 bytes:

1> byte_size(list_to binary(efficiency guide:kilo _byte())).
1024

244 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.9 Drivers

Usingtheerts_debug: si ze/ 1 BIF, it can be seen that the deep list only requires 22 words of heap space:

2> erts_debug: si ze(efficiency_guide: kil o_byte()).
22

Using theerts_debug: fl at _si ze/ 1 BIF, the size of the deep list can be calculated if sharing is ignored. It
becomes the size of the list when it has been sent to another process or stored in an Etstable:

3> erts_debug: flat_size(efficiency_guide:kilo_byte()).
4094

It can be verified that sharing will be lost if the datais inserted into an Etstable:

4> T = ets:newmtab, []).

17

5> ets:insert(T, {key,efficiency_guide:kilo_byte()})

true

6> erts_debug: si ze(el ement (2, hd(ets:|ookup(T, key))))
4094

7> erts_debug: flat_size(el ement (2, hd(ets:|ookup(T, key))))
4094

When the data has passed through an Etstable, ert s_debug: si ze/ 1anderts_debug: fl at _si ze/ 1 return
the same value. Sharing has been lost.

In afuture Erlang/OTP release, it might be implemented away to (optionally) preserve sharing. There are no plansto
make preserving of sharing the default behaviour, as that would penalize the vast magjority of Erlang applications.

7.8.3 SMP Emulator

The SMP emulator (introduced in R11B) takes advantage of a multi-core or multi-CPU computer by running several
Erlang scheduler threads (typically, the same asthe number of cores). Each scheduler thread schedul es Erlang processes
in the same way as the Erlang scheduler in the non-SMP emulator.

To gain performance by using the SMP emulator, your application must have more than one runnable Erlang process
most of the time. Otherwise, the Erlang emulator can still only run one Erlang process at the time, but you must still
pay the overhead for locking. Although Erlang/OTP tries to reduce the locking overhead as much as possible, it will
never become exactly zero.

Benchmarks that appear to be concurrent are often sequential. The estone benchmark, for example, is entirely
sequential. So isthe most common implementation of the "ring benchmark™; usually one process is active, while the
otherswaitinar ecei ve statement.

The percept application can be used to profile your application to see how much potential (or lack thereof) it has for
concurrency.

7.9 Drivers

This section provides a brief overview on how to write efficient drivers.
It is assumed that you have a good understanding of drivers.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 245

7.9 Drivers

7.9.1 Drivers and Concurrency
The runtime system always takes alock before running any code in adriver.

By default, that lock is at the driver level, that is, if severa ports have been opened to the same driver, only code for
one port at the same time can be running.

A driver can be configured to have one lock for each port instead.

If adriver is used in a functional way (that is, holds no state, but only does some heavy calculation and returns a
result), several ports with registered names can be opened beforehand, and the port to be used can be chosen based
on the scheduler ID asfollows:

- def i ne(PORT_NAMES() ,

{some_driver_01, sone_driver_02, some_driver_03, sone_driver_04,
sonme_driver 05, sone_driver_ 06, sone_driver_ 07, sone_driver_ 08,
sonme_driver_09, sone_driver_ 10, sone_driver 11, sone_driver_12,
sone_driver_13, sone_driver_14, sone_driver_15, sone_driver_16}).

client_port() ->
el enent (erl ang: system i nfo(schedul er _id) rem tupl e_size(?PORT_NAMES()) + 1,
?PORT_NAMES()) .

Aslong asthere are no more than 16 schedulers, there will never be any lock contention on the port lock for the driver.

7.9.2 Avoiding Copying Binaries When Calling a Driver
There are basically two ways to avoid copying a binary that is sent to adriver:

« |If the Dat a argument for port_control/3 is a binary, the driver will be passed a pointer to the contents of the
binary and the binary will not be copied. If the Dat a argument isan iolist (list of binaries and lists), al binaries
intheiolist will be copied.

Therefore, if you want to send both a pre-existing binary and some extra data to a driver without copying the
binary, you must call port _cont r ol / 3 twice; once with the binary and once with the extra data. However,
that will only work if there is only one process communicating with the port (because otherwise another process
can call the driver in-between the cals).

* Implement an out put v callback (instead of an out put callback) in the driver. If a driver has an out put v
callback, refc binaries passed in aniolist in the Dat a argument for port_command/2 will be passed as references
to the driver.

7.9.3 Returning Small Binaries from a Driver

The runtime system can represent binaries up to 64 bytes as heap binaries. They are always copied when sent in
messages, but they require less memory if they are not sent to another process and garbage collection is cheaper.

If you know that the binaries you return are always small, you are advised to use driver API calls that do not require
a pre-allocated binary, for example, driver_output() or erl_drv_output_termy(), using the ERL_DRV_BUF2BI NARY
format, to allow the runtime to construct a heap binary.

7.9.4 Returning Large Binaries without Copying from a Driver

To avoid copying data when a large binary is sent or returned from the driver to an Erlang process, the driver must
first allocate the binary and then send it to an Erlang processin some way.

Usedriver_alloc_hinary() to alocate abinary.
There are several waysto send abinary created withdri ver _al | oc_bi nary():

246 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.10 Advanced

 Fromthecont r ol calback, abinary can be returned if set_port_control_flags() has been called with the flag

value PORT _CONTROL_FLAG Bl NARY.

e A single binary can be sent with driver_output_binary().
e Usingerl_drv_output_term() or erl_drv_send_term(), abinary can be included in an Erlang term.

7.10 Advanced
7.10.1 Memory

A good start when programming efficiently isto know how much memory different data types and operations require.
It isimplementation-dependent how much memory the Erlang data types and other items consume, but the following
table shows some figuresfor theer t s- 5. 2 system in R9B. There have been no significant changesin R13.

The unit of measurement is memory words. There exists both a 32-bit and a 64-bit implementation. A word istherefore

4 bytes or 8 bytes, respectively.

Data Type

Memory Size

Small integer

1 word.

On 32-bit architectures; -134217729 < i < 134217728
(28 hits).

On 64-hit architectures: -576460752303423489 < i <
576460752303423488 (60 bits).

Largeinteger

3..N words.

Atom

1 word.

An atom refersinto an atom table, which also consumes
memory. The atom text is stored once for each unique
atom in this table. The atom table is not garbage-
collected.

Float

On 32-hit architectures; 4 words.
On 64-hit architectures: 3 words.

Binary

3..6 words + data (can be shared).

List

1 word + 1 word per element + the size of each element.

String (is the same as alist of integers)

1 word + 2 words per character.

Tuple

2 words + the size of each element.

Pid

1 word for a process identifier from the current local
node + 5 words for a process identifier from another
node.

A process identifier refersinto a process table and a
node table, which also consumes memory.

1 word for aport identifier from the current local node +
5 words for a port identifier from another node.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 247

7.10 Advanced

A port identifier refersinto a port table and a node table,
which also consumes memory.

On 32-bit architectures. 5 words for areference from
the current local node + 7 words for areference from
another node.

On 64-bit architectures. 4 words for areference from
the current local node + 6 words for areference from
another node.

A reference refers into a node table, which also
CONSUMes memory.

Reference

9..13 words + the size of environment.
Fun A funrefersinto afun table, which a'so consumes
memory.

Initially 768 words + the size of each element (6 words
Etstable + the size of Erlang data). The table grows when
necessary.

327 words when spawned, including a heap of 233

Erlang process words.

Table 10.1: Memory Size of Different Data Types

7.10.2 System Limits

The Erlang language specification puts no limits on the number of processes, length of atoms, and so on. However,
for performance and memory saving reasons, there will always be limitsin a practical implementation of the Erlang
language and execution environment.

The maximum number of simultaneously alive Erlang
processes is by default 32,768. Thislimit can be
Processes configured at startup. For more information, see the
+P command-lineflagintheer | (1) manual pagein
erts.

A remote node Y must be known to node X if there
exists any pids, ports, references, or funs (Erlang data
types) fromY on X, or if X and Y are connected. The
maximum number of remote nodes simultaneously/ever
known to anode is limited by the maximum number of
atoms available for node names. All data concerning
remote nodes, except for the node name atom, are
garbage-collected.

Known nodes

The maximum number of simultaneously connected
nodesis limited by either the maximum number of
Connected nodes simultaneously known remote nodes, the maximum
number of (Erlang) ports available, or the maximum
number of sockets available.

248 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.10 Advanced

Charactersin an atom

255.

Atoms

By default, the maximum number of atomsis 1,048,576.
Thislimit can be raised or lowered using the +t option.

Etstables

Default is 1400. It can be changed with the environment
variable ERL_MAX_ETS TABLES.

Elementsin atuple

The maximum number of elementsin atupleis
67,108,863 (26-bit unsigned integer). Clearly, other
factors such as the available memory can make it
difficult to create atuple of that size.

Size of binary

In the 32-bit implementation of Erlang, 536,870,911
bytesisthe largest binary that can be constructed

or matched using the bit syntax. In the 64-

bit implementation, the maximum sizeis
2,305,843,009,213,693,951 bytes. If the limit

is exceeded, bit syntax construction fails with a
system | i mt exception, whileany attempt to
match a binary that istoo large fails. Thislimit is
enforced starting in R11B-4.

In earlier Erlang/OTP releases, operations on too large
binariesin genera either fail or give incorrect results.
In future releases, other operations that create binaries
(suchasli st _to_binary/ 1) will probably aso
enforce the same limit.

Total amount of data allocated by an Erlang node

The Erlang runtime system can use the complete 32-bit
(or 64-hit) address space, but the operating system often
limits asingle process to use less than that.

Length of anode name

An Erlang node name has the form host@shortname
or host@longname. The node nameis used as an atom
within the system, so the maximum size of 255 holds
also for the node name.

Open ports

The maximum number of simultaneously open Erlang
portsis often by default 16,384. Thislimit can be
configured at startup. For more information, see the
+Qcommand-lineflagintheer| (1) manual pagein
erts.

Open files and sockets

The maximum number of simultaneously open files
and sockets depends on the maximum number of Erlang
ports available, as well as on operating system-specific
settings and limits.

Number of argumentsto afunction or fun

255

Unique References on a Runtime System Instance

Each scheduler thread has its own set of references,
and all other threads have a shared set of references.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 249

7.11 Profiling

Each set of references consist of 2## - 1 unique
references. That isthe total amount of unique references
that can be produced on aruntime system instance
is(NoSchedul ers + 1) * (2## - 1).If

a scheduler thread create a new reference each nano
second, references will at earliest be reused after more
than 584 years. That is, for the foreseeable future they
are unique enough.

Unigue Integers on a Runtime System Instance

There are two types of unique integers both created
using the erlang:unique_integer() BIF. Unique integers
created:
with the ronot oni ¢ modifier
consist of aset of 2## - 1 unique integers.
without the monot oni ¢ modifier
consist of aset of 2## - 1 unique integers
per scheduler thread and aset of 2## - 1
unigue integers shared by other threads. That is
the total amount of unique integers without the
nonot oni ¢ modifier is(NoSchedul ers +
1) * (2## - 1)
If aunique integer is created each nano second, unique
integers will at earliest be reused after more than 584
years. That is, for the foreseeable future they are unique
enough.

Table 10.2: System Limits

7.11 Profiling

7.11.1 Do Not Guess About Performance - Profile

Even experienced software developers often guess wrong about where the performance bottlenecks are in their
programs. Therefore, profile your program to see where the performance bottlenecks are and concentrate on optimizing
them.

Erlang/OTP contains severa tools to help finding bottlenecks:

f pr of providesthe most detailed information about where the program time is spent, but it significantly slows

down the program it profiles.

epr of provides time information of each function used in the program. No call graph is produced, but epr of
has considerable less impact on the program it profiles.

If the programistoo largeto be profiled by f pr of or epr of , thecover and cpr of toolscan be usedto locate
code parts that are to be more thoroughly profiled using f pr of or epr of .

cover provides execution counts per line per process, with less overhead than f pr of . Execution counts can,
with some caution, be used to locate potential performance bottlenecks.

cpr of isthe most lightweight tool, but it only provides execution counts on afunction basis (for all processes,

not per process).

The tools are further described in Tools.

250 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.11 Profiling

7.11.2 Large Systems

For alargesystem, it can beinteresting to run profiling on asimulated and limited scenario to start with. But bottlenecks
have a tendency to appear or cause problems only when many things are going on at the same time, and when many
nodes are involved. Therefore, it is also desirable to run profiling in a system test plant on areal target system.

For alarge system, you do not want to run the profiling tools on the whole system. Instead you want to concentrate
on central processes and modules, which contribute for a big part of the execution.

7.11.3 What to Look For

When analyzing the result file from the profiling activity, look for functions that are called many times and have a
long "own" execution time (time excluding calls to other functions). Functions that are called alot of times can also
be interesting, as even small things can add up to quite a bit if repeated often. Also ask yourself what you can do to
reduce thistime. The following are appropriate types of questions to ask yourself:

* Isit possible to reduce the number of times the function is called?

e Can any test be run less often if the order of testsis changed?

e Can any redundant tests be removed?

» Doesany calculated expression give the same result each time?

» Arethere other waysto do this that are equivalent and more efficient?

e Can another internal data representation be used to make things more efficient?

These questions are not always trivial to answer. Some benchmarks might be needed to back up your theory and to
avoid making things slower if your theory iswrong. For details, see Benchmarking.

7.11.4 Tools
fprof

f pr of measures the execution time for each function, both own time, that is, how much time a function has used
for its own execution, and accumulated time, that is, including called functions. The values are displayed per process.
Y ou also get to know how many times each function has been called.

f pr of isbased on trace to file to minimize runtime performance impact. Using f pr of isjust a matter of calling a
few library functions, see the fprof manual pageint ool s .f pr of wasintroduced in R8.
eprof

epr of isbased onthe Erlangtrace_i nf o BIFs. epr of shows how much time has been used by each process,
and in which function calls this time has been spent. Time is shown as percentage of total time and absolute time. For
more information, see the eprof manual pageint ool s.

cover

The primary use of cover is coverage analysis to verify test cases, making sure that all relevant code is covered.
cover counts how many times each executableline of codeis executed when aprogram isrun, on aper module basis.

Clearly, thisinformation can be used to determine what code is run very frequently and can therefore be subject for
optimization. Using cover isjust amatter of calling afew library functions, see the cover manual pageint ool s.
cprof

cpr of issomething in between f pr of and cover regarding features. It counts how many times each function is
called when the program is run, on a per module basis. cpr of has alow performance degradation effect (compared
with f pr of) and does not need to recompile any modules to profile (compared with cover). For more information,
see the cprof manual pageint ool s.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 251

7.11 Profiling

Tool Summary

Effects on Records Records Records
Sze of Program . Records
Tool Results Result Execution Number of | Execution Called b Garbage
. Calls Time Y Collection
Time
Per process L
f pr of to screen/ Large Significant Yes Total and Yes Yes
file slowdown own
Per process/ Sl
epr of functionto | Medium Yes Only total No No
. slowdown
screenffile
Per module
cover to screen/ Small Moderate Yes, per line | No No No
file slowdown
Per module Small
cpr of to caller Small Jowdown Yes No No No

Table 11.1: Tool Summary

7.11.5 Benchmarking

The main purpose of benchmarking isto find out which implementation of a given algorithm or function isthe fastest.
Benchmarking isfar from an exact science. Today's operating systems generally run background tasksthat are difficult
to turn off. Caches and multiple CPU cores does not facilitate benchmarking. It would be best to run UNIX computers
in single-user mode when benchmarking, but that isinconvenient to say the least for casual testing.

Benchmarks can measure wall-clock time or CPU time.

timer:tc/3 measures wall-clock time. The advantage with wall-clock timeisthat 1/O, swapping, and other
activitiesin the operating system kernel are included in the measurements. The disadvantage is that the
measurements vary alot. Usually it is best to run the benchmark several times and note the shortest time, which
isto be the minimum time that is possible to achieve under the best of circumstances.

statistics/1 with argument r unt i me measures CPU time spent in the Erlang virtual machine. The advantage
with CPU time is that the results are more consistent from run to run. The disadvantage is that the time spent
in the operating system kernel (such as swapping and I/O) is not included. Therefore, measuring CPU time is
misleading if any /O (file or socket) isinvolved.

It is probably a good ideato do both wall-clock measurements and CPU time measurements.
Somefinal advice:

The granularity of both measurement types can be high. Therefore, ensure that each individual measurement
lastsfor at least several seconds.

To make the test fair, each new test runisto run in its own, newly created Erlang process. Otherwise, if all tests
run in the same process, the later tests start out with larger heap sizes and therefore probably do fewer garbage
collections. Also consider restarting the Erlang emulator between each test.

Do not assume that the fastest implementation of a given algorithm on computer architecture X is aso the
fastest on computer architecture Y.

252 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.1 Introduction

8 Interoperability Tutorial

8.1 Introduction

This section informs on interoperability, that is, information exchange, between Erlang and other programming
languages. The included examples mainly treat interoperability between Erlang and C.

8.1.1 Purpose

The purpose of this tutorial is to describe different interoperability mechanisms that can be used when integrating a
program written in Erlang with a program written in another programming language, from the Erlang programmer's
perspective.

8.1.2 Prerequisites

It is assumed that you are a skilled Erlang programmer, familiar with concepts such as Erlang data types, processes,
messages, and error handling.

Toillustrate the interoperability principles, C programsrunning in a UNIX environment have been used. It is assumed
that you have enough knowledge to apply these principles to the relevant programming languages and platforms.

Note:

For readability, the example code is kept as ssimple as possible. For example, it does not include error handling,
which might be vital in areal-life system.

8.2 Overview

8.2.1 Built-In Mechanisms

Two interoperability mechanisms are built into the Erlang runtime system, distributed Erlang and ports. A variation
of portsislinked-in drivers.

Distributed Erlang

An Erlang runtime system is made adistributed Erlang node by giving it aname. A distributed Erlang node can connect
to, and monitor, other nodes. It can also spawn processes at other nodes. Message passing and error handling between
processes at different nodes are transparent. A number of useful STDLIB modules are available in adistributed Erlang
system. For example, gl obal , which provides global name registration. The distribution mechanism isimplemented
using TCP/IP sockets.

When to use: Distributed Erlang is primarily used for Erlang-Erlang communication. It can also be used for
communication between Erlang and C, if the C program isimplemented as a C node, see C and Java Libraries.

Where to read more: Distributed Erlang and some distributed programming techniques are described in the Erlang
book.

For moreinformation, see Distributed Programming.
Relevant manual pages are the following:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 253

8.2 Overview

» erlang manual pagein ERTS (describes the BIFs)
e global manual pagein Kernel

e net_admmanua pagein Kernel

* pg2 manual pagein Kernel

e rpc manua pagein Kernel

e pool manual pagein STDLIB

e dlavemanual pagein STDLIB

Ports and Linked-In Drivers

Ports provide the basic mechanism for communication with the external world, from Erlang's point of view. The ports
provide a byte-oriented interface to an external program. When a port is created, Erlang can communicate with it by
sending and receiving lists of bytes (not Erlang terms). This meansthat the programmer might haveto invent asuitable
encoding and decoding scheme.

The implementation of the port mechanism depends on the platform. For UNIX, pipes are used and the externa
program is assumed to read from standard input and write to standard output. The external program can be written
in any programming language as long as it can handle the interprocess communication mechanism with which the
port isimplemented.

The external program resides in another OS process than the Erlang runtime system. In some cases this is not
acceptable. Consider, for example, driverswith very hard timerequirements. It istherefore possible to write aprogram
in C according to certain principles, and dynamically link it to the Erlang runtime system. This is called a linked-
indriver.

When to use: Ports can be used for all kinds of interoperability situations where the Erlang program and the other
program runs on the same machine. Programming is fairly straight-forward.

Linked-in driversinvolves writing certain call-back functionsin C. Thisrequiresvery good skills asthe codeislinked
to the Erlang runtime system.

Warning:

A faulty linked-in driver causes the entire Erlang runtime system to leak memory, hang, or crash.

Where to read more: Ports are described in section "Miscellaneous Items” of the Erlang book. Linked-in drivers are
described in Appendix E.

TheBIF open_port/ 2 isdocumented in the erlang manual pagein ERTS.
For linked-in drivers, the programmer needs to read the erl_ddll manual page in Kernel.
Examples: Port examplein Ports.

8.2.2 C and Java Libraries

Erl_Interface

The program at the other side of a port is often a C program. To help the C programmer, the Erl_Interface library has
been developed, including the following five parts:

e erl_marshal ,erl _etermerl _format,anderl| mal | oc: Handling of the Erlang external term
format
e erl _connect : Communication with distributed Erlang, see C nodes below

e erl _error:Error print routines

254 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.2 Overview

« erl _gl obal : Access globaly registered names
e Regi stry: Store and backup of key-value pairs

The Erlang external term format is a representation of an Erlang term as a sequence of bytes, that is, a binary.
Conversion between the two representations is done using the following BIFs:

Binary = termto_binary(Term
Term = binary_to_ternm(Bi nary)

A port can be set to use binaries instead of lists of bytes. It is then not necessary to invent any encoding/decoding
scheme. Erl_Interface functions are used for unpacking the binary and convert it into astruct similar to an Erlang term.
Such a struct can be manipulated in different ways, be converted to the Erlang external format, and sent to Erlang.

When to use: In C code, in conjunction with Erlang binaries.

Whereto read more: See the Erlang Interface User's Guide, Command Reference, and Library Reference. In Erlang/
OTP R5B, and earlier versions, the information is part of the Kernel application.

Examples: Erl_Interface examplein Erl_Interface.

C Nodes

A C program that usesthe Erl_Interface functionsfor setting up aconnection to, and communicating with, adistributed
Erlang node is called a C node, or a hidden node. The main advantage with a C node is that the communication from
the Erlang programmer's perspective is extremely easy, as the C program behaves as a distributed Erlang node.

When to use: C nodes can typically be used on device processors (as opposed to control processors) where C isabetter
choice than Erlang due to memory limitations or application characteristics, or both.

Wheretoread more: Seetheer| _connect part of the Erl_Interface documentation. The programmer also needsto
be familiar with TCP/IP sockets, see Sockets in Standard Protocols and Distributed Erlang in Built-In Mechanisms.

Example: C node examplein C Nodes.

Jinterface

In Erlang/OTP R6B, alibrary similar to Erl_Interface for Java was added called jinterface. It provides atool for Java
programs to communicate with Erlang nodes.

8.2.3 Standard Protocols

Sometimes communication between an Erlang program and another program using a standard protocol is desirable.
Erlang/OTP currently supports TCP/IP and UDP sockets: as follows:

e SNMP

e HTTP

+ 1IOP(CORBA)

Using one of the latter three requires good knowledge about the protocol and is not covered by this tutorial. See the
SNMP, Inets, and Orber applications, respectively.

Sockets

Simply put, connection-oriented socket communication (TCP/IP) consists of an initiator socket ("server") started at a
certain host with a certain port number. A connector socket ("client"), which is aware of the initiator host name and
port number, can connect to it and data can be sent between them.

Connection-less socket communication (UDP) consistsof aninitiator socket at acertain host with acertain port number
and a connector socket sending datato it.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 255

8.3 Problem Example

For a detailed description of the socket concept, refer to a suitable book about network programming. A suggestion
is UNIX Network Programming, Volume 1: Networking APIs - Sockets and XTI by W. Richard Stevens, ISBN:
013490012X.

In Erlang/OTP, access to TCP/IP and UDP sockets is provided by the modulesgen_t cp and gen_udp in Kernel.
Both are easy to use and do not require detailed knowledge about the socket concept.

When to use: For programs running on the same or on another machine than the Erlang program.
Whereto read more: Seethe gen tcp and the gen_udp manual pagesin Kernel.

8.24 IC

IC (Erlang IDL Compiler) is an interface generator that, given an IDL interface specification, automatically generates
stub code in Erlang, C, or Java. See the IC User's Guide and | C Reference Manual.

For details, see the ic manual pagein IC.

8.2.5 Old Applications

Two old applications are of interest regarding interoperability. Both have been replaced by 1C and are mentioned here
for reference only:

e |G - Removed from Erlang/OTP R6B.

IG (Interface Generator) automatically generated code for port or socket communication between an Erlang
program and a C program, given a C header file with certain keywords.

e Jive- Removed from Erlang/OTP R7B.
Jive provided a simple interface between an Erlang program and a Java program.

8.3 Problem Example

8.3.1 Description

A common interoperability situation is when you want to incorporate a piece of code, solving a complex problem,
in your Erlang program. Suppose for example, that you have the following C functions that you would like to call
from Erlang:

/* conplex.c */

int foo(int x) {
return x+1;

}

int bar(int y) {
return y*2;

}

The functions are deliberately kept as simple as possible, for readability reasons.

From an Erlang perspective, it is preferable to be able to call f oo and bar without having to bother about that they
are C functions:

% Erl ang code

256 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.4 Ports

Res = conpl ex: foo(X),

Here, the communication with C is hidden in the implementation of conpl ex. er | . In the following sections, it is
shown how this module can be implemented using the different interoperability mechanisms.

8.4 Ports

This section outlines an example of how to solve the example problem in the previous section by using a port.

The scenario isillustrated in the following figure:

ERTS External program

: f— -
il—h Parl
-

I:l QS process

2 Erangprocess
—* Communication

Figure 4.1: Port Communication

8.4.1 Erlang Program

All communication between Erlang and C must be established by creating the port. The Erlang process that creates
aport is said to be the connected process of the port. All communication to and from the port must go through the
connected process. If the connected process terminates, the port also terminates (and the external program, if it is
written properly).

Theportiscreated using the BIF open_port/ 2 with{ spawn, Ext Pr g} asthefirst argument. Thestring Ext Pr g
isthe name of the external program, including any command linearguments. The second argument isalist of options, in
thiscaseonly { packet , 2} . Thisoption saysthat a2 bytelength indicator isto be used to simplify the communication
between C and Erlang. The Erlang port automatically adds the length indicator, but this must be done explicitly in
the external C program.

The processis also set to trap exits, which enables detection of failure of the external program:

- modul e(conpl ex1) .
-export([start/1, init/1]).

start (ExtPrg) ->
spawn(?MODULE, init, [ExtPrg]).

init(ExtPrg) ->

regi ster(conpl ex, self()),
process_flag(trap_exit, true),

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 257

8.4 Ports

Port = open_port ({spawn, ExtPrg}, [{packet, 2}]),
| oop(Port).

Now conpl ex1: f oo/ 1 and conpl ex1: bar/ 1 can be implemented. Both send a message to the conpl ex
process and receive the following replies:

foo(X) ->
call _port({foo, X}).
bar(Y) ->

call _port({bar, Y}).

cal |l _port(Msg) ->
complex ! {call, self(), Mg},
recei ve
{conpl ex, Result} ->
Resul t
end.

The conpl ex process does the following:

» Encodes the message into a sequence of bytes.
* Sendsit to the port.

* Waitsfor areply.

» Decodesthereply.

* Sendsit back to the caller:

| oop(Port) ->
recei ve
{call, Caller, Mg} ->
Port ! {self(), {comuand, encode(Msqg)}},
recei ve
{Port, {data, Data}} ->
Caller ! {conpl ex, decode(Data)}
end,
| oop(Port)
end.

Assuming that both the arguments and the results from the C functions are less than 256, a simple encoding/decoding
scheme is employed. In this scheme, f 00 is represented by byte 1, bar is represented by 2, and the argument/result
is represented by a single byte aswell:

encode({foo, X}) ->[1, X;
encode({bar, Y}) ->[2, VY].

decode([Int]) -> Int.

The resulting Erlang program, including functionality for stopping the port and detecting port failures, is asfollows:

- modul e(conpl ex1) .
-export([start/1, stop/0, init/1]).
-export([foo/1, bar/1]).

258 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.4 Ports

start (ExtPrg) ->

spawn(?MODULE, init, [ExtPrg]).
stop() ->

conplex ! stop

foo(X) ->
call _port({foo, X}).
bar(Y) ->

call _port({bar, Y}).

call _port(Mg) ->
conplex ! {call, self(), Mg}
receive
{conmpl ex, Result} ->
Resul t
end

init(ExtPrg) ->
regi ster(conpl ex, self()),
process_flag(trap_exit, true),
Port = open_port ({spawn, ExtPrg}, [{packet, 2}]),
| oop(Port).

| oop(Port) ->
receive
{call, Caller, Mg} ->
Port | {self(), {comuand, encode(Msq)}}
receive
{Port, {data, Data}} ->
Caller ! {conpl ex, decode(Data)}
end
| oop(Port);
stop ->
Port | {self(), close},
receive
{Port, closed} ->
exit(normal)
end
{"EXIT', Port, Reason} ->
exit(port_term nated)
end

encode({foo, X}) ->[1, X
encode({bar, Y}) ->[2, Y].

decode([Int]) -> Int

8.4.2 C Program

Onthe C side, it is necessary to write functions for receiving and sending data with 2 byte length indicators from/to
Erlang. By default, the C program is to read from standard input (file descriptor 0) and write to standard output (file
descriptor 1). Examples of such functions, read_cnd/ 1 andw i t e_cnd/ 2, follows:

/* erl _commc */

typedef unsigned char byte
read_cnd(byte *buf)

{

int len;

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 259

8.4 Ports

if (read_exact (buf, 2) I= 2)
return(-1);

len = (buf[0] << 8) | buf[1];

return read_exact (buf, len);

}
wite cnd(byte *buf, int |en)
{

byte Ii;

li = (len >> 8) & Oxff;
wite exact(&i, 1);

li =len & Oxff;
wite exact(&i, 1);

return wite_exact (buf, len);

}
read_exact (byte *buf, int |en)
X int i, got=0;

do {

if ((i = read(0, buf+got, len-got)) <= 0)
return(i);
got +=i;
} while (got<len);

return(len);

}
wite_exact(byte *buf, int |en)
{
int i, wote = 0;
do {
if ((i =wite(l, buf+wote, len-wote)) <= 0)
return (i);
wote += i;

} while (wote<len);

return (len);

}

Noticethat st di nandst dout arefor buffered input/output and must not be used for the communi cation with Erlang.

Inthe mai n function, the C program isto listen for a message from Erlang and, according to the selected encoding/
decoding scheme, usethefirst byte to determine which function to call and the second byte as argument to the function.
Theresult of calling the function is then to be sent back to Erlang:

/* port.c */
typedef unsigned char byte;
int main() {

int fn, arg, res;

byt e buf[100];

while (read_cnd(buf) > 0) {

260 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.5 Erl_Interface

fn = buf[0];
arg = buf[1];

if (fn == 1) {
res = foo(arg);

} else if (fn == 2) {
res = bar(arg);

}
buf[0] = res;
wite cnd(buf, 1);

Notice that the C program isin awhi | e-loop, checking for the return value of r ead_cnd/ 1. Thisis because the
C program must detect when the port closes and terminates.

8.4.3 Running the Example
Sep 1. Compile the C code:

uni x> gcc -0 extprg conplex.c erl_conmc port.c

Sep 2. Start Erlang and compile the Erlang code:

uni x> erl
Erl ang (BEAM enul ator version 4.9.1.2

Eshell V4.9.1.2 (abort with 2"G
1> c(conpl ex1).
{ ok, conpl ex1}

Sep 3. Run the example:

2> conpl ex1:start ("extprg").
<0. 34. 0>

3> conpl ex1: foo(3).

4

4> conpl ex1: bar (5) .

10

5> conpl ex1: stop().

st op

8.5 Erl_Interface

This section outlines an example of how to solve the example problem in Problem Example by using a port and
Erl_Interface. It is necessary to read the port example in Ports before reading this section.

8.5.1 Erlang Program

The following example shows an Erlang program communicating with a C program over aplain port with home made
encoding:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 261

8.5 Erl_Interface

- modul e(conpl ex1) .
-export([start/1, stop/0, init/1]).
-export([foo/1, bar/1]).

start (ExtPrg) ->

spawn(?MODULE, init, [ExtPrg]).
stop() ->

conpl ex | stop.

foo(X) ->
call _port({foo, X}).
bar(Y) ->

call _port({bar, Y}).

call _port(Msg) ->
conplex ! {call, self(), Mg},
receive
{conpl ex, Result} ->
Resul t
end.

init(ExtPrg) ->
regi ster(conpl ex, self()),
process_flag(trap_exit, true),
Port = open_port ({spawn, ExtPrg}, [{packet, 2}]),
| oop(Port).

| oop(Port) ->
receive
{call, Caller, Mg} ->
Port | {self(), {comuand, encode(Msq)}}
receive
{Port, {data, Data}} ->
Caller ! {conplex, decode(Data)}
end
| oop(Port);
stop ->
Port | {self(), close},
receive
{Port, closed} ->
exit(normal)
end
{"EXIT', Port, Reason} ->
exit(port_term nated)
end

encode({foo, X}) ->[1, X;
encode({bar, Y}) ->[2, Y].

decode([Int]) -> Int.

There are two differences when using Erl_Interface on the C side compared to the examplein Ports, using only the
plain port:

e AsErl_Interface operates on the Erlang external term format, the port must be set to use binaries.

* Instead of inventing an encoding/decoding scheme, thet erm t o_bi nary/ 1 andbi nary_to_term 1
BlFs areto be used.

That is:

262 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.5 Erl_Interface

open_port ({spawn, ExtPrg}, [{packet, 2}])

is replaced with:

open_port ({spawn, ExtPrg}, [{packet, 2}, binary])

And:

Port | {self(), {command, encode(Msqg)}},
recei ve
{Port, {data, Data}} ->
Caller ! {conpl ex, decode(Data)}
end

is replaced with:

Port ! {self(), {comand, termto_binary(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {conplex, binary to_termnData)}
end

The resulting Erlang program is as follows:

- modul e(conpl ex2) .
-export([start/1, stop/0, init/1]).
-export([foo/1, bar/1]).

start (ExtPrg) ->

spawn(?MODULE, init, [ExtPrg]).
stop() ->

conpl ex ! stop.

foo(X) ->
call _port({foo, X}).
bar(Y) ->

cal |l _port({bar, Y}).

cal |l _port(Msg) ->
complex ! {call, self(), Mg},
receive
{conpl ex, Result} ->
Resul t
end.

init(ExtPrg) ->
regi ster(conpl ex, self()),
process_flag(trap_exit, true),
Port = open_port ({spawn, ExtPrg}, [{packet, 2}, binary]),
| oop(Port).

| oop(Port) ->
receive
{call, Caller, Mg} ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 263

8.5 Erl_Interface

Port | {self(), {comand, termto_binary(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {conplex, binary to_term Data)}
end,
| oop(Port);
stop ->
Port | {self(), close},
receive
{Port, closed} ->
exit(normal)
end;
{"EXIT', Port, Reason} ->
exit(port_term nated)
end.

Notice that calling conpl ex2: f oo/ 1 and conpl ex2: bar/ 1 resultsin the tuple { f oo, X} or { bar, Y} being
sent to theconpl ex process, which codes them as binaries and sends them to the port. This meansthat the C program
must be able to handle these two tuples.

8.5.2 C Program

Thefollowing example shows a C program communi cating with an Erlang program over aplain port with home made
encoding:

/* port.c */
typedef unsigned char byte;

int main() {
int fn, arg, res;
byt e buf[100];

while (read_cnd(buf) > 0) {
fn = buf[0];
arg = buf[1];

if (fn == 1) {
res = foo(arg);

} else if (fn == 2) {
res = bar(arg);

}

buf [0] = res;

wite cnd(buf, 1);
}

Compared to the C program in Ports, using only the plain port, the whi | e-loop must be rewritten. M essages coming
from the port is on the Erlang external term format. They must be converted into an ETERMSstruct, which isa C struct
similar to an Erlang term. Theresult of callingf oo() or bar () must be converted to the Erlang external term format
before being sent back to the port. But before calling any other Erl_Interface function, the memory handling must
beinitiated:

erl _init(NULL, 0);

264 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.5 Erl_Interface

The following functions, r ead_cnd() andwrite_cnd(), fromtheerl _comm c examplein Ports can till be
used for reading from and writing to the port:

/* erl _commc */
typedef unsigned char byte;

read_cnd(byte *buf)
{

int len;

if (read_exact (buf, 2) I= 2)
return(-1);

len = (buf[0] << 8) | buf[1];

return read_exact (buf, len);

}

wite_cnd(byte *buf, int |en)

{
byte Ii;

Ii = (len >> 8) & Oxff;
wite exact(&i, 1);

li = len & Oxff;
wite exact(&i, 1);

return wite_exact (buf, len);

}

read_exact (byte *buf, int |en)

{
int i, got=0;

do {
if ((i = read(0, buf+got, len-got)) <= 0)
return(i);
got +=i;
} while (got<len);

return(len);

}

wite_exact(byte *buf, int |en)

{

int i, wote = 0;
do {
if ((i =wite(l, buf+wote, len-wote)) <= 0)
return (i);
wote += i;
} while (wote<len);
return (len);

}

Thefunctioner| _decode() fromer| _mar shal convertsthe binary into an ETERMstruct:

int main() {

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 265

8.5 Erl_Interface

ETERM *t upl ep;

while (read_cnd(buf) > 0) {
tupl ep = erl _decode(buf);

Here, t upl ep points to an ETERMstruct representing a tuple with two elements; the function name (atom) and the
argument (integer). Using the function er | _el enent () fromer| _et er m these elements can be extracted, but
they must also be declared as pointers to an ETERMSstruct:

fnp = erl _elenent (1, tuplep);
argp = erl _element (2, tuplep);

The macros ERL_ATOM PTRand ERL_| NT_VALUE fromer | _et er mcan be used to obtain the actual values of
the atom and the integer. The atom value is represented as a string. By comparing this value with the strings "foo"
and "bar", it can be decided which function to call:

if (strncnp(ERL_ATOM PTR(fnp), "foo", 3) == 0) {
res = foo(ERL_I NT_VALUE(argp));

} else if (strncnp(ERL_ATOM PTR(fnp), "bar", 3) == 0) {
res = bar (ERL_I NT_VALUE(argp));

}

Now an ETERMstruct that represents the integer result can be constructed using the functioner | _nk_i nt () from
erl _eterm Thefunctioner| format () fromthemoduleer| fornat canalso be used:

intp = erl _nk_int(res);

The resulting ETERM struct is converted into the Erlang external term format using the function er | _encode()
fromer| _mar shal and senttoErlangusingwrite_cnd():

erl _encode(intp, buf);
wite_cnd(buf, erl_etermlen(intp));

Finally, the memory allocated by the ETERMcreating functions must be freed:

erl _free_conmpound(tupl ep);
erl _free_term(fnp);

erl _free_term(argp);

erl _free_term(intp);

Theresulting C program is as follows:

[* ei.c */

#include "erl _interface. h"
#i ncl ude "ei.h"

266 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.5 Erl_Interface

typedef unsi gned char byte;

int main() {
ETERM *t upl ep, *intp;
ETERM *fnp, *argp;
int res;
byt e buf[100];
long all ocated, freed,;

erl _init(NULL, 0);

while (read_cnd(buf) > 0) {
tupl ep = erl _decode(buf);
fnp = erl _elenent(1, tuplep);
argp = erl _elenent (2, tuplep);

if (strncnp(ERL_ATOM PTR(fnp), "foo", 3) == 0) {
res = foo(ERL_I NT_VALUE(argp));

} else if (strncnp(ERL_ATOM PTR(fnp), "bar", 3) == 0) {
res = bar (ERL_I NT_VALUE(argp));

}

intp = erl _nk_int(res);
erl _encode(intp, buf);
wite cnd(buf, erl_termlen(intp));

erl _free_conpound(tupl ep);
erl _free_term(fnp);

erl _free_term(argp);

erl _free_ternm(intp);

8.5.3 Running the Example

Sep 1. Compile the C code. This provides the paths to the include fileser | _i nt erf ace. h and ei . h, and also
tothelibrarieser| interfaceandei :

uni x> gcc -0 extprg -l/usr/local/otp/lib/erl_interface-3.2.1/include \\
-L/usr/local/otp/libl/erl_interface-3.2.1/1lib \\
conpl ex.c erl_comnmc ei.c -lerl_interface -lei

In Erlang/OTP R5B and later versionsof OTP, thei ncl ude and! i b directoriesare situated under OTPROOT/ | i b/
erl _interface- VSN, where OTPROOT isthe root directory of the OTP installation (/ usr/ | ocal / ot p inthe
recent example) and VSNisthe version of the Erl_interface application (3.2.1 in the recent example).

In R4B and earlier versions of OTP, i ncl ude and| i b are situated under OTPROOT/ usr .
Sep 2. Start Erlang and compile the Erlang code:

uni x> erl
Erl ang (BEAM emul ator version 4.9.1.2

Eshell V4.9.1.2 (abort with ~Q

1> c(conpl ex2).
{ ok, conpl ex2}

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 267

8.6 Port Drivers

Sep 3. Run the example:

2> conpl ex2: start ("extprg").
<0. 34. 0>

3> conpl ex2: foo(3).

4

4> conpl ex2: bar (5) .

10

5> conpl ex2: bar (352) .

704

6> conpl ex2: st op() .

st op

8.6 Port Drivers

This section outlines an example of how to solve the example problem in Problem Example by using alinked-in port
driver.

A port driver is alinked-in driver that is accessible as a port from an Erlang program. It is a shared library (SO in
UNIX, DLL in Windows), with special entry points. The Erlang runtime system calls these entry points when the
driver is started and when datais sent to the port. The port driver can also send data to Erlang.

Asaport driver isdynamically linked into the emulator process, thisisthe fastest way of calling C-code from Erlang.
Calling functions in the port driver requires no context switches. But it is also the least safe way, because a crash in
the port driver brings the emulator down too.

The scenario isillustrated in the following figure:

emulator -
Port driver
Connected shared librar
process Port Y
OS process

O Erlang process
—= Commmnication

Figure 6.1: Port Driver Communication

268 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.6 Port Drivers

8.6.1 Erlang Program

Like a port program, the port communicates with an Erlang process. All communication goes through one Erlang
process that is the connected process of the port driver. Terminating this process closes the port driver.

Before the port is created, the driver must be loaded. This is done with the functioner| _dl | : | oad_dri ver/ 1,
with the name of the shared library as argument.

The port is then created using the BIF open_port/ 2, with the tuple { spawn, Dri ver Nane} as the first
argument. The string Shar edLi b is the name of the port driver. The second argument is a list of options, none in
this case:

- modul e(conpl ex5) .
-export([start/1, init/1]).

start (SharedLi b) ->
case erl _ddll:load_driver(".", SharedLib) of
ok -> ok;
{error, already_| oaded} -> ok;
_ ->exit({error, could_not_|oad_driver})
end,
spawn(?MODULE, init, [SharedLib]).

i ni t(SharedLib) ->
regi ster(conpl ex, self()),
Port = open_port ({spawn, SharedLib}, []),
| oop(Port).

Now conpl ex5: foo/ 1 and conpl ex5: bar/ 1 can be implemented. Both send a message to the conpl ex
process and receive the following reply:

foo(X) ->
call _port({foo, X}).
bar(Y) ->

call _port({bar, Y}).

call _port(Msg) ->
conplex ! {call, self(), Mg},
receive
{conpl ex, Result} ->
Resul t
end.

The conpl ex process performs the following:

» Encodes the message into a sequence of bytes.
* Sendsitto the port.

« Waitsfor areply.

* Decodesthereply.

* Sendsit back to the caler:

| oop(Port) ->
receive
{call, Caller, Mg} ->
Port ! {self(), {command, encode(Msg)}},

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 269

8.6 Port Drivers

receive
{Port, {data, Data}} ->
Caller ! {conpl ex, decode(Data)}
end,
| oop(Port)
end.

Assuming that both the arguments and the results from the C functions are less than 256, a simple encoding/decoding
scheme is employed. In this scheme, f 00 is represented by byte 1, bar is represented by 2, and the argument/result
is represented by a single byte as well:

encode({foo, X}) ->[1, X;
encode({bar, Y}) ->[2, Y].

decode([Int]) -> Int.

The resulting Erlang program, including functions for stopping the port and detecting port failures, is as follows:

- modul e(conpl ex5) .
-export([start/1, stop/0, init/1]).
-export([foo/1, bar/1]).

start (SharedLi b) ->
case erl _ddll:load_driver(".", SharedLib) of
ok -> ok;
{error, already_| oaded} -> ok;
_ ->exit({error, could_not_|oad_driver})
end,
spawn(?MODULE, init, [SharedLib]).

i ni t(SharedLib) ->
regi ster(conpl ex, self()),
Port = open_port ({spawn, SharedLib}, []),
| oop(Port).

stop() ->
conpl ex | stop.

foo(X) ->
call _port({foo, X}).
bar(Y) ->

call _port({bar, Y}).

call _port(Msg) ->
conplex ! {call, self(), Mg},
receive
{compl ex, Result} ->
Resul t
end.

| oop(Port) ->
receive
{call, Caller, Mg} ->
Port | {self(), {command, encode(Msqg)}},
receive
{Port, {data, Data}} ->
Caller ! {conplex, decode(Data)}
end

270 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.6 Port Drivers

| oop(Port);

stop ->
Port | {self(), close},
receive

{Port, closed} ->
exit(normal)
end;

{"EXIT', Port, Reason} ->
io:format("~p ~n", [Reason]),
exit(port_term nated)

end.

encode({foo, X}) ->[1, X;
encode({bar, Y}) ->[2, Y].

decode([Int]) -> Int.

8.6.2 C Driver

The C driver isamodule that is compiled and linked into a shared library. It uses a driver structure and includes the
header fileer| _dri ver. h.

The driver structure is filled with the driver name and function pointers. It is returned from the special entry point,
declared with themacro DRI VER_| NI T(<dri ver _nane>).

The functions for receiving and sending data are combined into a function, pointed out by the driver structure. The
data sent into the port is given as arguments, and the replied datais sent with the C-functiondr i ver _out put .

Asthedriver isashared module, not aprogram, no main function is present. All function pointers are not used in this
example, and the corresponding fieldsinthedr i ver _ent ry structure are set to NULL.

All functionsin the driver takes ahandle (returned from st ar t) that is just passed along by the Erlang process. This
must in some way refer to the port driver instance.

The exanpl e_drv_start, isthe only function that is called with a handle to the port instance, so this must be
saved. It iscustomary to use an allocated driver-defined structure for this one, and to pass a pointer back asareference.

It is not a good idea to use a global variable as the port driver can be spawned by multiple Erlang processes. This
driver-structure is to be instantiated multiple times:

/* port_driver.c */

#i ncl ude <stdi o. h>
#i nclude "erl _driver.h"

typedef struct {
Erl DrvPort port;
} exanpl e_dat a;

static Erl DrvData exanpl e_drv_start(Erl DrvPort port, char *buff)

{
exanpl e_data* d = (exanpl e_data*)driver_all oc(sizeof (exanpl e_data));
d->port = port;
return (Erl DrvDat a) d;
}
static void exanpl e_drv_stop(Erl DrvData handl e)
{
driver_free((char*)handl e);
}

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 271

8.6 Port Drivers

static void exanpl e_drv_out put (Erl DrvData handl e, char *buff,
Erl DrvSi zeT buffl en)

{
exanpl e_data* d = (exanpl e_dat a*) handl e;
char fn = buff[0], arg = buff[1], res;
if (fn == 1) {
res = foo(arg);
} elseif (fn == 2) {
res = bar(arg);
}
driver_out put (d->port, &res, 1);
}

Erl DrvEntry exanpl e_driver_entry = {
NULL, /* F_PTR init, called when driver is |oaded */
exanpl e_drv_start, /* L_PTR start, called when port is opened */
exanpl e_drv_stop, /* F_PTR stop, called when port is closed */
exanpl e_drv_output, /* F_PTR output, called when erlang has sent */
NULL, /* F_PTR ready_i nput, called when input descriptor ready */
NULL, /* F_PTR ready_output, called when output descriptor ready */

"exanmpl e_drv", [/* char *driver_nane, the argunent to open_port */
NULL, /* F_PTR finish, called when unl oaded */
NULL, /* void *handl e, Reserved by VM */

NULL, /* F_PTR control, port_command cal | back */
NULL, /* F_PTR tinmeout, reserved */
NULL, /* F_PTR outputv, reserved */

NULL, /* F_PTR ready_async, only for async drivers */
NULL, /* F_PTR flush, called when port is about
to be closed, but there is data in driver
queue */
NULL, /* F_PTR call, nuch like control, sync call
to driver */
NULL, /* F_PTR event, called when an event sel ected
by driver_event() occurs. */
ERL_DRV_EXTENDED_MARKER, /* int extended narker, Should al ways be

set to indicate driver versioning */
ERL_DRV_EXTENDED _MAJOR VERSION, /* int nmjor_version, should al ways be
set to this value */
ERL_DRV_EXTENDED M NOR_VERSI ON, /* int mnor_version, should al ways be
set to this value */

0, /* int driver_flags, see docunentation */

NULL, /* void *handl e2, reserved for VM use */

NULL, /* F_PTR process_exit, called when a
nmoni t ored process dies */

NULL /* F_PTR stop_select, called to close an

event object */

) ¢

DRI VER I NI T(exanpl e_drv) /* nust natch nane in driver_entry */
{

}

return &exanpl e _driver_entry;

8.6.3 Running the Example
Sep 1. Compile the C code:

uni x> gcc -0 exanpledrv -fpic -shared conpl ex.c port_driver.c
wi ndows> cl -LD -MD -Fe exanpledrv.dll conplex.c port_driver.c

272 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.7 C Nodes

Sep 2. Start Erlang and compile the Erlang code:

> erl
Erl ang (BEAM enul ator version 5.1

Eshell V5.1 (abort with ~"Q
1> c(conpl ex5).
{ ok, conpl ex5}

Sep 3. Run the example:

2> conpl ex5: start ("exanpl e_drv").
<0. 34. 0>

3> conpl ex5: foo(3).

4

4> conpl ex5: bar (5) .

10

5> conpl ex5: stop() .

st op

8.7 C Nodes

This section outlines an example of how to solve the example problem in Problem Example by using a C node. Notice
that a C nodeis not typically used for solving simple problems like this, a port is sufficient.

8.7.1 Erlang Program

From Erlang's point of view, the C nodeistreated like anormal Erlang node. Thus, calling the functionsf oo and bar
only involves sending a message to the C node asking for the function to be called, and receiving the result. Sending a
message requires arecipient, that is, aprocessthat can be defined using either apid or atuple, consisting of aregistered
name and anode name. In this case, atuple isthe only alternative as no pid is known:

{RegNane, Node} ! Msg

The node name Node isto be the name of the C node. If short node names are used, the plain name of the nodeiscN,
where Nis an integer. If long node names are used, there is no such restriction. An example of a C node name using
short node namesisthusc1@dri | , an example using long node namesiscnode@dri | . eri csson. se.

The registered name, RegNane, can be any atom. The name can be ignored by the C code, or, for example, be used
to distinguish between different types of messages. An example of Erlang code using short node names follows:

- nodul e(conpl ex3)
-export([foo/1, bar/1])

foo(X) ->
call _cnode({foo, X}).
bar(Y) ->

call _cnode({bar, Y}).

cal | _cnode(Msg) ->
{any, cl@dril} ! {call, self(), Mg}

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 273

8.7 C Nodes

receive

{cnode, Result} ->
Resul t
end.

When using long node names, the code is dightly different as shown in the following example:

- modul e(conpl ex4)
-export([foo/1l, bar/1])

foo(X) ->
cal | _cnode({foo, X})
bar(Y) ->

cal |l _cnode({bar, Y}).

cal | _cnode(Msg) ->

{any, 'cnode@dril.du.uab.ericsson.se'} ! {call, self(), Mg},
receive
{cnode, Result} ->
Resul t
end

8.7.2 C Program

Setting Up Communication

Before calling any other function in Erl_Interface, the memory handling must be initiated:

erl _init(NULL, O);

Now the C node can beinitiated. If short node names are used, thisisdone by callinger| _connect _init():

erl _connect _init(1, "secretcookie", 0);

Here:
e Thefirst argument istheinteger used to construct the node name.

In the example, the plain node nameiscl.
* The second argument is a string defining the magic cookie.
* Thethird argument is an integer that is used to identify a particular instance of a C node.

If long node node hames are used, initiation isdone by callinger | _connect _xinit():

erl _connect _xinit("idril", "cnode", "cnode@dril.ericsson.se"
&addr, "secretcookie", 0);

Here:

* Thefirst argument isthe host name.
* The second argument is the plain node name.

274 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.7 C Nodes

* Thethird argument is the full node name.

e Thefourth argument isapointer toani n_addr struct with the IP address of the host.
e Thefifth argument is the magic cookie.

e Thesixth argument is the instance number.

The C node can act asa server or aclient when setting up the Erlang-C communication. If it actsasaclient, it connects
to an Erlang node by callinger | _connect (), which returns an open file descriptor at success:

fd = erl _connect ("el@dril");

If the C node acts as a server, it must first create a socket (call bi nd() and | i st en()) listening to a certain port
number por t . It then publishes its name and port number with epnd, the Erlang port mapper daemon. For details,
see the epmd manual pagein ERTS:

erl _publish(port);

Now the C node server can accept connections from Erlang nodes:

fd = erl _accept (listen, &conn);

Thesecondargumenttoer | _accept isastruct Er | Connect which containsuseful information when aconnection
has been established, for example, the name of the Erlang node.

Sending and Receiving Messages

The C node can receive amessage from Erlang by callinger | _r ecei ve nsg() . Thisfunction reads datafrom the
open file descriptor f d into a buffer and puts the result in an Er | Message struct ensg. Er | Message hasafield
t ype defining what kind of dataisreceived. Inthis case, thetype of interest iSERL_REG _SEND which indicates that
Erlang sent a message to aregistered process at the C node. The actual message, an ETERM isin thensg field.

Itisalso necessary to take care of the types ERL_ ERROR (an error occurred) and ERL_TI CK (alive check from other
node, isto be ignored). Other possible types indicate process events such as link, unlink, and exit:

while (loop) {

got = erl _receive_nsg(fd, buf, BUFSIZE, &ensg);
if (got == ERL_TICK) {
/* ignore */
} else if (got == ERL_ERROR) {
loop = 0; /* exit while loop */
} else {
if (ensg.type == ERL_REG SEND) {

As the message is an ETERM struct, Erl_Interface functions can be used to manipulate it. In this case, the message
becomes a 3-tuple, because that is how the Erlang code iswritten. The second element will be the pid of the caller and
the third element will bethetuple{ Funct i on, Ar g} determining which function to call, and with which argument.
Theresult of calling the function is made into an ETERMstruct as well and sent back to Erlangusinger | _send(),
which takes the open file descriptor, a pid, and aterm as arguments:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 275

8.7 C Nodes

fromp = erl _el ement (2, ensg.nsgQ);
tuplep = erl _elenment (3, ensg.nsgQ);
fnp = erl _elenent(1, tuplep);
argp = erl _elenment (2, tuplep);

if (strncnp(ERL_ATOM PTR(fnp), "foo", 3) == 0) {
res = foo(ERL_I NT_VALUE(argp));

} else if (strncnp(ERL_ATOM PTR(fnp), "bar", 3) == 0) {
res = bar (ERL_I NT_VALUE(argp));

}

resp = erl _format("{cnode, ~i}", res);

erl _send(fd, fronp, resp);

Finally, the memory allocated by the ETERMcreating functions (includinger | _r ecei ve_nsg() must be freed:

erl _free_term(ensg.fron; erl_free_tern(ensg. nsQ)
erl _free_ternm(fronp); erl_free_tern(tuplep)

erl _free_term(fnp); erl_free_tern(argp)

er|l _free_tern(resp)

The following examples show the resulting C programs. First a C node server using short node names:

/* cnode_s.c */

#i ncl ude <stdi o. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>

#include "erl _interface. h"
#i ncl ude "ei.h"

#def i ne BUFSI ZE 1000

int main(int argc, char **argv) {

int port; /* Listen port nunber */

int |isten; /* Listen socket */

int fd; /* fd to Erlang node */

Er | Connect conn; /* Connection data */

int loop = 1; /* Loop flag */

int got; /* Result of receive */

unsi gned char buf [BUFSI ZE] ; /* Buffer for incom ng nmessage */
Er | Message ensg; /* 1 ncom ng message */

ETERM *fronp, *tuplep, *fnp, *argp, *resp
int res;

port = atoi(argv[1]);
erl _init(NULL, 0);

if (erl_connect_init(1, "secretcookie", 0) == -1)
erl _err_quit("erl_connect_init");

/* Make a |isten socket */

if ((listen = ny_listen(port)) <= 0)
erl _err_quit("ny_listen");

276 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.7 C Nodes

if (erl_publish(port) == -1)
erl _err_quit("erl _publish");

if ((fd = erl_accept(listen, &conn)) == ERL_ERROR)
erl _err_quit("erl _accept");
fprintf(stderr, "Connected to %\n\r", conn.nodenane);

while (loop) {

got = erl _receive_nsg(fd, buf, BUFSIZE, &ensg);
if (got == ERL_TICK) {
/* ignore */
} else if (got == ERL_ERROR) {
loop = 0;
} else {

if (ensg.type == ERL_REG SEND) {
fromp = erl _el ement (2, ensg.nsgQ);
tuplep = erl _el enent (3, ensg.nsgQ);
fnp = erl _elenent(1, tuplep);
argp = erl _elenent (2, tuplep);

if (strncnp(ERL_ATOM PTR(fnp), "foo", 3) == 0) {
res = foo(ERL_I NT_VALUE(argp));

} else if (strncnp(ERL_ATOM PTR(fnp), "bar", 3) == 0) {
res = bar (ERL_I NT_VALUE(argp));

}

resp = erl _format("{cnode, ~i}", res);
erl _send(fd, fronp, resp);

erl _free_termensg.fron); erl _free_term ensg. nsg);
erl _free_tern(fronp); erl_free_tern(tuplep);

erl _free_ternm(fnp); erl_free_tern(argp);

erl _free_term(resp);

}

}
} /* while */
}

int ny_listen(int port) {
int listen_fd;
struct sockaddr i n addr;
int on = 1;

if ((listen_fd = socket (AF_| NET, SOCK_STREAM 0)) < 0)
return (-1);

set sockopt (listen_fd, SO._SOCKET, SO REUSEADDR, &on, sizeof(on));

menset ((voi d*) &addr, 0, (size_t) sizeof(addr));
addr.sin_famly = AF_I NET;

addr.sin_port = htons(port);

addr. si n_addr.s_addr = htonl (I NADDR_ANY) ;

if (bind(listen_fd, (struct sockaddr*) &addr, sizeof(addr)) < 0)
return (-1);

listen(listen_fd, 5);
return listen_fd;

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 277

8.7 C Nodes

A C node server using long node names:

/* cnode_s2.c */

#i ncl ude <stdi o. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>

#include "erl _interface. h"
#i ncl ude "ei.h"

#def i ne BUFSI ZE 1000

int main(int argc, char **argv) {

struct in_addr addr; /* 32-bit | P nunber of host */
int port; /* Listen port nunber */

int |isten; /* Listen socket */

int fd; /* fd to Erlang node */

Er | Connect conn; /* Connection data */

int loop = 1; /* Loop flag */

int got; /* Result of receive */

unsi gned char buf [BUFSI ZE] ; /* Buffer for incom ng nmessage */
Er| Message ensg; /* | ncom ng message */

ETERM *fronp, *tuplep, *fnp, *argp, *resp;
int res;

port = atoi(argv[1]);
erl _init(NULL, 0);

addr.s_addr = inet_addr("134.138.177.89");
if (erl_connect_xinit("idril", "cnode", "cnode@dril.du.uab. ericsson. se",
&addr, "secretcookie", 0) == -1)
erl _err_quit("erl _connect_xinit");

/* Make a |isten socket */
if ((listen = nmy_listen(port)) <= 0)
erl _err_quit("ny_listen");

if (erl_publish(port) == -1)
erl _err_quit("erl _publish");

if ((fd = erl _accept(listen, &conn)) == ERL_ERROR)
erl _err_quit("erl_accept");
fprintf(stderr, "Connected to %\n\r", conn.nodenane);

while (loop) {

got = erl _receive_nsg(fd, buf, BUFSIZE, &ensg);
if (got == ERL_TICK) {
/* ignore */
} else if (got == ERL_ERROR) {
loop = 0;
} else {

if (ensg.type == ERL_REG SEND) {
fromp = erl _el ement (2, ensg.nsg);
tuplep = erl _element (3, ensg.nsg);
fnp = erl _elenent (1, tuplep);

278 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.7 C Nodes

argp = erl _elenent (2, tuplep);

if (strncnp(ERL_ATOM PTR(fnp), "foo", 3) == 0) {
res = foo(ERL_I NT_VALUE(argp));

} else if (strncnp(ERL_ATOM PTR(fnp), "bar", 3) == 0) {
res = bar (ERL_I NT_VALUE(argp));

}

resp = erl _format("{cnode, ~i}", res);
erl _send(fd, fronp, resp);

erl _free_termensg.fron); erl _free_term ensg. nsg);
erl _free_tern(fronp); erl_free_tern(tuplep);
erl _free_ternm(fnp); erl_free_tern(argp);
erl _free_term(resp);
}
}
}

int ny_listen(int port) {
int listen_fd
struct sockaddr _i n addr
int on = 1;

if ((listen_fd = socket (AF_|I NET, SOCK_STREAM 0)) < 0)
return (-1);

set sockopt (listen_fd, SO._SOCKET, SO REUSEADDR, &on, sizeof(on));
menset ((voi d*) &addr, 0, (size_t) sizeof(addr));

addr.sin_famly = AF_| NET

addr.sin_port = htons(port);

addr. si n_addr.s_addr = htonl (I NADDR_ANY) ;

if (bind(listen_fd, (struct sockaddr*) &addr, sizeof(addr)) < 0)
return (-1);

listen(listen_fd, 5);
return listen_fd

Finally, the code for the C node client:

/* cnode_c.c */

#i ncl ude <stdi o. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket.h>
#i ncl ude <netinet/in.h>

#include "erl _interface. h"
#i nclude "ei.h"
#def i ne BUFSI ZE 1000

int main(int argc, char **argv) {
int fd; /* fd to Erlang node */

int loop = 1; /* Loop flag */

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 279

8.7 C Nodes

int got; /* Result of receive */
unsi gned char buf [BUFSI ZE] ; /* Buffer for incom ng nmessage */
Er| Message ensg; /* I ncom ng nessage */

ETERM *fronp, *tuplep, *fnp, *argp, *resp;
int res;

erl _init(NULL, 0);

if (erl_connect_init(1, "secretcookie", 0) == -1)
erl _err_quit("erl_connect_init");

if ((fd = erl_connect("el@dril")) < 0)
erl _err_quit("erl _connect");
fprintf(stderr, "Connected to ei@dril\n\r");

while (loop) {

got = erl _receive_nsg(fd, buf, BUFSIZE, &ensg);
if (got == ERL_TICK) {
/* ignore */
} else if (got == ERL_ERROR) {
loop = 0;
} else {

if (ensg.type == ERL_REG SEND) {
fromp = erl _el ement (2, ensg.nsgQ);
tuplep = erl _el ement (3, ensg.nsgQ);
fnp = erl _elenent(1, tuplep);
argp = erl _elenment (2, tuplep);

if (strncnp(ERL_ATOM PTR(fnp), "foo", 3) == 0) {
res = foo(ERL_I NT_VALUE(argp));

} else if (strncnp(ERL_ATOM PTR(fnp), "bar", 3) == 0) {
res = bar (ERL_I NT_VALUE(argp));

}

resp = erl _format("{cnode, ~i}", res);
erl _send(fd, fronp, resp);

erl _free_termensg.fron); erl _free_term ensg. msg);
erl _free_tern(fromp); erl_free_tern(tuplep);
erl _free_ternm(fnp); erl_free_tern(argp);
erl _free_term(resp);
}
}
}

8.7.3 Running the Example

Sep 1. Compilethe C code. This provides the pathsto the Erl_Interface include filesand libraries, and tothe sock et
and nsl libraries:

> gcc -0 cserver \\

-1 /usr/local/otp/libl/erl_interface-3.2.1/include \\
-L/usr/local/otp/libl/erl_interface-3.2.1/1lib \\
conpl ex.c cnode_s.c \\

-lerl _interface -lei -Isocket -Insl

uni x> gcc -o cserver2 \\
-l /usr/local/otp/libl/erl_interface-3.2.1/include \\

280 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.7 C Nodes

-L/usr/local/otp/lib/erl _interface-3.2.1/1lib \\
conpl ex.c cnode_s2.c \\
-lerl _interface -lei -Isocket -Insl

uni x> gcc -o cclient \\
-l/usr/local/otp/libl/erl_interface-3.2. 1/include \\
-L/usr/local/otp/lib/erl _interface-3.2.1/lib \\
conpl ex.c cnode_c.c \\

-lerl_interface -lei -lsocket -Insl

In Erlang/OTP R5B and later versionsof OTP, thei ncl ude and! i b directoriesare situated under OTPROOT/ | i b/
erl _interface- VSN, where OTPROOT isthe root directory of the OTP installation (/ usr /| ocal / ot p inthe
recent example) and VSNis the version of the Erl_Interface application (3.2.1 in the recent example).

In R4B and earlier versions of OTP, i ncl ude and| i b are situated under OTPROOT/ usr .
Sep 2. Compile the Erlang code:

uni x> erl -conpil e conpl ex3 conpl ex4

Sep 3. Run the C node server example with short node names.
Do asfollows:

e Start the C program cser ver and Erlang in different windows.
e cserver takesaport number as argument and must be started before trying to call the Erlang functions.

» The Erlang nodeisto be given the short name el and must be set to use the same magic cookie as the C node,
secret cooki e:

uni x> cserver 3456

uni x> erl -snanme el -setcookie secretcookie
Erlang (BEAM enul ator version 4.9.1.2

Eshell V4.9.1.2 (abort with ~"Q
(el@dril)1> conpl ex3:foo(3).

4

(el@dril)2> conpl ex3: bar (5).

10

Sep 4. Run the C node client example. Terminate cser ver , but not Erlang, and start ccl i ent . The Erlang node
must be started before the C node client:

uni x> cclient

(el@dril)3> conpl ex3: foo(3).
4

(el@dril)4> conpl ex3: bar (5).
10

Sep 5. Run the C node server example with long node names:

uni x> cserver 2 3456

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 281

8.8 NIFs

uni x> erl -name el -setcookie secretcookie
Erlang (BEAM enul ator version 4.9.1.2

Eshell V4.9.1.2 (abort with "G
(el@dril.du.uab. ericsson. se)1> conpl ex4: foo(3).

4
(el@dril.du.uab. ericsson. se)2> conpl ex4: bar (5) .
10

8.8 NIFs

This section outlines an example of how to solve the example problem in Problem Example by using Native
Implemented Functions (NIFs).

NIFs were introduced in Erlang/OTP R13B03 as an experimental feature. It is a ssimpler and more efficient way of
calling C-code than using port drivers. NIFs are most suitable for synchronous functions, such asf oo and bar inthe
example, that do some relatively short calculations without side effects and return the result.

A NIFisafunctionthat isimplemented in C instead of Erlang. NIFs appear as any other functionsto the callers. They
belong to amodule and are called like any other Erlang functions. The NIFs of amodule are compiled and linked into
adynamic loadable, shared library (SO in UNIX, DLL in Windows). The NIF library must be loaded in runtime by
the Erlang code of the module.

AsaNIFlibrary isdynamically linked into the emulator process, thisis the fastest way of calling C-code from Erlang
(alongside port drivers). Calling NIFs requires no context switches. But it is also the least safe, because acrash in a
NIF brings the emulator down too.

8.8.1 Erlang Program

Even if al functions of amodule are NIFs, an Erlang module is still needed for two reasons:
* TheNIF library must be explicitly loaded by Erlang code in the same module.

* All NIFs of amodule must have an Erlang implementation as well.

Normally these are minimal stub implementations that throw an exception. But they can also be used as fallback
implementations for functions that do not have native implemenations on some architectures.

NIF libraries are loaded by calling er | ang: | oad_ni f/ 2, with the name of the shared library as argument. The
second argument can be any term that will be passed on to the library and used for initialization:

- modul e(conpl ex6) .
-export([foo/1, bar/1]).
-on_|l oad(init/O0).

init() ->
ok = erlang:load_nif("./conplex6_nif", 0).

foo(_X) ->
exit(nif_library_not_| oaded).
bar(_Y) ->

exit(nif_library_not_| oaded).

Here, the directive on_| oad is used to get functioni ni t to be automatically called when the module is loaded. If
i nit returns anything other than ok, such when the loading of the NIF library failsin this example, the module is
unloaded and callsto functions within it, fail.

282 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.8 NIFs

Loading the NIF library overrides the stub implementations and cause callsto f oo and bar to be dispatched to the
NIF implementations instead.

8.8.2 NIF Library Code

TheNIFsof themodule are compiled and linked into ashared library. Each NIF isimplemented asanormal C function.
The macro ERL_NI F_I NI T together with an array of structures defines the names, arity, and function pointers of
all the NIFs in the module. The header fileer | _ni f. h must be included. Asthe library is a shared module, not a
program, no main function is to be present.

The function arguments passed to a NIF appearsin an array ar gv, with ar gc asthe length of the array, and thus the
arity of thefunction. The Nth argument of the function can beaccessed asar gv[N- 1] . NIFsalso take an environment
argument that serves as an opaque handle that is needed to be passed on to most API functions. The environment
contains information about the calling Erlang process:

#include "erl _nif.h"

extern int foo(int x);
extern int bar(int y);

static ERL_NIF_TERM foo_nif(Erl Ni f Env* env, int argc, const ERL_N F_TERM argv[])
{

int x, ret;
if (lenif_get int(env, argv[0], &)) {
return eni f_nake_badarg(env);

ret = foo(x);
return enif_nake_int(env, ret);

}

static ERL_NIF_TERM bar _nif(Erl Ni f Env* env, int argc, const ERL_N F_TERM argv[])
{

int y, ret;
if (lenif_get int(env, argv[0], &y)) {
return eni f_nake_badarg(env);

ret = bar(y);
return enif_nake_int(env, ret);

}

static ErINifFunc nif_funcs[] = {
{"foo", 1, foo_nif},
{"bar", 1, bar_nif}

b

ERL_NI F_I NI T(conpl ex6, nif_funcs, NULL, NULL, NULL, NULL)

Here,ERL_NI F_I NI T has the following arguments:

e Thefirst argument must be the name of the Erlang module as a C-identifier. It will be stringified by the macro.

e Thesecond argument isthe array of Er I Ni f Func structures containing name, arity, and function pointer of
each NIF.

e Theremaining arguments are pointers to callback functions that can be used to initialize the library. They are
not used in this simple example, hence they are all set to NULL.

Function arguments and return values are represented as values of type ERL_NI F_TERM Here, functions like
enif_get _int and eni f _nmake_i nt are used to convert between Erlang term and C-type. If the function

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 283

8.8 NIFs

argument ar gv[O] isnot aninteger, eni f _get _i nt returnsfalse, in which caseit returns by throwing abadar g-
exception witheni f _nake_badar g.

8.8.3 Running the Example
Sep 1. Compile the C code:

uni x> gcc -o conplex6_nif.so -fpic -shared conplex.c conplex6_nif.c
wi ndows> cl -LD -MD -Fe conpl ex6_nif.dl|l conplex.c conplex6_nif.c

Sep 2: Start Erlang and compile the Erlang code:

> erl
Erl ang R13B04 (erts-5.7.5) [64-bit] [snp:4:4] [rq:4] [async-threads: 0] [kernel-poll:false]

Eshell V5.7.5 (abort with *"Q
1> c(conpl ex6) .
{ ok, conpl ex6}

Sep 3: Run the example:

3> conpl ex6: foo(3).
4
4> conpl ex6: bar (5) .
10
5> conpl ex6: foo("not an integer").
** exception error: bad argunent

in function conplex6:foo/l

call ed as conl pex6: foo("not an integer")

284 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.1 Overview

9 OTP Design Principles

9.1 Overview

The OTP design principles define how to structure Erlang code in terms of processes, modules, and directories.

9.1.1 Supervision Trees

A basic concept in Erlang/OTPisthe supervision tree. Thisisaprocess structuring model based on the idea of workers
and supervisors:
* Workers are processes that perform computations, that is, they do the actual work.

* Supervisors are processes that monitor the behaviour of workers. A supervisor can restart aworker if something
goes wrong.

e Thesupervision treeisahierarchical arrangement of code into supervisors and workers, which makes it
possible to design and program fault-tolerant software.

In the following figure, square boxes represents supervisors and circles represent workers:

—
=

Figure 1.1: Supervision Tree

9.1.2 Behaviours

In a supervision tree, many of the processes have similar structures, they follow similar patterns. For example, the
supervisors are similar in structure. The only difference between them is which child processes they supervise. Many
of the workers are serversin a server-client relation, finite-state machines, or event handlers such as error loggers.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 285

9.1 Overview

Behaviours are formalizations of these common patterns. The ideaisto divide the code for a processin a generic part
(a behaviour module) and a specific part (a callback module).

The behaviour module is part of Erlang/OTP. To implement a process such as a supervisor, the user only has to
implement the callback module which isto export a pre-defined set of functions, the callback functions.

The following example illustrate how code can be divided into a generic and a specific part. Consider the following
code (written in plain Erlang) for a simple server, which keeps track of a number of "channels’. Other processes can
allocate and free the channels by calling the functionsal | oc/ 0 and f r ee/ 1, respectively.

- nmodul e(chl).
-export([start/0]).
-export([alloc/0, free/l]).
-export([init/0]).

start() ->
spawn(chl, init, []).

alloc() ->
chl ! {self(), alloc},

receive
{chl, Res} ->
Res
end.
free(Ch) ->
chl ! {free, Ch},
ok.
init() ->

regi ster(chl, self()),
Chs = channel s(),
| oop(Chs) .

| oop(Chs) ->
recei ve
{From alloc} ->
{Ch, Chs2} = alloc(Chs),
From! {chl, Ch},
| oop(Chs2);
{free, Ch} ->
Chs2 = free(Ch, Chs),
| oop(Chs2)
end.

The code for the server can be rewritten into ageneric part ser ver . er | :

- modul e(server).
-export([start/1]).
-export([call/2, cast/2]).
-export([init/1]).

start (Md) ->
spawn(server, init, [Md]).

call (Name, Req) ->
Name | {call, self(), Req},
receive
{Nanme, Res} ->
Res

286 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.1 Overview

end.

cast (Name, Req) ->
Name | {cast, Req},
ok.

init(Md) ->
regi ster(Md, self()),
State = Mbd:init(),
| oop(Mbd, State).

| oop(Mbd, State) ->
receive
{call, From Req} ->
{Res, State2} = Mod: handl e_call (Req, State),
From! {Md, Res},
| oop(Mbd, State?);
{cast, Req} ->
State2 = Mod: handl e_cast (Req, State),
| oop(Mbd, State?2)
end.

And acallback modulech?2. er | :

- modul e(ch2).

-export([start/0]).

-export([alloc/0, free/l]).

-export([init/0, handle_call/2, handle_cast/2]).

start() ->
server:start(ch2).

alloc() ->
server:call (ch2, alloc).

free(Ch) ->
server:cast(ch2, {free, Ch}).

init() ->
channel s().

handl e_cal | (al l oc, Chs) ->
alloc(Chs). % => {Ch, Chs2}

handl e_cast ({free, Ch}, Chs) ->
free(Ch, Chs). % => Chs2

Notice the following:

 Thecodeinserver can be reused to build many different servers.

* Theserver name, in this example the atom ch2, is hidden from the users of the client functions. This means
that the name can be changed without affecting them.

* The protocol (messages sent to and received from the server) is also hidden. Thisis good programming practice
and allows one to change the protocol without changing the code using the interface functions.

« Thefunctionality of ser ver can be extended without having to change ch2 or any other callback module.

In chl.erl and ch2.erl above, the implementation of channel s/ 0, al l oc/ 1, and free/ 2 has been
intentionally left out, as it is not relevant to the example. For completeness, one way to write these functions are

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 287

9.1 Overview

given below. Thisis an example only, a realistic implementation must be able to handle situations like running out
of channelsto allocate, and so on.

channel s() ->
{_Allocated =[], _Free = lists:seq(1,100)}.

alloc({Allocated, [HT] = _Free}) ->
{H {[H Allocated], T}}.

free(Ch, {Alloc, Free} = Channels) ->
case |ists: menber (Ch, Alloc) of
true ->
{lists:delete(Ch, Alloc), [Ch|Free]};
fal se ->
Channel s
end.

Codewritten without using behaviours can be moreefficient, but theincreased efficiency isat the expense of generality.
The ability to manage all applicationsin the system in a consistent manner isimportant.

Using behaviours also makes it easier to read and understand code written by other programmers. Improvised
programming structures, while possibly more efficient, are always more difficult to understand.

Theser ver module corresponds, greatly simplified, to the Erlang/OTP behaviour gen_ser ver .
The standard Erlang/OTP behaviours are:
e gen_server
For implementing the server of aclient-server relation
e gen_fam
For implementing finite-state machines
* gen_ event
For implementing event handling functionality
e supervisor
For implementing a supervisor in a supervision tree

The compiler understands the module éttribute - behavi our (Behavi our) and issues warnings about missing
callback functions, for example:

- modul e(chs3) .
- behavi our (gen_server).

3> c(chs3).
./chs3.erl:10: Warning: undefined call-back function handle_call/3
{ ok, chs3}

9.1.3 Applications

Erlang/OTP comes with a number of components, each implementing some specific functionality. Components are
with Erlang/OTP terminology called applications. Examples of Erlang/OTP applications are Mnesia, which has
everything needed for programming database services, and Debugger, which is used to debug Erlang programs. The
minimal system based on Erlang/OTP consists of the following two applications:

288 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.2 gen_server Behaviour

» Kernd - Functionality necessary to run Erlang
e STDLIB - Erlang standard libraries

The application concept applies both to program structure (processes) and directory structure (modules).

The simplest applications do not have any processes, but consist of a collection of functional modules. Such an
application is called alibrary application. An example of alibrary applicationis STDLIB.

An application with processes is easiest implemented as a supervision tree using the standard behaviours.
How to program applicationsis described in Applications.

9.1.4 Releases

A release is a complete system made out from a subset of Erlang/OTP applications and a set of user-specific
applications.

How to program releases is described in Releases.

How to install arelease in atarget environment is described in the section about target systemsin Section 2 System
Principles.

9.1.5 Release Handling

Release handling is upgrading and downgrading between different versionsof arelease, in a(possibly) running system.
How to do thisis described in Release Handling.

9.2 gen_server Behaviour

This section isto beread with the gen_server(3) manual pageinst dbl i b, whereall interface functions and callback
functions are described in detail.

9.2.1 Client-Server Principles

The client-server model is characterized by acentral server and an arbitrary number of clients. The client-server model
is used for resource management operations, where several different clients want to share a common resource. The
server is responsible for managing this resource.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 289

9.2 gen_server Behaviour

)

Clients

-

Q Server
. T
Q PR

The Client-server model

Figure 2.1: Client-Server Model

9.2.2 Example

An example of asimple server written in plain Erlang is provided in Overview. The server can be reimplemented using
gen_ser ver, resulting in this callback module:

- modul e(ch3) .
- behavi our (gen_server).

-export([start_link/0]).
-export([alloc/0, free/l]).
-export([init/1, handle_call/3, handl e_cast/2]).

start_link() ->
gen_server:start_|ink({local, ch3}, ch3, [], []).

alloc() ->
gen_server:call (ch3, alloc).

free(Ch) ->
gen_server:cast(ch3, {free, Ch}).

init(_Args) ->
{ok, channels()}.

handl e_cal |l (all oc, _From Chs) ->

{Ch, Chs2} = alloc(Chs),
{reply, Ch, Chs2}.

290 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.2 gen_server Behaviour

handl e_cast ({free, Ch}, Chs) ->
Chs2 = free(Ch, Chs),
{noreply, Chs2}.

The codeis explained in the next sections.

9.2.3 Starting a Gen_Server

In the examplein the previous section, gen_ser ver isstarted by callingch3: start _|i nk():

start_link() ->
gen_server:start_link({local, ch3}, ch3, [], []) => {ok, Pid}

start _|ink calsfunctiongen_server:start _|ink/ 4. Thisfunction spawns and links to a new process, a
gen_server.

e Thefirst argument, {1 ocal , ch3}, specifiesthe name. The gen_server isthen locally registered asch3.
If thenameisomitted, thegen_ser ver isnotregistered. Instead itspid must be used. Thenamecan also begiven
as{gl obal , Nanme},inwhichcasethegen_server isregistered using gl obal : r egi st er _nane/ 2.
* The second argument, ch3, isthe name of the callback module, that is, the module where the callback functions
are located.

Theinterfacefunctions(st art _| i nk, al | oc, andf r ee) are then located in the same modul e as the callback
functions (i ni t, handl e_cal | , and handl e_cast). Thisis normally good programming practice, to have
the code corresponding to one process contained in one module.

e Thethird argument, [], isaterm that is passed asis to the callback function i ni t . Here, i ni t does not need
any indata and ignores the argument.

e Thefourth argument, [], isalist of options. Seethegen_ser ver (3) manua page for available options.

If name registration succeeds, the new gen_ser ver process calsthe callback functionch3:init ([]).init is
expected to return { ok, St at e}, where St at e is the internal state of the gen_ser ver. In this case, the state
isthe available channels.

init(_Args) ->
{ok, channels()}.

gen_server:start _|ink issynchronous. It does not return until thegen_ser ver hasbeen initiaized and is
ready to receive requests.

gen_server:start _|ink must be used if the gen_server is part of a supervision tree, that is, started by
a supervisor. There is another function, gen_server: start, to start a standalone gen_ser ver, that is, a
gen_ser ver that isnot part of a supervision tree.

9.2.4 Synchronous Requests - Call

The synchronous request al |1 oc() isimplemented usinggen_server: cal |/ 2:

alloc() ->
gen_server:call (ch3, alloc).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 291

9.2 gen_server Behaviour

ch3 isthe name of thegen_ser ver and must agree with the name used to start it. al | oc isthe actual request.

The request is made into a message and sent to the gen_server. When the request is received, the
gen_server cdls handl e_cal |l (Request, From State), which is expected to return a tuple
{reply, Reply, Statel}.Reply isthereply that is to be sent back to the client, and St at el is a new value
for the state of thegen_ser ver.

handl e_cal | (al l oc, _From Chs) ->
{Ch, Chs2} = alloc(Chs),
{reply, Ch, Chs2}.
In this case, the reply isthe alocated channel Ch and the new state is the set of remaining available channels Chs 2.

Thus, the call ch3: al | oc() returns the allocated channel Ch and the gen_ser ver then waits for new requests,
now with an updated list of available channels.

9.2.5 Asynchronous Requests - Cast

The asynchronous request f r ee(Ch) isimplemented usinggen_ser ver : cast/ 2:

free(Ch) ->
gen_server:cast(ch3, {free, Ch}).
ch3isthenameof thegen_server.{free, Ch} istheactual request.
The request is made into a message and sent tothegen_ser ver . cast , and thusf r ee, then returns ok.

When the request isreceived, thegen_ser ver calshandl e_cast (Request, State), whichisexpected to
return atuple{ nor epl y, St at el} . St at el isanew valuefor the state of thegen_ser ver .

handl e_cast ({free, Ch}, Chs) ->
Chs2 = free(Ch, Chs),
{noreply, Chs2}.

In this case, the new state is the updated list of available channels Chs2. The gen_ser ver isnow ready for new
reguests.

9.2.6 Stopping

In a Supervision Tree

If the gen_server is part of a supervision tree, no stop function is needed. The gen_ser ver is automatically
terminated by its supervisor. Exactly how thisis doneis defined by a shutdown strategy set in the supervisor.

If it isnecessary to clean up before termination, the shutdown strategy must be atime-out valueand thegen_ser ver
must be set to trap exit signalsin functioni ni t . When ordered to shutdown, thegen_ser ver then callsthe callback
functiont er mi nat e(shut down, State):

init(Args) ->
process_flag(trap_exit, true),

{ok, State}.

292 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.3 gen_fsm Behaviour

term nat e(shutdown, State) ->
..code for cleaning up here..
ok.

Standalone Gen_Servers

If thegen_ser ver isnot part of asupervision tree, astop function can be useful, for example:

é;@ort([st op/0]).

stop() ->
gen_server: cast(ch3, stop).

handl e_cast (stop, State) ->
{stop, normal, State};
handl e_cast ({free, Ch}, State) ->

term nate(nornal, State) ->
ok.

The callback function handling the st op request returns a tuple { st op, nor nal , St at el1}, where nor nal
specifies that it isanormal termination and St at el is a new value for the state of the gen_ser ver . This causes
thegen_server tocadltern nate(nornmal, Statel) andthenitterminates gracefully.

9.2.7 Handling Other Messages

If the gen_server is to be able to receive other messages than requests, the callback function
handl e_i nfo(Info, State) must be implemented to handle them. Examples of other messages are exit
messages, if the gen_ser ver islinked to other processes (than the supervisor) and trapping exit signals.

handl e_info({"'EXIT', Pid, Reason}, State) ->
..code to handl e exits here..
{noreply, Statel}.

Thecode_change method must also be implemented.

code_change(d dVsn, State, Extra) ->
..code to convert state (and nore) during code change
{ok, NewState}.

9.3 gen_fsm Behaviour

This section isto be read with thegen_f sn(3) manual pagein STDLIB, where al interface functions and callback
functions are described in detail.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 293

9.3 gen_fsm Behaviour

9.3.1 Finite-State Machines
A Finite-State Machine (FSM) can be described as a set of relations of the form:

State(S) x Event(E) -> Actions(A), State(S)

These relations are interpreted as meaning:
If wearein state S and event E occurs, we are to perform actions A and make atransition to state S' .

For an FSM implemented using the gen_f smbehaviour, the state transition rules are written as a number of Erlang
functions, which conform to the following convention:

St at eNane(Event, StateData) ->
code for actions here ...
{next_state, StateNane', StateData'}

9.3.2 Example

A door with a code lock can be viewed as an FSM. Initially, the door is locked. Anytime someone presses a button,
this generates an event. Depending on what buttons have been pressed before, the sequence so far can be correct,
incomplete, or wrong.

If it is correct, the door is unlocked for 30 seconds (30,000 ms). If it isincomplete, we wait for another button to be
pressed. If it isiswrong, we start all over, waiting for a new button sequence.

Implementing the code lock FSM using gen_f smresultsin the following callback module:

- modul e(code_| ock) .
- behavi our (gen_fsm.

-export([start_link/1]).
-export([button/1]).
-export([init/1, |ocked/2, open/2]).

start_| i nk(Code) ->
gen_fsmstart_link({local, code_| ock}, code_|ock, lists:reverse(Code), []).

button(Digit) ->
gen_fsm send_event (code_| ock, {button, Digit}).

init(Code) ->
{ok, locked, {[], Code}}.

| ocked({button, Digit}, {SoFar, Code}) ->
case [Digit| SoFar] of
Code ->
do_unl ock(),
{next _state, open, {[], Code}, 30000};
I nconpl et e when | engt h(| nconpl et e) <l engt h(Code) ->
{next _state, |ocked, {Inconplete, Code}};
_Wong ->
{next _state, |ocked, {[], Code}}
end.

open(timeout, State) ->
do_| ock(),

294 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.3 gen_fsm Behaviour

{next_state, |ocked, State}.
The codeis explained in the next sections.

9.3.3 Starting gen_fsm

In the examplein the previous section, the gen_f smis started by callingcode_| ock: start | i nk(Code):

start _|ink(Code) ->
gen_fsmstart_l|ink({local, code | ock}, code_|lock, lists:reverse(Code), []).

start _|ink cals the function gen_fsm start _|ink/4, which spawns and links to a new process, a
gen_fsm

e Thefirstargument,{| ocal , code_| ock}, specifiesthename. Inthiscase, thegen_f smislocally registered
ascode_| ock.

If the name is omitted, the gen_f smis not registered. Instead its pid must be used. The name can also be given
as{gl obal , Nane},inwhichcasethegen_f smisregistered using gl obal : r egi st er _namne/ 2.

* The second argument, code_| ock, isthe name of the callback module, that is, the module where the callback
functions are located.

The interface functions (start | i nk and but t on) are then located in the same module as the callback
functions (i ni t, | ocked, and open). This is normally good programming practice, to have the code
corresponding to one process contained in one module.
* Thethird argument, Code, isalist of digits that which is passed reversed to the callback functioni ni t . Here,
i ni t getsthe correct code for the lock as indata.
e Thefourth argument, [], isalist of options. Seethegen_f sn{ 3) manual page for available options.
If name registration succeeds, the new gen_f smprocess calls the callback function code_| ock: i ni t (Code) .
This function is expected to return { ok, St at eNane, St at eDat a}, where St at eNane is the name of the
initial state of the gen_f sm In this case | ocked, assuming the door is locked to begin with. St at eDat a isthe
internal state of the gen_f sm (For gen_f sm the internal state is often referred to 'state data to distinguish it from
the state asin states of a state machine.) In this case, the state data is the button sequence so far (empty to begin with)
and the correct code of the lock.

i nit(Code) ->
{ok, locked, {[], Code}}.

gen_fsmstart _|ink issynchronous. It does not return until the gen_f smhas been initialized and is ready to
receive notifications.

gen_fsmstart _|ink mustbeusedif thegen_f smispart of asupervision tree, that is, started by a supervisor.
There is another function, gen_f sm st art, to start a standalone gen_f sm that is, agen_f smthat is not part
of asupervision tree.

9.3.4 Notifying about Events

The function notifying the code lock about a button event isimplemented using gen_f sm send_event / 2:

button(Digit) ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 295

9.3 gen_fsm Behaviour

gen_fsm send_event (code_| ock, {button, Digit}).

code_| ock isthe name of the gen_f smand must agree with the name used to start it. { button, Digit} is
the actual event.

The event is made into a message and sent to the gen _fsm When the event is received,
the gen_fsm cdls StateNane(Event, StateData), which is expected to return a tuple
{next state, StateNanel, St at eDat al}. St at eNane isthe name of the current state and St at eNanel
is the name of the next state to go to. St at eDat al isanew value for the state data of thegen_f sm

| ocked({button, Digit}, {SoFar, Code}) ->
case [Digit| SoFar] of
Code ->
do_unl ock(),
{next _state, open, {[], Code}, 30000};
I nconpl et e when | engt h(| nconpl et e) <l engt h(Code) ->
{next_state, |ocked, {lnconplete, Code}};
_Wong ->
{next _state, |ocked, {[], Code}};
end.

open(timeout, State) ->

do_Il ock(),
{next_state, |ocked, State}.

If the door islocked and a button is pressed, the complete button sequence so far is compared with the correct code
for the lock and, depending on the result, the door is either unlocked and the gen_f smgoes to state open, or the
door remainsin state| ocked.

9.3.5 Time-Outs

When a correct code has been given, the door is unlocked and the following tuple is returned from | ocked/ 2:

{next_state, open, {[], Code}, 30000};

30,000 is a time-out value in milliseconds. After this time, that is, 30 seconds, a time-out occurs. Then,
St at eNane(ti neout, StateData) iscalled. Thetime-out then occurs when the door has been in state open
for 30 seconds. After that the door is locked again:

open(timeout, State) ->
do_|I ock(),
{next_state, |ocked, State}.

9.3.6 All State Events

Sometimes an event can arrive at any state of the gen _fsm Instead of sending the message with
gen_fsm send_event/ 2 and writing one clause handling the event for each state function, the message can be
sentwithgen_fsm send _al |l _state_event/ 2 and handled with Modul e: handl e_event/ 3:

- modul e(code_| ock) .

296 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.3 gen_fsm Behaviour

-export([stop/0]).

stop() ->
gen_fsmsend_al | _state_event(code_| ock, stop).

handl e_event (stop, _StateNane, StateData) ->
{stop, normal, StateData}.

9.3.7 Stopping

In a Supervision Tree

If the gen_f smis part of a supervision tree, no stop function is needed. The gen_f smis automatically terminated
by its supervisor. Exactly how thisis doneis defined by a shutdown strategy set in the supervisor.

If it is necessary to clean up before termination, the shutdown strategy must be a time-out value and the gen_f sm
must be set to trap exit signalsinthei ni t function. When ordered to shutdown, thegen_f smthen callsthe callback
functiont er m nat e(shut down, StateNanme, StateData):

init(Args) ->
process_flag(trap_exit, true),

{ok, StateNane, StateData}.

term nat e(shutdown, StateNane, StateData) ->
..code for cleaning up here..
ok.

Standalone gen_fsm

If thegen_f smisnot part of a supervision tree, a stop function can be useful, for example:

.-.e;<port([stop/0]).

stop() ->
gen_fsmsend_al | _state_event(code_| ock, stop).

handl e_event (stop, _StateNane, StateData) ->
{stop, normal, StateData}.

term nate(nornal, _StateNane, _StateData) ->
ok.

The callback function handling the st op event returns atuple, { st op, nor nal , St at eDat al}, where nor nal
specifies that it is a normal termination and St at eDat al is a new value for the state data of the gen_fsm

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 297

9.4 gen_event Behaviour

This causes the gen_f smto cal t er mi nat e(nor mal , St at eNane, St at eDat al) and then it terminates
gracefully:

9.3.8 Handling Other Messages

If the gen_f smisto be able to receive other messages than events, the callback function handl e_i nf o(I nf o,
St at eNane, St at eDat a) must beimplemented to handle them. Examples of other messages are exit messages,
if thegen_f smislinked to other processes (than the supervisor) and trapping exit signals.

handl e_info({' EXIT', Pid, Reason}, StateNane, StateData) ->
..code to handl e exits here..
{next _state, StateNanel, StateDatal}.

The code_change method must also be implemented.

code_change(d dVsn, StateNanme, StateData, Extra) ->
..code to convert state (and nore) during code change
{ok, Next StateNanme, NewStateDat a}

9.4 gen_event Behaviour

Thissectionistoberead withthegen_event (3) manual pagein STDLIB, whereall interfacefunctionsand callback
functions are described in detail.

9.4.1 Event Handling Principles

In OTP, an event manager is a named object to which events can be sent. An event can be, for example, an error, an
alarm, or some information that is to be logged.

In the event manager, zero, one, or many event handlers are installed. When the event manager is notified about an
event, the event is processed by all the installed event handlers. For example, an event manager for handling errors
can by default have a handler installed, which writes error messages to the terminal. If the error messages during a
certain period isto be saved to afile as well, the user adds another event handler that does this. When logging to the
fileisno longer necessary, this event handler is deleted.

An event manager is implemented as a process and each event handler isimplemented as a callback module.

The event manager essentially maintainsalist of { Modul e, St at e} pairs, where each Modul e isan event handler,
and St at e istheinterna state of that event handler.

9.4.2 Example

The callback module for the event handler writing error messages to the terminal can look as follows:

-nmodul e(term nal _| ogger).
- behavi our (gen_event) .

-export([init/1, handle_event/2, term nate/2]).

init(_Args) ->
{ok, [1}.

handl e_event (Error Msg, State) ->

298 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.4 gen_event Behaviour

io:format ("***Error*** ~p~n", [ErrorMsg]),
{ok, State}.

term nate(_Args, _State) ->

ok.

The callback module for the event handler writing error messagesto afile can look as follows:

-nmodul e(fil e_|l ogger).
- behavi our (gen_event).

-export([init/1, handl e_event/2, term nate/2]).

init(File) ->
{ok, Fd} = file:open(File, read),
{ok, Fd}.

handl e_event (Error Msg, Fd) ->
io:format (Fd, "***Error*** ~p~n", [ErrorMsg]),
{ok, Fd}.

term nate(_Args, Fd) ->
file:close(Fd).

The codeis explained in the next sections.

9.4.3 Starting an Event Manager

To start an event manager for handling errors, as described in the previous example, call the following function:

gen_event:start_link({local, error_man})

This function spawns and links to a new process, an event manager.

The argument, {| ocal , error_man} specifies the name. The event manager is then locally registered as
error_nan.

If the name is omitted, the event manager is not registered. Instead its pid must be used. The name can also be given
as{gl obal , Nane}, inwhich case the event manager isregistered using gl obal : r egi st er _nane/ 2.

gen_event:start _|ink must be used if the event manager is part of a supervision tree, that is, started by a
supervisor. There is another function, gen_event : st art , to start a standalone event manager, that is, an event
manager that is not part of a supervision tree.

9.4.4 Adding an Event Handler

The following example shows how to start an event manager and add an event handler to it by using the shell:

1> gen_event:start({local, error_man}).

{ ok, <0. 31. 0>}

2> gen_event: add_handl er (error_man, term nal _| ogger, []).
ok

This function sends a message to the event manager registered as er r or _nan, telling it to add the event handler
t erm nal _I ogger . The event manager calsthe callback functiont er mi nal _| ogger:init([]),wherethe

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 299

9.4 gen_event Behaviour

argument [] isthe third argument to add_handl er . i ni t isexpected to return { ok, St at e}, where St at e
isthe internal state of the event handler.

init(_Args) ->
{ok, [1}.

Here, i ni t doesnot need any input dataand ignoresitsargument. Fort er m nal _| ogger , theinterna stateisnot
used. Forfi | e_| ogger, theinternal stateis used to save the open file descriptor.

init(File) ->
{ok, Fd} = file:open(File, read),
{ok, Fd}.

9.4.5 Notifying about Events

3> gen_event:notify(error_man, no_reply).
Error no_reply
ok

err or _man isthe name of the event manager and no_r epl y isthe event.

The event is made into a message and sent to the event manager. When the event is received, the event manager calls
handl e_event (Event, State) for each instaled event handler, in the same order as they were added. The
functionisexpected toreturn atuple{ ok, St at el} ,where St at el isanew valuefor the state of the event handler.

Int erm nal _| ogger:

handl e_event (Error Msg, State) ->
io:format ("***Error*** ~p~n", [ErrorMsg]),
{ok, State}.

Infile_l ogger:

handl e_event (Error Msg, Fd) ->
io:format (Fd, "***Error*** ~p~n", [ErrorMsg]),
{ok, Fd}.

9.4.6 Deleting an Event Handler

4> gen_event: del ete_handl er(error_man, term nal _| ogger, []).
ok

This function sends a message to the event manager registered as er r or _mman, telling it to delete the event handler
term nal _I ogger. The event manager calls the callback function t er mi nal _| ogger:term nate([],
St at e) , wheretheargument [] isthethird argument to del et e_handl er .t er m nat e isto be the opposite of
i ni t and do any necessary cleaning up. Its return value isignored.

300 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.5 Supervisor Behaviour

Fort er mi nal _| ogger, no cleaning up is necessary:

term nate(_Args, _State) ->
ok.

Forfil e_| ogger, thefiledescriptor openedini ni t must be closed:

term nate(_Args, Fd) ->
file:close(Fd).

9.4.7 Stopping

When an event manager is stopped, it gives each of the installed event handlers the chance to clean up by calling
t er m nat e/ 2, the same way as when deleting a handler.

In a Supervision Tree

If the event manager is part of a supervision tree, no stop function is needed. The event manager is automatically
terminated by its supervisor. Exactly how thisis doneis defined by a shutdown strategy set in the supervisor.

Standalone Event Managers
An event manager can also be stopped by caling:

> gen_event: stop(error_nan).
ok

9.4.8 Handling Other Messages

If thegen_event isto beableto receive other messagesthan events, the callback function handl e_i nf o(I nf o,
St at eNane, St at eDat a) must beimplemented to handle them. Examples of other messages are exit messages,
if thegen_event islinked to other processes (than the supervisor) and trapping exit signals.

handl e_info({'EXIT', Pid, Reason}, State) ->
..code to handle exits here..
{ok, NewState}.

Thecode_change method must also be implemented.

code_change(d dVsn, State, Extra) ->
..code to convert state (and nore) during code change
{ok, NewSt at e}

9.5 Supervisor Behaviour

This section should be read with the supervisor(3) manual page in STDLIB, where all details about the supervisor
behaviour is given.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 301

9.5 Supervisor Behaviour

9.5.1 Supervision Principles

A supervisor is responsible for starting, stopping, and monitoring its child processes. The basic idea of a supervisor is
that it isto keep its child processes alive by restarting them when necessary.

Which child processes to start and monitor is specified by alist of child specifications. The child processes are started
in the order specified by thislist, and terminated in the reversed order.

9.5.2 Example

The callback module for a supervisor starting the server from gen_server Behaviour can look as follows:

- modul e(ch_sup) .
- behavi our (supervi sor) .

-export([start_link/0]).
-export([init/1]).

start_link() ->
supervisor:start_|ink(ch_sup, []).

init(_Args) ->
SupFl ags = #{strategy => one_for_one, intensity => 1, period => 5},
Chi |l dSpecs = [#{id => ch3,
start => {ch3, start_link, []},
restart => pernanent,
shutdown => brutal kill,
type => worker,
modul es => [cg3]}],
{ok, {SupFlags, ChildSpecs}}.

The SupFl ags variablein the return value fromi ni t / 1 represents the supervisor flags.
The Chi | dSpecs variablein thereturn valuefromi ni t / 1 isalist of child specifications.

9.5.3 Supervisor Flags
Thisisthe type definition for the supervisor flags:

sup_flags() = #{strategy => strategy(), % opti onal
intensity => non_neg_integer(), % optional
period => pos_integer()} % opti onal

strategy() one_for_all

| one_for_one
| rest_for_one
| sinple_one_for_one

e strategy specifiestherestart strategy.
e« intensity andperi od specify the maximum restart intensity.

9.5.4 Restart Strategy

The restart strategy is specified by the st r at egy key in the supervisor flags map returned by the callback function
init:

302 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.5 Supervisor Behaviour

SupFl ags = #{strategy => Strategy, ...}

Thest r at egy key isoptiona in thismap. If it isnot given, it defaultsto one_f or _one.

one_for_one

If achild process terminates, only that processis restarted.

one for one supervision
If any child dies it is restarted

e

Figure 5.1: One_For_One Supervision

one_for_all

If a child process terminates, al other child processes are terminated, and then al child processes, including the
terminated one, are restarted.

all-for—one supervision
If any child dies all children

a
; \ are terminated and all are restarted

Figure 5.2: One_For_All Supervision

rest_for_one

If achild process terminates, the rest of the child processes (that is, the child processes after the terminated processin
start order) are terminated. Then the terminated child process and the rest of the child processes are restarted.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 303

9.5 Supervisor Behaviour

simple_one_for_one

See simple-one-for-one supervisors.

9.5.5 Maximum Restart Intensity

The supervisors have a built-in mechanism to limit the number of restarts which can occur in a given time interval.
This is specified by the two keysi nt ensi ty and peri od in the supervisor flags map returned by the callback
functioni ni t:

SupFl ags = #{intensity => MaxR, period => MaxT, ...}

If more than Max R number of restarts occur in thelast Max T seconds, the supervisor terminates all the child processes
and then itself.

When the supervisor terminates, then the next higher-level supervisor takessomeaction. It either restartstheterminated
supervisor or terminates itself.

The intention of the restart mechanism is to prevent a situation where a process repeatedly dies for the same reason,
only to be restarted again.

The keysi nt ensi ty and peri od are optional in the supervisor flags map. If they are not given, they default to
1 and 5, respectively.

9.5.6 Child Specification

The type definition for a child specification is as follows:

child_spec() = #{id => child_id(), % mandat ory
start => nfargs(), % mandat ory
restart => restart(), % opt i onal
shut down => shutdown(), % opti onal
type => worker(), % opt i onal

modul es => nodul es()} % opt i onal
child_id() = term()
nfargs() = {M:: nodule(), F :: atom(), A:: [term()]}
nmodul es() [modul e()] | dynanmic
restart() permanent | transient | tenporary
shutdown() = brutal _kill | timeout()
wor ker () = worker | supervisor

* idisusedtoidentify the child specification internally by the supervisor.
Thei d key is mandatory.

Note that this identifier occasionally has been called "name". As far as possible, the terms "identifier" or "id"
are now used but in order to keep backwards compatibility, some occurences of "name" can still be found, for
example in error messages.

e start definesthe function call used to start the child process. It is a module-function-arguments tuple used as
apply(M F, A).
It isto be (or result in) acall to any of the following:
e supervisor:start_link
e gen_server:start_link
e gen_fsmstart _|ink

304 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.5 Supervisor Behaviour

e gen_event:start _link
e A function compliant with these functions. For details, seethe super vi sor (3) manual page.

Thest art key is mandatory.
e restart defineswhen aterminated child processisto be restarted.

e« A pernmanent child processisaways restarted.

e« Atenporary child processisnever restarted (not even when the supervisor restart strategy is
rest _for_oneorone_for_all andasibling death causes the temporary process to be terminated).

e Atransi ent child processisrestarted only if it terminates abnormally, that is, with another exit reason
than nor mal , shut down, or { shut down, Ter n}.
Therest art keyisoptional. If it isnot given, the default value per nanent will be used.
e shut down defines how achild process isto be terminated.
e« brutal _kill meansthat the child processisunconditionally terminated using exi t (Chi | d,
kill).
« An int)eger time-out value means that the supervisor tells the child process to terminate by calling

exi t (Child, shutdown) andthen waitsfor an exit signal back. If no exit signal is received within
the specified time, the child processis unconditionally terminated usingexi t (Chi I d, kill).

« |f thechild processis another supervisor, itistobesettoi nfi ni t y to give the subtree enough time
to shut down. Itisalso allowedto setittoi nfi ni ty, if the child processis aworker. See the warning
below:

Warning:

Be careful when setting the shutdown timeto i nf i ni t y when the child process is a worker. Because, in
this situation, the termination of the supervision tree depends on the child process; it must be implemented
in asafe way and its cleanup procedure must always return.

The shut down key isoptional. If it is not given, and the child is of type wor ker , the default value 5000 will
be used; if the child is of type super vi sor , thedefault valuei nf i ni t 'y will be used.

* type specifiesif the child process is a supervisor or aworker.

Thet ype key isoptional. If it isnot given, the default value wor ker will be used.

« nodul es areto be alist with one element [Modul e] , where Modul e is the name of the callback module, if
the child process is a supervisor, gen_server or gen_fsm. If the child process is a gen_event, the value shall be
dynani c.

Thisinformation is used by the release handler during upgrades and downgrades, see Release Handling.
Thenodul es keyisoptional. If itisnot given, it defaultsto[M , where Mcomesfromthechild'sstart{ M F, A} .
Example: The child specification to start the server ch3 in the previous example look as follows:

#{id => ch3,
start => {ch3, start_link, []},
restart => pernanent,
shutdown => brutal Kkill,
type => worker,
nmodul es => [ch3]}

or simplified, relying on the default values:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 305

9.5 Supervisor Behaviour

#{id => ch3,
start => {ch3, start_link, []}
shutdown => brutal _kill}

Example: A child specification to start the event manager from the chapter about gen_event:

#{id => error_nan,
start => {gen_event, start_link, [{local, error_man}]},
nodul es => dynami c}

Both server and event manager are registered processes which can be expected to be always accessible. Thus they
are specified to be per manent .

ch3 does not need to do any cleaning up before termination. Thus, no shutdown time is needed, but br ut al _ki I |
is sufficient. er r or _nman can need some time for the event handlers to clean up, thus the shutdown time is set to
5000 ms (which is the default value).

Example: A child specification to start another supervisor:

#{id => sup,
start => {sup, start_link, []},
restart => transient,
type => supervisor} % w |l cause default shutdown=>infinity

9.5.7 Starting a Supervisor

In the previous exampl e, the supervisor is started by callingch_sup: start _|i nk():

start_link() ->
supervisor:start _|ink(ch_sup, []).

ch_sup:start_|ink calsfunctionsupervi sor:start_|ink/2,whichspawnsand linksto anew process,
asupervisor.

e Thefirst argument, ch_sup, isthe name of the callback module, that is, the module wherethei ni t callback
function is located.

* Thesecond argument, [] , isaterm that is passed asisto the callback functioni ni t . Here, i ni t does not
need any indata and ignores the argument.

In this case, the supervisor is not registered. Instead its pid must be used. A name can be
specified by caling supervisor:start_link({local, Nane}, Modul e, Args) or
supervisor:start_link({gl obal, Nane}, Mdule, Args).

The new supervisor process calls the calback function ch_sup:init([]). init shal retun {ok,
{SupFl ags, Chil dSpecs}}:

init(_Args) ->
SupFl ags = #{},
Chil dSpecs = [#{id => ch3,
start => {ch3, start_link, []},
shutdown => brutal _kill}],

306 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.5 Supervisor Behaviour

{ok, {SupFlags, ChildSpecs}}.

The supervisor then starts all its child processes according to the child specificationsin the start specification. In this
case there is one child process, ch3.

supervi sor:start _| i nk issynchronous. It does not return until all child processes have been started.

9.5.8 Adding a Child Process

In addition to the static supervision tree, dynamic child processes can be added to an existing supervisor with the
following call:

supervi sor:start_child(Sup, Chil dSpec)

Sup isthe pid, or name, of the supervisor. Chi | dSpec is a child specification.

Child processes added using st art _chi | d/ 2 behave in the same way as the other child processes, with the an
important exception: if a supervisor dies and is recreated, then all child processes that were dynamically added to the
supervisor are lost.

9.5.9 Stopping a Child Process

Any child process, static or dynamic, can be stopped in accordance with the shutdown specification:

supervi sor:term nate_chil d(Sup, |d)

The child specification for a stopped child process is deleted with the following call:

supervi sor: del ete_chi | d(Sup, 1d)

Sup isthe pid, or name, of the supervisor. | d isthe value associated with thei d key in the child specification.
Aswith dynamically added child processes, the effects of deleting a static child processis lost if the supervisor itself

restarts.
9.5.10 Simplified one_for_one Supervisors

A supervisor with restart strategy si npl e_one_f or _one isasimplified one_f or _one supervisor, where all
child processes are dynamically added instances of the same process.

The following is an example of a callback module for asi npl e_one_f or _one supervisor:

- modul e(si npl e_sup) .
- behavi our (supervi sor) .

-export([start_link/0]).
-export([init/1]).

start_link() ->
supervi sor:start _|ink(sinmple_sup, []).

init(_Args) ->
SupFl ags = #{strategy => sinpl e_one_for_one,

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 307

9.6 sys and proc_lib

intensity => 0,

period => 1},
Chil dSpecs = [#{id => cal |,
start => {call, start_link, []},

shut down => brutal kill}],
{ok, {SupFlags, ChildSpecs}}.

When started, the supervisor does not start any child processes. Instead, all child processes are added dynamically
by calling:

supervi sor:start_child(Sup, List)

Sup isthe pid, or name, of the supervisor. Li st isan arbitrary list of terms, which are added to the list of arguments
specified in the child specification. If the start function is specifiedas{M F, A}, the child process is started by
calingappl y(M F, A++List).

For example, adding a child to si npl e_sup above:

supervisor:start_child(Pid, [idl])

Theresult isthat the child processis started by callingappl y(cal |, start _|ink, []++[id1]),oractualy:

call:start_link(idl)

A child under asi npl e_one_f or _one supervisor can be terminated with the following:

supervi sor:term nate_chil d(Sup, Pid)

Sup isthe pid, or name, of the supervisor and Pi d isthe pid of the child.

Becauseasi npl e_one_f or _one supervisor can have many children, it shutsthem all down asynchronously. This
meansthat the children will do their cleanup in parallel and therefore the order in which they are stopped is not defined.

9.5.11 Stopping

Since the supervisor is part of a supervision tree, it is automatically terminated by its supervisor. When asked to shut
down, it terminates all child processesin reversed start order according to the respective shutdown specifications, and
then terminates itself.

9.6 sys and proc_lib

Thesys module hasfunctions for simple debugging of processesimplemented using behaviours. It also has functions
that, together with functionsin the pr oc_| i b module, can be used to implement a special process that compliesto
the OTP design principles without using a standard behaviour. These functions can also be used to implement user-
defined (non-standard) behaviours.

Both sys and proc_| i b belong to the STDLIB application.

308 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.6 sys and proc_lib

9.6.1 Simple Debugging

The sys module has functions for simple debugging of processes implemented using behaviours. The code_| ock

example from gen_fsm Behaviour is used to illustrate this:

% erl
Erl ang (BEAM enul ator version 5.2.3.6 [hipe] [threads: 0]

Eshell V5.2.3.6 (abort with ~"Q
1> code_l ock:start_link([1,2,3,4]).
{ ok, <0. 32. 0>}
2> sys:statistics(code_I| ock, true).
ok
3> sys:trace(code_|l ock, true).
ok
4> code_| ock: button(4).
DBG code_l| ock got event {button,4} in state cl osed
ok
DBG code_| ock switched to state cl osed
5> code_| ock: button(3).
DBG code_l| ock got event {button,3} in state cl osed
ok
DBG code_| ock switched to state cl osed
6> code_| ock: button(2).
DBG code_l| ock got event {button,2} in state cl osed
ok
DBG code_|l ock switched to state cl osed
7> code_| ock: button(1).
DBG code_l| ock got event {button,1} in state cl osed
ok
OPEN DOOR
DBG code_| ock switched to state open
DBG code_| ock got event tineout in state open
CLOSE DOOR
DBG code_|l ock switched to state cl osed
8> sys:statistics(code_|l ock, get).
{ok, [{start_tine, {{2003, 6, 12}, {14, 11, 40}}},
{current _tine, {{2003, 6, 12}, {14, 12, 14}}},
{reducti ons, 333},
{nessages_in, 5},
{nmessages_out, 0}]}
9> sys:statistics(code_|l ock, false).
ok
10> sys:trace(code_| ock, false).
ok
11> sys: get _status(code_l| ock).
{stat us, <0. 32. 0>,
{nodul e, gen_fsn},
[[{' $ancestors', [<0.30.0>]},
{"$initial _call',{gen,init_it,
[gen_fsm <0. 30. 0>, <0. 30. 0>,
{l ocal , code_| ock},
code_| ock,
[1,2,3,4],

(113},
runni ng, <0. 30. 0>, [],
[code_l ock, cl osed, {[],[1,2,3,4]},code_lock,infinity]]}

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 309

9.6 sys and proc_lib

9.6.2 Special Processes

This section describes how to write a process that complies to the OTP design principles, without using a standard
behaviour. Such aprocessisto:

» Besdtarted in away that makes the processfit into a supervision tree
e Support the sys debug facilities
e Take care of system messages.

System messages are messages with a special meaning, used in the supervision tree. Typical system messages are
reguestsfor trace output, and requeststo suspend or resume process execution (used during release handling). Processes
implemented using standard behaviours automatically understand these messages.

Example

The simple server from Overview, implemented using sys and pr oc_| i b soit fitsinto a supervision tree;

- modul e(ch4)

-export([start_link/0]).

-export([alloc/0, free/l]).

-export([init/1]).

-export ([systemcontinue/ 3, systemterm nate/4
write_debug/ 3,
system get _state/1l, systemreplace_state/2]).

start_link() ->
proc_lib:start_link(ch4, init, [self()]).

alloc() ->
ch4 ! {self(), alloc},
receive
{ch4, Res} ->
Res
end
free(Ch) ->
ch4a ' {free, Ch}
ok.

init(Parent) ->
regi ster(ch4, self()),
Chs channel s(),
Deb sys: debug_options([]),
proc_lib:init_ack(Parent, {ok, self()}),
| oop(Chs, Parent, Deb).

| oop(Chs, Parent, Deb) ->
receive
{From alloc} ->
Deb2 = sys: handl e_debug(Deb, fun ch4:wite_debug/3
ch4, {in, alloc, Fron}),
{Ch, Chs2} = alloc(Chs),
From! {ch4, Ch},
Deb3 = sys: handl e_debug(Deb2, fun ch4:wite_debug/3
ch4, {out, {ch4, Ch}, Fron}),
| oop(Chs2, Parent, Deb3);
{free, Ch} ->
Deb2 = sys: handl e_debug(Deb, fun ch4:wite_debug/3
ch4, {in, {free, Ch}}),
Chs2 = free(Ch, Chs),
| oop(Chs2, Parent, Deb2);

310 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.6 sys and proc_lib

{system From Request} ->
sys: handl e_syst em nsg(Request, From Parent,
ch4, Deb, Chs)
end.

system conti nue(Parent, Deb, Chs) ->
| oop(Chs, Parent, Deb).

system terni nate(Reason, _Parent, _Deb, _Chs) ->
exi t (Reason).

system get _state(Chs) ->
{ok, Chs}.

system repl ace_st at e(St at eFun, Chs) ->
NChs = St at eFun(Chs),
{ok, NChs, NChs}.

wite_debug(Dev, Event, Nane) ->
io:format (Dev, "~p event = ~p~n", [Nane, Event]).

Example on how the simple debugging functionsin the sy s module can also be used for ch4:

% erl
Erl ang (BEAM enul ator version 5.2.3.6 [hipe] [threads: 0]

Eshell V5.2.3.6 (abort with *"G

1> ch4:start_|ink().

{ ok, <0. 30. 0>}

2> sys:statistics(ch4, true).

ok

3> sys:trace(ch4, true).

ok

4> ch4:all oc().

ch4 event = {in,alloc, <0.25.0>}

ch4 event = {out,{ch4, chl}, <0. 25. 0>}

chl

5> ch4:free(chl).

ch4 event = {in,{free, chl}}

ok

6> sys:statistics(ch4, get).

{ok, [{start_tine, {{2003, 6, 13},{9, 47,5}}},
{current _tine, {{2003, 6, 13}, {9, 47,56} }},
{reductions, 109},

{messages_in, 2},
{messages_out, 1}]}

7> sys:statistics(ch4, false).

ok

8> sys:trace(ch4, false).

ok

9> sys: get_status(ch4).

{ st at us, <0. 30. 0>,

{nodul e, ch4},

[[{' $ancestors', 6 [<0.25.0>]},{ $initial_call',{ch4,init,[<0.25.0>]}}],
runni ng, <0. 25. 0>, [],
[ch1, ch2,ch3]]}

Starting the Process

A functioninthe proc_| i b moduleisto be used to start the process. Severa functions are available, for example,
spawn_l i nk/ 3, 4 for asynchronous start and st art _| i nk/ 3, 4, 5 for synchronous start.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 311

9.6 sys and proc_lib

A process started using one of these functions stores information (for example, about the ancestors and initial call)
that is needed for a processin a supervision tree.

If the process terminates with another reason than nor mal or shut down, a crash report is generated. For more
information about the crash report, see the SASL User's Guide.

In the example, synchronous start is used. The process starts by callingch4: start _|i nk():

start_link() ->
proc_lib:start_link(ch4, init, [self()]).

ch4: start _|ink calsthefunctionproc_Ilib: start _|i nk. Thisfunction takes a module name, a function
name, and an argument list as arguments, spawns, and links to a new process. The new process starts by executing
the given function, herech4: i ni t (Pi d) , wherePi d isthepid (sel f ()) of thefirst process, which is the parent
process.

All initialization, including name registration, isdonein i ni t . The new process must also acknowledge that it has
been started to the parent:

init(Parent) ->
b.r;)c_lib:init_ack(Parent, {ok, self()}),
loop(...).

proc_lib:start _|ink issynchronousand doesnot return until proc_|i b:init_ack hasbeen caled.
Debugging

To support the debug facilites in sys, a debug structure is needed. The Deb term is initialized using
sys: debug_options/ 1:

init(Parent) ->
Deb = sys: debug_options([]),

| oop(Chs, Parent, Deb).

sys: debug_opti ons/ 1 takesalist of options as argument. Here the list is empty, which means no debugging is
enabled initially. For information about the possible options, seethe sys(3) manua pagein STDLIB.

Then, for each system event to be logged or traced, the following function isto be called.

sys: handl e_debug(Deb, Func, Info, Event) => Debl

Here:

» Deb isthe debug structure.

e Func isafun specifying a (user-defined) function used to format trace output. For each system event, the
format functioniscalled asFunc(Dev, Event, | nfo),where

* Dev isthel/O device to which the output is to be printed. Seethei o(3) manual pagein STDLIB.
« Event and| nf o are passed asisfrom handl e_debug.

312 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.6 sys and proc_lib

* | nf o isused to pass moreinformation to Func. It can be any term and is passed asis.

« Event isthe system event. It is up to the user to define what a system event is and how it is to be represented.
Typically at least incoming and outgoing messages are considered system events and represented by the tuples
{in, Msg[, Fronj} and{out, Msg, To}, respectively.

handl e_debug returns an updated debug structure Deb1.

In the example, handl e_debug is called for each incoming and outgoing message. The format function Func is
thefunctionch4: wri t e_debug/ 3, which printsthe messageusingi o: f or mat / 3.

| oop(Chs, Parent, Deb) ->
receive
{From alloc} ->
Deb2 = sys: handl e_debug(Deb, fun ch4:wite_debug/3,
ch4, {in, alloc, Fron}),
{Ch, Chs2} = alloc(Chs),
From! {ch4, Ch},
Deb3 = sys: handl e_debug(Deb2, fun ch4:wite_debug/3,
ch4, {out, {ch4, Ch}, Fron}),
| oop(Chs2, Parent, Deb3);
{free, Ch} ->
Deb2 = sys: handl e_debug(Deb, fun ch4:wite_debug/3,
ch4, {in, {free, Ch}}),
Chs2 = free(Ch, Chs),
| oop(Chs2, Parent, Deb2);

end. h
wite_debug(Dev, Event, Nane) ->

io:format (Dev, "~p event = ~p~n", [Nane, Event]).
Handling System Messages
System messages are received as:

{system From Request}

The content and meaning of these messages do not need to be interpreted by the process. Instead the following function
isto be called:

sys: handl e_system nsg(Request, From Parent, Mbdul e, Deb, State)

This function does not return. It handles the system message and then either calls the following if process execution
isto continue:

Mbdul e: syst em conti nue(Parent, Deb, State)

Or callsthe following if the processis to terminate:

Modul e: syst em t er mi nat e(Reason, Parent, Deb, State)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 313

9.6 sys and proc_lib

A processin a supervision tree is expected to terminate with the same reason as its parent.

* Request and Fr omareto be passed asis from the system message to the call to handl e_syst em nsg.
* Parent isthepid of the parent.

* Modul e isthe name of the module.

» Deb isthe debug structure.

e St at e isaterm describing the internal state and ispassed to syst em cont i nue/syst em t er m nat e/
system get state/systemrepl ace_state.

If the processisto returnits state, handl e_syst em nsg cals:

Mbdul e: syst em get _stat e(State)

If the processisto replace its state using the fun St at eFun, handl e_syst em nsg calls:

Modul e: syst em r epl ace_st at e(St at eFun, St at e)

In the example:

| oop(Chs, Parent, Deb) ->
receive

{system From Request} ->
sys: handl e_syst em nsg(Request, From Parent,
ch4, Deb, Chs)
end.

system conti nue(Parent, Deb, Chs) ->
| oop(Chs, Parent, Deb).

system term nat e(Reason, Parent, Deb, Chs) ->
exit (Reason).

system get _state(Chs) ->
{ok, Chs, Chs}.

system repl ace_st at e(St at eFun, Chs) ->

NChs = St at eFun(Chs),
{ok, NChs, NChs}.

If the special process is set to trap exits and if the parent process terminates, the expected behavior is to terminate
with the same reason:

init(...) ->
b.r.o,cess_fl ag(trap_exit, true),
loop(...).

Ioop(..._) ->
recei ve

314 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.6 sys and proc_lib

{"EXIT, Parent, Reason} ->
.. maybe sone cl eaning up here..
exit (Reason);

end.

9.6.3 User-Defined Behaviours

To implement auser-defined behaviour, write code similar to code for aspecia process, but call functionsin acallback
module for handling specific tasks.

If the compiler isto warn for missing callback functions, asit doesfor the OTP behaviours, add - cal | back attributes
in the behaviour module to describe the expected callbacks:

-call back Namel(Argl_1, Argl_ 2, ..., Argl_Nl) -> Resl.
-call back Name2(Arg2_1, Arg2_2, ..., Arg2_N2) -> Res2.
-call back NameM ArgM 1, ArgM 2, ..., ArgMNM -> ResM

Name X are the names of the expected callbacks. Ar gX_ Y and Res X are types as they are described in Types and
Function Specifications. The whole syntax of the - spec attribute is supported by the - cal | back attribute.

Callback functions that are optional for the user of the behaviour to implement are specified by use of the -
opti onal _cal | backs attribute:

-optional _call backs([Opt Namel/ Opt Arityl, ..., OptNameK/ OptArityK]).

where each Opt Nanme/ Qpt Arity specifies the name and arity of a callback function. Note that the -
optional _cal | backs attributeisto be used together with the- cal | back attribute; it cannot be combined with
thebehavi our _i nf o() function described below.

Tools that need to know about optional callback functions can call
Behavi our : behavi our _i nfo(optional cal |l backs) togetalist of all optional callback functions.

Note:

We recommend using the - cal | back attribute rather than the behavi our _i nf o() function. Thereasonis
that the extra type information can be used by tools to produce documentation or find discrepancies.

As an dternative to the - cal | back and - opti onal _cal | backs attributes you may directly implement and
export behavi our _i nfo():

behavi our _i nfo(cal | backs) ->
[{Namel, Arityl},..., {NaneN, ArityN}].

where each { Nanme, Arity} specifies the name and arity of a callback function. This function is otherwise
automatically generated by the compiler using the - cal | back attributes.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 315

9.7 Applications

When the compiler encounters the module attribute - behavi our (Behavi our) . in a module Mod, it cals
Behavi our : behavi our _i nfo(cal | backs) and compares the result with the set of functions actually
exported from Mod, and issues awarning if any callback function is missing.

Example:

%% User - def i ned behavi our nodul e
- modul e(si npl e_server).
-export([start_link/2, init/3, ...]).

-callback init(State :: term()) -> 'ok'.
-call back handle_req(Req :: term(), State :: tern()) -> {'ok', Reply :: ternm()}.

-call back term nate() -> 'ok'.
-call back format _state(State :: tern()) -> term().

-optional call backs([format_state/1]).
%6 Alternatively you may defi ne:

9%

%% - export ([behavi our _info/1]).

%% behavi our _i nf o(cal | backs) ->

9% [{init, 1},

% {handl e_req, 2},

% {term nate, 0}].

start_|ink(Name, Mdule) ->
proc_lib:start_|ink(?MODULE, init, [self(), Name, Mdule]).

init(Parent, Name, Mdule) ->
regi ster(Nane, self()),

Dbg = sys: debug_options([]),

proc_lib:init_ack(Parent, {ok, self()}),
| oop(Parent, Mdule, Deb, ...).

In a callback module;

- modul e(db) .
- behavi our (si npl e_server).

-export([init/0, handle_req/2, term nate/0]).

9.7 Applications

This section isto be read withtheapp(4) and appl i cati on(3) manual pagesin Kernel.

9.7.1 Application Concept

When you have written code implementing some specific functionality you might want to make the code into an
application, that is, acomponent that can be started and stopped asaunit, and which can also bereused in other systems.

To do this, create an application callback module, and describe how the application is to be started and stopped.

316 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.7 Applications

Then, an application specification is needed, which is put in an application resource file. Among other things, thisfile
specifies which modules the application consists of and the name of the callback module.

If youusesyst ool s, the Erlang/OTP toolsfor packaging code (see Releases), the code for each applicationis placed
in a separate directory following a pre-defined directory structure.

9.7.2 Application Callback Module

How to start and stop the code for the application, that is, the supervision tree, is described by two callback functions:

start(Start Type, StartArgs) -> {ok, Pid} | {ok, Pid, State}
stop(St ate)

e start iscaled when starting the application and is to create the supervision tree by starting the top supervisor.
It is expected to return the pid of the top supervisor and an optional term, St at e, which defaultsto[] . This
termispassed asisto st op.

e« Start Type isusualy theatom nor mal . It has other values only in the case of atakeover or failover, see
Distributed Applications.

e Start Args isdefined by the key nod in the application resource file.

« stop/1iscaled after the application has been stopped and isto do any necessary cleaning up. The actual
stopping of the application, that is, the shutdown of the supervision tree, is handled automatically as described
in Starting and Stopping Applications.

Example of an application callback module for packaging the supervision tree from Supervisor Behaviour:

- modul e(ch_app) .
- behavi our (appl i cati on) .

-export([start/2, stop/1]).

start(_Type, _Args) ->
ch_sup:start_link().

stop(_State) ->
ok.

A library application that cannot be started or stopped, does not need any application callback module.

9.7.3 Application Resource File

To define an application, an application specification is created, which is put in an application resource file, or in
short an . app file:

{application, Application, [Optd,..., Opt N }.

e Application,anatom, isthe name of the application. The file must be named Appl i cat i on. app.

» Each Opt isatuple{ Key, Val ue}, which define a certain property of the application. All keys are optional.
Default values are used for any omitted keys.

The contents of aminimal . app filefor alibrary application | i bapp looks as follows:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 317

9.7 Applications

{application, |ibapp, []1}.

The contents of aminimal . app filech_app. app for asupervision tree application like ch_app looks asfollows:

{application, ch_app,
[{mod, {ch_app,[]1}}]1}.

The key nod defines the callback module and start argument of the application, in this case ch_app and [],
respectively. This means that the following is called when the application is to be started:

ch_app:start(normal, [])

Thefollowing is called when the application is stopped.

ch_app: stop([])

When using syst ool s, the Erlang/OTP tools for packaging code (see Section Releases), the keysdescri pti on,
vsn, nodul es, regi st ered, and appl i cati ons arealso to be specified:

{application, ch_app,
[{description, "Channel allocator"},
{vsn, "1"},
{nodul es, [ch_app, ch_sup, ch3]},
{registered, [ch3]},
{applications, [kernel, stdlib, sasl]},
]irmd, {ch_app, [1}}

* description - A short description, astring. Defaultsto "".

e vsn - Version number, astring. Defaultsto "".

* nodul es - All modules introduced by this application. syst ool s usesthislist when generating boot scripts
and tar files. A module must be defined in only one application. Defaultsto[] .

* registered - All names of registered processesin the application. syst ool s usesthislist to detect name
clashes between applications. Defaultsto[] .

« applications - All applications that must be started before this application is started. syst ool s usesthis
list to generate correct boot scripts. Defaultsto [] . Notice that all applications have dependenciesto at least
Kernel and STDLIB.

Note:

For details about the syntax and contents of the application resource file, see the app manual page in Kernel.

318 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.7 Applications

9.7.4 Directory Structure

When packaging code using syst ool s, the code for each application is placed in a separate directory, | i b/
Appl i cati on- Vsn, where Vsn isthe version number.

This can be useful to know, even if syst ool s is not used, since Erlang/OTP is packaged according to the OTP
principles and thus comes with this directory structure. The code server (see the code(3) manual page in Kernel)
automatically uses code from the directory with the highest version number, if more than one version of an application
is present.

The application directory structure can aso be used in the development environment. The version number can then
be omitted from the name.

The application directory has the following sub-directories:

e src - Containsthe Erlang source code.
* ebi n - Contains the Erlang object code, the beamfiles. The. app fileis aso placed here.

e priv -Usedfor application specific files. For example, C executables are placed here. The function
code: priv_dir/ 1istobeused to accessthisdirectory.

* include - Usedfor includefiles.

9.7.5 Application Controller

When an Erlang runtime system is started, a number of processes are started as part of the Kernel application. One of
these processes is the application controller process, registered asappl i cati on_control | er.

All operations on applications are coordinated by the application controller. It is interacted through the functions in
the module appl i cati on, seetheappl i cati on(3) manua page in Kernel. In particular, applications can be
loaded, unloaded, started, and stopped.

9.7.6 Loading and Unloading Applications

Before an application can be started, it must be loaded. The application controller reads and stores the information
fromthe. app file

1> application: | oad(ch_app).

ok

2> application: | oaded_applications().
[{kernel ,"ERTS CXC 138 10","2.8.1.3"},
{stdlib,"ERTS CXC 138 10","1.11.4.3"},
{ch_app, "Channel allocator","1"}]

An application that has been stopped, or has never been started, can be unloaded. The information about the application
is erased from the internal database of the application controller.

3> application: unl oad(ch_app).

ok

4> application: | oaded_applications().
[{kernel ,"ERTS CXC 138 10","2.8.1.3"},
{stdlib,"ERTS CXC 138 10","1.11.4.3"}]

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 319

9.7 Applications

Note:

L oading/unloading an application does not load/unload the code used by the application. Code loading is done
the usual way.

9.7.7 Starting and Stopping Applications
An application is started by calling:

5> application:start(ch_app).

ok

6> applicati on: whi ch_applications().
[{kernel ,"ERTS CXC 138 10","2.8.1.3"},
{stdlib, "ERTS CXC 138 10","1.11.4.3"},
{ch_app, "Channel allocator","1"}]

If the application is not already loaded, the application controller first loads it using appl i cati on: | oad/ 1. It
checksthevalueof theappl i cat i ons key, to ensurethat all applicationsthat areto be started before this application
arerunning.

The application controller then creates an application master for the application. The application master is the group
leader of all the processes in the application. The application master starts the application by calling the application
callback function st ar t / 2 in the module, and with the start argument, defined by the nod key inthe. app file.

An application is stopped, but not unloaded, by calling:

7> application: stop(ch_app).
ok

The application master stops the application by telling the top supervisor to shut down. The top supervisor tellsal its
child processes to shut down, and so on; the entire tree is terminated in reversed start order. The application master
then calls the application callback function st op/ 1 in the module defined by the nod key.

9.7.8 Configuring an Application

An application can be configured using configuration parameters. These are alist of { Par, Val } tuples specified
by akey env inthe. app file:

{application, ch_app
[{description, "Channel allocator"},
{vsn, "1"},
{nodul es, [ch_app, ch_sup, ch3]},
{registered, [ch3]}
{applications, [kernel, stdlib, sasl]},

{mod, {ch_app, [1}},
{env, [{file, "/usr/local/log"}]}

1}

Par isto bean atom. Val isany term. The application can retrieve the value of a configuration parameter by calling
application:get_env(App, Par) oranumber of similar functions, see the appl i cati on(3) manual
pagein Kernel.

320 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.7 Applications

Example:

% erl
Erl ang (BEAM emul ator version 5.2.3.6 [hipe] [threads: 0]

Eshell V5.2.3.6 (abort with ~"Q

1> application:start(ch_app).

ok

2> application: get_env(ch_app, file).
{ok, "/usr/local/log"}

The values in the . app file can be overridden by values in a system configuration file. This is a file that contains
configuration parameters for relevant applications:

[{Applicationl, [{Parll, Val11},...]},
:{Ab’plicationN, [{ParNL, Val N1}, ...]1}].

The system configuration isto be called Nane. conf i g and Erlang isto be started with the command-line argument
-confi g Name. For details, seetheconf i g(4) manual pagein Kernel.

Example:
A filet est . confi g iscreated with the following contents:

[{ch_app, [{file, "testlog"}]}].

Thevalueof fi | e overridesthevalueof fi | e asdefined inthe. app file:

%erl -config test
Erl ang (BEAM) enul ator version 5.2.3.6 [hipe] [threads: 0]

Eshell V5.2.3.6 (abort with *"G

1> application:start(ch_app).

ok

2> application:get_env(ch_app, file).

{ok, "testl og"}

If release handling isused, exactly one system configuration fileisto beused and that fileistobecalledsys. confi g.

Thevaluesinthe. app fileand the valuesin a system configuration file can be overridden directly from the command
line:

%erl -ApplName Parl Vall ... ParN Val N

Example:

%erl -ch_app file '"testl og"'
Erl ang (BEAM enul ator version 5.2.3.6 [hipe] [threads: 0]

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 321

9.8 Included Applications

Eshell V5.2.3.6 (abort with ~"Q

1> application:start(ch_app).

ok

2> application:get_env(ch_app, file).
{ok, "testl og"}

9.7.9 Application Start Types
A start type is defined when starting the application:

application:start (Application, Type)

application:start(Application) is the same as calling application:start(Application,
t enpor ary) . Thetype can also be per nanent ortransi ent:

» If apermanent application terminates, all other applications and the runtime system are also terminated.

e |f atransient application terminates with reason nor nmal , thisis reported but no other applications are
terminated. If atransient application terminates abnormally, that is with any other reason than nor mal , all
other applications and the runtime system are also terminated.

* If atemporary application terminates, this is reported but no other applications are terminated.

An application can aways be stopped explicitly by calling appl i cati on: st op/ 1. Regardless of the mode, no
other applications are affected.

Thetransient mode is of little practical use, since when a supervision tree terminates, the reason is set to shut down,
not nor mal .

9.8 Included Applications

9.8.1 Introduction

An application can include other applications. An included application has its own application directory and . app
file, but it is started as part of the supervisor tree of another application.

An application can only be included by one other application.
An included application can include other applications.
An application that is not included by any other application is called a primary application.

322 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.8 Included Applications

Primary application

Included applications

Included applications

Figure 8.1: Primary Application and Included Applications

The application controller automatically loads any included applications when loading a primary application, but does
not start them. Instead, the top supervisor of the included application must be started by a supervisor in the including
application.

This means that when running, an included application is in fact part of the primary application, and a processin an
included application considers itself belonging to the primary application.

9.8.2 Specifying Included Applications
Which applicationsto include is defined by thei ncl uded_appl i cat i ons key inthe. app file

{application, primapp,
[{description, "Tree application"},
{vsn, "1"},
{nodul es, [primapp_cb, primapp_sup, primapp_server]},
{registered, [primapp_server]},
{included_applications, [incl_app]},
{applications, [kernel, stdlib, sasl]},

{mod, {primapp_cb,[]}},
{env, [{file, "/usr/local/log"}]}

1}

9.8.3 Synchronizing Processes during Startup

The supervisor tree of an included application is started as part of the supervisor tree of the including application. If
thereisaneed for synchronization between processes in the including and included applications, this can be achieved
by using start phases.

Start phases are defined by the st art _phases key inthe. app fileasalist of tuples { Phase, PhaseAr gs},
where Phase isan atom and PhaseAr gs isaterm.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 323

9.8 Included Applications

The value of the nod key of the including application must be set to {application_starter,
[Modul e, St art Args] }, where Modul e as usua is the application callback module. St ar t Ar gs is a term
provided as argument to the callback function Mbdul e: start/ 2:

{application, primapp
[{description, "Tree application"},
{vsn, "1"},
{nodul es, [primapp_cb, primapp_sup, primapp_server]},
{registered, [primapp_server]},
{included_applications, [incl_app]},
{start_phases, [{init,[]}, {g90,[]1}]},
{applications, [kernel, stdlib, sasl]},
{nod, {application_starter,[primapp_cb,[]]}},
{env, [{file, "/usr/local/log"}]}

1}
{application, incl_app
[{description, "Included application"},
{vsn, "1"},

{nmodul es, [incl_app_cb, incl_app_sup, incl_app_server]},
{registered, []},

{start_phases, [{go,[]1}]},
{applications, [kernel, stdlib, sasl]},

{nmod, {incl_app_cb,[]}}
1.

When starting a primary application with included applications, the primary application is started the normal way,
thatis:

» Theapplication controller creates an application master for the application
e Theapplication master callsMbdul e: start (nornal, Start Args) to start the top supervisor.

Then, for the primary application and each included application in top-down, |eft-to-right order, the application master
cadlsMbdul e: start _phase(Phase, Type, PhaseAr gs) foreach phasedefined for the primary application,
in that order. If a phase is not defined for an included application, the function is not called for this phase and
application.

The following requirements apply to the . app file for an included application:

e The{nod, {Mdul e, StartArgs}} option must beincluded. Thisoption is used to find the callback
module Mbdul e of the application. St art Ar gs isignored, asMbdul e: st art/ 2 iscalled only for the
primary application.

e |If theincluded application itself contains included applications, instead the { nod,
{application_starter, [Module, StartArgs]}} option must beincluded.

e The{start_phases, [{Phase, PhaseArgs}]} option must beincluded, and the set of specified
phases must be a subset of the set of phases specified for the primary application.

When starting pri m_app as defined above, the application controller calls the following callback functions before
application:start(primapp) returnsavalue:

application:start (primapp)
=> primapp_ch:start(normal, [])
=> primapp_ch:start_phase(init, normal, [])
=> primapp_ch: start_phase(go, nornmal, [])
=> jincl _app_chb: start_phase(go, normal, [])
ok

324 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.9 Distributed Applications

9.9 Distributed Applications

9.9.1 Introduction

In adistributed system with several Erlang nodes, it can be necessary to control applications in a distributed manner.
If the node, where a certain application is running, goes down, the application is to be restarted at another node.

Such an application is called adistributed application. Noticethat it isthe control of the application that is distributed.
All applications can be distributed in the sense that they, for example, use services on other nodes.

Since a distributed application can move between nodes, some addressing mechanism is required to ensure that it can
be addressed by other applications, regardless on which node it currently executes. Thisissue is not addressed here,
but the gl obal or pg2 modulesin Kernel can be used for this purpose.

9.9.2 Specifying Distributed Applications

Distributed applications are controlled by both the application controller and a distributed application controller
process, di st _ac. Both these processes are part of the Kernel application. Distributed applications are thus specified
by configuring the Kernel application, using the following configuration parameter (see also ker nel (6)):

distributed = [{Application, [Tinmeout,] NodeDesc}]
* Specifieswhere the application Appl i cati on = at on{) can execute.

e >NodeDesc = [Node | {Node, ..., Node}] isalist of node namesin priority order. The order
between nodes in atuple is undefined.
e Tinmeout = integer () specifieshow many millisecondsto wait before restarting the application at

another node. It defaultsto O.

For distribution of application control to work properly, the nodes where adistributed application can run must contact
each other and negotiate where to start the application. Thisis done using the following configuration parameters in
Kernel:

e sync_nodes_nandatory = [Node] - Specifieswhich other nodes must be started (within the time-out
specified by sync_nodes_ti nmeout).

e sync_nodes_optional = [Node] - Specifieswhich other nodes can be started (within the time-out
specified by sync_nodes_ti nmeout).
e sync_nodes_timeout = integer() | infinity -Specifieshow many millisecondsto wait for the

other nodes to start.

When started, the node waitsfor all nodes specifiedby sync_nodes_nandat ory andsync_nodes_opt i onal
to come up. When al nodes are up, or when all mandatory nodes are up and the time specified by
sync_nodes_ti meout haselapsed, al applications start. If not all mandatory nodes are up, the node terminates.

Example:

Anapplicationmyapp istorunatthenodecpl@ave. If thisnodegoesdown, myapp istoberestartedatcp2@ave
orcp3@ave. A system configuration filecpl. confi g for cpl@ave canlook asfollows:

[{kernel,
[{distributed, [{nyapp, 5000, [cpl@ave, {cp2@ave, cp3@ave}]}]},
{sync_nodes_nandatory, [cp2@ave, cp3@ave]},
{sync_nodes_ti neout, 5000}
]
}
].

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 325

9.9 Distributed Applications

The system configuration files for cp2@ave and cp3@ave areidentical, except for the list of mandatory nodes,
whichistobe[cpl@ave, cp3@ave] forcp2@ave and[cpl@ave, cp2@ave] forcp3@ave.

Note:

All involved nodes must have the same valuefor di st ri but ed andsync_nodes_t i meout . Otherwisethe
system behaviour is undefined.

9.9.3 Starting and Stopping Distributed Applications

When all involved (mandatory) nodes have been started, the distributed application can be started by calling
application:start(Application) atall of these nodes.

A boot script (see Releases) can be used that automatically starts the application.

The application is started at the first operational node that is listed in the list of nodes in the di stri but ed
configuration parameter. The application is started as usual. That is, an application master is created and calls the
application callback function:

Modul e: start (normal , StartArgs)

Example:
Continuing the examplefrom the previous section, the three nodes are started, specifying the system configuration file:

> erl -sname cpl -config cpl
> erl -sname cp2 -config cp2
> erl -snanme cp3 -config cp3

When all nodes are operational, myapp can be started. Thisisachieved by callingappl i cati on: start (nyapp)
at al three nodes. It isthen started at cp1, as shown in the following figure:

nyapp

Figure 9.1: Application myapp - Situation 1

Similarly, the application must be stopped by callingappl i cat i on: st op(Appl i cati on) atall involved nodes.

9.9.4 Failover

If the node where the application is running goes down, the application is restarted (after the specified time-out) at
the first operational node that is listed in the list of nodes in the di stri but ed configuration parameter. Thisis
called afailover.

The application is started the normal way at the new node, that is, by the application master calling:

326 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.9 Distributed Applications

Mbdul e: start (normal , StartArgs)

An exception isif the application hasthe st art _phases key defined (see Included Applications). The application
isthen instead started by calling:

Modul e: start ({fail over, Node}, StartArgs)

Here Node is the terminated node.
Example:

If cpl goes down, the system checks which one of the other nodes, cp2 or cp3, has the least number of running
applications, but waits for 5 seconds for cpl to restart. If cpl does not restart and cp2 runs fewer applications than
cp3, nyapp isrestarted oncp2.

myapp

3 secs.

myapp

Figure 9.2: Application myapp - Situation 2

Suppose now that cp2 goes also down and does not restart within 5 seconds. myapp is now restarted on cp3.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 327

9.9 Distributed Applications

myapp

3 secs.

Hyapp
Figure 9.3: Application myapp - Situation 3

9.9.5 Takeover

If a node is started, which has higher priority according to di st ri but ed than the node where a distributed
applicationisrunning, the application isrestarted at the new node and stopped at the old node. Thisiscalled atakeover.

The application is started by the application master calling:
Modul e: start ({t akeover, Node}, StartArgs)

Here Node isthe old node.
Example:

If myapp isrunning at cp3, and if cp2 now restarts, it does not restart nyapp, as the order between the cp2 and
cp3 nodesis undefined.

myapp

Figure 9.4: Application myapp - Situation 4

328 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.10 Releases

However, if cpl aso restarts, the function appl i cati on: t akeover/ 2 moves nmyapp to cpl, as cpl has
a higher priority than cp3 for this application. In this case, Modul e: start ({t akeover, cp3@ave},
St art Args) isexecuted at cpl to start the application.

OO

Yapp

cpl: applicationtakecy erimyapp, permanent)

myapp

Figure 9.5: Application myapp - Situation 5

9.10 Releases
This section isto be read withther el (4) ,syst ool s(3),andscri pt (4) manual pagesin SASL.

9.10.1 Release Concept

When you have written one or more applications, you might want to create a complete system with these applications
and a subset of the Erlang/OTP applications. Thisis called arelease.

To do this, create arelease resource file that defines which applications are included in the release.

The release resource file is used to generate boot scripts and release packages. A system that is transferred to and
installed at another siteis called a target system. How to use a release package to create a target system is described
in System Principles.

9.10.2 Release Resource File

To define arelease, create arelease resourcefile, orinshort a. r el file. Inthefile, specify the name and version of
the release, which ERTS version it is based on, and which applications it consists of:

{rel ease, {Nane, Vsn}, {erts, EVsn},
[{Applicationl, AppVsnl},

{Abbl i cati onN, AppVsnN]}.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 329

9.10 Releases

Name, Vsn, EVsn, and AppVsn are strings.
Thefile must be named Rel . r el , where Rel isaunique name.

Each Appl i cati on (atom) and AppVsn is the name and version of an application included in the release. The
minimal release based on Erlang/OTP consists of the Kernel and STDLIB applications, so these applications must
beincluded inthelist.

If the release is to be upgraded, it must also include the SASL application.
Example: A release of ch_app from Applications has the following . app file:

{application, ch_app
[{description, "Channel allocator"},
{vsn, "1"},
{nodul es, [ch_app, ch_sup, ch3]},
{registered, [ch3]}
{applications, [kernel, stdlib, sasl]},
]irmd, {ch_app, [1}}

The. rel filemust aso containkernel ,stdlib,andsasl , asthese applications are required by ch_app. The
fileiscaledch_rel -1.rel:

{rel ease
{"ch_rel", "A"}
{erts, "5.3"},
[{kernel, "2.9"},
{stdlib, "1.12"},
{sasl, "1.10"},
{ch_app, "1"}]

9.10.3 Generating Boot Scripts

syst ool s inthe SASL application includestoolsto build and check releases. Thefunctionsread ther el and. app
filesand performs syntax and dependency checks. Thesyst ool s: nake_scri pt/ 1, 2 functionisusedto generate
aboot script (see System Principles):

1> systool s: make_script("ch_rel-1", [local]).
ok

This creates a boot script, both the readable version, ch_rel-1.script, and the binary version,
ch_rel - 1. boot , used by the runtime system.

e "ch_rel -1" isthenameof the. r el file, minusthe extension.

* | ocal isan option that means that the directories where the applications are found are used in the boot script,
instead of SROOT/ | i b ($ROCT istheroot directory of the installed release).

Thisisauseful way to test a generated boot script locally.

When starting Erlang/OTP using the boot script, all applications from the . r el file are automatically loaded and
started:

330 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.10 Releases

% erl -boot ch_rel-1
Erl ang (BEAM enul ator version 5.3

Eshel
1>

=PROGRESS REPORT====

super vi sor:

started:

V5.3 (abort with "G
13-Jun-2003::12:01: 15 ===
{l ocal , sasl _safe_sup}
[{pid, <0.33.0>},
{nane, al ar m handl er},
{nfa,{alarmhandl er,start_link,[]}},
{restart _type, permanent},
{ shut down, 2000},
{child_type, worker}]

=PROGRESS REPORT====
appl i cati on:
started_at:

13- Jun-2003::12: 01: 15
sasl
nonode@ohost

=PROGRESS REPORT====
appl i cati on:

started_at:

13- Jun-2003::12:01: 1
ch_app
nonode@ohost

9.10.4 Creating a Release Package

Thesyst ool s: make_tar/ 1, 2 functiontakesa. r el fileasinput and creates azipped tar file with the code for

the specified applications, arelease package:

1> systool s: make_script("ch_rel-1").
ok

2> systool s: make_tar("ch_rel -1").

ok

The release package by default contains:

The. app files
The. rel file

The binary boot script renamedto st art . boot

%tar tf ch_rel-1.tar
i b/ kernel - 2. 9/ ebi n/ ker nel . app
i b/ kernel -2. 9/ ebi n/application. beam

lib/stdlib-1.12/ ebin/stdlib. app
lib/stdlib-1.12/ebin/beam|ib. beam

i b/ sasl -1. 10/ ebi n/ sasl . app
i b/ sasl -1. 10/ ebi n/ sasl . beam

I'i b/ ch_app- 1/ ebi n/ ch_app. app
i b/ ch_app- 1/ ebi n/ ch_app. beam
I'i b/ ch_app- 1/ ebi n/ ch_sup. beam
I'i b/ ch_app- 1/ ebi n/ ch3. beam
rel eases/ Al start. boot

rel eases/ Alch_rel-1.rel

Ericsson AB. All Rights Reserved

The object code for all applications, structured according to the application directory structure

.. Erlang/OTP System Documentation | 331

9.10 Releases

rel eases/ch_rel-1.rel

A new boot script was generated, without the | ocal option set, before the rel ease package was made. In the release
package, all application directoriesareplaced under | i b. Y ou do not know wherethe release package will beinstalled,
S0 no hard-coded absolute paths are allowed.

The release resource file mysyst em r el is duplicated in the tar file. Originaly, this file was only stored in the
r el eases directory to makeit possiblefor ther el ease_handl er to extract thisfile separately. After unpacking
thetar file, r el ease_handl er would automatically copy thefiletor el eases/ FI RST. However, sometimesthe
tar fileisunpacked without involving ther el ease_handl er (for example, when unpacking thefirst target system)
and the file is therefore now instead duplicated in the tar file so no manual copying is necessary.

If ar el up file and/or a system configuration file called sys. conf i g isfound, these files are also included in the
release package. See Release Handling.

Options can be set to make the rel ease package include source code and the ERTS binary as well.

For information on how toinstall thefirst target system, using arel ease package, see System Principles. For information
on how to install a new release package in an existing system, see Release Handling.

9.10.5 Directory Structure

The directory structure for the code installed by the release handler from arel ease package is as follows:

$ROOT/ | i b/ Appl- AVsnl/ ebi n
/priv

| App2- AVsn2/ ebi n

lpriv

/ AppN- AVsnN ebi n
/priv
/erts-EVsn/bin
/rel eases/ Vsn
/bin

e |ib-Application directories

e erts-EVsn/ bi n - Erlang runtime system executables

* releases/Vsn-.rel fileandboot script st art . boot ; if present in the release package, r el up and/or
sys.config

* bi n - Top-level Erlang runtime system executables

Applicationsarenot required to belocated under directory $ROOT/ | i b. Several installation directories, which contain
different parts of a system, can thus exist. For example, the previous example can be extended as follows:

$SECOND_ROOT/ . . . / SAppl- SAVsnl/ ebin
[priv

| SApp2- SAVsn2/ ebi n

[priv

| SAppN- SAVsnN ebi n
[priv

$TH RD_ROOT/ TAppl1- TAVsn1/ ebi n
[priv

| TApp2- TAVsn2/ ebi n

[priv

332 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.10 Releases

);I'AppN- TAVsnN ebi n
/priv

$SECOND ROOT and $THI RD ROOT are introduced as variables in the «cal to the
syst ool s: make_scri pt/ 2 function.

Disk-Less and/or Read-Only Clients

If a complete system consists of disk-less and/or read-only client nodes, acl i ent s directory isto be added to the
$ROOT directory. A read-only node is a node with aread-only file system.

The cl i ent s directory is to have one subdirectory per supported client node. The name of each client directory
is to be the name of the corresponding client node. As a minimum, each client directory is to contain the bi n and
r el eases subdirectories. These directories are used to store information about installed releases and to appoint the
current release to the client. The $ROOT directory thus contains the following:

$ROOT/ . . .
/clients/dientNanel/ bin
/ rel eases/ Vsn
/ Cl i ent Nane2/ bi n
/ rel eases/ Vsn

/ C i ent NaneN bi n
/ rel eases/ Vsn

This structure is to be used if al clients are running the same type of Erlang machine. If there are clients running
different types of Erlang machines, or on different operating systems, thecl i ent s directory can be divided into one
subdirectory per type of Erlang machine. Alternatively, one $ROOT can be set up per type of machine. For each type,
some of the directories specified for the $ROOT directory are to be included:

$ROOT/ . . .
/clients/ Typel/lib
/erts-EVsn
/ bin

/ Ci ent Nanel/ bi n

/rel eases/ Vsn
/ C i ent Nane2/ bi n

/rel eases/ Vsn

/ Qi ent NameN bi n
/ rel eases/ Vsn

I TypeN I i b
/erts-EVsn
/ bin

With this structure, the root directory for clients of Typel is$ROOT/ cl i ent s/ Typel.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 333

9.11 Release Handling

9.11 Release Handling
9.11.1 Release Handling Principles

An important feature of the Erlang programming language is the ability to change module code in runtime, code
replacement, as described in the Erlang Reference Manual.

Based on this feature, the OTP application SASL provides a framework for upgrading and downgrading between
different versions of an entire release in runtime. Thisis called release handling.

The framework consists of:

» Offline support - syst ool s for generating scripts and building release packages
e Onlinesupport - r el ease_handl er for unpacking and installing rel ease packages

The minimal system based on Erlang/OTP, enabling release handling, thus consists of the Kernel, STDLIB, and SASL
applications.

Release Handling Workflow
Sep 1) A release is created as described in Releases.

Sep 2) The release is transferred to and installed at target environment. For information of how to install the first
target system, see System Principles.

Sep 3) Modifications, for example, error corrections, are made to the code in the devel opment environment.

Sep 4) At some point, it is time to make a new version of release. The relevant . app files are updated and a new
. rel fileiswritten.

Sep 5) For each modified application, an application upgradefile, . appup, iscreated. Inthisfile, it isdescribed how
to upgrade and/or downgrade between the old and new version of the application.

Sep 6) Basedonthe. appup files, arelease upgradefilecalledr el up, iscreated. Thisfile describes how to upgrade
and/or downgrade between the old and new version of the entire release.

Sep 7) A new release package is made and transferred to the target system.
Sep 8) The new release package is unpacked using the release handler.

Sep 9) The new version of the release is installed, also using the release handler. This is done by evaluating the
instructionsin r el up. Modules can be added, deleted, or reloaded, applications can be started, stopped, or restarted,
and so on. In some cases, it is even necessary to restart the entire emulator.

e |f theinstallation fails, the system can be rebooted. The old release version is then automatically used.

* If theinstallation succeeds, the new version is made the default version, which isto now be used if thereisa

system reboot.
Release Handling Aspects

Appup Cookbook, containsexamplesof . appup filesfor typical cases of upgrades/downgradesthat are normally easy
to handle in runtime. However, many aspects can make release handling complicated, for example:

« Complicated or circular dependencies can make it difficult or even impossible to decide in which order things
must be done without risking runtime errors during an upgrade or downgrade. Dependencies can be:

* Between nodes
¢ Between processes
* Between modules

334 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.11 Release Handling

» During release handling, non-affected processes continue normal execution. This can lead to time-outs or other
problems. For example, new processes created in the time window between suspending processes using a certain
module, and loading a new version of this module, can execute old code.

It is thus recommended that code is changed in as small steps as possible, and always kept backwards compatible.

9.11.2 Requirements

For release handling to work properly, the runtime system must have knowledge about which release it is running.
It must also be able to change (in runtime) which boot script and system configuration file to use if the system is
rebooted, for example, by hear t after afailure. Thus, Erlang must be started as an embedded system; for information
on how to do this, see Embedded System.

For system reboots to work properly, it is also required that the system is started with heartbeat monitoring, see the
erl (1) manua pagein ERTS andthe hear t (3) manual pagein Kernel

Other requirements:

» Theboot script included in a release package must be generated from the same . r el file as the release package
itself.

Information about applications is fetched from the script when an upgrade or downgrade is performed.
* The system must be configured using only one system configuration file, called sys. confi g.

If found, thisfileis automatically included when a rel ease package is created.
« All versions of arelease, except the first one, must contain ar el up file.

If found, thisfile is automatically included when a rel ease package is created.

9.11.3 Distributed Systems

If the system consists of several Erlang nodes, each node can use its own version of the release. The release handler
isalocally registered process and must be called at each node where an upgrade or downgrade is required. A release
handling instruction, sync_nodes, can be used to synchronize the rel ease handler processes at a number of nodes,
seetheappup(4) manua pagein SASL.

9.11.4 Release Handling Instructions

OTP supports a set of release handling instructions that are used when creating . appup files. The release handler
understands a subset of these, the low-level instructions. To makeit easier for the user, there are also anumber of high-
level instructions, which are trandlated to low-level instructions by syst ool s: nake_r el up.

Some of the most frequently used instructions are described in this section. The completelist of instructionsisincluded
intheappup(4) manua pagein SASL.

First, some definitions:

» Residence module - The module where a process has its tail-recursive loop function(s). If these functions are
implemented in several modules, all those modules are residence modules for the process.

e Functional module - A module that is not aresidence module for any process.

For a process implemented using an OTP behaviour, the behaviour module is the residence module for that process.
The callback moduleis afunctional module.

load_module

If asimple extension has been made to afunctional module, it is sufficient to load the new version of the module into
the system, and remove the old version. Thisis called simple code replacement and for this the following instruction
is used:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 335

9.11 Release Handling

{l oad_nodul e, Mdul e}

update

If amore complex change has been made, for example, achangeto the format of theinternal state of agen_ser ver,
simple code replacement is not sufficient. Instead, it is necessary to:

» Suspend the processes using the module (to avoid that they try to handle any requests before the code
replacement is completed).

* Ask themto transform the internal state format and switch to the new version of the module.
* Removetheold version.
* Resume the processes.

Thisis called synchronized code replacement and for this the following instructions are used:

{updat e, Mddul e, {advanced, Extra}}
{updat e, Modul e, supervisor}

updat e with argument { advanced, Ext r a} isused when changing the internal state of a behaviour as described
above. It causes behaviour processesto call the callback function code_change, passing theterm Ext r a and some
other information as arguments. See the manual pages for the respective behaviours and Appup Cookbook.

updat e with argument super vi sor is used when changing the start specification of a supervisor. See Appup
Cookbook.

When amodule isto be updated, the release handler finds which processes that are using the module by traversing the
supervision tree of each running application and checking al the child specifications:

{1d, StartFunc, Restart, Shutdown, Type, Modul es}

A process uses amodule if the nameislisted in Modul es in the child specification for the process.

If Modul es=dynam c, which isthe casefor event managers, the event manager processinformsthe release handler
about the list of currently installed event handlers (gen_f snj), and it is checked if the module name is in this list
instead.

The release handler suspends, asks for code change, and resumes processes by caling the functions
sys: suspend/ 1, 2,sys: change_code/ 4, 5,andsys: resune/ 1, 2, respectively.

add_module and delete_module

If anew moduleisintroduced, the following instruction is used:

{add_nodul e, Mbdul e}

The instruction loads the module and is necessary when running Erlang in embedded mode. It is not strictly required
when running Erlang in interactive (default) mode, since the code server then automatically searches for and loads
unloaded modules.

The opposite of add_nodul e isdel et e_nopdul e, which unloads a module:

336 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.11 Release Handling

{del et e_nobdul e, Modul e}

Any process, in any application, with Mbdul e as residence module, is killed when the instruction is evaluated. The
user must therefore ensure that all such processes are terminated before del eting the module, to avoid a situation with
failing supervisor restarts.

Application Instructions
The following is the instruction for adding an application:

{add_appl i cation, Application}

Adding an application means that the modules defined by the nodul es key in the . app file are loaded using a
number of add_nodul e instructions, and then the application is started.

The following is the instruction for removing an application:

{renove_application, Application}

Removing an application means that the application is stopped, the modules are unloaded using a number of
del et e_nodul e instructions, and then the application specification is unloaded from the application controller.

The following is the instruction for restarting an application:

{restart_application, Application}

Restarting an application means that the application is stopped and then started again similar to using the instructions
renove_applicationandadd_appli cati on insequence.

apply (Low-Level)

To call an arbitrary function from the release handler, the following instruction is used:

{apply, {M F, A}}

Therelease handler evalutesappl y(M F, A).

restart_new_emulator (Low-Level)

This instruction is used when changing to a new emulator version, or when any of the core applications Kernel,
STDLIB, or SASL isupgraded. If asystem reboot isneeded for another reason, ther est art _erul at or instruction
isto be used instead.

This instruction requires that the system is started with heartbeat monitoring, seetheer | (1) manua pagein ERTS
andthe heart (3) manua pagein Kernel.

Therestart _new _enul at or instruction must always be the first instruction in arelup. If the relup is generated
by syst ool s: nake_rel up/ 3, 4, thisisautomatically ensured.

When the release handler encounters the instruction, it first generates a temporary boot file, which starts the new
versions of the emulator and the core applications, and the old version of all other applications. Then it shuts down the
current emulator by callingi ni t : r eboot () , seethei ni t (3) manual pagein Kernel. All processesareterminated

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 337

9.11 Release Handling

gracefully and the system is rebooted by the hear t program, using the temporary boot file. After the reboot, the rest
of the relup instructions are executed. Thisis done as a part of the temporary boot script.

Warning:

This mechanism causes the new versions of the emulator and core applications to run with the old version of
other applications during startup. Thus, take extra care to avoid incompatibility. Incompatible changesin the core
applications can in some situations be necessary. If possible, such changes are preceded by deprecation over two
major releases before the actual change. To ensure the application is not crashed by an incompatible change,
always remove any call to deprecated functions as soon as possible.

An info report is written when the upgrade is completed. To programmatically find out if the upgrade is complete,
cal rel ease_handl er: whi ch_rel eases(current) and check if it returns the expected (that is, the new)
release.

The new release version must be made permanent when the new emulator is operational. Otherwise, the old version
will be used if there is anew system reboot.

On UNIX, therelease handler tellsthehear t program which command to use to reboot the system. The environment
variable HEART _COMVAND, normally used by the heart program, is ignored in this case. The command instead
defaults to $ROOT/ bi n/ st art. Another command can be set by using the SASL configuration parameter
start _prg, seethesasl (6) manua page.

restart_emulator (Low-Level)

Thisinstruction is not related to upgrades of ERTS or any of the core applications. It can be used by any application
to force arestart of the emulator after all upgrade instructions are executed.

A relup script can only have oner est art _enul at or instruction and it must always be placed at the end. If the
relup is generated by syst ool s: make_rel up/ 3, 4, thisisautomatically ensured.

When the release handler encounters the instruction, it shuts down the emulator by callingi ni t : r eboot () , seethe
i ni t(3) manual pagein Kernel. All processes are terminated gracefully and the system can then be rebooted by the
heart program using the new release version. No more upgrade instruction is executed after the restart.

9.11.5 Application Upgrade File

To define how to upgrade/downgrade between the current version and previous versions of an application, an
application upgradefile, orinshortan. appup fileiscreated. Thefileistobecaled Appl i cat i on. appup, where
Appl i cati on isthe application name:

{Vsn,
[{UpFronvsnl, |nstructionsUl},

{UpFromVsnK, InstructionsUK}],
[{DownToVsnl, |nstructionsDl},

{DownToVsnK, InstructionsDK}]}.

* Vsn, astring, isthe current version of the application, as defined in the . app file.
» Each UpFr omVsn isaprevious version of the application to upgrade from.

» Each DownToVsn isaprevious version of the application to downgrade to.

e Eachl nstructions isalist of release handling instructions.

338 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.11 Release Handling

For information about the syntax and contents of the . appup file, seetheappup(4) manua pagein SASL.
Appup Cookbook includes examples of . appup filesfor typical upgrade/downgrade cases.

Example: Consider the release ch_r el - 1 from Releases. Assume you want to add a function avai | abl e/ 0 to
server ch3, which returns the number of available channels (when trying out the example, change in a copy of the
original directory, so that the first versions are still available):

- modul e(ch3).
- behavi our (gen_server).

-export([start_link/0]).

-export([alloc/0, free/l]).

-export([avail abl e/0]).

-export([init/1, handle_call/3, handle_cast/2]).

start_link() ->
gen_server:start_link({local, ch3}, ch3, [], []).

alloc() ->
gen_server:call (ch3, alloc).

free(Ch) ->
gen_server:cast(ch3, {free, Ch}).

avail abl e() ->
gen_server:call (ch3, available).

init(_Args) ->
{ok, channels()}.

handl e_cal | (all oc, _From Chs) ->
{Ch, Chs2} = alloc(Chs),
{reply, Ch, Chs2};

handl e_cal | (avai |l able, _From Chs) ->
N = avai |l abl e(Chs),
{reply, N, Chs}.

handl e_cast ({free, Ch}, Chs) ->
Chs2 = free(Ch, Chs),
{noreply, Chs2}.

A new version of thech_app. app file must now be created, where the version is updated:

{application, ch_app,
[{description, "Channel allocator"},
{vsn, "2"},
{nodul es, [ch_app, ch_sup, ch3]},
{registered, [ch3]},
{applications, [kernel, stdlib, sasl]},
]im)d, {ch_app, [1}}

To upgrade ch_app from" 1" to" 2" (and to downgrade from " 2" to" 1"), you only need to load the new (old)
version of the ch3 callback module. Create the application upgrade filech_app. appup inthe ebi n directory:

{2,
[{"1", [{load_nodule, ch3}]}],

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 339

9.11 Release Handling

[{"1", [{load_nodule, ch3}]}]
}.

9.11.6 Release Upgrade File

To define how to upgrade/downgrade between the new version and previous versions of arelease, arelease upgrade
file, orinshort r el up file, isto be created.

Thisfile does not need to be created manually, it can be generated by syst ool s: make_r el up/ 3, 4. Therelevant
versions of the. r el file, . app files, and . appup files are used as input. It is deducted which applications are to
be added and deleted, and which applications that must be upgraded and/or downgraded. The instructions for this are
fetched from the . appup files and transformed into asingle list of low-level instructionsin the right order.

If ther el up fileisrelatively simple, it can be created manually. It it only to contain low-level instructions.
For details about the syntax and contents of the release upgrade file, seether el up(4) manual pagein SASL.

Example, continued from the previous section: Y ou have anew version "2" of ch_app and an. appup file. A new
version of the . rel fileisaso needed. Thistimethefileiscalledch_rel - 2. rel and the release version string
ischanged from "A" to "B":

{rel ease,
{"ch_rel", "B"},
{erts, "5.3"},
[{kernel, "2.9"},
{stdlib, "1.12"},
{sasl, "1.10"},

| {ch_app, "2"}]

Now ther el up file can be generated:

1> systool s: make_rel up(“ch_rel-2", ["ch_rel-1"], ["ch_rel-1"]).
ok

This generates a r el up file with instructions for how to upgrade from version "A" ("ch_rel-1") to version
"B" ("ch_rel-2") and how to downgrade from version "B" to version "A".

Both the old and new versions of the. app and. r el filesmust beinthe code path, aswell asthe. appup and (new)
. beamfiles. The code path can be extended by using the option pat h:

1> systool s: make_relup("ch_rel-2", ["ch_rel-1"], ["ch_rel-1"],
[{path,["../ch_rel-1",

“..lch_rel-1/1ib/ch_app-1/ebin"]}]).

ok

9.11.7 Installing a Release

When you have made anew version of arelease, arel ease package can be created with this new version and transferred
to the target environment.

Toinstall the new version of thereleasein runtime, therelease handler isused. Thisisaprocess belonging tothe SASL
application, which handles unpacking, installation, and removal of release packages. It is communicated through the
r el ease_handl er module. For details, seether el ease_handl er (3) manual pagein SASL.

340 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.11 Release Handling

Assuming there is an operational target system with installation root directory $ROOT, the release package with the
new version of the release isto be copied to $ROOT/ r el eases.

First, unpack the release package. The files are then extracted from the package:

rel ease_handl er: unpack_r el ease(Rel easeNane) => {ok, Vsn}

* Rel easeNan® isthe name of the release package except the . t ar . gz extension.
e Vsn istheversion of the unpacked release, as defined inits. r el file.

A directory $ROOT/ | i b/ r el eases/ Vsn is created, where the . r el file, the boot script st art . boot, the
system configuration file sys. confi g, and r el up are placed. For applications with new version numbers, the
application directories are placed under $ROOT/ | i b. Unchanged applications are not affected.

An unpacked release can be installed. The release handler then evaluates the instructionsinr el up, step by step:

rel ease_handl er:install _rel ease(Vsn) => {ok, FronVsn, []}

If an error occurs during the installation, the system is rebooted using the old version of the release. If installation
succeeds, the system is afterwards using the new version of the release, but if anything happens and the system is
rebooted, it starts using the previous version again.

To be madethedefault version, the newly installed rel ease must be made per manent, which meansthe previousversion
becomes old:

rel ease_handl er: make_per manent (Vsn) => ok

The system keeps information about which versions are old and permanent in the files $ROOT/ r el eases/
RELEASES and $ROOT/ r el eases/ start _erl . dat a.

To downgrade from Vsn to FronVsn, i nstal | _r el ease must be called again:

rel ease_handl er:install _rel ease(FronVsn) => {ok, Vsn, []}

Aninstalled, but not permanent, release can be removed. Information about the release is then deleted from $ROOT/
r el eases/ RELEASES and the release-specific code, that is, the new application directories and the $ROOT/
r el eases/ Vsn directory, are removed.

rel ease_handl er: renove_rel ease(Vsn) => ok

Example (continued from the previous sections)

Sep 1) Create atarget system as described in System Principles of the first version " A" of ch_r el from Releases.
Thistimesys. conf i g must beincluded in the release package. If no configuration is needed, the fileisto contain
the empty list:

(1.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 341

9.11 Release Handling

Sep 2) Start the system asasimple target system. Inreality, it isto be started as an embedded system. However, using
er | with the correct boot script and config file is enough for illustration purposes:

% cd $ROOT
% bin/erl -boot $ROOT/rel eases/ Alstart -config $ROOT/ rel eases/ Al sys

$ROOT isthe installation directory of the target system.

Sep 3) In another Erlang shell, generate start scripts and create arel ease package for the new version " B" . Remember
toinclude (apossible updated) sys. conf i g and ther el up file, see Release Upgrade File.

1> systool s: make_script("ch_rel-2").
ok

2> systool s: make_tar("ch_rel -2").

ok

The new release package now also containsversion "2" of ch_app andther el up file:

%tar tf ch_rel-2.tar
I'i b/ kernel - 2. 9/ ebi n/ ker nel . app
i b/ kernel -2. 9/ ebi n/ appl i cati on. beam

lib/stdlib-1.12/ ebin/stdlib. app
lib/stdlib-1.12/ebin/beam|ib. beam

l'i b/ sasl -1. 10/ ebi n/ sasl . app
l'i b/ sasl -1. 10/ ebi n/ sasl . beam

i b/ ch_app- 2/ ebi n/ ch_app. app
i b/ ch_app-2/ebi n/ ch_app. beam
i b/ ch_app-2/ebi n/ch_sup. beam
I'i b/ ch_app- 2/ ebi n/ ch3. beam
rel eases/ B/ start. boot

rel eases/ B/ rel up

rel eases/ B/ sys. config

rel eases/ B/ ch_rel -2.rel

rel eases/ch_rel-2.rel

Sep 4) Copy therelease packagech_rel - 2. t ar. gz tothe SROOT/ r el eases directory.
Sep 5) In the running target system, unpack the rel ease package:

1> rel ease_handl er: unpack_rel ease("ch_rel -2").
{ok, "B"}

Thenew application versionch_app- 2 isinstalled under $ROOT/ | i b nexttoch_app- 1. Theker nel ,stdl i b,
and sasl| directories are not affected, as they have not changed.

Under $ROOT/ r el eases, a new directory B is created, containing ch_rel-2.rel, start. boot,
sys. config,andrel up.

Sep 6) Check if the function ch3: avai | abl e/ 0 isavailable:

342 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.11 Release Handling

2> ch3: avai |l abl e() .
** exception error: undefined function ch3: avail abl e/0

Sep 7) Install the new release. Theinstructionsin $ROOT/ r el eases/ B/ r el up are executed one by one, resulting
in the new version of ch3 being loaded. The function ch3: avai | abl e/ 0 isnow available:

3> rel ease_handl er:install _rel ease("B").

{ok,"A", [1}
4> ch3: avail abl e() .
3

5> code: whi ch(ch3).
"...l1iblch_app-2/ebin/ch3. beant

6> code: whi ch(ch_sup).
"...lliblch_app-1/ebin/ch_sup. beant

Processes in ch_app for which code have not been updated, for example, the supervisor, are still evaluating code
fromch_app- 1.

Sep 8) If the target system is now rebooted, it uses version "A" again. The "B" version must be made permanent, to
be used when the system is rebooted.

7> rel ease_handl| er: make_per manent (" B").
ok

9.11.8 Updating Application Specifications

When a new version of arelease isinstalled, the application specifications are automatically updated for al loaded
applications.

Note:

The information about the new application specifications is fetched from the boot script included in the release
package. Thus, it is important that the boot script is generated from the same . r el file asis used to build the
release package itself.

Specifically, the application configuration parameters are automatically updated according to (in increasing priority
order):

* Thedatain the boot script, fetched from the new application resource file App. app
e Thenewsys.config
e Command-line arguments- App Par Val

This means that parameter values set in the other system configuration files and values set using
appl i cation: set_env/ 3 aredisregarded.

When an installed release is made permanent, the system processi ni t isset to point out the new sys. confi g.

After the installation, the application controller compares the old and new configuration parameters for all running
applications and call the callback function:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 343

9.12 Appup Cookbook

Mbdul e: confi g_change(Changed, New, Renpved)

* Mbdul e isthe application callback module as defined by the nod key inthe. app file.
* Changed and Newarelistsof { Par, Val } for al changed and added configuration parameters, respectively.
« Renovedisalist of all parameters Par that have been removed.

The function is optional and can be omitted when implementing an application callback module.

9.12 Appup Cookbook

This section includes examples of . appup filesfor typical cases of upgrades’downgrades done in runtime.

9.12.1 Changing a Functional Module

When afunctional modul e hasbeen changed, for exampl e, if anew function has been added or abug hasbeen corrected,
simple code replacement is sufficient, for example:

2",
{"1", [{load_npdule, m]}],
{"1", [{load_nodule, n}]}]

9.12.2 Changing a Residence Module

In a system implemented according to the OTP design principles, all processes, except system processes and special
processes, reside in one of the behaviourssuper vi sor,gen_server,gen_f smorgen_event . These belong
to the STDLIB application and upgrading/downgrading normally requires an emulator restart.

OTP thus provides no support for changing residence modules except in the case of special processes.

9.12.3 Changing a Callback Module

A callback moduleis afunctional module, and for code extensions simple code replacement is sufficient.

Example: When adding a function to ch3, as described in the example in Release Handling, ch_app. appup looks
asfollows:

2",
{"1", [{load_nodule, ch3}]}],
{"1 [{l oad_nodul e, ch3}]}]

OTP also supports changing the internal state of behaviour processes, see Changing Internal State.

9.12.4 Changing Internal State

In this case, simple code replacement is not sufficient. The process must explicitly transform its state using the
callback function code_change before switching to the new version of the callback module. Thus, synchronized
code replacement is used.

Example: Consider gen_ser ver ch3 from gen_server Behaviour. Theinternal stateisaterm Chs representing the
available channels. Assume you want to add a counter N, which keeps track of the number of al | oc requests so far.
This means that the format must be changed to { Chs, N} .

344 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.12 Appup Cookbook

The. appup file can look asfollows:

It

2",
[{"1", [{update, ch3, {advanced,
[{"1

[13313],
", [{update, ch3, {advanced, []1}}]1}]

}

Thethird element of theupdat e instructionisatuple{ advanced, Ext r a} , which saysthat the affected processes
areto do a state transformation before loading the new version of the module. Thisis done by the processes calling the
callback function code_change (seethe gen_ser ver (3) manua page in STDLIB). The term Ext r a, in this
case[], ispassed asisto the function:

- modul e(ch3).

;é;(port ([code_change/ 3]) .

ébde_change({dovvn, _Vsn}, {Chs, N}, _Extra) ->
{ok, Chs};

code_change(_Vsn, Chs, _Extra) ->
{ok, {Chs, 0}}.

The first argument is { down, Vsn} if there is a downgrade, or Vsn if there is a upgrade. The term Vsn is fetched
from the 'original’ version of the module, that is, the version you are upgrading from, or downgrading to.

Theversionisdefined by the module attribute vsn, if any. Thereisno such attributein ch3, sointhiscasetheversion
is the checksum (a huge integer) of the beam file, an uninteresting value, which isignored.

The other callback functions of ch3 must also be modified and perhaps a new interface function must be added, but
thisis not shown here.

9.12.5 Module Dependencies

Assume that a module is extended by adding an interface function, as in the example in Release Handling, where a
function avai | abl e/ 0 isadded toch3.

If acall isadded to thisfunction, say in module nil, aruntime error could can occur during release upgrade if the new
version of ml isloaded first and callsch3: avai | abl e/ 0 before the new version of ch3 isloaded.

Thus, ch3 must be loaded before L, in the upgrade case, and conversely in the downgrade case. il is said to be
dependent on ch3. In arelease handling instruction, this is expressed by the DepMbds element:

{| oad_nodul e, Mddul e, DepMods}
{update, Modul e, {advanced, Extra}, DepMods}

DepMbds isalist of modules, on which Modul e is dependent.

Example: Themodulem in application myapp isdependent on ch3 when upgrading from"1" to"2", or downgrading
from"2" to"1":

nyapp. appup:

{"2",
[{"1", [{load_nodule, mil, [ch3]}]}],

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 345

9.12 Appup Cookbook

[{"1", [{load_nodule, nl, [ch3]}]}]
}.

ch_app. appup

2",
{"1", [{load_nodule, ch3}]}]
{"1 [{l oad_nodul e, ch3}]}]

If instead ml and ch3 belong to the same application, the . appup file can look as follows:

e,
({1,
[{! oad_npdul e, ch3}
{l oad_nodul e, ni, [ch3]}]}],
({1,
[{! oad_npdul e, ch3}
{l oad_nodul e, nml, [ch3]}]}]
}.

ml is dependent on ch3 aso when downgrading. syst ool s knows the difference between up- and downgrading
and generates a correct r el up, where ch3 isloaded before ml when upgrading, but ml isloaded before ch3 when
downgrading.

9.12.6 Changing Code for a Special Process

In this case, simple code replacement is not sufficient. When anew version of aresidence module for aspecia process
isloaded, the process must make afully qualified call to itsloop function to switch to the new code. Thus, synchronized
cade replacement must be used.

Note:

The name(s) of the user-defined residence module(s) must belistedinthe Modul es part of the child specification
for the special process. Otherwise the release handler cannot find the process.

Example: Consider the example ch4 in sys and proc_lib. When started by a supervisor, the child specification can
look asfollows:

{ch4, {ch4, start_link, []},
permanent, brutal _kill, worker, [ch4]}

If ch4 ispart of theapplicationsp_app and anew version of the moduleisto beloaded when upgrading from version
"1" to"2" of thisapplication, sp_app. appup can look asfollows:

2",
[{"1", [{update, ch4, {advanced, []}}]}].
[{"1", [{update, ch4, {advanced, []}}]}]

346 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.12 Appup Cookbook

The updat e instruction must contain the tuple { advanced, Ext r a} . The instruction makes the specia process
call thecallback functionsyst em code_change/ 4, afunction the user must implement. Theterm Ext r a, inthis
case[],ispassed asisto syst em code_change/ 4:

- modul e(ch4) .

-export ([system code_change/ 4]).

system code_change(Chs, _Mddule, _ddVsn, _Extra) ->
{ok, Chs}.

e Thefirst argument istheinternal state St at e, passed from function
sys: handl e_system nsg(Request, From Parent, Mbdul e, Deb, State),andcaledby
the special process when a system message isreceived. In ch4, theinternal state isthe set of available channels
Chs.

e The second argument is the name of the module (ch4).

e Thethird argument isVsn or { down, Vsn}, asdescribed for gen_ser ver: code_change/ 3 in Changing
Internal Sate.

In this case, al arguments but the first are ignored and the function simply returns the internal state again. Thisis
enough if the code only has been extended. If instead the internal state is changed (similar to the example in Changing
Internal State), thisis donein thisfunction and { ok, Chs2} returned.

9.12.7 Changing a Supervisor

The supervisor behaviour supports changing the internal state, that is, changing the restart strategy and maximum
restart frequency properties, as well as changing the existing child specifications.

Child processes can be added or deleted, but this is not handled automatically. Instructions must be given by in the
. appup file.
Changing Properties

Since the supervisor is to change its interna state, synchronized code replacement is required. However, a special
updat e instruction must be used.

First, the new version of the callback module must be loaded, both in the case of upgrade and downgrade. Then the
new return value of i ni t/ 1 can be checked and the internal state be changed accordingly.

Thefollowing upgr ade instruction is used for supervisors:

{updat e, Modul e, supervisor}

Example: To change the restart strategy of ch_sup (from Supervisor Behaviour) from one_f or _one to
one_for_al |, changethe callback functioni nit/1inch_sup. erl:

- modul e(ch_sup) .

init(_Args) ->
{ok, {#{strategy => one_for_all, ...}, ...}}.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 347

9.12 Appup Cookbook

Thefilech_app. appup:

{"2",
[{"1", [{update, ch_sup, supervisor}]}],
[{"1", [{update, ch_sup, supervisor}]}]

}.

Changing Child Specifications

Theinstruction, and thusthe . appup file, when changing an existing child specification, isthe same aswhen changing
properties as described earlier:

{

non
[{"1", [{update, ch_sup, supervisor}]}],
[{"1", [{update, ch_sup, supervisor}]}]

The changes do not affect existing child processes. For example, changing the start function only specifies how the
child processisto be restarted, if needed later on.

Theid of the child specification cannot be changed.

Changing the Mbdul es field of the child specification can affect the release handling process itself, as this field is
used to identify which processes are affected when doing a synchronized code replacement.

Adding and Deleting Child Processes

As stated earlier, changing child specifications does not affect existing child processes. New child specifications are
automatically added, but not deleted. Child processes are not automatically started or terminated, this must be done
using appl y instructions.

Example: Assume anew child process mlL isto be added to ch_sup when upgrading ch_app from"1" to "2". This
means Nl isto be deleted when downgrading from "2" to " 1":

{"2",
[{"1",

[{update, ch_sup, supervisor},

{apply, {supervisor, restart_child, [ch_sup, nl]}}

131,

[{r1,

[{apply, {supervisor, terminate_child, [ch_sup, nl]}},
{apply, {supervisor, delete_child, [ch_sup, nl]}},
{updat e, ch_sup, supervisor}

111

}.

The order of the instructions isimportant.

The supervisor must be registered as ch_sup for the script to work. If the supervisor is not registered, it
cannot be accessed directly from the script. Instead a help function that finds the pid of the supervisor and calls
supervi sor:restart_chil d,andsoon, must bewritten. Thisfunction isthen to be called from the script using
theappl y instruction.

If the module nL isintroduced in version "2" of ch_app, it must also be loaded when upgrading and deleted when
downgrading:

348 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.12 Appup Cookbook

{2,
[{"1,

[{add_nodul e, ml},

{updat e, ch_sup, supervisor},

{apply, {supervisor, restart_child, [ch_sup, nl]}}

11,

[,

[{apply, {supervisor, termnate_child, [ch_sup, nl]}},
{apply, {supervisor, delete _child, [ch_sup, nl]}},
{updat e, ch_sup, supervisor},

{del ete_nodul e, ml}

1}]

}.

As stated earlier, the order of the instructions is important. When upgrading, ml must be loaded, and the supervisor
child specification changed, before the new child process can be started. When downgrading, the child process must
be terminated before the child specification is changed and the module is deleted.

9.12.8 Adding or Deleting a Module

Example: A new functional module misadded toch_app:

{2,
[{"1", [{add_nodule, n}]}],
[{"1", [{del ete_nodule, n}]}]

9.12.9 Starting or Terminating a Process

In a system structured according to the OTP design principles, any process would be a child process belonging to a
supervisor, see Adding and Deleting Child Processes in Changing a Supervisor.

9.12.10 Adding or Removing an Application

When adding or removing an application, no . appup file is needed. When generating r el up, the . r el filesare
compared and theadd_appl i cati on andr enpve_appl i cati on instructions are added automatically.
9.12.11 Restarting an Application

Restarting an application is useful when a change istoo complicated to be made without restarting the processes, for
example, if the supervisor hierarchy has been restructured.

Example: When adding achild mL toch_sup, asin Adding and Deleting Child Processesin Changing a Supervisor,
an alternative to updating the supervisor isto restart the entire application:

{"2",

[{"1", [{restart_application, ch_app}]}],
[{"1", [{restart_application, ch_app}]}]
}.

9.12.12 Changing an Application Specification

When installing arelease, the application specifications are automatically updated before evaluating ther el up script.
Thus, no instructions are needed in the . appup file:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 349

9.12 Appup Cookbook

——
[—
e
[N —

9.12.13 Changing Application Configuration

Changing an application configuration by updating the env key in the . app file is an instance of changing an
application specification, see the previous section.

Alternatively, application configuration parameters can be added or updated in sys. confi g.

9.12.14 Changing Included Applications

Therelease handling instructions for adding, removing, and restarting applications apply to primary applicationsonly.
There are no corresponding instructions for included applications. However, since an included application isreally a
supervision tree with a topmost supervisor, started as a child process to a supervisor in the including application, a
r el up file can be manually created.

Example: Assume there is a release containing an application pri m app, which have a supervisor pri m sup in
its supervision tree.

Inanew version of therelease, theapplicationch_app istobeincludedinpri m app. Thatis, itstopmost supervisor
ch_sup isto be started as a child processto pri m sup.

The workflow is as follows:
Sep 1) Edit the code for pri m sup:

init(...) ->
{ok, {...supervisor flags...,

[...,
{ch_sup, {ch_sup,start_link,[]},
per manent, i nfinity, supervisor, [ch_sup]},

11}

Sep 2) Edit the. app filefor pri m_app:

{application, primapp,
{vsn, "2"},
{| ncI uded_appl i cations, [ch_app]},
1}

Sep 3) Createanew . r el file includingch_app:

{rel ease,
[

{primapp, "2},
{ch_app, "1"}]}.

350 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.12 Appup Cookbook

The included application can be started in two ways. This is described in the next two sections.

Application Restart

Sep 4a) One way to start the included application is to restart the entire pri m app application. Normally, the
restart_applicationinstructioninthe. appup filefor pri m app would be used.

However, if thisisdone and ar el up file is generated, not only would it contain instructions for restarting (that is,
removing and adding) pri m app, it would also contain instructionsfor startingch_app (and stopping it, in the case
of downgrade). Thisisbecausech_app isincludedinthenew . r el file, but not inthe old one.

Instead, a correct r el up file can be created manually, either from scratch or by editing the generated version. The
instructions for starting/stopping ch_app are replaced by instructions for |oading/unloading the application:

{8,
[{"A",

[1,
[{] oad_obj ect _code, {ch_app, "1",[ch_sup, ch3]}},

{| oad_obj ect _code, {pri m app, "2", [pri m app, pri msup] }},

poi nt _of _no_return

{apply, {application,stop,[pri mapp]}},

{renove, { pri m_ app, brut al _purge, brutal _purge}},

{renove, { pri m sup, brut al _purge, brutal _purge}},

{purge, [pri m app, pri msup] }

{l oad, {pri m app, brutal purge, brutal purge}},

{l oad, {pri m sup, brutal purge, brutal purge}},

{l oad, {ch_sup, brutal _purge, brutal purge}},

{l oad, {ch3, brut al _purge, brutal _purge}},

{apply, {application,load, [ch_app]}},

{apply, {application,start,[pri mapp, permanent]}}]}],
[{"A",

[1,

[{] oad_obj ect _code, {pri m app, "1", [pri m_app, pri msup]}},

poi nt _of _no_return

{apply, {application,stop,[pri mapp]}},

{appl y, {application, unl oad, [ch_app] }},

{renove, {ch_sup, brutal purge, brutal purge}},

{renove, {ch3, brutal _purge, brutal purge}}

{purge, [ch_sup, ch3]}

{renove, { pri m_ app, brut al _purge, brutal _purge}},

{renove, { pri m sup, brut al _purge, brutal _purge}},

{purge, [pri m app, pri msup] }

{l oad, {pri m app, brutal purge, brutal purge}},

{l oad, {pri m sup, brutal purge, brutal purge}},

{apply, {application,start,[primapp, permanent]}}]}]

Supervisor Change

Sep 4b) Another way to start theincluded application (or stop it in the case of downgrade) isby combining instructions
for adding and removing child processes to/from pri m sup with instructions for loading/unloading all ch_app
code and its application specification.

Again, the r el up file is created manually. Either from scratch or by editing a generated version. Load all code
for ch_app first, and also load the application specification, before pri m sup is updated. When downgrading,
pri m sup isto updated first, before the code for ch_app and its application specification are unloaded.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 351

9.12 Appup Cookbook

Il
{| oad_obj ect _code, {ch_app, "1",[ch_sup, ch3]}},
{| oad_obj ect _code, {pri m app, "2",[pri msup]}},
poi nt _of _no_return
{l oad, {ch_sup, brutal _purge, brutal purge}},
{l oad, {ch3, brutal _purge, brutal purge}},
{apply, {application,load, [ch_app]}},
{suspend, [pri m sup] },
{l oad, {pri m sup, brutal purge, brutal purge}},
{code_change, up, [{pri msup,[1}]}.
{resune, [pri msup]}
{apply, {supervisor,restart_child,[primsup,ch_sup]}}]}],
[{"A",

[1,

[{] oad_obj ect _code, {pri m app, "1", [pri msup]}},
poi nt _of _no_return
{appl y, {supervisor,term nate_child,[primsup,ch_sup]}},
{appl y, {supervisor,delete_child,[primsup,ch_sup]}},
{suspend, [pri m sup] },
{l oad, {pri m sup, brutal purge, brutal purge}},
{code_change, down, [{pri m sup,[]}]},
{resune, [pri msup]}
{renove, {ch_sup, brutal purge, brutal purge}},
{renove, {ch3, brutal _purge, brutal purge}}
{purge, [ch_sup, ch3]}
{apply, {application, unload, [ch_app]}}]}]

[
[

9.12.15 Changing Non-Erlang Code

Changing code for a program written in another programming language than Erlang, for example, a port program, is
application-dependent and OTP provides no specia support for it.

Example: When changing code for a port program, assume that the Erlang process controlling the port is a
gen_server port c and that the port is opened in the callback functioni ni t/ 1:

init(...) ->

PortPrg = fil enane:joi n(code: priv_dir(App), "portc"),
Port = open_port({spawn, PortPrg}, [...]),

{ok, #state{port=Port, ...}}.

If the port program isto be updated, the code for thegen_ser ver can be extended withacode_change function,
which closes the old port and opens a hew port. (If necessary, the gen_ser ver can first request data that must be
saved from the port program and pass this data to the new port):

code_change(_Q dVsn, State, port) ->
St at e#state. port ! close,
receive
{Port,close} ->
true
end
PortPrg = fil enane:joi n(code: priv_dir(App), "portc"),
Port = open_port ({spawn, PortPrg}, [...]),
{ok, #state{port=Port, ...}}.

Update the application version number in the . app fileand writean . appup file:

352 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.12 Appup Cookbook

["2",
[{"1", [{update, portc, {advanced, port}}]1}],
[{"1", [{update, portc, {advanced,port}}]}]

].

Ensurethat the pr i v directory, where the C program is located, isincluded in the new rel ease package:

1> systool s: make_tar("ny_rel ease", [{dirs,[priv]}]).

9.12.16 Emulator Restart and Upgrade
Two upgrade instructions restart the emulator:
e restart_new enul at or

Intended when ERTS, Kernel, STDLIB, or SASL is upgraded. It is automatically added when the r el up file
is generated by syst ool s: make_r el up/ 3, 4. It is executed before all other upgrade instructions. For more
information about this instruction, see restart_new_emulator (Low-Level) in Release Handling Instructions.

e restart_enul ator

Used when a restart of the emulator is required after all other upgrade instructions are executed. For more
information about this instruction, see restart_emulator (Low-Level) in Release Handling Instructions.

If an emulator restart is necessary and no upgrade instructions are needed, that is, if the restart itself is enough for the
upgraded applications to start running the new versions, asimpler el up file can be created manually:

{8,
[{"A",

[1,

[restart_enul ator]}],
[{‘[‘]A“,

[restart_enul ator]}]

1.

Inthis case, the rel ease handler framework with automatic packing and unpacking of release packages, automatic path
updates, and so on, can be used without having to specify . appup files.

9.12.17 Emulator Upgrade From Pre OTP R15

From OTP R15, an emulator upgradeis performed by restarting the emulator with new versions of the core applications
(Kernel, STDLIB, and SASL) before loading code and running upgrade instruction for other applications. For thisto
work, the release to upgrade from must include OTP R15 or |ater.

For the case where the release to upgrade from includes an earlier emulator version, syst ool s: make_rel up
creates a backwards compatible relup file. This means that all upgrade instructions are executed before the emul ator
isrestarted. The new application code is therefore loaded into the old emulator. If the new code is compiled with the
new emulator, there can be cases where the beam format has changed and beam files cannot be loaded. To overcome
this problem, compile the new code with the old emulator.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 353

10.1 Introduction

10 OAM Principles

10.1 Introduction
The Operation and Maintenance (OAM) support in OTP consists of a generic model for management subsystemsin
OTP, and some components to be used in these subsystems. This section describes the model.

The main ideain the model isthat it is not tied to any specific management protocol. An Application Programming
Interface (API) is defined, which can be used to write adaptations for specific management protocols.

Each OAM component in OTP is implemented as one sub-application, which can be included in a management
application for the system. Notice that such a complete management application is not in the scope of this generic
functionality. However, this section includes examples illustrating how such an application can be built.

10.1.1 Terminology

The protocol-independent architectural model on the network level is the well-known client-server model for
management operations. This model is based on the client-server principle, where the manager (client) sends arequest
from a manager to an agent (server) when it accesses management information. The agent sends a reply back to the
manager. There are two main differences to the normal client-server model:

e Usualy afew managers communicate with many agents.

* The agent can spontaneously send a notification, for example, an alarm, to the manager.

The following pictureillustrates the idea:

MKE Wanacer |
8 " sees
NET ! MIB
' . - gees
Agent
Resl Resl

Figure 1.1: Terminology

The manager is often referred to as the Network Management System (NMS), to emphasize that it usualy is realized
as aprogram that presents data to an operator.

354 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.1 Introduction

The agent is an entity that executes within a Network Element (NE). In OTP, the NE can be a distributed system,
meaning that the distributed system is managed as one entity. Of course, the agent can be configured to be able to run
on one of several nodes, making it a distributed OTP application.

The management information is defined in a Management Information Base (MIB). It isaformal definition of which
information the agent makes available to the manager. The manager accessesthe MIB through a management protocol,
such as SNMP, CMIP, HTTP, or CORBA. Each protocol hasitsown MIB definition language. In SNMP, it is a subset
of ASN.1, in CMIPitisGDMO, in HTTP it isimplicit, and using CORBA, it isIDL.

Usually, the entities defined in the M1B are called Managed Objects (MOs), although they do not have to be objectsin
the object-oriented way. For example, asimple scalar variable defined inaMIB iscalled an MO. The MOs are | ogical
objects, not necessarily with a one-to-one mapping to the resources.

10.1.2 Model

This section presents the generic protocol-independent model for use within an OTP-based NE. This moddl is used
by all OAM components and can be used by the applications. The advantage of the model is that it clearly separates
the resources from the management protocol. The resources do not need to be aware of which management protocol
is used to manage the system. The same resources can therefore be managed with different protocols.

The entities involved in this model are the agent, which terminates the management protocol, and the resources,
which is to be managed, that is, the actual application entities. The resources should in general have no knowledge
of the management protocol used, and the agent should have no knowledge of the managed resources. This implies
that a trandlation mechanism is needed, to translate the management operations to operations on the resources. This
translation mechanism is usually called instrumentation and the function that implementsit is called instrumentation
function. The instrumentation functions are written for each combination of management protocol and resource to be
managed. For example, if an application isto be managed by SNMP and HTTP, two sets of instrumentation functions
are defined; one that maps SNMP requests to the resources, and one that, for example, generates an HTML page for
Some resources.

When a manager makes a request to the agent, the following illustrates the situation:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 355

10.1 Introduction

Figure 1.2: Request to An Agent by a Manager

The mapping between an instrumentation function and aresourceis not necessarily 1-1. It isa so possible to write one
instrumentation function for each resource, and use that function from different protocols.

The agent receives arequest and maps it to calls to one or more instrumentation functions. These functions perform
operations on the resources to implement the semantics associated with the MO.

For example, a system that is managed with SNMP and HT TP can be structured as follows:

356 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.1 Introduction

Figure 1.3: Structure of a System Managed with SNMP and HTTP

The resources can send natifications to the manager as well. Examples of notifications are events and alarms. The
resource needs to generate protocol-independent notifications. The following picture illustrates how thisis achieved:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 357

10.1 Introduction

flirar
THMP HTTF
- B ey er 4
Instmrmentation Instmrnentation
gen_event
Eesl Bes2 Ees3

Figure 1.4: Notification Handling

The main ideais that the resource sends the notifications as Erlang terms to a dedicated gen_event process. Into
this process, handlers for the different management protocols are installed. When an event is received by this process,
it isforwarded to each installed handler. The handlers are responsible for translating the event into a notification to be
sent over the management protocol. For example, a handler for SNMP translates each event into an SNMP trap.

10.1.3 SNMP-Based OAM

For all OAM components, SNM P adaptations are provided. Other adaptations might be defined in the future.

The OAM components, and some other OTP applications, define SNMP MIBs. These MIBs are written in SNMPv2
SMI syntax, as defined in RFC 1902. For convenience we also deliver the SNMPv1 SMI equivalent. All MIBs are
designed to be v1/v2 compatible, that is, the v2 MIBs do not use any construct not availablein vi.

MIB Structure

The top-level OTP MIB is called OTP- REGand it isincluded in the sas| application. All other OTP MIBs import
some objects from this MIB.

358 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.1 Introduction

Each MIB is contained in one application. The MIB text files are stored under ni bs/ <M B>. mi b inthe application
directory. The generated . hr | files with constant declarations are stored under i ncl ude/ <M B>. hr |, and the
compiled MIBs are stored under pri v/ m bs/ <M B>. bi n. For example, the OTP- M B isincluded in the sasl
application:

sasl-1. 3/ m bs/OTP-M B. m b
i ncl ude/ OTP-M B. hr
pri v/ m bs/ OTP- M B. bi n

An application that needs to import this MIB into another MIB isto usethei | option to the SNMP MIB compiler:

snnp: c("MY-MB", [{il, ["sasl/priv/mbs"]}]).

If the application needs to include the generated . hr | file, itisto usethe-i ncl ude_I i b directive to the Erlang
compiler:

-nmodul e(my_m b) .
-include_lib("sasl/include/OTP-MB. hrl").

Thefollowing MIBs are defined in the OTP system:

e« OIP-REG (insasl) containsthetop-level OTP registration objects, used by all other MIBs.

e OTP-TC(insasl) contains the general Textual Conventions, which can be used by any other MIB.

e OTP-M B (in sasl) contains objects for instrumentation of the Erlang nodes, the Erlang machines, and the
applications in the system.

e« QOTP- 0OS- MON- M B (in oc_non) contains objects for instrumentation of disk, memory, and CPU use of the
nodes in the system.

e OTP- SNMPEA- M B (in snnp) contains objects for instrumentation and control of the extensible SNMP agent
itself. The agent also implements the standard SNMPv2-MIB (or v1 part of MIB-II, if SNMPv1 is used).

e OTP- EVA- M B (in eva) contains objectsfor instrumentation and control of the events and alarmsin the system.

e« QOTP-LOG M B (ineva) contains objects for instrumentation and control of the logs and FTP transfer of logs.

e« QOTP- EVA- LOG M B (in eva) contains objects for instrumentation and control of the events and alarm logs in
the system.

e OTP- SNMPEA- LOG- M B (in eva) contains objects for instrumentation and control of the SNMP audit trail log
in the system.

The different applications use different strategiesfor loading the MIBsinto the agent. Some MIB implementations are

cade-only, while others need a server. One way, used by the code-only MIB implementations, is for the user to call

afunctionsuchasot p_ni b: i ni t (Agent) toloadthe MIB, andot p_nmi b: st op(Agent) to unload the MIB.

See the manual page for each application for a description of how to load each MIB.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 359

	Erlang/OTP System Documentation
	Installation Guide
	Installing the Binary Release
	Windows
	Installing
	Verifying

	Building and Installing Erlang/OTP
	Introduction
	Required Utilities
	Unpacking
	Building
	Installing

	Optional Utilities
	Building
	Building Documentation

	How to Build and Install Erlang/OTP
	Unpacking
	Configuring
	Building
	Testing
	Installing
	Running
	How to Build the Documentation
	How to Install the Documentation
	Accessing the Documentation
	How to Install the Pre-formatted Documentation

	Advanced configuration and build of Erlang/OTP
	make and $ERL_TOP
	otp_build vs configure/make
	Configuring
	Building
	Installing
	Running

	Known platform issues
	Daily Build and Test
	Authors
	Copyright and License

	Cross Compiling Erlang/OTP
	Introduction
	otp_build Versus configure/make
	Cross Configuration
	What can be Cross Compiled?
	Compatibility
	Patches

	Build and Install Procedure
	Building With configure/make Directly
	Building With the otp_build Script

	Building and Installing the Documentation
	Testing the cross compiled system
	Currently Used Configuration Variables
	Variables for otp_build Only
	Cross Compiler and Other Tools
	Cross System Root Locations
	Optional Feature, and Bug Tests

	Copyright and License

	How to Build Erlang/OTP on Windows
	Introduction
	Short Version
	Frequently Asked Questions
	Tools you Need and Their Environment
	The Shell Environment
	Building and Installing
	Development
	Using GIT
	Copyright and License

	Patching OTP Applications
	Introduction
	Prerequisites
	Using otp_patch_apply
	Sanity check

	System Principles
	System Principles
	Starting the System
	Restarting and Stopping the System
	Boot Scripts
	Default Boot Scripts
	User-Defined Boot Scripts

	Code Loading Strategy
	File Types

	Error Logging
	Error Information From the Runtime System
	SASL Error Logging

	Creating and Upgrading a Target System
	Creating a Target System
	Installing a Target System
	Starting a Target System
	System Configuration Parameters
	Differences From the Install Script
	Creating the Next Version
	Upgrading the Target System
	Listing of target_system.erl

	Upgrade when Erlang/OTP has Changed
	Introduction
	Upgrade of Core Applications
	Applications that Still do Not Allow Code Upgrade

	Versions
	OTP Version
	Retrieving Current OTP Version
	OTP Versions Table

	Application Version
	Version Scheme
	Order of Versions

	OTP 17.0 Application Versions

	Embedded Systems User's Guide
	Embedded Solaris
	Memory Use
	Disk Space Use
	Installing an Embedded System
	Creating User and Installation Directory
	Installing an Embedded System
	Configuring Automatic Start at Boot
	Making Hardware Watchdog Available
	Changing Permissions for Reboot
	Setting TERM Environment Variable
	Adding Patches
	Installing Module os_sup in Application os_mon
	Installation
	Testing the Application Configuration File
	Related Documents

	Installation Problems

	Starting Erlang
	Programs
	start
	run_erl
	to_erl
	start_erl

	Windows NT
	Memory Use
	Disk Space Use
	Installing an Embedded System
	Hardware Watchdog

	Starting Erlang

	Getting Started With Erlang
	Introduction
	Prerequisites
	Omitted Topics

	Sequential Programming
	The Erlang Shell
	Modules and Functions
	Atoms
	Tuples
	Lists
	Maps
	Standard Modules and Manual Pages
	Writing Output to a Terminal
	A Larger Example
	Matching, Guards, and Scope of Variables
	More About Lists
	If and Case
	Built-In Functions (BIFs)
	Higher-Order Functions (Funs)

	Concurrent Programming
	Processes
	Message Passing
	Registered Process Names
	Distributed Programming
	A Larger Example

	Robustness
	Time-outs
	Error Handling
	The Larger Example with Robustness Added

	Records and Macros
	The Larger Example Divided into Several Files
	Header Files
	Records
	Macros

	Erlang Reference Manual
	Introduction
	Purpose
	Prerequisites
	Document Conventions
	Complete List of BIFs
	Reserved Words

	Character Set and Source File Encoding
	Character Set
	Source File Encoding

	Data Types
	Terms
	Number
	Atom
	Bit Strings and Binaries
	Reference
	Fun
	Port Identifier
	Pid
	Tuple
	Map
	List
	String
	Record
	Boolean
	Escape Sequences
	Type Conversions

	Pattern Matching
	Pattern Matching

	Modules
	Module Syntax
	Module Attributes
	Pre-Defined Module Attributes
	Behaviour Module Attribute
	Record Definitions
	Preprocessor
	Setting File and Line
	Types and function specifications

	Comments
	module_info/0 and module_info/1 functions
	module_info/0
	module_info/1

	Functions
	Function Declaration Syntax
	Function Evaluation
	Tail recursion
	Built-In Functions (BIFs)

	Types and Function Specifications
	The Erlang Type Language
	Types and their Syntax
	Type Declarations of User-Defined Types
	Type Information in Record Declarations
	Specifications for Functions

	Expressions
	Expression Evaluation
	Terms
	Variables
	Patterns
	Match Operator = in Patterns
	String Prefix in Patterns
	Expressions in Patterns

	Match
	Function Calls
	Local Function Names Clashing With Auto-Imported BIFs

	If
	Case
	Send
	Receive
	Term Comparisons
	Arithmetic Expressions
	Boolean Expressions
	Short-Circuit Expressions
	List Operations
	Map Expressions
	Creating Maps
	Updating Maps
	Maps in Patterns
	Matching Syntax

	Maps in Guards

	Bit Syntax Expressions
	Fun Expressions
	Catch and Throw
	Try
	Parenthesized Expressions
	Block Expressions
	List Comprehensions
	Bit String Comprehensions
	Guard Sequences
	Operator Precedence

	Preprocessor
	File Inclusion
	Defining and Using Macros
	Predefined Macros
	Macros Overloading
	Flow Control in Macros
	Stringifying Macro Arguments

	Records
	Defining Records
	Creating Records
	Accessing Record Fields
	Updating Records
	Records in Guards
	Records in Patterns
	Nested Records
	Internal Representation of Records

	Errors and Error Handling
	Terminology
	Exceptions
	Handling of Run-time Errors in Erlang
	Error Handling Within Processes
	Error Handling Between Processes

	Exit Reasons

	Processes
	Processes
	Process Creation
	Registered Processes
	Process Termination
	Message Sending
	Links
	Error Handling
	Emitting Exit Signals
	Receiving Exit Signals

	Monitors
	Process Dictionary

	Distributed Erlang
	Distributed Erlang System
	Nodes
	Node Connections
	epmd
	Hidden Nodes
	C Nodes
	Security
	Distribution BIFs
	Distribution Command-Line Flags
	Distribution Modules

	Compilation and Code Loading
	Compilation
	Code Loading
	Code Replacement
	Running a Function When a Module is Loaded

	Ports and Port Drivers
	Ports
	Port Drivers
	Port BIFs

	Programming Examples
	Records
	Records and Tuples
	Defining a Record
	Creating a Record
	Accessing a Record Field
	Updating a Record
	Type Testing
	Pattern Matching
	Nested Records
	A Longer Example

	Funs
	map
	foreach
	Syntax of Funs
	Variable Bindings Within a Fun
	Funs and Module Lists
	map
	any
	all
	foreach
	foldl
	mapfoldl
	filter
	takewhile
	dropwhile
	splitwith

	Funs Returning Funs
	Simple Higher Order Functions
	Infinite Lists
	Parsing

	List Comprehensions
	Simple Examples
	Quick Sort
	Permutations
	Pythagorean Triplets
	Simplifications With List Comprehensions
	Variable Bindings in List Comprehensions

	Bit Syntax
	Introduction
	Examples

	Lexical Note
	Segments
	Defaults
	Constructing Binaries and Bitstrings
	Including Literal Strings

	Matching Binaries
	Getting the Rest of the Binary or Bitstring

	Appending to a Binary

	Efficiency Guide
	Introduction
	Purpose
	Prerequisites

	The Eight Myths of Erlang Performance
	Myth: Funs are Slow
	Myth: List Comprehensions are Slow
	Myth: Tail-Recursive Functions are Much Faster
 Than Recursive Functions
	Myth: Operator "++" is Always Bad
	Myth: Strings are Slow
	Myth: Repairing a Dets File is Very Slow
	Myth: BEAM is a Stack-Based Byte-Code Virtual Machine
 (and Therefore Slow)
	Myth: Use "_" to Speed Up Your Program When a Variable
 is Not Used

	Common Caveats
	Timer Module
	list_to_atom/1
	length/1
	setelement/3
	size/1
	split_binary/2
	Operator "--"

	Constructing and Matching Binaries
	How Binaries are Implemented
	Refc Binaries
	Heap Binaries
	Sub Binaries
	Match Context

	Constructing Binaries
	Circumstances That Force Copying

	Matching Binaries
	Option bin_opt_info
	Unused Variables

	List Handling
	Creating a List
	List Comprehensions
	Deep and Flat Lists
	Port Example
	Append Example

	Recursive List Functions

	Functions
	Pattern Matching
	Function Calls
	Notes and Implementation Details

	Memory Usage in Recursion

	Tables and Databases
	Ets, Dets, and Mnesia
	Select/Match Operations
	Deleting an Element
	Fetching Data
	Non-Persistent Database Storage
	tab2list
	Ordered_set Tables

	Ets-Specific
	Using Keys of Ets Table

	Mnesia-Specific
	Secondary Index
	Transactions

	Processes
	Creating an Erlang Process
	Initial Heap Size

	Process Messages
	Constant Pool
	Loss of Sharing

	SMP Emulator

	Drivers
	Drivers and Concurrency
	Avoiding Copying Binaries When Calling a Driver
	Returning Small Binaries from a Driver
	Returning Large Binaries without Copying from a Driver

	Advanced
	Memory
	System Limits

	Profiling
	Do Not Guess About Performance - Profile
	Large Systems
	What to Look For
	Tools
	fprof
	eprof
	cover
	cprof
	Tool Summary

	Benchmarking

	Interoperability Tutorial
	Introduction
	Purpose
	Prerequisites

	Overview
	Built-In Mechanisms
	Distributed Erlang
	Ports and Linked-In Drivers

	C and Java Libraries
	Erl_Interface
	C Nodes
	Jinterface

	Standard Protocols
	Sockets

	IC
	Old Applications

	Problem Example
	Description

	Ports
	Erlang Program
	C Program
	Running the Example

	Erl_Interface
	Erlang Program
	C Program
	Running the Example

	Port Drivers
	Erlang Program
	C Driver
	Running the Example

	C Nodes
	Erlang Program
	C Program
	Setting Up Communication
	Sending and Receiving Messages

	Running the Example

	NIFs
	Erlang Program
	NIF Library Code
	Running the Example

	OTP Design Principles
	Overview
	Supervision Trees
	Behaviours
	Applications
	Releases
	Release Handling

	gen_server Behaviour
	Client-Server Principles
	Example
	Starting a Gen_Server
	Synchronous Requests - Call
	Asynchronous Requests - Cast
	Stopping
	In a Supervision Tree
	Standalone Gen_Servers

	Handling Other Messages

	gen_fsm Behaviour
	Finite-State Machines
	Example
	Starting gen_fsm
	Notifying about Events
	Time-Outs
	All State Events
	Stopping
	In a Supervision Tree
	Standalone gen_fsm

	Handling Other Messages

	gen_event Behaviour
	Event Handling Principles
	Example
	Starting an Event Manager
	Adding an Event Handler
	Notifying about Events
	Deleting an Event Handler
	Stopping
	In a Supervision Tree
	Standalone Event Managers

	Handling Other Messages

	Supervisor Behaviour
	Supervision Principles
	Example
	Supervisor Flags
	Restart Strategy
	one_for_one
	one_for_all
	rest_for_one
	simple_one_for_one

	Maximum Restart Intensity
	Child Specification
	Starting a Supervisor
	Adding a Child Process
	Stopping a Child Process
	Simplified one_for_one Supervisors
	Stopping

	sys and proc_lib
	Simple Debugging
	Special Processes
	Example
	Starting the Process
	Debugging
	Handling System Messages

	User-Defined Behaviours

	Applications
	Application Concept
	Application Callback Module
	Application Resource File
	Directory Structure
	Application Controller
	Loading and Unloading Applications
	Starting and Stopping Applications
	Configuring an Application
	Application Start Types

	Included Applications
	Introduction
	Specifying Included Applications
	Synchronizing Processes during Startup

	Distributed Applications
	Introduction
	Specifying Distributed Applications
	Starting and Stopping Distributed Applications
	Failover
	Takeover

	Releases
	Release Concept
	Release Resource File
	Generating Boot Scripts
	Creating a Release Package
	Directory Structure
	Disk-Less and/or Read-Only Clients

	Release Handling
	Release Handling Principles
	Release Handling Workflow
	Release Handling Aspects

	Requirements
	Distributed Systems
	Release Handling Instructions
	load_module
	update
	add_module and delete_module
	Application Instructions
	apply (Low-Level)
	restart_new_emulator (Low-Level)
	restart_emulator (Low-Level)

	Application Upgrade File
	Release Upgrade File
	Installing a Release
	Example (continued from the previous sections)

	Updating Application Specifications

	Appup Cookbook
	Changing a Functional Module
	Changing a Residence Module
	Changing a Callback Module
	Changing Internal State
	Module Dependencies
	Changing Code for a Special Process
	Changing a Supervisor
	Changing Properties
	Changing Child Specifications
	Adding and Deleting Child Processes

	Adding or Deleting a Module
	Starting or Terminating a Process
	Adding or Removing an Application
	Restarting an Application
	Changing an Application Specification
	Changing Application Configuration
	Changing Included Applications
	Application Restart
	Supervisor Change

	Changing Non-Erlang Code
	Emulator Restart and Upgrade
	Emulator Upgrade From Pre OTP R15

	OAM Principles
	Introduction
	Terminology
	Model
	SNMP-Based OAM
	MIB Structure

