
AVR-LibC
2.2.0

Generated by Doxygen 1.9.6

i

1 AVR-LibC 1

1.1 Introduction . 1

1.2 General Information about this Library . 2

1.3 Supported Devices . 2

1.4 AVR-LibC License . 3

2 Toolchain Overview 5

2.1 Introduction . 5

2.2 FSF and GNU . 5

2.3 GCC . 5

2.4 GNU Binutils . 6

2.5 AVR-LibC . 7

2.6 Building Software . 8

2.7 AVRDUDE . 8

2.8 GDB / Insight / DDD . 8

2.9 AVaRICE . 8

2.10 SimulAVR . 8

2.11 Utilities . 8

2.12 Toolchain Distributions (Distros) . 9

2.13 Open Source . 9

3 Memory Areas and Using malloc() 9

3.1 Introduction . 9

3.2 Internal vs. external RAM . 10

3.3 Tunables for malloc() . 10

3.4 Implementation details . 12

4 Memory Sections 13

4.1 Concepts . 14

4.1.1 Named Sections . 14

4.1.2 Orphan Sections . 15

4.1.3 LMA: Load Memory Address . 15

4.1.4 VMA: Virtual Memory Address . 15

4.2 The Linker Script: Building Blocks . 15

4.2.1 Input Sections and Output Sections . 16

4.2.2 Memory Regions . 16

4.3 Output Sections of the Default Linker Script . 17

4.3.1 The .text Output Section . 17

4.3.2 The .data Output Section . 20

4.3.3 The .bss Output Section . 20

4.3.4 The .noinit Output Section . 20

4.3.5 The .rodata Output Section . 20

4.3.6 The .eeprom Output Section . 21

Generated by Doxygen

ii

4.3.7 The .fuse, .lock and .signature Output Sections . 21

4.3.8 The .note.gnu.avr.deviceinfo Section . 21

4.4 Symbols in the Default Linker Script . 22

4.5 Output Sections and Code Size . 22

4.6 Using Sections . 23

4.6.1 In C/C++ Code . 23

4.6.2 In Assembly Code . 23

5 Data in Program Space 24

5.1 Introduction . 24

5.2 A Note On const . 24

5.3 Storing and Retrieving Data in the Program Space . 25

5.4 Storing and Retrieving Strings in the Program Space . 26

5.5 Caveats . 27

6 AVR-LibC and Assembler Programs 27

6.1 Introduction . 27

6.2 Invoking the Compiler . 28

6.3 Example Program . 28

6.4 Assembler Directives . 30

6.5 Operand Modifiers . 31

7 Inline Assembler Cookbook 32

7.1 About this Document . 33

7.2 The Anatomy of a GCC asm Statement . 33

7.3 Special Sequences . 35

7.4 Constraints . 35

7.5 Print Modifiers . 37

7.6 Operand Modifiers . 38

7.7 Examples . 39

7.7.1 Swapping Nibbles . 39

7.7.2 Swapping Bytes . 39

7.7.3 Accessing Memory . 40

7.7.4 Accessing Bytes of wider Expressions . 41

7.7.5 Jumping and Branching . 42

7.8 Binding local Variables to Registers . 43

7.8.1 Interfacing non-ABI Functions . 43

7.9 Specifying the Assembly Name of Static Objects . 44

7.10 What won't work . 44

7.10.1 Setting a Register on one asm and using it in a different one 45

7.10.2 Letting an Operand cross the Boundaries of the Y Register 45

7.10.3 Using Matching Constraints "=0"..."=9" with Output Operands 45

8 How to Build a Library 45

Generated by Doxygen

iii

8.1 Introduction . 45

8.2 How the Linker Works . 46

8.3 How to Design a Library . 46

8.4 Creating a Library . 46

8.5 Using a Library . 47

9 Benchmarks 48

9.1 A few of libc functions. 48

9.2 Math functions. 49

10 Porting From IAR to AVR GCC 50

10.1 Introduction . 50

10.2 Registers . 50

10.3 Interrupt Service Routines (ISRs) . 51

10.4 Intrinsic Routines . 51

10.5 Flash Variables . 51

10.6 Non-Returning main() . 52

10.7 Locking Registers . 53

11 Frequently Asked Questions 53

11.1 FAQ Index . 53

11.2 Why doesn't my program recognize a variable updated in an interrupt routine? 54

11.3 How to permanently bind a variable to a register? . 55

11.4 How to modify MCUCR or WDTCR early? . 55

11.5 What is all this _BV() stuff about? . 56

11.6 Can I use C++ on the AVR? . 56

11.7 Shouldn't I initialize all my variables? . 57

11.8 Why do some 16-bit timer registers sometimes get trashed? . 57

11.9 How do I use a #define'd constant in an asm statement? . 58

11.10 Why does the PC randomly jump around when single-stepping through my program in avr-gdb? . . 58

11.11 How do I trace an assembler file in avr-gdb? . 59

11.12 How do I pass an IO port as a parameter to a function? . 60

11.13 What registers are used by the C compiler? . 61

11.14 How do I put an array of strings completely in ROM? . 62

11.14.1 Using named address-spaces . 63

11.15 How to use external RAM? . 63

11.16 Which -O flag to use? . 64

11.17 How do I relocate code to a fixed address? . 64

11.18 My UART is generating nonsense! My ATmega128 keeps crashing! Port F is completely broken! . 65

11.19 Why do all my "foo...bar" strings eat up the SRAM? . 66

11.20 How to detect RAM memory and variable overlap problems? . 66

11.21 Is it really impossible to program the ATtinyXX in C? . 67

11.22 What is this "clock skew detected" message? . 67

Generated by Doxygen

iv

11.23 Why are (many) interrupt flags cleared by writing a logical 1? . 67

11.24 Why have "programmed" fuses the bit value 0? . 68

11.25 Which AVR-specific assembler operators are available? . 68

11.26 Why are interrupts re-enabled in the middle of writing the stack pointer? 68

11.27 Why are there five different linker scripts? . 69

11.28 How to add a raw binary image to linker output? . 69

11.29 How do I perform a software reset of the AVR? . 70

11.30 What pitfalls exist when writing reentrant code? . 70

11.31 Why are some addresses of the EEPROM corrupted (usually address zero)? 72

11.32 Why is my baud rate wrong? . 73

11.33 On a device with more than 128 KiB of flash, how to make function pointers work? 73

11.34 Why is assigning ports in a "chain" a bad idea? . 73

11.35 Which header files are included in my program? . 74

11.36 Which macros are defined in my program? Where are they defined, and to what value? 74

11.37 What ISR names are available for my device? . 75

12 Building and Installing the GNU Tool Chain 76

12.1 Required AVR Tools . 76

12.2 Optional AVR Tools . 77

12.3 Building and Installing under Linux, FreeBSD, and Others . 77

12.3.1 Preparations . 77

12.3.2 GNU Binutils for the AVR target . 78

12.3.3 GCC for the AVR target . 79

12.3.4 AVR-LibC . 80

12.3.5 AVRDUDE . 80

12.3.6 SimulAVR . 81

12.3.7 AVaRICE . 81

12.4 Building and Installing under Windows . 81

12.4.1 Tools Required for Building the Toolchain for Windows . 82

12.4.2 Building the Toolchain for Windows . 83

12.5 Canadian Cross Builds . 87

12.6 Using Git . 88

13 Using the GNU tools 89

13.1 Options for the C compiler avr-gcc . 89

13.1.1 Machine-specific options for the AVR . 89

13.1.2 Selected general compiler options . 90

13.2 Options for the assembler avr-as . 92

13.2.1 Machine-specific assembler options . 93

13.2.2 Examples for assembler options passed through the C compiler 93

13.3 Controlling the linker avr-ld . 94

13.3.1 Selected linker options . 94

13.3.2 Passing linker options from the C compiler . 94

Generated by Doxygen

v

14 Compiler optimization 95

14.1 Problems with reordering code . 95

15 Using the avrdude program 97

16 Acknowledgments 98

17 Deprecated List 99

18 Module Index 99

18.1 Modules . 99

19 Data Structure Index 101

19.1 Data Structures . 101

20 File Index 101

20.1 File List . 101

21 Module Documentation 103

21.1 <alloca.h>: Allocate space in the stack . 103

21.1.1 Detailed Description . 103

21.1.2 Function Documentation . 103

21.2 <assert.h>: Diagnostics . 104

21.2.1 Detailed Description . 104

21.2.2 Macro Definition Documentation . 104

21.3 <ctype.h>: Character Operations . 105

21.3.1 Detailed Description . 105

21.3.2 Function Documentation . 105

21.4 <errno.h>: System Errors . 107

21.4.1 Detailed Description . 108

21.4.2 Macro Definition Documentation . 108

21.4.3 Variable Documentation . 108

21.5 <inttypes.h>: Integer Type conversions . 108

21.5.1 Detailed Description . 111

21.5.2 Macro Definition Documentation . 111

21.5.3 Typedef Documentation . 121

21.6 <math.h>: Mathematics . 122

21.6.1 Detailed Description . 124

21.6.2 Macro Definition Documentation . 125

21.6.3 Function Documentation . 127

21.7 <setjmp.h>: Non-local goto . 142

21.7.1 Detailed Description . 143

21.7.2 Function Documentation . 143

21.8 <stdint.h>: Standard Integer Types . 144

21.8.1 Detailed Description . 147

Generated by Doxygen

vi

21.8.2 Macro Definition Documentation . 147

21.8.3 Typedef Documentation . 152

21.9 <stdio.h>: Standard IO facilities . 156

21.9.1 Detailed Description . 157

21.9.2 Macro Definition Documentation . 159

21.9.3 Typedef Documentation . 161

21.9.4 Function Documentation . 162

21.10 <stdlib.h>: General utilities . 172

21.10.1 Detailed Description . 173

21.10.2 Macro Definition Documentation . 173

21.10.3 Typedef Documentation . 174

21.10.4 Function Documentation . 174

21.10.5 Variable Documentation . 183

21.11 <string.h>: Strings . 184

21.11.1 Detailed Description . 185

21.11.2 Macro Definition Documentation . 185

21.11.3 Function Documentation . 185

21.12 <time.h>: Time . 197

21.12.1 Detailed Description . 198

21.12.2 Macro Definition Documentation . 199

21.12.3 Typedef Documentation . 200

21.12.4 Enumeration Type Documentation . 200

21.12.5 Function Documentation . 201

21.13 <avr/boot.h>: Bootloader Support Utilities . 207

21.13.1 Detailed Description . 207

21.13.2 Macro Definition Documentation . 208

21.14 <avr/cpufunc.h>: Special AVR CPU functions . 212

21.14.1 Detailed Description . 213

21.14.2 Macro Definition Documentation . 213

21.14.3 Function Documentation . 213

21.15 <avr/eeprom.h>: EEPROM handling . 214

21.15.1 Detailed Description . 215

21.15.2 Macro Definition Documentation . 215

21.15.3 Function Documentation . 216

21.16 <avr/fuse.h>: Fuse Support . 219

21.17 <avr/interrupt.h>: Interrupts . 222

21.17.1 Detailed Description . 222

21.17.2 Macro Definition Documentation . 225

21.18 <avr/io.h>: AVR device-specific IO definitions . 228

21.18.1 Detailed Description . 229

21.18.2 Macro Definition Documentation . 229

21.19 <avr/lock.h>: Lockbit Support . 230

Generated by Doxygen

vii

21.20 <avr/pgmspace.h>: Program Space Utilities . 232

21.20.1 Detailed Description . 234

21.20.2 Macro Definition Documentation . 234

21.20.3 Function Documentation . 237

21.21 <avr/power.h>: Power Reduction Management . 259

21.21.1 Detailed Description . 259

21.21.2 Macro Definition Documentation . 261

21.21.3 Function Documentation . 262

21.22 Additional notes from <avr/sfr_defs.h> . 263

21.23 <avr/sfr_defs.h>: Special function registers . 263

21.23.1 Detailed Description . 264

21.23.2 Macro Definition Documentation . 264

21.24 <avr/signature.h>: Signature Support . 265

21.25 <avr/sleep.h>: Power Management and Sleep Modes . 266

21.25.1 Detailed Description . 266

21.25.2 Function Documentation . 266

21.26 <avr/version.h>: avr-libc version macros . 268

21.26.1 Detailed Description . 268

21.26.2 Macro Definition Documentation . 268

21.27 <avr/builtins.h>: avr-gcc builtins documentation . 269

21.27.1 Detailed Description . 269

21.27.2 Function Documentation . 269

21.28 <avr/wdt.h>: Watchdog timer handling . 271

21.28.1 Detailed Description . 271

21.28.2 Macro Definition Documentation . 271

21.29 <util/delay.h>: Convenience functions for busy-wait delay loops 273

21.29.1 Detailed Description . 274

21.29.2 Macro Definition Documentation . 274

21.29.3 Function Documentation . 274

21.30 <util/atomic.h> Atomically and Non-Atomically Executed Code Blocks 276

21.30.1 Detailed Description . 276

21.30.2 Macro Definition Documentation . 277

21.31 <util/crc16.h>: CRC Computations . 278

21.31.1 Detailed Description . 279

21.31.2 Function Documentation . 279

21.32 <util/delay_basic.h>: Basic busy-wait delay loops . 282

21.32.1 Detailed Description . 282

21.32.2 Function Documentation . 282

21.33 <util/eu_dst.h>: Daylight Saving function for the European Union. 282

21.33.1 Detailed Description . 283

21.33.2 Function Documentation . 283

21.34 <util/parity.h>: Parity bit generation . 283

Generated by Doxygen

viii

21.34.1 Detailed Description . 283

21.34.2 Function Documentation . 283

21.35 <util/setbaud.h>: Helper macros for baud rate calculations . 284

21.35.1 Detailed Description . 284

21.35.2 Macro Definition Documentation . 285

21.36 <util/twi.h>: TWI bit mask definitions . 286

21.36.1 Detailed Description . 286

21.36.2 Macro Definition Documentation . 287

21.37 <util/usa_dst.h>: Daylight Saving function for the USA. 290

21.37.1 Detailed Description . 290

21.37.2 Function Documentation . 290

21.38 <compat/deprecated.h>: Deprecated items . 291

21.38.1 Detailed Description . 291

21.38.2 Macro Definition Documentation . 292

21.38.3 Function Documentation . 293

21.39 <compat/ina90.h>: Compatibility with IAR EWB 3.x . 293

21.40 Demo projects . 294

21.40.1 Detailed Description . 294

21.41 Combining C and assembly source files . 295

21.41.1 Hardware setup . 295

21.41.2 A code walkthrough . 295

21.41.3 The source code . 297

21.42 A simple project . 297

21.42.1 The Project . 297

21.42.2 The Source Code . 299

21.42.3 Compiling and Linking . 300

21.42.4 Examining the Object File . 300

21.42.5 Linker Map Files . 304

21.42.6 Generating Intel Hex Files . 305

21.42.7 Letting Make Build the Project . 306

21.42.8 Reference to the source code . 307

21.43 A more sophisticated project . 308

21.43.1 Hardware setup . 308

21.43.2 Functional overview . 310

21.43.3 A code walkthrough . 310

21.43.4 The source code . 312

21.44 Using the standard IO facilities . 312

21.44.1 Hardware setup . 312

21.44.2 Functional overview . 313

21.44.3 A code walkthrough . 314

21.44.4 The source code . 317

21.45 Example using the two-wire interface (TWI) . 317

Generated by Doxygen

ix

21.45.1 Introduction into TWI . 318

21.45.2 The TWI example project . 318

21.45.3 The Source Code . 318

22 Data Structure Documentation 321

22.1 div_t Struct Reference . 321

22.1.1 Detailed Description . 321

22.1.2 Field Documentation . 322

22.2 ldiv_t Struct Reference . 322

22.2.1 Detailed Description . 322

22.2.2 Field Documentation . 322

22.3 tm Struct Reference . 323

22.3.1 Detailed Description . 323

22.3.2 Field Documentation . 323

22.4 week_date Struct Reference . 324

22.4.1 Detailed Description . 324

22.4.2 Field Documentation . 324

23 File Documentation 325

23.1 project.h . 325

23.2 iocompat.h . 325

23.3 defines.h . 327

23.4 hd44780.h . 328

23.5 lcd.h . 329

23.6 uart.h . 329

23.7 alloca.h . 330

23.8 assert.h File Reference . 331

23.9 assert.h . 331

23.10 boot.h File Reference . 332

23.11 boot.h . 333

23.12 builtins.h File Reference . 341

23.13 builtins.h . 341

23.14 cpufunc.h File Reference . 343

23.15 cpufunc.h . 343

23.16 eeprom.h . 344

23.17 fuse.h File Reference . 348

23.18 fuse.h . 348

23.19 interrupt.h File Reference . 352

23.20 interrupt.h . 352

23.21 io.h File Reference . 357

23.22 io.h . 357

23.23 lock.h File Reference . 366

23.24 lock.h . 366

Generated by Doxygen

x

23.25 pgmspace.h File Reference . 369

23.26 pgmspace.h . 372

23.27 portpins.h . 396

23.28 power.h File Reference . 402

23.29 power.h . 403

23.30 sfr_defs.h . 424

23.31 signal.h . 427

23.32 signature.h File Reference . 428

23.33 signature.h . 428

23.34 sleep.h File Reference . 429

23.35 sleep.h . 429

23.36 version.h . 433

23.37 wdt.h File Reference . 434

23.38 wdt.h . 435

23.39 xmega.h . 442

23.40 deprecated.h . 443

23.41 ina90.h . 446

23.42 ctype.h File Reference . 447

23.43 ctype.h . 448

23.44 errno.h File Reference . 450

23.45 errno.h . 450

23.46 inttypes.h File Reference . 452

23.47 inttypes.h . 454

23.48 math.h File Reference . 461

23.49 math.h . 464

23.50 setjmp.h File Reference . 472

23.51 setjmp.h . 472

23.52 stdint.h File Reference . 474

23.53 stdint.h . 477

23.54 stdio.h File Reference . 485

23.55 stdio.h . 486

23.56 stdlib.h File Reference . 498

23.57 stdlib.h . 500

23.58 string.h File Reference . 509

23.59 string.h . 510

23.60 time.h File Reference . 517

23.61 time.h . 518

23.62 atomic.h File Reference . 525

23.63 atomic.h . 525

23.64 crc16.h File Reference . 529

23.65 crc16.h . 529

23.66 delay.h File Reference . 533

Generated by Doxygen

1 AVR-LibC 1

23.67 delay.h . 534

23.68 delay_basic.h File Reference . 537

23.69 delay_basic.h . 537

23.70 eu_dst.h File Reference . 539

23.71 eu_dst.h . 539

23.72 parity.h File Reference . 540

23.73 parity.h . 540

23.74 setbaud.h File Reference . 541

23.75 setbaud.h . 541

23.76 compat/twi.h . 544

23.77 twi.h File Reference . 544

23.78 util/twi.h . 545

23.79 usa_dst.h File Reference . 548

23.80 usa_dst.h . 548

23.81 eedef.h . 549

23.82 fdevopen.c File Reference . 551

23.83 stdio_private.h . 551

23.84 xtoa_fast.h . 552

23.85 dtoa_conv.h . 552

23.86 stdlib_private.h . 553

23.87 ephemera_common.h . 554

Index 557

1 AVR-LibC

1.1 Introduction

The latest version of this document is always available from https://avrdudes.github.io/avr-libc/

This documentation is distributed under the same licensing conditions as the entire library itself, see License below.

The AVR-LibC package provides a subset of the standard C library for Microchip (formerly Atmel)
AVR 8-bit RISC microcontrollers. In addition, the library provides the basic startup code needed by
most applications.

There is a wealth of information in this document which goes beyond simply describing the interfaces and routines
provided by the library. We hope that this document provides enough information to get a new AVR developer up to
speed quickly using the freely available development tools: binutils, gcc, AVR-LibC and many others.

If you find yourself stuck on a problem which this document doesn't quite address, you may wish to post a message
to the avr-gcc mailing list. Most of the developers of the AVR Binutils and GCC ports in addition to the devleopers
of AVR-LibC subscribe to the list, so you will usually be able to get your problem resolved. You can subscribe to the
list at http://lists.nongnu.org/mailman/listinfo/avr-gcc-list . Before posting to the list,
you might want to try reading the Frequently Asked Questions chapter of this document.

Note

If you think you've found a bug, or have a suggestion for an improvement, either in this documentation or in
the library itself, please use the bug tracker to ensure the issue won't be forgotten.

Generated by Doxygen

https://avrdudes.github.io/avr-libc/
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/8-bit-mcus/avr-mcus
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/8-bit-mcus/avr-mcus
http://lists.nongnu.org/mailman/listinfo/avr-gcc-list
https://github.com/avrdudes/avr-libc/issues

2

1.2 General Information about this Library

In general, it has been the goal to stick as best as possible to established standards while implementing this library.
Commonly, this refers to the C library as described by the ANSI X3.159-1989 and ISO/IEC 9899:1990 ("ANSI-C")
standard, as well as parts of their successor ISO/IEC 9899:1999 ("C99"). Some additions have been inspired by
other standards like IEEE Std 1003.1-1988 ("POSIX.1"), while other extensions are purely AVR-specific (like the
entire program-space string interface).

Unless otherwise noted, functions of this library are not guaranteed to be reentrant. In particular, any functions that
store local state are known to be non-reentrant, as well as functions that manipulate I/O registers like the EEPROM
access routines. If these functions are used within both standard and interrupt contexts undefined behaviour will
result. See the FAQ for a more detailed discussion.

1.3 Supported Devices

The following is a list of AVR devices currently supported by the library. Note that actual support for some newer
devices depends on the ability of the compiler to support these devices at library compile-time.

megaAVR Devices: ATmega103, ATmega128, ATmega128A, ATmega1280, ATmega1281, ATmega1284,
ATmega1284P, ATmega16, ATmega161, ATmega162, ATmega163, ATmega164A, ATmega164P,
ATmega164PA, ATmega165, ATmega165A, ATmega165P, ATmega165PA, ATmega168, ATmega168A,
ATmega168P, ATmega168PA, ATmega168PB, ATmega16A, ATmega2560, ATmega2561, ATmega32,
ATmega32A, ATmega323, ATmega324A, ATmega324P, ATmega324PA, ATmega324PB, ATmega325,
ATmega325A, ATmega325P, ATmega325PA, ATmega3250, ATmega3250A, ATmega3250P, ATmega3250PA,
ATmega328, ATmega328P, ATmega328PB, ATmega48, ATmega48A, ATmega48PA, ATmega48PB,
ATmega48P, ATmega64, ATmega64A, ATmega640, ATmega644, ATmega644A, ATmega644P,
ATmega644PA, ATmega645, ATmega645A, ATmega645P, ATmega6450, ATmega6450A, ATmega6450P,
ATmega8, ATmega8A, ATmega88, ATmega88A, ATmega88P, ATmega88PA, ATmega88PB, ATmega8515,
ATmega8535

megaAVR 0-Series Devices: ATmega808, ATmega809, ATmega1608, ATmega1609, ATmega3208,
ATmega3209, ATmega4808, ATmega4809

tinyAVR Devices: ATtiny11 [1], ATtiny12 [1], ATtiny13, ATtiny13A, ATtiny15 [1], ATtiny22, ATtiny24, ATtiny24A,
ATtiny25, ATtiny26, ATtiny261, ATtiny261A, ATtiny28 [1], ATtiny2313, ATtiny2313A, ATtiny4313, ATtiny43U,
ATtiny44, ATtiny44A, ATtiny441, ATtiny45, ATtiny461, ATtiny461A, ATtiny48, ATtiny828, ATtiny84, ATtiny84A,
ATtiny841, ATtiny85, ATtiny861, ATtiny861A, ATtiny88, ATtiny1634

tinyAVR 0-Series Devices: ATtiny202, ATtiny204, ATtiny402, ATtiny404, ATtiny406, ATtiny804, ATtiny806,
ATtiny807, ATtiny1604, ATtiny1606, ATtiny1607

tinyAVR 1-Series Devices: ATtiny212, ATtiny214, ATtiny412, ATtiny414, ATtiny416, ATtiny417, ATtiny814,
ATtiny816, ATtiny817, ATtiny1614, ATtiny1616, ATtiny1617, ATtiny3214, ATtiny3216, ATtiny3217

tinyAVR 2-Series Devices: ATtiny424, ATtiny426, ATtiny427, ATtiny824, ATtiny826, ATtiny827, ATtiny1624,
ATtiny1626, ATtiny1627, ATtiny3224, ATtiny3226, ATtiny3227

Reduced tinyAVR Devices with only 16 GPRs: ATtiny4, ATtiny5, ATtiny9, ATtiny10, ATtiny102, ATtiny104,
ATtiny20, ATtiny40

Automotive AVR Devices: ATtiny87, ATtiny167, ATA5505, ATA5272, ATA5702M322, ATA5782, ATA5790,
ATA5790N, ATA5831, ATA5795, ATA6285, ATA6286, ATA6289, ATA6612C, ATA6613C, ATA6614Q,
ATA6616C, ATA6617C, ATA664251

Automotive CAN AVR Devices: ATmega16M1, ATmega32C1, ATmega32M1, ATmega64C1, ATmega64M1

CAN AVR Devices: AT90CAN32, AT90CAN64, AT90CAN128

Generated by Doxygen

1.4 AVR-LibC License 3

LCD AVR Devices: ATmega169, ATmega169A, ATmega169P, ATmega169PA, ATmega329, ATmega329A,
ATmega329P, ATmega329PA, ATmega3290, ATmega3290A, ATmega3290P, ATmega3290PA, ATmega649,
ATmega649A, ATmega6490, ATmega6490A, ATmega6490P, ATmega649P

Lighting AVR Devices: AT90PWM1, AT90PWM2, AT90PWM2B, AT90PWM216, AT90PWM3, AT90PWM3B,
AT90PWM316, AT90PWM161, AT90PWM81

Smart Battery AVR Devices: ATmega8HVA, ATmega16HVA, ATmega16HVA2, ATmega16HVB,
ATmega16HVBREVB, ATmega32HVB, ATmega32HVBREVB, ATmega64HVE, ATmega64HVE2,
ATmega406

USB AVR Devices: AT76C711 [3], AT90USB82, AT90USB162, AT90USB646, AT90USB647, AT90USB1286,
AT90USB1287, ATmega8U2, ATmega16U2, ATmega16U4, ATmega32U2, ATmega32U4, ATmega32U6,
AT43USB320, AT43USB355

XMEGA Devices: ATxmega8E5, ATxmega16A4, ATxmega16D4, ATxmega32A4, ATxmega32D3, ATxmega32D4,
ATxmega32E5, ATxmega64A1, ATxmega64A3, ATxmega64D3, ATxmega64D4, ATxmega128A1,
ATxmega128A3, ATxmega128D3, ATxmega128D4, ATxmega192A3, ATxmega192D3, ATxmega256A3,
ATxmega256A3B, ATxmega256D3

USB XMEGA Devices: ATxmega16A4U, ATxmega16C4, ATxmega32A4U, ATxmega32C3, ATxmega32C4,
ATxmega64A1U, ATxmega64A3U, ATxmega64A4U, ATxmega64B1, ATxmega64B3, ATxmega64C3,
ATxmega128A1U, ATxmega128A3U, ATxmega128A4U, ATxmega128B1, ATxmega128B3, ATxmega128C3,
ATxmega192A3U, ATxmega192C3, ATxmega256A3U, ATxmega256A3BU, ATxmega256C3,
ATxmega384C3, ATxmega384D3

AVR-Dx Devices: AVR16DD14, AVR16DD20, AVR16DD28, AVR16DD32, AVR32DA28, AVR32DA32,
AVR32DA48, AVR32DB28, AVR32DB32, AVR32DB48, AVR32DD14, AVR32DD20, AVR32DD28,
AVR32DD32, AVR64DA28, AVR64DA32, AVR64DA48, AVR64DA64, AVR64DB28, AVR64DB32,
AVR64DB48, AVR64DB64, AVR64DD14, AVR64DD20, AVR64DD28, AVR64DD32, AVR128DA28,
AVR128DA32, AVR128DA48, AVR128DA64, AVR128DB28, AVR128DB32, AVR128DB48, AVR128DB64

USB AVR-Dx Devices: AVR64DU28, AVR64DU32

AVR-Ex Devices: AVR16EA28, AVR16EA32, AVR16EA48, AVR16EB14, AVR16EB20, AVR16EB28,
AVR16EB32, AVR32EA28, AVR32EA32, AVR32EA48, AVR64EA28, AVR64EA32, AVR64EA48

Wireless AVR Devices: ATmega644RFR2, ATmega64RFR2, ATmega128RFA1, ATmega1284RFR2,
ATmega128RFR2, ATmega2564RFR2, ATmega256RFR2

Miscellaneous Devices: AT94K [2], AT86RF401, AT90SCR100, M3000 [4]

Classic AVR Devices: AT90S1200 [1], AT90S2313, AT90S2323, AT90S2333, AT90S2343, AT90S4414,
AT90S4433, AT90S4434, AT90S8515, AT90C8534, AT90S8535

Note [1] Assembly only. There is no direct support for these devices to be programmed in C since they do not
have a RAM based stack. Still, it could be possible to program them in C, see the FAQ for an option.

Note [2] The AT94K devices are a combination of FPGA and AVR microcontroller. [TRoth-2002/11/12: Not sure
of the level of support for these. More information would be welcomed.]

Note [3] The AT76C711 is a USB to fast serial interface bridge chip using an AVR core.

Note [4] The M3000 is a motor controller AVR ASIC from Intelligent Motion Systems (IMS) / Schneider Electric.

1.4 AVR-LibC License

AVR-LibC can be freely used and redistributed, provided the following license conditions are met.

Generated by Doxygen

4

The contents of AVR-LibC are licensed with a Modified BSD License.

All of this is supposed to be Free Software, Open Source, DFSG-free,
GPL-compatible, and OK to use in both free and proprietary applications.

See the license information in the individual source files for details.

Additions and corrections to this file are welcome.

Portions of avr-libc are Copyright (c) 1999-2024
Werner Boellmann,
Dean Camera,
Pieter Conradie,
Brian Dean,
Keith Gudger,
Wouter van Gulik,
Bjoern Haase,
Steinar Haugen,
Peter Jansen,
Reinhard Jessich,
Magnus Johansson,
Georg Johann Lay,
Harald Kipp,
Carlos Lamas,
Cliff Lawson,
Artur Lipowski,
Marek Michalkiewicz,
Todd C. Miller,
Rich Neswold,
Colin O’Flynn,
Bob Paddock,
Andrey Pashchenko,
Reiner Patommel,
Florin-Viorel Petrov,
Alexander Popov,
Michael Rickman,
Theodore A. Roth,
Juergen Schilling,
Philip Soeberg,
Anatoly Sokolov,
Nils Kristian Strom,
Michael Stumpf,
Stefan Swanepoel,
Helmut Wallner,
Eric B. Weddington,
Joerg Wunsch,
Dmitry Xmelkov,
egnite Software GmbH,
The Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

* Neither the name of the copyright holders nor the names of
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

Generated by Doxygen

2 Toolchain Overview 5

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

2 Toolchain Overview

2.1 Introduction

Welcome to the open source software development toolset for the Microchip (formerly Atmel) AVR!

There is not a single tool that provides everything needed to develop software for the AVR. It takes many tools
working together. Collectively, the group of tools are called a toolset, or commonly a toolchain, as the tools are
chained together to produce the final executable application for the AVR microcontroller.

The following sections provide an overview of all of these tools. You may be used to cross-compilers that provide
everything with a GUI front-end, and not know what goes on "underneath the hood". You may be coming from a
desktop or server computer background and not used to embedded systems. Or you may be just learning about
the most common software development toolchain available on Unix and Linux systems. Hopefully the following
overview will be helpful in putting everything in perspective.

2.2 FSF and GNU

According to its website, "the Free Software Foundation (FSF), established in 1985, is dedicated to promoting
computer users' rights to use, study, copy, modify, and redistribute computer programs. The FSF promotes the
development and use of free software, particularly the GNU operating system, used widely in its GNU/Linux variant."
The FSF remains the primary sponsor of the GNU project.

The GNU Project was launched in 1984 to develop a complete Unix-like operating system which is free software:
the GNU system. GNU is a recursive acronym for "GNU's Not Unix"; it is pronounced guh-noo, approximately like
canoe.

One of the main projects of the GNU system is the GNU Compiler Collection, or GCC, and its sister project, GNU
Binutils. These two open source projects provide a foundation for a software development toolchain. Note that these
projects were designed to originally run on Unix-like systems.

2.3 GCC

GCC stands for GNU Compiler Collection. GCC is highly flexible compiler system. It has different compiler front-
ends for different languages. It has many back-ends that generate assembly code for many different processors and
host operating systems. All share a common "middle-end", containing the generic parts of the compiler, including a
lot of optimizations.

In GCC, a host system is the system (processor/OS) that the compiler runs on. A target system is the system that
the compiler compiles code for. And, a build system is the system that the compiler is built (from source code) on. If
a compiler has the same system for host and for target, it is known as a native compiler. If a compiler has different
systems for host and target, it is known as a cross-compiler. (And if all three, build, host, and target systems are
different, it is known as a Canadian cross compiler, but we won't discuss that here.) When GCC is built to execute
on a host system such as FreeBSD, Linux, or Windows, and it is built to generate code for the AVR microcontroller

Generated by Doxygen

6

target, then it is a cross compiler, and this version of GCC is commonly known as "AVR GCC". In documentation,
or discussion, AVR GCC is used when referring to GCC targeting specifically the AVR, or something that is AVR
specific about GCC. The term "GCC" is usually used to refer to something generic about GCC, or about GCC as a
whole.

GCC is different from most other compilers. GCC focuses on translating a high-level language to the target assembly
only. AVR GCC has three available compilers for the AVR: C language, C++, and Ada. The compiler itself does not
assemble or link the final code.

GCC is also known as a "driver" program, in that it knows about, and drives other programs seamlessly to create
the final output. The assembler, and the linker are part of another open source project called GNU Binutils. GCC
knows how to drive the GNU assembler (gas) to assemble the output of the compiler. GCC knows how to drive the
GNU linker (ld) to link all of the object modules into a final executable.

The two projects, GCC and Binutils, are very much interrelated and many of the same volunteers work on both open
source projects.

When GCC is built for the AVR target, the actual program names are prefixed with "avr-". So the actual executable
name for AVR GCC is: avr-gcc. The name "avr-gcc" is used in documentation and discussion when referring to the
program itself and not just the whole AVR GCC system.

See the GCC Web Site and GCC User Manual for more information about GCC.

2.4 GNU Binutils

The name GNU Binutils stands for "Binary Utilities". It contains the GNU assembler (gas), and the GNU linker (ld),
but also contains many other utilities that work with binary files that are created as part of the software development
toolchain.

Again, when these tools are built for the AVR target, the actual program names are prefixed with "avr-". For example,
the assembler program name, for a native assembler is "as" (even though in documentation the GNU assembler
is commonly referred to as "gas"). But when built for an AVR target, it becomes "avr-as". Below is a list of the
programs that are included in Binutils:

avr-as

The Assembler.

avr-ld

The Linker.

avr-ar

Create, modify, and extract from libraries (archives).

avr-ranlib

Generate index to library (archive) contents.

avr-objcopy

Copy and translate object files to different formats.

Generated by Doxygen

2.5 AVR-LibC 7

avr-objdump

Display information from object files including disassembly.

avr-size

List section sizes and total size.

avr-nm

List symbols from object files.

avr-strings

List printable strings from files.

avr-strip

Discard symbols from files.

avr-readelf

Display the contents of ELF format files.

avr-addr2line

Convert addresses to file and line.

avr-c++filt

Filter to demangle encoded C++ symbols.

2.5 AVR-LibC

GCC and Binutils provides a lot of the tools to develop software, but there is one critical component that they do not
provide: a Standard C Library.

There are different open source projects that provide a Standard C Library depending upon your system time,
whether for a native compiler (GNU Libc), for some other embedded system (Newlib), or for some versions of Linux
(uCLibc). The open source AVR toolchain has its own Standard C Library project: AVR-LibC.

AVR-LibC provides many of the same functions found in a regular Standard C Library and many additional library
functions that is specific to an AVR. Some of the Standard C Library functions that are commonly used on a PC
environment have limitations or additional issues that a user needs to be aware of when used on an embedded
system.

AVR-LibC also contains the most documentation about the whole AVR toolchain.

Generated by Doxygen

8

2.6 Building Software

Even though GCC, Binutils, and AVR-LibC are the core projects that are used to build software for the AVR, there
is another piece of software that ties it all together: Make. GNU Make is a program that makes things, and mainly
software. Make interprets and executes a Makefile that is written for a project. A Makefile contains dependency
rules, showing which output files are dependent upon which input files, and instructions on how to build output files
from input files.

Some distributions of the toolchains, and other AVR tools such as MFile, contain a Makefile template written for the
AVR toolchain and AVR applications that you can copy and modify for your application.

See the GNU Make User Manual for more information.

2.7 AVRDUDE

After creating your software, you'll want to program your device. You can do this by using the program AVRDUDE
which can interface with various hardware devices to program your processor.

AVRDUDE is a very flexible package. All the information about AVR processors and various hardware programmers
is stored in a text database. This database can be modified by any user to add new hardware or to add an AVR
processor if it is not already listed.

2.8 GDB / Insight / DDD

The GNU Debugger (GDB) is a command-line debugger that can be used with the rest of the AVR toolchain. Insight
is GDB plus a GUI written in Tcl/Tk. Both GDB and Insight are configured for the AVR and the main executables are
prefixed with the target name: avr-gdb, and avr-insight. There is also a "text mode" GUI for GDB: avr-gdbtui. DDD
(Data Display Debugger) is another popular GUI front end to GDB, available on Unix and Linux systems.

2.9 AVaRICE

AVaRICE is a back-end program to AVR GDB and interfaces to the AVR JTAG In-Circuit Emulator (ICE), to provide
emulation capabilities.

2.10 SimulAVR

SimulAVR is an AVR simulator used as a back-end with AVR GDB.

2.11 Utilities

There are also other optional utilities available that may be useful to add to your toolset.

SRecord is a collection of powerful tools for manipulating EPROM load files. It reads and writes numerous EPROM
file formats, and can perform many different manipulations.

MFile is a simple Makefile generator is meant as an aid to quickly customize a Makefile to use for your AVR
application.

Generated by Doxygen

2.12 Toolchain Distributions (Distros) 9

2.12 Toolchain Distributions (Distros)

All of the various open source projects that comprise the entire toolchain are normally distributed as source code.
It is left up to the user to build the tool application from its source code. This can be a very daunting task to any
potential user of these tools.

Luckily there are people who help out in this area. Volunteers take the time to build the application from source code
on particular host platforms and sometimes packaging the tools for convenient installation by the end user. These
packages contain the binary executables of the tools, pre-made and ready to use. These packages are known as
"distributions" of the AVR toolchain, or by a more shortened name, "distros".

AVR toolchain distros are available on FreeBSD, Windows, Mac OS X, and certain flavors of Linux.

2.13 Open Source

All of these tools, from the original source code in the multitude of projects, to the various distros, are put together
by many, many volunteers. All of these projects could always use more help from other people who are willing to
volunteer some of their time. There are many different ways to help, for people with varying skill levels, abilities, and
available time.

You can help to answer questions in mailing lists such as the avr-gcc-list, or on forums at the AVR Freaks website.
This helps many people new to the open source AVR tools.

If you think you found a bug in any of the tools, it is always a big help to submit a good bug report to the proper
project. A good bug report always helps other volunteers to analyze the problem and to get it fixed for future versions
of the software.

You can also help to fix bugs in various software projects, or to add desirable new features.

Volunteers are always welcome! :-)

3 Memory Areas and Using malloc()

3.1 Introduction

Many of the devices that are possible targets of AVR-LibC have a minimal amount of RAM. The smallest parts
supported by the C environment come with 128 bytes of RAM. This needs to be shared between initialized and
uninitialized variables (sections .data and .bss), the dynamic memory allocator, and the stack that is used for calling
subroutines and storing local (automatic) variables.

Also, unlike larger architectures, there is no hardware-supported memory management which could help in sepa-
rating the mentioned RAM regions from being overwritten by each other.

The standard RAM layout is to place .data variables first, from the beginning of the internal RAM, followed by .bss.
The stack is started from the top of internal RAM, growing downwards. The so-called "heap" available for the
dynamic memory allocator will be placed beyond the end of .bss. Thus, there's no risk that dynamic memory will
ever collide with the RAM variables (unless there were bugs in the implementation of the allocator). There is still a
risk that the heap and stack could collide if there are large requirements for either dynamic memory or stack space.
The former can even happen if the allocations aren't all that large but dynamic memory allocations get fragmented
over time such that new requests don't quite fit into the "holes" of previously freed regions. Large stack space
requirements can arise in a C function containing large and/or numerous local variables or when recursively calling
function.

Generated by Doxygen

10

Note

The pictures shown in this document represent typical situations where the RAM locations refer to an AT-
mega128. The memory addresses used are not displayed in a linear scale.

!

__bss_end

__data_end == __bss_start

__data_start

RAMENDSP

*(__malloc_heap_start) == __heap_start

*(__brkval) (<= *SP − *(__malloc_margin))

variablesvariables

.data .bss

0
x
1
0
F

F

0
x
0
1
0
0

heap stack

on−board RAM external RAM

0
x
1
1
0
0

0
x
F

F
F

F

Figure 1 RAM map of a device with internal RAM

On a simple device like a microcontroller it is a challenge to implement a dynamic memory allocator that is simple
enough so the code size requirements will remain low, yet powerful enough to avoid unnecessary memory fragmen-
tation and to get it all done with reasonably few CPU cycles. Microcontrollers are often low on space and also run
at much lower speeds than the typical PC these days.

The memory allocator implemented in AVR-LibC tries to cope with all of these constraints, and offers some tuning
options that can be used if there are more resources available than in the default configuration.

3.2 Internal vs. external RAM

Obviously, the constraints are much harder to satisfy in the default configuration where only internal RAM is avail-
able. Extreme care must be taken to avoid a stack-heap collision, both by making sure functions aren't nesting too
deeply, and don't require too much stack space for local variables, as well as by being cautious with allocating too
much dynamic memory.

If external RAM is available, it is strongly recommended to move the heap into the external RAM, regardless of
whether or not the variables from the .data and .bss sections are also going to be located there. The stack should
always be kept in internal RAM. Some devices even require this, and in general, internal RAM can be accessed
faster since no extra wait states are required. When using dynamic memory allocation and stack and heap are
separated in distinct memory areas, this is the safest way to avoid a stack-heap collision.

3.3 Tunables for malloc()

There are a number of variables that can be tuned to adapt the behavior of malloc() to the expected require-
ments and constraints of the application. Any changes to these tunables should be made before the very first
call to malloc(). Note that some library functions might also use dynamic memory (notably those from the
<stdio.h>: Standard IO facilities), so make sure the changes will be done early enough in the startup sequence.

The variables __malloc_heap_start and __malloc_heap_end can be used to restrict the malloc() func-
tion to a certain memory region. These variables are statically initialized to point to __heap_start and __←↩

heap_end, respectively, where __heap_start is filled in by the linker to point just beyond .bss, and __heap←↩

_end is set to 0 which makes malloc() assume the heap is below the stack.

If the heap is going to be moved to external RAM, __malloc_heap_end must be adjusted accordingly. This
can either be done at run-time, by writing directly to this variable, or it can be done automatically at link-time, by
adjusting the value of the symbol __heap_end.

The following example shows a linker command to relocate the entire .data and .bss segments, and the heap to
location 0x1100 in external RAM. The heap will extend up to address 0xffff.
avr-gcc ... -Wl,--section-start,.data=0x801100,--defsym=__heap_end=0x80ffff ...

Generated by Doxygen

3.3 Tunables for malloc() 11

Note

See explanation for offset 0x800000. See the chapter about using gcc for the -Wl options.

The ld (linker) user manual states that using -Tdata=<x> is equivalent to using –section-start,.data=<x>.
However, you have to use –section-start as above because the GCC frontend also sets the -Tdata option for
all MCU types where the SRAM doesn't start at 0x800060. Thus, the linker is being faced with two -Tdata
options. Sarting with binutils 2.16, the linker changed the preference, and picks the "wrong" option in this
situation.

*(__brkval)

SP

RAMEND

__bss_end

__data_end == __bss_start

__data_start

*(__malloc_heap_end) == __heap_end

*(__malloc_heap_start) == __heap_start

0
x
1
1
0
0

.data

variables

.bss

heap

0
x
F

F
F

F

external RAM

0
x
1
0
F

F

0
x
0
1
0

0

stack

on−board RAM

variables

Figure 2 Internal RAM: stack only, external RAM: variables and heap

If dynamic memory should be placed in external RAM, while keeping the variables in internal RAM, something like
the following could be used. Note that for demonstration purposes, the assignment of the various regions has not
been made adjacent in this example, so there are "holes" below and above the heap in external RAM that remain
completely unaccessible by regular variables or dynamic memory allocations (shown in light bisque color in the
picture below).
avr-gcc ... -Wl,--defsym=__heap_start=0x802000,--defsym=__heap_end=0x803fff ...

SP

RAMEND

__bss_end

__data_end == __bss_start

__data_start

*(__malloc_heap_end) == __heap_end

*(__brkval)

*(__malloc_heap_start) == __heap_start

0
x
1

0
F

F

0
x
0

1
0

0

stack

on−board RAM

0
x
1

1
0

0

0
x
F

F
F

F

.data

variablesvariables

.bss

0
x
3

F
F

F

heap

0
x
2

0
0

0

external RAM

Figure 3 Internal RAM: variables and stack, external RAM: heap

If __malloc_heap_end is 0, the allocator attempts to detect the bottom of stack in order to prevent a stack-
heap collision when extending the actual size of the heap to gain more space for dynamic memory. It will not try
to go beyond the current stack limit, decreased by __malloc_margin bytes. Thus, all possible stack frames
of interrupt routines that could interrupt the current function, plus all further nested function calls must not require
more stack space, or they will risk colliding with the data segment.

The default value of __malloc_margin is set to 32.

Generated by Doxygen

12

3.4 Implementation details

Dynamic memory allocation requests will be returned with a two-byte header prepended that records the size of
the allocation. This is later used by free(). The returned address points just beyond that header. Thus, if the
application accidentally writes before the returned memory region, the internal consistency of the memory allocator
is compromised.

The implementation maintains a simple freelist that accounts for memory blocks that have been returned in previous
calls to free(). Note that all of this memory is considered to be successfully added to the heap already, so no further
checks against stack-heap collisions are done when recycling memory from the freelist.

The freelist itself is not maintained as a separate data structure, but rather by modifying the contents of the freed
memory to contain pointers chaining the pieces together. That way, no additional memory is reqired to maintain this
list except for a variable that keeps track of the lowest memory segment available for reallocation. Since both, a
chain pointer and the size of the chunk need to be recorded in each chunk, the minimum chunk size on the freelist
is four bytes.

When allocating memory, first the freelist is walked to see if it could satisfy the request. If there's a chunk available
on the freelist that will fit the request exactly, it will be taken, disconnected from the freelist, and returned to the
caller. If no exact match could be found, the closest match that would just satisfy the request will be used. The
chunk will normally be split up into one to be returned to the caller, and another (smaller) one that will remain on
the freelist. In case this chunk was only up to two bytes larger than the request, the request will simply be altered
internally to also account for these additional bytes since no separate freelist entry could be split off in that case.

If nothing could be found on the freelist, heap extension is attempted. This is where __malloc_margin will be
considered if the heap is operating below the stack, or where __malloc_heap_end will be verified otherwise.

If the remaining memory is insufficient to satisfy the request, NULL will eventually be returned to the caller.

When calling free(), a new freelist entry will be prepared. An attempt is then made to aggregate the new entry with
possible adjacent entries, yielding a single larger entry available for further allocations. That way, the potential for
heap fragmentation is hopefully reduced. When deallocating the topmost chunk of memory, the size of the heap is
reduced.

A call to realloc() first determines whether the operation is about to grow or shrink the current allocation. When
shrinking, the case is easy: the existing chunk is split, and the tail of the region that is no longer to be used is
passed to the standard free() function for insertion into the freelist. Checks are first made whether the tail chunk
is large enough to hold a chunk of its own at all, otherwise realloc() will simply do nothing, and return the original
region.

When growing the region, it is first checked whether the existing allocation can be extended in-place. If so, this is
done, and the original pointer is returned without copying any data contents. As a side-effect, this check will also
record the size of the largest chunk on the freelist.

If the region cannot be extended in-place, but the old chunk is at the top of heap, and the above freelist walk did
not reveal a large enough chunk on the freelist to satisfy the new request, an attempt is made to quickly extend
this topmost chunk (and thus the heap), so no need arises to copy over the existing data. If there's no more space
available in the heap (same check is done as in malloc()), the entire request will fail.

Otherwise, malloc() will be called with the new request size, the existing data will be copied over, and free() will be
called on the old region.

Generated by Doxygen

4 Memory Sections 13

4 Memory Sections

Section are used to organize code and data of a program on the binary level.

The (compiler-generated) assembly code assigns code, data and other entities like debug information to so called
input sections. These sections serve as input to the linker, which bundles similar sections together to output sections
like .text and .data according to rules defined in the linker description file.

The final ELF binary is then used by programming tools like avrdude, simulators, debuggers and other programs,
for example programs from the GNU Binutils family like avr-size, avr-objdump and avr-readelf.

Sections may have extra properties like section alignment, section flags, section type and rules to locate them or to
assign them to memory regions.

• Concepts

– Named Sections

* Section Flags

* Section Type

* Section Alignment

* Subsections

– Orphan Sections

– LMA: Load Memory Address

– VMA: Virtual Memory Address

• The Linker Script: Building Blocks

– Input Sections and Output Sections

– Memory Regions

• Output Sections of the Default Linker Script

– .text

– .data

– .bss

– .noinit

– .rodata

– .eeprom

– .fuse, .lock and .signature

– .note.gnu.avr.deviceinfo

• Symbols in the Default Linker Script

• Output Sections and Code Size

• Using Sections

– In C/C++ Code

– In Assembly Code

Generated by Doxygen

14

4.1 Concepts

4.1.1 Named Sections

Named sections are sections that can be referred to by their name. The name and other properties can be provided
with the .section directive like in
.section name, "flags", @type

or with the .pushsection directive, which directs the assembler to assemble the following code into the named
section.

An example of a section that is not referred to by its name is the COMMON section. In order to put an object in that
section, special directives like .comm name,size or .lcomm name,size have to be used.

Directives like .text are basically the same like .section .text, where the assembler assumes appropriate
section flags and type; same for directives .data and .bss.

4.1.1.1 Section Flags The section flags can be specified with the .section and .pushsection directives,
see section type for an example. Section flags of output sections can be specified in the linker description file, and
the linker implements heuristics to determine the section flags of output sections from the various input section that
go into it.

Table 1 Section Flags

Flag Meaning
a The section will be allocated, i.e. it occupies space on the target hardware

w The section contains data that can be written at run-time. Sections that only contain read-only entities
don't have the w flag set

x The section contains executable code, though the section may also contain non-executable objects

M A mergeable section

S A string section

G A section group, like used with comdat objects

The last three flags are listed for completeness. They are used by the compiler, for example for header-only C++
modules and to ensure that multiplle instanciations of the same template in different compilaton units does occur at
most once in the executable file.

4.1.1.2 Section Type The section type can be specified with the .section and .pushsection directives,
like in
.section .text.myfunc,"ax",@progbits
.pushsection ".data.myvar", "a", "progbits"

On ELF level, the section type is stored in the section header like Elf32_Shdr.sh_type = SHT_PROGBITS.

Table 2 Section Types

Type Meaning
@progbits The section contains data that will be loaded to the target, like objects in the .text and .data

sections.
@nobits The section does not contain data that needs to be transferred to the target device, like data in

the .bss and .noinit sections. The section still occupies space on the target.

@note The section is a note, like for example the .note.gnu.avr.deviceinfo section.

Generated by Doxygen

4.2 The Linker Script: Building Blocks 15

4.1.1.3 Section Alignment The alignment of a section is the maximum over the alignments of the objects in the
section.

4.1.1.4 Subsections Subsections are compartments of named sections and are introduced with the
.subsection directive. Subsections are located in order of increasing index in their input section. The
default subsection after switching to a new section is subsection 0.

Note

A common misconception is that a section like .text.module.func were a subsection of .text.←↩

module. This is not the case. These two sections are independent, and there is no subset relation. The
sections may have different flags and type, and they may be assigned to different output sections.

4.1.2 Orphan Sections

Orphan sections are sections that are not mentioned in the linker description file. When an input section is orphan,
then the GNU linker implicitly generates an output section of the same name. The linker implements various heuris-
tics to determine sections flags, section type and location of orphaned sections. One use of orphan sections is to
locate code to a fixed address.

Like for any other output section, the start address can be specified by means of linking with -Wl,--section-start,secname=address

4.1.3 LMA: Load Memory Address

The LMA of an object is the address where a loader like avrdude puts the object when the binary is being uploaded
to the target device.

4.1.4 VMA: Virtual Memory Address

The VMA is the address of an object as used by the running program.

VMA and LMA may be different: Suppose a small ATmega8 program with executable code that extends from byte
address 0x0 to 0x20f, and one variable my_var in static strorage. The default linker script puts the content of the
.data output section after the .text output section and into the text segment. The startup code then copies
my_data from its LMA location beginning at 0x210 to its VMA location beginning at 0x800060, because C/C++
requires that all data in static storage must have been initialized when main is entered.

The internal SRAM of ATmega8 starts at RAM address 0x60, which is offset by 0x800000 in order to linearize the
address space (VMA 0x60 is a flash address). The AVR program only ever uses the lower 16 bits of VMAs in static
storage so that the offset of 0x800000 is masked out. But code like "LDI r24,hh8(my_data)" actually sets
R24 to 0x80 and reveals that my_data is an object located in RAM.

4.2 The Linker Script: Building Blocks

The linker description file is the central hub to channel functions and static storage objects of a program to the
various memory spaces and address ranges of a device.

Generated by Doxygen

16

4.2.1 Input Sections and Output Sections

Input sections are sections that are inputs to the linker. Functions and static variables but also additional notes
and debug information are assigned to different input sections by means of assembler directives like .section or
.text. The linker takes all these sections and assigns them to output sections as specified in the linker script.

Output sections are defind in the linker description file. Contrary to the unlimited number of input sections a program
can come up with, there is only a handfull of output sections like .text and .data, that roughly correspond to
the memory spaces of the target device.

One step in the final link is to locate the sections, that is the linker/locator determines at which memory location to
put the output sections, and how to arrange the many input sections within their assigned output section. Locating
means that the linker assigns Load Memory Addresses — addresses as used by a loader like avrdude — and
Virtual Memory Addresses, which are the addresses as used by the running program.

While it is possible to directly assign LMAs and VMAs to output sections in the linker script, the default linker
scripts provided by Binutils assign memory regions (aka. memory segments) to the output sections. This has some
advantages like a linker script that is easier to maintain. An output sections can be assigned to more than one
memory region. For example, non-zero data in static storage (.data) goes to

1. the data region (VMA), because such variables occupy RAM which has to be allocated

2. the text region (LMA), because the initializers for such data has to be kept in some non-volatile memory
(program ROM), so that the startup code can initialize that data so that the variables have their expected
initial values when main() is entered.

The SECTIONS{} portion of a linker script models the input and output section, and it assignes the output section
to the memory regions defined in the MEMORY{} part.

4.2.2 Memory Regions

The memory regions defined in the default linker script model and correspond to the different kinds of memories of
a device.

Table 3 Memory Regions of the Default Linker Script

Region Virtual
Address1

Flags Purpose

text 02 rx Executable code, vector table, data in PROGMEM, __←↩

flash and __memx, startup code, linker stubs, initializers
for .data

data 0x8000002 rw Data in static storage

rodata3 0xa000002 r Read-only data in static storage

eeprom 0x810000 rw EEPROM data
fuse 0x820000 rw Fuse bytes

lock 0x830000 rw Lock bytes

signature 0x840000 rw Device signature

user_signatures 0x850000 rw User signature

Notes

1. The VMAs for regions other than text are offset in order to linearize the non-linear memory address space

Generated by Doxygen

4.3 Output Sections of the Default Linker Script 17

of the AVR Harvard architecture. The target code only ever uses the lower 16 bits of the VMA to access
objects in non-text regions.

2. The addresses for regions text, data and rodata are actually defined as symbols like __TEXT_←↩

REGION_ORIGIN__, so that they can be adjusted by means of, say -Wl,--defsym,__DATA_←↩

REGION_ORIGIN__=0x800060. Same applies for the lengths of all the regions, which is __NAME←↩

_REGION_LENGTH__ for region name.

3. The rodata region is only present in the avrxmega2_flmap and avrxmega4_flmap emulations,
which is the case for Binutils since v2.42 for the AVR64 and AVR128 devices without -mrodata-in-ram.

4.3 Output Sections of the Default Linker Script

This section describes the various output sections defined in the default linker description files.

Table 4 Output Sections and Memory Regions

Output Purpose Memory Region

Section LMA VMA
.text Executable code, data in progmem text text

.data Non-zero data in static storage text data

.bss Zero data in static storage — data

.noinit Non-initialized data in static storage — data

.rodata1 Read-only data in static storage text LMA + offset3

.rodata2 Read-only data in static storage 0x8000 ∗ __flmap4 rodata

.eeprom Data in EEPROM

Note5

eeprom

.fuse Fuse bytes fuse

.lock Lock bytes lock

.signature Signature bytes signature

User signature bytes user_signatures

Notes

1. On avrxmega3 and avrtiny devices.

2. On AVR64 and AVR128 devices without -mrodata-in-ram.

3. With an offset __RODATA_PM_OFFSET__ of 0x4000 or 0x8000 depending on the device.

4. The value of symbol __flmap defaults to the last 32 KiB block of program memory, see the GCC v14
release notes.

5. The LMA actually equals the VMA, but is unused. The flash loader like avrdude knows where to put the data,

4.3.1 The .text Output Section

The .text output section contains the actual machine instructions which make up the program, but also additional
code like jump tables and lookup tables placed in program memory with the PROGMEM attribute.

The .text output section contains the input sections described below. Input sections that are not used by the
tools are omitted. A ∗ wildcard stands for any sequence of characters, including empty ones, that are valid in a
section name.

Generated by Doxygen

https://gcc.gnu.org/onlinedocs/gcc/AVR-Options.html#index-mrodata-in-ram
https://gcc.gnu.org/onlinedocs/gcc/AVR-Options.html#avrxmega3
https://gcc.gnu.org/onlinedocs/gcc/AVR-Options.html#avrtiny
https://gcc.gnu.org/onlinedocs/gcc/AVR-Options.html#avrxmega2
https://gcc.gnu.org/onlinedocs/gcc/AVR-Options.html#avrxmega4
https://gcc.gnu.org/gcc-14/changes.html#avr
https://gcc.gnu.org/gcc-14/changes.html#avr

18

.vectors The .vectors sections contains the interrupt vector table which consists of jumps to weakly defined
labels: To __init for the first entry at index 0, and to __vector_N for the entry at index N≥ 1. The default
value for __vector_N is __bad_interrupt, which jumps to weakly defined __vector_default,
which jumps to __vectors, which is the start of the .vectors section.

Implementing an interrupt service ruotine (ISR) is performed with the help of the ISR macro in C/C++ code.

.progmem.data

.progmem.data.∗

.progmem.gcc.∗ This section is used for read-only data declared with attribute PROGMEM, and for data in
address-space __flash.

The compiler assumes that the .progmem sectons are located in the lower 64 KiB of program memory.
When it does not fit in the lower 64 KiB block, then the program reads garbage except pgm_read_∗_far is
used. In that case however, code can be located in the .progmemx section which does not require to be
located in the lower program memory.

.trampolines Linker stubs for indirect jumps and calls on devices with more than 128 KiB of program memory.
This section must be located in the same 128 KiB block like the interrupt vector table. For some background
on linker stubs, see the GCC documentation on EIND.

.text

.text.∗ Executable code. This is where almost all of the executable code of an application will go.

.ctors

.dtors Tables with addresses of static constructors and destructors, like C++ static constructors and functions
declared with attribute constructor.

The .initN Sections These sections are used to hold the startup code from reset up through the start of main().

The .initN sections are executed in order from 0 to 9: The code from one init section falls through to the
next higher init section. This is the reason for why code in these sections must be naked (more precisely, it
must not contain return instructions), and why code in these sections must never be called explicitly.

When several modules put code in the same init section, the order of execuation is not specified.

Table 5 The .initN Sections

Section Performs Hosted By Symbol1

.init0 Weakly defines the __init label which is the
jump target of the first vector in the interrupt vec-
tor table. When the user defines the __init()
function, it will be jumped to instead.

AVR-LibC2

.init1 Unused —

.init2
• Clears __zero_reg__

• Initializes the stack pointer to the value
of weak symbol __stack, which has a
default value of RAMEND as defined in
avr/io.h

• Initializes EIND to hh8(pm(__←↩

vectors)) on devices that have it

• Initializes RAMPX, RAMPY, RAMPZ
and RAMPD on devices that have all of
them

AVR-LibC

.init3 Initializes the NVMCTRLB.FLMAP bit-field
on devices that have it, except when
-mrodata-in-ram is specified

AVR-LibC __do_flmap_init

Generated by Doxygen

https://gcc.gnu.org/onlinedocs/gcc/Named-Address-Spaces.html
https://gcc.gnu.org/onlinedocs/gcc/AVR-Options.html#eind
https://gcc.gnu.org/onlinedocs/gcc/AVR-Options.html#eind
https://gcc.gnu.org/onlinedocs/gcc/AVR-Options.html#ramp
https://gcc.gnu.org/onlinedocs/gcc/AVR-Options.html#ramp
https://gcc.gnu.org/onlinedocs/gcc/AVR-Options.html#index-mrodata-in-ram
https://gcc.gnu.org/onlinedocs/gcc/AVR-Options.html#index-mrodata-in-ram

4.3 Output Sections of the Default Linker Script 19

Section Performs Hosted By Symbol1

.init4 Initializes data in static storage: Initializes .data
and clears .bss

libgcc __do_copy_data
__do_clear_bss

.init5 Unused —

.init6 Run static C++ constructors and func-
tions defined with __attribute__←↩

((constructor)).

libgcc __do_global_ctors

.init7 Unused —

.init8 Unused —

.init9 Calls main and then jumps to exit AVR-LibC

Notes

1. Code in the .init3, .init4 and .init6 sections is optional; it will only be present when there
is something to do. This will be tracked by the compiler — or has to be tracked by the assembly
programmer — which pulls in the code from the respective library by means of the mentioned symbols,
e.g. by linking with -Wl,-u,__do_flmap_init or by means of
.global __do_copy_data

Conversely, when the respective code is not desired for some reason, the symbol can be satisfied by
defining it with, say, -Wl,--defsym,__do_copy_data=0 so that the code is not pulled in any
more.

2. The code is provided by gcrt1.S.

The .finiN Sections Shutdown code. These sections are used to hold the exit code executed after return from
main() or a call to exit().

The .finiN sections are executed in descending order from 9 to 0 in a fallthrough manner.

Table 6 The .finiN Sections

Section Performs Hosted By Symbol

.fini9 Defines _exit and weakly defines the
exit label

libgcc

.fini8 Run functions registered with atexit() AVR-LibC

.fini7 Unused —

.fini6 Run static C++ destructors and func-
tions defined with __attribute__←↩

((destructor))

libgcc __do_global_dtors

.fini5...1 Unused —

.fini0 Globally disables interrupts and enters an
infinite loop to label __stop_program

libgcc

It is unlikely that ordinary code uses the fini sections. When there are no static destructors and atexit()
is not used, then the respective code is not pulled in form the libraries, and the fini code just consumes four
bytes: a CLI and a RJMP to itself. Common use cases of fini code is when running the GCC test suite where
it reduces fallout, and in simulators to determine (un)orderly termination of a simulated program.

.progmemx.∗ Read-only data in program memory without the requirement that it must reside in the lower 64
KiB. The compiler uses this section for data in the named address-space __memx. Data can be accessed
with pgm_read_∗_far when it is not in a named address-space:
#include <avr/pgmspace.h>

const __memx int array1[] = { 1, 4, 9, 16, 25, 36 };

PROGMEM_FAR
const int array2[] = { 2, 3, 5, 7, 11, 13, 17 };

int add (uint8_t id1, uint8_t id2)
{

uint_farptr_t p_array2 = pgm_get_far_address (array2);

Generated by Doxygen

https://github.com/avrdudes/avr-libc/blob/main/crt1/gcrt1.S

20

int val2 = pgm_read_int_far (p_array2 + sizeof(int) * id2);

return val2 + array1[id1];
}

.jumptables∗ Used to place jump tables in some cases.

4.3.2 The .data Output Section

This section contains data in static storage which has an initializer that is not all zeroes. This includes the following
input sections:

.data∗ Read-write data

.rodata∗ Read-only data. These input sections are only included on devices that host read-only data in RAM.

It is possible to tell the linker the SRAM address of the beginning of the .data section. This is accomplished by
linking with
avr-gcc ... -Tdata addr -Wl,--defsym,__DATA_REGION_START__=addr

Note that addr must be offset by adding 0x800000 the to real SRAM address so that the linker knows that the ad-
dress is in the SRAM memory segment. Thus, if you want the .data section to start at 0x1100, pass 0x801100
as the address to the linker.

Note

When using malloc() in the application (which could even happen inside library calls), additional adjustments
are required.

4.3.3 The .bss Output Section

Data in static storage that will be zeroed by the startup code. This are data objects without explicit initializer, and
data objects with initializers that are all zeroes.

Input sections are .bss∗ and COMMON. Common symbols are defined with directives .comm or .lcomm.

4.3.4 The .noinit Output Section

Data objects in static storage that should not be initialized by the startup code. As the C/C++ standard requires that
all data in static storage is initialized — which includes data without explicit initializer, which will be initialized to all
zeroes — such objects have to be put into section .noinit by hand:
__attribute__ ((section (".noinit")))
int foo;

The only input section in this output section is .noinit. Only data without initializer can be put in this section.

4.3.5 The .rodata Output Section

This section contains read-only data in static storage from .rodata∗ input sections. This output section is only
present for devices where read-only data remains in program memory, which are the devices where (parts of) the
program memory are visible in the RAM address space. This is currently the case for the emulations avrtiny,
avrxmega3, avrxmega2_flmap and avrxmega4_flmap.

Generated by Doxygen

4.3 Output Sections of the Default Linker Script 21

4.3.6 The .eeprom Output Section

This is where EEPROM variables are stored, for example variables declared with the EEMEM attribute. The only
input section (pattern) is .eeprom∗.

4.3.7 The .fuse, .lock and .signature Output Sections

These sections contain fuse bytes, lock bytes and device signature bytes, respectively. The respective input section
patterns are .fuse∗ .lock∗ and .signature∗.

4.3.8 The .note.gnu.avr.deviceinfo Section

This section is actually not mentioned in the default linker script, which means it is an orphan section and hence the
respective output section is implicit.

The startup code from AVR-LibC puts device information in that section to be picked up by simulators or tools like
avr-size, avr-objdump, avr-readelf, etc,

The section is contained in the ELF file but not loaded onto the target. Source of the device specific information are
the device header file and compiler builtin macros. The layout conforms to the standard ELF note section
layout and is laid out as follows.
#include <elf.h>

typedef struct
{

Elf32_Word n_namesz; /* AVR_NOTE_NAME_LEN */
Elf32_Word n_descsz; /* size of avr_desc */
Elf32_Word n_type; /* 1 - the only AVR note type */

} Elf32_Nhdr;

#define AVR_NOTE_NAME_LEN 4

struct note_gnu_avr_deviceinfo
{

Elf32_Nhdr nhdr;
char note_name[AVR_NOTE_NAME_LEN]; /* = "AVR\0" */

struct
{

Elf32_Word flash_start;
Elf32_Word flash_size;
Elf32_Word sram_start;
Elf32_Word sram_size;
Elf32_Word eeprom_start;
Elf32_Word eeprom_size;
Elf32_Word offset_table_size;
/* Offset table containing byte offsets into

string table that immediately follows it.
index 0: Device name byte offset */

Elf32_Off offset_table[1];
/* Standard ELF string table.

index 0 : NULL
index 1 : Device name
index 2 : NULL */

char strtab[2 + strlen(__AVR_DEVICE_NAME__)];
} avr_desc;

};

The contents of this section can be displayed with

• avr-objdump -P avr-deviceinfo file, which is supported since Binutils v2.43.

• avr-readelf -n file, which displays all notes.

Generated by Doxygen

https://man7.org/linux/man-pages/man5/elf.5.html

22

4.4 Symbols in the Default Linker Script

Most of the symbols like main are defined in the code of the application, but some symbols are defined in the
default linker script:

__name_REGION_ORIGIN__ Describes the physical properties of memory region name, where name is one
of TEXT or DATA. The address is a VMA and offset at explained above.
The linker script only supplies a default for the symbol values when they have not been defined by other
means, like for example in the startup code or by --defsym. For example, to let the code start at address
0x100, one can link with

avr-gcc ... -Ttext=0x100 -Wl,--defsym,__TEXT_REGION_ORIGIN__=0x100

__name_REGION_LENGTH__ Describes the physical properties of memory region name, where name is one
of: TEXT, DATA, EEPROM, LOCK, FUSE, SIGNATURE or USER_SIGNATURE.
Only a default is supplied when the symbol is not yet defined by other means. Most of these symbols are
weakly defined in the startup code.

__data_start

__data_end Start and (one past the) end VMA address of the .data section in RAM.

__data_load_start

__data_load_end Start and (one past the) end LMA address of the .data section initializers located in
program memory. Used together with the VMA addresses above by the startup code to copy data initializers
from program memory to RAM.

__bss_start

__bss_end Start and (one past the) end VMA address of the .bss section. The startup code clears this part of
the RAM.

__rodata_start

__rodata_end

__rodata_load_start

__rodata_load_end Start and (one past the) end VMA resp. LMA address of the .rodata output section.
These symbols are only defined when .rodata is not output to the text region, which is the case for
emulations avrxmega2_flmap and avrxmega4_flmap.

__heap_start One past the last object located in static storage. Immediately follows the .noinit section
(which immediately follows .bss, which immediately follows .data). Used by malloc() and friends.

Code that computes a checksum over all relevant code and data in program memory has to consider:

• The range from the beginning of the .text section (address 0x0 in the default layout) up to __data_←↩

load_start.

• For emulations that have the rodata memory region, the range from __rodata_load_start to __←↩

rodata_load_end has also to be taken into account.

4.5 Output Sections and Code Size

The avr-size program (part of Binutils), coming from a Unix background, doesn't account for the .data initial-
ization space added to the .text section, so in order to know how much flash the final program will consume, one
needs to add the values for both, .text and .data (but not .bss), while the amount of pre-allocated SRAM is
the sum of .data and .bss.

Memory usage and free memory can also be displayed with

avr-objdump -P mem-usage code.elf

Generated by Doxygen

4.6 Using Sections 23

4.6 Using Sections

4.6.1 In C/C++ Code

The following example shows how to read and reset the MCUCR special function register on ATmega328. This SFR
holds to reset source like "watchdog reset" or "external reset", and should be read early, prior to the initialization of
RAM and execution of static constructors which may take some time. This means the code has to be placed prior
to .init4 which initializes static storage, but after .init2 which initializes __zero_reg__. As the code runs
prior to the initialization of static storage, variable mcucr must be placed in section .noinit so that it won't be
overridden by that part of the startup code:
#include <avr/io.h>

__attribute__((section(".noinit")))
uint8_t mcucr;

__attribute__((used, unused, naked, section(".init3")))
static void read_MCUCR (void)
{

mcucr = MCUCR;
MCUCR = 0;

}

• The used attribute tells the compiler that the function is used although it is never called.

• The unused attribute tells the compiler that it is fine that the function is unused, and silences respective
diagnostics about the seemingly unused functions.

• The naked attribute is required because the code is located in an init section. The function must not have
a RET statement because the function is never called. According to the GCC documentation, the only code
supported in naked functions is inline assembly, but the code above is simple enough so that GCC can deal
with it.

4.6.2 In Assembly Code

Example:
#include <avr/io.h>

.section .init3,"ax",@progbits
lds r0, MCUCR

.pushsection .noinit,"a",@nobits
mcucr:

.type mcucr, @object

.size mcucr, 1

.space 1
.popsection ; Proceed with .init3

sts mcucr, r0
sts MCUCR, __zero_reg__ ; Initialized in .init2

.text
.global main
.type main, @function
lds r24, mcucr
clr r25
rjmp putchar
.size main, .-main

• The "ax" flags tells that the sections is allocatable (consumes space on the target hardware) and is
executable.

• The @progbits type tells that the section contains bits that have to be uploaded to the target hardware.

For more detais, see the see the gas user manual on the .section directive.

Generated by Doxygen

https://sourceware.org/binutils/docs/as/Section.html#ELF-Version

24

5 Data in Program Space

5.1 Introduction

So you have some constant data and you're running out of room to store it? Many AVRs have limited amount of
RAM in which to store data, but may have more Flash space available. The AVR is a Harvard architecture processor,
where Flash is used for the program, RAM is used for data, and they each have separate address spaces. It is a
challenge to get constant data to be stored in the Program Space, and to retrieve that data to use it in the AVR
application.

The problem is exacerbated by the fact that the C Language was not designed for Harvard architectures, it was
designed for Von Neumann architectures where code and data exist in the same address space. This means that
any compiler for a Harvard architecture processor, like the AVR, has to use other means to operate with separate
address spaces.

Some compilers use non-standard C language keywords, or they extend the standard syntax in ways that are
non-standard. The AVR toolset takes a different approach.

GCC has a special keyword, __attribute__ that is used to attach different attributes to things such as function
declarations, variables, and types. This keyword is followed by an attribute specification in double parentheses. In
AVR GCC, there is a special attribute called progmem. This attribute is use on data declarations, and tells the
compiler to place the data in the Program Memory (Flash).

AVR-LibC provides a simple macro PROGMEM that is defined as the attribute syntax of GCC with the progmem
attribute. This macro was created as a convenience to the end user, as we will see below. The PROGMEM macro is
defined in the <avr/pgmspace.h> system header file.

It is difficult to modify GCC to create new extensions to the C language syntax, so instead, AVR-LibC has created
macros to retrieve the data from the Program Space. These macros are also found in the <avr/pgmspace.h>
system header file.

5.2 A Note On const

Many users bring up the idea of using C's keyword const as a means of declaring data to be in Program Space.
Doing this would be an abuse of the intended meaning of the const keyword.

const is used to tell the compiler that the data is to be "read-only". It is used to help make it easier for the compiler
to make certain transformations, or to help the compiler check for incorrect usage of those variables.

For example, the const keyword is commonly used in many functions as a modifier on the parameter type. This
tells the compiler that the function will only use the parameter as read-only and will not modify the contents of the
parameter variable.

const was intended for uses such as this, not as a means to identify where the data should be stored. If it were
used as a means to define data storage, then it loses its correct meaning (changes its semantics) in other situations
such as in the function parameter example.

Generated by Doxygen

5.3 Storing and Retrieving Data in the Program Space 25

5.3 Storing and Retrieving Data in the Program Space

Let's say you have some global data:
unsigned char mydata[11][10] =
{

{0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09},
{0x0A,0x0B,0x0C,0x0D,0x0E,0x0F,0x10,0x11,0x12,0x13},
{0x14,0x15,0x16,0x17,0x18,0x19,0x1A,0x1B,0x1C,0x1D},
{0x1E,0x1F,0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27},
{0x28,0x29,0x2A,0x2B,0x2C,0x2D,0x2E,0x2F,0x30,0x31},
{0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3A,0x3B},
{0x3C,0x3D,0x3E,0x3F,0x40,0x41,0x42,0x43,0x44,0x45},
{0x46,0x47,0x48,0x49,0x4A,0x4B,0x4C,0x4D,0x4E,0x4F},
{0x50,0x51,0x52,0x53,0x54,0x55,0x56,0x57,0x58,0x59},
{0x5A,0x5B,0x5C,0x5D,0x5E,0x5F,0x60,0x61,0x62,0x63},
{0x64,0x65,0x66,0x67,0x68,0x69,0x6A,0x6B,0x6C,0x6D}

};

and later in your code you access this data in a function and store a single byte into a variable like so:
byte = mydata[i][j];

Now you want to store your data in Program Memory. Use the PROGMEM macro found in <avr/pgmspace.h>
and put it after the declaration of the variable, but before the initializer, like so:
#include <avr/pgmspace.h>
.
.
.
const unsigned char mydata[11][10] PROGMEM =
{

{0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09},
{0x0A,0x0B,0x0C,0x0D,0x0E,0x0F,0x10,0x11,0x12,0x13},
{0x14,0x15,0x16,0x17,0x18,0x19,0x1A,0x1B,0x1C,0x1D},
{0x1E,0x1F,0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27},
{0x28,0x29,0x2A,0x2B,0x2C,0x2D,0x2E,0x2F,0x30,0x31},
{0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3A,0x3B},
{0x3C,0x3D,0x3E,0x3F,0x40,0x41,0x42,0x43,0x44,0x45},
{0x46,0x47,0x48,0x49,0x4A,0x4B,0x4C,0x4D,0x4E,0x4F},
{0x50,0x51,0x52,0x53,0x54,0x55,0x56,0x57,0x58,0x59},
{0x5A,0x5B,0x5C,0x5D,0x5E,0x5F,0x60,0x61,0x62,0x63},
{0x64,0x65,0x66,0x67,0x68,0x69,0x6A,0x6B,0x6C,0x6D}

};

That's it! Now your data is in the Program Space. You can compile, link, and check the map file to verify that
mydata is placed in the correct section.

Now that your data resides in the Program Space, your code to access (read) the data will no longer work. The code
that gets generated will retrieve the data that is located at the address of the mydata array, plus offsets indexed
by the i and j variables. However, the final address that is calculated where to the retrieve the data points to the
Data Space! Not the Program Space where the data is actually located. It is likely that you will be retrieving some
garbage. The problem is that AVR GCC does not intrinsically know that the data resides in the Program Space.

The solution is fairly simple. The "rule of thumb" for accessing data stored in the Program Space is to access the
data as you normally would (as if the variable is stored in Data Space), like so:
byte = mydata[i][j];

then take the address of the data:
byte = &(mydata[i][j]);

then use the appropriate pgm_read_∗ macro, and the address of your data becomes the parameter to that
macro:
byte = pgm_read_byte(&(mydata[i][j]));

The pgm_read_∗ macros take an address that points to the Program Space, and retrieves the data that is stored
at that address. This is why you take the address of the offset into the array. This address becomes the parameter
to the macro so it can generate the correct code to retrieve the data from the Program Space. There are different
pgm_read_∗ macros to read different sizes of data at the address given.

Generated by Doxygen

26

5.4 Storing and Retrieving Strings in the Program Space

Now that you can successfully store and retrieve simple data from Program Space you want to store and retrive
strings from Program Space. And specifically you want to store and array of strings to Program Space. So you start
off with your array, like so:
const char* const string_table[] =
{

"String 1",
"String 2",
"String 3",
"String 4",
"String 5"

};

and then you add your PROGMEM macro to the end of the declaration:
const char* const string_table[] PROGMEM =
{

"String 1",
"String 2",
"String 3",
"String 4",
"String 5"

};

Right? WRONG!

Unfortunately, with GCC attributes, they affect only the declaration that they are attached to. So in this case,
we successfully put the string_table variable, the array itself, in the Program Space. This DOES NOT put the
actual strings themselves into Program Space. At this point, the strings are still in the Data Space, which is probably
not what you want.

In order to put the strings in Program Space, you have to have explicit declarations for each string, and put each
string in Program Space:
const char string_1[] PROGMEM = "String 1";
const char string_2[] PROGMEM = "String 2";
const char string_3[] PROGMEM = "String 3";
const char string_4[] PROGMEM = "String 4";
const char string_5[] PROGMEM = "String 5";

Then use the new symbols in your table, like so:
const char* const string_table[] PROGMEM =
{

string_1,
string_2,
string_3,
string_4,
string_5

};

Now this has the effect of putting string_table in Program Space, where string_table is an array of
pointers to characters (strings), where each pointer is a pointer to the Program Space, where each string is also
stored.

Retrieving the strings are a different matter. You probably don't want to pull the string out of Program Space, byte by
byte, using the pgm_read_byte() macro. There are other functions declared in the <avr/pgmspace.h> header
file that work with strings that are stored in the Program Space.

For example if you want to copy the string from Program Space to a buffer in RAM (like an automatic variable inside
a function, that is allocated on the stack), you can do this:
void foo(void)
{

char buffer[10];

for (uint8_t i = 0; i < 5; i++)
{

strcpy_P(buffer, (const char*) pgm_read_ptr(&(string_table[i])));

// Display buffer on LCD.
}
return;

}

Generated by Doxygen

5.5 Caveats 27

Here, the string_table array is stored in Program Space, so we access it normally, as if were stored in Data
Space, then take the address of the location we want to access, and use the address as a parameter to pgm←↩

_read_ptr. We use the pgm_read_ptr macro to read the string pointer out of the string_table array.
Remember that a pointer is 16-bits, or word size. The pgm_read_ptr macro will return a void∗. This pointer is
an address in Program Space pointing to the string that we want to copy. This pointer is then used as a parameter
to the function strcpy_P. The function strcpy_P is just like the regular strcpy function, except that it copies
a string from Program Space (the second parameter) to a buffer in the Data Space (the first parameter).

There are many string functions available that work with strings located in Program Space. All of these special string
functions have a suffix of _P in the function name, and are declared in the <avr/pgmspace.h> header file.

5.5 Caveats

The macros and functions used to retrieve data from the Program Space have to generate some extra code in order
to actually load the data from the Program Space. This incurs some extra overhead in terms of code space (extra
opcodes) and execution time. Usually, both the space and time overhead is minimal compared to the space savings
of putting data in Program Space. But you should be aware of this so you can minimize the number of calls within a
single function that gets the same piece of data from Program Space. It is always instructive to look at the resulting
disassembly from the compiler.

6 AVR-LibC and Assembler Programs

• Introduction

• Invoking the Compiler

• Example Program

• Assembler Directives

– Sections

– Symbols

– Data and Alignment

• Operand Modifiers

6.1 Introduction

There might be several reasons to write code for AVR microcontrollers using plain assembler source code. Among
them are:

• Code for devices that do not have RAM and are thus not supported by the C compiler.

• Code for very time-critical applications.

• Special tweaks that cannot be done in C.

Usually, all but the first could probably be done easily using the inline assembler facility of the compiler.

Although AVR-LibC is primarily targeted to support programming AVR microcontrollers using the C (and C++)
language, there's limited support for direct assembler usage as well. The benefits of it are:

• Use of the C preprocessor and thus the ability to use the same symbolic constants that are available to C
programs, as well as a flexible macro concept that can use any valid C identifier as a macro (whereas the
assembler's macro concept is basically targeted to use a macro in place of an assembler instruction).

• Use of the runtime framework like automatically assigning interrupt vectors. For devices that have RAM,
initializing the RAM variables can also be utilized.

Generated by Doxygen

28

6.2 Invoking the Compiler

For the purpose described in this document, the assembler and linker are usually not invoked manually, but rather
using the C compiler frontend (avr-gcc) that in turn will call the assembler and linker as required.

This approach has the following advantages:

• There is basically only one program to be called directly, avr-gcc, regardless of the actual source language
used.

• The invokation of the C preprocessor will be automatic, and will include the appropriate options to locate
required include files in the filesystem.

• The invokation of the linker will be automatic, and will include the appropriate options to locate additional
libraries as well as the application start-up code (crtXXX.o) and linker script.

Note that the invokation of the C preprocessor will be automatic when the filename provided for the assembler file
ends in .S (the capital letter "s"). This would even apply to operating systems that use case-insensitive filesystems
since the actual decision is made based on the case of the filename suffix given on the command-line, not based
on the actual filename from the file system.

As an alternative to using .S, the suffix .sx is recognized for this purpose (starting with GCC v4.3). This is primarily
meant to be compatible with other compiler environments that have been providing this variant before in order to
cope with operating systems where filenames are case-insensitive (and, with some versions of make that could not
distinguish between .s and .S on such systems).

Alternatively, the language can explicitly be specified using the -x assembler-with-cpp option.

6.3 Example Program

The following annotated example features a simple 100 kHz square wave generator using an AT90S1200 clocked
with a 10.7 MHz crystal. Pin PD6 will be used for the square wave output.
#include <avr/io.h> // Note [1]

work = 16 // Note [2]
tmp = 17

inttmp = 19
intsav = 0

SQUARE = PD6 // Note [3]

#define IO(x) _SFR_IO_ADDR(x)

// Note [4]:
// 100 kHz => 200000 edges/s
tmconst = 10700000 / 200000

// # clocks in ISR until TCNT0 is set
fuzz = 8

.text

.global main // Note [5]
main:

rcall ioinit
1: rjmp 1b // Note [6]

.global TIMER0_OVF_vect // Note [7]
TIMER0_OVF_vect:

ldi inttmp, 256 - tmconst + fuzz
out IO(TCNT0), inttmp // Note [8]

in intsav, IO(SREG) // Note [9]

sbic IO(PORTD), SQUARE
rjmp 1f

Generated by Doxygen

6.3 Example Program 29

sbi IO(PORTD), SQUARE
rjmp 2f

1: cbi IO(PORTD), SQUARE
2:

out IO(SREG), intsav
reti

ioinit:
sbi IO(DDRD), SQUARE

ldi work, _BV(TOIE0)
out IO(TIMSK), work

ldi work, _BV(CS00) // tmr0: CK/1
out IO(TCCR0), work

ldi work, 256 - tmconst
out IO(TCNT0), work

sei

ret

.global __vector_default // Note [10]
__vector_default:

reti

Note [1] As in C programs, this includes the central processor-specific file containing the IO port definitions for the
device. Note that not all include files can be included into assembler sources.

Note [2] Assignment of registers to symbolic names used locally. Another option would be to use a C preprocessor
macro instead:
#define work 16

Note [3] Our bit number for the square wave output. Note that the right-hand side consists of a CPP macro which
will be substituted by its value (6 in this case) before actually being passed to the assembler.

Note [4] The assembler uses integer operations in the host-defined integer size (32 bits or longer) when evaluating
expressions. This is in contrast to the C compiler that uses the C type int by default in order to calculate
constant integer expressions.

In order to get a 100 kHz output, we need to toggle the PD6 line 200000 times per second. Since we use
timer 0 without any prescaling options in order to get the desired frequency and accuracy, we already run into
serious timing considerations: while accepting and processing the timer overflow interrupt, the timer already
continues to count. When pre-loading the TCCNT0 register, we therefore have to account for the number
of clock cycles required for interrupt acknowledge and for the instructions to reload TCCNT0 (4 clock cycles
for interrupt acknowledge, 2 cycles for the jump from the interrupt vector, 2 cycles for the 2 instructions that
reload TCCNT0). This is what the constant fuzz is for.

Note [5] External functions need to be declared to be .global. main is the application entry point that will be
jumped to from the ininitalization routine in crts1200.o.

Note [6] The main loop is just a single jump back to itself. Square wave generation itself is completely handled
by the timer 0 overflow interrupt service. A sleep instruction (using idle mode) could be used as well, but
probably would not conserve much energy anyway since the interrupt service is executed quite frequently.

Note [7] Interrupt functions can get the usual names that are also available to C programs. The linker will then
put them into the appropriate interrupt vector slots. Note that they must be declared .global in order to be
acceptable for this purpose. This will only work if <avr/io.h> has been included. Note that the assembler
or linker have no chance to check the correct spelling of an interrupt function, so it should be double-checked.
(When analyzing the resulting object file using avr-objdump or avr-nm, a name like __vector_N
should appear, with N being a small integer number.)

Note [8] As explained in the section about special function registers, the actual IO port address should be obtained
using the macro _SFR_IO_ADDR. (The AT90S1200 does not have RAM thus the memory-mapped approach
to access the IO registers is not available. It would be slower than using in / out instructions anyway.)

Since the operation to reload TCCNT0 is time-critical, it is even performed before saving SREG. Obviously,
this requires that the instructions involved would not change any of the flag bits in SREG.

Generated by Doxygen

30

Note [9] Interrupt routines must not clobber the global CPU state. Thus, it is usually necessary to save at least the
state of the flag bits in SREG. (Note that this serves as an example here only since actually, all the following
instructions would not modify SREG either, but that's not commonly the case.)

Also, it must be made sure that registers used inside the interrupt routine do not conflict with those used
outside. In the case of a RAM-less device like the AT90S1200, this can only be done by agreeing on a set of
registers to be used exclusively inside the interrupt routine; there would not be any other chance to "save" a
register anywhere.

If the interrupt routine is to be linked together with C modules, care must be taken to follow the
register usage guidelines imposed by the C compiler. Also, any register modified inside the interrupt se-
vice needs to be saved, usually on the stack.

Note [10] As explained in Interrupts, a global "catch-all" interrupt handler that gets all unassigned interrupt vectors
can be installed using the name __vector_default. This must be .global, and obviously, should end
in a reti instruction. (By default, a jump to location 0 would be implied instead.)

6.4 Assembler Directives

The directives available in the assembler are described in the GNU assembler (gas) manual at Assembler
Directives.

As gas comes from a Unix origin, its directives and overall assembler syntax is slightly different than the one being
used by other assemblers. Numeric constants follow the C notation (prefix 0x for hexadecimal constants, 0b for
binary constants), expressions use a C-like syntax.

Some common directives include:

Table 7 Assembler Directives: Sections

Section Ops Description

.section name,"flags",@typ
Put the following objects into named section name. Set section flags
flags and section type to typ

.pushsection ...

.popsection

Like .section, but also pushes the current section and subsection
onto the section stack. The current section and subsection can be
restored with .popsection.

.subsection int
Put the following code into subsection number int which is some inte-
ger. Subsections are located in order of increasing index within their
input section. The default after switching to a new section by means
of .section or .pushsection is subsection 0.

.text

.data

.bss

Put the following code into the .text section, .data section or
.bss section, respectively. The assembler knows the right section
flags and section type, for example the .text directive is basically
the same like .section .text,"ax",@progbits. The direc-
tives support an optional subsection argument, see .subsection
above.

Table 8 Assembler Directives: Symbols

Symbol Ops Description

.global sym

.globl sym
Globalize symbol sym so that it can be referred to in other modules. When a sym-
bol is used without prior declaration or definition, the symbol is implicitly global. The
.global directive can also by used to refer to that symbol, so that the linker pulls in
code that defines the symbol (provided such a symbol definition exists). For example,
code that puts objects in the .data section and that assumes that the startup code
initializes that area, would use .global __do_copy_data.

Generated by Doxygen

https://sourceware.org/binutils/docs/as/Pseudo-Ops.html
https://sourceware.org/binutils/docs/as/Pseudo-Ops.html

6.5 Operand Modifiers 31

Symbol Ops Description

.weak syms
Declare symbols syms as weak symbols, where syms is a comma-separated list of
symbols. This applies only when the symbols are also defined in the same module.
When the linker encounters a weak symbol that is also defined as .global in a
different module, then the linker will use the latter without raising a diagnostic about
multiple symbol definitions.

.type sym,@kind Set the type of symbol sym to kind. Commonly used symbol types are @function
for function symbols like main and @object for data symbols. This has an affect for
disassemblers, debuggers and tools that show function / object properties.

.size sym,size Set the size associated with symbol sym to expression size. The linker works on the
level of sections, it does not even know what functions are. This directive serves book-
keeping, and may be useful for debuggers, disassemblers or tools that show which
function / object consumes how much memory.

.set sym, expr

.equ sym, expr
sym = expr

Set the value of symbol sym to the value of expression expr. When a global symbol
is set multiple times, the value stored in the object file is the last value stored into the
symbol.

.extern Ignored for compatibility with other assemblers.

.org Advance the location pointer to a specified offset relative to the beginning of the
input section. The location counter cannot be moved backwards.
This is a fairly pointless directive in an assembler environment that uses relocatable
object files. The linker determines the final location of the objects. See the FAQ on
how to relocate code to a fixed address.

Table 9 Assembler Directives: Data and Alignment

Data Ops Description Alias

.byte list Allocate bytes specified by a list of comma-separated expressions.

.2byte list Similar to .byte, but for 16-bit values. .word

.4byte list Similar to .byte, but for 32-bit values. .long

.8byte list Similar to .byte, but for 64-bit values. .qword

.ascii "string" Allocate a string of characters without \0 termination.

.asciz "string" Allocate a \0 terminated string.

.float list Allocate IEEE-754 single 32-bit floating-point values specified in the
comma-separated list.

.double list Same, but for IEEE-754 double 64-bit floats.

.space num[,val] Allocate num bytes with value val where val is optional and defaults to
zero.

.skip

.zero num Insert num zero bytes.

Alignment Ops Description Alias

.balign val Align the following code to val bytes, where val is an absolute expression
that evaluates to a power of 2.

.align

.p2align expo Align the following code to 2expo bytes.

Moreover, there is the .macro directive, which starts an assembler macro. The GNU assembler implements a
powerful macro processor which even supports recursive macro definitions. For an example, see the gas documen-
tation for .macro. A gas .macro can further be combined with C preprocessor directives. For some real-world
examples, see the AVR-LibC sources macros.inc and asmdef.h.

6.5 Operand Modifiers

There are some AVR-specific operators available like lo8(), hi8(), pm(), gs() etc. For an overview see the
documentation of the operand modifiers in the inline assembly Cookbook.

Generated by Doxygen

https://sourceware.org/binutils/docs/as/Macro.html
https://github.com/avrdudes/avr-libc/blob/main/common/macros.inc
https://github.com/avrdudes/avr-libc/blob/main/common/asmdef.h

32

Example:

ldi r24, lo8(gs(somefunc))
ldi r25, hi8(gs(somefunc))
call something
subi r24, lo8(-(my_var))
sbci r25, hi8(-(my_var))

This passes the address of function somefunc as the first parameter to function something, and adds the
address of variable my_var to the 16-bit return value of something.

7 Inline Assembler Cookbook

AVR-GCC
Inline Assembler Cookbook

• About this Document

• Building Blocks

– The Anatomy of a GCC asm Statement

– Special Sequences

– Constraints

* Constraint Modifiers

* Instructions and Constraints

– Print Modifiers

– Operand Modifiers

• Examples

– Swapping Nibbles

– Swapping Bytes

– Accessing Memory

– Accessing Bytes of wider Expressions

– Inline Functions and __builtin_constant_p

– Jumping and Branching

• Binding local Variables to Registers

– Interfacing non-ABI Functions

• Specifying the Assembly Name of Static Objects

• What won't work

Generated by Doxygen

7.1 About this Document 33

7.1 About this Document

The GNU C/C++ compiler for AVR RISC processors offers to embed assembly language code into C/C++ programs.
This cool feature may be used for manually optimizing time critical parts of the software, or to use specific processor
instructions which are not available in the C language.

It's assumed that you are familiar with writing AVR assembler programs, because this is not an AVR assembler
programming tutorial. It's not a C/C++ tutorial either.

Note that this document does not cover files written completely in assembly language, refer to AVR-LibC and Assembler Programs
for this.

Copyright (C) 2001-2002 by egnite Software GmbH

Permission is granted to copy and distribute verbatim copies of this manual provided that the copyright notice and
this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions
of this manual provided that the entire resulting derived work is distributed under the terms of a permission notice
identical to this one.

This document describes version 4.7 of the compiler or newer.

Herne, 17th of May 2002 Harald Kipp harald.kipp-at-egnite.de

7.2 The Anatomy of a GCC asm Statement

A GCC inline assembly statement starts with the keyword asm, __asm or __asm__, where the first one is not
available in strict ANSI mode.

In its simplest form, the inline assembly statement has no operands and injects just one instruction into the code
stream, like in
__asm ("nop");

In its generic form, an asm statements can have one of the following three forms:

A simple asm without operands __asm (code-string);

code-string is a string literal that will be added as is into the generated assembly code. This even applies
to the % character. The only replacement is that \n and \t are interpreted as newline resp. TAB character.

This type of asm statement may occur at top level, outside any function as global asm. When its placement
relative to functions is important, consider -fno-toplevel-reorder.

An asm with operands __asm volatile (code-string : output-operands : input-operands : clobbers);

This is the most widely used form of an asm statement. It must be located in a function.

output-operands, input-operands and clobbers are comma-separated lists of operands resp.
clobber specifications. Any of them may be empty, for example when the asm has no outputs. At least one :
(colon) must be present, otherwise it will be a simple asm without operands and without % replacements.

An asm goto statement __asm goto (code-string : : input-operands : clobbers : labels);

Like the asm above, but labels is a comma-separated list of C/C++ code labels which would be valid in
a goto statement. And output-operands must be empty, because it is impossible to generate output
reloads after the code has transferred control to one of the labels.
As there are no output operands, asm goto is implicitly volatile. When volatile is specified explicitly, the
goto keyword may be placed after or before the volatile.

Notes on the various parts:

Generated by Doxygen

34

Volatility Keyword volatile is optional and means that the asm statement has side effects that are not ex-
pressed in terms of the operands or clobbers. The asm statement must not be optimized away or reordered
with respect to other volatile statements like volatile memory accesses or other volatile asm.

Any asm statement without output-operands is implicitly volatile.

A non-volatile asm statement with output operands that are all unused may be optimized away when all output
operands are unused.

Instead of volatile, __volatile or __volatile__ can be used.

code-string A string literal that contains the code that is to be injected in the assembly code generated by the
compiler. %-expressions are replaced by the string representations of the operands, and the number of
lines is determined to estimate the code size of the asm.
Apart from that, the compiler does not analyze the code provided in the code template.
This means that the code appears to the compiler as if it was executed in one parallel chunk, all at once. It is
important to keep that in mind, in particular for cases where input and output operands may overlap.

output-operands

input-operands A comma-separated list of operands, which may take the following forms. In any case, the
first operand can be referred to as "%0" in code-string, the second one as "%1" etc.

"constraints" (expr) expr is a C expression that's an input or output (or both) to the asm state-
ment. An output expression must be an lvalue, i.e. it must be valid to assign a value to it.
"constraints" is a string literal with constraints and constraint modifiers. For example, constraint
"r" stands for general-purpose register. A simple input operand would be
"r" (value + 1)

The compiler computes value + 1 and supplies it in some general-purpose register R2...R31. In
many cases, an upper d-register R16...R31 is required for instructions like LDI or ANDI. A respective
output operand specification is
"=d" (result)

Notice that this operand may overlap with input operands!
When an operand is written before all input operands are consumed, then in almost all cases the output
operand requires an early-clobber modifier & so that it won't overlap with any input operand:
"=&d" (result)

An operand that's both an output and an input can be expressed with the + constraint modifier:
"+d" (result)

Such an operand is both output and input, and hence it won't overlap with other operands.

[name] "constraints" (expr) Like above. In addition, a named operand can be referred to as
%[name] in code-string. This is useful in long asm statements with many operands.

clobbers A comma-separated list of string literals like "16", "r16" or "memory".

The first two clobbers mean that the asm destroys register R16. Only the lower-case form is allowed, and
register names like Z are not recognized.

"memory" means that the asm touches memory in some way. When the asm writes to some RAM location
for example, the compiler must not optimize RAM accesses across the asm because the memory may change.

Clobbering __tmp_reg__ by means of "r0" has no effect, but such a clobber may be added to indicate
to the reader that the asm clobbers R0.

Clobbering __zero_reg__ by means of "r1" has no effect. When the asm destroys the zero register,
for example by means of a MUL instruction, then the code must restore the register at the end by means of
"clr __zero_reg__"

The size of an asm The code size of an asm statement is the number of lines multiplied by 4 bytes, the maximal
possible AVR instruction length. The length is needed when (conditional) jumps cross the asm statement in
order to compute (upper bounds for) jump offsets of PC-relative jumps.

The number of lines is one plus the number of line breaks in code-string. These may be physical line
breaks from \n characters and logical line breaks from $ characters.

Before we start with the first examples, we list all the bells and whistles that can be used to compose an inline
assembly statement: special sequences, constraints, constraint modifiers, print modifiers and operand modifiers.

Generated by Doxygen

7.4 Constraints 35

7.3 Special Sequences

There are special sequences that can be used in the assembly template.

Table 10 Inline asm Special Sequences

Sequence Description

__SREG__ The I/O address of the status register SREG at 0x3F

__tmp_reg_←↩

_
The temporary register R0 (R16 on reduced Tiny)

__zero_reg←↩

__
The zero register R1, always zero (R17 on reduced Tiny)

$ A logical line separator, used to separate multiple instruction in one physical line

\n A physical newline, used to separate multiple instructions

\t A TAB character, can be used for better legibility of the generated asm

\" A " character (double quote)

\\ A \ character (backslash)

%% A % charater (percent)

%∼ "r" or "", used to construct call or rcall by means of "%∼call", depending on
the architecture

%! "" or "e", used to construct indirect calls like icall or eicall by means of
"%!icall", depending on the architecture

%= A number that's unique for the compilation unit and the respective inline asm code, used to
construct unique labels

Comment Description

; text A single-line assembly comment that extends to the end of the physical line

/∗ text ∗/ A multi-line C comment

• Moreover, the following I/O addresses are defined provided the device supports the respective SFR: __SP←↩

_L__, __SP_H__, __CCP__, __RAMPX__, __RAMPY__, __RAMPZ__, __RAMPD__.

• Register __tmp_reg__ may be freely used by inline assembly code and need not be restored at the end
of the code.

• Register __zero_reg__ contains a value of zero. When that value is destroyed, for example by a MUL
instruction, its value has to be restored at the end of the code by means of
clr __zero_reg__

• In inline asm without operands (i.e without a single colon), a % will always insert a single %. No %-codes
are available.

Sequences like __SREG__ are not evaluated as part of the inline asm, they are just copied to the asm code as
they are. At the top of each assembly file, the compiler prints definitions like
__SREG__ = 0x3f

so that they can also be used in inline assembly.

7.4 Constraints

The most up-to-date and detailed information on constraints for the AVR can be found in the avr-gcc Wiki.

Generated by Doxygen

https://gcc.gnu.org/wiki/avr-gcc#Constraints

36

Table 11 Inline asm Operand Constraints

Constraint Registers Range

a Simple upper registers that support FMUL R16 ... R23

b Base pointer registers that support LDD, STD Y, Z (R28 ... R31)

d Upper registers R16 ... R31

e Pointer registers that support LD, ST X, Y, Z (R26 ... R31)

l Lower registers R2 ... R15

r Any register R2 ... R31

w Upper registers that support ADIW R24 ... R31

x X pointer registers R26, R27

y Y pointer registers R28, R29

z Z pointer registers R30, R31

Constraint Constant Range
I 6-bit unsigned integer constant 0 to 63

J 6-bit negative integer constant -63 to 0

M 8-bit unsigned integer constant 0 to 255

n Integer constant

i Immediate value known at link-time, like the address of a variable in static
storage

EF Floating-point constant

Ynn Fixed-point or integer constant

Constraint Explanation Notes
m A memory location

X Any valid operand

0 ... 9 Matches the respective operand number

• Constraints without a modifier specify input operands.

• Constraints with a modifier specify output operands.

• More than one constraint like in "rn" specifies the union of the specified constraints; "r" and "n" in this
case.

• All constraints listed above are single-letter constraints, except Ynn which is a 3-letter constraint.

Constraint modifiers are:

Table 12 Constraint Modifiers

Modifier Meaning

= Output-only operand. Without & it may overlap with input operands

+ Output operand that's also an input

=& "Early-clobber". Register should be used for output only and won't overlap with any input operand(s)

The selection of the proper constraint depends on the range of the constants or registers, which must be acceptable
to the AVR instruction they are used with. The C compiler doesn't check any line of your assembler code. But it
is able to check the constraint against your C expression. However, if you specify the wrong constraints, then the
compiler may silently pass wrong code to the assembler. And, of course, the assembler will fail with some cryptic
output or internal errors, or in the worst case wrong code may be the result.

For example, if you specify the constraint "r" and you are using this register with an ORI instruction, then the
compiler may select any register. This will fail if the compiler chooses R2 to R15. (It will never choose R0 or R1,

Generated by Doxygen

7.5 Print Modifiers 37

because these are uses for special purposes.) That's why the correct constraint in that case is "d". On the other
hand, if you use the constraint "M", the compiler will make sure that you don't pass anything else but an 8-bit
unsigned integer value known at compile-time.

The following table shows all AVR assembler mnemonics which require operands, and the related constraints.

Table 13 AVR Instructions and Constraints

Mnemonic Constraints Mnemonic Constraints
adc r,r add r,r

adiw w,I and r,r

andi d,M asr r

bclr I bld r,I

brbc I,label brbs I,label

bset I bst r,I

call i cbi I,I

cbr d,I clr r
com r cp r,r

cpc r,r cpi d,M

cpse r,r dec r

elpm r,z eor r,r

fmul a,a fmuls a,a

fmulsu a,a in r,I

inc r jmp i

lac z,r las z,r

lat z,r ld r,e

ldd r,b ldi d,M

lds r,i lpm r,z

lsl r lsr r
mov r,r movw r,r

mul r,r muls r,r

mulsu a,a neg r

or r,r ori d,M
out I,r pop r

push r rcall i

rjmp i rol r

ror r sbc r,r

sbci d,M sbi I,I

sbic I,I sbiw w,I

sbr d,M sbrc r,I

sbrs r,I ser d

st e,r std b,r

sts i,r sub r,r

subi d,M swap r

tst r xch z,r

7.5 Print Modifiers

The %-operands in the inline assembly template can be adjusted by special print-modify characters. The one-letter
modifier follows the % and precedes the operand number like in "%a0", or precedes the name in named operands
like in "%a[address]".

Generated by Doxygen

38

Table 14 Inline asm Print Modifiers

Modifier Number of
Arguments

Explanation Suitable
Constraints

%a0 1 Print pointer register as address X, Y or Z, like in "LD r0, %a0+" x, y, z, b, e

%i0 1 Print compile-time RAM address as I/O address, like in "OUT %i0,
r0" with argument "n"(&SREG)

n

%n0 1 Print the negative of a compile-time integer constant n

%r0 1 Print the register number of a register, like in "CLR %r0+7" for the
MSB of a 64-bit register

reg

%x0 1 Print a function name without gs() modifier, like in "%∼CALL
%x0" with argument "s"(main)

s

%A0 1 Add 0 to the register number (no effect) reg

%B0 1 Add 1 to the register number reg

%C0 1 Add 2 to the register number reg

%D0 1 Add 3 to the register number reg

%T0%t1 2 Print the register that holds bit number %1 of register %0 reg + n

%T0%T1 2 Print operands suitable for BLD/BST, like in "BST %T0%T1", in-
cluding the required ,

reg + n

• Register constraints are: r, d, w, x, y, z, b, e, a, l.

7.6 Operand Modifiers

Table 15 Assembly Code Operand Modifiers

Modifier Explanation Purpose

lo8() 1st Byte of a link-time constant, bits 0...7

Getting partsof a byte-address

hi8() 2nd Byte of a link-time constant, bits 8...15

hlo8() 3rd Byte of a link-time constant, bits 16...23

hhi8() 4th Byte of a link-time constant, bits 24...31

hh8() Same like hlo8

pm_lo8() 1st Byte of a link-time constant divided by 2, bits 1...8

Getting partsof a word-addresspm_hi8() 2nd Byte of a link-time constant divided by 2, bits 9...16

pm_hh8() 3rd Byte of a link-time constant divided by 2, bits 17...24

pm() Link-time constant divided by 2 in order to get a program
memory (word) addresses, like in lo8(pm(main))

Word-address

gs() Function address divided by 2 in order to get a (word) ad-
dresses, like in lo8(gs(main)). Generate stub (trampo-
line) as needed. This is required to calculate the address of
a code label on devices with more than 128 KiB of program
memory that's supposed to be used in EICALL. For rationale,
see the GCC documentation. On devices with less pro-
gram memory, gs() behaves like pm()

Function address
for [E]ICALL

When the argument of a modifier is not computable at assembler-time, then the assembler has to encode the
expression in an abstract form using RELOCs. Consequence is that only a very limited number of argument
expressions is supported when they are not computable at assembler-time.

Generated by Doxygen

https://gcc.gnu.org/onlinedocs/gcc/AVR-Options.html#eind
https://github.com/bminor/binutils-gdb/blob/master/include/elf/avr.h

7.7 Examples 39

7.7 Examples

Some examples show the assembly code as generated by the compiler. It's the code from the .s files as gener-
ated with option -save-temps. Adding the high-level source to the generated assembly can be turned on with
-fverbose-asm since GCC v8.

7.7.1 Swapping Nibbles

The fist example uses the swap instruction to swap the nibbles of a byte. Input and output of swap are located in
the same general purpose register. This means the input operand, operand 1 below, must be located in the same
register(s) like operand 0, so that the right constraint for operand 1 is "0":
asm ("swap" : "=r" (value) : "0" (value));

All side effects of the code are described by the constraints and the clobbers, so that there is no need for this asm
to be volatile. In particular, this asm may be optimized out when the output value is unused.
A shorter pattern to state that value is both input and output is by means of constraint modifier +
asm ("swap" : "+r" (value));

7.7.2 Swapping Bytes

Swapping nibbles was a piece of cake, so let's swap the bytes of a 16-bit value. In order to access the constituent
bytes of the 16-bit input and output values, we use the print modifiers %A and %B.

The asm is placed in a small C test case so that we can inspect the resulting assembly code as generated by the
compiler with -save-temps.
void callee (int, int);

void func (int param)
{

int swapped;

asm ("mov %A0, %B1" "\n\t"
"mov %B0, %A1"
: "=r" (swapped) : "r" (param));

callee (param, swapped);
}

The "\n\t" sequence adds a line feed that is required between the two instructions, and a TAB to align the
two instructions in the generated assembly. There is no "\n\t" after the last instruction because that would just
increase the size of the asm.
The generated assembly works as expected. The compiler wraps it in #APP / #NOAPP annotations:
func:
/* #APP */

mov r22, r25 ; swapped, param
mov r23, r24 ; swapped, param

/* #NOAPP */
jmp callee

Wrong! While the generated code above is correct, the inline asm itself is not!
We see this with a slightly adjusted test case where the arguments of callee have been swapped, but that uses
the same inline asm:
void func (int param)
{

int swapped;

asm ("mov %A0, %B1" "\n\t"
"mov %B0, %A1"
: "=r" (swapped) : "r" (param));

callee (swapped, param);
}

The result is the following assembly:
func:

Generated by Doxygen

40

movw r22,r24
/* #APP */

mov r24, r25 ; swapped, param
mov r25, r24 ; swapped, param

/* #NOAPP */
jmp callee

which is obviously wrong, because after the code from the inline asm, the low byte of swapped and the high byte
will always have the same value of r25.

The reason is that the output operand overlaps the input, and the output is changed before all of the input operands
are consumed. This is a so-called early-clobber situation. There are two possible solutions to this predicament:

• Mark the output operand with the early-clobber constraint modifier:
asm ("mov %A0, %B1" "\n\t"

"mov %B0, %A1"
: "=&r" (swapped) : "r" (param));

• Use constraints and a code sequence that expect input and output in the same registers:
asm ("eor %A0, %B0" "\n\t"

"eor %B0, %A0" "\n\t"
"eor %A0, %B0"
: "=r" (swapped) : "0" (param));

7.7.3 Accessing Memory

Accessing memory requires that the AVR instructions that perform the memory access are provided with the appro-
priate memory address.

1. The address can be provided directly, like __SREG__, 0x3f, as a symbol, or as a symbol plus a constant
offset.

2. Provide the address by means of an inline asm operand.

Approach 1 is simpler as it does not require an asm operand, while approach 2 is in many cases more powerful
because macros defined per, say, #include <avr/io.h> can be used as operands, whereas such headers
are not included in the assembly code as generated by the compiler.

Reading a SFR like PORTB can be performed by
asm volatile ("in %0, %1" : "=r" (result) : "I" _SFR_IO_ADDR (PORTB));

Macro _SFR_IO_ADDR is provided by avr/sfr_defs.h which is included by avr/io.h.

Since GCC v4.7, print modifier %i is supported, which prints RAM addresses like & PORTB as an I/O address:
asm volatile ("in %0, %i1" : "=r" (result) : "I" (& PORTB));

When the address is not an I/O address, then LDS or LD must be used, depending on whether the address is
known at link-time or only at run-time. For example, the following macro provides the functionality to clear an SFR.
The code discriminates between the possibilities that

• The SFR address is known at compile-time and is an I/O address.

• The SFR address is known at compile-time but is not in the I/O range.

• The SFR address is not known at compile-time.

Generated by Doxygen

7.7 Examples 41

#include <avr/io.h>

#define CLEAR_REG(sfr) \
do { \

if (__builtin_constant_p (& (sfr)) \
&& _SFR_IO_REG_P (sfr)) \

asm volatile ("out %i0, __zero_reg__" \
:: "I" (& (sfr)) : "memory"); \

else if (__builtin_constant_p (& (sfr))) \
asm volatile ("sts %0, __zero_reg__" \

:: "n" (& (sfr)) : "memory"); \
else \
asm volatile ("st %a0, __zero_reg__" \

:: "e" (& (sfr)) : "memory"); \
} while (0)

The last case with constraint "e" works because &sfr is a 16-bit value, and 16-bit values (and larger) start in
even registers. Therefore, the address will be located in R27:R26, R29:R28 or in R31:R30, which print modifier %a
will print as X, Y or Z, respectively. The address will never end up in, say, R30:R29.

The test case
void clear_3_regs (uint8_t volatile *psfr)
{

CLEAR_REG (PORTB);
CLEAR_REG (UDR0);
CLEAR_REG (*psfr);

}

compiles for ATmega328 and with optimization turned on to
clear_3_regs:

movw r30,r24
/* #APP */

out 0x5, __zero_reg__
sts 198, __zero_reg__
st Z, __zero_reg__ ; psfr

/* #NOAPP */
ret

As __builtin_constant_p is used to infer whether the address of the SFR is known at compile-time, extra
care must be taken when the functionality is implemented as an inline function:
static inline __attribute__((__always_inline__))
void clear_reg (uint8_t volatile *psfr)
{

// !!! The following cast is required to make __builtin_constant_p
// !!! work as expected in the inline function.
uintptr_t addr = (uintptr_t) psfr;

if (__builtin_constant_p (addr)
&& _SFR_IO_REG_P (* psfr))

asm volatile ("out %i0, __zero_reg__"
:: "I" (addr) : "memory");

else if (__builtin_constant_p (addr))
asm volatile ("sts %0, __zero_reg__"

:: "n" (addr) : "memory");
else
asm volatile ("st %a0, __zero_reg__"

:: "e" (addr) : "memory");
}

void clear_3_pregs (uint8_t volatile *psfr)
{

clear_reg (& PORTB);
clear_reg (& UDR0);
clear_reg (psfr);

}

Casting the address psfr to an integer type in the inline function is required so that the compiler will recognize
constant addresses.
Also notice that we have to pass the address of the SFR to the inline function. Passing the SFR directly like in the
marco approach won't work for obvious reasons.

7.7.4 Accessing Bytes of wider Expressions

Finally, an example that atomically increments a 16-bit integer. The code is wrapped in IN SREG / CLI / OUT
SREG to make it atomic. It reads the 16-bit value data from its absolute address, increments it and then writes it
back:

Generated by Doxygen

42

uint16_t volatile data;

void inc_data (void)
{

uint16_t tmp;
asm volatile ("in __tmp_reg__, __SREG__" "\n\t"

"cli" "\n\t"
"lds %A[temp], %[addr]" "\n\t"
"lds %B[temp], %[addr]+1" "\n\t"

#ifdef __AVR_TINY__
// Reduced Tiny does not have ADIW.
"subi %A[temp], lo8(-1)" "\n\t"
"sbci %B[temp], hi8(-1)" "\n\t"

#else
"adiw %[temp], 1" "\n\t"

#endif
"sts %[addr]+1, %B[temp]" "\n\t"
"sts %[addr], %A[temp]" "\n\t"
"out __SREG__, __tmp_reg__"

#ifdef __AVR_TINY__
// No need to restrict tmp to a "w" register. And on
// avr-gcc v13.2 and older, "w" contains no regs.
: [temp] "=d" (tmp), "+m" (data)

#else
: [temp] "=w" (tmp), "+m" (data)

#endif
: [addr] "i" (& data));

}

Notice there are three different ways required to access the different bytes of the involved 16-bit entities:

• For the 16-bit general purpose register %[temp], print modifiers %A and %B are used.

• For the 16-bit value data in static storage, %[addr]+1 is used to access the high byte. The resulting
expression data+1 is computable at link-time and evaluated by the linker.

• In the compilation variant for Reduced Tiny, the bytes of the 16-bit subtrahend -1 are accessed with the
operand modifiers lo8 and hi8 that are evaluated by the assembler because -1 is known at assembler-
time.

data is located in static storage, hence its address is known to the linker and fits constraint "i".

The sole purpose of operand "+m" (data) is to describe the effect of the asm on data memory: It changes
data. Notice that there is no "memory" clobber, because that operand already describes all memory side
effects, and it does this in a less intrusive way than a catch-all "memory". The operand is not used in the asm
template; but in principle it would be possible to use it as operand with LDS and STS instead of operand [addr]
"i" (& data). However, there are many situations where a memory operand constrained by "m" takes a form
that cannot be used with AVR instructions because there are no matching print modifiers, or because it is not known
a priori what specific form the memory operand takes. In such cases, one would take the address of the operand
and supply it as address in a pointer register to the inline asm. The compiler generates the required instructions for
address computation, and the inline asm knows that it can use LD and ST.

7.7.5 Jumping and Branching

When an inline asm contains jumps, then it also requires labels. When the label is inside the asm, then care must
be taken that the label is unique in the compilation unit even when the inline asm is used multiple times, e.g. when
the code is located in an unrolled loop or a function has multiple incarnations due to cloning, or simply because a
macro or inline function that contains an asm statement is used more than once.
There are two kinds of labels that can be used:

• Local labels of the form n: where n is some (small, non-negative) number. They can be targeted by means of
nb or nf, depending on whether the jump direction is backwards or forwards. Such a numeric labels may be
present more than once. The taken label is the first one with the specified number in the respective direction:
// Loop until bit PORTB.7 is set.
asm volatile ("1: sbrs %i[sfr], %[bitno]" "\n\t"

"rjmp 1b"
:: [sfr] "I" (& PORTB), [bitno] "n" (PB7));

Generated by Doxygen

7.8 Binding local Variables to Registers 43

• Local labels that contain the sequence %= which yields some number that's unique amongst all asm incarna-
tions in the respective compilation unit:
// Loop until bit PORTB.7 is set.
asm volatile (".Loop.%=: sbrs %i[sfr], %[bitno]" "\n\t"

"rjmp .Loop.%="
:: [sfr] "I" (& PORTB), [bitno] "n" (PB7));

Which form is used is a matter of taste. In practice, the first variant is often preferred in short sequences, whereas
the second form is usually seen in longer algorithms.

For labels that are defined in the surrounding C/C++ code, asm goto has to be used. The print modifier %x0 prints
panic as a raw label, not as gs(panic) like it would be the case with %0.
int main (void)
{

asm goto ("tst __zero_reg__" "\n\t"
"brne %x0"
:::: panic);

/* ...Application code here... */
return 0;

panic:
// __zero_reg__ is supposed to contain 0, but doesn’t.
return 1;

}

This assumes that the jump offset can be encoded in the brne instruction in all situations. When static analysis
cannot prove that the jump offset fits, then a jumpity jump has to be used:
asm goto ("tst __zero_reg__" "\n\t"

"breq 1f" "\n\t"
"%~jmp %x0" "\n"
"1: ;; all fine"
:::: panic);

Sequence "%∼jmp" yields "rjmp" or "jmp" depending on the architecture. Notice that a jmp can be relaxed
to an rjmp with option -mrelax provided the jump offset fits.

7.8 Binding local Variables to Registers

One use of GCC's asm keyword is to bind local register variables to hardware registers.
Such bindings of local variables to registers are only guaranteed during inline asm which has these vari-
ables as operands.

7.8.1 Interfacing non-ABI Functions

Suppose we want to interface a non- ABI assembly function mul_8_16 that multiplies R24 with R27:R26, clob-
bers R0, R1 and R25, and returns the 24-bit result in R20:R19:R18. One way to implement such an interface would
be to provide an assembly function that performs the required copying and call to mul_8_16. Such a function
would destroy some of the performance gain obtained by using assembly for mul_8_16: Additional copying back
and forth and extra CALL and RET instructions.

The compiler comes to the rescue. We can bind local variables to the required registers:
extern void mul_8_16 (void); // Non-ABI function. Don’t call in C/C++!

static inline __attribute__((__always_inline__))
__uint24 mul_8_16_gccabi (uint8_t val8, uint16_t val16)
{

register uint8_t r24 __asm("r24") = val8;
register __uint24 r18 __asm("r18");

asm ("%~call %x[func]" "\n\t"
"clr __zero_reg__"
: "=r" (r18)
: "r" (r24), "x" (val16), [func] "i" (mul_8_16)
: "r25", "r0");

return r18;
}

Generated by Doxygen

https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention

44

• The 8-bit parameter is bound to R24, and the 24-bit return value is bound to R18...R20.

• The register keyword is mandatory.

• The hard register is specified as a string literal for the lower case register name or register number, like "18"
or "r18". Specifications like "R18", 18 or "Z" are not supported.

• The 16-bit parameter of mul_8_16 happens to be required in R27:R26, which is the X register for which
there is register constraint "x". Therefore, no register binding is required for val16.

• As mul_8_16 clobbers the zero register R1, it has to be restored by means of
clr __zero_reg__

• The asm is pure arithmetic and hence not volatile. (It might be advisable to make it volatile anyway, so that it
won't be reorderd across sei() or cli() instructions.)

Let's have a look at how this performs in a test case:
void use_mul_8_16_gccabi (uint8_t val, uint8_t a, uint8_t b)
{

if (mul_8_16_gccabi (val, a * b) >= 0x2010)
__builtin_abort();

}

For ATmega8 we get the following assembly:
use_mul_8_16_gccabi:

mul r22,r20
movw r26,r0
clr __zero_reg__

/* #APP */
rcall mul_8_16
clr __zero_reg__

/* #NOAPP */
cpi r18,16
sbci r19,32
cpc r20,__zero_reg__
brlo .L1
rcall abort

.L1:
ret

No superfluous register moves. Great!

7.9 Specifying the Assembly Name of Static Objects

Sometimes, it is desirable to use a different name for an object or function rather than the (mangled) name from
the C/C++ implementation. Just add an asm specifier with the desired name as a string literal at the end of the
declaration.

For example, this is how avr/eeprom.h implements the eeprom_read_double() function:
#if __SIZEOF_DOUBLE__ == 4
double eeprom_read_double (const double*) __asm("eeprom_read_dword");
#elif __SIZEOF_DOUBLE__ == 8
double eeprom_read_double (const double*) __asm("eeprom_read_qword");
#endif

• It uses the implementation of eeprom_read_dword for eeprom_read_double, provided double is
a 32-bit type.

• It uses the implementation of eeprom_read_qword for 64-bit doubles.

7.10 What won't work

GCC inline asm has some limitations.

Generated by Doxygen

8 How to Build a Library 45

7.10.1 Setting a Register on one asm and using it in a different one

Sequences like the following are not supposed to work:
char var;

void set_var (char c)
{

__asm ("inc r24");
__asm ("sts var, r24");

}

• There is no guarantee whatsoever that the value in R24 will survive from one asm to the next. Such code
might work in many situations, but it is still wrong and the compiler may very well put instructions bewtween
the asm statements that change R24 prior to the first asm and also between the asm statements.

• R24 is changed without noticing the compiler. When R24 contains other data, then that data will be trashed.

A correct code would be
__asm ("inc %0" "\n\t"

"sts var, %0"
:: "r" (c) : "memory");

or
__asm ("inc %1" "\n\t"

"sts %0, %1"
: "=m" (var) : "r" (c));

7.10.2 Letting an Operand cross the Boundaries of the Y Register

It is not possible to bind a value to a local register variable that crosses the boundaries of the Y register. For
example, trying to bind a 32-bit value to R31:R28 by means of
register uint32_t r28 __asm ("28");

will result in an error message like
error: register specified for ’r28’ isn’t suitable for data type

Similarly, an operand described by a constraint will be located either completely below the Y register, as part of Y
register, or above it.

7.10.3 Using Matching Constraints "=0"..."=9" with Output Operands

Suppose we want an inline asm that returns the low byte of a 16-bit value val16:
asm ("" : "=1" (lo8) : "r" (val16));

The diagnostic will be:
error: matching constraint not valid in output operand

8 How to Build a Library

8.1 Introduction

So you keep reusing the same functions that you created over and over? Tired of cut and paste going from one
project to the next? Would you like to reduce your maintenance overhead? Then you're ready to create your
own library! Code reuse is a very laudable goal. With some upfront investment, you can save time and energy
on future projects by having ready-to-go libraries. This chapter describes some background information, design
considerations, and practical knowledge that you will need to create and use your own libraries.

Generated by Doxygen

46

8.2 How the Linker Works

The compiler compiles a single high-level language file (C language, for example) into a single object module file.
The linker (ld) can only work with object modules to link them together. Object modules are the smallest unit that
the linker works with.

Typically, on the linker command line, you will specify a set of object modules (that has been previously compiled)
and then a list of libraries, including the Standard C Library. The linker takes the set of object modules that you
specify on the command line and links them together. Afterwards there will probably be a set of "undefined refer-
ences". A reference is essentially a function call. An undefined reference is a function call, with no defined function
to match the call.

The linker will then go through the libraries, in order, to match the undefined references with function definitions that
are found in the libraries. If it finds the function that matches the call, the linker will then link in the object module
in which the function is located. This part is important: the linker links in THE ENTIRE OBJECT MODULE in which
the function is located. Remember, the linker knows nothing about the functions internal to an object module, other
than symbol names (such as function names). The smallest unit the linker works with is object modules.

When there are no more undefined references, the linker has linked everything and is done and outputs the final
application.

8.3 How to Design a Library

How the linker behaves is very important in designing a library. Ideally, you want to design a library where only the
functions that are called are the only functions to be linked into the final application. This helps keep the code size
to a minimum. In order to do this, with the way the linker works, is to only write one function per code module. This
will compile to one function per object module. This is usually a very different way of doing things than writing an
application!

There are always exceptions to the rule. There are generally two cases where you would want to have more than
one function per object module.

The first is when you have very complementary functions that it doesn't make much sense to split them up. For
example, malloc() and free(). If someone is going to use malloc(), they will very likely be using free() (or at least
should be using free()). In this case, it makes more sense to aggregate those two functions in the same object
module.

The second case is when you want to have an Interrupt Service Routine (ISR) in your library that you want to link
in. The problem in this case is that the linker looks for unresolved references and tries to resolve them with code in
libraries. A reference is the same as a function call. But with ISRs, there is no function call to initiate the ISR. The
ISR is placed in the Interrupt Vector Table (IVT), hence no call, no reference, and no linking in of the ISR. In order
to do this, you have to trick the linker in a way. Aggregate the ISR, with another function in the same object module,
but have the other function be something that is required for the user to call in order to use the ISR, like perhaps an
initialization function for the subsystem, or perhaps a function that enables the ISR in the first place.

8.4 Creating a Library

The librarian program is called ar (for "archiver") and is found in the GNU Binutils project. This program will have
been built for the AVR target and will therefore be named avr-ar.

The job of the librarian program is simple: aggregate a list of object modules into a single library (archive) and
create an index for the linker to use. The name that you create for the library filename must follow a specific pattern:
libname.a. The name part is the unique part of the filename that you create. It makes it easier if the name part
relates to what the library is about. This name part must be prefixed by "lib", and it must have a file extension of .a,
for "archive". The reason for the special form of the filename is for how the library gets used by the toolchain, as we
will see later on.

Generated by Doxygen

8.5 Using a Library 47

Note

The filename is case-sensitive. Use a lowercase "lib" prefix, and a lowercase ".a" as the file extension.

The command line is fairly simple:
avr-ar rcs <library name> <list of object modules>

The r command switch tells the program to insert the object modules into the archive with replacement. The c
command line switch tells the program to create the archive. And the s command line switch tells the program to
write an object-file index into the archive, or update an existing one. This last switch is very important as it helps the
linker to find what it needs to do its job.

Note

The command line switches are case sensitive! There are uppercase switches that have completely different
actions.

MFile and the WinAVR distribution contain a Makefile Template that includes the necessary command lines to
build a library. You will have to manually modify the template to switch it over to build a library instead of an
application.

See the GNU Binutils manual for more information on the ar program.

8.5 Using a Library

To use a library, use the -l switch on your linker command line. The string immediately following the -l is the
unique part of the library filename that the linker will link in. For example, if you use:
-lm

this will expand to the library filename:
libm.a

which happens to be the math library included in AVR-LibC.

If you use this on your linker command line:
-lprintf_flt

then the linker will look for a library called:
libprintf_flt.a

This is why naming your library is so important when you create it!

The linker will search libraries in the order that they appear on the command line. Whichever function is found first
that matches the undefined reference, it will be linked in.

There are also command line switches that tell GCC which directory to look in (-L) for the libraries that are specified
to be linke in with -l.

See the GNU Binutils manual for more information on the GNU linker (ld) program.

Generated by Doxygen

48

9 Benchmarks

The results below can only give a rough estimate of the resources necessary for using certain library functions.
There is a number of factors which can both increase or reduce the effort required:

• Expenses for preparation of operands and their stack are not considered.

• In the table, the size includes all additional functions (for example, function to multiply two integers) but they
are only linked from the library.

• Expenses of time of performance of some functions essentially depend on parameters of a call, for example,
qsort() is recursive, and sprintf() receives parameters in a stack.

• Different versions of the compiler can give a significant difference in code size and execution time. For
example, the dtostre() function, compiled with avr-gcc 3.4.6, requires 930 bytes. After transition to avr-gcc
4.2.3, the size become 1088 bytes.

9.1 A few of libc functions.

Avr-gcc version is 4.7.1

The size of function is given in view of all picked up functions. By default AVR-LibC is compiled with
-mcall-prologues option. In brackets the size without taking into account modules of a prologue and
an epilogue is resulted. Both of the size can coincide, if function does not cause a prologue/epilogue.

Function Units Avr2 Avr25 Avr4
atoi ("12345") Flash bytes

Stack bytes
MCU clocks

82 (82)
2
155

78 (78)
2
149

74 (74)
2
149

atol ("12345") Flash bytes
Stack bytes
MCU clocks

122 (122)
2
221

118 (118)
2
219

118 (118)
2
219

dtostre (1.2345, s, 6, 0) Flash bytes
Stack bytes
MCU clocks

1116 (1004)
17
1247

1048 (938)
17
1105

1048 (938)
17
1105

dtostrf (1.2345, 15, 6, s) Flash bytes
Stack bytes
MCU clocks

1616 (1616)
38
1634

1508 (1508)
38
1462

1508 (1508)
38
1462

itoa (12345, s, 10) Flash bytes
Stack bytes
MCU clocks

110 (110)
2
879

102 (102)
2
875

102 (102)
2
875

ltoa (12345L, s, 10) Flash bytes
Stack bytes
MCU clocks

134 (134)
2
1597

126 (126)
2
1593

126 (126)
2
1593

malloc (1) Flash bytes
Stack bytes
MCU clocks

768 (712)
6
215

714 (660)
6
201

714 (660)
6
201

realloc ((void ∗)0, 1) Flash bytes
Stack bytes
MCU clocks

1284 (1172)
18
305

1174 (1064)
18
286

1174 (1064)
18
286

qsort (s, sizeof(s), 1, cmp) Flash bytes
Stack bytes
MCU clocks

1252 (1140)
42
21996

1022 (912)
42
19905

1028 (918)
42
17541

sprintf_min (s, "%d", 12345) Flash bytes
Stack bytes
MCU clocks

1224 (1112)
53
1841

1092 (982)
53
1694

1088 (978)
53
1689

Generated by Doxygen

9.2 Math functions. 49

sprintf (s, "%d", 12345) Flash bytes
Stack bytes
MCU clocks

1614 (1502)
58
1647

1476 (1366)
58
1552

1454 (1344)
58
1547

sprintf_flt (s, "%e", 1.2345) Flash bytes
Stack bytes
MCU clocks

3228 (3116)
67
2573

2990 (2880)
67
2311

2968 (2858)
67
2311

sscanf_min ("12345", "%d", &i) Flash bytes
Stack bytes
MCU clocks

1532 (1420)
55
1607

1328 (1218)
55
1446

1328 (1218)
55
1446

sscanf ("12345", "%d", &i) Flash bytes
Stack bytes
MCU clocks

2008 (1896)
55
1610

1748 (1638)
55
1449

1748 (1638)
55
1449

sscanf ("point,color", "%[a-z]", s) Flash bytes
Stack bytes
MCU clocks

2008 (1896)
86
3067

1748 (1638)
86
2806

1748 (1638)
86
2806

sscanf_flt ("1.2345", "%e", &x) Flash bytes
Stack bytes
MCU clocks

3464 (3352)
71
2497

3086 (2976)
71
2281

3070 (2960)
71
2078

strtod ("1.2345", &p) Flash bytes
Stack bytes
MCU clocks

1632 (1520)
20
1235

1536 (1426)
20
1177

1480 (1480)
21
1124

strtol ("12345", &p, 0) Flash bytes
Stack bytes
MCU clocks

918 (806)
22
956

834 (724)
22
891

792 (792)
28
794

9.2 Math functions.

The table contains the number of MCU clocks to calculate a function with a given argument(s). The main reason of
a big difference between Avr2 and Avr4 is a hardware multiplication.

Function Avr2 Avr4
__addsf3 (1.234, 5.678) 113 108

__mulsf3 (1.234, 5.678) 375 138

__divsf3 (1.234, 5.678) 466 465

acos (0.54321) 4411 2455

asin (0.54321) 4517 2556

atan (0.54321) 4710 2271

atan2 (1.234, 5.678) 5270 2857

cbrt (1.2345) 2684 2555

ceil (1.2345) 177 177

cos (1.2345) 3387 1671

cosh (1.2345) 4922 2979

exp (1.2345) 4708 2765

fdim (5.678, 1.234) 111 111

floor (1.2345) 180 180

fmax (1.234, 5.678) 39 37

fmin (1.234, 5.678) 35 35

fmod (5.678, 1.234) 131 131

frexp (1.2345, 0) 42 41

hypot (1.234, 5.678) 1341 866

ldexp (1.2345, 6) 42 42

log (1.2345) 4142 2134

log10 (1.2345) 4498 2260

modf (1.2345, 0) 433 429

pow (1.234, 5.678) 9293 5047

round (1.2345) 150 150

Generated by Doxygen

50

sin (1.2345) 3353 1653

sinh (1.2345) 4946 3003

sqrt (1.2345) 494 492

tan (1.2345) 4381 2426

tanh (1.2345) 5126 3173

trunc (1.2345) 178 178

10 Porting From IAR to AVR GCC

10.1 Introduction

C language was designed to be a portable language. There two main types of porting activities: porting an ap-
plication to a different platform (OS and/or processor), and porting to a different compiler. Porting to a different
compiler can be exacerbated when the application is an embedded system. For example, the C language Stan-
dard, strangely, does not specify a standard for declaring and defining Interrupt Service Routines (ISRs). Different
compilers have different ways of defining registers, some of which use non-standard language constructs.

This chapter describes some methods and pointers on porting an AVR application built with the IAR compiler to the
GNU toolchain (AVR GCC). Note that this may not be an exhaustive list.

10.2 Registers

IO header files contain identifiers for all the register names and bit names for a particular processor. IAR has
individual header files for each processor and they must be included when registers are being used in the code. For
example:
#include <iom169.h>

Note

IAR does not always use the same register names or bit names that are used in the AVR datasheet.

AVR GCC also has individual IO header files for each processor. However, the actual processor type is specified as
a command line flag to the compiler. (Using the -mmcu=processor flag.) This is usually done in the Makefile.
This allows you to specify only a single header file for any processor type:
#include <avr/io.h>

Note

The forward slash in the <avr/io.h> file name that is used to separate subdirectories can be used on Windows
distributions of the toolchain and is the recommended method of including this file.

The compiler knows the processor type and through the single header file above, it can pull in and include the
correct individual IO header file. This has the advantage that you only have to specify one generic header file, and
you can easily port your application to another processor type without having to change every file to include the new
IO header file.

The AVR toolchain tries to adhere to the exact names of the registers and names of the bits found in the AVR
datasheet. There may be some descrepencies between the register names found in the IAR IO header files and the
AVR GCC IO header files.

Generated by Doxygen

10.3 Interrupt Service Routines (ISRs) 51

10.3 Interrupt Service Routines (ISRs)

As mentioned above, the C language Standard, strangely, does not specify a standard way of declaring and defining
an ISR. Hence, every compiler seems to have their own special way of doing so.

IAR declares an ISR like so:
#pragma vector=TIMER0_OVF_vect
__interrupt void MotorPWMBottom()
{

// code
}

In AVR GCC, you declare an ISR like so:
ISR(PCINT1_vect)
{

//code
}

AVR GCC uses the ISR macro to define an ISR. This macro requries the header file:
#include <avr/interrupt.h>

The names of the various interrupt vectors are found in the individual processor IO header files that you must include
with <avr/io.h>.

Note

The names of the interrupt vectors in AVR GCC has been changed to match the names of the vectors in IAR.
This significantly helps in porting applications from IAR to AVR GCC.

10.4 Intrinsic Routines

IAR has a number of intrinsic routine such as

__enable_interrupts() __disable_interrupts() __watchdog_reset()

These intrinsic functions compile to specific AVR opcodes (SEI, CLI, WDR).

There are equivalent macros that are used in AVR GCC, however they are not located in a single include file.

AVR GCC has sei() for __enable_interrupts(), and cli() for __disable_interrupts(). Both
of these macros are located in <avr/interrupt.h>.

AVR GCC has the macro wdt_reset() in place of __watchdog_reset(). However, there is a whole Watch-
dog Timer API available in AVR GCC that can be found in <avr/wdt.h>.

10.5 Flash Variables

The C language was not designed for Harvard architecture processors with separate memory spaces. This means
that there are various non-standard ways to define a variable whose data resides in the Program Memory (Flash).

IAR uses a non-standard keyword to declare a variable in Program Memory:
__flash int mydata[] =

AVR GCC uses Variable Attributes to achieve the same effect:
int mydata[] __attribute__((progmem))

Generated by Doxygen

52

Note

See the GCC User Manual for more information about Variable Attributes.

AVR-LibC provides a convenience macro for the Variable Attribute:
#include <avr/pgmspace.h>
.
.
.
int mydata[] PROGMEM =

Note

The PROGMEM macro expands to the Variable Attribute of progmem. This macro requires that you include
<avr/pgmspace.h>. This is the canonical method for defining a variable in Program Space.

To read back flash data, use the pgm_read_∗() macros defined in <avr/pgmspace.h>. All Program Memory
handling macros are defined there.

There is also a way to create a method to define variables in Program Memory that is common between the two
compilers (IAR and AVR GCC). Create a header file that has these definitions:
#if defined(__ICCAVR__) // IAR C Compiler
#define FLASH_DECLARE(x) __flash x
#endif
#if defined(__GNUC__) // GNU Compiler
#define FLASH_DECLARE(x) x __attribute__((__progmem__))
#endif

This code snippet checks for the IAR compiler or for the GCC compiler and defines a macro FLASH_DECLARE(x)
that will declare a variable in Program Memory using the appropriate method based on the compiler that is being
used. Then you would used it like so:
FLASH_DECLARE(int mydata[] = ...);

10.6 Non-Returning main()

To declare main() to be a non-returning function in IAR, it is done like this:
__C_task void main(void)
{

// code
}

To do the equivalent in AVR GCC, do this:
void main(void) __attribute__((noreturn));

void main(void)
{

//...
}

Note

See the GCC User Manual for more information on Function Attributes.

In AVR GCC, a prototype for main() is required so you can declare the function attribute to specify that the main()
function is of type "noreturn". Then, define main() as normal. Note that the return type for main() is now void.

Generated by Doxygen

10.7 Locking Registers 53

10.7 Locking Registers

The IAR compiler allows a user to lock general registers from r15 and down by using compiler options and this
keyword syntax:
__regvar __no_init volatile unsigned int filteredTimeSinceCommutation @14;

This line locks r14 for use only when explicitly referenced in your code thorugh the var name "filteredTimeSince←↩

Commutation". This means that the compiler cannot dispose of it at its own will.

To do this in AVR GCC, do this:
register unsigned char counter asm("r3");

Typically, it should be possible to use r2 through r15 that way.

Note

Do not reserve r0 or r1 as these are used internally by the compiler for a temporary register and for a zero
value.

Locking registers is not recommended in AVR GCC as it removes this register from the control of the compiler,
which may make code generation worse. Use at your own risk.

11 Frequently Asked Questions

11.1 FAQ Index

• Interrupts

– Why doesn't my program recognize a variable updated in an interrupt routine?

– Why do some 16-bit timer registers sometimes get trashed?

– What ISR names are available for my device?

– What pitfalls exist when writing reentrant code?

– Why are interrupts re-enabled in the middle of writing the stack pointer?

– Why are (many) interrupt flags cleared by writing a logical 1?

• C/C++

– Can I use C++ on the AVR?

– Which -O flag to use?

– Shouldn't I initialize all my variables?

– How do I pass an IO port as a parameter to a function?

– Why do all my "foo...bar" strings eat up the SRAM?

– How do I put an array of strings completely in ROM?

– How to modify MCUCR or WDTCR early?

– How do I perform a software reset of the AVR?

– On a device with more than 128 KiB of flash, how to make function pointers work?

– What registers are used by the C compiler?

– How to permanently bind a variable to a register?

– Why is assigning ports in a "chain" a bad idea?

– What is all this _BV() stuff about?

– Is it really impossible to program the ATtinyXX in C?

Generated by Doxygen

54

• (Inline) Assembly

– How do I use a #define'd constant in an asm statement?

– Which AVR-specific assembler operators are available?

• Linking and Binaries

– How do I relocate code to a fixed address?

– How to add a raw binary image to linker output?

– Why are there five different linker scripts?

• Static Analysis

– Which header files are included in my program?

– Which macros are defined in my program? Where are they defined, and to what value?

– How to detect RAM memory and variable overlap problems?

• Debugging

– Why does the PC randomly jump around when single-stepping through my program in avr-gdb?

– How do I trace an assembler file in avr-gdb?

• Hardware

– Why are some addresses of the EEPROM corrupted (usually address zero)?

– My UART is generating nonsense! My ATmega128 keeps crashing! Port F is completely broken!

– Why have "programmed" fuses the bit value 0?

– How to use external RAM?

• Other

– Why is my baud rate wrong?

– What is this "clock skew detected" message?

11.2 Why doesn't my program recognize a variable updated in an interrupt routine?

When using the optimizer, in a loop like the following one:
uint8_t flag;
...
ISR(SOME_vect) {

flag = 1;
}
...

while (flag == 0) {
...

}

the compiler will typically access flag only once, and optimize further accesses completely away, since its code
path analysis shows that nothing inside the loop could change the value of flag anyway. To tell the compiler that
this variable could be changed outside the scope of its code path analysis (e. g. from within an interrupt routine),
the variable needs to be declared like:
volatile uint8_t flag;

Back to FAQ Index.

Generated by Doxygen

11.3 How to permanently bind a variable to a register? 55

11.3 How to permanently bind a variable to a register?

This can be done with
register uint8_t counter __asm("r3");

Typically, it should be safe to use r2 through r7 that way.

Registers r8 through r25 can be used for argument passing by the compiler in case many or long arguments are
being passed to callees. If this is not the case throughout the entire application, these registers could be used for
register variables as well.

Extreme care should be taken that the entire application is compiled with a consistent set of register-allocated vari-
ables including possibly used library functions. This can be achieved by compiling each module with -ffixed-r3
or -ffixed-3. Notice that when you are using library functions from libgcc (the avr-gcc runtime library) or AVR-
LibC, then these libraries were generated without the requirement to avoid specific registers. Hence when you are
using libraries from the distribution, you must make sure that none of the reserved registers is used in the generated
binary.

Also notice that global register variables can't be volatile, because only variables in memory can be volatile, and
register variables are not located in memory.

Back to FAQ Index.

11.4 How to modify MCUCR or WDTCR early?

Basically, write a small function which looks like this:
#include <avr/io.h>

static __attribute__((used, unused, naked, section(".init3")))
void init_MCUCR (void);

void init_MCUCR (void)
{

MCUCR = _BV(SRE) | _BV(SRW);
}

Do not call this function by hand! This piece of code will be inserted in startup code, which is run right after reset.
For the meaning of the attributes, see How do I perform a software reset of the AVR?

The advantage of this method is that you can insert any initialization code you want (just remember that this is very
early startup – no stack and no __zero_reg__ yet), and no program memory space is wasted if this feature is
not used.

There should be no need to modify linker scripts anymore, except for some very special cases. It is best to leave _←↩

_stack at its default value (end of internal SRAM – faster, and required on some devices like ATmega161 because
of errata), and add -Wl,-Tdata,0x801100 to start the data section above the stack.

For more information on using sections, see Memory Sections. There is also an example for In C/C++ Code. Note
that in C code, any such function would preferably be placed into section .init3 as the code in .init2 ensures
the internal register __zero_reg__ is already cleared.

Back to FAQ Index.

Generated by Doxygen

56

11.5 What is all this _BV() stuff about?

When performing low-level output work, which is a very central point in microcontroller programming, it is quite
common that a particular bit needs to be set or cleared in some IO register. While the device documentation
provides mnemonic names for the various bits in the IO registers, and the AVR device-specific IO definitions reflect
these names in definitions for numerical constants, a way is needed to convert a bit number (usually within a byte
register) into a byte value that can be assigned directly to the register. However, sometimes the direct bit numbers
are needed as well (e. g. in an SBI() instruction), so the definitions cannot usefully be made as byte values in the
first place.

So in order to access a particular bit number as a byte value, use the _BV() macro. Of course, the implementation
of this macro is just the usual bit shift (which is done by the compiler anyway, thus doesn't impose any run-time
penalty), so the following applies:
_BV(3) => 1 « 3 => 0x08

However, using the macro often makes the program better readable.

"BV" stands for "bit value", in case someone might ask you. :-)

Example: clock timer 2 with full IO clock (CS2x = 0b001), toggle OC2 output on compare match (COM2x = 0b01),
and clear timer on compare match (CTC2 = 1). Make OC2 (PD7) an output.
TCCR2 = _BV(COM20) | _BV(CTC2) | _BV(CS20);
DDRD = _BV(PD7);

Back to FAQ Index.

11.6 Can I use C++ on the AVR?

Basically yes, C++ is supported (assuming your compiler has been configured and compiled to support it, of course).
Source files ending in .cc, .cpp or .C will automatically cause the compiler frontend to invoke the C++ compiler.
Alternatively, the C++ compiler could be explicitly called by the name avr-c++.

However, there's currently no support for libstdc++, the standard support library needed for a complete C++
implementation. This imposes a number of restrictions on the C++ programs that can be compiled. Among them
are:

• Obviously, none of the C++ related standard functions, classes, and template classes are available.

• The operators new and delete are not implemented, attempting to use them will cause the linker to com-
plain about undefined external references. (This could perhaps be fixed.)

• Some of the supplied include files are not C++ safe, i. e. they need to be wrapped into
extern "C" { ... }

(This could certainly be fixed, too.)

• Exceptions are not supported. Since exceptions are enabled by default in the C++ frontend, they explicitly
need to be turned off using -fno-exceptions in the compiler options. Failing this, the linker will complain
about an undefined external reference to __gxx_personality_sj0.

Constructors and destructors are supported though, including global ones.

When programming C++ in space- and runtime-sensitive environments like microcontrollers, extra care should be
taken to avoid unwanted side effects of the C++ calling conventions like implied copy constructors that could be
called upon function invocation etc. These things could easily add up into a considerable amount of time and
program memory wasted. Thus, casual inspection of the generated assembler code (using the -S compiler option)
seems to be warranted.

Back to FAQ Index.

Generated by Doxygen

11.7 Shouldn't I initialize all my variables? 57

11.7 Shouldn't I initialize all my variables?

Variables in static storage are guaranteed to be initialized by the C standard. This includes global and static variables
without explicit initializer, which are initialized to 0. avr-gcc does this by placing the appropriate code into section
.init4. With respect to the standard, this sentence is somewhat simplified (because the standard allows for
machines where the actual bit pattern used differs from all bits being 0), but for the AVR target, in general, all
integer-type variables are set to 0, all pointers to a NULL pointer, and all floating-point variables to 0.0.

As long as these variables are not explicitly initialized, or their initializer is all zeros, they go into the .bss output
section. This section simply records the size of the variable, but otherwise doesn't consume space, neither within
the object file nor within flash memory. (Of course, being a variable, it will consume space in the target's SRAM.)

In contrast, global and static variables that have a non-zero initializer go into the .data output section of the file. This
will cause them to consume space in the object file (in order to record the initializing value), and in the flash ROM
of the target device. The latter is needed to initialize the variables in RAM from the initializers kept in ROM during
the startup code, so that all variables will have their expected initial values when main() is entered.

Back to FAQ Index.

11.8 Why do some 16-bit timer registers sometimes get trashed?

Some of the timer-related 16-bit IO registers use a temporary register (called TEMP in the AVR datasheet) to
guarantee an atomic access to the register despite the fact that two separate 8-bit IO transfers are required to
actually move the data. Typically, this includes access to the current timer/counter value register (TCNTn), the input
capture register (ICRn), and write access to the output compare registers (OCRnM). Refer to the actual datasheet
for each device's set of registers that involves the TEMP register.

When accessing one of the registers that use TEMP from the main application, and possibly any other one from
within an interrupt routine, care must be taken that no access from within an interrupt context could clobber the
TEMP register data of an in-progress transaction that has just started elsewhere.

To protect interrupt routines against other interrupt routines, it's usually best to use the ISR() macro when declaring
the interrupt function, and to ensure that interrupts are still disabled when accessing those 16-bit timer registers.

Within the main program, access to those registers could be encapsulated in calls to the cli() and sei() macros. If the
status of the global interrupt flag before accessing one of those registers is uncertain, something like the following
example code can be used.
uint16_t
read_timer1(void)
{

uint8_t sreg;
uint16_t val;

sreg = SREG;
cli();
val = TCNT1;
SREG = sreg;

return val;
}

Back to FAQ Index.

Generated by Doxygen

58

11.9 How do I use a #define'd constant in an asm statement?

So you tried this:
asm volatile ("sbi 0x18, 7");

Which works. When you do the same thing but replace the address of the port by its macro name, like this:
asm volatile ("sbi PORTB, 7");

you get a syntax error from the assembler: "Error: constant value required".

PORTB is a precompiler definition included in the processor specific file included in avr/io.h. As you may know,
the precompiler will not touch strings, and PORTB gets passed to the assembler instead of 0x18. One way to avoid
this problem is:
asm volatile ("sbi %0, 7" :: "I" (_SFR_IO_ADDR(PORTB)));

Note

For C programs, rather use the standard C bit operators instead, so the above would be expressed as PORTB
|= (1 << 7). The optimizer will take care to transform this into a single SBI instruction, assuming the
operands allow for this.

There are situation though where the address of a special function register (SFR) is required in inline assembly.
When the register can be accessed by LDS and STS, one can use the RAM address of the SFR:
asm volatile ("sts %0, __zero_reg__" :: "n" (& PORTB));

When the I/O address of the register is required, one way is to use _SFR_IO_ADDR to get the I/O address like in
the example above. A different approach is to use inline asm print modifier i supported since avr-gcc v4.7:
asm volatile ("out %i0, __zero_reg__" :: "n" (& PORTB));

The i0 will print the address of PORTB as an I/O address.

Back to FAQ Index.

11.10 Why does the PC randomly jump around when single-stepping through my
program in avr-gdb?

When compiling a program with both optimization (-O) and debug information (-g) which is fortunately possible in
avr-gcc, the code watched in the debugger is optimized code. It is guaranteed that the code runs with the exact
same optimizations as it would run without the -g switch.

Since the compiler is free to reorder code execution as long as the semantics do not change, code is often rear-
ranged in order to make it possible to use a single branch instruction for conditional operations. Branch instructions
can only cover a short range for the target PC (-63 through +64 words from the current PC). If a branch instruction
cannot be used directly, the compiler needs to work around it by combining a skip instruction together with a relative
jump (rjmp) instruction, which will need one additional word of ROM.

Another side effect of optimization is that variable usage is restricted to the area of code where it is actually used.
So if a variable was placed in a register at the beginning of some function, this same register can be re-used later
on if the compiler notices that the first variable is no longer used inside that function, even though the variable is still
in lexical scope. When trying to examine the variable in avr-gdb, the displayed result will then look garbled.

So in order to avoid these side effects, optimization can be turned off while debugging, or at least optimization level
-Og can be used which was introduced to improve good debugging experience while it still provides a reasonable
amount of optimization.

However, some of these optimizations might also have the side effect of uncovering bugs that would otherwise not
be obvious, so it must be noted that turning off optimization can easily change the bug pattern. In most cases, you
are better off leaving optimizations enabled while debugging.

Back to FAQ Index.

Generated by Doxygen

11.11 How do I trace an assembler file in avr-gdb? 59

11.11 How do I trace an assembler file in avr-gdb?

When using the -g compiler option, avr-gcc only generates line number and other debug information for C (and
C++) files that pass the compiler. Functions that don't have line number information will be completely skipped by a
single step command in gdb. This includes functions linked from a standard library, but by default also functions
defined in an assembler source file, since the -g compiler switch does not apply to the assembler.

So in order to debug an assembler input file (possibly one that has to be passed through the C preprocessor), it's
the assembler that needs to be told to include line-number information into the output file. (Other debug information
like data types and variable allocation cannot be generated, since unlike a compiler, the assembler basically doesn't
know about this.) This is done using the (GNU) assembler option --gstabs.

Example:

$ avr-as -mmcu=atmega128 --gstabs -o foo.o foo.s

When the assembler is not called directly but through the C compiler frontend (either implicitly by passing a source
file ending in .S, or explicitly using -x assembler-with-cpp), the compiler frontend needs to be told to pass
the --gstabs option down to the assembler. This is done using -Wa,--gstabs. Please take care to only
pass this option when compiling an assembler input file. Otherwise, the assembler code that results from the C
compilation stage will also get line number information, which confuses the debugger.

Note

You can also use -Wa,-gstabs since the compiler will add the extra '-' for you.

Example:

$ EXTRA_OPTS="-Wall -mmcu=atmega128 -x assembler-with-cpp"
$ avr-gcc -Wa,--gstabs ${EXTRA_OPTS} -c -o foo.o foo.S

Also note that the debugger might get confused when entering a piece of code that has a non-local label before,
since it then takes this label as the name of a new function that appears to have been entered. Thus, the best
practice to avoid this confusion is to only use non-local labels when declaring a new function, and restrict anything
else to local labels. Local labels consist just of a number only. References to these labels consist of the number,
followed by the letter b for a backward reference, or f for a forward reference. These local labels may be re-used
within the source file, references will pick the closest label with the same number and given direction.

Example:
myfunc:

push r16
push r17
push r18
push YL
push YH
...
clr r16 ; start loop
ldi YL, lo8(sometable)
ldi YH, hi8(sometable)
rjmp 2f ; jump to loop test at end

1: ld r17, Y+ ; loop continues here
...
breq 3f ; return from myfunc prematurely
...
inc r16

2: cmp r16, r18
brlo 1b ; jump back to top of loop

3: pop YH
pop YL
pop r18
pop r17
pop r16
ret

Back to FAQ Index.

Generated by Doxygen

60

11.12 How do I pass an IO port as a parameter to a function?

Consider this example code:
#include <inttypes.h>
#include <avr/io.h>

void
set_bits_func_wrong (volatile uint8_t port, uint8_t mask)
{

port |= mask;
}

void
set_bits_func_correct (volatile uint8_t *port, uint8_t mask)
{

*port |= mask;
}

#define set_bits_macro(port,mask) ((port) |= (mask))

int main (void)
{

set_bits_func_wrong (PORTB, 0xaa);
set_bits_func_correct (&PORTB, 0x55);
set_bits_macro (PORTB, 0xf0);

return (0);
}

The first function will generate object code which is not even close to what is intended. The major problem arises
when the function is called. When the compiler sees this call, it will actually pass the value of the PORTB register
(using an IN instruction), instead of passing the address of PORTB (e.g. memory mapped io addr of 0x38, io port
0x18 for the mega128). This is seen clearly when looking at the disassembly of the call:

set_bits_func_wrong (PORTB, 0xaa);
10a: 6a ea ldi r22, 0xAA
10c: 88 b3 in r24, 0x18
10e: 0e 94 65 00 call 0xca

So, the function, once called, only sees the value of the port register and knows nothing about which port it came
from. At this point, whatever object code is generated for the function by the compiler is irrelevant. The interested
reader can examine the full disassembly to see that the function's body is completely fubar.

The second function shows how to pass (by reference) the memory mapped address of the io port to the function
so that you can read and write to it in the function. Here's the object code generated for the function call:

set_bits_func_correct (&PORTB, 0x55);
112: 65 e5 ldi r22, 0x55
114: 88 e3 ldi r24, 0x38
116: 90 e0 ldi r25, 0x00
118: 0e 94 7c 00 call 0xf8

You can clearly see that 0x0038 is correctly passed for the address of the io port. Looking at the disassem-
bled object code for the body of the function, we can see that the function is indeed performing the operation we
intended:

void
set_bits_func_correct (volatile uint8_t *port, uint8_t mask)
{

f8: fc 01 movw r30, r24

*port |= mask;
fa: 80 81 ld r24, Z
fc: 86 2b or r24, r22
fe: 80 83 st Z, r24

}
100: 08 95 ret

Notice that we are accessing the io port via the LD and ST instructions.

The port parameter must be volatile to avoid a compiler warning.

Generated by Doxygen

11.13 What registers are used by the C compiler? 61

Note

Because of the nature of the IN and OUT assembly instructions, they can not be used inside the function when
passing the port in this way. Readers interested in the details should consult the Instruction Set datasheet.

Finally we come to the macro version of the operation. In this contrived example, the macro is the most efficient
method with respect to both execution speed and code size:

set_bits_macro (PORTB, 0xf0);
11c: 88 b3 in r24, 0x18
11e: 80 6f ori r24, 0xF0
120: 88 bb out 0x18, r24

Of course, in a real application, you might be doing a lot more in your function which uses a passed by reference
io port address and thus the use of a function over a macro could save you some code space, but still at a cost of
execution speed.

Care should be taken when such an indirect port access is going to one of the 16-bit IO registers where the order
of write access is critical (like some timer registers). All versions of avr-gcc up to 3.3 will generate instructions that
use the wrong access order in this situation (since with normal memory operands where the order doesn't matter,
this sometimes yields shorter code).

See http://mail.gnu.org/archive/html/avr-libc-dev/2003-01/msg00044.html for a
possible workaround.

avr-gcc versions after 3.3 have been fixed in a way where this optimization will be disabled if the respective pointer
variable is declared to be volatile, so the correct behaviour for 16-bit IO ports can be forced that way.

Back to FAQ Index.

11.13 What registers are used by the C compiler?

See also the Type Layout, Register Layout and Calling Convention sections in the avr-gcc
Wiki.

Data types char is 8 bits, int and short are 16 bits, long is 32 bits, long long is 64 bits, float is 32
bits, double and long double are 32 bits or 64 bits, pointers are 16 bits (function pointers are word
addresses to allow addressing up to 128K program memory space).

• There is a -mint8 option (see Options for the C compiler avr-gcc) to make int and short 8 bits,
long 16 bits and long long 32 bits. But that is not supported by AVR-LibC (except for stdint.h
and avr/pgmspace.h, but no 64-bit integer types are available) and violates C standards (int must
be at least 16 bits).

Call-used registers (r18-r27, r30-r31) May be allocated by gcc for local data. You may use them freely in as-
sembly subroutines. Calling C subroutines can clobber any of them - the caller is responsible for saving and
restoring.

For the AVR_TINY architecture (ATtiny10 and relatives), r20-r27 and r30-31 are call-clobbered.

Call-saved registers (r2-r17, r28-r29) May be allocated by gcc for local data. Calling C subroutines leaves them
unchanged. Assembly subroutines are responsible for saving and restoring these registers, if changed. r29←↩

:r28 (Y pointer) is used as a frame pointer (points to local data on stack) if necessary. The requirement for the
callee to save/preserve the contents of these registers even applies in situations where the compiler assigns
them for argument passing.

For the AVR_TINY architecture (ATtiny10 etc.), r18-r19 and r28-r29 are call-saved. Registers r0 through r15
do not exist.

Generated by Doxygen

http://mail.gnu.org/archive/html/avr-libc-dev/2003-01/msg00044.html
https://gcc.gnu.org/wiki/avr-gcc#Type_Layout
https://gcc.gnu.org/wiki/avr-gcc#Register_Layout
https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention

62

Fixed registers (r0, r1) Never allocated by gcc for local data, but often used for fixed purposes:

• r0 (__tmp_reg__) — temporary register, can be clobbered by any code (except interrupt handlers
which save it), may be used to remember something for a while within one piece of assembly code

• r1 (__zero_reg__) — assumed to be always zero in any C code, may be used to remember some-
thing for a while within one piece of assembler code, but must then be cleared after use (clr __←↩

zero_reg__). This includes any use of the [f]mul[s[u]] instructions, which return their result
in r1:r0. Interrupt handlers save and clear __zero_reg__ on entry, and restore it on exit (in case it
was non-zero).

• T flag — the T flag in the status register (SREG) can be used the same way like __tmp_reg__.

For the AVR_TINY architecture (ATtiny10 etc.), __tmp_reg__ is r16, and __zero_reg__ is r17.

Function call conventions Arguments - allocated left to right, r25 to r8. All arguments are aligned to start in
even-numbered registers (odd-sized arguments, including char, have one free register above them). This
allows making better use of the movw instruction on the enhanced core.

If too many, those that don't fit are passed on the stack.

On AVR_TINY, r25 to r20 are used to pass values.

• Return values: 8-bit in r24, 16-bit in r25:r24, up to 32 bits in r22-r25, up to 64 bits in r18-r25.

• Arguments to functions with a variable number of lists like printf get all their values on the stack.
char is extended to int, and float is extended to double.

• When an argument is passed on the stack, all subsequent arguments are also passed on the stack.

• An argument is either passed completely in registers or completely on the stack.

• Arguments with a size of zero or with a size larger than 8 bytes (4 bytes on AVR_TINY) are returned in
memory. The caller provides the memory location as implicit first argument to the callee.

• When an argument is returned in registers, its size is padded to the next power of 2.

Back to FAQ Index.

11.14 How do I put an array of strings completely in ROM?

There are times when you may need an array of strings which will never be modified. In this case, you don't want to
waste ram storing the constant strings. The most obvious (and incorrect) thing to do is this:
#include <avr/pgmspace.h>

const char* const array[2] PROGMEM = {
"Foo",
"Bar"

};

int main (void)
{

char buf[32];
strcpy_P (buf, array[1]);
return 0;

}

The result is not what you want though. What you end up with is the array stored in ROM, while the individual strings
end up in RAM (in some .rodata input section).

To work around this, you need to do something like this:
#include <avr/pgmspace.h>

static const char foo[] PROGMEM = "Foo";
static const char bar[] PROGMEM = "Bar";

const char* const array[2] PROGMEM = {
foo,
bar

Generated by Doxygen

11.15 How to use external RAM? 63

};

void func (uint8_t i)
{

char buf[32];

const char *p = pgm_read_ptr (&array[i]);
strcpy_P (buf, p);

}

Looking at the disassembly of the resulting object file we see that array is in flash as such:
00000026 <array>:

26: 2e 00 2a 00

0000002a <bar>:
2a: 42 61 72 00 Bar.

0000002e <foo>:
2e: 46 6f 6f 00 Foo.

foo is at address 0x002e.
bar is at address 0x002a.
array is at address 0x0026.

11.14.1 Using named address-spaces

An alternative is to use the named address-space __flash, which is supported since avr-gcc v4.7 and in GNU-
C99 and up:
#include <avr/pgmspace.h>

#define F(X) ((const __flash char[]) { X })

const __flash char* const __flash array[] =
{

F("Foo"), F("Bar")
};

int compare (const char *str, uint8_t i)
{

return strcmp_P (str, array[i]);
}

Moreover, there is no more need for pgm_read_xxx(): The (addresses of) the string literals can be read directly
by means of array[i]. The header is only needed for the strcmp_P prototype.

Back to FAQ Index.

11.15 How to use external RAM?

Well, there is no universal answer to this question; it depends on what the external RAM is going to be used for.

Basically, the bit SRE (SRAM enable) in the MCUCR register needs to be set in order to enable the external memory
interface. Depending on the device to be used, and the application details, further registers affecting the external
memory operation like XMCRA and XMCRB, and/or further bits in MCUCRmight be configured. Refer to the datasheet
for details.

If the external RAM is going to be used to store the variables from the C program (i. e., the .data and/or .bss seg-
ment) in that memory area, it is essential to set up the external memory interface early during the device initialization
so the initialization of these variable will take place. Refer to How to modify MCUCR or WDTCR early? for a de-
scription how to do this using few lines of assembler code, or to the chapter about memory sections for an
example written in C.

The explanation of malloc() contains a discussion about the use of internal RAM vs. external RAM in particular
with respect to the various possible locations of the heap (area reserved for malloc()). It also explains the linker

Generated by Doxygen

64

command-line options that are required to move the memory regions away from their respective standard locations
in internal RAM.

Finally, if the application simply wants to use the additional RAM for private data storage kept outside the domain of
the C compiler (e. g. through a char ∗ variable initialized directly to a particular address), it would be sufficient to
defer the initialization of the external RAM interface to the beginning of main(), so no tweaking of the .init3
section is necessary. The same applies if only the heap is going to be located there, since the application start-up
code does not affect the heap.

It is not recommended to locate the stack in external RAM. In general, accessing external RAM is slower than
internal RAM, and errata of some AVR devices even prevent this configuration from working properly at all.

Back to FAQ Index.

11.16 Which -O flag to use?

There's a common misconception that larger numbers behind the -O option might automatically cause "better"
optimization. First, there's no universal definition for "better", with optimization often being a speed vs. code size
trade off. See the detailed discussion for which option affects which part of the code generation.

A test case was run on an ATmega128 to judge the effect of compiling the library itself using different optimization
levels. The following table lists the results. The test case consisted of around 2 KB of strings to sort. Test #1 used
qsort() using the standard library strcmp(), test #2 used a function that sorted the strings by their size (thus had two
calls to strlen() per invocation).

When comparing the resulting code size, it should be noted that a floating point version of fvprintf() was linked into
the binary (in order to print out the time elapsed) which is entirely not affected by the different optimization levels,
and added about 2.5 KB to the code.

Optimization Flags Size of .text Time for Test #1 Time for Test #2

-O3 6898 903 µs 19.7 ms

-O2 6666 972 µs 20.1 ms

-Os 6618 955 µs 20.1 ms

-Os -mcall-prologues 6474 972 µs 20.1 ms

(The difference between 955 µs and 972 µs was just a single timer-tick, so take this with a grain of salt.)

So generally, it seems -Os -mcall-prologues is the most universal "best" optimization level. Only applica-
tions that need to get the last few percent of speed benefit from using -O3.

Back to FAQ Index.

11.17 How do I relocate code to a fixed address?

First, put the function into a new, orphan named section. This is done with a section attribute that specifies the
name of the input section with the prototype of the function:
__attribute__ ((noinline, noclone, section (".bootloader")))
void boot (void);

The noinline and noclone attributes are required to make sure that the function is not (partially) inlined into
the caller, which does not have a respective section attribute.

Second, locate the section to the desired fixed address by means of linking with, say

Generated by Doxygen

11.18 My UART is generating nonsense! My ATmega128 keeps crashing! Port F is completely broken! 65

-Wl,--section-start,.bootloader=0x1E000

see the -Wl compiler option. The name after --section-start is the name of the section to be located, and
the number specifies the beginning address of the named section.

This will only work when the section is an orphan section, i.e. a section that is not mentioned in the linker script. For
sections that are mentioned in the linker script, like for example .text.bootloader, this will not work because
--section-start refers to an output section, but the output section for input section .text.bootloader
is the .text section.

To verify that everything went as expected, generate the disassembly with avr-objdump ... -j
.bootloader. The top of the list file will show
1 .bootloader 00000004 00002000 00002000 00000204 2**0

CONTENTS, ALLOC, LOAD, READONLY, CODE

Or display section properties with avr-readelf --section-details
$ avr-readelf -t main.elf
Section Headers:

[Nr] Name
Type Addr Off Size ES Lk Inf Al
Flags

[2] .bootloader
PROGBITS 00002000 000204 000004 00 0 0 1
[00000006]: ALLOC, EXEC

A different way to locate the section is by means of a custom linker script. The avr-gcc Wiki has an example
that locates the .progmem2.data section which is used by the compiler for variables in address-space __←↩

flash2.

Back to FAQ Index.

11.18 My UART is generating nonsense! My ATmega128 keeps crashing! Port F is
completely broken!

Well, certain odd problems arise out of the situation that the AVR devices as shipped by Atmel often come with a
default fuse bit configuration that doesn't match the user's expectations. Here is a list of things to care for:

• All devices that have an internal RC oscillator ship with the fuse enabled that causes the device to run off this
oscillator, instead of an external crystal. This often remains unnoticed until the first attempt is made to use
something critical in timing, like UART communication.

• The ATmega128 ships with the fuse enabled that turns this device into ATmega103 compatibility mode. This
means that some ports are not fully usable, and in particular that the internal SRAM is located at lower
addresses. Since by default, the stack is located at the top of internal SRAM, a program compiled for an
ATmega128 running on such a device will immediately crash upon the first function call (or rather, upon the
first function return).

• Devices with a JTAG interface have the JTAGEN fuse programmed by default. This will make the respective
port pins that are used for the JTAG interface unavailable for regular IO.

Back to FAQ Index.

Generated by Doxygen

https://gcc.gnu.org/wiki/avr-gcc#Address_Spaces

66

11.19 Why do all my "foo...bar" strings eat up the SRAM?

By default, all strings are handled as all other initialized variables: they occupy RAM (even though the compiler
might warn you when it detects write attempts to these RAM locations), and occupy the same amount of flash ROM
so they can be initialized to the actual string by startup code.

That way, any string literal will be a valid argument to any C function that expects a const char∗ argument.

Of course, this is going to waste a lot of SRAM. In Program Space String Utilities, a method is described how such
constant data can be moved out to flash ROM. However, a constant string located in flash ROM is no longer a
valid argument to pass to a function that expects a const char∗-type string, since the AVR processor needs the
special instruction LPM to access these strings. Thus, separate functions are needed that take this into account.
Many of the standard C library functions have equivalents available where one of the string arguments can be
located in flash ROM. Private functions in the applications need to handle this, too. For example, the following can
be used to implement simple debugging messages that will be sent through a UART:
#include <inttypes.h>
#include <avr/io.h>
#include <avr/pgmspace.h>

int uart_putchar(char c)
{

if (c == ’\n’)
uart_putchar(’\r’);

loop_until_bit_is_set(USR, UDRE);
UDR = c;
return 0; /* so it could be used for fdevopen(), too */

}

void debug_P(const char *addr)
{

char c;

while ((c = pgm_read_byte(addr++)))
uart_putchar(c);

}

int main(void)
{

ioinit(); /* initialize UART, ... */
debug_P(PSTR("foo was here\n"));
return 0;

}

Note

By convention, the suffix _P to the function name is used as an indication that this function is going to accept
a "program-space string". Note also the use of the PSTR() macro.

Back to FAQ Index.

11.20 How to detect RAM memory and variable overlap problems?

You can simply run avr-nm on your output (ELF) file. Run it with the -n option, and it will sort the symbols
numerically (by default, they are sorted alphabetically).

Look for the symbol _end, that's the first address in RAM that is not allocated by a variable. (avr-gcc internally
adds 0x800000 to all data/bss variable addresses, so please ignore this offset.) Then, the run-time initializa-
tion code initializes the stack pointer (by default) to point to the last available address in (internal) SRAM. Thus,
the region between _end and the end of SRAM is what is available for stack. (If your application uses mal-
loc(), which e. g. also can happen inside printf(), the heap for dynamic memory is also located there. See
Memory Areas and Using malloc().)

The amount of stack required for your application cannot be determined that easily. For example, if you recursively
call a function and forget to break that recursion, the amount of stack required is infinite. :-) You can look at the
generated assembler code (avr-gcc ... -S), there's a comment in each generated assembler file that tells
you the frame size for each generated function. That's the amount of stack required for this function, you have to
add up that for all functions where you know that the calls could be nested.

Back to FAQ Index.

Generated by Doxygen

11.21 Is it really impossible to program the ATtinyXX in C? 67

11.21 Is it really impossible to program the ATtinyXX in C?

While some small AVRs are not directly supported by the C compiler since they do not have a RAM-based stack
(and some do not even have RAM at all), it is possible anyway to use the general-purpose registers as a RAM
replacement since they are mapped into the data memory region.

Bruce D. Lightner wrote an excellent description of how to do this, and offers this together with a toolkit on his web
page:

http://lightner.net/avr/ATtinyAvrGcc.html

Back to FAQ Index.

11.22 What is this "clock skew detected" message?

It's a known problem of the MS-DOS FAT file system. Since the FAT file system has only a granularity of 2 seconds
for maintaining a file's timestamp, and it seems that some MS-DOS derivative (Win9x) perhaps rounds up the
current time to the next second when calculating the timestamp of an updated file in case the current time cannot
be represented in FAT's terms, this causes a situation where make sees a "file coming from the future".

Since all make decisions are based on file timestamps, and their dependencies, make warns about this situation.

Solution: don't use inferior file systems / operating systems. Neither Unix file systems nor HPFS (aka NTFS) do
experience that problem.

Workaround: after saving the file, wait a second before starting make. Or simply ignore the warning. If you are
paranoid, execute a make clean all to make sure everything gets rebuilt.

In networked environments where the files are accessed from a file server, this message can also happen if the
file server's clock differs too much from the network client's clock. In this case, the solution is to use a proper time
keeping protocol on both systems, like NTP. As a workaround, synchronize the client's clock frequently with the
server's clock.

Back to FAQ Index.

11.23 Why are (many) interrupt flags cleared by writing a logical 1?

Usually, each interrupt has its own interrupt flag bit in some control register, indicating the specified interrupt condi-
tion has been met by representing a logical 1 in the respective bit position. When working with interrupt handlers,
this interrupt flag bit usually gets cleared automatically in the course of processing the interrupt, sometimes by just
calling the handler at all, sometimes (e. g. for the U[S]ART) by reading a particular hardware register that will
normally happen anyway when processing the interrupt.

From the hardware's point of view, an interrupt is asserted as long as the respective bit is set, while global interrupts
are enabled. Thus, it is essential to have the bit cleared before interrupts get re-enabled again (which usually
happens when returning from an interrupt handler).

Only few subsystems require an explicit action to clear the interrupt request when using interrupt handlers. (The
notable exception is the TWI interface, where clearing the interrupt indicates to proceed with the TWI bus hardware
handshake, so it's never done automatically.)

However, if no normal interrupt handlers are to be used, or in order to make extra sure any pending interrupt gets
cleared before re-activating global interrupts (e. g. an external edge-triggered one), it can be necessary to explicitly
clear the respective hardware interrupt bit by software. This is usually done by writing a logical 1 into this bit position.

Generated by Doxygen

http://lightner.net/avr/ATtinyAvrGcc.html

68

This seems to be illogical at first, the bit position already carries a logical 1 when reading it, so why does writing a
logical 1 to it clear the interrupt bit?

The solution is simple: writing a logical 1 to it requires only a single OUT instruction, and it is clear that only this
single interrupt request bit will be cleared. There is no need to perform a read-modify-write cycle (like, an SBI
instruction), since all bits in these control registers are interrupt bits, and writing a logical 0 to the remaining bits
(as it is done by the simple OUT instruction) will not alter them, so there is no risk of any race condition that might
accidentally clear another interrupt request bit. So instead of writing
TIFR |= _BV(TOV0); /* wrong! */

simply use
TIFR = _BV(TOV0);

Back to FAQ Index.

11.24 Why have "programmed" fuses the bit value 0?

Basically, fuses are just a bit in a special EEPROM area. For technical reasons, erased E[E]PROM cells have all
bits set to the value 1, so unprogrammed fuses also have a logical 1. Conversely, programmed fuse cells read out
as bit value 0.

Back to FAQ Index.

11.25 Which AVR-specific assembler operators are available?

See Pseudo-Ops and Operand Modifiers.

Back to FAQ Index.

11.26 Why are interrupts re-enabled in the middle of writing the stack pointer?

When setting up space for local variables on the stack, the compiler generates code like this:
/* prologue: frame size=20 */

push r28
push r29
in r28,__SP_L__
in r29,__SP_H__
sbiw r28,20
in __tmp_reg__,__SREG__
cli
out __SP_H__,r29
out __SREG__,__tmp_reg__
out __SP_L__,r28

/* prologue end (size=10) */

It reads the current stack pointer value, decrements it by the required amount of bytes, then disables interrupts,
writes back the high part of the stack pointer, writes back the saved SREG (which will eventually re-enable interrupts
if they have been enabled before), and finally writes the low part of the stack pointer.

At the first glance, there's a race between restoring SREG, and writing SPL. However, after enabling interrupts
(either explicitly by setting the I flag, or by restoring it as part of the entire SREG), the AVR hardware executes
(at least) the next instruction still with interrupts disabled, so the write to SPL is guaranteed to be executed with
interrupts disabled still. Thus, the emitted sequence ensures interrupts will be disabled only for the minimum time
required to guarantee the integrity of this operation.

Back to FAQ Index.

Generated by Doxygen

11.27 Why are there five different linker scripts? 69

11.27 Why are there five different linker scripts?

From a comment in the source code:

Which one of the five linker script files is actually used depends on command line options given to ld.

A .x script file is the default script A .xr script is for linking without relocation (-r flag) A .xu script is like .xr but ∗do∗
create constructors (-Ur flag) A .xn script is for linking with -n flag (mix text and data on same page). A .xbn script
is for linking with -N flag (mix text and data on same page).

Back to FAQ Index.

11.28 How to add a raw binary image to linker output?

The GNU linker avr-ld cannot handle binary data directly. However, there's a companion tool called
avr-objcopy. This is already known from the output side: it's used to extract the contents of the linked
ELF file into an Intel Hex load file.

avr-objcopy can create a relocatable object file from arbitrary binary input, like
avr-objcopy -I binary -O elf32-avr foo.bin foo.o

This will create a file named foo.o, with the contents of foo.bin. The contents will default to section .data,
and two symbols will be created named _binary_foo_bin_start and _binary_foo_bin_end. These
symbols can be referred to inside a C source to access these data.

If the goal is to have those data go to flash ROM (similar to having used the PROGMEM attribute in C source code),
the sections have to be renamed while copying, and it's also useful to set the section flags:
avr-objcopy --rename-section .data=.progmem.data,contents,alloc,load,readonly,data -I binary -O elf32-avr

foo.bin foo.o

Note that all this could be conveniently wired into a Makefile, so whenever foo.bin changes, it will trigger the
recreation of foo.o, and a subsequent relink of the final ELF file.

Below are two Makefile fragments that provide rules to convert a .txt file to an object file, and to convert a .bin file to
an object file:
$(OBJDIR)/%.o : %.txt

@echo Converting $<
@cp $(<) $(*).tmp
@echo -n 0 | tr 0 ’\000’ » $(*).tmp
@$(OBJCOPY) -I binary -O elf32-avr \
--rename-section .data=.progmem.data,contents,alloc,load,readonly,data \
--redefine-sym _binary_$*_tmp_start=$* \
--redefine-sym _binary_$*_tmp_end=$*_end \
--redefine-sym _binary_$*_tmp_size=$*_size_sym \
$(*).tmp $(@)
@echo "extern const char" $(*)"[] PROGMEM;" > $(*).h
@echo "extern const char" $(*)_end"[] PROGMEM;" » $(*).h
@echo "extern const char" $(*)_size_sym"[];" » $(*).h
@echo "#define $(*)_size ((int)$(*)_size_sym)" » $(*).h
@rm $(*).tmp

$(OBJDIR)/%.o : %.bin
@echo Converting $<
@$(OBJCOPY) -I binary -O elf32-avr \
--rename-section .data=.progmem.data,contents,alloc,load,readonly,data \
--redefine-sym _binary_$*_bin_start=$* \
--redefine-sym _binary_$*_bin_end=$*_end \
--redefine-sym _binary_$*_bin_size=$*_size_sym \
$(<) $(@)
@echo "extern const char" $(*)"[] PROGMEM;" > $(*).h
@echo "extern const char" $(*)_end"[] PROGMEM;" » $(*).h
@echo "extern const char" $(*)_size_sym"[];" » $(*).h
@echo "#define $(*)_size ((int)$(*)_size_sym)" » $(*).h

Back to FAQ Index.

Generated by Doxygen

70

11.29 How do I perform a software reset of the AVR?

The canonical way to perform a software reset of non-XMega AVR's is to use the watchdog timer. Enable the
watchdog timer to the shortest timeout setting, then go into an infinite, do-nothing loop. The watchdog will then
reset the processor.

XMega parts have a specific bit RST_SWRST_bm in the RST.CTRL register, that generates a hardware reset.
RST_SWRST_bm is protected by the XMega Configuration Change Protection system.

The reason why using the watchdog timer or RST_SWRST_bm is preferable over jumping to the reset vector, is that
when the watchdog or RST_SWRST_bm resets the AVR, the registers will be reset to their known, default settings.
Whereas jumping to the reset vector will leave the registers in their previous state, which is generally not a good
idea.

CAUTION! Older AVRs will have the watchdog timer disabled on a reset. For these older AVRs, doing a soft reset
by enabling the watchdog is easy, as the watchdog will then be disabled after the reset. On newer AVRs, once
the watchdog is enabled, then it stays enabled, even after a reset! For these newer AVRs a function needs
to be added to the .init3 section (i.e. during the startup code, before main()) to disable the watchdog early
enough so it does not continually reset the AVR.

Here is some example code that creates a macro that can be called to perform a soft reset:
#include <avr/wdt.h>

static inline __attribute__((__always_inline__))
void soft_reset (void)
{

wdt_enable (WDTO_15MS);
for(;;) {}

}

For newer AVRs (such as the ATmega1281) also add this function to your code to then disable the watchdog after
a reset (e.g., after a soft reset):
#include <avr/wdt.h>

// Function Pototype
static __attribute__((used, unused, naked, section(".init3")))
void wdt_init (void);

// Function Implementation
void wdt_init (void)
{

MCUSR = 0;
wdt_disable();

}

The code is placed in section .init3 so that it is executed as part of the normal startup procedure. The naked
attribute is required so that the code does not return (Code in init sections is executed as it is located; the code
is not called, and code from one init section falls through to the code in the next one). The used attribute makes
sure that the compiler does not throw the seemingly unused function away. The unused attributes avoids warnings
about unused code.

Back to FAQ Index.

11.30 What pitfalls exist when writing reentrant code?

Reentrant code means the ability for a piece of code to be called simultaneously from two or more threads. Attention
to re-enterability is needed when using a multi-tasking operating system, or when using interrupts since an interrupt
is really a temporary thread.

The code generated natively by gcc is reentrant. But, only some of the libraries in AVR-LibC are explicitly reentrant,
and some are known not to be reentrant. In general, any library call that reads and writes global variables (including
I/O registers) is not reentrant. This is because more than one thread could read or write the same storage at the
same time, unaware that other threads are doing the same, and create inconsistent and/or erroneous results.

A library call that is known not to be reentrant will work if it is used only within one thread and no other thread makes
use of a library call that shares common storage with it.

Below is a table of library calls with known issues.

Generated by Doxygen

11.30 What pitfalls exist when writing reentrant code? 71

Library Call Reentrant Issue Workaround / Alternative
rand, random Uses global variables to keep state

information.
Use special reentrant versions←↩

: rand_r, random_r.
strtof, strtod, strtol,
strtoul

Uses the global variable errno to
return success/failure.

Ignore errno, or protect calls with
cli/sei or ATOMIC_BLOCK if the ap-
plication can tolerate it. Or use
scanf or scanf_P if possible.

malloc, realloc, calloc,
free

Uses the stack pointer and global
variables to allocate and free mem-
ory.

Protect calls with cli/sei or
ATOMIC_BLOCK if the appli-
cation can tolerate it. If using
an OS, use the OS provided
memory allocator since the OS is
likely modifying the stack pointer
anyway.

fdevopen, fclose Uses calloc and free. Protect calls with cli/sei or
ATOMIC_BLOCK if the ap-
plication can tolerate it. Or
use fdev_setup_stream or
FDEV_SETUP_STREAM.
Note: fclose will only call free if
the stream has been opened with
fdevopen.

eeprom_∗, boot_∗ Accesses I/O registers. Protect calls with cli/sei,
ATOMIC_BLOCK, or use OS
locking.

pgm_∗_far Accesses I/O register RAMPZ. Starting with GCC 4.3, RAMPZ is
automatically saved for ISRs, so
nothing further is needed if only us-
ing interrupts.
Some OSes may automatically
preserve RAMPZ during context
switching. Check the OS documen-
tation before assuming it does.
Otherwise, protect calls with cli/sei,
ATOMIC_BLOCK, or use explicit
OS locking.

printf, printf_P, vprintf,
puts, puts_P

Alters flags and character count in
global FILE stdout.

Use only in one thread. Or
if returned character count is
unimportant, do not use the ∗_P
versions.
Note: Formatting to a string output,
e.g. sprintf, sprintf_P, snprintf,
snprintf_P, vsprintf, vsprintf_P,
vsnprintf, vsnprintf_P, is thread
safe. The formatted string could
then be followed by an fwrite which
simply calls the lower layer to send
the string.

fprintf, fprintf_P,
vfprintf, vfprintf_P,
fputs, fputs_P

Alters flags and character count in
the FILE argument. Problems can
occur if a global FILE is used from
multiple threads.

Assign each thread its own FILE
for output. Or if returned charac-
ter count is unimportant, do not use
the ∗_P versions.

assert Contains an embedded fprintf. See
above for fprintf.

See above for fprintf.

Generated by Doxygen

72

Library Call Reentrant Issue Workaround / Alternative
clearerr Alters flags in the FILE argument. Assign each thread its own FILE for

output.

getchar, gets Alters flags, character count, and
unget buffer in global FILE stdin.

Use only in one thread. ∗∗∗

fgetc, ungetc, fgets,
scanf, scanf_P, fscanf,
fscanf_P, vscanf, vfscanf,
vfscanf_P, fread

Alters flags, character count, and
unget buffer in the FILE argument.

Assign each thread its own FILE for
input. ∗∗∗
Note: Scanning from a string, e.←↩

g. sscanf and sscanf_P, are thread
safe.

Note

It's not clear one would ever want to do character input simultaneously from more than one thread anyway, but
these entries are included for completeness.

An effort will be made to keep this table up to date if any new issues are discovered or introduced.

Back to FAQ Index.

11.31 Why are some addresses of the EEPROM corrupted (usually address zero)?

The two most common reason for EEPROM corruption is either writing to the EEPROM beyond the datasheet
endurance specification, or resetting the AVR while an EEPROM write is in progress.

EEPROM writes can take up to tens of milliseconds to complete. So that the CPU is not tied up for that long of time,
an internal state-machine handles EEPROM write requests. The EEPROM state-machine expects to have all of the
EEPROM registers setup, then an EEPROM write request to start the process. Once the EEPROM state-machine
has started, changing EEPROM related registers during an EEPROM write is guaranteed to corrupt the EEPROM
write process. The datasheet always shows the proper way to tell when a write is in progress, so that the registers
are not changed by the user's program. The EEPROM state-machine will always complete the write in progress
unless power is removed from the device.

As with all EEPROM technology, if power fails during an EEPROM write the state of the byte being written is
undefined.

In older generation AVRs the EEPROM Address Register (EEAR) is initialized to zero on reset, be it from Brown Out
Detect, Watchdog or the Reset Pin. If an EEPROM write has just started at the time of the reset, the write will be
completed, but now at address zero instead of the requested address. If the reset occurs later in the write process
both the requested address and address zero may be corrupted.

To distinguish which AVRs may exhibit the corrupt of address zero while a write is in process during a reset, look at
the "initial value" section for the EEPROM Address Register. If EEAR shows the initial value as 0x00 or 0x0000, then
address zero and possibly the one being written will be corrupted. Newer parts show the initial value as "undefined",
these will not corrupt address zero during a reset (unless it was address zero that was being written).

EEPROMs have limited write endurance. The datasheet specifies the number of EEPROM writes that are guar-
anteed to function across the full temperature specification of the AVR, for a given byte. A read should always
be performed before a write, to see if the value in the EEPROM actually needs to be written, so not to cause
unnecessary EEPROM wear.

The failure mechanism for an overwritten byte is generally one of "stuck" bits, i. e. a bit will stay at a one or zero
state regardless of the byte written. Also a write followed by a read may return the correct data, but the data will
change with the passage of time, due the EEPROM's inability to hold a charge from the excessive write wear.

Back to FAQ Index.

Generated by Doxygen

11.32 Why is my baud rate wrong? 73

11.32 Why is my baud rate wrong?

Some AVR datasheets give the following formula for calculating baud rates:
(F_CPU/(UART_BAUD_RATE*16L)-1)

Unfortunately that formula does not work with all combinations of clock speeds and baud rates due to integer
truncation during the division operator.

When doing integer division it is usually better to round to the nearest integer, rather than to the lowest. To do this
add 0.5 (i. e. half the value of the denominator) to the numerator before the division, resulting in the formula:
((F_CPU + UART_BAUD_RATE * 8L) / (UART_BAUD_RATE * 16L) - 1)

This is also the way it is implemented in <util/setbaud.h>: Helper macros for baud rate calculations.

Back to FAQ Index.

11.33 On a device with more than 128 KiB of flash, how to make function pointers
work?

Function pointers beyond the "magical" 128 KiB barrier(s) on larger devices are supposed to be resolved through
so-called trampolines by the linker, so the actual pointers used in the code can remain 16 bits wide.

In order for this to work, the option -mrelax must be given on the compiler command-line that is used to link the
final ELF file. (Older compilers did not implement this option for the AVR, use -Wl,--relax instead.)

See also the avr-gcc online documentation on the EIND special function register and indirect calls.

Back to FAQ Index.

11.34 Why is assigning ports in a "chain" a bad idea?

Suppose a number of IO port registers should get the value 0xff assigned. Conveniently, it is implemented like
this:
DDRB = DDRD = 0xff;

According to the rules of the C language, this causes 0xff to be assigned to DDRD, then DDRD is read back,
and the value is assigned to DDRB. The compiler stands no chance to optimize the readback away, as an IO port
register is declared "volatile". Thus, chaining that kind of IO port assignments would better be avoided, using explicit
assignments instead:
DDRB = 0xff;
DDRD = 0xff;

Even worse ist this, e. g. on an ATmega1281:
DDRA = DDRB = DDRC = DDRD = DDRE = DDRF = DDRG = 0xff;

The same happens as outlined above. However, when reading back register DDRG, this register only implements
6 out of the 8 bits, so the two topmost (unimplemented) bits read back as 0! Consequently, all remaining DDRx
registers get assigned the value 0x3f, which does not match the intention of the developer in any way.

Generated by Doxygen

https://gcc.gnu.org/onlinedocs/gcc/AVR-Options.html#eind

74

11.35 Which header files are included in my program?

Suppose we have a simple program like
#include <avr/pgmspace.h>

int main (void)
{

return 0;
}

and we want to know which files this #include triggers. Just add option -H to the compiler options and check
what is printed on standard output:

$ avr-gcc -H -S main.c -mmcu=atmega8
. <install>/avr/include/avr/pgmspace.h
.. <install>/avr/include/inttypes.h
... <install>/lib/gcc/avr/<version>/include/stdint.h
.... <install>/avr/include/stdint.h
.. <install>/lib/gcc/avr/<version>/include/stddef.h
.. <install>/avr/include/avr/io.h
... <install>/avr/include/avr/sfr_defs.h
... <install>/avr/include/avr/iom8.h
... <install>/avr/include/avr/portpins.h
...

where <install> denotes the installation path, <version> denotes the GCC version, and the number of
dots indicates the include level, e.g. inttypes.h is included by pgmspace.h.

When -v is added to the compiler options, then the search paths are also displayed (amongst other stuff):

#include "..." search starts here:
#include <...> search starts here:
<install>/bin/../lib/gcc/avr/<version>/include
<install>/bin/../lib/gcc/avr/<version>/include-fixed
<install>/bin/../lib/gcc/avr/<version>/../../../../avr/include
End of search list.

After resolving the ..'s for "parent directory", the last directory becomes
<install>/avr/include.

Back to FAQ Index.

11.36 Which macros are defined in my program? Where are they defined, and to what
value?

One way is to add -save-temps and -g3 to the compiler options. This saves the temporary files like the pre-
processed source code in an .i file (for C sources), an .ii (for C++), or a .s (for assembly). A debug level
of DWARF3 or higher is required to include the macro definitions in the file, with lower debug levels, only the
preprocessed source will be present.

For a module with a simple #include <avr/pgmspace.h>, the saved intermediate file might look something
like:

0 "<built-in>"
#define __STDC__ 1

The __STDC__ macro is defined built-in in the compiler.

Generated by Doxygen

11.37 What ISR names are available for my device? 75

0 "<command-line>"
#define __AVR_DEVICE_NAME__ atmega8

The __AVR_DEVICE_NAME__ macro is defined on the command line by means of -D __AVR_DEVICE_←↩

NAME__=atmega8. In this special case, the -D option is added by the specs file specs-atmega8.

81 "<install>/avr/include/avr/pgmspace.h" 3
#define __PGMSPACE_H_ 1

#define __need_size_t

The __PGMSPACE_H_ macro is defined in line 81 of that header file. When there is no line note directly above the
definition, go up until you find a line note. For example, the __need_size_t macro is defined in line 84 of that
file.

Back to FAQ Index.

11.37 What ISR names are available for my device?

One way to find the possible ISR names is to pre-process a small file, and to grep for possible names, like in:

$ echo "#include <avr/io.h>" | avr-gcc -xc - -mmcu=atmega8 -E -dM | grep _VECTOR
#define INT0_vect _VECTOR(1)
#define INT1_vect _VECTOR(2)
#define TIMER2_COMP_vect _VECTOR(3)
#define TIMER2_OVF_vect _VECTOR(4)
#define TIMER1_CAPT_vect _VECTOR(5)
...

Explanation:

echo "#include <avr/io.h>" This prints #include <avr/io.h> to the standard output, which is
picked up by the following command as a C program to be preprocessed.

avr-gcc -xc - -mmcu=atmega8 -E -dM Set the input language to C, read the program from standard
input (specified by a dash), preprocess, and print all macro definitions to the standard output.

grep _VECTOR Only print lines with _VECTOR in them.
The output above was actually generated with an additional | sort -t '(' -k 2n so that the vectors
are printed in order.

In order to find the respective vector numbers, use grep _vect_num instead.

Back to FAQ Index.

Generated by Doxygen

76

12 Building and Installing the GNU Tool Chain

This chapter shows how to build and install, from source code, a complete development environment for the AVR
processors using the GNU toolset. There are two main sections, one for Linux, FreeBSD, and other Unix-like
operating systems, and another section for Windows.

• Required AVR Tools

• Optional AVR Tools

• Building and Installing under Linux, FreeBSD, and Others

– Preparations

* Install Location

* Directory Layout

– GNU Binutils

– GCC

– AVR-LibC

– AVRDUDE

– SimulAVR

– AVaRICE

• Building and Installing under Windows

– Required Tools

– Building

• Canadian Cross Builds

• Using Git

12.1 Required AVR Tools

GNU Binutils Project Home: https://sourceware.org/binutils
Source Downloads: https://sourceware.org/pub/binutils/releases
FTP: anonymous@ftp.gnu.org/gnu/binutils
Git: git://sourceware.org/git/binutils-gdb.git
GitHub Mirror: https://github.com/bminor/binutils-gdb
Installation

GCC Project Home https://gcc.gnu.org
Mirrors Site: https://gcc.gnu.org/mirrors.html
FTP: anonymous@ftp.gnu.org/gnu/gcc
Git: git://gcc.gnu.org/git/gcc.git
GitHub Mirror: https://github.com/gcc-mirror/gcc
Installation: https://gcc.gnu.org/install
Installation

AVR-LibC Project Home: http://savannah.gnu.org/projects/avr-libc
Source Downloads: https://download-mirror.savannah.gnu.org/releases/avr-libc

Git: https://github.com/avrdudes/avr-libc.git
GitHub: https://github.com/avrdudes/avr-libc
Installation

Generated by Doxygen

https://sourceware.org/binutils
https://sourceware.org/pub/binutils/releases
https://github.com/bminor/binutils-gdb
https://gcc.gnu.org
https://gcc.gnu.org/mirrors.html
https://github.com/gcc-mirror/gcc
https://gcc.gnu.org/install
http://savannah.gnu.org/projects/avr-libc
https://download-mirror.savannah.gnu.org/releases/avr-libc
https://github.com/avrdudes/avr-libc

12.2 Optional AVR Tools 77

12.2 Optional AVR Tools

You can develop programs for AVR devices without the following tools. They may or may not be of use for you.

AVRDUDE Project Home: http://savannah.nongnu.org/projects/avrdude
Git: https://github.com/avrdudes/avrdude.git
GitHub: https://github.com/avrdudes/avrdude
Installation
Usage Notes

GDB The GNU Debugger GDB is hosted together with GNU Binutils. When you don't want or need GDB, you can
configure Binutils with --disable-gdb.

SimulAVR http://savannah.gnu.org/projects/simulavr
Installation

AVaRICE GitHub: https://github.com/avrdudes/avarice
Installation

12.3 Building and Installing under Linux, FreeBSD, and Others

The default behaviour for most of these tools is to install every thing under the /usr/local directory. In order to
keep the AVR tools separate from the base system, it is usually better to install everything into /usr/local/avr.
If the /usr/local/avr directory does not exist, you should create it before trying to install anything. You will
need root access to install there. If you don't have or want root access to the system, you can alternatively install
in your home directory, for example, in $HOME/local/avr. Where you install is a completely arbitrary decision,
but should be consistent for all the tools.

Warning

If you have CC set to anything other than avr-gcc in your environment, this will cause the configure script
to fail. It is best to not have CC set at all.

Note

It is usually the best to use the latest released version of each of the tools.

12.3.1 Preparations

12.3.1.1 Install Location You specify the installation directory by using the --prefix=dir option with the
configure script. It is important to install all the AVR tools in the same directory or some of the tools will not work
correctly. To ensure consistency and simplify the discussion, we will use $PREFIX to refer to whatever directory
you wish to install in. You can set this as an environment variable if you wish as such (using a Bourne-like shell):

$ PREFIX=$HOME/local/avr
$ export PREFIX

Note

Be sure that you have your PATH environment variable set to search the directory you install everything in
before you start installing anything. For example, if you use --prefix=$PREFIX, you must have $←↩

PREFIX/bin in your exported PATH. As such:

$ PATH=$PATH:$PREFIX/bin
$ export PATH

Generated by Doxygen

http://savannah.nongnu.org/projects/avrdude
https://github.com/avrdudes/avrdude
http://savannah.gnu.org/projects/simulavr
https://github.com/avrdudes/avarice

78

12.3.1.2 Directory Layout The instructions below build Binutils, GCC and AVR-LibC outside of the source tree,
because:

• When something goes wrong, you can just remove the build directory and start all over again with a fresh
build folder.

• You may want to build the tools with different configure options, e.g. build the tools for a Linux host and then
build a Canadian cross to run on a Windows host.

• GCC does not support configuring anywhere in the source tree, so we'll have to use a separate build folder
outside the source tree, anyway.

The instructions below assume that you have set up a directory tree like

+--source
+--build

in some place where you have write access, like in your home directory.

After successful downloads and builds, the tree will be something like:

+--source
| +--gcc-<version>
| +--binutils-<version>
| +--avr-libc-<version>
+-- build

+--gcc-<version>-avr
+--binutils-<version>-avr
+--avr-libc-<version>

12.3.2 GNU Binutils for the AVR target

The Binutils package provides all the low-level utilities needed in building and manipulating object files. Once
installed, your environment will have an AVR assembler (avr-as), linker (avr-ld), and librarian (avr-ar and
avr-ranlib). In addition, you get tools which extract data from object files (avr-objcopy), dissassemble
object file information (avr-objdump), and strip information from object files (avr-strip). Before we can build
the C compiler, these tools need to be in place.

Download and unpack the source files:

$ # in ./source
$ tar xfj binutils-<version>.tar.bz2

Replace <version> with the version of the package you downloaded.

If you obtained a gzip compressed file (.tar.gz or .tgz), use gunzip instead of bunzip2, or tar xfz
file.tar.gz.

The next step is to configure and build the tools. This is done by supplying arguments to the configure script
that enable the AVR-specific options. When you also want GDB, just drop --disable-gdb.

$ # in ./build
$ mkdir binutils-<version>-avr
$ cd binutils-<version>-avr
$../../source/binutils-<version>/configure --prefix=$PREFIX --target=avr \

--disable-nls --disable-sim --disable-gdb --disable-werror

When configure is run, it generates a lot of messages while it determines what is available on your operating
system. When it finishes, it will have created several Makefiles that are custom tailored to your platform and that
are run with the make command.

$ make

Generated by Doxygen

12.3 Building and Installing under Linux, FreeBSD, and Others 79

Note

BSD users should note that the project's Makefile uses GNU make syntax. This means FreeBSD users
may need to build the tools by using gmake.

If the tools compiled cleanly, you're ready to install them. If you specified a destination that isn't owned by your
account, you'll need root access to install them. To install:

$ make install

You should now have the programs from Binutils installed into $PREFIX/bin. Don't forget to set your PATH
environment variable before going to build avr-gcc. To check that the correct assembler is found, run

$ avr-as --version

which should print the <version> of the used Binutils sources.

12.3.3 GCC for the AVR target

Warning

You must install avr-binutils and make sure your path is set properly before installing avr-gcc.

Before we can configure the compiler, we have to prepare the sources. GCC depends on some external host
libraries, namely GMP, MPFR, MPC and ISL. You can build and install the appropriate versions of the required
prerequisites by hand and provide their location by means of --with-gmp= etc. Though in most situations it is
easier to let GCC download and build these libraries as part of the configure and build process. All what's needed
is an internet connection when running ./contrib/download_prerequisites:

$ # in ./source
$ tar xfj gcc-<version>.tar.bz2
$ cd gcc-<version>
$./contrib/download_prerequisites

$ # in ./build
$ mkdir gcc-<version>-avr
$ cd gcc-<version>-avr
$../../source/gcc-<version>/configure --prefix=$PREFIX --target=avr --enable-languages=c,c++ \

--disable-nls --disable-libssp --disable-libcc1 \
--with-gnu-as --with-gnu-ld --with-dwarf2

$ make
$ make install # or make install-strip

The GCC binaries may consume quite some disc space. In most cases, you don't need the debug information in
the compiler proper, and installing with

$ make install-strip

can save you some space.

Generated by Doxygen

https://gmplib.org
https://www.mpfr.org
https://www.multiprecision.org
https://libisl.sourceforge.io

80

12.3.4 AVR-LibC

Warning

You must install avr-binutils, avr-gcc and make sure your path is set properly before installing AVR-LibC.

Note

If you have obtained the latest AVR-LibC from git, you will have to run the ./bootstrap script before using
either of the build methods described below.

To build and install AVR-LibC:

$ # in ./source
$ tar xfz avr-libc-<version>.tar.gz

$ # in ./build
$ mkdir avr-libc-<version>
$ cd avr-libc-<version>
$../../source/avr-libc-<version>/configure --prefix=$PREFIX \

--build=x86_64-pc-linux-gnu --host=avr
$ make
$ make install

Where the --build platform can be guessed by running

$./source/avr-libc-<version>/config.guess

12.3.5 AVRDUDE

Note

It has been ported to windows (via MinGW or cygwin), Linux and Solaris. Other Unix systems should be trivial
to port to.

avrdude is part of the FreeBSD ports system. To install it, simply do the following:

cd /usr/ports/devel/avrdude
make install

Note

Installation into the default location usually requires root permissions. However, running the program only
requires access permissions to the appropriate ppi(4) device.

Building and installing on other systems should use the configure system, as such:

$ gunzip -c avrdude-<version>.tar.gz | tar xf -
$ cd avrdude-<version>
$ mkdir obj-avr
$ cd obj-avr
$../configure --prefix=$PREFIX
$ make
$ make install

Generated by Doxygen

12.4 Building and Installing under Windows 81

12.3.6 SimulAVR

SimulAVR also uses the configure system, so to build and install:

$ gunzip -c simulavr-<version>.tar.gz | tar xf -
$ cd simulavr-<version>
$ mkdir obj-avr
$ cd obj-avr
$../configure --prefix=$PREFIX
$ make
$ make install

Note

You might want to have already installed avr-binutils, avr-gcc and AVR-LibC if you want to have the test
programs built in the simulavr source.

12.3.7 AVaRICE

Note

These install notes are not applicable to avarice-1.5 or older. You probably don't want to use anything that old
anyways since there have been many improvements and bug fixes since the 1.5 release.

AVaRICE also uses the configure system, so to build and install:

$ gunzip -c avarice-<version>.tar.gz | tar xf -
$ cd avarice-<version>
$ mkdir obj-avr
$ cd obj-avr
$../configure --prefix=$PREFIX
$ make
$ make install

Note

AVaRICE uses the BFD library for accessing various binary file formats. You may need to tell the configure
script where to find the lib and headers for the link to work. This is usually done by invoking the configure script
like this (Replace <hdr_path> with the path to the bfd.h file on your system. Replace <lib_path>
with the path to libbfd.a on your system.):

$ CPPFLAGS=-I<hdr_path> LDFLAGS=-L<lib_path> ../configure --prefix=$PREFIX

12.4 Building and Installing under Windows

Building and installing the toolchain under Windows requires more effort because all of the tools required for building,
and the programs themselves, are mainly designed for running under a POSIX environment such as Unix and Linux.
Windows does not natively provide such an environment.

There are two projects available that provide such an environment, Cygwin and MinGW. There are advantages and
disadvantages to both. Cygwin provides a very complete POSIX environment that allows one to build many Linux
based tools from source with very little or no source modifications. However, POSIX functionality is provided in the
form of a DLL that is linked to the application. This DLL has to be redistributed with your application and there are
issues if the Cygwin DLL already exists on the installation system and different versions of the DLL. On the other
hand, MinGW can compile code as native Win32 applications. However, this means that programs designed for
Unix and Linux (i.e. that use POSIX functionality) will not compile as MinGW does not provide that POSIX layer
for you. Therefore most programs that compile on both types of host systems, usually must provide some sort of
abstraction layer to allow an application to be built cross-platform.

MinGW does provide somewhat of a POSIX environment, called MSYS, that allows you to build Unix and Linux
applications as they would normally do, with a configure step and a make step. Cygwin also provides such an
environment. This means that building the AVR toolchain is very similar to how it is built in Linux, described above.
The main differences are in what the PATH environment variable gets set to, pathname differences, and the tools
that are required to build the projects under Windows. We'll take a look at the tools next.

Generated by Doxygen

82

12.4.1 Tools Required for Building the Toolchain for Windows

These are the tools that are currently used to build an AVR tool chain. This list may change, either the version of
the tools, or the tools themselves, as improvements are made.

MinGW Download the MinGW Automated Installer, 2013-10-04 (or later) https://sourceforge.←↩

net/projects/mingw/files

• Run mingw-get-setup.exe

• In the installation wizard, keep the default values and press the "Next" button for all installer pages
except for the pages explicitly listed below.

• In the installer page "Repository Catalogues", select the "Download latest repository catalogues" radio
button, and press the "Next" button

• In the installer page "License Agreement", select the "I accept the agreement" radio button, and press
the "Next" button

• In the installer page "Select Components", be sure to select these items:

– C compiler (default checked)

– C++ compiler

– Ada compiler

– MinGW Developer Toolkit (which includes "MSYS Basic System").

• Install.

Install Cygwin Install everything, all users, UNIX line endings. This will take a long time. A fat internet pipe is
highly recommended. It is also recommended that you download all to a directory first, and then install from
that directory to your machine.

Note

GMP, MPFR, MPC and ISL are required to build GCC. By far the easiest way to use them is by letting GCC
download the sources locally by means of running the ./contrib/download_prewrequisites script
from the GCC top source. GCC will configure and build these libs during configure and make.

Doxygen is required to build AVR-LibC documentation.

• Install Doxygen

– Version 1.7.2

– https://www.doxygen.nl

– Download and install.

NetPBM is required to build graphics in the AVR-LibC documentation.

• Install NetPBM

– Version 10.27.0

– From the GNUWin32 project: http://gnuwin32.sourceforge.net/packages.←↩

html

– Download and install.

fig2dev is required to build graphics in the AVR-LibC documentation.

• Install fig2dev

– Version 3.2 patchlevel 5c

– From WinFig 4.62: http://winfig.com/downloads

Generated by Doxygen

https://sourceforge.net/projects/mingw/files
https://sourceforge.net/projects/mingw/files
https://www.doxygen.nl
http://gnuwin32.sourceforge.net/packages.html
http://gnuwin32.sourceforge.net/packages.html
http://winfig.com/downloads

12.4 Building and Installing under Windows 83

– Download the zip file version of WinFig
– Unzip the download file and install fig2dev.exe in a location of your choice, somewhere in the PATH.
– You may have to unzip and install related DLL files for fig2dev. In the version above, you have to

install QtCore4.dll and QtGui4.dll.

MikTeX is required to build various documentation.

• Install MiKTeX

– Version 2.9
– https://miktex.org

– Download and install.

Ghostscript is required to build various documentation.

• Install Ghostscript

– Version 9.00
– https://www.ghostscript.com

– Download and install.
– In the \bin subdirectory of the installaion, copy gswin32c.exe to gs.exe.

• Set the TEMP and TMP environment variables to c:\\temp or to the short filename version. This helps
to avoid NTVDM errors during building.

12.4.2 Building the Toolchain for Windows

All directories in the PATH environment variable should be specified using their short filename (8.3) version. This
will also help to avoid NTVDM errors during building. These short filenames can be specific to each machine.

Build the tools below in MinGW/MSYS.

• Binutils

– Open source code package and patch as necessary.

– Configure and build in a directory outside of the source code tree.

– Set PATH, in order:

* <MikTex executables>

* <ghostscript executables>

* /usr/local/bin

* /usr/bin

* /bin

* /mingw/bin

* c:/cygwin/bin

* <install directory>/bin

– Configure

CFLAGS=-D__USE_MINGW_ACCESS \
../$archivedir/configure \

--prefix=$installdir \
--target=avr \
--disable-nls \
--enable-doc \
--datadir=$installdir/doc/binutils \
2>&1 | tee binutils-configure.log

Generated by Doxygen

https://miktex.org
https://www.ghostscript.com

84

– Make

make all html install install-html 2>&1 | tee binutils-make.log

– Manually change documentation location.

• GCC

– Open source code pacakge and patch as necessary.

– Configure and build in a directory outside of the source code tree.

– Set PATH, in order:

* <MikTex executables>

* <ghostscript executables>

* /usr/local/bin

* /usr/bin

* /bin

* /mingw/bin

* c:/cygwin/bin

* <install directory>/bin

– Configure

LDFLAGS=’-L /usr/local/lib -R /usr/local/lib’ \
CFLAGS=’-D__USE_MINGW_ACCESS’ \
../gcc-$version/configure \

--prefix=$installdir \
--target=$target \
--enable-languages=c,c++ \
--with-dwarf2 \
--enable-doc \
--with-docdir=$installdir/doc/$project \
--disable-shared \
--disable-libada \
--disable-libssp \
--disable-libcc1 \
--disable-nls \
2>&1 | tee $project-configure.log

– Make

make all html install 2>&1 | tee $package-make.log

• AVR-LibC

– Open source code package.

– Configure and build at the top of the source code tree.

– Set PATH, in order:

* /usr/local/bin

* /mingw/bin

* /bin

* <MikTex executables>

* <install directory>/bin

* <Doxygen executables>

* <NetPBM executables>

* <fig2dev executable>

* <Ghostscript executables>

* c:/cygwin/bin

– Configure

Generated by Doxygen

12.4 Building and Installing under Windows 85

./configure \
--host=avr \
--prefix=$installdir \
--enable-doc \
--disable-versioned-doc \
--enable-html-doc \
--enable-pdf-doc \
--enable-man-doc \
--mandir=$installdir/man \
--datadir=$installdir \
2>&1 | tee $package-configure.log

– Make

make all install 2>&1 | tee $package-make.log

– Manually change location of man page documentation.

– Move the examples to the top level of the install tree.

– Convert line endings in examples to Windows line endings.

– Convert line endings in header files to Windows line endings.

• AVRDUDE

– Open source code package.

– Configure and build at the top of the source code tree.

– Set PATH, in order:

* <MikTex executables>

* /usr/local/bin

* /usr/bin

* /bin

* /mingw/bin

* c:/cygwin/bin

* <install directory>/bin

– Set location of LibUSB headers and libraries

export CPPFLAGS="-I../../libusb-win32-device-bin-$libusb_version/include"
export CFLAGS="-I../../libusb-win32-device-bin-$libusb_version/include"
export LDFLAGS="-L../../libusb-win32-device-bin-$libusb_version/lib/gcc"

– Configure

./configure \
--prefix=$installdir \
--datadir=$installdir \
--sysconfdir=$installdir/bin \
--enable-doc \
--disable-versioned-doc \
2>&1 | tee $package-configure.log

– Make

make -k all install 2>&1 | tee $package-make.log

– Convert line endings in avrdude config file to Windows line endings.

– Delete backup copy of avrdude config file in install directory if exists.

• Insight/GDB

– Open source code pacakge and patch as necessary.

– Configure and build in a directory outside of the source code tree.

– Set PATH, in order:

Generated by Doxygen

86

* <MikTex executables>

* /usr/local/bin

* /usr/bin

* /bin

* /mingw/bin

* c:/cygwin/bin

* <install directory>/bin

– Configure

CFLAGS=-D__USE_MINGW_ACCESS \
LDFLAGS=’-static’ \
../$archivedir/configure \

--prefix=$installdir \
--target=avr \
--with-gmp=/usr/local \
--with-mpfr=/usr/local \
--enable-doc \
2>&1 | tee insight-configure.log

– Make

make all install 2>&1 | tee $package-make.log

• SRecord

– Open source code package.

– Configure and build at the top of the source code tree.

– Set PATH, in order:

* <MikTex executables>

* /usr/local/bin

* /usr/bin

* /bin

* /mingw/bin

* c:/cygwin/bin

* <install directory>/bin

– Configure

./configure \
--prefix=$installdir \
--infodir=$installdir/info \
--mandir=$installdir/man \
2>&1 | tee $package-configure.log

– Make

make all install 2>&1 | tee $package-make.log

Build the tools below in Cygwin.

• AVaRICE

– Open source code package.

– Configure and build in a directory outside of the source code tree.

– Set PATH, in order:

* <MikTex executables>

* /usr/local/bin

Generated by Doxygen

12.5 Canadian Cross Builds 87

* /usr/bin

* /bin

* <install directory>/bin

– Set location of LibUSB headers and libraries

export CPPFLAGS=-I$startdir/libusb-win32-device-bin-$libusb_version/include
export CFLAGS=-I$startdir/libusb-win32-device-bin-$libusb_version/include
export LDFLAGS="-static -L$startdir/libusb-win32-device-bin-$libusb_version/lib/gcc "

– Configure

../$archivedir/configure \
--prefix=$installdir \
--datadir=$installdir/doc \
--mandir=$installdir/man \
--infodir=$installdir/info \
2>&1 | tee avarice-configure.log

– Make

make all install 2>&1 | tee avarice-make.log

• SimulAVR

– Open source code package.

– Configure and build in a directory outside of the source code tree.

– Set PATH, in order:

* <MikTex executables>

* /usr/local/bin

* /usr/bin

* /bin

* <install directory>/bin

– Configure

export LDFLAGS="-static"
../$archivedir/configure \

--prefix=$installdir \
--datadir=$installdir \
--disable-tests \
--disable-versioned-doc \
2>&1 | tee simulavr-configure.log

– Make

make -k all install 2>&1 | tee simulavr-make.log
make pdf install-pdf 2>&1 | tee simulavr-pdf-make.log

12.5 Canadian Cross Builds

It is also possible to build avr-gcc for host Windows on a Linux build system. Suppose you have installed a
i686-w64-mingw32-gcc toolchain that can compile code to run on host=i686-w64-mingw32. Then the
steps to build a toolchain for Windows are:

1. Build and install the AVR toolchain for the Linux build machine as explained above. Make sure that running
the command

avr-gcc --version

prints the compiler version according to the used GCC sources. The native AVR cross compiler is required
during configure and to build the AVR target libraries like libgcc. Similarly, the version of the found AVR
Binutils programs must match the version of the used Binutils sources.

Generated by Doxygen

https://www.mingw-w64.org/downloads
https://www.mingw-w64.org/downloads

88

2. Determine the name of the --build platform like x86_64-pc-linux-gnu, for example by running the
config.guess script as shipped with the top level GCC sources (and also with Binutils sources, and
AVR-LibC sources after ./bootstrap).

3. Use different build and install directories, e.g. ./build/binutils-<version>-avr-mingw32 to
build Binutils and --prefix=$PREFIX-mingw32 as install path.

4. Configure, build and install Binutils and GCC like for the native build, but add the following configure options:

--build=x86_64-pc-linux-gnu --host=i686-w64-mingw32

This assumes that the required host libraries like GMP are being built in one go with the compiler. This
is accomplished by running the contrib/download_prerequisites script from the toplevel GCC
sources, just like with the native build.

5. There is no need to build AVR-LibC again because it is a pure target library. It can be installed by means of
running

$ # in ./build/avr-libc-<version>
$ make install prefix=$PREFIX-mingw32

In order to "install" the toolchain on Windows, the canadian cross installed in $PREFIX-mingw32 can be moved
to the desired location on the Windows computer. The compiler can be used by calling it by its absolute path, or by
adding the $PREFIX-mingw32/bin directory to the PATH environment variable.

12.6 Using Git

Most of the sources of the projects above are now managed with the git distributed version-control tools. When
you want to build from the newest development branch, you can clone the repo, like with

$ git clone <repo> [dirname]

Replace <repo> with the URL of the Git repository, e.g. https://github.com/avrdudes/avr-libc.←↩

git for AVR-LibC. Notice that when building AVR-LibC from the repo source, you have to run ./bootstrap
from the top level AVR-LibC sources prior to configure.

Useful options for git clone:

dirname Specify an optional directory name for the cloned repository, like:

$ git clone https://github.com/avrdudes/avr-libc.git ./source/avr-libc-main

Without dirname, the name of the git file like avr-libc is used.

--depth 1 An ordinary clone will clone the complete repository with all its branches and their history. To speed
up the cloning and save some disc space, you can just clone the top of the history to some depth.

--branch branch The default branch is the head of the latest development, which is master for GCC and
Binutils, and main for AVR-LibC.

When you want a different ref, like GCC's releases/gcc-14 for the head of the GCC v14 branch, or
releases/gcc-14.1.0 for the GCC v14.1 release tag, then you can specify that as branch. To see
the available refs, you can use

$ git ls-remote <repo>

Generated by Doxygen

https://git-scm.com

13 Using the GNU tools 89

13 Using the GNU tools

This is a short summary of the AVR-specific aspects of using the GNU tools. Normally, the generic documentation
of these tools is fairly large and maintained in texinfo files. Command-line options are explained in detail in the
manual page.

13.1 Options for the C compiler avr-gcc

13.1.1 Machine-specific options for the AVR

The following machine-specific options are recognized by the C compiler frontend. The preprocessor will define the
macros __AVR and __AVR__ (to the value 1) when compiling for an AVR target. The macro AVR will be defined
as well, except in strict ANSI mode.

There are many options supported by avr-gcc, which also depend on the compiler version. For a complete overview,
please see the documentation of avr-gcc's command line options. Here are links to supported options of the
respective release series:

• Current development (work in progress)

• v14

• v13.2, v13.3

• v12.3, v12.4

• v11

• v10

• v9

• v8

• v7

• v6

• v5

• v4.9

• v4.8

• v4.7

Apart from the documentation of command line options, the linked pages also contain:

• The documentation of built-in macros like __AVR_ARCH__, __AVR_ATmega328P__ and __←↩

AVR_HAVE_MUL__, just to mention a few.

• How the compiler treats the RAMPX, RAMPY, RAMPZ and RAMPD special function
registers on devices that have (one of) them.

• How the compiler treats the EIND special function register on devices with more than 128
KiB of program memory, and how indirect calls are realized on such devices.

-mmcu=arch

Generated by Doxygen

https://gcc.gnu.org/onlinedocs/gcc/AVR-Options.html
https://gcc.gnu.org/onlinedocs/gcc-14.1.0/gcc/AVR-Options.html
https://gcc.gnu.org/onlinedocs/gcc-13.2.0/gcc/AVR-Options.html
https://gcc.gnu.org/onlinedocs/gcc-13.3.0/gcc/AVR-Options.html
https://gcc.gnu.org/onlinedocs/gcc-12.3.0/gcc/AVR-Options.html
https://gcc.gnu.org/onlinedocs/gcc-12.4.0/gcc/AVR-Options.html
https://gcc.gnu.org/onlinedocs/gcc-11.4.0/gcc/AVR-Options.html
https://gcc.gnu.org/onlinedocs/gcc-10.5.0/gcc/AVR-Options.html
https://gcc.gnu.org/onlinedocs/gcc-9.5.0/gcc/AVR-Options.html
https://gcc.gnu.org/onlinedocs/gcc-8.5.0/gcc/AVR-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.5.0/gcc/AVR-Options.html
https://gcc.gnu.org/onlinedocs/gcc-6.5.0/gcc/AVR-Options.html
https://gcc.gnu.org/onlinedocs/gcc-5.5.0/gcc/AVR-Options.html
https://gcc.gnu.org/onlinedocs/gcc-4.9.4/gcc/AVR-Options.html
https://gcc.gnu.org/onlinedocs/gcc-4.8.5/gcc/AVR-Options.html
https://gcc.gnu.org/onlinedocs/gcc-4.7.4/gcc/AVR-Options.html
https://gcc.gnu.org/onlinedocs/gcc/AVR-Options.html#avr-macros
https://gcc.gnu.org/onlinedocs/gcc/AVR-Options.html#ramp
https://gcc.gnu.org/onlinedocs/gcc/AVR-Options.html#ramp
https://gcc.gnu.org/onlinedocs/gcc/AVR-Options.html#eind

90

-mmcu=mcu Compile code for architecture arch resp. AVR device mcu.

Since GCC v5, the compiler no more supports indivitual devices, instead the compiler comes with device
specs files that describe which options to use with each sub-processes like pre-processor, compiler
proper, assembler and linker.

The purpose of these specs files is to add support for AVR devices that the compiler does not yet support.

The easiest way to add support for an unsupported device is to use device support from an atpack
archive as provided by the hardware manufacturer. Apart from the mcu specific specs file, it provides
device headers io∗.h, startup code crtmcu.o and device library libmcu.a.

13.1.2 Selected general compiler options

The following general gcc options might be of some interest to AVR users.

-On Optimization level n. Increasing n is meant to optimize more.

-O0 reduces compilation time and makes debugging produce the expected results. This is the default.
Turning off all optimizations will prevent some warnings from being issued since the generation of those warn-
ings depends on code analysis steps that are only performed when optimizing (unreachable code, unused
variables). Moreover, the delay routines in <util/delay.h> require optimization to be turned on.

-O2 optimizes for speed, but without enabling very expensive optimizations like -O3 does.

-Os turns on all -O2 optimizations except those that often increase code size. In most cases, this is the
preferred optimization level for AVR programs.

-Og optimizes debugging experience. This should be the optimization level of choice for the standard edit-
compile-debug cycle, offering a reasonable level of optimization while maintaining fast compilation and a good
debugging experience.

-O3 attempts to inline all "simple" functions and might unroll some loops. For the AVR target, this will normally
constitute a large pessimization due to the code increasement.

-O is equivalent to -O1. The compiler tries to reduce code size and execution time, without performing any
optimizations that take a great deal of compilation time.

See also the appropriate FAQ entry for issues regarding debugging optimized code.

-Wp,preprocessor-options

-Wa,assembler-options

-Wl,linker-options Pass the listed options to the C preprocessor, the assembler or the linker, respectively.
Several options can be passed at once when they are separated by a , (comma).

-g Generate debugging information that can be used by avr-gdb. GCC v12 changed the default from STABS to
DWARF. Different DWARF levels can be selected by -g2 or -gdwarf-3.
The compiler may use GNU extensions to the DWARF format. When a debugger has problems with that, try
-gstrict-dwarf.

-x lang

-x none Compile the following files in language lang. Values for lang are: c, c++, assembler,
assembler-with-cpp and none.

For example, GCC does not recognize the .asm file extension as assembly source. With -x
assembler-with-cpp file.asm, the compiler first runs the C preprocessor on file.asm (so
that #include <avr/io.h> can be used in assembly), and then calls the assembler.

Another use case is to compile a C file that's read from standard input, which is specified as - (dash) instead
of the name of a source file. As no source file name is specified, the compiler must be told which language to
use: The command

$ echo ’#include <avr/io.h>’ | avr-gcc -xc - -mmcu=atmega8 -E -dM | grep _VECTOR

Generated by Doxygen

https://gcc.gnu.org/wiki/avr-gcc#spec-files
https://gcc.gnu.org/wiki/avr-gcc#spec-files
https://gcc.gnu.org/wiki/avr-gcc#atpack
https://gcc.gnu.org/wiki/avr-gcc#atpack

13.1 Options for the C compiler avr-gcc 91

pre-processes the C file #include <avr/io.h> and writes all macro definitions to stdout. The output
is then filtered by grep to show all possible ISR vector names for ATmega8.

-x none returns to the default for the following inputs, i.e. infer the respective source languages from the
file extensions.

-save-temps

-save-temps=obj

-save-temps=cwd

-fverbose-asm

-dumpbase base

-dumpdir dir Don't remove temporary, intermediate files like C preprocessor output and assembly code gen-
erated by the compiler. The intermediate files have file extension .i (preprocessed C), .ii (preprocessed
C++) and .s (preprocessed assembly, compiler-generated assembly).

-dumpbase and -dumpdir can be used to adjust file names and locations.

With -fverbose-asm, the compiler adds the high level source code to the assembly output. Compiling
without debugging information (-g0) improves legibility of the generated assembly.

The preprocessed files can be used to check if macro expansions work as expected. With -g3 or higher, the
preprocessed files will also contain all macro definitions and indications where they are defined: Built-in, on
the command line, or in some header file as indicated by #line notes.

-lname Locate the archive library named libname.a, and use it to resolve currently unresolved symbols from
it. The library is searched along a path that consists of builtin pathname entries that have been specified at
configure time (e. g. /usr/local/avr/lib on Unix systems), possibly extended by pathname entries
as specified by -L options (that must precede the -l options on the command-line).

-Lpath Additional directory path to look for archive libraries requested by -l options.

-ffunction-sections

-fdata-sections Put each function resp. object in static storage in its own input section. This is used with
-Wl,--gc-sections so the linker can better garbage-collect unused sections, which are sections that
are neither referenced by other sections, nor are marked as KEEP, nor are referenced by an entry symbol.

-mrelax Replace JMP and CALL instructions with the faster and shorter RJMP and RCALL instructions if pos-
sible. That optimization is performed by the linker, and the assembler must not resolve some expressions,
which is all arranged by -mrelax.

-Tbss org

-Tdata org

-Ttext org Start the .bss, .data, or .text section at VMA address org, respectively.

-T scriptfile Use scriptfile as the linker script, replacing or augmenting the default linker script.

Default linker scripts are stored in a system-specific location (e. g. under /usr/local/avr/lib/ldscripts
on Unix systems), and consist of the AVR architecture name (avr2 through avrxmega7) with the suffix .x
appended. They describe how the various memory sections will be linked together and which input sections
go into them. Notice that the default linker scripts are part of the linker binary, changing them on file will have
no effect.

For a simple linker script augmentation, see the avr-gcc Wiki on named address spaces.

-nostdlib Don't link against standard libraries.

-nodefaultlibs Don't link against default libraries.

-nodevicelib Don't link against AVR-LibC's libmcu.a that contains EEPROM support and other stuff. This
can be used when no such library is available.

Generated by Doxygen

https://gcc.gnu.org/wiki/avr-gcc#Address_Spaces

92

-nostartfiles Don't link against AVR-LibC's startup code crtmcu.o.

Notice that parts of the startup code are provided by libgcc.a. To get rid of that, one can -nostdlib or
-nodefaultlibs; however that also removes other code like functions required for arithmetic. To just get
rid of the startup bits, define the respective symbols, for example
-Wl,--defsym,__do_clear_bss=0 and similar for __do_copy_data, __do_global_ctors
and __do_global_dtors.

-funsigned-char This option changes the binary interface!
Make any unqualfied char type an unsigned char. Without this option, they default to a signed char.

-funsigned-bitfields This option changes the binary interface!
Make any unqualified bitfield type unsigned. By default, they are signed.

-fshort-enums This option changes the binary interface!
Allocate to an enum type only as many bytes as it needs for the declared range of possible values. Specifi-
cally, the enum type will be equivalent to the smallest integer type which has enough room.

-fpack-struct This option changes the binary interface!
Pack all structure members together without holes.

-fno-jump-tables Do not generate tablejump instructions. By default, jump tables can be used to optimize
switch statements. When turned off, sequences of compare statements are used instead. Jump tables
are usually faster to execute on average, but in particular for switch statements, where most of the jumps
would go to the default label, they might waste a bit of flash memory.

Note: Sinve GCC v4.9.2, tablejump code uses the ELPM instruction to read from jump tables. In older
version, use the -fno-jump-tables switch when compiling a bootloader for devices with more than 64
KiB of code memory.

-ffreestanding Assume a "freestanding" environment as per the C standard. This turns off automatic builtin
functions (though they can still be reached by prepending __builtin_ to the actual function name). It
also makes the compiler not complain when main() is declared with a void return type. (In most cases,
main() won't even return anyway, and hence using a return type of int has no downsides at all).

However, this option also turns off all optimizations normally done by the compiler which assume that functions
known by a certain name behave as described by the standard. For example, applying the function strlen()
to a literal string will normally cause the compiler to immediately replace that call by the actual length of the
string, while with -ffreestanding, it will always call strlen() at run-time.

13.2 Options for the assembler avr-as

Note

The preferred way to assemble a file is by means of using avr-gcc:

• avr-gcc, which is a driver program to call sub-programs like the compiler proper or the assem-
bler, knows which options it has to add to the assembler's command line, like: -mmcu=arch,
-mno-skip-bug, etc.

• avr-gcc will call the C preprocessor on the assembler input for sources with extensions .S and .sx.
For other extensions, use

$ avr-gcc -x assembler-with-cpp file.asm ...

This allows to use C preprocessor directives like
#include <avr/io.h>

in assembly sources.

Generated by Doxygen

13.2 Options for the assembler avr-as 93

13.2.1 Machine-specific assembler options

-mmcu=architecture

-mmcu=mcu avr-as does not support all mcus supported by the compiler. As explained in the note above, the
preferred way to run the assembler is by using the compiler driver avr-gcc.

-mall-opcodes Turns off opcode checking, and allows any possible AVR opcode to be assembled.

-mno-skip-bug Don't emit a warning when trying to skip a 2-word instruction with a CPSE/SBIC/SBIS/←↩

SBRC/SBRS instruction. Early AVR devices suffered from a hardware bug where these instructions could
not be properly skipped.

-mno-wrap For RJMP/RCALL instructions, don't allow the target address to wrap around for devices that have
more than 8 KiB of memory.

--gstabs Generate .stabs debugging symbols for assembler source lines. This enables avr-gdb to trace
through assembler source files. This option must not be used when assembling sources that have been
generated by the C compiler; these files already contain the appropriate line number information from the C
source files.

-a[cdhlmns=file] Turn on the assembler listing. The sub-options are:

• c omit false conditionals

• d omit debugging directives

• h include high-level source

• l include assembly

• m include macro expansions

• n omit forms processing

• s include symbols

• =file set the name of the listing file

The various sub-options can be combined into a single -a option list; =file must be the last one in that case.

13.2.2 Examples for assembler options passed through the C compiler

Remember that assembler options can be passed from the C compiler frontend using -Wa (see gcc_minusW
above), so in order to include the C source code into the assembler listing in file foo.lss, when compiling foo.c,
the following compiler command-line can be used:

$ avr-gcc -mmcu=atmega8 -c foo.c -o foo.o -Wa,-ahls=foo.lss

In order to pass an assembler file through the C preprocessor first, and have the assembler generate line number
debugging information for it, the following command can be used:

$ avr-gcc -c -x assembler-with-cpp -o foo.o foo.asm -Wa,--gstabs

Note that on Unix systems that have case-distinguishing file systems, specifying a file name with the suffix .S
(upper-case letter S) will make the compiler automatically assume -x assembler-with-cpp, while using .s
would pass the file directly to the assembler (no preprocessing done).

Generated by Doxygen

94

13.3 Controlling the linker avr-ld

Note

It is highly recommended to use the compiler driver avr-gcc or avr-g++ for linking.

• The driver knows which options to pass down to the linker. This includes the correct multilib path,
support libraries like libc.a, libm.a, libgcc.a and libmcu.a, as well as options for LTO (link-
time optimization) and options for plugins (that call back the compiler to compile LTO byte code), startup
code and many more.

• The driver program understands options like -llib, -Lpath, Ttext, Tdata, Tbss and -T
script, so no -Wl is required for them.

13.3.1 Selected linker options

A number of the standard options might be of interest to AVR users.

--defsym symbol=expr Define a global symbol symbol using expr as the value.

-M Print a linker map to stdout.

-Map mapfile Print a linker map to mapfile.

--cref Output a cross reference table to the map file (in case -Map is also present), or to stdout.

--gc-sections Only keep input sections that are referenced (by other sections or the entry symbol), and that
are not marked as KEEP in the linker script. This is used to reduce code size, usually together with compiler
option -ffunction-sections so that input section granularity is on function level rather than on the
level of compilation units.

--section-start sectionname=org Start section sectionname at absolute address org.

--relax Don't use this option directly or per -Wl,--relax. Instead, link with avr-gcc ... -mrelax.

13.3.2 Passing linker options from the C compiler

By default, all unknown non-option arguments on the avr-gcc command-line (i. e., all filename arguments that
don't have a suffix that is handled by avr-gcc) are passed straight to the linker. Thus, all files ending in .o (object
files) and .a (object libraries) are provided to the linker.

System libraries are usually not passed by their explicit filename but rather using the -l option which uses an
abbreviated form of the archive filename (see above). AVR-LibC ships system libraries, libc.a, libm.a and
libmcu.a. While the standard library libc.a will always be searched for unresolved references when the linker
is started using the C compiler frontend (i. e., there's always at least one implied -lc option), the mathematics
library libm.a is only automatically added in GCC v4.7 and above. On older versions, it needs to be explicitly
requested using -lm.

Conventionally, Makefiles use the make macro LDLIBS to keep track of -l (and possibly -L) options that should
only be appended to the C compiler command-line when linking the final binary. In contrast, the macro LDFLAGS
is used to store other command-line options to the C compiler that should be passed as options during the linking
stage. The difference is that options are placed early on the command-line, while libraries are put at the end since
they are to be used to resolve global symbols that are still unresolved at this point.

Specific linker flags can be passed from the C compiler command-line using the -Wl compiler option, see
gcc_minusW above. This option requires that there be no spaces in the appended linker option, while some of
the linker options above (like -Map or --defsym) would require a space. In these situations, the space can be
replaced by an equal sign as well. For example, the following command-line can be used to compile foo.c into an
executable, and also produce a link map that contains a cross-reference list in the file foo.map:

Generated by Doxygen

14 Compiler optimization 95

$ avr-gcc -mmcu=atmega8 foo.c -o foo.elf -Wl,-Map,foo.map -Wl,--cref

Alternatively, a comma as a placeholder will be replaced by a space before passing the option to the linker. So
for a device with external SRAM, the following command-line would cause the linker to place the data segment at
address 0x2000 in the SRAM:

$ avr-gcc -mmcu=atmega128 foo.c -o foo.elf -Wl,-Tdata,0x802000

See the explanation of the data section for why 0x800000 needs to be added to the actual value. Note that the stack
will still remain in internal RAM, through the symbol __stack that is provided by the run-time startup code. This is
probably a good idea anyway (since internal RAM access is faster), and even required for some early devices that
had hardware bugs preventing them from using a stack in external RAM. Note also that the heap for malloc()
will still be placed after all the variables in the data section, so in this situation, no stack/heap collision can occur.

In order to relocate the stack from its default location at the top of interns RAM, the value of the symbol __stack
can be changed on the linker command-line. As the linker is typically called from the compiler frontend, this can be
achieved using a compiler option like
-Wl,--defsym=__stack=0x8003ff

The above will make the code use stack space from RAM address 0x3ff downwards. The amount of stack space
available then depends on the bottom address of internal RAM for a particular device. It is the responsibility of the
application to ensure the stack does not grow out of bounds, as well as to arrange for the stack to not collide with
variable allocations made by the compiler (sections .data and .bss).

14 Compiler optimization

14.1 Problems with reordering code

Author

Jan Waclawek

Programs contain sequences of statements, and a naive compiler would execute them exactly in the order as
they are written. But an optimizing compiler is free to reorder the statements — or even parts of them — if the
resulting "net effect" is the same. The "measure" of the "net effect" is what the standard calls "side effects", and is
accomplished exclusively through accesses (reads and writes) to variables qualified as volatile. So, as long as
all volatile reads and writes are to the same addresses and in the same order (and writes write the same values),
the program is correct, regardless of other operations in it. One important point to note here is, that time duration
between consecutive volatile accesses is not considered at all.

Unfortunately, there are also operations which are not covered by volatile accesses. An example of this in AVR-←↩

GCC/AVR-LibC are the cli() and sei() macros defined in <avr/interrupt.h>, which convert directly to the
respective assembler mnemonics through the __asm__() statement. They constitute a variable access by means
of their memory clobber, and they are (implicitly) volatile because they don't have an output operand. So the compiler
may not reorder these inline asm statements with respect to other memory accesses or volatile actions. However,
such asm statementy may still be reordered with other statement that are neither volatile nor access memory.

Note that even a volatile asm instruction can be moved relative to other code, including across (expensive) arithmetic
and jump instructions [...]

Generated by Doxygen

96

See also

http://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

However, not even a volatile memory barrier like
__asm __volatile__ ("" ::: "memory");

keeps GCC from reordering non-volatile, non-memory accesses across such barriers. Peter Dannegger provided a
nice example of this effect:
#define cli() __asm volatile("cli" ::: "memory")
#define sei() __asm volatile("sei" ::: "memory")

unsigned int ivar;

void test2 (unsigned int val)
{

val = 65535U / val;

cli();

ivar = val;

sei();
}

avr-gcc v5.4 or v14 compile with optimisations switched on (-Os) to

00000112 <test2>:
112: bc 01 movw r22, r24
114: f8 94 cli
116: 8f ef ldi r24, 0xFF ; 255
118: 9f ef ldi r25, 0xFF ; 255
11a: 0e 94 96 00 call 0x12c ; 0x12c <__udivmodhi4>
11e: 70 93 01 02 sts 0x0201, r23
122: 60 93 00 02 sts 0x0200, r22
126: 78 94 sei
128: 08 95 ret

where the potentially slow division is moved across cli(), resulting in interrupts to be disabled longer than in-
tended. Note, that the volatile access occurs in order with respect to cli() or sei(); so the "net effect" required
by the standard is achieved as intended, it is "only" the timing which is off. However, for most of embedded applica-
tions, timing is an important, sometimes critical factor.

See also

https://www.mikrocontroller.net/topic/65923

Unfortunately, at the moment, in avr-gcc (nor in the C standard), there is no mechanism to enforce complete match
of written and executed code ordering — except maybe of switching the optimization completely off (-O0), or writing
all the critical code in assembly.

Note

The artifact with the __udivmodhi4 function is specific to avr-gcc and how the compiler represents the
division internally. On other target platforms that are using a library function for division or whatever expensive
operation, this eccect will not occur. The reason is that avr-gcc does not represent the library call as a function
call but rather like an ordinary instruction. Outcome is that the GCC middle-end concludes that the division is
cheap (because the backend has an instruction for it) but in fact it's not.

A work around for the code from above would be to enforce that the division havvens prior to the cli():
val = 65535U / val;
__asm __volatile__ ("" : "+r" (val));
cli();

Generated by Doxygen

http://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
https://www.mikrocontroller.net/topic/65923

15 Using the avrdude program 97

• The volatile forces the asm statememt prior to the cli.

• The asm has val as input operand, hence the division must be carried out prior to the asm because val is
set by the division.

Notice that this work around does not work in general due to a variety of reasons:

• The division might be located in an inlined function.

• The variable might be read-only or may not be appropriate as an asm operand.

• There may be more such instruction prior to the division, and it is not practical to treat all of them like this.

To sum it up:

• volatile memory barriers don't ensure statements with no volatile accesses to be reordered across the barrier

15 Using the avrdude program

Note

This section was contributed by Brian Dean [bsd@bsdhome.com].

The avrdude program was previously called avrprog. The name was changed to avoid confusion with the
avrprog program that Atmel ships with AvrStudio.

avrdude is a program that is used to update or read the flash and EEPROM memories of Atmel AVR microcon-
trollers on FreeBSD Unix. It supports the Atmel serial programming protocol using the PC's parallel port and can
upload either a raw binary file or an Intel Hex format file. It can also be used in an interactive mode to individually
update EEPROM cells, fuse bits, and/or lock bits (if their access is supported by the Atmel serial programming
protocol.) The main flash instruction memory of the AVR can also be programmed in interactive mode, however this
is not very useful because one can only turn bits off. The only way to turn flash bits on is to erase the entire memory
(using avrdude's -e option).

avrdude is part of the FreeBSD ports system. To install it, simply do the following:

cd /usr/ports/devel/avrdude
make install

Once installed, avrdude can program processors using the contents of the .hex file specified on the command
line. In this example, the file main.hex is burned into the flash memory:

avrdude -p 2313 -e -m flash -i main.hex

avrdude: AVR device initialized and ready to accept instructions

avrdude: Device signature = 0x1e9101

avrdude: erasing chip
avrdude: done.
avrdude: reading input file "main.hex"
avrdude: input file main.hex auto detected as Intel Hex

avrdude: writing flash:
1749 0x00
avrdude: 1750 bytes of flash written
avrdude: verifying flash memory against main.hex:
avrdude: reading on-chip flash data:
1749 0x00
avrdude: verifying ...
avrdude: 1750 bytes of flash verified

avrdude done. Thank you.

Generated by Doxygen

mailto:bsd@bsdhome.com

98

The -p 2313 option lets avrdude know that we are operating on an AT90S2313 chip. This option spec-
ifies the device id and is matched up with the device of the same id in avrdude's configuration file (
/usr/local/etc/avrdude.conf). To list valid parts, specify the -v option. The -e option instructs
avrdude to perform a chip-erase before programming; this is almost always necessary before programming the
flash. The -m flash option indicates that we want to upload data into the flash memory, while -i main.hex
specifies the name of the input file.

The EEPROM is uploaded in the same way, the only difference is that you would use -m eeprom instead of -m
flash.

To use interactive mode, use the -t option:

avrdude -p 2313 -t
avrdude: AVR device initialized and ready to accept instructions
avrdude: Device signature = 0x1e9101
avrdude>

The ’?’ command displays a list of valid
commands:

avrdude> ?
>>> ?
Valid commands:

dump : dump memory : dump <memtype> <addr> <N-Bytes>
read : alias for dump
write : write memory : write <memtype> <addr> <b1> <b2> ... <bN>
erase : perform a chip erase
sig : display device signature bytes
part : display the current part information
send : send a raw command : send <b1> <b2> <b3> <b4>
help : help
? : help
quit : quit

Use the ’part’ command to display valid memory types for use with the
’dump’ and ’write’ commands.

avrdude>

16 Acknowledgments

This document tries to tie together the labors of a large group of people. Without these individuals' efforts, we
wouldn't have a terrific, free set of tools to develop AVR projects. We all owe thanks to:

• The GCC Team, which produced a very capable set of development tools for an amazing number of platforms
and processors.

• Denis Chertykov [denisc@overta.ru] for making the AVR-specific changes to the GNU tools.

• Denis Chertykov and Marek Michalkiewicz [marekm@linux.org.pl] for developing the standard li-
braries and startup code for AVR-GCC.

• Uros Platise for developing the AVR programmer tool, uisp.

• Joerg Wunsch [joerg@FreeBSD.ORG] for adding all the AVR development tools to the FreeBSD [
http://www.freebsd.org] ports tree and for providing the basics for the demo project.

• Brian Dean [bsd@bsdhome.com] for developing avrdude (an alternative to uisp) and for contributing
documentation which describes how to use it. Avrdude was previously called avrprog.

Generated by Doxygen

mailto:denisc@overta.ru
mailto:marekm@linux.org.pl
mailto:joerg@FreeBSD.ORG
http://www.freebsd.org
http://www.freebsd.org
mailto:bsd@bsdhome.com

17 Deprecated List 99

• Eric Weddington [eweddington@cso.atmel.com] for maintaining the WinAVR package and thus
making the continued improvements to the open source AVR toolchain available to many users.

• Rich Neswold for writing the original avr-tools document (which he graciously allowed to be merged into this
document) and his improvements to the demo project.

• Theodore A. Roth for having been a long-time maintainer of many of the tools (AVR-LibC, the AVR port of
GDB, AVaRICE, uisp, avrdude).

• All the people who currently maintain the tools, and/or have submitted suggestions, patches and bug reports.
(See the AUTHORS files of the various tools.)

• And lastly, all the users who use the software. If nobody used the software, we would probably not be very
motivated to continue to develop it. Keep those bug reports coming. ;-)

17 Deprecated List

Global cbi (port, bit)

Global enable_external_int (mask)

Global inb (port)

Global inp (port)

Global INTERRUPT (signame)

Global ISR_ALIAS (vector, target_vector)

For new code, the use of ISR(..., ISR_ALIASOF(...)) is recommended.

Global outb (port, val)

Global outp (val, port)

Global sbi (port, bit)

Global SIGNAL (vector)

Do not use SIGNAL() in new code. Use ISR() instead.

Global timer_enable_int (unsigned char ints)

18 Module Index

18.1 Modules

Here is a list of all modules:

<alloca.h>: Allocate space in the stack 103

Generated by Doxygen

mailto:eweddington@cso.atmel.com

100

<assert.h>: Diagnostics 104

<ctype.h>: Character Operations 105

<errno.h>: System Errors 107

<inttypes.h>: Integer Type conversions 108

<math.h>: Mathematics 122

<setjmp.h>: Non-local goto 142

<stdint.h>: Standard Integer Types 144

<stdio.h>: Standard IO facilities 156

<stdlib.h>: General utilities 172

<string.h>: Strings 184

<time.h>: Time 197

<avr/boot.h>: Bootloader Support Utilities 207

<avr/cpufunc.h>: Special AVR CPU functions 212

<avr/eeprom.h>: EEPROM handling 214

<avr/fuse.h>: Fuse Support 219

<avr/interrupt.h>: Interrupts 222

<avr/io.h>: AVR device-specific IO definitions 228

<avr/lock.h>: Lockbit Support 230

<avr/pgmspace.h>: Program Space Utilities 232

<avr/power.h>: Power Reduction Management 259

<avr/sfr_defs.h>: Special function registers 263

Additional notes from <avr/sfr_defs.h> 263

<avr/signature.h>: Signature Support 265

<avr/sleep.h>: Power Management and Sleep Modes 266

<avr/version.h>: avr-libc version macros 268

<avr/builtins.h>: avr-gcc builtins documentation 269

<avr/wdt.h>: Watchdog timer handling 271

<util/delay.h>: Convenience functions for busy-wait delay loops 273

<util/atomic.h> Atomically and Non-Atomically Executed Code Blocks 276

<util/crc16.h>: CRC Computations 278

<util/delay_basic.h>: Basic busy-wait delay loops 282

<util/eu_dst.h>: Daylight Saving function for the European Union. 282

Generated by Doxygen

19 Data Structure Index 101

<util/parity.h>: Parity bit generation 283

<util/setbaud.h>: Helper macros for baud rate calculations 284

<util/twi.h>: TWI bit mask definitions 286

<util/usa_dst.h>: Daylight Saving function for the USA. 290

<compat/deprecated.h>: Deprecated items 291

<compat/ina90.h>: Compatibility with IAR EWB 3.x 293

Demo projects 294

Combining C and assembly source files 295

A simple project 297

A more sophisticated project 308

Using the standard IO facilities 312

Example using the two-wire interface (TWI) 317

19 Data Structure Index

19.1 Data Structures

Here are the data structures with brief descriptions:

div_t 321

ldiv_t 322

tm 323

week_date 324

20 File Index

20.1 File List

Here is a list of all documented files with brief descriptions:

project.h 325

iocompat.h 325

defines.h 327

hd44780.h 328

lcd.h 329

uart.h 329

Generated by Doxygen

102

alloca.h 330

assert.h 331

boot.h 332

builtins.h 341

cpufunc.h 343

eeprom.h 344

fuse.h 348

interrupt.h 352

io.h 357

lock.h 366

pgmspace.h 369

portpins.h 396

power.h 402

sfr_defs.h 424

signal.h 427

signature.h 428

sleep.h 429

version.h 433

wdt.h 434

xmega.h 442

deprecated.h 443

ina90.h 446

ctype.h 447

errno.h 450

inttypes.h 452

math.h 461

setjmp.h 472

stdint.h 474

stdio.h 485

stdlib.h 498

string.h 509

time.h 517

Generated by Doxygen

21 Module Documentation 103

atomic.h 525

crc16.h 529

delay.h 533

delay_basic.h 537

eu_dst.h 539

parity.h 540

setbaud.h 541

compat/twi.h 544

util/twi.h 544

usa_dst.h 548

eedef.h 549

fdevopen.c 551

stdio_private.h 551

xtoa_fast.h 552

dtoa_conv.h 552

stdlib_private.h 553

ephemera_common.h 554

21 Module Documentation

21.1 <alloca.h>: Allocate space in the stack

Functions

• void ∗ alloca (size_t __size)

21.1.1 Detailed Description

21.1.2 Function Documentation

Generated by Doxygen

104

21.1.2.1 alloca() void ∗ alloca (

size_t __size)

Allocate __size bytes of space in the stack frame of the caller.

This temporary space is automatically freed when the function that called alloca() returns to its caller. AVR-LibC
defines the alloca() as a macro, which is translated into the inlined __builtin_alloca() function. The fact
that the code is inlined, means that it is impossible to take the address of this function, or to change its behaviour
by linking with a different library.

Returns

alloca() returns a pointer to the beginning of the allocated space. If the allocation causes stack overflow,
program behaviour is undefined.

Warning

Avoid use alloca() inside the list of arguments of a function call.

21.2 <assert.h>: Diagnostics

Macros

• #define assert(expression)

21.2.1 Detailed Description

#include <assert.h>

This header file defines a debugging aid.

As there is no standard error output stream available for many applications using this library, the generation of a
printable error message is not enabled by default. These messages will only be generated if the application defines
the macro
__ASSERT_USE_STDERR

before including the <assert.h> header file. By default, only abort() will be called to halt the application.

21.2.2 Macro Definition Documentation

21.2.2.1 assert #define assert(

expression)

Parameters

expression Expression to test for.

The assert() macro tests the given expression and if it is false, the calling process is terminated. A diagnostic

Generated by Doxygen

21.3 <ctype.h>: Character Operations 105

message is written to stderr and the function abort() is called, effectively terminating the program.

If expression is true, the assert() macro does nothing.

The assert() macro may be removed at compile time by defining NDEBUG as a macro (e.g., by using the compiler
option -DNDEBUG).

21.3 <ctype.h>: Character Operations

Character classification routines

These functions perform character classification. They return true or false status depending whether the character
passed to the function falls into the function's classification (i.e. isdigit() returns true if its argument is any value '0'
though '9', inclusive). If the input is not an unsigned char value, all of this function return false.

• int isalnum (int __c)
• int isalpha (int __c)
• int isascii (int __c)
• int isblank (int __c)
• int iscntrl (int __c)
• int isdigit (int __c)
• int isgraph (int __c)
• int islower (int __c)
• int isprint (int __c)
• int ispunct (int __c)
• int isspace (int __c)
• int isupper (int __c)
• int isxdigit (int __c)

Character convertion routines

This realization permits all possible values of integer argument. The toascii() function clears all highest bits. The
tolower() and toupper() functions return an input argument as is, if it is not an unsigned char value.

• int toascii (int __c)
• int tolower (int __c)
• int toupper (int __c)

21.3.1 Detailed Description

These functions perform various operations on characters.
#include <ctype.h>

21.3.2 Function Documentation

Generated by Doxygen

106

21.3.2.1 isalnum() int isalnum (

int __c)

Checks for an alphanumeric character. It is equivalent to (isalpha(c) || isdigit(c)).

21.3.2.2 isalpha() int isalpha (

int __c)

Checks for an alphabetic character. It is equivalent to (isupper(c) || islower(c)).

21.3.2.3 isascii() int isascii (

int __c)

Checks whether c is a 7-bit unsigned char value that fits into the ASCII character set.

21.3.2.4 isblank() int isblank (

int __c)

Checks for a blank character, that is, a space or a tab.

21.3.2.5 iscntrl() int iscntrl (

int __c)

Checks for a control character.

21.3.2.6 isdigit() int isdigit (

int __c)

Checks for a digit (0 through 9).

21.3.2.7 isgraph() int isgraph (

int __c)

Checks for any printable character except space.

21.3.2.8 islower() int islower (

int __c)

Checks for a lower-case character.

21.3.2.9 isprint() int isprint (

int __c)

Checks for any printable character including space.

21.3.2.10 ispunct() int ispunct (

int __c)

Checks for any printable character which is not a space or an alphanumeric character.

Generated by Doxygen

21.4 <errno.h>: System Errors 107

21.3.2.11 isspace() int isspace (

int __c)

Checks for white-space characters. For the AVR-LibC library, these are: space, form-feed ('\f'), newline ('\n'),
carriage return ('\r'), horizontal tab ('\t'), and vertical tab ('\v').

21.3.2.12 isupper() int isupper (

int __c)

Checks for an uppercase letter.

21.3.2.13 isxdigit() int isxdigit (

int __c)

Checks for a hexadecimal digits, i.e. one of 0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F.

21.3.2.14 toascii() int toascii (

int __c)

Converts c to a 7-bit unsigned char value that fits into the ASCII character set, by clearing the high-order bits.

Warning

Many people will be unhappy if you use this function. This function will convert accented letters into random
characters.

21.3.2.15 tolower() int tolower (

int __c)

Converts the letter c to lower case, if possible.

21.3.2.16 toupper() int toupper (

int __c)

Converts the letter c to upper case, if possible.

21.4 <errno.h>: System Errors

Macros

• #define EDOM 33
• #define ERANGE 34

Variables

• int errno

Generated by Doxygen

108

21.4.1 Detailed Description

#include <errno.h>

Some functions in the library set the global variable errno when an error occurs. The file, <errno.h>, provides
symbolic names for various error codes.

21.4.2 Macro Definition Documentation

21.4.2.1 EDOM #define EDOM 33

Domain error.

21.4.2.2 ERANGE #define ERANGE 34

Range error.

21.4.3 Variable Documentation

21.4.3.1 errno int errno [extern]

Error code for last error encountered by library.

The variable errno holds the last error code encountered by a library function. This variable must be cleared by
the user prior to calling a library function.

Warning

The errno global variable is not safe to use in a threaded or multi-task system. A race condition can occur if
a task is interrupted between the call which sets error and when the task examines errno. If another task
changes errno during this time, the result will be incorrect for the interrupted task.

21.5 <inttypes.h>: Integer Type conversions

Far pointers for memory access > 64K

• typedef int32_t int_farptr_t
• typedef uint32_t uint_farptr_t

Generated by Doxygen

21.5 <inttypes.h>: Integer Type conversions 109

macros for printf and scanf format specifiers

For C++, these are only included if __STDC_LIMIT_MACROS is defined before including <inttypes.h>.

• #define PRId8 "d"
• #define PRIdLEAST8 "d"
• #define PRIdFAST8 "d"
• #define PRIi8 "i"
• #define PRIiLEAST8 "i"
• #define PRIiFAST8 "i"
• #define PRId16 "d"
• #define PRIdLEAST16 "d"
• #define PRIdFAST16 "d"
• #define PRIi16 "i"
• #define PRIiLEAST16 "i"
• #define PRIiFAST16 "i"
• #define PRId32 "ld"
• #define PRIdLEAST32 "ld"
• #define PRIdFAST32 "ld"
• #define PRIi32 "li"
• #define PRIiLEAST32 "li"
• #define PRIiFAST32 "li"
• #define PRIdPTR PRId16
• #define PRIiPTR PRIi16
• #define PRIo8 "o"
• #define PRIoLEAST8 "o"
• #define PRIoFAST8 "o"
• #define PRIu8 "u"
• #define PRIuLEAST8 "u"
• #define PRIuFAST8 "u"
• #define PRIx8 "x"
• #define PRIxLEAST8 "x"
• #define PRIxFAST8 "x"
• #define PRIX8 "X"
• #define PRIXLEAST8 "X"
• #define PRIXFAST8 "X"
• #define PRIo16 "o"
• #define PRIoLEAST16 "o"
• #define PRIoFAST16 "o"
• #define PRIu16 "u"
• #define PRIuLEAST16 "u"
• #define PRIuFAST16 "u"
• #define PRIx16 "x"
• #define PRIxLEAST16 "x"
• #define PRIxFAST16 "x"
• #define PRIX16 "X"
• #define PRIXLEAST16 "X"
• #define PRIXFAST16 "X"
• #define PRIo32 "lo"
• #define PRIoLEAST32 "lo"
• #define PRIoFAST32 "lo"
• #define PRIu32 "lu"
• #define PRIuLEAST32 "lu"
• #define PRIuFAST32 "lu"

Generated by Doxygen

110

• #define PRIx32 "lx"
• #define PRIxLEAST32 "lx"
• #define PRIxFAST32 "lx"
• #define PRIX32 "lX"
• #define PRIXLEAST32 "lX"
• #define PRIXFAST32 "lX"
• #define PRIoPTR PRIo16
• #define PRIuPTR PRIu16
• #define PRIxPTR PRIx16
• #define PRIXPTR PRIX16
• #define SCNd8 "hhd"
• #define SCNdLEAST8 "hhd"
• #define SCNdFAST8 "hhd"
• #define SCNi8 "hhi"
• #define SCNiLEAST8 "hhi"
• #define SCNiFAST8 "hhi"
• #define SCNd16 "d"
• #define SCNdLEAST16 "d"
• #define SCNdFAST16 "d"
• #define SCNi16 "i"
• #define SCNiLEAST16 "i"
• #define SCNiFAST16 "i"
• #define SCNd32 "ld"
• #define SCNdLEAST32 "ld"
• #define SCNdFAST32 "ld"
• #define SCNi32 "li"
• #define SCNiLEAST32 "li"
• #define SCNiFAST32 "li"
• #define SCNdPTR SCNd16
• #define SCNiPTR SCNi16
• #define SCNo8 "hho"
• #define SCNoLEAST8 "hho"
• #define SCNoFAST8 "hho"
• #define SCNu8 "hhu"
• #define SCNuLEAST8 "hhu"
• #define SCNuFAST8 "hhu"
• #define SCNx8 "hhx"
• #define SCNxLEAST8 "hhx"
• #define SCNxFAST8 "hhx"
• #define SCNo16 "o"
• #define SCNoLEAST16 "o"
• #define SCNoFAST16 "o"
• #define SCNu16 "u"
• #define SCNuLEAST16 "u"
• #define SCNuFAST16 "u"
• #define SCNx16 "x"
• #define SCNxLEAST16 "x"
• #define SCNxFAST16 "x"
• #define SCNo32 "lo"
• #define SCNoLEAST32 "lo"
• #define SCNoFAST32 "lo"
• #define SCNu32 "lu"
• #define SCNuLEAST32 "lu"
• #define SCNuFAST32 "lu"
• #define SCNx32 "lx"

Generated by Doxygen

21.5 <inttypes.h>: Integer Type conversions 111

• #define SCNxLEAST32 "lx"
• #define SCNxFAST32 "lx"
• #define SCNoPTR SCNo16
• #define SCNuPTR SCNu16
• #define SCNxPTR SCNx16

21.5.1 Detailed Description

#include <inttypes.h>

This header file includes the exact-width integer definitions from <stdint.h>, and extends them with additional
facilities provided by the implementation.

Currently, the extensions include two additional integer types that could hold a "far" pointer (i.e. a code pointer
that can address more than 64 KB), as well as standard names for all printf and scanf formatting options that are
supported by the <stdio.h>: Standard IO facilities. As the library does not support the full range of conversion
specifiers from ISO 9899:1999, only those conversions that are actually implemented will be listed here.

The idea behind these conversion macros is that, for each of the types defined by <stdint.h>, a macro will be
supplied that portably allows formatting an object of that type in printf() or scanf() operations. Example:
#include <inttypes.h>

uint8_t smallval;
int32_t longval;
...
printf("The hexadecimal value of smallval is %" PRIx8

", the decimal value of longval is %" PRId32 ".\n",
smallval, longval);

21.5.2 Macro Definition Documentation

21.5.2.1 PRId16 #define PRId16 "d"

decimal printf format for int16_t

21.5.2.2 PRId32 #define PRId32 "ld"

decimal printf format for int32_t

21.5.2.3 PRId8 #define PRId8 "d"

decimal printf format for int8_t

21.5.2.4 PRIdFAST16 #define PRIdFAST16 "d"

decimal printf format for int_fast16_t

21.5.2.5 PRIdFAST32 #define PRIdFAST32 "ld"

decimal printf format for int_fast32_t

Generated by Doxygen

112

21.5.2.6 PRIdFAST8 #define PRIdFAST8 "d"

decimal printf format for int_fast8_t

21.5.2.7 PRIdLEAST16 #define PRIdLEAST16 "d"

decimal printf format for int_least16_t

21.5.2.8 PRIdLEAST32 #define PRIdLEAST32 "ld"

decimal printf format for int_least32_t

21.5.2.9 PRIdLEAST8 #define PRIdLEAST8 "d"

decimal printf format for int_least8_t

21.5.2.10 PRIdPTR #define PRIdPTR PRId16

decimal printf format for intptr_t

21.5.2.11 PRIi16 #define PRIi16 "i"

integer printf format for int16_t

21.5.2.12 PRIi32 #define PRIi32 "li"

integer printf format for int32_t

21.5.2.13 PRIi8 #define PRIi8 "i"

integer printf format for int8_t

21.5.2.14 PRIiFAST16 #define PRIiFAST16 "i"

integer printf format for int_fast16_t

21.5.2.15 PRIiFAST32 #define PRIiFAST32 "li"

integer printf format for int_fast32_t

21.5.2.16 PRIiFAST8 #define PRIiFAST8 "i"

integer printf format for int_fast8_t

Generated by Doxygen

21.5 <inttypes.h>: Integer Type conversions 113

21.5.2.17 PRIiLEAST16 #define PRIiLEAST16 "i"

integer printf format for int_least16_t

21.5.2.18 PRIiLEAST32 #define PRIiLEAST32 "li"

integer printf format for int_least32_t

21.5.2.19 PRIiLEAST8 #define PRIiLEAST8 "i"

integer printf format for int_least8_t

21.5.2.20 PRIiPTR #define PRIiPTR PRIi16

integer printf format for intptr_t

21.5.2.21 PRIo16 #define PRIo16 "o"

octal printf format for uint16_t

21.5.2.22 PRIo32 #define PRIo32 "lo"

octal printf format for uint32_t

21.5.2.23 PRIo8 #define PRIo8 "o"

octal printf format for uint8_t

21.5.2.24 PRIoFAST16 #define PRIoFAST16 "o"

octal printf format for uint_fast16_t

21.5.2.25 PRIoFAST32 #define PRIoFAST32 "lo"

octal printf format for uint_fast32_t

21.5.2.26 PRIoFAST8 #define PRIoFAST8 "o"

octal printf format for uint_fast8_t

21.5.2.27 PRIoLEAST16 #define PRIoLEAST16 "o"

octal printf format for uint_least16_t

Generated by Doxygen

114

21.5.2.28 PRIoLEAST32 #define PRIoLEAST32 "lo"

octal printf format for uint_least32_t

21.5.2.29 PRIoLEAST8 #define PRIoLEAST8 "o"

octal printf format for uint_least8_t

21.5.2.30 PRIoPTR #define PRIoPTR PRIo16

octal printf format for uintptr_t

21.5.2.31 PRIu16 #define PRIu16 "u"

decimal printf format for uint16_t

21.5.2.32 PRIu32 #define PRIu32 "lu"

decimal printf format for uint32_t

21.5.2.33 PRIu8 #define PRIu8 "u"

decimal printf format for uint8_t

21.5.2.34 PRIuFAST16 #define PRIuFAST16 "u"

decimal printf format for uint_fast16_t

21.5.2.35 PRIuFAST32 #define PRIuFAST32 "lu"

decimal printf format for uint_fast32_t

21.5.2.36 PRIuFAST8 #define PRIuFAST8 "u"

decimal printf format for uint_fast8_t

21.5.2.37 PRIuLEAST16 #define PRIuLEAST16 "u"

decimal printf format for uint_least16_t

21.5.2.38 PRIuLEAST32 #define PRIuLEAST32 "lu"

decimal printf format for uint_least32_t

Generated by Doxygen

21.5 <inttypes.h>: Integer Type conversions 115

21.5.2.39 PRIuLEAST8 #define PRIuLEAST8 "u"

decimal printf format for uint_least8_t

21.5.2.40 PRIuPTR #define PRIuPTR PRIu16

decimal printf format for uintptr_t

21.5.2.41 PRIx16 #define PRIx16 "x"

hexadecimal printf format for uint16_t

21.5.2.42 PRIX16 #define PRIX16 "X"

uppercase hexadecimal printf format for uint16_t

21.5.2.43 PRIx32 #define PRIx32 "lx"

hexadecimal printf format for uint32_t

21.5.2.44 PRIX32 #define PRIX32 "lX"

uppercase hexadecimal printf format for uint32_t

21.5.2.45 PRIx8 #define PRIx8 "x"

hexadecimal printf format for uint8_t

21.5.2.46 PRIX8 #define PRIX8 "X"

uppercase hexadecimal printf format for uint8_t

21.5.2.47 PRIxFAST16 #define PRIxFAST16 "x"

hexadecimal printf format for uint_fast16_t

21.5.2.48 PRIXFAST16 #define PRIXFAST16 "X"

uppercase hexadecimal printf format for uint_fast16_t

21.5.2.49 PRIxFAST32 #define PRIxFAST32 "lx"

hexadecimal printf format for uint_fast32_t

Generated by Doxygen

116

21.5.2.50 PRIXFAST32 #define PRIXFAST32 "lX"

uppercase hexadecimal printf format for uint_fast32_t

21.5.2.51 PRIxFAST8 #define PRIxFAST8 "x"

hexadecimal printf format for uint_fast8_t

21.5.2.52 PRIXFAST8 #define PRIXFAST8 "X"

uppercase hexadecimal printf format for uint_fast8_t

21.5.2.53 PRIxLEAST16 #define PRIxLEAST16 "x"

hexadecimal printf format for uint_least16_t

21.5.2.54 PRIXLEAST16 #define PRIXLEAST16 "X"

uppercase hexadecimal printf format for uint_least16_t

21.5.2.55 PRIxLEAST32 #define PRIxLEAST32 "lx"

hexadecimal printf format for uint_least32_t

21.5.2.56 PRIXLEAST32 #define PRIXLEAST32 "lX"

uppercase hexadecimal printf format for uint_least32_t

21.5.2.57 PRIxLEAST8 #define PRIxLEAST8 "x"

hexadecimal printf format for uint_least8_t

21.5.2.58 PRIXLEAST8 #define PRIXLEAST8 "X"

uppercase hexadecimal printf format for uint_least8_t

21.5.2.59 PRIxPTR #define PRIxPTR PRIx16

hexadecimal printf format for uintptr_t

21.5.2.60 PRIXPTR #define PRIXPTR PRIX16

uppercase hexadecimal printf format for uintptr_t

Generated by Doxygen

21.5 <inttypes.h>: Integer Type conversions 117

21.5.2.61 SCNd16 #define SCNd16 "d"

decimal scanf format for int16_t

21.5.2.62 SCNd32 #define SCNd32 "ld"

decimal scanf format for int32_t

21.5.2.63 SCNd8 #define SCNd8 "hhd"

decimal scanf format for int8_t

21.5.2.64 SCNdFAST16 #define SCNdFAST16 "d"

decimal scanf format for int_fast16_t

21.5.2.65 SCNdFAST32 #define SCNdFAST32 "ld"

decimal scanf format for int_fast32_t

21.5.2.66 SCNdFAST8 #define SCNdFAST8 "hhd"

decimal scanf format for int_fast8_t

21.5.2.67 SCNdLEAST16 #define SCNdLEAST16 "d"

decimal scanf format for int_least16_t

21.5.2.68 SCNdLEAST32 #define SCNdLEAST32 "ld"

decimal scanf format for int_least32_t

21.5.2.69 SCNdLEAST8 #define SCNdLEAST8 "hhd"

decimal scanf format for int_least8_t

21.5.2.70 SCNdPTR #define SCNdPTR SCNd16

decimal scanf format for intptr_t

21.5.2.71 SCNi16 #define SCNi16 "i"

generic-integer scanf format for int16_t

Generated by Doxygen

118

21.5.2.72 SCNi32 #define SCNi32 "li"

generic-integer scanf format for int32_t

21.5.2.73 SCNi8 #define SCNi8 "hhi"

generic-integer scanf format for int8_t

21.5.2.74 SCNiFAST16 #define SCNiFAST16 "i"

generic-integer scanf format for int_fast16_t

21.5.2.75 SCNiFAST32 #define SCNiFAST32 "li"

generic-integer scanf format for int_fast32_t

21.5.2.76 SCNiFAST8 #define SCNiFAST8 "hhi"

generic-integer scanf format for int_fast8_t

21.5.2.77 SCNiLEAST16 #define SCNiLEAST16 "i"

generic-integer scanf format for int_least16_t

21.5.2.78 SCNiLEAST32 #define SCNiLEAST32 "li"

generic-integer scanf format for int_least32_t

21.5.2.79 SCNiLEAST8 #define SCNiLEAST8 "hhi"

generic-integer scanf format for int_least8_t

21.5.2.80 SCNiPTR #define SCNiPTR SCNi16

generic-integer scanf format for intptr_t

21.5.2.81 SCNo16 #define SCNo16 "o"

octal scanf format for uint16_t

21.5.2.82 SCNo32 #define SCNo32 "lo"

octal scanf format for uint32_t

Generated by Doxygen

21.5 <inttypes.h>: Integer Type conversions 119

21.5.2.83 SCNo8 #define SCNo8 "hho"

octal scanf format for uint8_t

21.5.2.84 SCNoFAST16 #define SCNoFAST16 "o"

octal scanf format for uint_fast16_t

21.5.2.85 SCNoFAST32 #define SCNoFAST32 "lo"

octal scanf format for uint_fast32_t

21.5.2.86 SCNoFAST8 #define SCNoFAST8 "hho"

octal scanf format for uint_fast8_t

21.5.2.87 SCNoLEAST16 #define SCNoLEAST16 "o"

octal scanf format for uint_least16_t

21.5.2.88 SCNoLEAST32 #define SCNoLEAST32 "lo"

octal scanf format for uint_least32_t

21.5.2.89 SCNoLEAST8 #define SCNoLEAST8 "hho"

octal scanf format for uint_least8_t

21.5.2.90 SCNoPTR #define SCNoPTR SCNo16

octal scanf format for uintptr_t

21.5.2.91 SCNu16 #define SCNu16 "u"

decimal scanf format for uint16_t

21.5.2.92 SCNu32 #define SCNu32 "lu"

decimal scanf format for uint32_t

21.5.2.93 SCNu8 #define SCNu8 "hhu"

decimal scanf format for uint8_t

Generated by Doxygen

120

21.5.2.94 SCNuFAST16 #define SCNuFAST16 "u"

decimal scanf format for uint_fast16_t

21.5.2.95 SCNuFAST32 #define SCNuFAST32 "lu"

decimal scanf format for uint_fast32_t

21.5.2.96 SCNuFAST8 #define SCNuFAST8 "hhu"

decimal scanf format for uint_fast8_t

21.5.2.97 SCNuLEAST16 #define SCNuLEAST16 "u"

decimal scanf format for uint_least16_t

21.5.2.98 SCNuLEAST32 #define SCNuLEAST32 "lu"

decimal scanf format for uint_least32_t

21.5.2.99 SCNuLEAST8 #define SCNuLEAST8 "hhu"

decimal scanf format for uint_least8_t

21.5.2.100 SCNuPTR #define SCNuPTR SCNu16

decimal scanf format for uintptr_t

21.5.2.101 SCNx16 #define SCNx16 "x"

hexadecimal scanf format for uint16_t

21.5.2.102 SCNx32 #define SCNx32 "lx"

hexadecimal scanf format for uint32_t

21.5.2.103 SCNx8 #define SCNx8 "hhx"

hexadecimal scanf format for uint8_t

21.5.2.104 SCNxFAST16 #define SCNxFAST16 "x"

hexadecimal scanf format for uint_fast16_t

Generated by Doxygen

21.5 <inttypes.h>: Integer Type conversions 121

21.5.2.105 SCNxFAST32 #define SCNxFAST32 "lx"

hexadecimal scanf format for uint_fast32_t

21.5.2.106 SCNxFAST8 #define SCNxFAST8 "hhx"

hexadecimal scanf format for uint_fast8_t

21.5.2.107 SCNxLEAST16 #define SCNxLEAST16 "x"

hexadecimal scanf format for uint_least16_t

21.5.2.108 SCNxLEAST32 #define SCNxLEAST32 "lx"

hexadecimal scanf format for uint_least32_t

21.5.2.109 SCNxLEAST8 #define SCNxLEAST8 "hhx"

hexadecimal scanf format for uint_least8_t

21.5.2.110 SCNxPTR #define SCNxPTR SCNx16

hexadecimal scanf format for uintptr_t

21.5.3 Typedef Documentation

21.5.3.1 int_farptr_t typedef int32_t int_farptr_t

signed integer type that can hold a pointer > 64 KiB

21.5.3.2 uint_farptr_t typedef uint32_t uint_farptr_t

unsigned integer type that can hold a pointer > 64 KiB, see also pgm_get_far_address()

Generated by Doxygen

122

21.6 <math.h>: Mathematics

Macros

• #define M_E 2.7182818284590452354
• #define M_LOG2E 1.4426950408889634074
• #define M_LOG10E 0.43429448190325182765
• #define M_LN2 0.69314718055994530942
• #define M_LN10 2.30258509299404568402
• #define M_PI 3.14159265358979323846
• #define M_PI_2 1.57079632679489661923
• #define M_PI_4 0.78539816339744830962
• #define M_1_PI 0.31830988618379067154
• #define M_2_PI 0.63661977236758134308
• #define M_2_SQRTPI 1.12837916709551257390
• #define M_SQRT2 1.41421356237309504880
• #define M_SQRT1_2 0.70710678118654752440
• #define NAN __builtin_nan("")
• #define nanf(__tagp) __builtin_nanf(__tag)
• #define nan(__tag) __builtin_nan(__tag)
• #define nanl(__tag) __builtin_nanl(__tag)
• #define INFINITY __builtin_inf()
• #define HUGE_VALF __builtin_huge_valf()
• #define HUGE_VAL __builtin_huge_val()
• #define HUGE_VALL __builtin_huge_vall()

Functions

• float cosf (float x)
• double cos (double x)
• long double cosl (long double x)
• float sinf (float x)
• double sin (double x)
• long double sinl (long double x)
• float tanf (float x)
• double tan (double x)
• long double tanl (long double x)
• static float fabsf (float __x)
• static double fabs (double __x)
• static long double fabsl (long double __x)
• float fmodf (float x, float y)
• double fmod (double x, double y)
• long double fmodl (long double x, long double y)
• float modff (float x, float ∗iptr)
• double modf (double x, double ∗iptr)
• long double modfl (long double x, long double ∗iptr)
• float sqrtf (float x)
• double sqrt (double x)
• long double sqrtl (long double x)
• float cbrtf (float x)
• double cbrt (double x)
• long double cbrtl (long double x)
• float hypotf (float x, float y)

Generated by Doxygen

21.6 <math.h>: Mathematics 123

• double hypot (double x, double y)
• long double hypotl (long double x, long double y)
• float floorf (float x)
• double floor (double x)
• long double floorl (long double x)
• float ceilf (float x)
• double ceil (double x)
• long double ceill (long double x)
• float frexpf (float x, int ∗pexp)
• double frexp (double x, int ∗pexp)
• long double frexpl (long double x, int ∗pexp)
• float ldexpf (float x, int iexp)
• double ldexp (double x, int iexp)
• long double ldexpl (long double x, int iexp)
• float expf (float x)
• double exp (double x)
• long double expl (long double x)
• float coshf (float x)
• double cosh (double x)
• long double coshl (long double x)
• float sinhf (float x)
• double sinh (double x)
• long double sinhl (long double x)
• float tanhf (float x)
• double tanh (double x)
• long double tanhl (long double x)
• float acosf (float x)
• double acos (double x)
• long double acosl (long double x)
• float asinf (float x)
• double asin (double x)
• long double asinl (long double x)
• float atanf (float x)
• double atan (double x)
• long double atanl (long double x)
• float atan2f (float y, float x)
• double atan2 (double y, double x)
• long double atan2l (long double y, long double x)
• float logf (float x)
• double log (double x)
• long double logl (long double x)
• float log10f (float x)
• double log10 (double x)
• long double log10l (long double x)
• float powf (float x, float y)
• double pow (double x, double y)
• long double powl (long double x, long double y)
• int isnanf (float x)
• int isnan (double x)
• int isnanl (long double x)
• int isinff (float x)
• int isinf (double x)
• int isinfl (long double x)
• static int isfinitef (float __x)
• static int isfinite (double __x)

Generated by Doxygen

124

• static int isfinitel (long double __x)
• static float copysignf (float __x, float __y)
• static double copysign (double __x, double __y)
• static long double copysignl (long double __x, long double __y)
• int signbitf (float x)
• int signbit (double x)
• int signbitl (long double x)
• float fdimf (float x, float y)
• double fdim (double x, double y)
• long double fdiml (long double x, long double y)
• float fmaf (float x, float y, float z)
• double fma (double x, double y, double z)
• long double fmal (long double x, long double y, long double z)
• float fmaxf (float x, float y)
• double fmax (double x, double y)
• long double fmaxl (long double x, long double y)
• float fminf (float x, float y)
• double fmin (double x, double y)
• long double fminl (long double x, long double y)
• float truncf (float x)
• double trunc (double x)
• long double truncl (long double x)
• float roundf (float x)
• double round (double x)
• long double roundl (long double x)
• long lroundf (float x)
• long lround (double x)
• long lroundl (long double x)
• long lrintf (float x)
• long lrint (double x)
• long lrintl (long double x)

Non-Standard Math Functions

• float squaref (float x)
• double square (double x)
• long double squarel (long double x)

21.6.1 Detailed Description

#include <math.h>

This header file declares basic mathematics constants and functions.

Notes:

• Math functions do not raise exceptions and do not change the errno variable. Therefore the majority
of them are declared with const attribute, for better optimization by GCC.

• 64-bit floating-point arithmetic is only available in avr-gcc v10 and up. The size of the double
and long double type can be selected at compile-time with options like -mdouble=64 and
-mlong-double=32. Whether such options are available, and their default values, depend on how
the compiler has been configured.

• The implementation of 64-bit floating-point arithmetic has some shortcomings and limitations, see the
avr-gcc Wiki for details.

• In order to access the float functions, in avr-gcc v4.6 and older it is usually also required to link with
-lm. In avr-gcc v4.7 and up, -lm is added automatically to all linker invocations.

Generated by Doxygen

https://gcc.gnu.org/gcc-10/changes.html#avr
https://gcc.gnu.org/wiki/avr-gcc#Libf7
https://gcc.gnu.org/wiki/avr-gcc#Libf7

21.6 <math.h>: Mathematics 125

21.6.2 Macro Definition Documentation

21.6.2.1 HUGE_VAL #define HUGE_VAL __builtin_huge_val()

double infinity constant.

21.6.2.2 HUGE_VALF #define HUGE_VALF __builtin_huge_valf()

float infinity constant.

21.6.2.3 HUGE_VALL #define HUGE_VALL __builtin_huge_vall()

long double infinity constant.

21.6.2.4 INFINITY #define INFINITY __builtin_inf()

double infinity constant.

21.6.2.5 M_1_PI #define M_1_PI 0.31830988618379067154

The constant 1/pi.

21.6.2.6 M_2_PI #define M_2_PI 0.63661977236758134308

The constant 2/pi.

21.6.2.7 M_2_SQRTPI #define M_2_SQRTPI 1.12837916709551257390

The constant 2/sqrt(pi).

21.6.2.8 M_E #define M_E 2.7182818284590452354

The constant Euler's number e.

21.6.2.9 M_LN10 #define M_LN10 2.30258509299404568402

The constant natural logarithm of 10.

21.6.2.10 M_LN2 #define M_LN2 0.69314718055994530942

The constant natural logarithm of 2.

Generated by Doxygen

126

21.6.2.11 M_LOG10E #define M_LOG10E 0.43429448190325182765

The constant logarithm of Euler's number e to base 10.

21.6.2.12 M_LOG2E #define M_LOG2E 1.4426950408889634074

The constant logarithm of Euler's number e to base 2.

21.6.2.13 M_PI #define M_PI 3.14159265358979323846

The constant pi.

21.6.2.14 M_PI_2 #define M_PI_2 1.57079632679489661923

The constant pi/2.

21.6.2.15 M_PI_4 #define M_PI_4 0.78539816339744830962

The constant pi/4.

21.6.2.16 M_SQRT1_2 #define M_SQRT1_2 0.70710678118654752440

The constant 1/sqrt(2).

21.6.2.17 M_SQRT2 #define M_SQRT2 1.41421356237309504880

The square root of 2.

21.6.2.18 NAN #define NAN __builtin_nan("")

The double representation of a constant quiet NaN.

21.6.2.19 nan #define nan(

__tag) __builtin_nan(__tag)

The double representation of a constant quiet NaN. __tag is a string constant like "" or "123".

21.6.2.20 nanf #define nanf(

__tagp) __builtin_nanf(__tag)

The float representation of a constant quiet NaN. __tag is a string constant like "" or "123".

21.6.2.21 nanl #define nanl(

__tag) __builtin_nanl(__tag)

The long double representation of a constant quiet NaN. __tag is a string constant like "" or "123".

Generated by Doxygen

21.6 <math.h>: Mathematics 127

21.6.3 Function Documentation

21.6.3.1 acos() double acos (

double x)

The acos() function computes the principal value of the arc cosine of x. The returned value is in the range [0, pi]
radians or NaN.

21.6.3.2 acosf() float acosf (

float x)

The acosf() function computes the principal value of the arc cosine of x. The returned value is in the range [0, pi]
radians. A domain error occurs for arguments not in the range [-1, +1].

21.6.3.3 acosl() long double acosl (

long double x)

The acosl() function computes the principal value of the arc cosine of x. The returned value is in the range [0, pi]
radians or NaN.

21.6.3.4 asin() double asin (

double x)

The asin() function computes the principal value of the arc sine of x. The returned value is in the range [-pi/2, pi/2]
radians or NaN.

21.6.3.5 asinf() float asinf (

float x)

The asinf() function computes the principal value of the arc sine of x. The returned value is in the range [-pi/2, pi/2]
radians. A domain error occurs for arguments not in the range [-1, +1].

21.6.3.6 asinl() long double asinl (

long double x)

The asinl() function computes the principal value of the arc sine of x. The returned value is in the range [-pi/2, pi/2]
radians or NaN.

21.6.3.7 atan() double atan (

double x)

The atan() function computes the principal value of the arc tangent of x. The returned value is in the range [-pi/2,
pi/2] radians.

Generated by Doxygen

128

21.6.3.8 atan2() double atan2 (

double y,

double x)

The atan2() function computes the principal value of the arc tangent of y / x, using the signs of both arguments to
determine the quadrant of the return value. The returned value is in the range [-pi, +pi] radians.

21.6.3.9 atan2f() float atan2f (

float y,

float x)

The atan2f() function computes the principal value of the arc tangent of y / x, using the signs of both arguments to
determine the quadrant of the return value. The returned value is in the range [-pi, +pi] radians.

21.6.3.10 atan2l() long double atan2l (

long double y,

long double x)

The atan2l() function computes the principal value of the arc tangent of y / x, using the signs of both arguments to
determine the quadrant of the return value. The returned value is in the range [-pi, +pi] radians.

21.6.3.11 atanf() float atanf (

float x)

The atanf() function computes the principal value of the arc tangent of x. The returned value is in the range [-pi/2,
pi/2] radians.

21.6.3.12 atanl() long double atanl (

long double x)

The atanl() function computes the principal value of the arc tangent of x. The returned value is in the range [-pi/2,
pi/2] radians.

21.6.3.13 cbrt() double cbrt (

double x)

The cbrt() function returns the cube root of x.

21.6.3.14 cbrtf() float cbrtf (

float x)

The cbrtf() function returns the cube root of x.

21.6.3.15 cbrtl() long double cbrtl (

long double x)

The cbrtl() function returns the cube root of x.

Generated by Doxygen

21.6 <math.h>: Mathematics 129

21.6.3.16 ceil() double ceil (

double x)

The ceil() function returns the smallest integral value greater than or equal to x, expressed as a floating-point
number.

21.6.3.17 ceilf() float ceilf (

float x)

The ceilf() function returns the smallest integral value greater than or equal to x, expressed as a floating-point
number.

21.6.3.18 ceill() long double ceill (

long double x)

The ceill() function returns the smallest integral value greater than or equal to x, expressed as a floating-point
number.

21.6.3.19 copysign() static double copysign (

double __x,

double __y) [inline], [static]

The copysign() function returns __x but with the sign of __y. They work even if __x or __y are NaN or zero.

21.6.3.20 copysignf() static float copysignf (

float __x,

float __y) [inline], [static]

The copysignf() function returns __x but with the sign of __y. They work even if __x or __y are NaN or zero.

21.6.3.21 copysignl() static long double copysignl (

long double __x,

long double __y) [inline], [static]

The copysignl() function returns __x but with the sign of __y. They work even if __x or __y are NaN or zero.

21.6.3.22 cos() double cos (

double x)

The cos() function returns the cosine of x, measured in radians.

21.6.3.23 cosf() float cosf (

float x)

The cosf() function returns the cosine of x, measured in radians.

21.6.3.24 cosh() double cosh (

double x)

The cosh() function returns the hyperbolic cosine of x.

Generated by Doxygen

130

21.6.3.25 coshf() float coshf (

float x)

The coshf() function returns the hyperbolic cosine of x.

21.6.3.26 coshl() long double coshl (

long double x)

The coshl() function returns the hyperbolic cosine of x.

21.6.3.27 cosl() long double cosl (

long double x)

The cosl() function returns the cosine of x, measured in radians.

21.6.3.28 exp() double exp (

double x)

The exp() function returns the exponential value of x.

21.6.3.29 expf() float expf (

float x)

The expf() function returns the exponential value of x.

21.6.3.30 expl() long double expl (

long double x)

The expl() function returns the exponential value of x.

21.6.3.31 fabs() static double fabs (

double __x) [inline], [static]

The fabs() function computes the absolute value of a floating-point number x.

21.6.3.32 fabsf() static float fabsf (

float __x) [inline], [static]

The fabsf() function computes the absolute value of a floating-point number x.

21.6.3.33 fabsl() static long double fabsl (

long double __x) [inline], [static]

The fabsl() function computes the absolute value of a floating-point number x.

Generated by Doxygen

21.6 <math.h>: Mathematics 131

21.6.3.34 fdim() double fdim (

double x,

double y)

The fdim() function returns max(x - y, 0). If x or y or both are NaN, NaN is returned.

21.6.3.35 fdimf() float fdimf (

float x,

float y)

The fdimf() function returns max(x - y, 0). If x or y or both are NaN, NaN is returned.

21.6.3.36 fdiml() long double fdiml (

long double x,

long double y)

The fdiml() function returns max(x - y, 0). If x or y or both are NaN, NaN is returned.

21.6.3.37 floor() double floor (

double x)

The floor() function returns the largest integral value less than or equal to x, expressed as a floating-point number.

21.6.3.38 floorf() float floorf (

float x)

The floorf() function returns the largest integral value less than or equal to x, expressed as a floating-point number.

21.6.3.39 floorl() long double floorl (

long double x)

The floorl() function returns the largest integral value less than or equal to x, expressed as a floating-point number.

21.6.3.40 fma() double fma (

double x,

double y,

double z)

The fma() function performs floating-point multiply-add. This is the operation (x ∗ y) + z, but the intermediate result
is not rounded to the destination type. This can sometimes improve the precision of a calculation.

21.6.3.41 fmaf() float fmaf (

float x,

float y,

float z)

The fmaf() function performs floating-point multiply-add. This is the operation (x ∗ y) + z, but the intermediate result
is not rounded to the destination type. This can sometimes improve the precision of a calculation.

Generated by Doxygen

132

21.6.3.42 fmal() long double fmal (

long double x,

long double y,

long double z)

The fmal() function performs floating-point multiply-add. This is the operation (x ∗ y) + z, but the intermediate result
is not rounded to the destination type. This can sometimes improve the precision of a calculation.

21.6.3.43 fmax() double fmax (

double x,

double y)

The fmax() function returns the greater of the two values x and y. If an argument is NaN, the other argument is
returned. If both arguments are NaN, NaN is returned.

21.6.3.44 fmaxf() float fmaxf (

float x,

float y)

The fmaxf() function returns the greater of the two values x and y. If an argument is NaN, the other argument is
returned. If both arguments are NaN, NaN is returned.

21.6.3.45 fmaxl() long double fmaxl (

long double x,

long double y)

The fmaxl() function returns the greater of the two values x and y. If an argument is NaN, the other argument is
returned. If both arguments are NaN, NaN is returned.

21.6.3.46 fmin() double fmin (

double x,

double y)

The fmin() function returns the lesser of the two values x and y. If an argument is NaN, the other argument is
returned. If both arguments are NaN, NaN is returned.

21.6.3.47 fminf() float fminf (

float x,

float y)

The fminf() function returns the lesser of the two values x and y. If an argument is NaN, the other argument is
returned. If both arguments are NaN, NaN is returned.

21.6.3.48 fminl() long double fminl (

long double x,

long double y)

The fminl() function returns the lesser of the two values x and y. If an argument is NaN, the other argument is
returned. If both arguments are NaN, NaN is returned.

Generated by Doxygen

21.6 <math.h>: Mathematics 133

21.6.3.49 fmod() double fmod (

double x,

double y)

The function fmod() returns the floating-point remainder of x / y.

21.6.3.50 fmodf() float fmodf (

float x,

float y)

The function fmodf() returns the floating-point remainder of x / y.

21.6.3.51 fmodl() long double fmodl (

long double x,

long double y)

The function fmodl() returns the floating-point remainder of x / y.

21.6.3.52 frexp() double frexp (

double x,

int ∗ pexp)

The frexp() function breaks a floating-point number into a normalized fraction and an integral power of 2. It stores
the integer in the int object pointed to by pexp.

If x is a normal float point number, the frexp() function returns the value v, such that v has a magnitude in the
interval [1/2, 1) or zero, and x equals v times 2 raised to the power pexp. If x is zero, both parts of the result are
zero. If x is not a finite number, the frexp() returns x as is and stores 0 by pexp.

21.6.3.53 frexpf() float frexpf (

float x,

int ∗ pexp)

The frexpf() function breaks a floating-point number into a normalized fraction and an integral power of 2. It stores
the integer in the int object pointed to by pexp.

If x is a normal float point number, the frexpf() function returns the value v, such that v has a magnitude in the
interval [1/2, 1) or zero, and x equals v times 2 raised to the power pexp. If x is zero, both parts of the result are
zero. If x is not a finite number, the frexpf() returns x as is and stores 0 by pexp.

Note

This implementation permits a zero pointer as a directive to skip a storing the exponent.

21.6.3.54 frexpl() long double frexpl (

long double x,

int ∗ pexp)

The frexpl() function breaks a floating-point number into a normalized fraction and an integral power of 2. It stores
the integer in the int object pointed to by pexp.

If x is a normal float point number, the frexpl() function returns the value v, such that v has a magnitude in the
interval [1/2, 1) or zero, and x equals v times 2 raised to the power pexp. If x is zero, both parts of the result are
zero. If x is not a finite number, the frexpl() returns x as is and stores 0 by pexp.

Generated by Doxygen

134

21.6.3.55 hypot() double hypot (

double x,

double y)

The hypot() function returns sqrt(x∗x + y∗y). This is the length of the hypotenuse of a right triangle with sides of
length x and y, or the distance of the point (x, y) from the origin. Using this function instead of the direct formula is
wise, since the error is much smaller. No underflow with small x and y. No overflow if result is in range.

21.6.3.56 hypotf() float hypotf (

float x,

float y)

The hypotf() function returns sqrtf(x∗x + y∗y). This is the length of the hypotenuse of a right triangle with sides of
length x and y, or the distance of the point (x, y) from the origin. Using this function instead of the direct formula is
wise, since the error is much smaller. No underflow with small x and y. No overflow if result is in range.

21.6.3.57 hypotl() long double hypotl (

long double x,

long double y)

The hypotl() function returns sqrtl(x∗x + y∗y). This is the length of the hypotenuse of a right triangle with sides of
length x and y, or the distance of the point (x, y) from the origin. Using this function instead of the direct formula is
wise, since the error is much smaller. No underflow with small x and y. No overflow if result is in range.

21.6.3.58 isfinite() static int isfinite (

double __x) [inline], [static]

The isfinite() function returns a nonzero value if __x is finite: not plus or minus infinity, and not NaN.

21.6.3.59 isfinitef() static int isfinitef (

float __x) [inline], [static]

The isfinitef() function returns a nonzero value if __x is finite: not plus or minus infinity, and not NaN.

21.6.3.60 isfinitel() static int isfinitel (

long double __x) [inline], [static]

The isfinite() function returns a nonzero value if __x is finite: not plus or minus infinity, and not NaN.

21.6.3.61 isinf() int isinf (

double x)

The function isinf() returns 1 if the argument x is positive infinity, -1 if x is negative infinity, and 0 otherwise.

21.6.3.62 isinff() int isinff (

float x)

The function isinff() returns 1 if the argument x is positive infinity, -1 if x is negative infinity, and 0 otherwise.

Generated by Doxygen

21.6 <math.h>: Mathematics 135

21.6.3.63 isinfl() int isinfl (

long double x)

The function isinfl() returns 1 if the argument x is positive infinity, -1 if x is negative infinity, and 0 otherwise.

21.6.3.64 isnan() int isnan (

double x)

The function isnan() returns 1 if the argument x represents a "not-a-number" (NaN) object, otherwise 0.

21.6.3.65 isnanf() int isnanf (

float x)

The function isnanf() returns 1 if the argument x represents a "not-a-number" (NaN) object, otherwise 0.

21.6.3.66 isnanl() int isnanl (

long double x)

The function isnanl() returns 1 if the argument x represents a "not-a-number" (NaN) object, otherwise 0.

21.6.3.67 ldexp() double ldexp (

double x,

int iexp)

The ldexp() function multiplies a floating-point number by an integral power of 2. It returns the value of x times 2
raised to the power iexp.

21.6.3.68 ldexpf() float ldexpf (

float x,

int iexp)

The ldexpf() function multiplies a floating-point number by an integral power of 2. It returns the value of x times 2
raised to the power iexp.

21.6.3.69 ldexpl() long double ldexpl (

long double x,

int iexp)

The ldexpl() function multiplies a floating-point number by an integral power of 2. It returns the value of x times 2
raised to the power iexp.

21.6.3.70 log() double log (

double x)

The log() function returns the natural logarithm of argument x.

21.6.3.71 log10() double log10 (

double x)

The log10() function returns the logarithm of argument x to base 10.

Generated by Doxygen

136

21.6.3.72 log10f() float log10f (

float x)

The log10f() function returns the logarithm of argument x to base 10.

21.6.3.73 log10l() long double log10l (

long double x)

The log10l() function returns the logarithm of argument x to base 10.

21.6.3.74 logf() float logf (

float x)

The logf() function returns the natural logarithm of argument x.

21.6.3.75 logl() long double logl (

long double x)

The logl() function returns the natural logarithm of argument x.

21.6.3.76 lrint() long lrint (

double x)

The lrint() function rounds x to the nearest integer, rounding the halfway cases to the even integer direction. (That
is both 1.5 and 2.5 values are rounded to 2). This function is similar to rint() function, but it differs in type of return
value and in that an overflow is possible.

Returns

The rounded long integer value. If x is not a finite number or an overflow was, this realization returns the
LONG_MIN value (0x80000000).

21.6.3.77 lrintf() long lrintf (

float x)

The lrintf() function rounds x to the nearest integer, rounding the halfway cases to the even integer direction. (That
is both 1.5 and 2.5 values are rounded to 2). This function is similar to rintf() function, but it differs in type of return
value and in that an overflow is possible.

Returns

The rounded long integer value. If x is not a finite number or an overflow was, this realization returns the
LONG_MIN value (0x80000000).

Generated by Doxygen

21.6 <math.h>: Mathematics 137

21.6.3.78 lrintl() long lrintl (

long double x)

The lrintl() function rounds x to the nearest integer, rounding the halfway cases to the even integer direction. (That
is both 1.5 and 2.5 values are rounded to 2). This function is similar to rintl() function, but it differs in type of return
value and in that an overflow is possible.

Returns

The rounded long integer value. If x is not a finite number or an overflow was, this realization returns the
LONG_MIN value (0x80000000).

21.6.3.79 lround() long lround (

double x)

The lround() function rounds x to the nearest integer, but rounds halfway cases away from zero (instead of to the
nearest even integer). This function is similar to round() function, but it differs in type of return value and in that an
overflow is possible.

Returns

The rounded long integer value. If x is not a finite number or an overflow was, this realization returns the
LONG_MIN value (0x80000000).

21.6.3.80 lroundf() long lroundf (

float x)

The lroundf() function rounds x to the nearest integer, but rounds halfway cases away from zero (instead of to the
nearest even integer). This function is similar to round() function, but it differs in type of return value and in that an
overflow is possible.

Returns

The rounded long integer value. If x is not a finite number or an overflow was, this realization returns the
LONG_MIN value (0x80000000).

21.6.3.81 lroundl() long lroundl (

long double x)

The lroundl() function rounds x to the nearest integer, but rounds halfway cases away from zero (instead of to the
nearest even integer). This function is similar to round() function, but it differs in type of return value and in that an
overflow is possible.

Returns

The rounded long integer value. If x is not a finite number or an overflow was, this realization returns the
LONG_MIN value (0x80000000).

Generated by Doxygen

138

21.6.3.82 modf() double modf (

double x,

double ∗ iptr)

The modf() function breaks the argument x into integral and fractional parts, each of which has the same sign as
the argument. It stores the integral part as a double in the object pointed to by iptr.

The modf() function returns the signed fractional part of x.

21.6.3.83 modff() float modff (

float x,

float ∗ iptr)

The modff() function breaks the argument x into integral and fractional parts, each of which has the same sign as
the argument. It stores the integral part as a float in the object pointed to by iptr.

The modff() function returns the signed fractional part of x.

Note

This implementation skips writing by zero pointer. However, the GCC 4.3 can replace this function with inline
code that does not permit to use NULL address for the avoiding of storing.

21.6.3.84 modfl() long double modfl (

long double x,

long double ∗ iptr)

The modfl() function breaks the argument x into integral and fractional parts, each of which has the same sign as
the argument. It stores the integral part as a long double in the object pointed to by iptr.

The modf() function returns the signed fractional part of x.

21.6.3.85 pow() double pow (

double x,

double y)

The function pow() returns the value of x to the exponent y.
Notice that for integer exponents, there is the more efficient double __builtin_powi(double x, int
y).

21.6.3.86 powf() float powf (

float x,

float y)

The function powf() returns the value of x to the exponent y.
Notice that for integer exponents, there is the more efficient float __builtin_powif(float x, int
y).

Generated by Doxygen

21.6 <math.h>: Mathematics 139

21.6.3.87 powl() long double powl (

long double x,

long double y)

The function powl() returns the value of x to the exponent y.
Notice that for integer exponents, there is the more efficient long double __builtin_powil(long
double x, int y).

21.6.3.88 round() double round (

double x)

The round() function rounds x to the nearest integer, but rounds halfway cases away from zero (instead of to the
nearest even integer). Overflow is impossible.

Returns

The rounded value. If x is an integral or infinite, x itself is returned. If x is NaN, then NaN is returned.

21.6.3.89 roundf() float roundf (

float x)

The roundf() function rounds x to the nearest integer, but rounds halfway cases away from zero (instead of to the
nearest even integer). Overflow is impossible.

Returns

The rounded value. If x is an integral or infinite, x itself is returned. If x is NaN, then NaN is returned.

21.6.3.90 roundl() long double roundl (

long double x)

The roundl() function rounds x to the nearest integer, but rounds halfway cases away from zero (instead of to the
nearest even integer). Overflow is impossible.

Returns

The rounded value. If x is an integral or infinite, x itself is returned. If x is NaN, then NaN is returned.

21.6.3.91 signbit() int signbit (

double x)

The signbit() function returns a nonzero value if the value of x has its sign bit set. This is not the same as `x < 0.0',
because IEEE 754 floating point allows zero to be signed. The comparison '-0.0 < 0.0' is false, but `signbit (-0.0)'
will return a nonzero value.

Generated by Doxygen

140

21.6.3.92 signbitf() int signbitf (

float x)

The signbitf() function returns a nonzero value if the value of x has its sign bit set. This is not the same as `x < 0.0',
because IEEE 754 floating point allows zero to be signed. The comparison '-0.0 < 0.0' is false, but `signbit (-0.0)'
will return a nonzero value.

21.6.3.93 signbitl() int signbitl (

long double x)

The signbitl() function returns a nonzero value if the value of x has its sign bit set. This is not the same as `x < 0.0',
because IEEE 754 floating point allows zero to be signed. The comparison '-0.0 < 0.0' is false, but `signbit (-0.0)'
will return a nonzero value.

21.6.3.94 sin() double sin (

double x)

The sin() function returns the sine of x, measured in radians.

21.6.3.95 sinf() float sinf (

float x)

The sinf() function returns the sine of x, measured in radians.

21.6.3.96 sinh() double sinh (

double x)

The sinh() function returns the hyperbolic sine of x.

21.6.3.97 sinhf() float sinhf (

float x)

The sinhf() function returns the hyperbolic sine of x.

21.6.3.98 sinhl() long double sinhl (

long double x)

The sinhl() function returns the hyperbolic sine of x.

21.6.3.99 sinl() long double sinl (

long double x)

The sinl() function returns the sine of x, measured in radians.

21.6.3.100 sqrt() double sqrt (

double x)

The sqrt() function returns the non-negative square root of x.

Generated by Doxygen

21.6 <math.h>: Mathematics 141

21.6.3.101 sqrtf() float sqrtf (

float x)

The sqrtf() function returns the non-negative square root of x.

21.6.3.102 sqrtl() long double sqrtl (

long double x)

The sqrtl() function returns the non-negative square root of x.

21.6.3.103 square() double square (

double x)

The function square() returns x ∗ x.

Note

This function does not belong to the C standard definition.

21.6.3.104 squaref() float squaref (

float x)

The function squaref() returns x ∗ x.

Note

This function does not belong to the C standard definition.

21.6.3.105 squarel() long double squarel (

long double x)

The function squarel() returns x ∗ x.

Note

This function does not belong to the C standard definition.

21.6.3.106 tan() double tan (

double x)

The tan() function returns the tangent of x, measured in radians.

Generated by Doxygen

142

21.6.3.107 tanf() float tanf (

float x)

The tanf() function returns the tangent of x, measured in radians.

21.6.3.108 tanh() double tanh (

double x)

The tanh() function returns the hyperbolic tangent of x.

21.6.3.109 tanhf() float tanhf (

float x)

The tanhf() function returns the hyperbolic tangent of x.

21.6.3.110 tanhl() long double tanhl (

long double x)

The tanhl() function returns the hyperbolic tangent of x.

21.6.3.111 tanl() long double tanl (

long double x)

The tanl() function returns the tangent of x, measured in radians.

21.6.3.112 trunc() double trunc (

double x)

The trunc() function rounds x to the nearest integer not larger in absolute value.

21.6.3.113 truncf() float truncf (

float x)

The truncf() function rounds x to the nearest integer not larger in absolute value.

21.6.3.114 truncl() long double truncl (

long double x)

The truncl() function rounds x to the nearest integer not larger in absolute value.

21.7 <setjmp.h>: Non-local goto

Functions

• int setjmp (jmp_buf __jmpb)
• void longjmp (jmp_buf __jmpb, int __ret)

Generated by Doxygen

21.7 <setjmp.h>: Non-local goto 143

21.7.1 Detailed Description

While the C language has the dreaded goto statement, it can only be used to jump to a label in the same (local)
function. In order to jump directly to another (non-local) function, the C library provides the setjmp and longjmp
functions. setjmp and longjmp are useful for dealing with errors and interrupts encountered in a low-level subroutine
of a program.

Note

setjmp and longjmp make programs hard to understand and maintain. If possible, an alternative should be
used.

longjmp can destroy changes made to global register variables (see How to permanently bind a variable to a register?).

For a very detailed discussion of setjmp/longjmp, see Chapter 7 of Advanced Programming in the UNIX Environ-
ment, by W. Richard Stevens.

Example:
#include <setjmp.h>

jmp_buf env;

int main (void)
{

if (setjmp (env))
{

// Handle error ...
}

while (1)
{

// Main processing loop which calls foo() somewhere ...
}

}

void foo (void)
{

// blah, blah, blah ...

if (err)
{

longjmp (env, 1);
}

}

21.7.2 Function Documentation

21.7.2.1 longjmp() void longjmp (

jmp_buf __jmpb,

int __ret)

Non-local jump to a saved stack context.
#include <setjmp.h>

longjmp() restores the environment saved by the last call of setjmp() with the corresponding __jmpb argument. After
longjmp() is completed, program execution continues as if the corresponding call of setjmp() had just returned the
value __ret.

Note

longjmp() cannot cause 0 to be returned. If longjmp() is invoked with a second argument of 0, 1 will be returned
instead.

Generated by Doxygen

144

Parameters

__jmpb Information saved by a previous call to setjmp().

__ret Value to return to the caller of setjmp().

Returns

This function never returns.

21.7.2.2 setjmp() int setjmp (

jmp_buf __jmpb)

Save stack context for non-local goto.
#include <setjmp.h>

setjmp() saves the stack context/environment in __jmpb for later use by longjmp(). The stack context will be invali-
dated if the function which called setjmp() returns.

Parameters

__jmpb Variable of type jmp_buf which holds the stack information such that the environment can be restored.

Returns

setjmp() returns 0 if returning directly, and non-zero when returning from longjmp() using the saved context.

21.8 <stdint.h>: Standard Integer Types

Exact-width integer types

Integer types having exactly the specified width

• typedef signed char int8_t
• typedef unsigned char uint8_t
• typedef signed int int16_t
• typedef unsigned int uint16_t
• typedef signed long int int32_t
• typedef unsigned long int uint32_t
• typedef signed long long int int64_t
• typedef unsigned long long int uint64_t

Integer types capable of holding object pointers

These allow you to declare variables of the same size as a pointer.

• typedef int16_t intptr_t
• typedef uint16_t uintptr_t

Generated by Doxygen

21.8 <stdint.h>: Standard Integer Types 145

Minimum-width integer types

Integer types having at least the specified width

• typedef int8_t int_least8_t
• typedef uint8_t uint_least8_t
• typedef int16_t int_least16_t
• typedef uint16_t uint_least16_t
• typedef int32_t int_least32_t
• typedef uint32_t uint_least32_t
• typedef int64_t int_least64_t
• typedef uint64_t uint_least64_t

Fastest minimum-width integer types

Integer types being usually fastest having at least the specified width

• typedef int8_t int_fast8_t
• typedef uint8_t uint_fast8_t
• typedef int16_t int_fast16_t
• typedef uint16_t uint_fast16_t
• typedef int32_t int_fast32_t
• typedef uint32_t uint_fast32_t
• typedef int64_t int_fast64_t
• typedef uint64_t uint_fast64_t

Greatest-width integer types

Types designating integer data capable of representing any value of any integer type in the corresponding signed
or unsigned category

• typedef int64_t intmax_t
• typedef uint64_t uintmax_t

Limits of specified-width integer types

C++ implementations should define these macros only when __STDC_LIMIT_MACROS is defined before
<stdint.h> is included

• #define INT8_MAX 0x7f
• #define INT8_MIN (-INT8_MAX - 1)
• #define UINT8_MAX (INT8_MAX ∗ 2 + 1)
• #define INT16_MAX 0x7fff
• #define INT16_MIN (-INT16_MAX - 1)
• #define UINT16_MAX (__CONCAT(INT16_MAX, U) ∗ 2U + 1U)
• #define INT32_MAX 0x7fffffffL
• #define INT32_MIN (-INT32_MAX - 1L)
• #define UINT32_MAX (__CONCAT(INT32_MAX, U) ∗ 2UL + 1UL)
• #define INT64_MAX 0x7fffffffffffffffLL
• #define INT64_MIN (-INT64_MAX - 1LL)
• #define UINT64_MAX (__CONCAT(INT64_MAX, U) ∗ 2ULL + 1ULL)

Generated by Doxygen

146

Limits of minimum-width integer types

• #define INT_LEAST8_MAX INT8_MAX
• #define INT_LEAST8_MIN INT8_MIN
• #define UINT_LEAST8_MAX UINT8_MAX
• #define INT_LEAST16_MAX INT16_MAX
• #define INT_LEAST16_MIN INT16_MIN
• #define UINT_LEAST16_MAX UINT16_MAX
• #define INT_LEAST32_MAX INT32_MAX
• #define INT_LEAST32_MIN INT32_MIN
• #define UINT_LEAST32_MAX UINT32_MAX
• #define INT_LEAST64_MAX INT64_MAX
• #define INT_LEAST64_MIN INT64_MIN
• #define UINT_LEAST64_MAX UINT64_MAX

Limits of fastest minimum-width integer types

• #define INT_FAST8_MAX INT8_MAX
• #define INT_FAST8_MIN INT8_MIN
• #define UINT_FAST8_MAX UINT8_MAX
• #define INT_FAST16_MAX INT16_MAX
• #define INT_FAST16_MIN INT16_MIN
• #define UINT_FAST16_MAX UINT16_MAX
• #define INT_FAST32_MAX INT32_MAX
• #define INT_FAST32_MIN INT32_MIN
• #define UINT_FAST32_MAX UINT32_MAX
• #define INT_FAST64_MAX INT64_MAX
• #define INT_FAST64_MIN INT64_MIN
• #define UINT_FAST64_MAX UINT64_MAX

Limits of integer types capable of holding object pointers

• #define INTPTR_MAX INT16_MAX
• #define INTPTR_MIN INT16_MIN
• #define UINTPTR_MAX UINT16_MAX

Limits of greatest-width integer types

• #define INTMAX_MAX INT64_MAX
• #define INTMAX_MIN INT64_MIN
• #define UINTMAX_MAX UINT64_MAX

Limits of other integer types

C++ implementations should define these macros only when __STDC_LIMIT_MACROS is defined before
<stdint.h> is included

• #define PTRDIFF_MAX INT16_MAX
• #define PTRDIFF_MIN INT16_MIN
• #define SIG_ATOMIC_MAX INT8_MAX
• #define SIG_ATOMIC_MIN INT8_MIN
• #define SIZE_MAX UINT16_MAX
• #define WCHAR_MAX __WCHAR_MAX__
• #define WCHAR_MIN __WCHAR_MIN__
• #define WINT_MAX __WINT_MAX__
• #define WINT_MIN __WINT_MIN__

Generated by Doxygen

21.8 <stdint.h>: Standard Integer Types 147

Macros for integer constants

C++ implementations should define these macros only when __STDC_CONSTANT_MACROS is defined before
<stdint.h> is included.

These definitions are valid for integer constants without suffix and for macros defined as integer constant without
suffix

• #define INT8_C(value) ((int8_t) value)
• #define UINT8_C(value) ((uint8_t) __CONCAT(value, U))
• #define INT16_C(value) value
• #define UINT16_C(value) __CONCAT(value, U)
• #define INT32_C(value) __CONCAT(value, L)
• #define UINT32_C(value) __CONCAT(value, UL)
• #define INT64_C(value) __CONCAT(value, LL)
• #define UINT64_C(value) __CONCAT(value, ULL)
• #define INTMAX_C(value) __CONCAT(value, LL)
• #define UINTMAX_C(value) __CONCAT(value, ULL)

21.8.1 Detailed Description

#include <stdint.h>

Use [u]intN_t if you need exactly N bits.

Since these typedefs are mandated by the C99 standard, they are preferred over rolling your own typedefs.

21.8.2 Macro Definition Documentation

21.8.2.1 INT16_C #define INT16_C(

value) value

define a constant of type int16_t

21.8.2.2 INT16_MAX #define INT16_MAX 0x7fff

largest positive value an int16_t can hold.

21.8.2.3 INT16_MIN #define INT16_MIN (-INT16_MAX - 1)

smallest negative value an int16_t can hold.

21.8.2.4 INT32_C #define INT32_C(

value) __CONCAT(value, L)

define a constant of type int32_t

Generated by Doxygen

148

21.8.2.5 INT32_MAX #define INT32_MAX 0x7fffffffL

largest positive value an int32_t can hold.

21.8.2.6 INT32_MIN #define INT32_MIN (-INT32_MAX - 1L)

smallest negative value an int32_t can hold.

21.8.2.7 INT64_C #define INT64_C(

value) __CONCAT(value, LL)

define a constant of type int64_t

21.8.2.8 INT64_MAX #define INT64_MAX 0x7fffffffffffffffLL

largest positive value an int64_t can hold.

21.8.2.9 INT64_MIN #define INT64_MIN (-INT64_MAX - 1LL)

smallest negative value an int64_t can hold.

21.8.2.10 INT8_C #define INT8_C(

value) ((int8_t) value)

define a constant of type int8_t

21.8.2.11 INT8_MAX #define INT8_MAX 0x7f

largest positive value an int8_t can hold.

21.8.2.12 INT8_MIN #define INT8_MIN (-INT8_MAX - 1)

smallest negative value an int8_t can hold.

21.8.2.13 INT_FAST16_MAX #define INT_FAST16_MAX INT16_MAX

largest positive value an int_fast16_t can hold.

21.8.2.14 INT_FAST16_MIN #define INT_FAST16_MIN INT16_MIN

smallest negative value an int_fast16_t can hold.

21.8.2.15 INT_FAST32_MAX #define INT_FAST32_MAX INT32_MAX

largest positive value an int_fast32_t can hold.

Generated by Doxygen

21.8 <stdint.h>: Standard Integer Types 149

21.8.2.16 INT_FAST32_MIN #define INT_FAST32_MIN INT32_MIN

smallest negative value an int_fast32_t can hold.

21.8.2.17 INT_FAST64_MAX #define INT_FAST64_MAX INT64_MAX

largest positive value an int_fast64_t can hold.

21.8.2.18 INT_FAST64_MIN #define INT_FAST64_MIN INT64_MIN

smallest negative value an int_fast64_t can hold.

21.8.2.19 INT_FAST8_MAX #define INT_FAST8_MAX INT8_MAX

largest positive value an int_fast8_t can hold.

21.8.2.20 INT_FAST8_MIN #define INT_FAST8_MIN INT8_MIN

smallest negative value an int_fast8_t can hold.

21.8.2.21 INT_LEAST16_MAX #define INT_LEAST16_MAX INT16_MAX

largest positive value an int_least16_t can hold.

21.8.2.22 INT_LEAST16_MIN #define INT_LEAST16_MIN INT16_MIN

smallest negative value an int_least16_t can hold.

21.8.2.23 INT_LEAST32_MAX #define INT_LEAST32_MAX INT32_MAX

largest positive value an int_least32_t can hold.

21.8.2.24 INT_LEAST32_MIN #define INT_LEAST32_MIN INT32_MIN

smallest negative value an int_least32_t can hold.

21.8.2.25 INT_LEAST64_MAX #define INT_LEAST64_MAX INT64_MAX

largest positive value an int_least64_t can hold.

21.8.2.26 INT_LEAST64_MIN #define INT_LEAST64_MIN INT64_MIN

smallest negative value an int_least64_t can hold.

Generated by Doxygen

150

21.8.2.27 INT_LEAST8_MAX #define INT_LEAST8_MAX INT8_MAX

largest positive value an int_least8_t can hold.

21.8.2.28 INT_LEAST8_MIN #define INT_LEAST8_MIN INT8_MIN

smallest negative value an int_least8_t can hold.

21.8.2.29 INTMAX_C #define INTMAX_C(

value) __CONCAT(value, LL)

define a constant of type intmax_t

21.8.2.30 INTMAX_MAX #define INTMAX_MAX INT64_MAX

largest positive value an intmax_t can hold.

21.8.2.31 INTMAX_MIN #define INTMAX_MIN INT64_MIN

smallest negative value an intmax_t can hold.

21.8.2.32 INTPTR_MAX #define INTPTR_MAX INT16_MAX

largest positive value an intptr_t can hold.

21.8.2.33 INTPTR_MIN #define INTPTR_MIN INT16_MIN

smallest negative value an intptr_t can hold.

21.8.2.34 PTRDIFF_MAX #define PTRDIFF_MAX INT16_MAX

largest positive value a ptrdiff_t can hold.

21.8.2.35 PTRDIFF_MIN #define PTRDIFF_MIN INT16_MIN

smallest negative value a ptrdiff_t can hold.

21.8.2.36 SIG_ATOMIC_MAX #define SIG_ATOMIC_MAX INT8_MAX

largest positive value a sig_atomic_t can hold.

21.8.2.37 SIG_ATOMIC_MIN #define SIG_ATOMIC_MIN INT8_MIN

smallest negative value a sig_atomic_t can hold.

Generated by Doxygen

21.8 <stdint.h>: Standard Integer Types 151

21.8.2.38 SIZE_MAX #define SIZE_MAX UINT16_MAX

largest value a size_t can hold.

21.8.2.39 UINT16_C #define UINT16_C(

value) __CONCAT(value, U)

define a constant of type uint16_t

21.8.2.40 UINT16_MAX #define UINT16_MAX (__CONCAT(INT16_MAX, U) ∗ 2U + 1U)

largest value an uint16_t can hold.

21.8.2.41 UINT32_C #define UINT32_C(

value) __CONCAT(value, UL)

define a constant of type uint32_t

21.8.2.42 UINT32_MAX #define UINT32_MAX (__CONCAT(INT32_MAX, U) ∗ 2UL + 1UL)

largest value an uint32_t can hold.

21.8.2.43 UINT64_C #define UINT64_C(

value) __CONCAT(value, ULL)

define a constant of type uint64_t

21.8.2.44 UINT64_MAX #define UINT64_MAX (__CONCAT(INT64_MAX, U) ∗ 2ULL + 1ULL)

largest value an uint64_t can hold.

21.8.2.45 UINT8_C #define UINT8_C(

value) ((uint8_t) __CONCAT(value, U))

define a constant of type uint8_t

21.8.2.46 UINT8_MAX #define UINT8_MAX (INT8_MAX ∗ 2 + 1)

largest value an uint8_t can hold.

21.8.2.47 UINT_FAST16_MAX #define UINT_FAST16_MAX UINT16_MAX

largest value an uint_fast16_t can hold.

21.8.2.48 UINT_FAST32_MAX #define UINT_FAST32_MAX UINT32_MAX

largest value an uint_fast32_t can hold.

Generated by Doxygen

152

21.8.2.49 UINT_FAST64_MAX #define UINT_FAST64_MAX UINT64_MAX

largest value an uint_fast64_t can hold.

21.8.2.50 UINT_FAST8_MAX #define UINT_FAST8_MAX UINT8_MAX

largest value an uint_fast8_t can hold.

21.8.2.51 UINT_LEAST16_MAX #define UINT_LEAST16_MAX UINT16_MAX

largest value an uint_least16_t can hold.

21.8.2.52 UINT_LEAST32_MAX #define UINT_LEAST32_MAX UINT32_MAX

largest value an uint_least32_t can hold.

21.8.2.53 UINT_LEAST64_MAX #define UINT_LEAST64_MAX UINT64_MAX

largest value an uint_least64_t can hold.

21.8.2.54 UINT_LEAST8_MAX #define UINT_LEAST8_MAX UINT8_MAX

largest value an uint_least8_t can hold.

21.8.2.55 UINTMAX_C #define UINTMAX_C(

value) __CONCAT(value, ULL)

define a constant of type uintmax_t

21.8.2.56 UINTMAX_MAX #define UINTMAX_MAX UINT64_MAX

largest value an uintmax_t can hold.

21.8.2.57 UINTPTR_MAX #define UINTPTR_MAX UINT16_MAX

largest value an uintptr_t can hold.

21.8.3 Typedef Documentation

21.8.3.1 int16_t typedef signed int int16_t

16-bit signed type.

Generated by Doxygen

21.8 <stdint.h>: Standard Integer Types 153

21.8.3.2 int32_t typedef signed long int int32_t

32-bit signed type.

21.8.3.3 int64_t typedef signed long long int int64_t

64-bit signed type.

Note

This type is not available when the compiler option -mint8 is in effect.

21.8.3.4 int8_t typedef signed char int8_t

8-bit signed type.

21.8.3.5 int_fast16_t typedef int16_t int_fast16_t

fastest signed int with at least 16 bits.

21.8.3.6 int_fast32_t typedef int32_t int_fast32_t

fastest signed int with at least 32 bits.

21.8.3.7 int_fast64_t typedef int64_t int_fast64_t

fastest signed int with at least 64 bits.

Note

This type is not available when the compiler option -mint8 is in effect.

21.8.3.8 int_fast8_t typedef int8_t int_fast8_t

fastest signed int with at least 8 bits.

21.8.3.9 int_least16_t typedef int16_t int_least16_t

signed int with at least 16 bits.

21.8.3.10 int_least32_t typedef int32_t int_least32_t

signed int with at least 32 bits.

Generated by Doxygen

154

21.8.3.11 int_least64_t typedef int64_t int_least64_t

signed int with at least 64 bits.

Note

This type is not available when the compiler option -mint8 is in effect.

21.8.3.12 int_least8_t typedef int8_t int_least8_t

signed int with at least 8 bits.

21.8.3.13 intmax_t typedef int64_t intmax_t

largest signed int available.

21.8.3.14 intptr_t typedef int16_t intptr_t

Signed pointer compatible type.

21.8.3.15 uint16_t typedef unsigned int uint16_t

16-bit unsigned type.

21.8.3.16 uint32_t typedef unsigned long int uint32_t

32-bit unsigned type.

21.8.3.17 uint64_t typedef unsigned long long int uint64_t

64-bit unsigned type.

Note

This type is not available when the compiler option -mint8 is in effect.

21.8.3.18 uint8_t typedef unsigned char uint8_t

8-bit unsigned type.

21.8.3.19 uint_fast16_t typedef uint16_t uint_fast16_t

fastest unsigned int with at least 16 bits.

Generated by Doxygen

21.8 <stdint.h>: Standard Integer Types 155

21.8.3.20 uint_fast32_t typedef uint32_t uint_fast32_t

fastest unsigned int with at least 32 bits.

21.8.3.21 uint_fast64_t typedef uint64_t uint_fast64_t

fastest unsigned int with at least 64 bits.

Note

This type is not available when the compiler option -mint8 is in effect.

21.8.3.22 uint_fast8_t typedef uint8_t uint_fast8_t

fastest unsigned int with at least 8 bits.

21.8.3.23 uint_least16_t typedef uint16_t uint_least16_t

unsigned int with at least 16 bits.

21.8.3.24 uint_least32_t typedef uint32_t uint_least32_t

unsigned int with at least 32 bits.

21.8.3.25 uint_least64_t typedef uint64_t uint_least64_t

unsigned int with at least 64 bits.

Note

This type is not available when the compiler option -mint8 is in effect.

21.8.3.26 uint_least8_t typedef uint8_t uint_least8_t

unsigned int with at least 8 bits.

21.8.3.27 uintmax_t typedef uint64_t uintmax_t

largest unsigned int available.

21.8.3.28 uintptr_t typedef uint16_t uintptr_t

Unsigned pointer compatible type.

Generated by Doxygen

156

21.9 <stdio.h>: Standard IO facilities

Macros

• #define stdin (__iob[0])
• #define stdout (__iob[1])
• #define stderr (__iob[2])
• #define EOF (-1)
• #define fdev_set_udata(stream, u) do { (stream)->udata = u; } while(0)
• #define fdev_get_udata(stream) ((stream)->udata)
• #define fdev_setup_stream(stream, put, get, rwflag)
• #define _FDEV_SETUP_READ __SRD
• #define _FDEV_SETUP_WRITE __SWR
• #define _FDEV_SETUP_RW (__SRD|__SWR)
• #define _FDEV_ERR (-1)
• #define _FDEV_EOF (-2)
• #define FDEV_SETUP_STREAM(put, get, rwflag)
• #define fdev_close()
• #define putc(__c, __stream) fputc(__c, __stream)
• #define putchar(__c) fputc(__c, stdout)
• #define getc(__stream) fgetc(__stream)
• #define getchar() fgetc(stdin)

Typedefs

• typedef struct __file FILE

Functions

• int fclose (FILE ∗__stream)
• int vfprintf (FILE ∗__stream, const char ∗__fmt, va_list __ap)
• int vfprintf_P (FILE ∗__stream, const char ∗__fmt, va_list __ap)
• int fputc (int __c, FILE ∗__stream)
• int printf (const char ∗__fmt,...)
• int printf_P (const char ∗__fmt,...)
• int vprintf (const char ∗__fmt, va_list __ap)
• int sprintf (char ∗__s, const char ∗__fmt,...)
• int sprintf_P (char ∗__s, const char ∗__fmt,...)
• int snprintf (char ∗__s, size_t __n, const char ∗__fmt,...)
• int snprintf_P (char ∗__s, size_t __n, const char ∗__fmt,...)
• int vsprintf (char ∗__s, const char ∗__fmt, va_list ap)
• int vsprintf_P (char ∗__s, const char ∗__fmt, va_list ap)
• int vsnprintf (char ∗__s, size_t __n, const char ∗__fmt, va_list ap)
• int vsnprintf_P (char ∗__s, size_t __n, const char ∗__fmt, va_list ap)
• int fprintf (FILE ∗__stream, const char ∗__fmt,...)
• int fprintf_P (FILE ∗__stream, const char ∗__fmt,...)
• int fputs (const char ∗__str, FILE ∗__stream)
• int fputs_P (const char ∗__str, FILE ∗__stream)
• int puts (const char ∗__str)
• int puts_P (const char ∗__str)
• size_t fwrite (const void ∗__ptr, size_t __size, size_t __nmemb, FILE ∗__stream)
• int fgetc (FILE ∗__stream)
• int ungetc (int __c, FILE ∗__stream)

Generated by Doxygen

21.9 <stdio.h>: Standard IO facilities 157

• char ∗ fgets (char ∗__str, int __size, FILE ∗__stream)
• char ∗ gets (char ∗__str)
• size_t fread (void ∗__ptr, size_t __size, size_t __nmemb, FILE ∗__stream)
• void clearerr (FILE ∗__stream)
• int feof (FILE ∗__stream)
• int ferror (FILE ∗__stream)
• int vfscanf (FILE ∗__stream, const char ∗__fmt, va_list __ap)
• int vfscanf_P (FILE ∗__stream, const char ∗__fmt, va_list __ap)
• int fscanf (FILE ∗__stream, const char ∗__fmt,...)
• int fscanf_P (FILE ∗__stream, const char ∗__fmt,...)
• int scanf (const char ∗__fmt,...)
• int scanf_P (const char ∗__fmt,...)
• int vscanf (const char ∗__fmt, va_list __ap)
• int sscanf (const char ∗__buf, const char ∗__fmt,...)
• int sscanf_P (const char ∗__buf, const char ∗__fmt,...)
• int fflush (FILE ∗stream)
• FILE ∗ fdevopen (int(∗put)(char, FILE ∗), int(∗get)(FILE ∗))

21.9.1 Detailed Description

#include <stdio.h>

Introduction to the Standard IO facilities This file declares the standard IO facilities that are implemented in
AVR-LibC. Due to the nature of the underlying hardware, only a limited subset of standard IO is implemented.
There is no actual file implementation available, so only device IO can be performed. Since there's no operating
system, the application needs to provide enough details about their devices in order to make them usable by the
standard IO facilities.

Due to space constraints, some functionality has not been implemented at all (like some of the printf conversions
that have been left out). Nevertheless, potential users of this implementation should be warned: the printf and
scanf families of functions, although usually associated with presumably simple things like the famous "Hello,
world!" program, are actually fairly complex which causes their inclusion to eat up a fair amount of code space.
Also, they are not fast due to the nature of interpreting the format string at run-time. Whenever possible, resorting
to the (sometimes non-standard) predetermined conversion facilities that are offered by AVR-LibC will usually cost
much less in terms of speed and code size.

Tunable options for code size vs. feature set In order to allow programmers a code size vs. functionality
tradeoff, the function vfprintf() which is the heart of the printf family can be selected in different flavours using linker
options. See the documentation of vfprintf() for a detailed description. The same applies to vfscanf() and the scanf
family of functions.

Outline of the chosen API The standard streams stdin, stdout, and stderr are provided, but contrary
to the C standard, since AVR-LibC has no knowledge about applicable devices, these streams are not already
pre-initialized at application startup. Also, since there is no notion of "file" whatsoever to AVR-LibC, there is no
function fopen() that could be used to associate a stream to some device. (See note 1.) Instead, the function
fdevopen() is provided to associate a stream to a device, where the device needs to provide a function to send
a character, to receive a character, or both. There is no differentiation between "text" and "binary" streams inside
AVR-LibC. Character \n is sent literally down to the device's put() function. If the device requires a carriage
return (\r) character to be sent before the linefeed, its put() routine must implement this (see note 2).

As an alternative method to fdevopen(), the macro fdev_setup_stream() might be used to setup a user-supplied
FILE structure.

Generated by Doxygen

158

It should be noted that the automatic conversion of a newline character into a carriage return - newline sequence
breaks binary transfers. If binary transfers are desired, no automatic conversion should be performed, but instead
any string that aims to issue a CR-LF sequence must use "\r\n" explicitly.

For convenience, the first call to fdevopen() that opens a stream for reading will cause the resulting stream to be
aliased to stdin. Likewise, the first call to fdevopen() that opens a stream for writing will cause the resulting
stream to be aliased to both, stdout, and stderr. Thus, if the open was done with both, read and write intent, all
three standard streams will be identical. Note that these aliases are indistinguishable from each other, thus calling
fclose() on such a stream will also effectively close all of its aliases (note 3).

It is possible to tie additional user data to a stream, using fdev_set_udata(). The backend put and get functions can
then extract this user data using fdev_get_udata(), and act appropriately. For example, a single put function could
be used to talk to two different UARTs that way, or the put and get functions could keep internal state between calls
there.

Format strings in flash ROM All the printf and scanf family functions come in two flavours: the
standard name, where the format string is expected to be in SRAM, as well as a version with the suf-
fix "_P" where the format string is expected to reside in the flash ROM. The macro PSTR (explained in
<avr/pgmspace.h>: Program Space Utilities) becomes very handy for declaring these format strings.

Running stdio without malloc() By default, fdevopen() requires malloc(). As this is often not desired in the limited
environment of a microcontroller, an alternative option is provided to run completely without malloc().

The macro fdev_setup_stream() is provided to prepare a user-supplied FILE buffer for operation with stdio.

Example #include <stdio.h>

static int uart_putchar(char c, FILE *stream);

static FILE mystdout = FDEV_SETUP_STREAM(uart_putchar, NULL,
_FDEV_SETUP_WRITE);

static int
uart_putchar(char c, FILE *stream)
{

if (c == ’\n’)
uart_putchar(’\r’, stream);

loop_until_bit_is_set(UCSRA, UDRE);
UDR = c;
return 0;

}

int
main(void)
{

init_uart();
stdout = &mystdout;
printf("Hello, world!\n");

return 0;
}

This example uses the initializer form FDEV_SETUP_STREAM() rather than the function-like fdev_setup_stream(),
so all data initialization happens during C start-up.

If streams initialized that way are no longer needed, they can be destroyed by first calling the macro fdev_close(),
and then destroying the object itself. No call to fclose() should be issued for these streams. While calling fclose()
itself is harmless, it will cause an undefined reference to free() and thus cause the linker to link the malloc module
into the application.

Generated by Doxygen

21.9 <stdio.h>: Standard IO facilities 159

Notes

Note 1: It might have been possible to implement a device abstraction that is compatible with fopen() but since
this would have required to parse a string, and to take all the information needed either out of this string, or
out of an additional table that would need to be provided by the application, this approach was not taken.

Note 2: This basically follows the Unix approach: if a device such as a terminal needs special handling, it is in the
domain of the terminal device driver to provide this functionality. Thus, a simple function suitable as put()
for fdevopen() that talks to a UART interface might look like this:
int
uart_putchar(char c, FILE *stream)
{

if (c == ’\n’)
uart_putchar(’\r’, stream);

loop_until_bit_is_set(UCSRA, UDRE);
UDR = c;
return 0;

}

Note 3: This implementation has been chosen because the cost of maintaining an alias is considerably smaller
than the cost of maintaining full copies of each stream. Yet, providing an implementation that offers the
complete set of standard streams was deemed to be useful. Not only that writing printf() instead of
fprintf(mystream, ...) saves typing work, but since avr-gcc needs to resort to pass all arguments
of variadic functions on the stack (as opposed to passing them in registers for functions that take a fixed
number of parameters), the ability to pass one parameter less by implying stdin or stdout will also save
some execution time.

21.9.2 Macro Definition Documentation

21.9.2.1 _FDEV_EOF #define _FDEV_EOF (-2)

Return code for an end-of-file condition during device read.

To be used in the get function of fdevopen().

21.9.2.2 _FDEV_ERR #define _FDEV_ERR (-1)

Return code for an error condition during device read.

To be used in the get function of fdevopen().

21.9.2.3 _FDEV_SETUP_READ #define _FDEV_SETUP_READ __SRD

fdev_setup_stream() with read intent

21.9.2.4 _FDEV_SETUP_RW #define _FDEV_SETUP_RW (__SRD|__SWR)

fdev_setup_stream() with read/write intent

21.9.2.5 _FDEV_SETUP_WRITE #define _FDEV_SETUP_WRITE __SWR

fdev_setup_stream() with write intent

Generated by Doxygen

160

21.9.2.6 EOF #define EOF (-1)

EOF declares the value that is returned by various standard IO functions in case of an error. Since the AVR platform
(currently) doesn't contain an abstraction for actual files, its origin as "end of file" is somewhat meaningless here.

21.9.2.7 fdev_close #define fdev_close()

This macro frees up any library resources that might be associated with stream. It should be called if stream is
no longer needed, right before the application is going to destroy the stream object itself.

(Currently, this macro evaluates to nothing, but this might change in future versions of the library.)

21.9.2.8 fdev_get_udata #define fdev_get_udata(

stream) ((stream)->udata)

This macro retrieves a pointer to user defined data from a FILE stream object.

21.9.2.9 fdev_set_udata #define fdev_set_udata(

stream,

u) do { (stream)->udata = u; } while(0)

This macro inserts a pointer to user defined data into a FILE stream object.

The user data can be useful for tracking state in the put and get functions supplied to the fdevopen() function.

21.9.2.10 FDEV_SETUP_STREAM #define FDEV_SETUP_STREAM(

put,

get,

rwflag)

Initializer for a user-supplied stdio stream.

This macro acts similar to fdev_setup_stream(), but it is to be used as the initializer of a variable of type FILE.

The remaining arguments are to be used as explained in fdev_setup_stream().

21.9.2.11 fdev_setup_stream #define fdev_setup_stream(

stream,

put,

get,

rwflag)

Setup a user-supplied buffer as an stdio stream.

This macro takes a user-supplied buffer stream, and sets it up as a stream that is valid for stdio operations, similar
to one that has been obtained dynamically from fdevopen(). The buffer to setup must be of type FILE.

The arguments put and get are identical to those that need to be passed to fdevopen().

The rwflag argument can take one of the values _FDEV_SETUP_READ, _FDEV_SETUP_WRITE, or
_FDEV_SETUP_RW, for read, write, or read/write intent, respectively.

Note

No assignments to the standard streams will be performed by fdev_setup_stream(). If standard streams are
to be used, these need to be assigned by the user. See also under Running stdio without malloc().

Generated by Doxygen

21.9 <stdio.h>: Standard IO facilities 161

21.9.2.12 getc #define getc(

__stream) fgetc(__stream)

The macro getc used to be a "fast" macro implementation with a functionality identical to fgetc(). For space
constraints, in AVR-LibC, it is just an alias for fgetc.

21.9.2.13 getchar #define getchar(

void) fgetc(stdin)

The macro getchar reads a character from stdin. Return values and error handling is identical to fgetc().

21.9.2.14 putc #define putc(

__c,

__stream) fputc(__c, __stream)

The macro putc used to be a "fast" macro implementation with a functionality identical to fputc(). For space
constraints, in AVR-LibC, it is just an alias for fputc.

21.9.2.15 putchar #define putchar(

__c) fputc(__c, stdout)

The macro putchar sends character c to stdout.

21.9.2.16 stderr #define stderr (__iob[2])

Stream destined for error output. Unless specifically assigned, identical to stdout.

If stderr should point to another stream, the result of another fdevopen() must be explicitly assigned to it
without closing the previous stderr (since this would also close stdout).

21.9.2.17 stdin #define stdin (__iob[0])

Stream that will be used as an input stream by the simplified functions that don't take a stream argument.

The first stream opened with read intent using fdevopen() will be assigned to stdin.

21.9.2.18 stdout #define stdout (__iob[1])

Stream that will be used as an output stream by the simplified functions that don't take a stream argument.

The first stream opened with write intent using fdevopen() will be assigned to both, stdin, and stderr.

21.9.3 Typedef Documentation

21.9.3.1 FILE typedef struct __file FILE

FILE is the opaque structure that is passed around between the various standard IO functions.

Generated by Doxygen

162

21.9.4 Function Documentation

21.9.4.1 clearerr() void clearerr (

FILE ∗ __stream)

Clear the error and end-of-file flags of stream.

21.9.4.2 fclose() int fclose (

FILE ∗ __stream)

This function closes stream, and disallows and further IO to and from it.

When using fdevopen() to setup the stream, a call to fclose() is needed in order to free the internal resources
allocated.

If the stream has been set up using fdev_setup_stream() or FDEV_SETUP_STREAM(), use fdev_close() instead.

It currently always returns 0 (for success).

21.9.4.3 fdevopen() FILE ∗ fdevopen (

int(∗)(char, FILE ∗) put,

int(∗)(FILE ∗) get)

This function is a replacement for fopen().

It opens a stream for a device where the actual device implementation needs to be provided by the application. If
successful, a pointer to the structure for the opened stream is returned. Reasons for a possible failure currently
include that neither the put nor the get argument have been provided, thus attempting to open a stream with no
IO intent at all, or that insufficient dynamic memory is available to establish a new stream.

If the put function pointer is provided, the stream is opened with write intent. The function passed as put shall
take two arguments, the first a character to write to the device, and the second a pointer to FILE, and shall return 0
if the output was successful, and a nonzero value if the character could not be sent to the device.

If the get function pointer is provided, the stream is opened with read intent. The function passed as get shall
take a pointer to FILE as its single argument, and return one character from the device, passed as an int type.
If an error occurs when trying to read from the device, it shall return _FDEV_ERR. If an end-of-file condition was
reached while reading from the device, _FDEV_EOF shall be returned.

If both functions are provided, the stream is opened with read and write intent.

The first stream opened with read intent is assigned to stdin, and the first one opened with write intent is assigned
to both, stdout and stderr.

fdevopen() uses calloc() (und thus malloc()) in order to allocate the storage for the new stream.

Note

If the macro __STDIO_FDEVOPEN_COMPAT_12 is declared before including <stdio.h>, a function prototype
for fdevopen() will be chosen that is backwards compatible with AVR-LibC version 1.2 and before. This is solely
intented for providing a simple migration path without the need to immediately change all source code. Do not
use for new code.

Generated by Doxygen

21.9 <stdio.h>: Standard IO facilities 163

21.9.4.4 feof() int feof (

FILE ∗ __stream)

Test the end-of-file flag of stream. This flag can only be cleared by a call to clearerr().

21.9.4.5 ferror() int ferror (

FILE ∗ __stream)

Test the error flag of stream. This flag can only be cleared by a call to clearerr().

21.9.4.6 fflush() int fflush (

FILE ∗ stream)

Flush stream.

This is a null operation provided for source-code compatibility only, as the standard IO implementation currently
does not perform any buffering.

21.9.4.7 fgetc() int fgetc (

FILE ∗ __stream)

The function fgetc reads a character from stream. It returns the character, or EOF in case end-of-file was
encountered or an error occurred. The routines feof() or ferror() must be used to distinguish between both situations.

21.9.4.8 fgets() char ∗ fgets (

char ∗ __str,

int __size,

FILE ∗ __stream)

Read at most size - 1 bytes from stream, until a newline character was encountered, and store the characters
in the buffer pointed to by str. Unless an error was encountered while reading, the string will then be terminated
with a NUL character.

If an error was encountered, the function returns NULL and sets the error flag of stream, which can be tested
using ferror(). Otherwise, a pointer to the string will be returned.

21.9.4.9 fprintf() int fprintf (

FILE ∗ __stream,

const char ∗ __fmt,

...)

The function fprintf performs formatted output to stream. See vfprintf() for details.

21.9.4.10 fprintf_P() int fprintf_P (

FILE ∗ __stream,

const char ∗ __fmt,

...)

Variant of fprintf() that uses a fmt string that resides in program memory.

Generated by Doxygen

164

21.9.4.11 fputc() int fputc (

int __c,

FILE ∗ __stream)

The function fputc sends the character c (though given as type int) to stream. It returns the character, or
EOF in case an error occurred.

21.9.4.12 fputs() int fputs (

const char ∗ __str,

FILE ∗ __stream)

Write the string pointed to by str to stream stream.

Returns 0 on success and EOF on error.

21.9.4.13 fputs_P() int fputs_P (

const char ∗ __str,

FILE ∗ __stream)

Variant of fputs() where str resides in program memory.

21.9.4.14 fread() size_t fread (

void ∗ __ptr,

size_t __size,

size_t __nmemb,

FILE ∗ __stream)

Read nmemb objects, size bytes each, from stream, to the buffer pointed to by ptr.

Returns the number of objects successfully read, i. e. nmemb unless an input error occured or end-of-file was
encountered. feof() and ferror() must be used to distinguish between these two conditions.

21.9.4.15 fscanf() int fscanf (

FILE ∗ __stream,

const char ∗ __fmt,

...)

The function fscanf performs formatted input, reading the input data from stream.

See vfscanf() for details.

21.9.4.16 fscanf_P() int fscanf_P (

FILE ∗ __stream,

const char ∗ __fmt,

...)

Variant of fscanf() using a fmt string in program memory.

Generated by Doxygen

21.9 <stdio.h>: Standard IO facilities 165

21.9.4.17 fwrite() size_t fwrite (

const void ∗ __ptr,

size_t __size,

size_t __nmemb,

FILE ∗ __stream)

Write nmemb objects, size bytes each, to stream. The first byte of the first object is referenced by ptr.

Returns the number of objects successfully written, i. e. nmemb unless an output error occured.

21.9.4.18 gets() char ∗ gets (

char ∗ __str)

Similar to fgets() except that it will operate on stream stdin, and the trailing newline (if any) will not be stored in
the string. It is the caller's responsibility to provide enough storage to hold the characters read.

21.9.4.19 printf() int printf (

const char ∗ __fmt,

...)

The function printf performs formatted output to stream stdout. See vfprintf() for details.

21.9.4.20 printf_P() int printf_P (

const char ∗ __fmt,

...)

Variant of printf() that uses a fmt string that resides in program memory.

21.9.4.21 puts() int puts (

const char ∗ __str)

Write the string pointed to by str, and a trailing newline character, to stdout.

21.9.4.22 puts_P() int puts_P (

const char ∗ __str)

Variant of puts() where str resides in program memory.

21.9.4.23 scanf() int scanf (

const char ∗ __fmt,

...)

The function scanf performs formatted input from stream stdin.

See vfscanf() for details.

21.9.4.24 scanf_P() int scanf_P (

const char ∗ __fmt,

...)

Variant of scanf() where fmt resides in program memory.

Generated by Doxygen

166

21.9.4.25 snprintf() int snprintf (

char ∗ __s,

size_t __n,

const char ∗ __fmt,

...)

Like sprintf(), but instead of assuming s to be of infinite size, no more than n characters (including the trailing
NUL character) will be converted to s.

Returns the number of characters that would have been written to s if there were enough space.

21.9.4.26 snprintf_P() int snprintf_P (

char ∗ __s,

size_t __n,

const char ∗ __fmt,

...)

Variant of snprintf() that uses a fmt string that resides in program memory.

21.9.4.27 sprintf() int sprintf (

char ∗ __s,

const char ∗ __fmt,

...)

Variant of printf() that sends the formatted characters to string s.

21.9.4.28 sprintf_P() int sprintf_P (

char ∗ __s,

const char ∗ __fmt,

...)

Variant of sprintf() that uses a fmt string that resides in program memory.

21.9.4.29 sscanf() int sscanf (

const char ∗ __buf,

const char ∗ __fmt,

...)

The function sscanf performs formatted input, reading the input data from the buffer pointed to by buf.

See vfscanf() for details.

21.9.4.30 sscanf_P() int sscanf_P (

const char ∗ __buf,

const char ∗ __fmt,

...)

Variant of sscanf() using a fmt string in program memory.

Generated by Doxygen

21.9 <stdio.h>: Standard IO facilities 167

21.9.4.31 ungetc() int ungetc (

int __c,

FILE ∗ __stream)

The ungetc() function pushes the character c (converted to an unsigned char) back onto the input stream pointed
to by stream. The pushed-back character will be returned by a subsequent read on the stream.

Currently, only a single character can be pushed back onto the stream.

The ungetc() function returns the character pushed back after the conversion, or EOF if the operation fails. If the
value of the argument c character equals EOF, the operation will fail and the stream will remain unchanged.

21.9.4.32 vfprintf() int vfprintf (

FILE ∗ __stream,

const char ∗ __fmt,

va_list __ap)

vfprintf is the central facility of the printf family of functions. It outputs values to stream under control of
a format string passed in fmt. The actual values to print are passed as a variable argument list ap.

vfprintf returns the number of characters written to stream, or EOF in case of an error. Currently, this will
only happen if stream has not been opened with write intent.

The format string is composed of zero or more directives: ordinary characters (not %), which are copied unchanged
to the output stream; and conversion specifications, each of which results in fetching zero or more subsequent ar-
guments. Each conversion specification is introduced by the % character. The arguments must properly correspond
(after type promotion) with the conversion specifier. After the %, the following appear in sequence:

• Zero or more of the following flags:

– # The value should be converted to an "alternate form". For c, d, i, s, and u conversions, this option has
no effect. For o conversions, the precision of the number is increased to force the first character of the
output string to a zero (except if a zero value is printed with an explicit precision of zero). For x and X
conversions, a non-zero result has the string `0x' (or `0X' for X conversions) prepended to it.

– 0 (zero) Zero padding. For all conversions, the converted value is padded on the left with zeros rather
than blanks. If a precision is given with a numeric conversion (d, i, o, u, i, x, and X), the 0 flag is ignored.

– - A negative field width flag; the converted value is to be left adjusted on the field boundary. The
converted value is padded on the right with blanks, rather than on the left with blanks or zeros. A -
overrides a 0 if both are given.

– ' ' (space) A blank should be left before a positive number produced by a signed conversion (d, or i).

– + A sign must always be placed before a number produced by a signed conversion. A + overrides a
space if both are used.

• An optional decimal digit string specifying a minimum field width. If the converted value has fewer characters
than the field width, it will be padded with spaces on the left (or right, if the left-adjustment flag has been
given) to fill out the field width.

• An optional precision, in the form of a period . followed by an optional digit string. If the digit string is omitted,
the precision is taken as zero. This gives the minimum number of digits to appear for d, i, o, u, x, and X
conversions, or the maximum number of characters to be printed from a string for s conversions.

• An optional l or h length modifier, that specifies that the argument for the d, i, o, u, x, or X conversion is a
"long int" rather than int. The h is ignored, as "short int" is equivalent to int.

• A character that specifies the type of conversion to be applied.

Generated by Doxygen

168

The conversion specifiers and their meanings are:

• diouxX The int (or appropriate variant) argument is converted to signed decimal (d and i), unsigned octal
(o), unsigned decimal (u), or unsigned hexadecimal (x and X) notation. The letters "abcdef" are used for
x conversions; the letters "ABCDEF" are used for X conversions. The precision, if any, gives the minimum
number of digits that must appear; if the converted value requires fewer digits, it is padded on the left with
zeros.

• p The void ∗ argument is taken as an unsigned integer, and converted similarly as a %#x command would
do.

• c The int argument is converted to an "unsigned char", and the resulting character is written.

• s The "char ∗" argument is expected to be a pointer to an array of character type (pointer to a string).
Characters from the array are written up to (but not including) a terminating NUL character; if a precision
is specified, no more than the number specified are written. If a precision is given, no null character need
be present; if the precision is not specified, or is greater than the size of the array, the array must contain a
terminating NUL character.

• % A % is written. No argument is converted. The complete conversion specification is "%%".

• eE The double argument is rounded and converted in the format "[-]d.ddde±dd" where there is one digit
before the decimal-point character and the number of digits after it is equal to the precision; if the precision is
missing, it is taken as 6; if the precision is zero, no decimal-point character appears. An E conversion uses
the letter 'E' (rather than 'e') to introduce the exponent. The exponent always contains two digits; if the
value is zero, the exponent is 00.

• fF The double argument is rounded and converted to decimal notation in the format "[-]ddd.ddd", where
the number of digits after the decimal-point character is equal to the precision specification. If the precision
is missing, it is taken as 6; if the precision is explicitly zero, no decimal-point character appears. If a decimal
point appears, at least one digit appears before it.

• gG The double argument is converted in style f or e (or F or E for G conversions). The precision specifies
the number of significant digits. If the precision is missing, 6 digits are given; if the precision is zero, it is
treated as 1. Style e is used if the exponent from its conversion is less than -4 or greater than or equal to the
precision. Trailing zeros are removed from the fractional part of the result; a decimal point appears only if it is
followed by at least one digit.

• S Similar to the s format, except the pointer is expected to point to a program-memory (ROM) string instead
of a RAM string.

In no case does a non-existent or small field width cause truncation of a numeric field; if the result of a conversion
is wider than the field width, the field is expanded to contain the conversion result.

Since the full implementation of all the mentioned features becomes fairly large, three different flavours of vfprintf()
can be selected using linker options. The default vfprintf() implements all the mentioned functionality except floating
point conversions. A minimized version of vfprintf() is available that only implements the very basic integer and
string conversion facilities, but only the # additional option can be specified using conversion flags (these flags are
parsed correctly from the format specification, but then simply ignored). This version can be requested using the
following compiler options:
-Wl,-u,vfprintf -lprintf_min

If the full functionality including the floating point conversions is required, the following options should be used:
-Wl,-u,vfprintf -lprintf_flt -lm

Limitations:

• The specified width and precision can be at most 255.

Generated by Doxygen

21.9 <stdio.h>: Standard IO facilities 169

Notes:

• For floating-point conversions, if you link default or minimized version of vfprintf(), the symbol ? will be
output and double argument will be skipped. So you output below will not be crashed. For default version
the width field and the "pad to left" (symbol minus) option will work in this case.

• The hh length modifier is ignored (char argument is promouted to int). More exactly, this realization
does not check the number of h symbols.

• But the ll length modifier will to abort the output, as this realization does not operate long long
arguments.

• The variable width or precision field (an asterisk ∗ symbol) is not realized and will to abort the output.

21.9.4.33 vfprintf_P() int vfprintf_P (

FILE ∗ __stream,

const char ∗ __fmt,

va_list __ap)

Variant of vfprintf() that uses a fmt string that resides in program memory.

21.9.4.34 vfscanf() int vfscanf (

FILE ∗ stream,

const char ∗ fmt,

va_list ap)

Formatted input. This function is the heart of the scanf family of functions.

Characters are read from stream and processed in a way described by fmt. Conversion results will be assigned to
the parameters passed via ap.

The format string fmt is scanned for conversion specifications. Anything that doesn't comprise a conversion spec-
ification is taken as text that is matched literally against the input. White space in the format string will match any
white space in the data (including none), all other characters match only itself. Processing is aborted as soon as
the data and format string no longer match, or there is an error or end-of-file condition on stream.

Most conversions skip leading white space before starting the actual conversion.

Conversions are introduced with the character %. Possible options can follow the %:

• a ∗ indicating that the conversion should be performed but the conversion result is to be discarded; no
parameters will be processed from ap,

• the character h indicating that the argument is a pointer to short int (rather than int),

• the 2 characters hh indicating that the argument is a pointer to char (rather than int).

• the character l indicating that the argument is a pointer to long int (rather than int, for integer type
conversions), or a pointer to float (for floating point conversions),

In addition, a maximal field width may be specified as a nonzero positive decimal integer, which will restrict the
conversion to at most this many characters from the input stream. This field width is limited to at most 255 characters
which is also the default value (except for the c conversion that defaults to 1).

The following conversion flags are supported:

Generated by Doxygen

170

• % Matches a literal % character. This is not a conversion.

• d Matches an optionally signed decimal integer; the next pointer must be a pointer to int.

• i Matches an optionally signed integer; the next pointer must be a pointer to int. The integer is read in
base 16 if it begins with 0x or 0X, in base 8 if it begins with 0, and in base 10 otherwise. Only characters that
correspond to the base are used.

• o Matches an octal integer; the next pointer must be a pointer to unsigned int.

• u Matches an optionally signed decimal integer; the next pointer must be a pointer to unsigned int.

• x Matches an optionally signed hexadecimal integer; the next pointer must be a pointer to unsigned int.

• f Matches an optionally signed floating-point number; the next pointer must be a pointer to float.

• e, g, F, E, G Equivalent to f.

• s Matches a sequence of non-white-space characters; the next pointer must be a pointer to char, and the
array must be large enough to accept all the sequence and the terminating NUL character. The input string
stops at white space or at the maximum field width, whichever occurs first.

• c Matches a sequence of width count characters (default 1); the next pointer must be a pointer to char, and
there must be enough room for all the characters (no terminating NUL is added). The usual skip of leading
white space is suppressed. To skip white space first, use an explicit space in the format.

• [Matches a nonempty sequence of characters from the specified set of accepted characters; the next pointer
must be a pointer to char, and there must be enough room for all the characters in the string, plus a
terminating NUL character. The usual skip of leading white space is suppressed. The string is to be made
up of characters in (or not in) a particular set; the set is defined by the characters between the open bracket
[character and a close bracket] character. The set excludes those characters if the first character after the
open bracket is a circumflex ∧. To include a close bracket in the set, make it the first character after the open
bracket or the circumflex; any other position will end the set. The hyphen character - is also special; when
placed between two other characters, it adds all intervening characters to the set. To include a hyphen, make
it the last character before the final close bracket. For instance, [∧]0-9-] means the set of everything
except close bracket, zero through nine, and hyphen. The string ends with the appearance of a character
not in the (or, with a circumflex, in) set or when the field width runs out. Note that usage of this conversion
enlarges the stack expense.

• p Matches a pointer value (as printed by p in printf()); the next pointer must be a pointer to void.

• n Nothing is expected; instead, the number of characters consumed thus far from the input is stored through
the next pointer, which must be a pointer to int. This is not a conversion, although it can be suppressed with
the ∗ flag.

These functions return the number of input items assigned, which can be fewer than provided for, or even
zero, in the event of a matching failure. Zero indicates that, while there was input available, no conversions
were assigned; typically this is due to an invalid input character, such as an alphabetic character for a d
conversion. The value EOF is returned if an input failure occurs before any conversion such as an end-of-file
occurs. If an error or end-of-file occurs after conversion has begun, the number of conversions which were
successfully completed is returned.

By default, all the conversions described above are available except the floating-point conversions and the
width is limited to 255 characters. The float-point conversion will be available in the extended version provided
by the library libscanf_flt.a. Also in this case the width is not limited (exactly, it is limited to 65535
characters). To link a program against the extended version, use the following compiler flags in the link
stage:
-Wl,-u,vfscanf -lscanf_flt -lm

A third version is available for environments that are tight on space. In addition to the restrictions of the stan-
dard one, this version implements no %[specification. This version is provided in the library libscanf_←↩

min.a, and can be requested using the following options in the link stage:
-Wl,-u,vfscanf -lscanf_min -lm

Generated by Doxygen

21.9 <stdio.h>: Standard IO facilities 171

21.9.4.35 vfscanf_P() int vfscanf_P (

FILE ∗ __stream,

const char ∗ __fmt,

va_list __ap)

Variant of vfscanf() using a fmt string in program memory.

21.9.4.36 vprintf() int vprintf (

const char ∗ __fmt,

va_list __ap)

The function vprintf performs formatted output to stream stdout, taking a variable argument list as in vfprintf().

See vfprintf() for details.

21.9.4.37 vscanf() int vscanf (

const char ∗ __fmt,

va_list __ap)

The function vscanf performs formatted input from stream stdin, taking a variable argument list as in vfscanf().

See vfscanf() for details.

21.9.4.38 vsnprintf() int vsnprintf (

char ∗ __s,

size_t __n,

const char ∗ __fmt,

va_list ap)

Like vsprintf(), but instead of assuming s to be of infinite size, no more than n characters (including the trailing
NUL character) will be converted to s.

Returns the number of characters that would have been written to s if there were enough space.

21.9.4.39 vsnprintf_P() int vsnprintf_P (

char ∗ __s,

size_t __n,

const char ∗ __fmt,

va_list ap)

Variant of vsnprintf() that uses a fmt string that resides in program memory.

21.9.4.40 vsprintf() int vsprintf (

char ∗ __s,

const char ∗ __fmt,

va_list ap)

Like sprintf() but takes a variable argument list for the arguments.

Generated by Doxygen

172

21.9.4.41 vsprintf_P() int vsprintf_P (

char ∗ __s,

const char ∗ __fmt,

va_list ap)

Variant of vsprintf() that uses a fmt string that resides in program memory.

21.10 <stdlib.h>: General utilities

Data Structures

• struct div_t
• struct ldiv_t

Macros

• #define RAND_MAX 0x7FFF

Typedefs

• typedef int(∗ __compar_fn_t) (const void ∗, const void ∗)

Functions

• void abort (void)
• int abs (int __i)
• long labs (long __i)
• void ∗ bsearch (const void ∗__key, const void ∗__base, size_t __nmemb, size_t __size, int(∗__compar)(const

void ∗, const void ∗))
• div_t div (int __num, int __denom) __asm__("__divmodhi4")
• ldiv_t ldiv (long __num, long __denom) __asm__("__divmodsi4")
• void qsort (void ∗__base, size_t __nmemb, size_t __size, __compar_fn_t __compar)
• long strtol (const char ∗__nptr, char ∗∗__endptr, int __base)
• unsigned long strtoul (const char ∗__nptr, char ∗∗__endptr, int __base)
• long atol (const char ∗__s)
• int atoi (const char ∗__s)
• void exit (int __status)
• void ∗ malloc (size_t __size)
• void free (void ∗__ptr)
• void ∗ calloc (size_t __nele, size_t __size)
• void ∗ realloc (void ∗__ptr, size_t __size)
• float strtof (const char ∗__nptr, char ∗∗__endptr)
• double strtod (const char ∗__nptr, char ∗∗__endptr)
• long double strtold (const char ∗__nptr, char ∗∗__endptr)
• int atexit (void(∗func)(void))
• float atoff (const char ∗__nptr)
• double atof (const char ∗__nptr)
• long double atofl (const char ∗__nptr)
• int rand (void)
• void srand (unsigned int __seed)
• int rand_r (unsigned long ∗__ctx)

Generated by Doxygen

21.10 <stdlib.h>: General utilities 173

Variables

• size_t __malloc_margin
• char ∗ __malloc_heap_start
• char ∗ __malloc_heap_end

Non-standard (i.e. non-ISO C) functions.

• char ∗ ltoa (long val, char ∗s, int radix)
• char ∗ utoa (unsigned int val, char ∗s, int radix)
• char ∗ ultoa (unsigned long val, char ∗s, int radix)
• long random (void)
• void srandom (unsigned long __seed)
• long random_r (unsigned long ∗__ctx)
• char ∗ itoa (int val, char ∗s, int radix)
• #define RANDOM_MAX 0x7FFFFFFF

Conversion functions for double arguments.

• char ∗ ftostre (float __val, char ∗__s, unsigned char __prec, unsigned char __flags)
• char ∗ dtostre (double __val, char ∗__s, unsigned char __prec, unsigned char __flags)
• char ∗ ldtostre (long double __val, char ∗__s, unsigned char __prec, unsigned char __flags)
• char ∗ ftostrf (float __val, signed char __width, unsigned char __prec, char ∗__s)
• char ∗ dtostrf (double __val, signed char __width, unsigned char __prec, char ∗__s)
• char ∗ ldtostrf (long double __val, signed char __width, unsigned char __prec, char ∗__s)
• #define DTOSTR_ALWAYS_SIGN 0x01 /∗ put '+' or ' ' for positives ∗/
• #define DTOSTR_PLUS_SIGN 0x02 /∗ put '+' rather than ' ' ∗/
• #define DTOSTR_UPPERCASE 0x04 /∗ put 'E' rather 'e' ∗/
• #define EXIT_SUCCESS 0
• #define EXIT_FAILURE 1

21.10.1 Detailed Description

#include <stdlib.h>

This file declares some basic C macros and functions as defined by the ISO standard, plus some AVR-specific
extensions.

21.10.2 Macro Definition Documentation

21.10.2.1 DTOSTR_ALWAYS_SIGN #define DTOSTR_ALWAYS_SIGN 0x01 /∗ put '+' or ' ' for positives

∗/

Bit value that can be passed in flags to ftostre(), dtostre() and ldtostre().

21.10.2.2 DTOSTR_PLUS_SIGN #define DTOSTR_PLUS_SIGN 0x02 /∗ put '+' rather than ' ' ∗/

Bit value that can be passed in flags to ftostre(), dtostre() and ldtostre().

Generated by Doxygen

174

21.10.2.3 DTOSTR_UPPERCASE #define DTOSTR_UPPERCASE 0x04 /∗ put 'E' rather 'e' ∗/

Bit value that can be passed in flags to ftostre(), dtostre() and ldtostre().

21.10.2.4 EXIT_FAILURE #define EXIT_FAILURE 1

Unsuccessful termination for exit(); evaluates to a non-zero value.

21.10.2.5 EXIT_SUCCESS #define EXIT_SUCCESS 0

Successful termination for exit(); evaluates to 0.

21.10.2.6 RAND_MAX #define RAND_MAX 0x7FFF

Highest number that can be generated by rand().

21.10.2.7 RANDOM_MAX #define RANDOM_MAX 0x7FFFFFFF

Highest number that can be generated by random().

21.10.3 Typedef Documentation

21.10.3.1 __compar_fn_t typedef int(∗ __compar_fn_t) (const void ∗, const void ∗)

Comparision function type for qsort(), just for convenience.

21.10.4 Function Documentation

21.10.4.1 abort() void abort (

void)

The abort() function causes abnormal program termination to occur. This realization disables interrupts and jumps
to _exit() function with argument equal to 1. In the limited AVR environment, execution is effectively halted by
entering an infinite loop.

21.10.4.2 abs() int abs (

int __i)

The abs() function computes the absolute value of the integer i.

Note

The abs() and labs() functions are builtins of gcc.

Generated by Doxygen

21.10 <stdlib.h>: General utilities 175

21.10.4.3 atexit() int atexit (

void(∗)(void) func)

The atexit() function registers function func to be run as part of the exit() function during .fini8. atexit() calls
malloc().

21.10.4.4 atof() double atof (

const char ∗ nptr)

The atof() function converts the initial portion of the string pointed to by nptr to double representation.

It is equivalent to calling
strtod(nptr, (char**) 0);

21.10.4.5 atoff() float atoff (

const char ∗ nptr)

The atoff() function converts the initial portion of the string pointed to by nptr to float representation.

It is equivalent to calling
strtof(nptr, (char**) 0);

21.10.4.6 atofl() long double atofl (

const char ∗ nptr)

The atofl() function converts the initial portion of the string pointed to by nptr to long double representation.

It is equivalent to calling
strtold(nptr, (char**) 0);

21.10.4.7 atoi() int atoi (

const char ∗ __s)

The atoi() function converts the initial portion of the string pointed to by s to integer representation. In contrast to
(int)strtol(s, (char **)NULL, 10);

this function does not detect overflow (errno is not changed and the result value is not predictable), uses smaller
memory (flash and stack) and works more quickly.

21.10.4.8 atol() long atol (

const char ∗ __s)

The atol() function converts the initial portion of the string pointed to by s to long integer representation. In contrast
to
strtol(s, (char **)NULL, 10);

this function does not detect overflow (errno is not changed and the result value is not predictable), uses smaller
memory (flash and stack) and works more quickly.

Generated by Doxygen

176

21.10.4.9 bsearch() void ∗ bsearch (

const void ∗ __key,

const void ∗ __base,

size_t __nmemb,

size_t __size,

int(∗)(const void ∗, const void ∗) __compar)

The bsearch() function searches an array of nmemb objects, the initial member of which is pointed to by base, for
a member that matches the object pointed to by key. The size of each member of the array is specified by size.

The contents of the array should be in ascending sorted order according to the comparison function referenced by
compar. The compar routine is expected to have two arguments which point to the key object and to an array
member, in that order, and should return an integer less than, equal to, or greater than zero if the key object is
found, respectively, to be less than, to match, or be greater than the array member.

The bsearch() function returns a pointer to a matching member of the array, or a null pointer if no match is found. If
two members compare as equal, which member is matched is unspecified.

21.10.4.10 calloc() void ∗ calloc (

size_t __nele,

size_t __size)

Allocate nele elements of size each. Identical to calling malloc() using nele ∗ size as argument, except
the allocated memory will be cleared to zero.

21.10.4.11 div() div_t div (

int __num,

int __denom)

The div() function computes the value num/denom and returns the quotient and remainder in a structure named
div_t that contains two int members named quot and rem.

21.10.4.12 dtostre() char ∗ dtostre (

double __val,

char ∗ __s,

unsigned char __prec,

unsigned char __flags)

The dtostre() function is similar to the ftostre() function, except that it converts a double value instead of a float
value.

dtostre() is currently only supported when double is a 32-bit type.

21.10.4.13 dtostrf() char ∗ dtostrf (

double __val,

signed char __width,

unsigned char __prec,

char ∗ __s)

The dtostrf() function is similar to the ftostrf() function, except that converts a double value instead of a float
value.

ldtostre() is currently only supported when double is a 32-bit type.

Generated by Doxygen

21.10 <stdlib.h>: General utilities 177

21.10.4.14 exit() void exit (

int __status)

The exit() function terminates the application. Since there is no environment to return to, status is ignored, and
code execution will eventually reach an infinite loop, thereby effectively halting all code processing. Before entering
the infinite loop, interrupts are globally disabled.

Global destructors will be called before halting execution, see the .fini sections.

21.10.4.15 free() void free (

void ∗ __ptr)

The free() function causes the allocated memory referenced by ptr to be made available for future allocations. If
ptr is NULL, no action occurs.

21.10.4.16 ftostre() char ∗ ftostre (

float __val,

char ∗ __s,

unsigned char __prec,

unsigned char __flags)

The ftostre() function converts the float value passed in val into an ASCII representation that will be stored
under s. The caller is responsible for providing sufficient storage in s.

Conversion is done in the format "[-]d.ddde±dd" where there is one digit before the decimal-point character
and the number of digits after it is equal to the precision prec; if the precision is zero, no decimal-point character
appears. If flags has the DTOSTR_UPPERCASE bit set, the letter 'E' (rather than 'e') will be used to
introduce the exponent. The exponent always contains two digits; if the value is zero, the exponent is "00".

If flags has the DTOSTR_ALWAYS_SIGN bit set, a space character will be placed into the leading position for
positive numbers.

If flags has the DTOSTR_PLUS_SIGN bit set, a plus sign will be used instead of a space character in this case.

The ftostre() function returns the pointer to the converted string s.

21.10.4.17 ftostrf() char ∗ ftostrf (

float __val,

signed char __width,

unsigned char __prec,

char ∗ __s)

The ftostrf() function converts the float value passed in val into an ASCII representationthat will be stored in s.
The caller is responsible for providing sufficient storage in s.

Conversion is done in the format "[-]d.ddd". The minimum field width of the output string (including the possible
'.' and the possible sign for negative values) is given in width, and prec determines the number of digits after
the decimal sign. width is signed value, negative for left adjustment.

The ftostrf() function returns the pointer to the converted string s.

Generated by Doxygen

178

21.10.4.18 itoa() char ∗ itoa (

int val,

char ∗ s,

int radix)

Convert an integer to a string.

The function itoa() converts the integer value from val into an ASCII representation that will be stored under s.
The caller is responsible for providing sufficient storage in s.

Note

The minimal size of the buffer s depends on the choice of radix. For example, if the radix is 2 (binary), you
need to supply a buffer with a minimal length of 8 ∗ sizeof (int) + 1 characters, i.e. one character for each bit
plus one for the string terminator. Using a larger radix will require a smaller minimal buffer size.

Warning

If the buffer is too small, you risk a buffer overflow.

Conversion is done using the radix as base, which may be a number between 2 (binary conversion) and up to
36. If radix is greater than 10, the next digit after '9' will be the letter 'a'.

If radix is 10 and val is negative, a minus sign will be prepended.

The itoa() function returns the pointer passed as s.

21.10.4.19 labs() long labs (

long __i)

The labs() function computes the absolute value of the long integer i.

Note

The abs() and labs() functions are builtins of gcc.

21.10.4.20 ldiv() ldiv_t ldiv (

long __num,

long __denom)

The ldiv() function computes the value num/denom and returns the quotient and remainder in a structure named
ldiv_t that contains two long integer members named quot and rem.

21.10.4.21 ldtostre() char ∗ ldtostre (

long double __val,

char ∗ __s,

unsigned char __prec,

unsigned char __flags)

The ldtostre() function is similar to the ftostre() function, except that it converts a long double value instead of a
float value.

ldtostre() is currently only supported when long double is a 32-bit type.

Generated by Doxygen

21.10 <stdlib.h>: General utilities 179

21.10.4.22 ldtostrf() char ∗ ldtostrf (

long double __val,

signed char __width,

unsigned char __prec,

char ∗ __s)

The ldtostrf() function is similar to the ftostrf() function, except that converts a long double value instead of a
float value.

ldtostre() is currently only supported when long double is a 32-bit type.

21.10.4.23 ltoa() char ∗ ltoa (

long val,

char ∗ s,

int radix)

Convert a long integer to a string.

The function ltoa() converts the long integer value from val into an ASCII representation that will be stored under
s. The caller is responsible for providing sufficient storage in s.

Note

The minimal size of the buffer s depends on the choice of radix. For example, if the radix is 2 (binary), you
need to supply a buffer with a minimal length of 8 ∗ sizeof (long int) + 1 characters, i.e. one character for each
bit plus one for the string terminator. Using a larger radix will require a smaller minimal buffer size.

Warning

If the buffer is too small, you risk a buffer overflow.

Conversion is done using the radix as base, which may be a number between 2 (binary conversion) and up to
36. If radix is greater than 10, the next digit after '9' will be the letter 'a'.

If radix is 10 and val is negative, a minus sign will be prepended.

The ltoa() function returns the pointer passed as s.

21.10.4.24 malloc() void ∗ malloc (

size_t __size)

The malloc() function allocates size bytes of memory. If malloc() fails, a NULL pointer is returned.

Note that malloc() does not initialize the returned memory to zero bytes.

See the chapter about malloc() usage for implementation details.

Generated by Doxygen

180

21.10.4.25 qsort() void qsort (

void ∗ __base,

size_t __nmemb,

size_t __size,

__compar_fn_t __compar)

The qsort() function is a modified partition-exchange sort, or quicksort.

The qsort() function sorts an array of nmemb objects, the initial member of which is pointed to by base. The size
of each object is specified by size. The contents of the array base are sorted in ascending order according to a
comparison function pointed to by compar, which requires two arguments pointing to the objects being compared.

The comparison function must return an integer less than, equal to, or greater than zero if the first argument is
considered to be respectively less than, equal to, or greater than the second.

21.10.4.26 rand() int rand (

void)

The rand() function computes a sequence of pseudo-random integers in the range of 0 to RAND_MAX (as defined
by the header file <stdlib.h>).

The srand() function sets its argument seed as the seed for a new sequence of pseudo-random numbers to be
returned by rand(). These sequences are repeatable by calling srand() with the same seed value.

If no seed value is provided, the functions are automatically seeded with a value of 1.

In compliance with the C standard, these functions operate on int arguments. Since the underlying algorithm
already uses 32-bit calculations, this causes a loss of precision. See random() for an alternate set of functions
that retains full 32-bit precision.

21.10.4.27 rand_r() int rand_r (

unsigned long ∗ __ctx)

Variant of rand() that stores the context in the user-supplied variable located at ctx instead of a static library
variable so the function becomes re-entrant.

21.10.4.28 random() long random (

void)

The random() function computes a sequence of pseudo-random integers in the range of 0 to RANDOM_MAX (as
defined by the header file <stdlib.h>).

The srandom() function sets its argument seed as the seed for a new sequence of pseudo-random numbers to be
returned by rand(). These sequences are repeatable by calling srandom() with the same seed value.

If no seed value is provided, the functions are automatically seeded with a value of 1.

21.10.4.29 random_r() long random_r (

unsigned long ∗ __ctx)

Variant of random() that stores the context in the user-supplied variable located at ctx instead of a static library
variable so the function becomes re-entrant.

Generated by Doxygen

21.10 <stdlib.h>: General utilities 181

21.10.4.30 realloc() void ∗ realloc (

void ∗ __ptr,

size_t __size)

The realloc() function tries to change the size of the region allocated at ptr to the new size value. It returns a
pointer to the new region. The returned pointer might be the same as the old pointer, or a pointer to a completely
different region.

The contents of the returned region up to either the old or the new size value (whatever is less) will be identical to
the contents of the old region, even in case a new region had to be allocated.

It is acceptable to pass ptr as NULL, in which case realloc() will behave identical to malloc().

If the new memory cannot be allocated, realloc() returns NULL, and the region at ptr will not be changed.

21.10.4.31 srand() void srand (

unsigned int __seed)

Pseudo-random number generator seeding; see rand().

21.10.4.32 srandom() void srandom (

unsigned long __seed)

Pseudo-random number generator seeding; see random().

21.10.4.33 strtod() double strtod (

const char ∗ __nptr,

char ∗∗ __endptr)

The strtod() function is similar to strtof(), except that the conversion result is of type double instead of float.

strtod() is currently only supported when double is a 32-bit type.

21.10.4.34 strtof() float strtof (

const char ∗ nptr,

char ∗∗ endptr)

The strtof() function converts the initial portion of the string pointed to by nptr to float representation.

The expected form of the string is an optional plus ('+') or minus sign ('-') followed by a sequence of digits
optionally containing a decimal-point character, optionally followed by an exponent. An exponent consists of an 'E'
or 'e', followed by an optional plus or minus sign, followed by a sequence of digits.

Leading white-space characters in the string are skipped.

The strtof() function returns the converted value, if any.

If endptr is not NULL, a pointer to the character after the last character used in the conversion is stored in the
location referenced by endptr.

If no conversion is performed, zero is returned and the value of nptr is stored in the location referenced by endptr.

If the correct value would cause overflow, plus or minus INFINITY is returned (according to the sign of the value),
and ERANGE is stored in errno. If the correct value would cause underflow, zero is returned and ERANGE is
stored in errno.

Generated by Doxygen

182

21.10.4.35 strtol() long strtol (

const char ∗ __nptr,

char ∗∗ __endptr,

int __base)

The strtol() function converts the string in nptr to a long value. The conversion is done according to the given
base, which must be between 2 and 36 inclusive, or be the special value 0.

The string may begin with an arbitrary amount of white space (as determined by isspace()) followed by a single
optional '+' or '-' sign. If base is zero or 16, the string may then include a "0x" prefix, and the number will be
read in base 16; otherwise, a zero base is taken as 10 (decimal) unless the next character is '0', in which case it
is taken as 8 (octal).

The remainder of the string is converted to a long value in the obvious manner, stopping at the first character which
is not a valid digit in the given base. (In bases above 10, the letter 'A' in either upper or lower case represents 10,
'B' represents 11, and so forth, with 'Z' representing 35.)

If endptr is not NULL, strtol() stores the address of the first invalid character in ∗endptr. If there were no digits
at all, however, strtol() stores the original value of nptr in endptr. (Thus, if ∗nptr is not '\0' but ∗∗endptr
is '\0' on return, the entire string was valid.)

The strtol() function returns the result of the conversion, unless the value would underflow or overflow. If no con-
version could be performed, 0 is returned. If an overflow or underflow occurs, errno is set to ERANGE and the
function return value is clamped to LONG_MIN or LONG_MAX, respectively.

21.10.4.36 strtold() long double strtold (

const char ∗ __nptr,

char ∗∗ __endptr)

The strtold() function is similar to strtof(), except that the conversion result is of type long double instead of
float.

strtold() is currently only supported when long double is a 32-bit type.

21.10.4.37 strtoul() unsigned long strtoul (

const char ∗ __nptr,

char ∗∗ __endptr,

int __base)

The strtoul() function converts the string in nptr to an unsigned long value. The conversion is done according to
the given base, which must be between 2 and 36 inclusive, or be the special value 0.

The string may begin with an arbitrary amount of white space (as determined by isspace()) followed by a single
optional '+' or '-' sign. If base is zero or 16, the string may then include a "0x" prefix, and the number will be
read in base 16; otherwise, a zero base is taken as 10 (decimal) unless the next character is '0', in which case it
is taken as 8 (octal).

The remainder of the string is converted to an unsigned long value in the obvious manner, stopping at the first
character which is not a valid digit in the given base. (In bases above 10, the letter 'A' in either upper or lower
case represents 10, 'B' represents 11, and so forth, with 'Z' representing 35.)

If endptr is not NULL, strtoul() stores the address of the first invalid character in ∗endptr. If there were no digits
at all, however, strtoul() stores the original value of nptr in endptr. (Thus, if ∗nptr is not '\0' but ∗∗endptr
is '\0' on return, the entire string was valid.)

The strtoul() function return either the result of the conversion or, if there was a leading minus sign, the negation
of the result of the conversion, unless the original (non-negated) value would overflow; in the latter case, strtoul()
returns ULONG_MAX, and errno is set to ERANGE. If no conversion could be performed, 0 is returned.

Generated by Doxygen

21.10 <stdlib.h>: General utilities 183

21.10.4.38 ultoa() char ∗ ultoa (

unsigned long val,

char ∗ s,

int radix)

Convert an unsigned long integer to a string.

The function ultoa() converts the unsigned long integer value from val into an ASCII representation that will be
stored under s. The caller is responsible for providing sufficient storage in s.

Note

The minimal size of the buffer s depends on the choice of radix. For example, if the radix is 2 (binary), you
need to supply a buffer with a minimal length of 8 ∗ sizeof (unsigned long int) + 1 characters, i.e. one character
for each bit plus one for the string terminator. Using a larger radix will require a smaller minimal buffer size.

Warning

If the buffer is too small, you risk a buffer overflow.

Conversion is done using the radix as base, which may be a number between 2 (binary conversion) and up to
36. If radix is greater than 10, the next digit after '9' will be the letter 'a'.

The ultoa() function returns the pointer passed as s.

21.10.4.39 utoa() char ∗ utoa (

unsigned int val,

char ∗ s,

int radix)

Convert an unsigned integer to a string.

The function utoa() converts the unsigned integer value from val into an ASCII representation that will be stored
under s. The caller is responsible for providing sufficient storage in s.

Note

The minimal size of the buffer s depends on the choice of radix. For example, if the radix is 2 (binary), you
need to supply a buffer with a minimal length of 8 ∗ sizeof (unsigned int) + 1 characters, i.e. one character for
each bit plus one for the string terminator. Using a larger radix will require a smaller minimal buffer size.

Warning

If the buffer is too small, you risk a buffer overflow.

Conversion is done using the radix as base, which may be a number between 2 (binary conversion) and up to
36. If radix is greater than 10, the next digit after '9' will be the letter 'a'.

The utoa() function returns the pointer passed as s.

21.10.5 Variable Documentation

Generated by Doxygen

184

21.10.5.1 __malloc_heap_end char∗ __malloc_heap_end [extern]

malloc() tunable.

21.10.5.2 __malloc_heap_start char∗ __malloc_heap_start [extern]

malloc() tunable.

21.10.5.3 __malloc_margin size_t __malloc_margin [extern]

malloc() tunable.

21.11 <string.h>: Strings

Macros

• #define _FFS(x)

Functions

• int ffs (int __val)
• int ffsl (long __val)
• int ffsll (long long __val)
• void ∗ memccpy (void ∗, const void ∗, int, size_t)
• void ∗ memchr (const void ∗, int, size_t)
• int memcmp (const void ∗, const void ∗, size_t)
• void ∗ memcpy (void ∗, const void ∗, size_t)
• void ∗ memmem (const void ∗, size_t, const void ∗, size_t)
• void ∗ memmove (void ∗, const void ∗, size_t)
• void ∗ memrchr (const void ∗, int, size_t)
• void ∗ memset (void ∗, int, size_t)
• char ∗ strcat (char ∗, const char ∗)
• char ∗ strchr (const char ∗, int)
• char ∗ strchrnul (const char ∗, int)
• int strcmp (const char ∗, const char ∗)
• char ∗ strcpy (char ∗, const char ∗)
• int strcasecmp (const char ∗, const char ∗)
• char ∗ strcasestr (const char ∗, const char ∗)
• size_t strcspn (const char ∗__s, const char ∗__reject)
• char ∗ strdup (const char ∗s1)
• char ∗ strndup (const char ∗s, size_t n)
• size_t strlcat (char ∗, const char ∗, size_t)
• size_t strlcpy (char ∗, const char ∗, size_t)
• size_t strlen (const char ∗)
• char ∗ strlwr (char ∗)
• char ∗ strncat (char ∗, const char ∗, size_t)
• int strncmp (const char ∗, const char ∗, size_t)
• char ∗ strncpy (char ∗, const char ∗, size_t)
• int strncasecmp (const char ∗, const char ∗, size_t)
• size_t strnlen (const char ∗, size_t)
• char ∗ strpbrk (const char ∗__s, const char ∗__accept)
• char ∗ strrchr (const char ∗, int)
• char ∗ strrev (char ∗)
• char ∗ strsep (char ∗∗, const char ∗)
• size_t strspn (const char ∗__s, const char ∗__accept)
• char ∗ strstr (const char ∗, const char ∗)
• char ∗ strtok (char ∗, const char ∗)
• char ∗ strtok_r (char ∗, const char ∗, char ∗∗)
• char ∗ strupr (char ∗)

Generated by Doxygen

21.11 <string.h>: Strings 185

21.11.1 Detailed Description

#include <string.h>

The string functions perform string operations on NULL terminated strings.

Note

If the strings you are working on resident in program space (flash), you will need to use the string functions
described in <avr/pgmspace.h>: Program Space Utilities.

21.11.2 Macro Definition Documentation

21.11.2.1 _FFS #define _FFS(

x)

This macro finds the first (least significant) bit set in the input value.

This macro is very similar to the function ffs() except that it evaluates its argument at compile-time, so it should only
be applied to compile-time constant expressions where it will reduce to a constant itself. Application of this macro to
expressions that are not constant at compile-time is not recommended, and might result in a huge amount of code
generated.

Returns

The _FFS() macro returns the position of the first (least significant) bit set in the word val, or 0 if no bits are
set. The least significant bit is position 1. Only 16 bits of argument are evaluted.

21.11.3 Function Documentation

21.11.3.1 ffs() int ffs (

int val)

This function finds the first (least significant) bit set in the input value.

Returns

The ffs() function returns the position of the first (least significant) bit set in the word val, or 0 if no bits are
set. The least significant bit is position 1.

Note

For expressions that are constant at compile time, consider using the _FFS macro instead.

Generated by Doxygen

186

21.11.3.2 ffsl() int ffsl (

long __val)

Same as ffs(), for an argument of type long.

21.11.3.3 ffsll() int ffsll (

long long __val)

Same as ffs(), for an argument of type long long.

21.11.3.4 memccpy() void ∗ memccpy (

void ∗ dest,

const void ∗ src,

int val,

size_t len)

Copy memory area.

The memccpy() function copies no more than len bytes from memory area src to memory area dest, stopping
when the character val is found.

Returns

The memccpy() function returns a pointer to the next character in dest after val, or NULL if val was not
found in the first len characters of src.

21.11.3.5 memchr() void ∗ memchr (

const void ∗ src,

int val,

size_t len)

Scan memory for a character.

The memchr() function scans the first len bytes of the memory area pointed to by src for the character val. The first
byte to match val (interpreted as an unsigned character) stops the operation.

Returns

The memchr() function returns a pointer to the matching byte or NULL if the character does not occur in the
given memory area.

Generated by Doxygen

21.11 <string.h>: Strings 187

21.11.3.6 memcmp() int memcmp (

const void ∗ s1,

const void ∗ s2,

size_t len)

Compare memory areas.

The memcmp() function compares the first len bytes of the memory areas s1 and s2. The comparision is performed
using unsigned char operations.

Returns

The memcmp() function returns an integer less than, equal to, or greater than zero if the first len bytes of s1 is
found, respectively, to be less than, to match, or be greater than the first len bytes of s2.

Note

Be sure to store the result in a 16 bit variable since you may get incorrect results if you use an unsigned char
or char due to truncation.

Warning

This function is not -mint8 compatible, although if you only care about testing for equality, this function should
be safe to use.

21.11.3.7 memcpy() void ∗ memcpy (

void ∗ dest,

const void ∗ src,

size_t len)

Copy a memory area.

The memcpy() function copies len bytes from memory area src to memory area dest. The memory areas may not
overlap. Use memmove() if the memory areas do overlap.

Returns

The memcpy() function returns a pointer to dest.

21.11.3.8 memmem() void ∗ memmem (

const void ∗ s1,

size_t len1,

const void ∗ s2,

size_t len2)

The memmem() function finds the start of the first occurrence of the substring s2 of length len2 in the memory
area s1 of length len1.

Returns

The memmem() function returns a pointer to the beginning of the substring, or NULL if the substring is not
found. If len2 is zero, the function returns s1.

Generated by Doxygen

188

21.11.3.9 memmove() void ∗ memmove (

void ∗ dest,

const void ∗ src,

size_t len)

Copy memory area.

The memmove() function copies len bytes from memory area src to memory area dest. The memory areas may
overlap.

Returns

The memmove() function returns a pointer to dest.

21.11.3.10 memrchr() void ∗ memrchr (

const void ∗ src,

int val,

size_t len)

The memrchr() function is like the memchr() function, except that it searches backwards from the end of the len
bytes pointed to by src instead of forwards from the front. (Glibc, GNU extension.)

Returns

The memrchr() function returns a pointer to the matching byte or NULL if the character does not occur in the
given memory area.

21.11.3.11 memset() void ∗ memset (

void ∗ dest,

int val,

size_t len)

Fill memory with a constant byte.

The memset() function fills the first len bytes of the memory area pointed to by dest with the constant byte val.

Returns

The memset() function returns a pointer to the memory area dest.

Generated by Doxygen

21.11 <string.h>: Strings 189

21.11.3.12 strcasecmp() int strcasecmp (

const char ∗ s1,

const char ∗ s2)

Compare two strings ignoring case.

The strcasecmp() function compares the two strings s1 and s2, ignoring the case of the characters.

Returns

The strcasecmp() function returns an integer less than, equal to, or greater than zero if s1 is found, respec-
tively, to be less than, to match, or be greater than s2. A consequence of the ordering used by strcasecmp()
is that if s1 is an initial substring of s2, then s1 is considered to be "less than" s2.

21.11.3.13 strcasestr() char ∗ strcasestr (

const char ∗ s1,

const char ∗ s2)

The strcasestr() function finds the first occurrence of the substring s2 in the string s1. This is like strstr(), except
that it ignores case of alphabetic symbols in searching for the substring. (Glibc, GNU extension.)

Returns

The strcasestr() function returns a pointer to the beginning of the substring, or NULL if the substring is not
found. If s2 points to a string of zero length, the function returns s1.

21.11.3.14 strcat() char ∗ strcat (

char ∗ dest,

const char ∗ src)

Concatenate two strings.

The strcat() function appends the src string to the dest string overwriting the '\0' character at the end of dest, and
then adds a terminating '\0' character. The strings may not overlap, and the dest string must have enough space for
the result.

Returns

The strcat() function returns a pointer to the resulting string dest.

21.11.3.15 strchr() char ∗ strchr (

const char ∗ src,

int val)

Locate character in string.

Returns

The strchr() function returns a pointer to the first occurrence of the character val in the string src, or NULL
if the character is not found.

Here "character" means "byte" – these functions do not work with wide or multi-byte characters.

Generated by Doxygen

190

21.11.3.16 strchrnul() char ∗ strchrnul (

const char ∗ s,

int c)

The strchrnul() function is like strchr() except that if c is not found in s, then it returns a pointer to the null byte at
the end of s, rather than NULL. (Glibc, GNU extension.)

Returns

The strchrnul() function returns a pointer to the matched character, or a pointer to the null byte at the end of s
(i.e., s+strlen(s)) if the character is not found.

21.11.3.17 strcmp() int strcmp (

const char ∗ s1,

const char ∗ s2)

Compare two strings.

The strcmp() function compares the two strings s1 and s2.

Returns

The strcmp() function returns an integer less than, equal to, or greater than zero if s1 is found, respectively,
to be less than, to match, or be greater than s2. A consequence of the ordering used by strcmp() is that if s1
is an initial substring of s2, then s1 is considered to be "less than" s2.

21.11.3.18 strcpy() char ∗ strcpy (

char ∗ dest,

const char ∗ src)

Copy a string.

The strcpy() function copies the string pointed to by src (including the terminating '\0' character) to the array pointed
to by dest. The strings may not overlap, and the destination string dest must be large enough to receive the copy.

Returns

The strcpy() function returns a pointer to the destination string dest.

Note

If the destination string of a strcpy() is not large enough (that is, if the programmer was stupid/lazy, and failed
to check the size before copying) then anything might happen. Overflowing fixed length strings is a favourite
cracker technique.

Generated by Doxygen

21.11 <string.h>: Strings 191

21.11.3.19 strcspn() size_t strcspn (

const char ∗ s,

const char ∗ reject)

The strcspn() function calculates the length of the initial segment of s which consists entirely of characters not in
reject.

Returns

The strcspn() function returns the number of characters in the initial segment of s which are not in the string
reject. The terminating zero is not considered as a part of string.

21.11.3.20 strdup() char ∗ strdup (

const char ∗ s1)

Duplicate a string.

The strdup() function allocates memory and copies into it the string addressed by s1, including the terminating null
character.

Warning

The strdup() function calls malloc() to allocate the memory for the duplicated string! The user is responsible
for freeing the memory by calling free().

Returns

The strdup() function returns a pointer to the resulting string dest. If malloc() cannot allocate enough storage
for the string, strdup() will return NULL.

Warning

Be sure to check the return value of the strdup() function to make sure that the function has succeeded in
allocating the memory!

21.11.3.21 strlcat() size_t strlcat (

char ∗ dst,

const char ∗ src,

size_t siz)

Concatenate two strings.

Appends src to string dst of size siz (unlike strncat(), siz is the full size of dst, not space left). At most
siz-1 characters will be copied. Always '\0' terminated (unless siz <= strlen(dst)).

Returns

The strlcat() function returns strlen(src) + MIN(siz, strlen(initial dst)). If retval >= siz, truncation occurred.

Appends src to string dst of size siz (unlike strncat(), siz is the full size of dst, not space left). At most siz-1 characters
will be copied. Always NULL terminates (unless siz <= strlen(dst)).

Returns

The strlcat() function returns strlen(src) + MIN(siz, strlen(initial dst)). If retval >= siz, truncation occurred.

Generated by Doxygen

192

21.11.3.22 strlcpy() size_t strlcpy (

char ∗ dst,

const char ∗ src,

size_t siz)

Copy a string.

Copy src to string dst of size siz. At most siz-1 characters will be copied. Always '\0' terminated (unless siz
== 0).

Returns

The strlcpy() function returns strlen(src). If retval >= siz, truncation occurred.

Copy src to string dst of size siz. At most siz-1 characters will be copied. Always NULL terminates (unless siz ==
0).

Returns

The strlcpy() function returns strlen(src). If retval >= siz, truncation occurred.

21.11.3.23 strlen() size_t strlen (

const char ∗ src)

Calculate the length of a string.

The strlen() function calculates the length of the string src, not including the terminating '\0' character.

Returns

The strlen() function returns the number of characters in src.

21.11.3.24 strlwr() char ∗ strlwr (

char ∗ s)

Convert a string to lower case.

The strlwr() function will convert a string to lower case. Only the upper case alphabetic characters [A .. Z] are
converted. Non-alphabetic characters will not be changed.

Returns

The strlwr() function returns a pointer to the converted string. Conversion is perfomed in-place.

Generated by Doxygen

21.11 <string.h>: Strings 193

21.11.3.25 strncasecmp() int strncasecmp (

const char ∗ s1,

const char ∗ s2,

size_t len)

Compare two strings ignoring case.

The strncasecmp() function is similar to strcasecmp(), except it only compares the first len characters of s1.

Returns

The strncasecmp() function returns an integer less than, equal to, or greater than zero if s1 (or the first len
bytes thereof) is found, respectively, to be less than, to match, or be greater than s2. A consequence of the
ordering used by strncasecmp() is that if s1 is an initial substring of s2, then s1 is considered to be "less
than" s2.

21.11.3.26 strncat() char ∗ strncat (

char ∗ dest,

const char ∗ src,

size_t len)

Concatenate two strings.

The strncat() function is similar to strcat(), except that only the first len characters of src are appended to dest.

Returns

The strncat() function returns a pointer to the resulting string dest.

21.11.3.27 strncmp() int strncmp (

const char ∗ s1,

const char ∗ s2,

size_t len)

Compare two strings.

The strncmp() function is similar to strcmp(), except it only compares the first (at most) len characters of s1 and
s2.

Returns

The strncmp() function returns an integer less than, equal to, or greater than zero if s1 (or the first len bytes
thereof) is found, respectively, to be less than, to match, or be greater than s2.

Generated by Doxygen

194

21.11.3.28 strncpy() char ∗ strncpy (

char ∗ dest,

const char ∗ src,

size_t len)

Copy a string.

The strncpy() function is similar to strcpy(), except that not more than len bytes of src are copied. Thus, if there
is no null byte among the first len bytes of src, the result will not be null-terminated.

In the case where the length of src is less than that of len, the remainder of dest will be padded with nulls
('\0').

Returns

The strncpy() function returns a pointer to the destination string dest.

21.11.3.29 strndup() char ∗ strndup (

const char ∗ s,

size_t len)

Duplicate a string.

The strndup() function is similar to strdup(), but copies at most len bytes. If s is longer than len, only len bytes
are copied, and a terminating null byte ('\0') is added.

Memory for the new string is obtained with malloc(), and can be freed with free().

Returns

The strndup() function returns the location of the newly malloc'ed memory, or NULL if the allocation failed.

21.11.3.30 strnlen() size_t strnlen (

const char ∗ src,

size_t len)

Determine the length of a fixed-size string.

The strnlen() function returns the number of characters in the string pointed to by src, not including the terminating
'\0' character, but at most len. In doing this, strnlen() looks only at the first len characters at src and never
beyond src + len.

Returns

The strnlen function returns strlen(src), if that is less than len, or len if there is no '\0' character among the
first len characters pointed to by src.

Generated by Doxygen

21.11 <string.h>: Strings 195

21.11.3.31 strpbrk() char ∗ strpbrk (

const char ∗ s,

const char ∗ accept)

The strpbrk() function locates the first occurrence in the string s of any of the characters in the string accept.

Returns

The strpbrk() function returns a pointer to the character in s that matches one of the characters in accept,
or NULL if no such character is found. The terminating zero is not considered as a part of string: if one or
both args are empty, the result will be NULL.

21.11.3.32 strrchr() char ∗ strrchr (

const char ∗ src,

int val)

Locate character in string.

The strrchr() function returns a pointer to the last occurrence of the character val in the string src.

Here "character" means "byte" – these functions do not work with wide or multi-byte characters.

Returns

The strrchr() function returns a pointer to the matched character or NULL if the character is not found.

21.11.3.33 strrev() char ∗ strrev (

char ∗ s)

Reverse a string.

The strrev() function reverses the order of the string.

Returns

The strrev() function returns a pointer to the beginning of the reversed string.

21.11.3.34 strsep() char ∗ strsep (

char ∗∗ sp,

const char ∗ delim)

Parse a string into tokens.

The strsep() function locates, in the string referenced by ∗sp, the first occurrence of any character in the string
delim (or the terminating '\0' character) and replaces it with a '\0'. The location of the next character after the
delimiter character (or NULL, if the end of the string was reached) is stored in ∗sp. An ``empty'' field, i.e. one
caused by two adjacent delimiter characters, can be detected by comparing the location referenced by the pointer
returned in ∗sp to '\0'.

Returns

The strsep() function returns a pointer to the original value of ∗sp. If ∗sp is initially NULL, strsep() returns
NULL.

Generated by Doxygen

196

21.11.3.35 strspn() size_t strspn (

const char ∗ s,

const char ∗ accept)

The strspn() function calculates the length of the initial segment of s which consists entirely of characters in
accept.

Returns

The strspn() function returns the number of characters in the initial segment of s which consist only of char-
acters from accept. The terminating zero is not considered as a part of string.

21.11.3.36 strstr() char ∗ strstr (

const char ∗ s1,

const char ∗ s2)

Locate a substring.

The strstr() function finds the first occurrence of the substring s2 in the string s1. The terminating '\0' characters
are not compared.

Returns

The strstr() function returns a pointer to the beginning of the substring, or NULL if the substring is not found.
If s2 points to a string of zero length, the function returns s1.

21.11.3.37 strtok() char ∗ strtok (

char ∗ s,

const char ∗ delim)

Parses the string s into tokens.

strtok parses the string s into tokens. The first call to strtok should have s as its first argument. Subsequent calls
should have the first argument set to NULL. If a token ends with a delimiter, this delimiting character is overwritten
with a '\0' and a pointer to the next character is saved for the next call to strtok. The delimiter string delim may be
different for each call.

Returns

The strtok() function returns a pointer to the next token or NULL when no more tokens are found.

Note

strtok() is NOT reentrant. For a reentrant version of this function see strtok_r().

Generated by Doxygen

21.12 <time.h>: Time 197

21.11.3.38 strtok_r() char ∗ strtok_r (

char ∗ string,

const char ∗ delim,

char ∗∗ last)

Parses string into tokens.

strtok_r parses string into tokens. The first call to strtok_r should have string as its first argument. Subsequent calls
should have the first argument set to NULL. If a token ends with a delimiter, this delimiting character is overwritten
with a '\0' and a pointer to the next character is saved for the next call to strtok_r. The delimiter string delim may
be different for each call. last is a user allocated char∗ pointer. It must be the same while parsing the same string.
strtok_r is a reentrant version of strtok().

Returns

The strtok_r() function returns a pointer to the next token or NULL when no more tokens are found.

21.11.3.39 strupr() char ∗ strupr (

char ∗ s)

Convert a string to upper case.

The strupr() function will convert a string to upper case. Only the lower case alphabetic characters [a .. z] are
converted. Non-alphabetic characters will not be changed.

Returns

The strupr() function returns a pointer to the converted string. The pointer is the same as that passed in since
the operation is perform in place.

21.12 <time.h>: Time

Data Structures

• struct tm
• struct week_date

Macros

• #define ONE_HOUR 3600
• #define ONE_DEGREE 3600
• #define ONE_DAY 86400
• #define UNIX_OFFSET 946684800
• #define NTP_OFFSET 3155673600

Typedefs

• typedef uint32_t time_t

Generated by Doxygen

198

Enumerations

• enum _WEEK_DAYS_ {
SUNDAY , MONDAY , TUESDAY , WEDNESDAY ,
THURSDAY , FRIDAY , SATURDAY }

• enum _MONTHS_ {
JANUARY , FEBRUARY , MARCH , APRIL ,
MAY , JUNE , JULY , AUGUST ,
SEPTEMBER , OCTOBER , NOVEMBER , DECEMBER }

Functions

• time_t time (time_t ∗timer)
• int32_t difftime (time_t time1, time_t time0)
• time_t mktime (struct tm ∗timeptr)
• time_t mk_gmtime (const struct tm ∗timeptr)
• struct tm ∗ gmtime (const time_t ∗timer)
• void gmtime_r (const time_t ∗timer, struct tm ∗timeptr)
• struct tm ∗ localtime (const time_t ∗timer)
• void localtime_r (const time_t ∗timer, struct tm ∗timeptr)
• char ∗ asctime (const struct tm ∗timeptr)
• void asctime_r (const struct tm ∗timeptr, char ∗buf)
• char ∗ ctime (const time_t ∗timer)
• void ctime_r (const time_t ∗timer, char ∗buf)
• char ∗ isotime (const struct tm ∗tmptr)
• void isotime_r (const struct tm ∗, char ∗)
• size_t strftime (char ∗s, size_t maxsize, const char ∗format, const struct tm ∗timeptr)
• void set_dst (int(∗)(const time_t ∗, int32_t ∗))
• void set_zone (int32_t)
• void set_system_time (time_t timestamp)
• void system_tick (void)
• uint8_t is_leap_year (int16_t year)
• uint8_t month_length (int16_t year, uint8_t month)
• uint8_t week_of_year (const struct tm ∗timeptr, uint8_t start)
• uint8_t week_of_month (const struct tm ∗timeptr, uint8_t start)
• struct week_date ∗ iso_week_date (int year, int yday)
• void iso_week_date_r (int year, int yday, struct week_date ∗)
• uint32_t fatfs_time (const struct tm ∗timeptr)
• void set_position (int32_t latitude, int32_t longitude)
• int16_t equation_of_time (const time_t ∗timer)
• int32_t daylight_seconds (const time_t ∗timer)
• time_t solar_noon (const time_t ∗timer)
• time_t sun_rise (const time_t ∗timer)
• time_t sun_set (const time_t ∗timer)
• float solar_declinationf (const time_t ∗timer)
• double solar_declination (const time_t ∗timer)
• long double solar_declinationl (const time_t ∗timer)
• int8_t moon_phase (const time_t ∗timer)
• unsigned long gm_sidereal (const time_t ∗timer)
• unsigned long lm_sidereal (const time_t ∗timer)

21.12.1 Detailed Description

#include <time.h>

Generated by Doxygen

21.12 <time.h>: Time 199

Introduction to the Time functions This file declares the time functions implemented in AVR-LibC.

The implementation aspires to conform with ISO/IEC 9899 (C90). However, due to limitations of the target processor
and the nature of its development environment, a practical implementation must of necessity deviate from the
standard.

Section 7.23.2.1 clock() The type clock_t, the macro CLOCKS_PER_SEC, and the function clock() are not imple-
mented. We consider these items belong to operating system code, or to application code when no operating
system is present.

Section 7.23.2.3 mktime() The standard specifies that mktime() should return (time_t) -1, if the time cannot be
represented. This implementation always returns a 'best effort' representation.

Section 7.23.2.4 time() The standard specifies that time() should return (time_t) -1, if the time is not available. Since
the application must initialize the time system, this functionality is not implemented.

Section 7.23.2.2, difftime() Due to the lack of a 64 bit double, the function difftime() returns a long integer. In most
cases this change will be invisible to the user, handled automatically by the compiler.

Section 7.23.1.4 struct tm Per the standard, struct tm->tm_isdst is greater than zero when Daylight Saving time is
in effect. This implementation further specifies that, when positive, the value of tm_isdst represents the amount time
is advanced during Daylight Saving time.

Section 7.23.3.5 strftime() Only the 'C' locale is supported, therefore the modifiers 'E' and 'O' are ignored. The 'Z'
conversion is also ignored, due to the lack of time zone name.

In addition to the above departures from the standard, there are some behaviors which are different from what is
often expected, though allowed under the standard.

There is no 'platform standard' method to obtain the current time, time zone, or daylight savings 'rules' in the AVR en-
vironment. Therefore the application must initialize the time system with this information. The functions set_zone(),
set_dst(), and set_system_time() are provided for initialization. Once initialized, system time is maintained by calling
the function system_tick() at one second intervals.

Though not specified in the standard, it is often expected that time_t is a signed integer representing an offset in
seconds from Midnight Jan 1 1970... i.e. 'Unix time'. This implementation uses an unsigned 32 bit integer offset from
Midnight Jan 1 2000. The use of this 'epoch' helps to simplify the conversion functions, while the 32 bit value allows
time to be properly represented until Tue Feb 7 06:28:15 2136 UTC. The macros UNIX_OFFSET and NTP_OFFSET
are defined to assist in converting to and from Unix and NTP time stamps.

Unlike desktop counterparts, it is impractical to implement or maintain the 'zoneinfo' database. Therefore no attempt
is made to account for time zone, daylight saving, or leap seconds in past dates. All calculations are made according
to the currently configured time zone and daylight saving 'rule'.

In addition to C standard functions, re-entrant versions of ctime(), asctime(), gmtime() and localtime() are provided
which, in addition to being re-entrant, have the property of claiming less permanent storage in RAM. An additional
time conversion, isotime() and its re-entrant version, uses far less storage than either ctime() or asctime().

Along with the usual smattering of utility functions, such as is_leap_year(), this library includes a set of functions
related the sun and moon, as well as sidereal time functions.

21.12.2 Macro Definition Documentation

Generated by Doxygen

200

21.12.2.1 NTP_OFFSET #define NTP_OFFSET 3155673600

Difference between the Y2K and the NTP epochs, in seconds. To convert a Y2K timestamp to NTP...
unsigned long ntp;
time_t y2k;

y2k = time(NULL);
ntp = y2k + NTP_OFFSET;

21.12.2.2 ONE_DAY #define ONE_DAY 86400

One day, expressed in seconds

21.12.2.3 ONE_DEGREE #define ONE_DEGREE 3600

Angular degree, expressed in arc seconds

21.12.2.4 ONE_HOUR #define ONE_HOUR 3600

One hour, expressed in seconds

21.12.2.5 UNIX_OFFSET #define UNIX_OFFSET 946684800

Difference between the Y2K and the UNIX epochs, in seconds. To convert a Y2K timestamp to UNIX...
long unix;
time_t y2k;

y2k = time(NULL);
unix = y2k + UNIX_OFFSET;

21.12.3 Typedef Documentation

21.12.3.1 time_t typedef uint32_t time_t

time_t represents seconds elapsed from Midnight, Jan 1 2000 UTC (the Y2K 'epoch'). Its range allows this imple-
mentation to represent time up to Tue Feb 7 06:28:15 2136 UTC.

21.12.4 Enumeration Type Documentation

21.12.4.1 _MONTHS_ enum _MONTHS_

Enumerated labels for the months.

Generated by Doxygen

21.12 <time.h>: Time 201

21.12.4.2 _WEEK_DAYS_ enum _WEEK_DAYS_

Enumerated labels for the days of the week.

21.12.5 Function Documentation

21.12.5.1 asctime() char ∗ asctime (

const struct tm ∗ timeptr)

The asctime function converts the broken-down time of timeptr, into an ascii string in the form

Sun Mar 23 01:03:52 2013

21.12.5.2 asctime_r() void asctime_r (

const struct tm ∗ timeptr,

char ∗ buf)

Re entrant version of asctime().

21.12.5.3 ctime() char ∗ ctime (

const time_t ∗ timer)

The ctime function is equivalent to asctime(localtime(timer))

21.12.5.4 ctime_r() void ctime_r (

const time_t ∗ timer,

char ∗ buf)

Re entrant version of ctime().

21.12.5.5 daylight_seconds() int32_t daylight_seconds (

const time_t ∗ timer)

Computes the amount of time the sun is above the horizon, at the location of the observer.

NOTE: At observer locations inside a polar circle, this value can be zero during the winter, and can exceed ONE←↩

_DAY during the summer.

The returned value is in seconds.

21.12.5.6 difftime() int32_t difftime (

time_t time1,

time_t time0)

The difftime function returns the difference between two binary time stamps, time1 - time0.

Generated by Doxygen

202

21.12.5.7 equation_of_time() int16_t equation_of_time (

const time_t ∗ timer)

Computes the difference between apparent solar time and mean solar time. The returned value is in seconds.

21.12.5.8 fatfs_time() uint32_t fatfs_time (

const struct tm ∗ timeptr)

Convert a Y2K time stamp into a FAT file system time stamp.

21.12.5.9 gm_sidereal() unsigned long gm_sidereal (

const time_t ∗ timer)

Returns Greenwich Mean Sidereal Time, as seconds into the sidereal day. The returned value will range from 0
through 86399 seconds.

21.12.5.10 gmtime() struct tm ∗ gmtime (

const time_t ∗ timer)

The gmtime function converts the time stamp pointed to by timer into broken-down time, expressed as UTC.

21.12.5.11 gmtime_r() void gmtime_r (

const time_t ∗ timer,

struct tm ∗ timeptr)

Re entrant version of gmtime().

21.12.5.12 is_leap_year() uint8_t is_leap_year (

int16_t year)

Return 1 if year is a leap year, zero if it is not.

21.12.5.13 iso_week_date() struct week_date ∗ iso_week_date (

int year,

int yday)

Return a week_date structure with the ISO_8601 week based date corresponding to the given year and day of year.
See http://en.wikipedia.org/wiki/ISO_week_date for more information.

21.12.5.14 iso_week_date_r() void iso_week_date_r (

int year,

int yday,

struct week_date ∗ iso)

Re-entrant version of iso-week_date.

Generated by Doxygen

http://en.wikipedia.org/wiki/ISO_week_date

21.12 <time.h>: Time 203

21.12.5.15 isotime() char ∗ isotime (

const struct tm ∗ tmptr)

The isotime function constructs an ascii string in the form
2013-03-23 01:03:52

21.12.5.16 isotime_r() void isotime_r (

const struct tm ∗ tmptr,

char ∗ buffer)

Re entrant version of isotime()

21.12.5.17 lm_sidereal() unsigned long lm_sidereal (

const time_t ∗ timer)

Returns Local Mean Sidereal Time, as seconds into the sidereal day. The returned value will range from 0 through
86399 seconds.

21.12.5.18 localtime() struct tm ∗ localtime (

const time_t ∗ timer)

The localtime function converts the time stamp pointed to by timer into broken-down time, expressed as Local time.

21.12.5.19 localtime_r() void localtime_r (

const time_t ∗ timer,

struct tm ∗ timeptr)

Re entrant version of localtime().

21.12.5.20 mk_gmtime() time_t mk_gmtime (

const struct tm ∗ timeptr)

This function 'compiles' the elements of a broken-down time structure, returning a binary time stamp. The elements
of timeptr are interpreted as representing UTC.

The original values of the tm_wday and tm_yday elements of the structure are ignored, and the original values of
the other elements are not restricted to the ranges stated for struct tm.

Unlike mktime(), this function DOES NOT modify the elements of timeptr.

21.12.5.21 mktime() time_t mktime (

struct tm ∗ timeptr)

This function 'compiles' the elements of a broken-down time structure, returning a binary time stamp. The elements
of timeptr are interpreted as representing Local Time.

The original values of the tm_wday and tm_yday elements of the structure are ignored, and the original values of
the other elements are not restricted to the ranges stated for struct tm.

The element tm_isdst is used for input and output. If set to 0 or a positive value on input, this requests calculation
for Daylight Savings Time being off or on, respectively. If set to a negative value on input, it requests calculation to
return whether Daylight Savings Time is in effect or not according to the other values.

On successful completion, the values of all elements of timeptr are set to the appropriate range.

Generated by Doxygen

204

21.12.5.22 month_length() uint8_t month_length (

int16_t year,

uint8_t month)

Return the length of month, given the year and month, where month is in the range 1 to 12.

21.12.5.23 moon_phase() int8_t moon_phase (

const time_t ∗ timer)

Returns an approximation to the phase of the moon. The sign of the returned value indicates a waning or waxing
phase. The magnitude of the returned value indicates the percentage illumination.

21.12.5.24 set_dst() void set_dst (

int(∗)(const time_t ∗, int32_t ∗) d)

Specify the Daylight Saving function.

The Daylight Saving function should examine its parameters to determine whether Daylight Saving is in effect, and
return a value appropriate for tm_isdst.

Working examples for the USA and the EU are available..
#include <util/eu_dst.h>

for the European Union, and
#include <util/usa_dst.h>

for the United States

If a Daylight Saving function is not specified, the system will ignore Daylight Saving.

21.12.5.25 set_position() void set_position (

int32_t latitude,

int32_t longitude)

Set the geographic coordinates of the 'observer', for use with several of the following functions. Parameters are
passed as seconds of North Latitude, and seconds of East Longitude.

For New York City...
set_position(40.7142 * ONE_DEGREE, -74.0064 * ONE_DEGREE);

21.12.5.26 set_system_time() void set_system_time (

time_t timestamp)

Initialize the system time. Examples are...

From a Clock / Calendar type RTC:
struct tm rtc_time;

read_rtc(&rtc_time);
rtc_time.tm_isdst = 0;
set_system_time(mktime(&rtc_time));

From a Network Time Protocol time stamp:
set_system_time(ntp_timestamp - NTP_OFFSET);

From a UNIX time stamp:
set_system_time(unix_timestamp - UNIX_OFFSET);

Generated by Doxygen

21.12 <time.h>: Time 205

21.12.5.27 set_zone() void set_zone (

int32_t)

Set the 'time zone'. The parameter is given in seconds East of the Prime Meridian. Example for New York City:
set_zone(-5 * ONE_HOUR);

If the time zone is not set, the time system will operate in UTC only.

21.12.5.28 solar_declination() double solar_declination (

const time_t ∗ timer)

Returns the declination of the sun in radians.

This implementation is only available when double is a 32-bit type.

21.12.5.29 solar_declinationf() float solar_declinationf (

const time_t ∗ timer)

Returns the declination of the sun in radians.

21.12.5.30 solar_declinationl() long double solar_declinationl (

const time_t ∗ timer)

Returns the declination of the sun in radians.

This implementation is only available when long double is a 32-bit type.

21.12.5.31 solar_noon() time_t solar_noon (

const time_t ∗ timer)

Computes the time of solar noon, at the location of the observer.

21.12.5.32 strftime() size_t strftime (

char ∗ s,

size_t maxsize,

const char ∗ format,

const struct tm ∗ timeptr)

A complete description of strftime() is beyond the pale of this document. Refer to ISO/IEC document 9899 for
details.

All conversions are made using the 'C Locale', ignoring the E or O modifiers. Due to the lack of a time zone 'name',
the 'Z' conversion is also ignored.

21.12.5.33 sun_rise() time_t sun_rise (

const time_t ∗ timer)

Return the time of sunrise, at the location of the observer. See the note about daylight_seconds().

Generated by Doxygen

206

21.12.5.34 sun_set() time_t sun_set (

const time_t ∗ timer)

Return the time of sunset, at the location of the observer. See the note about daylight_seconds().

21.12.5.35 system_tick() void system_tick (

void)

Maintain the system time by calling this function at a rate of 1 Hertz.

It is anticipated that this function will typically be called from within an Interrupt Service Routine, (though that is not
required). It therefore includes code which makes it simple to use from within a 'Naked' ISR, avoiding the cost of
saving and restoring all the cpu registers.

Such an ISR may resemble the following example...
ISR(RTC_OVF_vect, ISR_NAKED)
{

system_tick();
reti();

}

21.12.5.36 time() time_t time (

time_t ∗ timer)

The time function returns the systems current time stamp. If timer is not a null pointer, the return value is also
assigned to the object it points to.

21.12.5.37 week_of_month() uint8_t week_of_month (

const struct tm ∗ timeptr,

uint8_t start)

Return the calendar week of month, where the first week is considered to begin on the day of week specified by
'start'. The returned value may range from zero to 5.

21.12.5.38 week_of_year() uint8_t week_of_year (

const struct tm ∗ timeptr,

uint8_t start)

Return the calendar week of year, where week 1 is considered to begin on the day of week specified by 'start'. The
returned value may range from zero to 52.

Generated by Doxygen

21.13 <avr/boot.h>: Bootloader Support Utilities 207

21.13 <avr/boot.h>: Bootloader Support Utilities

Macros

• #define BOOTLOADER_SECTION __attribute__ ((__section__(".bootloader")))
• #define boot_spm_interrupt_enable() (__SPM_REG |= (uint8_t)_BV(SPMIE))
• #define boot_spm_interrupt_disable() (__SPM_REG &= (uint8_t)∼_BV(SPMIE))
• #define boot_is_spm_interrupt() (__SPM_REG & (uint8_t)_BV(SPMIE))
• #define boot_rww_busy() (__SPM_REG & (uint8_t)_BV(__COMMON_ASB))
• #define boot_spm_busy() (__SPM_REG & (uint8_t)_BV(__SPM_ENABLE))
• #define boot_spm_busy_wait() do{}while(boot_spm_busy())
• #define GET_LOW_FUSE_BITS (0x0000)
• #define GET_LOCK_BITS (0x0001)
• #define GET_EXTENDED_FUSE_BITS (0x0002)
• #define GET_HIGH_FUSE_BITS (0x0003)
• #define boot_lock_fuse_bits_get(address)
• #define boot_signature_byte_get(addr)
• #define boot_page_fill(address, data) __boot_page_fill_normal(address, data)
• #define boot_page_erase(address) __boot_page_erase_normal(address)
• #define boot_page_write(address) __boot_page_write_normal(address)
• #define boot_rww_enable() __boot_rww_enable()
• #define boot_lock_bits_set(lock_bits) __boot_lock_bits_set(lock_bits)
• #define boot_page_fill_safe(address, data)
• #define boot_page_erase_safe(address)
• #define boot_page_write_safe(address)
• #define boot_rww_enable_safe()
• #define boot_lock_bits_set_safe(lock_bits)

21.13.1 Detailed Description

#include <avr/io.h>
#include <avr/boot.h>

The macros in this module provide a C language interface to the bootloader support functionality of certain AVR
processors. These macros are designed to work with all sizes of flash memory.

Global interrupts are not automatically disabled for these macros. It is left up to the programmer to do this. See
the code example below. Also see the processor datasheet for caveats on having global interrupts enabled during
writing of the Flash.

Note

Not all AVR processors provide bootloader support. See your processor datasheet to see if it provides boot-
loader support.

Generated by Doxygen

208

API Usage Example

The following code shows typical usage of the boot API.

#include <stdint.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>

void boot_program_page (uint32_t page, uint8_t *buf)
{

// Disable interrupts.
uint8_t sreg = SREG;
cli();

eeprom_busy_wait ();

boot_page_erase (page);
boot_spm_busy_wait (); // Wait until the memory is erased.

for (uint16_t i = 0; i < SPM_PAGESIZE; i += 2)
{

// Set up little-endian word.
uint16_t w = *buf++;
w += (*buf++) « 8;

boot_page_fill (page + i, w);
}

boot_page_write (page); // Store buffer in flash page.
boot_spm_busy_wait(); // Wait until the memory is written.

// Reenable RWW-section again. We need this if we want to jump back
// to the application after bootloading.
boot_rww_enable ();

// Re-enable interrupts (if they were ever enabled).
SREG = sreg;

}

21.13.2 Macro Definition Documentation

21.13.2.1 boot_is_spm_interrupt #define boot_is_spm_interrupt() (__SPM_REG & (uint8_t)_BV(SPMIE))

Check if the SPM interrupt is enabled.

21.13.2.2 boot_lock_bits_set #define boot_lock_bits_set(

lock_bits) __boot_lock_bits_set(lock_bits)

Set the bootloader lock bits.

Parameters

lock_bits A mask of which Boot Loader Lock Bits to set.

Note

In this context, a 'set bit' will be written to a zero value. Note also that only BLBxx bits can be programmed by
this command.

For example, to disallow the SPM instruction from writing to the Boot Loader memory section of flash, you would
use this macro as such:
boot_lock_bits_set (_BV (BLB11));

Generated by Doxygen

21.13 <avr/boot.h>: Bootloader Support Utilities 209

Note

Like any lock bits, the Boot Loader Lock Bits, once set, cannot be cleared again except by a chip erase which
will in turn also erase the boot loader itself.

21.13.2.3 boot_lock_bits_set_safe #define boot_lock_bits_set_safe(

lock_bits)

Value:
do { \

boot_spm_busy_wait(); \
eeprom_busy_wait(); \
boot_lock_bits_set (lock_bits); \

} while (0)

Same as boot_lock_bits_set() except waits for eeprom and spm operations to complete before setting the lock bits.

21.13.2.4 boot_lock_fuse_bits_get #define boot_lock_fuse_bits_get(

address)

Value:
(({ \

uint8_t __result; \
__asm__ __volatile__ \
(\

"sts %1, %2\n\t" \
"lpm %0, Z\n\t" \
: "=r" (__result) \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \
"r" ((uint8_t)(__BOOT_LOCK_BITS_SET)), \
"z" ((uint16_t)(address)) \

); \
__result; \

}))

Read the lock or fuse bits at address.

Parameter address can be any of GET_LOW_FUSE_BITS, GET_LOCK_BITS, GET_EXTENDED_FUSE_BITS,
or GET_HIGH_FUSE_BITS.

Note

The lock and fuse bits returned are the physical values, i.e. a bit returned as 0 means the corresponding fuse
or lock bit is programmed.

21.13.2.5 boot_page_erase #define boot_page_erase(

address) __boot_page_erase_normal(address)

Erase the flash page that contains address.

Note

address is a byte address in flash, not a word address.

Generated by Doxygen

210

21.13.2.6 boot_page_erase_safe #define boot_page_erase_safe(

address)

Value:
do { \

boot_spm_busy_wait(); \
eeprom_busy_wait(); \
boot_page_erase (address); \

} while (0)

Same as boot_page_erase() except it waits for eeprom and spm operations to complete before erasing the page.

21.13.2.7 boot_page_fill #define boot_page_fill(

address,

data) __boot_page_fill_normal(address, data)

Fill the bootloader temporary page buffer for flash address with data word.

Note

The address is a byte address. The data is a word. The AVR writes data to the buffer a word at a time, but
addresses the buffer per byte! So, increment your address by 2 between calls, and send 2 data bytes in a
word format! The LSB of the data is written to the lower address; the MSB of the data is written to the higher
address.

21.13.2.8 boot_page_fill_safe #define boot_page_fill_safe(

address,

data)

Value:
do { \

boot_spm_busy_wait(); \
eeprom_busy_wait(); \
boot_page_fill(address, data); \

} while (0)

Same as boot_page_fill() except it waits for eeprom and spm operations to complete before filling the page.

21.13.2.9 boot_page_write #define boot_page_write(

address) __boot_page_write_normal(address)

Write the bootloader temporary page buffer to flash page that contains address.

Note

address is a byte address in flash, not a word address.

Generated by Doxygen

21.13 <avr/boot.h>: Bootloader Support Utilities 211

21.13.2.10 boot_page_write_safe #define boot_page_write_safe(

address)

Value:
do { \

boot_spm_busy_wait(); \
eeprom_busy_wait(); \
boot_page_write (address); \

} while (0)

Same as boot_page_write() except it waits for eeprom and spm operations to complete before writing the page.

21.13.2.11 boot_rww_busy #define boot_rww_busy() (__SPM_REG & (uint8_t)_BV(__COMMON_ASB))

Check if the RWW section is busy.

21.13.2.12 boot_rww_enable #define boot_rww_enable() __boot_rww_enable()

Enable the Read-While-Write memory section.

21.13.2.13 boot_rww_enable_safe #define boot_rww_enable_safe()

Value:
do { \

boot_spm_busy_wait(); \
eeprom_busy_wait(); \
boot_rww_enable(); \

} while (0)

Same as boot_rww_enable() except waits for eeprom and spm operations to complete before enabling the RWW
mameory.

21.13.2.14 boot_signature_byte_get #define boot_signature_byte_get(

addr)

Value:
(({ \

uint8_t __result; \
__asm__ __volatile__ \
(\

"sts %1, %2" "\n\t" \
"lpm %0, Z" \
: "=r" (__result) \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \
"r" ((uint8_t)(__BOOT_SIGROW_READ)), \
"z" ((uint16_t)(addr)) \

); \
__result; \

}))

Read the Signature Row byte at address. For some MCU types, this function can also retrieve the factory-stored
oscillator calibration bytes.

Parameter address can be 0-0x1f as documented by the datasheet.

Note

The values are MCU type dependent.

Generated by Doxygen

212

21.13.2.15 boot_spm_busy #define boot_spm_busy() (__SPM_REG & (uint8_t)_BV(__SPM_ENABLE))

Check if the SPM instruction is busy.

21.13.2.16 boot_spm_busy_wait #define boot_spm_busy_wait() do{}while(boot_spm_busy())

Wait while the SPM instruction is busy.

21.13.2.17 boot_spm_interrupt_disable #define boot_spm_interrupt_disable() (__SPM_REG &= (uint8_t)∼_BV(SPMIE))

Disable the SPM interrupt.

21.13.2.18 boot_spm_interrupt_enable #define boot_spm_interrupt_enable() (__SPM_REG |= (uint8_t)_BV(SPMIE))

Enable the SPM interrupt.

21.13.2.19 BOOTLOADER_SECTION #define BOOTLOADER_SECTION __attribute__ ((__section__←↩

(".bootloader")))

Used to declare a function or variable to be placed into a new section called .bootloader. This section and its
contents can then be relocated to any address (such as the bootloader NRWW area) at link-time.

21.13.2.20 GET_EXTENDED_FUSE_BITS #define GET_EXTENDED_FUSE_BITS (0x0002)

address to read the extended fuse bits, using boot_lock_fuse_bits_get

21.13.2.21 GET_HIGH_FUSE_BITS #define GET_HIGH_FUSE_BITS (0x0003)

address to read the high fuse bits, using boot_lock_fuse_bits_get

21.13.2.22 GET_LOCK_BITS #define GET_LOCK_BITS (0x0001)

address to read the lock bits, using boot_lock_fuse_bits_get

21.13.2.23 GET_LOW_FUSE_BITS #define GET_LOW_FUSE_BITS (0x0000)

address to read the low fuse bits, using boot_lock_fuse_bits_get

21.14 <avr/cpufunc.h>: Special AVR CPU functions

Macros

• #define _NOP()
• #define _MemoryBarrier()

Generated by Doxygen

21.14 <avr/cpufunc.h>: Special AVR CPU functions 213

Functions

• void ccp_write_io (volatile uint8_t ∗__ioaddr, uint8_t __value)
• void ccp_write_spm (volatile uint8_t ∗__ioaddr, uint8_t __value)

21.14.1 Detailed Description

#include <avr/cpufunc.h>

This header file contains macros that access special functions of the AVR CPU which do not fit into any of the other
header files.

21.14.2 Macro Definition Documentation

21.14.2.1 _MemoryBarrier #define _MemoryBarrier()

Implement a read/write memory barrier. A memory barrier instructs the compiler to not cache any memory data in
registers beyond the barrier. This can sometimes be more effective than blocking certain optimizations by declaring
some object with a volatile qualifier.

See Problems with reordering code for things to be taken into account with respect to compiler optimizations.

21.14.2.2 _NOP #define _NOP()

Execute a no operation (NOP) CPU instruction. This should not be used to implement delays, better use the
functions from <util/delay_basic.h> or <util/delay.h> for this. For debugging purposes, a NOP can be useful
to have an instruction that is guaranteed to be not optimized away by the compiler, so it can always become a
breakpoint in the debugger.

21.14.3 Function Documentation

21.14.3.1 ccp_write_io() void ccp_write_io (

volatile uint8_t ∗ __ioaddr,

uint8_t __value)

Write __value to IO Register Protected (CCP) IO register at __ioaddr. . See also _PROTECTED_WRITE().

21.14.3.2 ccp_write_spm() void ccp_write_spm (

volatile uint8_t ∗ __ioaddr,

uint8_t __value)

Write __value to SPM Instruction Protected (CCP) IO register at __ioaddr. See also _PROTECTED_WRITE_SPM().

Generated by Doxygen

214

21.15 <avr/eeprom.h>: EEPROM handling

Macros

• #define EEMEM __attribute__((__section__(".eeprom")))
• #define eeprom_is_ready()
• #define eeprom_busy_wait() do {} while (!eeprom_is_ready())

Functions

• uint8_t eeprom_read_byte (const uint8_t ∗__p)
• uint16_t eeprom_read_word (const uint16_t ∗__p)
• uint32_t eeprom_read_dword (const uint32_t ∗__p)
• uint64_t eeprom_read_qword (const uint64_t ∗__p)
• float eeprom_read_float (const float ∗__p)
• double eeprom_read_double (const double ∗__p)
• long double eeprom_read_long_double (const long double ∗__p)
• void eeprom_read_block (void ∗__dst, const void ∗__src, size_t __n)
• void eeprom_write_byte (uint8_t ∗__p, uint8_t __value)
• void eeprom_write_word (uint16_t ∗__p, uint16_t __value)
• void eeprom_write_dword (uint32_t ∗__p, uint32_t __value)
• void eeprom_write_qword (uint64_t ∗__p, uint64_t __value)
• void eeprom_write_float (float ∗__p, float __value)
• void eeprom_write_double (double ∗__p, double __value)
• void eeprom_write_long_double (long double ∗__p, long double __value)
• void eeprom_write_block (const void ∗__src, void ∗__dst, size_t __n)
• void eeprom_update_byte (uint8_t ∗__p, uint8_t __value)
• void eeprom_update_word (uint16_t ∗__p, uint16_t __value)
• void eeprom_update_dword (uint32_t ∗__p, uint32_t __value)
• void eeprom_update_qword (uint64_t ∗__p, uint64_t __value)
• void eeprom_update_float (float ∗__p, float __value)
• void eeprom_update_double (double ∗__p, double __value)
• void eeprom_update_long_double (long double ∗__p, long double __value)
• void eeprom_update_block (const void ∗__src, void ∗__dst, size_t __n)

IAR C compatibility defines

• #define _EEPUT(addr, val) eeprom_write_byte ((uint8_t ∗)(addr), (uint8_t)(val))
• #define __EEPUT(addr, val) eeprom_write_byte ((uint8_t ∗)(addr), (uint8_t)(val))
• #define _EEGET(var, addr) (var) = eeprom_read_byte ((const uint8_t ∗)(addr))
• #define __EEGET(var, addr) (var) = eeprom_read_byte ((const uint8_t ∗)(addr))

Generated by Doxygen

21.15 <avr/eeprom.h>: EEPROM handling 215

21.15.1 Detailed Description

#include <avr/eeprom.h>

This header file declares the interface to some simple library routines suitable for handling the data EEPROM
contained in the AVR microcontrollers. The implementation uses a simple polled mode interface. Applications that
require interrupt-controlled EEPROM access to ensure that no time will be wasted in spinloops will have to deploy
their own implementation.

Notes:

• In addition to the write functions there is a set of update ones. This functions read each byte first and skip
the burning if the old value is the same with new. The scaning direction is from high address to low, to obtain
quick return in common cases.

• All of the read/write functions first make sure the EEPROM is ready to be accessed. Since this may cause
long delays if a write operation is still pending, time-critical applications should first poll the EEPROM e. g.
using eeprom_is_ready() before attempting any actual I/O. But this functions does not wait until SELFPRGEN
in SPMCSR becomes zero. Do this manually, if your softwate contains the Flash burning.

• As these functions modify IO registers, they are known to be non-reentrant. If any of these functions are used
from both, standard and interrupt context, the applications must ensure proper protection (e.g. by disabling
interrupts before accessing them).

• All write functions force erase_and_write programming mode.

• For Xmega the EEPROM start address is 0, like other architectures. The reading functions add the 0x2000
value to use EEPROM mapping into data space.

21.15.2 Macro Definition Documentation

21.15.2.1 __EEGET #define __EEGET(

var,

addr) (var) = eeprom_read_byte ((const uint8_t ∗)(addr))

Read a byte from EEPROM. Compatibility define for IAR C.

21.15.2.2 __EEPUT #define __EEPUT(

addr,

val) eeprom_write_byte ((uint8_t ∗)(addr), (uint8_t)(val))

Write a byte to EEPROM. Compatibility define for IAR C.

21.15.2.3 _EEGET #define _EEGET(

var,

addr) (var) = eeprom_read_byte ((const uint8_t ∗)(addr))

Read a byte from EEPROM. Compatibility define for IAR C.

Generated by Doxygen

216

21.15.2.4 _EEPUT #define _EEPUT(

addr,

val) eeprom_write_byte ((uint8_t ∗)(addr), (uint8_t)(val))

Write a byte to EEPROM. Compatibility define for IAR C.

21.15.2.5 EEMEM #define EEMEM __attribute__((__section__(".eeprom")))

Attribute expression causing a variable to be allocated within the .eeprom section.

21.15.2.6 eeprom_busy_wait #define eeprom_busy_wait() do {} while (!eeprom_is_ready())

Loops until the eeprom is no longer busy.

Returns

Nothing.

21.15.2.7 eeprom_is_ready #define eeprom_is_ready()

Returns

1 if EEPROM is ready for a new read/write operation, 0 if not.

21.15.3 Function Documentation

21.15.3.1 eeprom_read_block() void eeprom_read_block (

void ∗ __dst,

const void ∗ __src,

size_t __n)

Read a block of __n bytes from EEPROM address __src to SRAM __dst.

21.15.3.2 eeprom_read_byte() uint8_t eeprom_read_byte (

const uint8_t ∗ __p)

Read one byte from EEPROM address __p.

21.15.3.3 eeprom_read_double() double eeprom_read_double (

const double ∗ __p)

Read one double value (little endian) from EEPROM address __p.

Generated by Doxygen

21.15 <avr/eeprom.h>: EEPROM handling 217

21.15.3.4 eeprom_read_dword() uint32_t eeprom_read_dword (

const uint32_t ∗ __p)

Read one 32-bit double word (little endian) from EEPROM address __p.

21.15.3.5 eeprom_read_float() float eeprom_read_float (

const float ∗ __p)

Read one float value (little endian) from EEPROM address __p.

21.15.3.6 eeprom_read_long_double() long double eeprom_read_long_double (

const long double ∗ __p)

Read one long double value (little endian) from EEPROM address __p.

21.15.3.7 eeprom_read_qword() uint64_t eeprom_read_qword (

const uint64_t ∗ __p)

Read one 64-bit quad word (little endian) from EEPROM address __p.

21.15.3.8 eeprom_read_word() uint16_t eeprom_read_word (

const uint16_t ∗ __p)

Read one 16-bit word (little endian) from EEPROM address __p.

21.15.3.9 eeprom_update_block() void eeprom_update_block (

const void ∗ __src,

void ∗ __dst,

size_t __n)

Update a block of __n bytes at EEPROM address __dst from __src.

Note

The argument order is mismatch with common functions like strcpy().

21.15.3.10 eeprom_update_byte() void eeprom_update_byte (

uint8_t ∗ __p,

uint8_t __value)

Update a byte __value at EEPROM address __p.

21.15.3.11 eeprom_update_double() void eeprom_update_double (

double ∗ __p,

double __value)

Update a double __value at EEPROM address __p.

Generated by Doxygen

218

21.15.3.12 eeprom_update_dword() void eeprom_update_dword (

uint32_t ∗ __p,

uint32_t __value)

Update a 32-bit double word __value at EEPROM address __p.

21.15.3.13 eeprom_update_float() void eeprom_update_float (

float ∗ __p,

float __value)

Update a float __value at EEPROM address __p.

21.15.3.14 eeprom_update_long_double() void eeprom_update_long_double (

long double ∗ __p,

long double __value)

Update a long double __value at EEPROM address __p.

21.15.3.15 eeprom_update_qword() void eeprom_update_qword (

uint64_t ∗ __p,

uint64_t __value)

Update a 64-bit quad word __value at EEPROM address __p.

21.15.3.16 eeprom_update_word() void eeprom_update_word (

uint16_t ∗ __p,

uint16_t __value)

Update a word __value at EEPROM address __p.

21.15.3.17 eeprom_write_block() void eeprom_write_block (

const void ∗ __src,

void ∗ __dst,

size_t __n)

Write a block of __n bytes to EEPROM address __dst from __src.

Note

The argument order is mismatch with common functions like strcpy().

21.15.3.18 eeprom_write_byte() void eeprom_write_byte (

uint8_t ∗ __p,

uint8_t __value)

Write a byte __value to EEPROM address __p.

Generated by Doxygen

21.16 <avr/fuse.h>: Fuse Support 219

21.15.3.19 eeprom_write_double() void eeprom_write_double (

double ∗ __p,

double __value)

Write a double __value to EEPROM address __p.

21.15.3.20 eeprom_write_dword() void eeprom_write_dword (

uint32_t ∗ __p,

uint32_t __value)

Write a 32-bit double word __value to EEPROM address __p.

21.15.3.21 eeprom_write_float() void eeprom_write_float (

float ∗ __p,

float __value)

Write a float __value to EEPROM address __p.

21.15.3.22 eeprom_write_long_double() void eeprom_write_long_double (

long double ∗ __p,

long double __value)

Write a long double __value to EEPROM address __p.

21.15.3.23 eeprom_write_qword() void eeprom_write_qword (

uint64_t ∗ __p,

uint64_t __value)

Write a 64-bit quad word __value to EEPROM address __p.

21.15.3.24 eeprom_write_word() void eeprom_write_word (

uint16_t ∗ __p,

uint16_t __value)

Write a word __value to EEPROM address __p.

21.16 <avr/fuse.h>: Fuse Support

Introduction

The Fuse API allows a user to specify the fuse settings for the specific AVR device they are compiling for. These
fuse settings will be placed in a special section in the ELF output file, after linking.

Programming tools can take advantage of the fuse information embedded in the ELF file, by extracting this informa-
tion and determining if the fuses need to be programmed before programming the Flash and EEPROM memories.
This also allows a single ELF file to contain all the information needed to program an AVR.

To use the Fuse API, include the <avr/io.h> header file, which in turn automatically includes the individual I/O
header file and the <avr/fuse.h> file. These other two files provides everything necessary to set the AVR fuses.

Generated by Doxygen

220

Fuse API

Each I/O header file must define the FUSE_MEMORY_SIZE macro which is defined to the number of fuse bytes
that exist in the AVR device.

A new type, __fuse_t, is defined as a structure. The number of fields in this structure are determined by the number
of fuse bytes in the FUSE_MEMORY_SIZE macro.

If FUSE_MEMORY_SIZE == 1, there is only a single field: byte, of type unsigned char.

If FUSE_MEMORY_SIZE == 2, there are two fields: low, and high, of type unsigned char.

If FUSE_MEMORY_SIZE == 3, there are three fields: low, high, and extended, of type unsigned char.

If FUSE_MEMORY_SIZE > 3, there is a single field: byte, which is an array of unsigned char with the size of the
array being FUSE_MEMORY_SIZE.

A convenience macro, FUSEMEM, is defined as a GCC attribute for a custom-named section of ".fuse".

A convenience macro, FUSES, is defined that declares a variable, __fuse, of type __fuse_t with the attribute defined
by FUSEMEM. This variable allows the end user to easily set the fuse data.

Note

If a device-specific I/O header file has previously defined FUSEMEM, then FUSEMEM is not redefined. If a
device-specific I/O header file has previously defined FUSES, then FUSES is not redefined.

Each AVR device I/O header file has a set of defined macros which specify the actual fuse bits available on that
device. The AVR fuses have inverted values, logical 1 for an unprogrammed (disabled) bit and logical 0 for a
programmed (enabled) bit. The defined macros for each individual fuse bit represent this in their definition by a
bit-wise inversion of a mask. For example, the FUSE_EESAVE fuse in the ATmega128 is defined as:
#define FUSE_EESAVE ~_BV(3)

Note

The _BV macro creates a bit mask from a bit number. It is then inverted to represent logical values for a fuse
memory byte.

To combine the fuse bits macros together to represent a whole fuse byte, use the bitwise AND operator, like so:
(FUSE_BOOTSZ0 & FUSE_BOOTSZ1 & FUSE_EESAVE & FUSE_SPIEN & FUSE_JTAGEN)

Each device I/O header file also defines macros that provide default values for each fuse byte that is available.
LFUSE_DEFAULT is defined for a Low Fuse byte. HFUSE_DEFAULT is defined for a High Fuse byte. EFUSE_←↩

DEFAULT is defined for an Extended Fuse byte.

If FUSE_MEMORY_SIZE > 3, then the I/O header file defines macros that provide default values for each fuse byte
like so: FUSE0_DEFAULT FUSE1_DEFAULT FUSE2_DEFAULT FUSE3_DEFAULT FUSE4_DEFAULT

Generated by Doxygen

21.16 <avr/fuse.h>: Fuse Support 221

API Usage Example

Putting all of this together is easy. Using C99's designated initializers:
#include <avr/io.h>

FUSES =
{

.low = LFUSE_DEFAULT,

.high = (FUSE_BOOTSZ0 & FUSE_BOOTSZ1 & FUSE_EESAVE & FUSE_SPIEN & FUSE_JTAGEN),

.extended = EFUSE_DEFAULT,
};

int main(void)
{

return 0;
}

Or, using the variable directly instead of the FUSES macro,
#include <avr/io.h>

__fuse_t __fuse __attribute__((section (".fuse"))) =
{

.low = LFUSE_DEFAULT,

.high = (FUSE_BOOTSZ0 & FUSE_BOOTSZ1 & FUSE_EESAVE & FUSE_SPIEN & FUSE_JTAGEN),

.extended = EFUSE_DEFAULT,
};

int main(void)
{

return 0;
}

If you are compiling in C++, you cannot use the designated intializers so you must do:
#include <avr/io.h>

FUSES =
{

LFUSE_DEFAULT, // .low
(FUSE_BOOTSZ0 & FUSE_BOOTSZ1 & FUSE_EESAVE & FUSE_SPIEN & FUSE_JTAGEN), // .high
EFUSE_DEFAULT, // .extended

};

int main(void)
{

return 0;
}

However there are a number of caveats that you need to be aware of to use this API properly.

Be sure to include <avr/io.h> to get all of the definitions for the API. The FUSES macro defines a global variable to
store the fuse data. This variable is assigned to its own linker section. Assign the desired fuse values immediately
in the variable initialization.

The .fuse section in the ELF file will get its values from the initial variable assignment ONLY. This means that you
can NOT assign values to this variable in functions and the new values will not be put into the ELF .fuse section.

The global variable is declared in the FUSES macro has two leading underscores, which means that it is reserved
for the "implementation", meaning the library, so it will not conflict with a user-named variable.

You must initialize ALL fields in the __fuse_t structure. This is because the fuse bits in all bytes default to a logical
1, meaning unprogrammed. Normal uninitialized data defaults to all locgial zeros. So it is vital that all fuse bytes are
initialized, even with default data. If they are not, then the fuse bits may not programmed to the desired settings.

Be sure to have the -mmcu=device flag in your compile command line and your linker command line to have the
correct device selected and to have the correct I/O header file included when you include <avr/io.h>.

You can print out the contents of the .fuse section in the ELF file by using this command line:
avr-objdump -s -j .fuse <ELF file>

The section contents shows the address on the left, then the data going from lower address to a higher address,
left to right.

Generated by Doxygen

222

21.17 <avr/interrupt.h>: Interrupts

Global manipulation of the interrupt flag

The global interrupt flag is maintained in the I bit of the status register (SREG).

Handling interrupts frequently requires attention regarding atomic access to objects that could be altered by code
running within an interrupt context, see <util/atomic.h>.

Frequently, interrupts are being disabled for periods of time in order to perform certain operations without being
disturbed; see Problems with reordering code for things to be taken into account with respect to compiler optimiza-
tions.

• #define sei() __asm__ __volatile__ ("sei" ::: "memory")
• #define cli() __asm__ __volatile__ ("cli" ::: "memory")

Macros for writing interrupt handler functions

• #define ISR(vector, attributes)
• #define SIGNAL(vector)
• #define EMPTY_INTERRUPT(vector)
• #define ISR_ALIAS(vector, target_vector)
• #define reti() __asm__ __volatile__ ("reti" ::: "memory")
• #define BADISR_vect

ISR attributes

• #define ISR_BLOCK
• #define ISR_NOBLOCK
• #define ISR_NAKED
• #define ISR_FLATTEN
• #define ISR_NOICF
• #define ISR_NOGCCISR
• #define ISR_ALIASOF(target_vector)

21.17.1 Detailed Description

Note

This discussion of interrupts was originally taken from Rich Neswold's document. See Acknowledgments.

Generated by Doxygen

21.17 <avr/interrupt.h>: Interrupts 223

Introduction to AVR-LibC's interrupt handling It's nearly impossible to find compilers that agree on how to
handle interrupt code. Since the C language tries to stay away from machine dependent details, each compiler
writer is forced to design their method of support.

In the AVR-GCC environment, the vector table is predefined to point to interrupt routines with predetermined names.
By using the appropriate name, your routine will be called when the corresponding interrupt occurs. The device
library provides a set of default interrupt routines, which will get used if you don't define your own.

Patching into the vector table is only one part of the problem. The compiler uses, by convention, a set of registers
when it's normally executing compiler-generated code. It's important that these registers, as well as the status
register, get saved and restored.

These details seem to make interrupt routines a little messy, but all these details are handled by the Interrupt API.
An interrupt routine is defined with ISR(). This macro register and mark the routine as an interrupt handler for the
specified peripheral. The following is an example definition of a handler for the ADC interrupt.
#include <avr/interrupt.h>

ISR(ADC_vect)
{

// user code here
}

Refer to the chapter explaining assembler programming for an explanation about interrupt routines written solely in
assembly.

Catch-all interrupt vector If an unexpected interrupt occurs (interrupt is enabled but no handler is installed,
which usually indicates a bug), then the default action is to reset the device by jumping to the reset vector. You
can override this by supplying a function named BADISR_vect which should be defined with ISR() as such. The
name BADISR_vect is actually an alias for __vector_default. The latter must be used inside assembly
code in case <avr/interrupt.h> is not included.
#include <avr/interrupt.h>

ISR(BADISR_vect)
{

// user code here
}

Nested interrupts The AVR hardware clears the global interrupt flag in SREG when an interrupt request is ser-
viced. Thus, normally interrupts will remain disabled inside the handler until the handler exits, where the RETI
instruction (that is emitted by the compiler as part of the normal function epilogue for an ISR) will eventually re-
enable further interrupts. For that reason, interrupt handlers normally do not nest. For most interrupt handlers, this
is the desired behaviour, for some it is even required in order to prevent infinitely recursive interrupts (like UART
interrupts, or level-triggered external interrupts). In rare circumstances though it might be desired to re-enable the
global interrupt flag as early as possible in the interrupt handler, in order to not defer any other interrupt more than
absolutely needed. This could be done using an sei() instruction right at the beginning of the interrupt handler,
but this still leaves few instructions inside the compiler-generated function prologue to run with global interrupts
disabled. The compiler can be instructed to insert a SEI instruction right at the beginning of an interrupt handler by
declaring the handler the following way:
ISR(XXX_vect, ISR_NOBLOCK)
{

...
}

where XXX_vect is the name of a valid interrupt vector for the MCU type in question, as explained below.

Generated by Doxygen

224

Two vectors sharing the same code In some circumstances, the actions to be taken upon two different in-
terrupts might be completely identical so a single implementation for the ISR would suffice. For example, pin-
change interrupts arriving from two different ports could logically signal an event that is independent from the actual
port (and thus interrupt vector) where it happened. Sharing interrupt vector code can be accomplished using the
ISR_ALIASOF() attribute to the ISR macro:
ISR(PCINT0_vect)
{

...
// Code to handle the event.

}

ISR(PCINT1_vect, ISR_ALIASOF(PCINT0_vect));

Note

There is no body to the aliased ISR.

Note that the ISR_ALIASOF() feature requires GCC 4.2 or above (or a patched version of GCC 4.1.x). See the
documentation of the ISR_ALIAS() macro for an implementation which is less elegant but could be applied to all
compiler versions.

Empty interrupt service routines In rare circumstances, in interrupt vector does not need any code to be imple-
mented at all. The vector must be declared anyway, so when the interrupt triggers it won't execute the BADISR_vect
code (which by default restarts the application).

This could for example be the case for interrupts that are solely enabled for the purpose of getting the controller out
of sleep_mode().

A handler for such an interrupt vector can be declared using the EMPTY_INTERRUPT() macro:
EMPTY_INTERRUPT(ADC_vect);

Note

There is no body to this macro.

Manually defined ISRs In some circumstances, the compiler-generated prologue and epilogue of the ISR might
not be optimal for the job, and a manually defined ISR could be considered particularly to speedup the interrupt
handling.

One solution to this could be to implement the entire ISR as manual assembly code in a separate (assembly) file.
See Combining C and assembly source files for an example of how to implement it that way.

Another solution is to still implement the ISR in C language but take over the compiler's job of generating the
prologue and epilogue. This can be done using the ISR_NAKED attribute to the ISR() macro. Note that the
compiler does not generate anything as prologue or epilogue, so the final reti() must be provided by the actual
implementation. SREG must be manually saved if the ISR code modifies it, and the compiler-implied assumption of
__zero_reg__ always being 0 could be wrong (e. g. when interrupting right after of a MUL instruction).

Warning

According to the GCC documentation, only inline assembly is supported in naked functions, like with
ISR_NAKED.

ISR(TIMER1_OVF_vect, ISR_NAKED)
{

PORTB |= _BV(0); // results in SBI which does not affect SREG
reti();

}

Generated by Doxygen

21.17 <avr/interrupt.h>: Interrupts 225

Choosing the vector: Interrupt vector names The interrupt is chosen by supplying one of the vector names in
the following table.

There are currently two different styles present for naming the vectors.

• Starting with AVR-LibC v1.4, the style of interrupt vector names is a short phrase for the vector description
followed by _vect. The short phrase matches the vector name as described in the datasheet of the respec-
tive device (and in the hardware manufacturer's XML/ATDF files), with spaces replaced by an underscore
and other non-alphanumeric characters dropped. Using the suffix _vect is intented to improve portability to
other C compilers available for the AVR that use a similar naming convention.

• A deprecated form that uses names starting with SIG_, followed by a relatively verbose but arbitrarily chosen
name describing the interrupt vector. This has been the only available style in AVR-LibC up to version 1.2.x.
This historical naming style is not recommended for new projects, and some headers require that the macro
__AVR_LIBC_DEPRECATED_ENABLE__ is defined so that the SIG_ names ISR names are available.

Note

The ISR() macro cannot really spell-check the argument passed to them. Thus, by misspelling one of the
names below used in ISR(), a function will be created that, while possibly being usable as an interrupt func-
tion, is not actually wired into the interrupt vector table. The compiler will generate a warning if it detects
a suspiciously looking name of an ISR() function (i.e. one that after macro replacement does not start with
"__vector_").

Apart from the NAME_vectmacros listed below, for each such ISR name there is also a macro NAME_vect_num
defined which resolves to the IRQ number. This is the index into the vector table, where indices start at index 0 (the
reset vector).

See also What ISR names are available for my device? in the FAQ for how find all the IRQ names for a specific
device.

Table 24 Due to its sheer size, the following table is only available in the HTML version of the
documentation.

Vector Name Description Applicable for Device

Note

For the following devices, only the deprecated SIG_ names are available: AT43USB320, AT43USB355,
AT76C711, AT90C8534, AT94K, M3000.

21.17.2 Macro Definition Documentation

21.17.2.1 BADISR_vect #define BADISR_vect
#include <avr/interrupt.h>

This is a vector which is aliased to __vector_default, the vector executed when an IRQ fires with no accompanying
ISR handler. This may be used along with the ISR() macro to create a catch-all for undefined but used ISRs for
debugging purposes.

Generated by Doxygen

226

21.17.2.2 cli #define cli() __asm__ __volatile__ ("cli" ::: "memory")

Disables all interrupts by clearing the global interrupt mask. This function actually compiles into a single line of
assembly, so there is no function call overhead. However, the macro also implies a memory barrier which can
cause additional loss of optimization.

In order to implement atomic access to multi-byte objects, consider using the macros from <util/atomic.h>, rather
than implementing them manually with cli() and sei().

21.17.2.3 EMPTY_INTERRUPT #define EMPTY_INTERRUPT(

vector)

Defines an empty interrupt handler function. This will not generate any prolog or epilog code and will only return
from the ISR. Do not define a function body as this will define it for you. Example:
EMPTY_INTERRUPT(ADC_vect);

21.17.2.4 ISR #define ISR(

vector,

attributes)

Introduces an interrupt handler function (interrupt service routine) that runs with global interrupts initially disabled
by default with no attributes specified.

The attributes are optional and alter the behaviour and resultant generated code of the interrupt routine. Multiple
attributes may be used for a single function, with a space seperating each attribute.

Valid attributes are ISR_BLOCK, ISR_NOBLOCK, ISR_NAKED, ISR_FLATTEN, ISR_NOICF, ISR_NOGCCISR
and ISR_ALIASOF(vect).

vector must be one of the interrupt vector names that are valid for the particular MCU type.

21.17.2.5 ISR_ALIAS #define ISR_ALIAS(

vector,

target_vector)

Aliases a given vector to another one in the same manner as the ISR_ALIASOF attribute for the ISR() macro. Unlike
the ISR_ALIASOF attribute macro however, this is compatible for all versions of GCC rather than just GCC version
4.2 onwards.

Note

This macro creates a trampoline function for the aliased macro. This will result in a two cycle penalty for the
aliased vector compared to the ISR the vector is aliased to, due to the JMP/RJMP opcode used.

Deprecated For new code, the use of ISR(..., ISR_ALIASOF(...)) is recommended.

Example:
ISR(INT0_vect)
{

PORTB = 42;
}

ISR_ALIAS(INT1_vect, INT0_vect);

Generated by Doxygen

21.17 <avr/interrupt.h>: Interrupts 227

21.17.2.6 ISR_ALIASOF #define ISR_ALIASOF(

target_vector)

The ISR is linked to another ISR, specified by the vect parameter. This is compatible with GCC 4.2 and greater only.

Use this attribute in the attributes parameter of the ISR macro. Example:
ISR (INT0_vect)
{

PORTB = 42;
}

ISR (INT1_vect, ISR_ALIASOF (INT0_vect));

21.17.2.7 ISR_BLOCK #define ISR_BLOCK

Identical to an ISR with no attributes specified. Global interrupts are initially disabled by the AVR hardware when
entering the ISR, without the compiler modifying this state.

Use this attribute in the attributes parameter of the ISR macro.

21.17.2.8 ISR_FLATTEN #define ISR_FLATTEN

The compiler will try to inline all called function into the ISR. This has an effect with GCC 4.6 and newer only.

Use this attribute in the attributes parameter of the ISR macro.

21.17.2.9 ISR_NAKED #define ISR_NAKED

ISR is created with no prologue or epilogue code. The user code is responsible for preservation of the machine
state including the SREG register, as well as placing a reti() at the end of the interrupt routine.

Use this attribute in the attributes parameter of the ISR macro.

Note

According to GCC documentation, the only code supported in naked functions is inline assembly.

21.17.2.10 ISR_NOBLOCK #define ISR_NOBLOCK

ISR runs with global interrupts initially enabled. The interrupt enable flag is activated by the compiler as early as
possible within the ISR to ensure minimal processing delay for nested interrupts.

This may be used to create nested ISRs, however care should be taken to avoid stack overflows, or to avoid infinitely
entering the ISR for those cases where the AVR hardware does not clear the respective interrupt flag before entering
the ISR.

Use this attribute in the attributes parameter of the ISR macro.

Generated by Doxygen

228

21.17.2.11 ISR_NOGCCISR #define ISR_NOGCCISR

Do not generate __gcc_isr pseudo instructions for this ISR. This has an effect with GCC 8 and
newer only.

Use this attribute in the attributes parameter of the ISR macro.

21.17.2.12 ISR_NOICF #define ISR_NOICF

Avoid identical-code-folding optimization against this ISR. This has an effect with GCC 5 and newer only.

Use this attribute in the attributes parameter of the ISR macro.

21.17.2.13 reti #define reti() __asm__ __volatile__ ("reti" ::: "memory")

Returns from an interrupt routine, enabling global interrupts. This should be the last command executed before
leaving an ISR defined with the ISR_NAKED attribute.

This macro actually compiles into a single line of assembly, so there is no function call overhead.

Note

According to the GCC documentation, the only code supported in naked functions is inline assembly.

21.17.2.14 sei #define sei() __asm__ __volatile__ ("sei" ::: "memory")

Enables interrupts by setting the global interrupt mask. This function actually compiles into a single line of assembly,
so there is no function call overhead. However, the macro also implies a memory barrier which can cause additional
loss of optimization.

In order to implement atomic access to multi-byte objects, consider using the macros from <util/atomic.h>, rather
than implementing them manually with cli() and sei().

21.17.2.15 SIGNAL #define SIGNAL(

vector)

Introduces an interrupt handler function that runs with global interrupts initially disabled.

This is the same as the ISR macro without optional attributes.

Deprecated Do not use SIGNAL() in new code. Use ISR() instead.

21.18 <avr/io.h>: AVR device-specific IO definitions

Macros

• #define _PROTECTED_WRITE(reg, value)
• #define _PROTECTED_WRITE_SPM(reg, value)

Generated by Doxygen

https://sourceware.org/binutils/docs/as/AVR-Pseudo-Instructions.html
https://gcc.gnu.org/gcc-8/changes.html#avr

21.18 <avr/io.h>: AVR device-specific IO definitions 229

21.18.1 Detailed Description

#include <avr/io.h>

This header file includes the apropriate IO definitions for the device that has been specified by the -mmcu= compiler
command-line switch. This is done by diverting to the appropriate file <avr/ioXXXX.h> which should never be
included directly. Some register names common to all AVR devices are defined directly within <avr/common.←↩

h>, which is included in <avr/io.h>, but most of the details come from the respective include file.

Note that this file always includes the following files:
#include <avr/sfr_defs.h>
#include <avr/portpins.h>
#include <avr/common.h>
#include <avr/version.h>

See <avr/sfr_defs.h>: Special function registers for more details about that header file.

Included are definitions of the IO register set and their respective bit values as specified in the Atmel documentation.
Note that inconsistencies in naming conventions, so even identical functions sometimes get different names on
different devices.

Also included are the specific names useable for interrupt function definitions as documented here.

Finally, the following macros are defined:

• RAMEND
The last on-chip RAM address.

• XRAMEND
The last possible RAM location that is addressable. This is equal to RAMEND for devices that do not allow
for external RAM. For devices that allow external RAM, this will be larger than RAMEND.

• E2END
The last EEPROM address.

• FLASHEND
The last byte address in the Flash program space.

• SPM_PAGESIZE
For devices with bootloader support, the flash pagesize (in bytes) to be used for the SPM instruction.

• E2PAGESIZE
The size of the EEPROM page.

21.18.2 Macro Definition Documentation

21.18.2.1 _PROTECTED_WRITE #define _PROTECTED_WRITE(

reg,

value)

Write value value to IO register reg that is protected through the Xmega configuration change protection (CCP)
mechanism. This implements the timed sequence that is required for CCP.

Example to modify the CPU clock:
#include <avr/io.h>

_PROTECTED_WRITE(CLK_PSCTRL, CLK_PSADIV0_bm);
_PROTECTED_WRITE(CLK_CTRL, CLK_SCLKSEL0_bm);

Generated by Doxygen

230

21.18.2.2 _PROTECTED_WRITE_SPM #define _PROTECTED_WRITE_SPM(

reg,

value)

Write value value to register reg that is protected through the Xmega configuration change protection (CCP) key
for self programming (SPM). This implements the timed sequence that is required for CCP.

Example to modify the CPU clock:
#include <avr/io.h>

_PROTECTED_WRITE_SPM(NVMCTRL_CTRLA, NVMCTRL_CMD_PAGEERASEWRITE_gc);

21.19 <avr/lock.h>: Lockbit Support

Introduction

The Lockbit API allows a user to specify the lockbit settings for the specific AVR device they are compiling for. These
lockbit settings will be placed in a special section in the ELF output file, after linking.

Programming tools can take advantage of the lockbit information embedded in the ELF file, by extracting this infor-
mation and determining if the lockbits need to be programmed after programming the Flash and EEPROM memo-
ries. This also allows a single ELF file to contain all the information needed to program an AVR.

To use the Lockbit API, include the <avr/io.h> header file, which in turn automatically includes the individual I/O
header file and the <avr/lock.h> file. These other two files provides everything necessary to set the AVR lockbits.

Lockbit API

Each I/O header file may define up to 3 macros that controls what kinds of lockbits are available to the user.

If __LOCK_BITS_EXIST is defined, then two lock bits are available to the user and 3 mode settings are defined for
these two bits.

If __BOOT_LOCK_BITS_0_EXIST is defined, then the two BLB0 lock bits are available to the user and 4 mode
settings are defined for these two bits.

If __BOOT_LOCK_BITS_1_EXIST is defined, then the two BLB1 lock bits are available to the user and 4 mode
settings are defined for these two bits.

If __BOOT_LOCK_APPLICATION_TABLE_BITS_EXIST is defined then two lock bits are available to set the locking
mode for the Application Table Section (which is used in the XMEGA family).

If __BOOT_LOCK_APPLICATION_BITS_EXIST is defined then two lock bits are available to set the locking mode
for the Application Section (which is used in the XMEGA family).

If __BOOT_LOCK_BOOT_BITS_EXIST is defined then two lock bits are available to set the locking mode for the
Boot Loader Section (which is used in the XMEGA family).

The AVR lockbit modes have inverted values, logical 1 for an unprogrammed (disabled) bit and logical 0 for a
programmed (enabled) bit. The defined macros for each individual lock bit represent this in their definition by a
bit-wise inversion of a mask. For example, the LB_MODE_3 macro is defined as:

#define LB_MODE_3 (0xFC)
‘

To combine the lockbit mode macros together to represent a whole byte, use the bitwise AND operator, like so:
(LB_MODE_3 & BLB0_MODE_2)

<avr/lock.h> also defines a macro that provides a default lockbit value: LOCKBITS_DEFAULT which is defined to
be 0xFF.

See the AVR device specific datasheet for more details about these lock bits and the available mode settings.

A convenience macro, LOCKMEM, is defined as a GCC attribute for a custom-named section of ".lock".

A convenience macro, LOCKBITS, is defined that declares a variable, __lock, of type unsigned char with the attribute
defined by LOCKMEM. This variable allows the end user to easily set the lockbit data.

Generated by Doxygen

21.19 <avr/lock.h>: Lockbit Support 231

Note

If a device-specific I/O header file has previously defined LOCKMEM, then LOCKMEM is not redefined. If a
device-specific I/O header file has previously defined LOCKBITS, then LOCKBITS is not redefined. LOCKBITS
is currently known to be defined in the I/O header files for the XMEGA devices.

API Usage Example

Putting all of this together is easy:
#include <avr/io.h>

LOCKBITS = (LB_MODE_1 & BLB0_MODE_3 & BLB1_MODE_4);

int main(void)
{

return 0;
}

Or:
#include <avr/io.h>

unsigned char __lock __attribute__((section (".lock"))) =
(LB_MODE_1 & BLB0_MODE_3 & BLB1_MODE_4);

int main(void)
{

return 0;
}

However there are a number of caveats that you need to be aware of to use this API properly.

Be sure to include <avr/io.h> to get all of the definitions for the API. The LOCKBITS macro defines a global
variable to store the lockbit data. This variable is assigned to its own linker section. Assign the desired lockbit
values immediately in the variable initialization.

The .lock section in the ELF file will get its values from the initial variable assignment ONLY. This means that you
can NOT assign values to this variable in functions and the new values will not be put into the ELF .lock section.

The global variable is declared in the LOCKBITS macro has two leading underscores, which means that it is re-
served for the "implementation", meaning the library, so it will not conflict with a user-named variable.

You must initialize the lockbit variable to some meaningful value, even if it is the default value. This is because the
lockbits default to a logical 1, meaning unprogrammed. Normal uninitialized data defaults to all locgial zeros. So it
is vital that all lockbits are initialized, even with default data. If they are not, then the lockbits may not programmed
to the desired settings and can possibly put your device into an unrecoverable state.

Be sure to have the -mmcu=device flag in your compile command line and your linker command line to have the
correct device selected and to have the correct I/O header file included when you include <avr/io.h>.

You can print out the contents of the .lock section in the ELF file by using this command line:
avr-objdump -s -j .lock <ELF file>

Generated by Doxygen

232

21.20 <avr/pgmspace.h>: Program Space Utilities

Macros

• #define PROGMEM_FAR __attribute__((__section__(".progmemx.data")))
• #define PROGMEM __attribute__((__progmem__))
• #define PSTR(str) ({ static const PROGMEM char c[] = (str); &c[0]; })
• #define PSTR_FAR(str) ({ static const PROGMEM_FAR char c[] = (str); pgm_get_far_address(c[0]); })
• #define pgm_read_byte_near(__addr) __LPM ((uint16_t)(__addr))
• #define pgm_read_word_near(__addr) __LPM_word ((uint16_t)(__addr))
• #define pgm_read_dword_near(__addr) __LPM_dword ((uint16_t)(__addr))
• #define pgm_read_qword_near(__addr) __LPM_qword ((uint16_t)(__addr))
• #define pgm_read_float_near(addr) pgm_read_float (addr)
• #define pgm_read_ptr_near(__addr) ((void∗) __LPM_word ((uint16_t)(__addr)))
• #define pgm_read_byte_far(__addr) __ELPM (__addr)
• #define pgm_read_word_far(__addr) __ELPM_word (__addr)
• #define pgm_read_dword_far(__addr) __ELPM_dword (__addr)
• #define pgm_read_qword_far(__addr) __ELPM_qword (__addr)
• #define pgm_read_ptr_far(__addr) ((void∗) __ELPM_word (__addr))
• #define pgm_read_byte(__addr) pgm_read_byte_near(__addr)
• #define pgm_read_word(__addr) pgm_read_word_near(__addr)
• #define pgm_read_dword(__addr) pgm_read_dword_near(__addr)
• #define pgm_read_qword(__addr) pgm_read_qword_near(__addr)
• #define pgm_read_ptr(__addr) pgm_read_ptr_near(__addr)
• #define pgm_get_far_address(var)

Functions

• static char pgm_read_char (const char ∗__addr)
• static unsigned char pgm_read_unsigned_char (const unsigned char ∗__addr)
• static signed char pgm_read_signed_char (const signed char ∗__addr)
• static uint8_t pgm_read_u8 (const uint8_t ∗__addr)
• static int8_t pgm_read_i8 (const int8_t ∗__addr)
• static short pgm_read_short (const short ∗__addr)
• static unsigned short pgm_read_unsigned_short (const unsigned short ∗__addr)
• static uint16_t pgm_read_u16 (const uint16_t ∗__addr)
• static int16_t pgm_read_i16 (const int16_t ∗__addr)
• static int pgm_read_int (const int ∗__addr)
• static signed pgm_read_signed (const signed ∗__addr)
• static unsigned pgm_read_unsigned (const unsigned ∗__addr)
• static signed int pgm_read_signed_int (const signed int ∗__addr)
• static unsigned int pgm_read_unsigned_int (const unsigned int ∗__addr)
• static __int24 pgm_read_i24 (const __int24 ∗__addr)
• static __uint24 pgm_read_u24 (const __uint24 ∗__addr)
• static uint32_t pgm_read_u32 (const uint32_t ∗__addr)
• static int32_t pgm_read_i32 (const int32_t ∗__addr)
• static long pgm_read_long (const long ∗__addr)
• static unsigned long pgm_read_unsigned_long (const unsigned long ∗__addr)
• static long long pgm_read_long_long (const long long ∗__addr)
• static unsigned long long pgm_read_unsigned_long_long (const unsigned long long ∗__addr)
• static uint64_t pgm_read_u64 (const uint64_t ∗__addr)
• static int64_t pgm_read_i64 (const int64_t ∗__addr)
• static float pgm_read_float (const float ∗__addr)

Generated by Doxygen

21.20 <avr/pgmspace.h>: Program Space Utilities 233

• static double pgm_read_double (const double ∗__addr)
• static long double pgm_read_long_double (const long double ∗__addr)
• static char pgm_read_char_far (uint_farptr_t __addr)
• static unsigned char pgm_read_unsigned_char_far (uint_farptr_t __addr)
• static signed char pgm_read_signed_char_far (uint_farptr_t __addr)
• static uint8_t pgm_read_u8_far (uint_farptr_t __addr)
• static int8_t pgm_read_i8_far (uint_farptr_t __addr)
• static short pgm_read_short_far (uint_farptr_t __addr)
• static unsigned short pgm_read_unsigned_short_far (uint_farptr_t __addr)
• static uint16_t pgm_read_u16_far (uint_farptr_t __addr)
• static int16_t pgm_read_i16_far (uint_farptr_t __addr)
• static int pgm_read_int_far (uint_farptr_t __addr)
• static unsigned pgm_read_unsigned_far (uint_farptr_t __addr)
• static unsigned int pgm_read_unsigned_int_far (uint_farptr_t __addr)
• static signed pgm_read_signed_far (uint_farptr_t __addr)
• static signed int pgm_read_signed_int_far (uint_farptr_t __addr)
• static long pgm_read_long_far (uint_farptr_t __addr)
• static unsigned long pgm_read_unsigned_long_far (uint_farptr_t __addr)
• static __int24 pgm_read_i24_far (uint_farptr_t __addr)
• static __uint24 pgm_read_u24_far (uint_farptr_t __addr)
• static uint32_t pgm_read_u32_far (uint_farptr_t __addr)
• static int32_t pgm_read_i32_far (uint_farptr_t __addr)
• static long long pgm_read_long_long_far (uint_farptr_t __addr)
• static unsigned long long pgm_read_unsigned_long_long_far (uint_farptr_t __addr)
• static uint64_t pgm_read_u64_far (uint_farptr_t __addr)
• static int64_t pgm_read_i64_far (uint_farptr_t __addr)
• static float pgm_read_float_far (uint_farptr_t __addr)
• static double pgm_read_double_far (uint_farptr_t __addr)
• static long double pgm_read_long_double_far (uint_farptr_t __addr)
• const void ∗ memchr_P (const void ∗, int __val, size_t __len)
• int memcmp_P (const void ∗, const void ∗, size_t)
• void ∗ memccpy_P (void ∗, const void ∗, int __val, size_t)
• void ∗ memcpy_P (void ∗, const void ∗, size_t)
• void ∗ memmem_P (const void ∗, size_t, const void ∗, size_t)
• const void ∗ memrchr_P (const void ∗, int __val, size_t __len)
• char ∗ strcat_P (char ∗, const char ∗)
• const char ∗ strchr_P (const char ∗, int __val)
• const char ∗ strchrnul_P (const char ∗, int __val)
• int strcmp_P (const char ∗, const char ∗)
• char ∗ strcpy_P (char ∗, const char ∗)
• int strcasecmp_P (const char ∗, const char ∗)
• char ∗ strcasestr_P (const char ∗, const char ∗)
• size_t strcspn_P (const char ∗__s, const char ∗__reject)
• size_t strlcat_P (char ∗, const char ∗, size_t)
• size_t strlcpy_P (char ∗, const char ∗, size_t)
• size_t strnlen_P (const char ∗, size_t)
• int strncmp_P (const char ∗, const char ∗, size_t)
• int strncasecmp_P (const char ∗, const char ∗, size_t)
• char ∗ strncat_P (char ∗, const char ∗, size_t)
• char ∗ strncpy_P (char ∗, const char ∗, size_t)
• char ∗ strpbrk_P (const char ∗__s, const char ∗__accept)
• const char ∗ strrchr_P (const char ∗, int __val)
• char ∗ strsep_P (char ∗∗__sp, const char ∗__delim)
• size_t strspn_P (const char ∗__s, const char ∗__accept)
• char ∗ strstr_P (const char ∗, const char ∗)

Generated by Doxygen

234

• char ∗ strtok_P (char ∗__s, const char ∗__delim)
• char ∗ strtok_rP (char ∗__s, const char ∗__delim, char ∗∗__last)
• size_t strlen_PF (uint_farptr_t src)
• size_t strnlen_PF (uint_farptr_t src, size_t len)
• void ∗ memcpy_PF (void ∗dest, uint_farptr_t src, size_t len)
• char ∗ strcpy_PF (char ∗dest, uint_farptr_t src)
• char ∗ strncpy_PF (char ∗dest, uint_farptr_t src, size_t len)
• char ∗ strcat_PF (char ∗dest, uint_farptr_t src)
• size_t strlcat_PF (char ∗dst, uint_farptr_t src, size_t siz)
• char ∗ strncat_PF (char ∗dest, uint_farptr_t src, size_t len)
• int strcmp_PF (const char ∗s1, uint_farptr_t s2)
• int strncmp_PF (const char ∗s1, uint_farptr_t s2, size_t n)
• int strcasecmp_PF (const char ∗s1, uint_farptr_t s2)
• int strncasecmp_PF (const char ∗s1, uint_farptr_t s2, size_t n)
• uint_farptr_t strchr_PF (uint_farptr_t, int __val)
• char ∗ strstr_PF (const char ∗s1, uint_farptr_t s2)
• size_t strlcpy_PF (char ∗dst, uint_farptr_t src, size_t siz)
• int memcmp_PF (const void ∗, uint_farptr_t, size_t)
• static size_t strlen_P (const char ∗s)
• template<typename T >

T pgm_read< T > (const T ∗addr)
• template<typename T >

T pgm_read_far< T > (uint_farptr_t addr)

21.20.1 Detailed Description

#include <avr/io.h>
#include <avr/pgmspace.h>

The functions in this module provide interfaces for a program to access data stored in program space (flash memory)
of the device.

Note

These functions are an attempt to provide some compatibility with header files that come with IAR C, to make
porting applications between different compilers easier. This is not 100% compatibility though (GCC does not
have full support for multiple address spaces yet).

If you are working with strings which are completely based in RAM, use the standard string functions described
in <string.h>: Strings.

If possible, put your constant tables in the lower 64 KB and use pgm_read_byte_near() or pgm_read_word_near()
instead of pgm_read_byte_far() or pgm_read_word_far() since it is more efficient that way, and you can still
use the upper 64K for executable code. All functions that are suffixed with a _P require their arguments to be
in the lower 64 KB of the flash ROM, as they do not use ELPM instructions. This is normally not a big concern
as the linker setup arranges any program space constants declared using the macros from this header file so
they are placed right after the interrupt vectors, and in front of any executable code. However, it can become
a problem if there are too many of these constants, or for bootloaders on devices with more than 64 KB of
ROM. All these functions will not work in that situation.

For Xmega devices, make sure the NVM controller command register (NVM.CMD or NVM_CMD) is set to 0x00
(NOP) before using any of these functions.

21.20.2 Macro Definition Documentation

Generated by Doxygen

21.20 <avr/pgmspace.h>: Program Space Utilities 235

21.20.2.1 pgm_get_far_address #define pgm_get_far_address(

var)

Value:
(({ \

uint_farptr_t __tmp; \
\

__asm__ __volatile__ (\
"ldi %A0, lo8(%1)" "\n\t" \
"ldi %B0, hi8(%1)" "\n\t" \
"ldi %C0, hh8(%1)" "\n\t" \
"clr %D0" \
: "=d" (__tmp) \
: "i" (&(var)) \

); \
__tmp; \

}))

This macro evaluates to a uint_farptr_t 32-bit "far" pointer (only 24 bits used) to data even beyond the 64 KiB limit
for the 16-bit ordinary pointer. It is similar to the '&' operator, with some limitations. Example:
#include <avr/pgmspace.h>

// Section .progmemx.data is located after all the code sections.
__attribute__((section(".progmemx.data")))
const int data[] = { 2, 3, 5, 7, 9, 11 };

int get_data (uint8_t idx)
{

uint_farptr_t pdata = pgm_get_far_address (data[0]);
return pgm_read_int_far (pdata + idx * sizeof(int));

}

Comments:

• The overhead is minimal and it's mainly due to the 32-bit size operation.

• 24 bit sizes guarantees the code compatibility for use in future devices.

• var has to be resolved at link-time as an existing symbol, i.e. a simple variable name, an array name, or an
array or structure element provided the offset is known at compile-time, and var is located in static storage,
etc.

• The returned value is the symbol's VMA (virtual memory address) determined by the linker and falls in the
corresponding memory region. The AVR Harvard architecture requires non-overlapping VMA areas for the
multiple memory regions in the processor: Flash ROM, RAM, and EEPROM. Typical offset for these are 0x0,
0x800xx0, and 0x810000 respectively, derived from the linker script used and linker options.

21.20.2.2 pgm_read_byte #define pgm_read_byte(

__addr) pgm_read_byte_near(__addr)

Read a byte from the program space with a 16-bit (near) nyte-address.

21.20.2.3 pgm_read_byte_far #define pgm_read_byte_far(

__addr) __ELPM (__addr)

Read a byte from the program space with a 32-bit (far) byte-address.

21.20.2.4 pgm_read_byte_near #define pgm_read_byte_near(

__addr) __LPM ((uint16_t)(__addr))

Read a byte from the program space with a 16-bit (near) byte-address.

Generated by Doxygen

236

21.20.2.5 pgm_read_dword #define pgm_read_dword(

__addr) pgm_read_dword_near(__addr)

Read a double word from the program space with a 16-bit (near) byte-address.

21.20.2.6 pgm_read_dword_far #define pgm_read_dword_far(

__addr) __ELPM_dword (__addr)

Read a double word from the program space with a 32-bit (far) byte-address.

21.20.2.7 pgm_read_dword_near #define pgm_read_dword_near(

__addr) __LPM_dword ((uint16_t)(__addr))

Read a double word from the program space with a 16-bit (near) byte-address.

21.20.2.8 pgm_read_float_near #define pgm_read_float_near(

addr) pgm_read_float (addr)

Read a float from the program space with a 16-bit (near) byte-address.

21.20.2.9 pgm_read_ptr #define pgm_read_ptr(

__addr) pgm_read_ptr_near(__addr)

Read a pointer from the program space with a 16-bit (near) byte-address.

21.20.2.10 pgm_read_ptr_far #define pgm_read_ptr_far(

__addr) ((void∗) __ELPM_word (__addr))

Read a pointer from the program space with a 32-bit (far) byte-address.

21.20.2.11 pgm_read_ptr_near #define pgm_read_ptr_near(

__addr) ((void∗) __LPM_word ((uint16_t)(__addr)))

Read a pointer from the program space with a 16-bit (near) byte-address.

21.20.2.12 pgm_read_qword #define pgm_read_qword(

__addr) pgm_read_qword_near(__addr)

Read a quad-word from the program space with a 16-bit (near) byte-address.

21.20.2.13 pgm_read_qword_far #define pgm_read_qword_far(

__addr) __ELPM_qword (__addr)

Read a quad-word from the program space with a 32-bit (far) byte-address.

21.20.2.14 pgm_read_qword_near #define pgm_read_qword_near(

__addr) __LPM_qword ((uint16_t)(__addr))

Read a quad-word from the program space with a 16-bit (near) byte-address.

Generated by Doxygen

21.20 <avr/pgmspace.h>: Program Space Utilities 237

21.20.2.15 pgm_read_word #define pgm_read_word(

__addr) pgm_read_word_near(__addr)

Read a word from the program space with a 16-bit (near) byte-address.

21.20.2.16 pgm_read_word_far #define pgm_read_word_far(

__addr) __ELPM_word (__addr)

Read a word from the program space with a 32-bit (far) byte-address.

21.20.2.17 pgm_read_word_near #define pgm_read_word_near(

__addr) __LPM_word ((uint16_t)(__addr))

Read a word from the program space with a 16-bit (near) byte-address.

21.20.2.18 PROGMEM #define PROGMEM __attribute__((__progmem__))

Attribute to use in order to declare an object being located in flash ROM.

21.20.2.19 PROGMEM_FAR #define PROGMEM_FAR __attribute__((__section__(".progmemx.data")))

Attribute to use in order to declare an object being located in far flash ROM. This is similar to PROGMEM, except that
it puts the static storage object in section .progmemx.data. In order to access the object, the pgm_read_∗_←↩

far and _PF functions declare in this header can be used. In order to get its address, see pgm_get_far_address().

It only makes sense to put read-only objects in this section, though the compiler does not diagnose when this is not
the case.

21.20.2.20 PSTR #define PSTR(

str) ({ static const PROGMEM char c[] = (str); &c[0]; })

Used to declare a static pointer to a string in program space.

21.20.2.21 PSTR_FAR #define PSTR_FAR(

str) ({ static const PROGMEM_FAR char c[] = (str); pgm_get_far_address(c[0]);

})

Used to define a string literal in far program space, and to return its address of type uint_farptr_t.

21.20.3 Function Documentation

21.20.3.1 memccpy_P() void ∗ memccpy_P (

void ∗ dest,

const void ∗ src,

int val,

size_t len)

This function is similar to memccpy() except that src is pointer to a string in program space.

Generated by Doxygen

238

21.20.3.2 memchr_P() const void ∗ memchr_P (

const void ∗ s,

int val,

size_t len)

Scan flash memory for a character.

The memchr_P() function scans the first len bytes of the flash memory area pointed to by s for the character val.
The first byte to match val (interpreted as an unsigned character) stops the operation.

Returns

The memchr_P() function returns a pointer to the matching byte or NULL if the character does not occur in
the given memory area.

21.20.3.3 memcmp_P() int memcmp_P (

const void ∗ s1,

const void ∗ s2,

size_t len)

Compare memory areas.

The memcmp_P() function compares the first len bytes of the memory areas s1 and flash s2. The comparision
is performed using unsigned char operations.

Returns

The memcmp_P() function returns an integer less than, equal to, or greater than zero if the first len bytes of
s1 is found, respectively, to be less than, to match, or be greater than the first len bytes of s2.

21.20.3.4 memcmp_PF() int memcmp_PF (

const void ∗ s1,

uint_farptr_t s2,

size_t len)

Compare memory areas.

The memcmp_PF() function compares the first len bytes of the memory areas s1 and flash s2. The comparision
is performed using unsigned char operations. It is an equivalent of memcmp_P() function, except that it is capable
working on all FLASH including the exteded area above 64kB.

Returns

The memcmp_PF() function returns an integer less than, equal to, or greater than zero if the first len bytes
of s1 is found, respectively, to be less than, to match, or be greater than the first len bytes of s2.

Generated by Doxygen

21.20 <avr/pgmspace.h>: Program Space Utilities 239

21.20.3.5 memcpy_P() void ∗ memcpy_P (

void ∗ dest,

const void ∗ src,

size_t n)

The memcpy_P() function is similar to memcpy(), except the src string resides in program space.

Returns

The memcpy_P() function returns a pointer to dest.

21.20.3.6 memcpy_PF() void ∗ memcpy_PF (

void ∗ dest,

uint_farptr_t src,

size_t n)

Copy a memory block from flash to SRAM.

The memcpy_PF() function is similar to memcpy(), except the data is copied from the program space and is ad-
dressed using a far pointer.

Parameters

dest A pointer to the destination buffer

src A far pointer to the origin of data in flash memory

n The number of bytes to be copied

Returns

The memcpy_PF() function returns a pointer to dst. The contents of RAMPZ SFR are undefined when the
function returns.

21.20.3.7 memmem_P() void ∗ memmem_P (

const void ∗ s1,

size_t len1,

const void ∗ s2,

size_t len2)

The memmem_P() function is similar to memmem() except that s2 is pointer to a string in program space.

21.20.3.8 memrchr_P() const void memrchr_P (

const void ∗ src,

int val,

size_t len)

The memrchr_P() function is like the memchr_P() function, except that it searches backwards from the end of the
len bytes pointed to by src instead of forwards from the front. (Glibc, GNU extension.)

Generated by Doxygen

240

Returns

The memrchr_P() function returns a pointer to the matching byte or NULL if the character does not occur in
the given memory area.

21.20.3.9 pgm_read< T >() template<typename T >

T pgm_read< T > (

const T ∗ addr)

Read an object of type T from program memory address addr and return it. This template is only available when
macro __pgm_read_template__ is defined.

21.20.3.10 pgm_read_char() char pgm_read_char (

const char ∗ __addr) [inline], [static]

Read a char from 16-bit (near) byte-address __addr. The address is in the lower 64 KiB of program memory.

21.20.3.11 pgm_read_char_far() char pgm_read_char_far (

uint_farptr_t __addr) [inline], [static]

Read a char from far byte-address __addr. The address is in the program memory.

21.20.3.12 pgm_read_double() double pgm_read_double (

const double ∗ __addr) [inline], [static]

Read a double from 16-bit (near) byte-address __addr. The address is in the lower 64 KiB of program memory.

21.20.3.13 pgm_read_double_far() double pgm_read_double_far (

uint_farptr_t __addr) [inline], [static]

Read a double from far byte-address __addr. The address is in the program memory.

21.20.3.14 pgm_read_far< T >() template<typename T >

T pgm_read_far< T > (

uint_farptr_t addr)

Read an object of type T from program memory address addr and return it. This template is only available when
macro __pgm_read_template__ is defined.

21.20.3.15 pgm_read_float() float pgm_read_float (

const float ∗ __addr) [inline], [static]

Read a float from 16-bit (near) byte-address __addr. The address is in the lower 64 KiB of program memory.

Generated by Doxygen

21.20 <avr/pgmspace.h>: Program Space Utilities 241

21.20.3.16 pgm_read_float_far() float pgm_read_float_far (

uint_farptr_t __addr) [inline], [static]

Read a float from far byte-address __addr. The address is in the program memory.

21.20.3.17 pgm_read_i16() int16_t pgm_read_i16 (

const int16_t ∗ __addr) [inline], [static]

Read an int16_t from 16-bit (near) byte-address __addr. The address is in the lower 64 KiB of program
memory.

21.20.3.18 pgm_read_i16_far() int16_t pgm_read_i16_far (

uint_farptr_t __addr) [inline], [static]

Read an int16_t from far byte-address __addr. The address is in the program memory.

21.20.3.19 pgm_read_i24() __int24 pgm_read_i24 (

const __int24 ∗ __addr) [inline], [static]

Read an __int24 from 16-bit (near) byte-address __addr. The address is in the lower 64 KiB of program
memory.

21.20.3.20 pgm_read_i24_far() __int24 pgm_read_i24_far (

uint_farptr_t __addr) [inline], [static]

Read an __int24 from far byte-address __addr. The address is in the program memory.

21.20.3.21 pgm_read_i32() int32_t pgm_read_i32 (

const int32_t ∗ __addr) [inline], [static]

Read an int32_t from 16-bit (near) byte-address __addr. The address is in the lower 64 KiB of program
memory.

21.20.3.22 pgm_read_i32_far() int32_t pgm_read_i32_far (

uint_farptr_t __addr) [inline], [static]

Read an int32_t from far byte-address __addr. The address is in the program memory.

21.20.3.23 pgm_read_i64() int64_t pgm_read_i64 (

const int64_t ∗ __addr) [inline], [static]

Read an int64_t from 16-bit (near) byte-address __addr. The address is in the lower 64 KiB of program
memory.

21.20.3.24 pgm_read_i64_far() int64_t pgm_read_i64_far (

uint_farptr_t __addr) [inline], [static]

Read an int64_t from far byte-address __addr. The address is in the program memory.

Generated by Doxygen

242

21.20.3.25 pgm_read_i8() int8_t pgm_read_i8 (

const int8_t ∗ __addr) [inline], [static]

Read an int8_t from 16-bit (near) byte-address __addr. The address is in the lower 64 KiB of program memory.

21.20.3.26 pgm_read_i8_far() int8_t pgm_read_i8_far (

uint_farptr_t __addr) [inline], [static]

Read an int8_t from far byte-address __addr. The address is in the program memory.

21.20.3.27 pgm_read_int() int pgm_read_int (

const int ∗ __addr) [inline], [static]

Read an int from 16-bit (near) byte-address __addr. The address is in the lower 64 KiB of program memory.

21.20.3.28 pgm_read_int_far() int pgm_read_int_far (

uint_farptr_t __addr) [inline], [static]

Read an int from far byte-address __addr. The address is in the program memory.

21.20.3.29 pgm_read_long() long pgm_read_long (

const long ∗ __addr) [inline], [static]

Read a long from 16-bit (near) byte-address __addr. The address is in the lower 64 KiB of program memory.

21.20.3.30 pgm_read_long_double() long double pgm_read_long_double (

const long double ∗ __addr) [inline], [static]

Read a long double from 16-bit (near) byte-address __addr. The address is in the lower 64 KiB of program
memory.

21.20.3.31 pgm_read_long_double_far() long double pgm_read_long_double_far (

uint_farptr_t __addr) [inline], [static]

Read a long double from far byte-address __addr. The address is in the program memory.

21.20.3.32 pgm_read_long_far() long pgm_read_long_far (

uint_farptr_t __addr) [inline], [static]

Read a long from far byte-address __addr. The address is in the program memory.

21.20.3.33 pgm_read_long_long() long long pgm_read_long_long (

const long long ∗ __addr) [inline], [static]

Read a long long from 16-bit (near) byte-address __addr. The address is in the lower 64 KiB of program
memory.

Generated by Doxygen

21.20 <avr/pgmspace.h>: Program Space Utilities 243

21.20.3.34 pgm_read_long_long_far() long long pgm_read_long_long_far (

uint_farptr_t __addr) [inline], [static]

Read a long long from far byte-address __addr. The address is in the program memory.

21.20.3.35 pgm_read_short() short pgm_read_short (

const short ∗ __addr) [inline], [static]

Read a short from 16-bit (near) byte-address __addr. The address is in the lower 64 KiB of program memory.

21.20.3.36 pgm_read_short_far() short pgm_read_short_far (

uint_farptr_t __addr) [inline], [static]

Read a short from far byte-address __addr. The address is in the program memory.

21.20.3.37 pgm_read_signed() signed pgm_read_signed (

const signed ∗ __addr) [inline], [static]

Read a signed from 16-bit (near) byte-address __addr. The address is in the lower 64 KiB of program memory.

21.20.3.38 pgm_read_signed_char() signed char pgm_read_signed_char (

const signed char ∗ __addr) [inline], [static]

Read a signed char from 16-bit (near) byte-address __addr. The address is in the lower 64 KiB of program
memory.

21.20.3.39 pgm_read_signed_char_far() signed char pgm_read_signed_char_far (

uint_farptr_t __addr) [inline], [static]

Read a signed char from far byte-address __addr. The address is in the program memory.

21.20.3.40 pgm_read_signed_far() signed pgm_read_signed_far (

uint_farptr_t __addr) [inline], [static]

Read a signed from far byte-address __addr. The address is in the program memory.

21.20.3.41 pgm_read_signed_int() signed int pgm_read_signed_int (

const signed int ∗ __addr) [inline], [static]

Read a signed int from 16-bit (near) byte-address __addr. The address is in the lower 64 KiB of program
memory.

21.20.3.42 pgm_read_signed_int_far() signed int pgm_read_signed_int_far (

uint_farptr_t __addr) [inline], [static]

Read a signed int from far byte-address __addr. The address is in the program memory.

Generated by Doxygen

244

21.20.3.43 pgm_read_u16() uint16_t pgm_read_u16 (

const uint16_t ∗ __addr) [inline], [static]

Read an uint16_t from 16-bit (near) byte-address __addr. The address is in the lower 64 KiB of program
memory.

21.20.3.44 pgm_read_u16_far() uint16_t pgm_read_u16_far (

uint_farptr_t __addr) [inline], [static]

Read an uint16_t from far byte-address __addr. The address is in the program memory.

21.20.3.45 pgm_read_u24() __uint24 pgm_read_u24 (

const __uint24 ∗ __addr) [inline], [static]

Read an __uint24 from 16-bit (near) byte-address __addr. The address is in the lower 64 KiB of program
memory.

21.20.3.46 pgm_read_u24_far() __uint24 pgm_read_u24_far (

uint_farptr_t __addr) [inline], [static]

Read an __uint24 from far byte-address __addr. The address is in the program memory.

21.20.3.47 pgm_read_u32() uint32_t pgm_read_u32 (

const uint32_t ∗ __addr) [inline], [static]

Read an uint32_t from 16-bit (near) byte-address __addr. The address is in the lower 64 KiB of program
memory.

21.20.3.48 pgm_read_u32_far() uint32_t pgm_read_u32_far (

uint_farptr_t __addr) [inline], [static]

Read an uint32_t from far byte-address __addr. The address is in the program memory.

21.20.3.49 pgm_read_u64() uint64_t pgm_read_u64 (

const uint64_t ∗ __addr) [inline], [static]

Read an uint64_t from 16-bit (near) byte-address __addr. The address is in the lower 64 KiB of program
memory.

21.20.3.50 pgm_read_u64_far() uint64_t pgm_read_u64_far (

uint_farptr_t __addr) [inline], [static]

Read an uint64_t from far byte-address __addr. The address is in the program memory.

21.20.3.51 pgm_read_u8() uint8_t pgm_read_u8 (

const uint8_t ∗ __addr) [inline], [static]

Read an uint8_t from 16-bit (near) byte-address __addr. The address is in the lower 64 KiB of program
memory.

Generated by Doxygen

21.20 <avr/pgmspace.h>: Program Space Utilities 245

21.20.3.52 pgm_read_u8_far() uint8_t pgm_read_u8_far (

uint_farptr_t __addr) [inline], [static]

Read an uint8_t from far byte-address __addr. The address is in the program memory.

21.20.3.53 pgm_read_unsigned() unsigned pgm_read_unsigned (

const unsigned ∗ __addr) [inline], [static]

Read an unsigned from 16-bit (near) byte-address __addr. The address is in the lower 64 KiB of program
memory.

21.20.3.54 pgm_read_unsigned_char() unsigned char pgm_read_unsigned_char (

const unsigned char ∗ __addr) [inline], [static]

Read an unsigned char from 16-bit (near) byte-address __addr. The address is in the lower 64 KiB of
program memory.

21.20.3.55 pgm_read_unsigned_char_far() unsigned char pgm_read_unsigned_char_far (

uint_farptr_t __addr) [inline], [static]

Read an unsigned char from far byte-address __addr. The address is in the program memory.

21.20.3.56 pgm_read_unsigned_far() unsigned pgm_read_unsigned_far (

uint_farptr_t __addr) [inline], [static]

Read an unsigned from far byte-address __addr. The address is in the program memory.

21.20.3.57 pgm_read_unsigned_int() unsigned int pgm_read_unsigned_int (

const unsigned int ∗ __addr) [inline], [static]

Read an unsigned int from 16-bit (near) byte-address __addr. The address is in the lower 64 KiB of program
memory.

21.20.3.58 pgm_read_unsigned_int_far() unsigned int pgm_read_unsigned_int_far (

uint_farptr_t __addr) [inline], [static]

Read an unsigned int from far byte-address __addr. The address is in the program memory.

21.20.3.59 pgm_read_unsigned_long() unsigned long pgm_read_unsigned_long (

const unsigned long ∗ __addr) [inline], [static]

Read an unsigned long from 16-bit (near) byte-address __addr. The address is in the lower 64 KiB of
program memory.

21.20.3.60 pgm_read_unsigned_long_far() unsigned long pgm_read_unsigned_long_far (

uint_farptr_t __addr) [inline], [static]

Read an unsigned long from far byte-address __addr. The address is in the program memory.

Generated by Doxygen

246

21.20.3.61 pgm_read_unsigned_long_long() unsigned long long pgm_read_unsigned_long_long (

const unsigned long long ∗ __addr) [inline], [static]

Read an unsigned long long from 16-bit (near) byte-address __addr. The address is in the lower 64 KiB
of program memory.

21.20.3.62 pgm_read_unsigned_long_long_far() unsigned long long pgm_read_unsigned_long_long_←↩

far (

uint_farptr_t __addr) [inline], [static]

Read an unsigned long long from far byte-address __addr. The address is in the program memory.

21.20.3.63 pgm_read_unsigned_short() unsigned short pgm_read_unsigned_short (

const unsigned short ∗ __addr) [inline], [static]

Read an unsigned short from 16-bit (near) byte-address __addr. The address is in the lower 64 KiB of
program memory.

21.20.3.64 pgm_read_unsigned_short_far() unsigned short pgm_read_unsigned_short_far (

uint_farptr_t __addr) [inline], [static]

Read an unsigned short from far byte-address __addr. The address is in the program memory.

21.20.3.65 strcasecmp_P() int strcasecmp_P (

const char ∗ s1,

const char ∗ s2)

Compare two strings ignoring case.

The strcasecmp_P() function compares the two strings s1 and s2, ignoring the case of the characters.

Parameters

s1 A pointer to a string in the devices SRAM.

s2 A pointer to a string in the devices Flash.

Returns

The strcasecmp_P() function returns an integer less than, equal to, or greater than zero if s1 is found, respec-
tively, to be less than, to match, or be greater than s2. A consequence of the ordering used by strcasecmp_P()
is that if s1 is an initial substring of s2, then s1 is considered to be "less than" s2.

21.20.3.66 strcasecmp_PF() int strcasecmp_PF (

const char ∗ s1,

uint_farptr_t s2)

Compare two strings ignoring case.

The strcasecmp_PF() function compares the two strings s1 and s2, ignoring the case of the characters.

Generated by Doxygen

21.20 <avr/pgmspace.h>: Program Space Utilities 247

Parameters

s1 A pointer to the first string in SRAM

s2 A far pointer to the second string in Flash

Returns

The strcasecmp_PF() function returns an integer less than, equal to, or greater than zero if s1 is found,
respectively, to be less than, to match, or be greater than s2. The contents of RAMPZ SFR are undefined
when the function returns.

21.20.3.67 strcasestr_P() char ∗ strcasestr_P (

const char ∗ s1,

const char ∗ s2)

This funtion is similar to strcasestr() except that s2 is pointer to a string in program space.

21.20.3.68 strcat_P() char ∗ strcat_P (

char ∗ dest,

const char ∗ src)

The strcat_P() function is similar to strcat() except that the src string must be located in program space (flash).

Returns

The strcat() function returns a pointer to the resulting string dest.

21.20.3.69 strcat_PF() char ∗ strcat_PF (

char ∗ dst,

uint_farptr_t src)

Concatenates two strings.

The strcat_PF() function is similar to strcat() except that the src string must be located in program space (flash) and
is addressed using a far pointer

Parameters

dst A pointer to the destination string in SRAM

src A far pointer to the string to be appended in Flash

Returns

The strcat_PF() function returns a pointer to the resulting string dst. The contents of RAMPZ SFR are unde-
fined when the function returns

Generated by Doxygen

248

21.20.3.70 strchr_P() const char ∗ strchr_P (

const char ∗ s,

int val)

Locate character in program space string.

The strchr_P() function locates the first occurrence of val (converted to a char) in the string pointed to by s in
program space. The terminating null character is considered to be part of the string.

The strchr_P() function is similar to strchr() except that s is pointer to a string in program space.

Returns

The strchr_P() function returns a pointer to the matched character or NULL if the character is not found.

21.20.3.71 strchr_PF() uint_farptr_t strchr_PF (

uint_farptr_t s,

int val)

Locate character in far program space string.

The strchr_PF() function locates the first occurrence of val (converted to a char) in the string pointed to by s in far
program space. The terminating null character is considered to be part of the string.

The strchr_PF() function is similar to strchr() except that s is a far pointer to a string in program space that's not
required to be located in the lower 64 KiB block like it is the case for strchr_P().

Returns

The strchr_PF() function returns a far pointer to the matched character or 0 if the character is not found.

21.20.3.72 strchrnul_P() const char ∗ strchrnul_P (

const char ∗ s,

int c)

The strchrnul_P() function is like strchr_P() except that if c is not found in s, then it returns a pointer to the null byte
at the end of s, rather than NULL. (Glibc, GNU extension.)

Returns

The strchrnul_P() function returns a pointer to the matched character, or a pointer to the null byte at the end
of s (i.e., s+strlen(s)) if the character is not found.

Generated by Doxygen

21.20 <avr/pgmspace.h>: Program Space Utilities 249

21.20.3.73 strcmp_P() int strcmp_P (

const char ∗ s1,

const char ∗ s2)

The strcmp_P() function is similar to strcmp() except that s2 is pointer to a string in program space.

Returns

The strcmp_P() function returns an integer less than, equal to, or greater than zero if s1 is found, respectively,
to be less than, to match, or be greater than s2. A consequence of the ordering used by strcmp_P() is that if
s1 is an initial substring of s2, then s1 is considered to be "less than" s2.

21.20.3.74 strcmp_PF() int strcmp_PF (

const char ∗ s1,

uint_farptr_t s2)

Compares two strings.

The strcmp_PF() function is similar to strcmp() except that s2 is a far pointer to a string in program space.

Parameters

s1 A pointer to the first string in SRAM

s2 A far pointer to the second string in Flash

Returns

The strcmp_PF() function returns an integer less than, equal to, or greater than zero if s1 is found, respectively,
to be less than, to match, or be greater than s2. The contents of RAMPZ SFR are undefined when the function
returns.

21.20.3.75 strcpy_P() char ∗ strcpy_P (

char ∗ dest,

const char ∗ src)

The strcpy_P() function is similar to strcpy() except that src is a pointer to a string in program space.

Returns

The strcpy_P() function returns a pointer to the destination string dest.

21.20.3.76 strcpy_PF() char ∗ strcpy_PF (

char ∗ dst,

uint_farptr_t src)

Duplicate a string.

The strcpy_PF() function is similar to strcpy() except that src is a far pointer to a string in program space.

Generated by Doxygen

250

Parameters

dst A pointer to the destination string in SRAM

src A far pointer to the source string in Flash

Returns

The strcpy_PF() function returns a pointer to the destination string dst. The contents of RAMPZ SFR are
undefined when the funcion returns.

21.20.3.77 strcspn_P() size_t strcspn_P (

const char ∗ s,

const char ∗ reject)

The strcspn_P() function calculates the length of the initial segment of s which consists entirely of characters not in
reject. This function is similar to strcspn() except that reject is a pointer to a string in program space.

Returns

The strcspn_P() function returns the number of characters in the initial segment of s which are not in the string
reject. The terminating zero is not considered as a part of string.

21.20.3.78 strlcat_P() size_t strlcat_P (

char ∗ dst,

const char ∗ src,

size_t siz)

Concatenate two strings.

The strlcat_P() function is similar to strlcat(), except that the src string must be located in program space (flash).

Appends src to string dst of size siz (unlike strncat(), siz is the full size of dst, not space left). At most
siz-1 characters will be copied. Always NULL terminates (unless siz <= strlen(dst)).

Returns

The strlcat_P() function returns strlen(src) + MIN(siz, strlen(initial dst)). If retval >= siz, truncation occurred.

21.20.3.79 strlcat_PF() size_t strlcat_PF (

char ∗ dst,

uint_farptr_t src,

size_t n)

Concatenate two strings.

The strlcat_PF() function is similar to strlcat(), except that the src string must be located in program space (flash)
and is addressed using a far pointer.

Appends src to string dst of size n (unlike strncat(), n is the full size of dst, not space left). At most n-1 characters
will be copied. Always NULL terminates (unless n <= strlen(dst)).

Generated by Doxygen

21.20 <avr/pgmspace.h>: Program Space Utilities 251

Parameters

dst A pointer to the destination string in SRAM

src A far pointer to the source string in Flash

n The total number of bytes allocated to the destination string

Returns

The strlcat_PF() function returns strlen(src) + MIN(n, strlen(initial dst)). If retval >= n, truncation occurred.
The contents of RAMPZ SFR are undefined when the funcion returns.

21.20.3.80 strlcpy_P() size_t strlcpy_P (

char ∗ dst,

const char ∗ src,

size_t siz)

Copy a string from progmem to RAM.

Copy src to string dst of size siz. At most siz-1 characters will be copied. Always NULL terminates (unless
siz == 0). The strlcpy_P() function is similar to strlcpy() except that the src is pointer to a string in memory space.

Returns

The strlcpy_P() function returns strlen(src). If retval >= siz, truncation occurred.

21.20.3.81 strlcpy_PF() size_t strlcpy_PF (

char ∗ dst,

uint_farptr_t src,

size_t siz)

Copy a string from progmem to RAM.

Copy src to string dst of size siz. At most siz-1 characters will be copied. Always NULL terminates (unless siz ==
0).

Returns

The strlcpy_PF() function returns strlen(src). If retval >= siz, truncation occurred. The contents of RAMPZ
SFR are undefined when the function returns.

Generated by Doxygen

252

21.20.3.82 strlen_P() size_t strlen_P (

const char ∗ src) [inline], [static]

The strlen_P() function is similar to strlen(), except that src is a pointer to a string in program space.

Returns

The strlen_P() function returns the number of characters in src.

Note

strlen_P() is implemented as an inline function in the avr/pgmspace.h header file, which will check if the length
of the string is a constant and known at compile time. If it is not known at compile time, the macro will issue a
call to __strlen_P() which will then calculate the length of the string as normal.

21.20.3.83 strlen_PF() size_t strlen_PF (

uint_farptr_t s)

Obtain the length of a string.

The strlen_PF() function is similar to strlen(), except that s is a far pointer to a string in program space.

Parameters

s A far pointer to the string in flash

Returns

The strlen_PF() function returns the number of characters in s. The contents of RAMPZ SFR are undefined
when the function returns.

21.20.3.84 strncasecmp_P() int strncasecmp_P (

const char ∗ s1,

const char ∗ s2,

size_t n)

Compare two strings ignoring case.

The strncasecmp_P() function is similar to strcasecmp_P(), except it only compares the first n characters of s1.

Parameters

s1 A pointer to a string in the devices SRAM.

s2 A pointer to a string in the devices Flash.

n The maximum number of bytes to compare.

Generated by Doxygen

21.20 <avr/pgmspace.h>: Program Space Utilities 253

Returns

The strncasecmp_P() function returns an integer less than, equal to, or greater than zero if s1 (or the first n
bytes thereof) is found, respectively, to be less than, to match, or be greater than s2. A consequence of the
ordering used by strncasecmp_P() is that if s1 is an initial substring of s2, then s1 is considered to be "less
than" s2.

21.20.3.85 strncasecmp_PF() int strncasecmp_PF (

const char ∗ s1,

uint_farptr_t s2,

size_t n)

Compare two strings ignoring case.

The strncasecmp_PF() function is similar to strcasecmp_PF(), except it only compares the first n characters of s1
and the string in flash is addressed using a far pointer.

Parameters

s1 A pointer to a string in SRAM

s2 A far pointer to a string in Flash

n The maximum number of bytes to compare

Returns

The strncasecmp_PF() function returns an integer less than, equal to, or greater than zero if s1 (or the first n
bytes thereof) is found, respectively, to be less than, to match, or be greater than s2. The contents of RAMPZ
SFR are undefined when the function returns.

21.20.3.86 strncat_P() char ∗ strncat_P (

char ∗ dest,

const char ∗ src,

size_t len)

Concatenate two strings.

The strncat_P() function is similar to strncat(), except that the src string must be located in program space (flash).

Returns

The strncat_P() function returns a pointer to the resulting string dest.

21.20.3.87 strncat_PF() char ∗ strncat_PF (

char ∗ dst,

uint_farptr_t src,

size_t n)

Concatenate two strings.

The strncat_PF() function is similar to strncat(), except that the src string must be located in program space (flash)
and is addressed using a far pointer.

Generated by Doxygen

254

Parameters

dst A pointer to the destination string in SRAM

src A far pointer to the source string in Flash

n The maximum number of bytes to append

Returns

The strncat_PF() function returns a pointer to the resulting string dst. The contents of RAMPZ SFR are
undefined when the function returns.

21.20.3.88 strncmp_P() int strncmp_P (

const char ∗ s1,

const char ∗ s2,

size_t n)

The strncmp_P() function is similar to strcmp_P() except it only compares the first (at most) n characters of s1 and
s2.

Returns

The strncmp_P() function returns an integer less than, equal to, or greater than zero if s1 (or the first n bytes
thereof) is found, respectively, to be less than, to match, or be greater than s2.

21.20.3.89 strncmp_PF() int strncmp_PF (

const char ∗ s1,

uint_farptr_t s2,

size_t n)

Compare two strings with limited length.

The strncmp_PF() function is similar to strcmp_PF() except it only compares the first (at most) n characters of s1
and s2.

Parameters

s1 A pointer to the first string in SRAM

s2 A far pointer to the second string in Flash

n The maximum number of bytes to compare

Returns

The strncmp_PF() function returns an integer less than, equal to, or greater than zero if s1 (or the first n bytes
thereof) is found, respectively, to be less than, to match, or be greater than s2. The contents of RAMPZ SFR
are undefined when the function returns.

Generated by Doxygen

21.20 <avr/pgmspace.h>: Program Space Utilities 255

21.20.3.90 strncpy_P() char ∗ strncpy_P (

char ∗ dest,

const char ∗ src,

size_t n)

The strncpy_P() function is similar to strcpy_P() except that not more than n bytes of src are copied. Thus, if there
is no null byte among the first n bytes of src, the result will not be null-terminated.

In the case where the length of src is less than that of n, the remainder of dest will be padded with nulls.

Returns

The strncpy_P() function returns a pointer to the destination string dest.

21.20.3.91 strncpy_PF() char ∗ strncpy_PF (

char ∗ dst,

uint_farptr_t src,

size_t n)

Duplicate a string until a limited length.

The strncpy_PF() function is similar to strcpy_PF() except that not more than n bytes of src are copied. Thus, if
there is no null byte among the first n bytes of src, the result will not be null-terminated.

In the case where the length of src is less than that of n, the remainder of dst will be padded with nulls.

Parameters

dst A pointer to the destination string in SRAM

src A far pointer to the source string in Flash

n The maximum number of bytes to copy

Returns

The strncpy_PF() function returns a pointer to the destination string dst. The contents of RAMPZ SFR are
undefined when the function returns.

21.20.3.92 strnlen_P() size_t strnlen_P (

const char ∗ src,

size_t len)

Determine the length of a fixed-size string.

The strnlen_P() function is similar to strnlen(), except that src is a pointer to a string in program space.

Returns

The strnlen_P function returns strlen_P(src), if that is less than len, or len if there is no '\0' character among
the first len characters pointed to by src.

Generated by Doxygen

256

21.20.3.93 strnlen_PF() size_t strnlen_PF (

uint_farptr_t s,

size_t len)

Determine the length of a fixed-size string.

The strnlen_PF() function is similar to strnlen(), except that s is a far pointer to a string in program space.

Parameters

s A far pointer to the string in Flash

len The maximum number of length to return

Returns

The strnlen_PF function returns strlen_P(s), if that is less than len, or len if there is no '\0' character among
the first len characters pointed to by s. The contents of RAMPZ SFR are undefined when the function returns.

21.20.3.94 strpbrk_P() char ∗ strpbrk_P (

const char ∗ s,

const char ∗ accept)

The strpbrk_P() function locates the first occurrence in the string s of any of the characters in the flash string
accept. This function is similar to strpbrk() except that accept is a pointer to a string in program space.

Returns

The strpbrk_P() function returns a pointer to the character in s that matches one of the characters in accept,
or NULL if no such character is found. The terminating zero is not considered as a part of string: if one or
both args are empty, the result will NULL.

21.20.3.95 strrchr_P() const char ∗ strrchr_P (

const char ∗ s,

int val)

Locate character in string.

The strrchr_P() function returns a pointer to the last occurrence of the character val in the flash string s.

Returns

The strrchr_P() function returns a pointer to the matched character or NULL if the character is not found.

Generated by Doxygen

21.20 <avr/pgmspace.h>: Program Space Utilities 257

21.20.3.96 strsep_P() char ∗ strsep_P (

char ∗∗ sp,

const char ∗ delim)

Parse a string into tokens.

The strsep_P() function locates, in the string referenced by ∗sp, the first occurrence of any character in the string
delim (or the terminating '\0' character) and replaces it with a '\0'. The location of the next character after the
delimiter character (or NULL, if the end of the string was reached) is stored in ∗sp. An ``empty'' field, i.e. one
caused by two adjacent delimiter characters, can be detected by comparing the location referenced by the pointer
returned in ∗sp to '\0'. This function is similar to strsep() except that delim is a pointer to a string in program
space.

Returns

The strsep_P() function returns a pointer to the original value of ∗sp. If ∗sp is initially NULL, strsep_P()
returns NULL.

21.20.3.97 strspn_P() size_t strspn_P (

const char ∗ s,

const char ∗ accept)

The strspn_P() function calculates the length of the initial segment of s which consists entirely of characters in
accept. This function is similar to strspn() except that accept is a pointer to a string in program space.

Returns

The strspn_P() function returns the number of characters in the initial segment of s which consist only of
characters from accept. The terminating zero is not considered as a part of string.

21.20.3.98 strstr_P() char ∗ strstr_P (

const char ∗ s1,

const char ∗ s2)

Locate a substring.

The strstr_P() function finds the first occurrence of the substring s2 in the string s1. The terminating '\0' characters
are not compared. The strstr_P() function is similar to strstr() except that s2 is pointer to a string in program space.

Returns

The strstr_P() function returns a pointer to the beginning of the substring, or NULL if the substring is not found.
If s2 points to a string of zero length, the function returns s1.

Generated by Doxygen

258

21.20.3.99 strstr_PF() char ∗ strstr_PF (

const char ∗ s1,

uint_farptr_t s2)

Locate a substring.

The strstr_PF() function finds the first occurrence of the substring s2 in the string s1. The terminating '\0' characters
are not compared. The strstr_PF() function is similar to strstr() except that s2 is a far pointer to a string in program
space.

Returns

The strstr_PF() function returns a pointer to the beginning of the substring, or NULL if the substring is not
found. If s2 points to a string of zero length, the function returns s1. The contents of RAMPZ SFR are
undefined when the function returns.

21.20.3.100 strtok_P() char ∗ strtok_P (

char ∗ s,

const char ∗ delim)

Parses the string into tokens.

strtok_P() parses the string s into tokens. The first call to strtok_P() should have s as its first argument. Subse-
quent calls should have the first argument set to NULL. If a token ends with a delimiter, this delimiting character is
overwritten with a '\0' and a pointer to the next character is saved for the next call to strtok_P(). The delimiter string
delim may be different for each call.

The strtok_P() function is similar to strtok() except that delim is pointer to a string in program space.

Returns

The strtok_P() function returns a pointer to the next token or NULL when no more tokens are found.

Note

strtok_P() is NOT reentrant. For a reentrant version of this function see strtok_rP().

21.20.3.101 strtok_rP() char ∗ strtok_rP (

char ∗ string,

const char ∗ delim,

char ∗∗ last)

Parses string into tokens.

The strtok_rP() function parses string into tokens. The first call to strtok_rP() should have string as its first
argument. Subsequent calls should have the first argument set to NULL. If a token ends with a delimiter, this
delimiting character is overwritten with a '\0' and a pointer to the next character is saved for the next call to strtok_rP().
The delimiter string delim may be different for each call. last is a user allocated char∗ pointer. It must be the
same while parsing the same string. strtok_rP() is a reentrant version of strtok_P().

The strtok_rP() function is similar to strtok_r() except that delim is pointer to a string in program space.

Returns

The strtok_rP() function returns a pointer to the next token or NULL when no more tokens are found.

Generated by Doxygen

21.21 <avr/power.h>: Power Reduction Management 259

21.21 <avr/power.h>: Power Reduction Management

Macros

• #define clock_prescale_get() (clock_div_t)(CLKPR & (uint8_t)((1<<CLKPS0)|(1<<CLKPS1)|(1<<CLKPS2)|(1<<CLKPS3)))

Functions

• static void power_all_enable ()
• static void power_all_disable ()
• void clock_prescale_set (clock_div_t __x)

21.21.1 Detailed Description

#include <avr/power.h>

Many AVRs contain a Power Reduction Register (PRR) or Registers (PRRx) that allow you to reduce power con-
sumption by disabling or enabling various on-board peripherals as needed. Some devices have the XTAL Divide
Control Register (XDIV) which offer similar functionality as System Clock Prescale Register (CLKPR).

There are many macros in this header file that provide an easy interface to enable or disable on-board peripherals
to reduce power. See the table below.

Note

Not all AVR devices have a Power Reduction Register (for example the ATmega8). On those devices without
a Power Reduction Register, the power reduction macros are not available..

Not all AVR devices contain the same peripherals (for example, the LCD interface), or they will be named
differently (for example, USART and USART0). Please consult your device's datasheet, or the header file, to
find out which macros are applicable to your device.

For device using the XTAL Divide Control Register (XDIV), when prescaler is used, Timer/Counter0 can only
be used in asynchronous mode. Keep in mind that Timer/Counter0 source shall be less than ¼th of peripheral
clock. Therefore, when using a typical 32.768 kHz crystal, one shall not scale the clock below 131.072 kHz.

Table 39 Power Macros

Power Macro Description

power_aca_disable() Disable the Analog Comparator on PortA

power_aca_enable() Enable the Analog Comparator on PortA

power_adc_enable() Enable the Analog to Digital Converter module

power_adc_disable() Disable the Analog to Digital Converter module

power_adca_disable() Disable the Analog to Digital Converter module on PortA

power_adca_enable() Enable the Analog to Digital Converter module on PortA

power_evsys_disable() Disable the EVSYS module

power_evsys_enable() Enable the EVSYS module

power_hiresc_disable() Disable the HIRES module on PortC

power_hiresc_enable() Enable the HIRES module on PortC

power_lcd_enable() Enable the LCD module

power_lcd_disable() Disable the LCD module

power_pga_enable() Enable the Programmable Gain Amplifier module

power_pga_disable() Disable the Programmable Gain Amplifier module

power_pscr_enable() Enable the Reduced Power Stage Controller module

power_pscr_disable() Disable the Reduced Power Stage Controller module

power_psc0_enable() Enable the Power Stage Controller 0 module

power_psc0_disable() Disable the Power Stage Controller 0 module

Generated by Doxygen

260

Power Macro Description

power_psc1_enable() Enable the Power Stage Controller 1 module

power_psc1_disable() Disable the Power Stage Controller 1 module

power_psc2_enable() Enable the Power Stage Controller 2 module

power_psc2_disable() Disable the Power Stage Controller 2 module

power_ram0_enable() Enable the SRAM block 0

power_ram0_disable() Disable the SRAM block 0

power_ram1_enable() Enable the SRAM block 1

power_ram1_disable() Disable the SRAM block 1

power_ram2_enable() Enable the SRAM block 2

power_ram2_disable() Disable the SRAM block 2

power_ram3_enable() Enable the SRAM block 3

power_ram3_disable() Disable the SRAM block 3

power_rtc_disable() Disable the RTC module

power_rtc_enable() Enable the RTC module

power_spi_enable() Enable the Serial Peripheral Interface module

power_spi_disable() Disable the Serial Peripheral Interface module

power_spic_disable() Disable the SPI module on PortC

power_spic_enable() Enable the SPI module on PortC

power_spid_disable() Disable the SPI module on PortD

power_spid_enable() Enable the SPI module on PortD

power_tc0c_disable() Disable the TC0 module on PortC

power_tc0c_enable() Enable the TC0 module on PortC

power_tc0d_disable() Disable the TC0 module on PortD

power_tc0d_enable() Enable the TC0 module on PortD

power_tc0e_disable() Disable the TC0 module on PortE

power_tc0e_enable() Enable the TC0 module on PortE

power_tc0f_disable() Disable the TC0 module on PortF

power_tc0f_enable() Enable the TC0 module on PortF

power_tc1c_disable() Disable the TC1 module on PortC

power_tc1c_enable() Enable the TC1 module on PortC

power_twic_disable() Disable the Two Wire Interface module on PortC

power_twic_enable() Enable the Two Wire Interface module on PortC

power_twie_disable() Disable the Two Wire Interface module on PortE

power_twie_enable() Enable the Two Wire Interface module on PortE

power_timer0_enable() Enable the Timer 0 module

power_timer0_disable() Disable the Timer 0 module

power_timer1_enable() Enable the Timer 1 module

power_timer1_disable() Disable the Timer 1 module

power_timer2_enable() Enable the Timer 2 module

power_timer2_disable() Disable the Timer 2 module

power_timer3_enable() Enable the Timer 3 module

power_timer3_disable() Disable the Timer 3 module

power_timer4_enable() Enable the Timer 4 module

power_timer4_disable() Disable the Timer 4 module

power_timer5_enable() Enable the Timer 5 module

power_timer5_disable() Disable the Timer 5 module

power_twi_enable() Enable the Two Wire Interface module

power_twi_disable() Disable the Two Wire Interface module

power_usart_enable() Enable the USART module

power_usart_disable() Disable the USART module

power_usart0_enable() Enable the USART 0 module

power_usart0_disable() Disable the USART 0 module

power_usart1_enable() Enable the USART 1 module

power_usart1_disable() Disable the USART 1 module

power_usart2_enable() Enable the USART 2 module

power_usart2_disable() Disable the USART 2 module

Generated by Doxygen

21.21 <avr/power.h>: Power Reduction Management 261

Power Macro Description

power_usart3_enable() Enable the USART 3 module

power_usart3_disable() Disable the USART 3 module

power_usartc0_disable() Disable the USART0 module on PortC

power_usartc0_enable() Enable the USART0 module on PortC

power_usartd0_disable() Disable the USART0 module on PortD

power_usartd0_enable() Enable the USART0 module on PortD

power_usarte0_disable() Disable the USART0 module on PortE

power_usarte0_enable() Enable the USART0 module on PortE

power_usartf0_disable() Disable the USART0 module on PortF

power_usartf0_enable() Enable the USART0 module on PortF

power_usb_enable() Enable the USB module

power_usb_disable() Disable the USB module

power_usi_enable() Enable the Universal Serial Interface module

power_usi_disable() Disable the Universal Serial Interface module

power_vadc_enable() Enable the Voltage ADC module

power_vadc_disable() Disable the Voltage ADC module

power_all_enable() Enable all modules

power_all_disable() Disable all modules

Some of the newer AVRs contain a System Clock Prescale Register (CLKPR) that allows you to decrease the
system clock frequency and the power consumption when the need for processing power is low. On some earlier
AVRs (ATmega103, ATmega64, ATmega128), similar functionality can be achieved through the XTAL Divide Control
Register. Below are two macros and an enumerated type that can be used to interface to the Clock Prescale Register
or XTAL Divide Control Register.

Note

Not all AVR devices have a clock prescaler. On those devices without a Clock Prescale Register or XTAL
Divide Control Register, these macros are not available.

typedef enum
{

clock_div_1 = 0,
clock_div_2 = 1,
clock_div_4 = 2,
clock_div_8 = 3,
clock_div_16 = 4,
clock_div_32 = 5,
clock_div_64 = 6,
clock_div_128 = 7,
clock_div_256 = 8,
clock_div_1_rc = 15, // ATmega128RFA1 only

} clock_div_t;

Clock prescaler setting enumerations for device using System Clock Prescale Register.
typedef enum
{

clock_div_1 = 1,
clock_div_2 = 2,
clock_div_4 = 4,
clock_div_8 = 8,
clock_div_16 = 16,
clock_div_32 = 32,
clock_div_64 = 64,
clock_div_128 = 128

} clock_div_t;

Clock prescaler setting enumerations for device using XTAL Divide Control Register.

21.21.2 Macro Definition Documentation

Generated by Doxygen

262

21.21.2.1 clock_prescale_get #define clock_prescale_get() (clock_div_t)(CLKPR & (uint8_t)((1<<CLKPS0)|(1<<CLKPS1)|(1<<CLKPS2)|(1<<CLKPS3)))

Gets and returns the clock prescaler register setting. The return type is clock_div_t.

Note

For device with XTAL Divide Control Register (XDIV), return can actually range from 1 to 129. Care should
be taken has the return value could differ from the typedef enum clock_div_t. This should only happen if
clock_prescale_set was previously called with a value other than those defined by clock_div_t.

21.21.3 Function Documentation

21.21.3.1 clock_prescale_set() clock_prescale_set (

clock_div_t x)

Set the clock prescaler register select bits, selecting a system clock division setting. This function is inlined, even if
compiler optimizations are disabled.

The type of x is clock_div_t.

Note

For device with XTAL Divide Control Register (XDIV), x can actually range from 1 to 129. Thus, one does not
need to use clock_div_t type as argument.

21.21.3.2 power_all_disable() void power_all_disable () [inline], [static]

Disable all modules.

21.21.3.3 power_all_enable() void power_all_enable () [inline], [static]

Enable all modules.

Generated by Doxygen

21.22 Additional notes from <avr/sfr_defs.h> 263

21.22 Additional notes from <avr/sfr_defs.h>

The <avr/sfr_defs.h> file is included by all of the <avr/ioXXXX.h> files, which use macros defined
here to make the special function register definitions look like C variables or simple constants, depending on the
_SFR_ASM_COMPAT define. Some examples from <avr/iocanxx.h> to show how to define such macros:
#define PORTA _SFR_IO8(0x02)
#define EEAR _SFR_IO16(0x21)
#define UDR0 _SFR_MEM8(0xC6)
#define TCNT3 _SFR_MEM16(0x94)
#define CANIDT _SFR_MEM32(0xF0)

If _SFR_ASM_COMPAT is not defined, C programs can use names like PORTA directly in C expressions (also on
the left side of assignment operators) and GCC will do the right thing (use short I/O instructions if possible). The
__SFR_OFFSET definition is not used in any way in this case.

Define _SFR_ASM_COMPAT as 1 to make these names work as simple constants (addresses of the I/O registers).
This is necessary when included in preprocessed assembler (∗.S) source files, so it is done automatically if _←↩

_ASSEMBLER__ is defined. By default, all addresses are defined as if they were memory addresses (used in
lds/sts instructions). To use these addresses in in/out instructions, you must subtract 0x20 from them.

For more backwards compatibility, insert the following at the start of your old assembler source file:
#define __SFR_OFFSET 0

This automatically subtracts 0x20 from I/O space addresses, but it's a hack, so it is recommended to change your
source: wrap such addresses in macros defined here, as shown below. After this is done, the __SFR_OFFSET
definition is no longer necessary and can be removed.

Real example - this code could be used in a boot loader that is portable between devices with SPMCR at different
addresses.

<avr/iom163.h>: #define SPMCR _SFR_IO8(0x37)
<avr/iom128.h>: #define SPMCR _SFR_MEM8(0x68)

#if _SFR_IO_REG_P(SPMCR)
out _SFR_IO_ADDR(SPMCR), r24

#else
sts _SFR_MEM_ADDR(SPMCR), r24

#endif

You can use the in/out/cbi/sbi/sbic/sbis instructions, without the _SFR_IO_REG_P test, if you know
that the register is in the I/O space (as with SREG, for example). If it isn't, the assembler will complain (I/O address
out of range 0...0x3f), so this should be fairly safe.

If you do not define __SFR_OFFSET (so it will be 0x20 by default), all special register addresses are defined as
memory addresses (so SREG is 0x5f), and (if code size and speed are not important, and you don't like the ugly
#if above) you can always use lds/sts to access them. But, this will not work if __SFR_OFFSET != 0x20, so use a
different macro (defined only if __SFR_OFFSET == 0x20) for safety:
sts _SFR_ADDR(SPMCR), r24

In C programs, all 3 combinations of _SFR_ASM_COMPAT and __SFR_OFFSET are supported - the _SFR_←↩

ADDR(SPMCR) macro can be used to get the address of the SPMCR register (0x57 or 0x68 depending on device).

21.23 <avr/sfr_defs.h>: Special function registers

Modules

• Additional notes from <avr/sfr_defs.h>

Generated by Doxygen

264

Bit manipulation

• #define _BV(bit) (1 << (bit))

IO register bit manipulation

• #define bit_is_set(sfr, bit) (_SFR_BYTE(sfr) & _BV(bit))
• #define bit_is_clear(sfr, bit) (!(_SFR_BYTE(sfr) & _BV(bit)))
• #define loop_until_bit_is_set(sfr, bit) do { } while (bit_is_clear(sfr, bit))
• #define loop_until_bit_is_clear(sfr, bit) do { } while (bit_is_set(sfr, bit))

21.23.1 Detailed Description

When working with microcontrollers, many tasks usually consist of controlling internal peripherals, or external pe-
ripherals that are connected to the device. The entire IO address space is made available as memory-mapped IO,
i.e. it can be accessed using all the MCU instructions that are applicable to normal data memory. For most AVR
devices, the IO register space is mapped into the data memory address space with an offset of 0x20 since the
bottom of this space is reserved for direct access to the MCU registers. (Actual SRAM is available only behind the
IO register area, starting at some specific address depending on the device.)

For example the user can access memory-mapped IO registers as if they were globally defined variables like this:
PORTA = 0x33;
unsigned char foo = PINA;

The compiler will choose the correct instruction sequence to generate based on the address of the register being
accessed.

The advantage of using the memory-mapped registers in C programs is that it makes the programs more portable
to other C compilers for the AVR platform.

Note that special care must be taken when accessing some of the 16-bit timer IO registers where access from both
the main program and within an interrupt context can happen. See Why do some 16-bit timer registers sometimes get trashed?.

Porting programs that use the deprecated sbi/cbi macros

Access to the AVR single bit set and clear instructions are provided via the standard C bit manipulation commands.
The sbi and cbi macros are no longer directly supported. sbi (sfr,bit) can be replaced by sfr |= _BV(bit) .

i.e.: sbi(PORTB, PB1); is now PORTB |= _BV(PB1);

This actually is more flexible than having sbi directly, as the optimizer will use a hardware sbi if appropriate, or a
read/or/write operation if not appropriate. You do not need to keep track of which registers sbi/cbi will operate on.

Likewise, cbi (sfr,bit) is now sfr &= ∼(_BV(bit));

21.23.2 Macro Definition Documentation

Generated by Doxygen

21.24 <avr/signature.h>: Signature Support 265

21.23.2.1 _BV #define _BV(

bit) (1 << (bit))
#include <avr/io.h>

Converts a bit number into a byte value.

Note

The bit shift is performed by the compiler which then inserts the result into the code. Thus, there is no run-time
overhead when using _BV().

21.23.2.2 bit_is_clear #define bit_is_clear(

sfr,

bit) (!(_SFR_BYTE(sfr) & _BV(bit)))
#include <avr/io.h>

Test whether bit bit in IO register sfr is clear. This will return non-zero if the bit is clear, and a 0 if the bit is set.

21.23.2.3 bit_is_set #define bit_is_set(

sfr,

bit) (_SFR_BYTE(sfr) & _BV(bit))
#include <avr/io.h>

Test whether bit bit in IO register sfr is set. This will return a 0 if the bit is clear, and non-zero if the bit is set.

21.23.2.4 loop_until_bit_is_clear #define loop_until_bit_is_clear(

sfr,

bit) do { } while (bit_is_set(sfr, bit))
#include <avr/io.h>

Wait until bit bit in IO register sfr is clear.

21.23.2.5 loop_until_bit_is_set #define loop_until_bit_is_set(

sfr,

bit) do { } while (bit_is_clear(sfr, bit))
#include <avr/io.h>

Wait until bit bit in IO register sfr is set.

21.24 <avr/signature.h>: Signature Support

Introduction

The <avr/signature.h> header file allows the user to automatically and easily include the device's signature data in
a special section of the final linked ELF file.

This value can then be used by programming software to compare the on-device signature with the signature
recorded in the ELF file to look for a match before programming the device.

Generated by Doxygen

266

API Usage Example

Usage is very simple; just include the header file:
#include <avr/signature.h>

This will declare a constant unsigned char array and it is initialized with the three signature bytes, MSB first, that are
defined in the device I/O header file. This array is then placed in the .signature section in the resulting linked ELF
file.

The three signature bytes that are used to initialize the array are these defined macros in the device I/O header file,
from MSB to LSB: SIGNATURE_2, SIGNATURE_1, SIGNATURE_0.

This header file should only be included once in an application.

21.25 <avr/sleep.h>: Power Management and Sleep Modes

Functions

• void sleep_enable (void)
• void sleep_disable (void)
• void sleep_cpu (void)
• void sleep_mode (void)
• void sleep_bod_disable (void)

21.25.1 Detailed Description

21.25.2 Function Documentation

21.25.2.1 sleep_bod_disable() void sleep_bod_disable (

void)

Disable BOD before going to sleep. Not available on all devices.

21.25.2.2 sleep_cpu() void sleep_cpu (

void)

Put the device into sleep mode. The SE bit must be set beforehand, and it is recommended to clear it afterwards.

21.25.2.3 sleep_disable() void sleep_disable (

void)

Clear the SE (sleep enable) bit.

Generated by Doxygen

21.25 <avr/sleep.h>: Power Management and Sleep Modes 267

21.25.2.4 sleep_enable() void sleep_enable (

void)
#include <avr/sleep.h>

Use of the SLEEP instruction can allow an application to reduce its power comsumption considerably. AVR devices
can be put into different sleep modes. Refer to the datasheet for the details relating to the device you are using.

There are several macros provided in this header file to actually put the device into sleep mode. The simplest way
is to optionally set the desired sleep mode using set_sleep_mode() (it usually defaults to idle mode where
the CPU is put on sleep but all peripheral clocks are still running), and then call sleep_mode(). This macro
automatically sets the sleep enable bit, goes to sleep, and clears the sleep enable bit.

Example:
#include <avr/sleep.h>

...
set_sleep_mode(<mode>);
sleep_mode();

Note that unless your purpose is to completely lock the CPU (until a hardware reset), interrupts need to be enabled
before going to sleep.

As the sleep_mode() macro might cause race conditions in some situations, the individual steps of ma-
nipulating the sleep enable (SE) bit, and actually issuing the SLEEP instruction, are provided in the macros
sleep_enable(), sleep_disable(), and sleep_cpu(). This also allows for test-and-sleep scenarios
that take care of not missing the interrupt that will awake the device from sleep.

Example:
#include <avr/interrupt.h>
#include <avr/sleep.h>

...
set_sleep_mode(<mode>);
cli();
if (some_condition)
{
sleep_enable();
sei();
sleep_cpu();
sleep_disable();

}
sei();

This sequence ensures an atomic test of some_condition with interrupts being disabled. If the condition is met,
sleep mode will be prepared, and the SLEEP instruction will be scheduled immediately after an SEI instruction. As
the intruction right after the SEI is guaranteed to be executed before an interrupt could trigger, it is sure the device
will really be put to sleep.

Some devices have the ability to disable the Brown Out Detector (BOD) before going to sleep. This will also
reduce power while sleeping. If the specific AVR device has this ability then an additional macro is defined←↩

: sleep_bod_disable(). This macro generates inlined assembly code that will correctly implement the timed
sequence for disabling the BOD before sleeping. However, there is a limited number of cycles after the BOD has
been disabled that the device can be put into sleep mode, otherwise the BOD will not truly be disabled. Recom-
mended practice is to disable the BOD (sleep_bod_disable()), set the interrupts (sei()), and then put the
device to sleep (sleep_cpu()), like so:
#include <avr/interrupt.h>
#include <avr/sleep.h>

...
set_sleep_mode(<mode>);
cli();
if (some_condition)
{
sleep_enable();
sleep_bod_disable();
sei();
sleep_cpu();
sleep_disable();

}
sei();

Put the device in sleep mode. How the device is brought out of sleep mode depends on the specific mode selected
with the set_sleep_mode() function. See the data sheet for your device for more details.

Set the SE (sleep enable) bit.

Generated by Doxygen

268

21.25.2.5 sleep_mode() void sleep_mode (

void)

Put the device into sleep mode, taking care of setting the SE bit before, and clearing it afterwards.

21.26 <avr/version.h>: avr-libc version macros

Macros

• #define __AVR_LIBC_VERSION_STRING__ "2.2.0"
• #define __AVR_LIBC_VERSION__ 20200UL
• #define __AVR_LIBC_DATE_STRING__ "20240608"
• #define __AVR_LIBC_DATE_ 20240608UL
• #define __AVR_LIBC_MAJOR__ 2
• #define __AVR_LIBC_MINOR__ 2
• #define __AVR_LIBC_REVISION__ 0

21.26.1 Detailed Description

#include <avr/version.h>

This header file defines macros that contain version numbers and strings describing the current version of avr-libc.

The version number itself basically consists of three pieces that are separated by a dot: the major number, the
minor number, and the revision number. For development versions (which use an odd minor number), the string
representation additionally gets the date code (YYYYMMDD) appended.

This file will also be included by <avr/io.h>. That way, portable tests can be implemented using
<avr/io.h> that can be used in code that wants to remain backwards-compatible to library versions prior
to the date when the library version API had been added, as referenced but undefined C preprocessor macros
automatically evaluate to 0.

21.26.2 Macro Definition Documentation

21.26.2.1 __AVR_LIBC_DATE_ #define __AVR_LIBC_DATE_ 20240608UL

Numerical representation of the release date.

21.26.2.2 __AVR_LIBC_DATE_STRING__ #define __AVR_LIBC_DATE_STRING__ "20240608"

String literal representation of the release date.

21.26.2.3 __AVR_LIBC_MAJOR__ #define __AVR_LIBC_MAJOR__ 2

Library major version number.

Generated by Doxygen

21.27 <avr/builtins.h>: avr-gcc builtins documentation 269

21.26.2.4 __AVR_LIBC_MINOR__ #define __AVR_LIBC_MINOR__ 2

Library minor version number.

21.26.2.5 __AVR_LIBC_REVISION__ #define __AVR_LIBC_REVISION__ 0

Library revision number.

21.26.2.6 __AVR_LIBC_VERSION__ #define __AVR_LIBC_VERSION__ 20200UL

Numerical representation of the current library version.

In the numerical representation, the major number is multiplied by 10000, the minor number by 100, and all three
parts are then added. It is intented to provide a monotonically increasing numerical value that can easily be used in
numerical checks.

21.26.2.7 __AVR_LIBC_VERSION_STRING__ #define __AVR_LIBC_VERSION_STRING__ "2.2.0"

String literal representation of the current library version.

21.27 <avr/builtins.h>: avr-gcc builtins documentation

Functions

• void __builtin_avr_sei (void)
• void __builtin_avr_cli (void)
• void __builtin_avr_sleep (void)
• void __builtin_avr_wdr (void)
• uint8_t __builtin_avr_swap (uint8_t __b)
• uint16_t __builtin_avr_fmul (uint8_t __a, uint8_t __b)
• int16_t __builtin_avr_fmuls (int8_t __a, int8_t __b)
• int16_t __builtin_avr_fmulsu (int8_t __a, uint8_t __b)

21.27.1 Detailed Description

#include <avr/builtins.h>

Note

This file only documents some avr-gcc builtins. For functions built-in in the compiler, there should be no
prototype declarations.

See also the GCC documentation for a full list of avr-gcc builtins.

21.27.2 Function Documentation

Generated by Doxygen

https://gcc.gnu.org/onlinedocs/gcc/AVR-Built-in-Functions.html

270

21.27.2.1 __builtin_avr_cli() void __builtin_avr_cli (

void)

Disables all interrupts by clearing the global interrupt mask.

21.27.2.2 __builtin_avr_fmul() uint16_t __builtin_avr_fmul (

uint8_t __a,

uint8_t __b)

Emits an FMUL (fractional multiply unsigned) instruction.

21.27.2.3 __builtin_avr_fmuls() int16_t __builtin_avr_fmuls (

int8_t __a,

int8_t __b)

Emits an FMUL (fractional multiply signed) instruction.

21.27.2.4 __builtin_avr_fmulsu() int16_t __builtin_avr_fmulsu (

int8_t __a,

uint8_t __b)

Emits an FMUL (fractional multiply signed with unsigned) instruction.

21.27.2.5 __builtin_avr_sei() void __builtin_avr_sei (

void)

Enables interrupts by setting the global interrupt mask.

21.27.2.6 __builtin_avr_sleep() void __builtin_avr_sleep (

void)

Emits a SLEEP instruction.

21.27.2.7 __builtin_avr_swap() uint8_t __builtin_avr_swap (

uint8_t __b)

Emits a SWAP (nibble swap) instruction on __b.

21.27.2.8 __builtin_avr_wdr() void __builtin_avr_wdr (

void)

Emits a WDR (watchdog reset) instruction.

Generated by Doxygen

21.28 <avr/wdt.h>: Watchdog timer handling 271

21.28 <avr/wdt.h>: Watchdog timer handling

Macros

• #define wdt_reset() __asm__ __volatile__ ("wdr")
• #define wdt_enable(timeout)
• #define WDTO_15MS 0
• #define WDTO_30MS 1
• #define WDTO_60MS 2
• #define WDTO_120MS 3
• #define WDTO_250MS 4
• #define WDTO_500MS 5
• #define WDTO_1S 6
• #define WDTO_2S 7
• #define WDTO_4S 8
• #define WDTO_8S 9

21.28.1 Detailed Description

#include <avr/wdt.h>

This header file declares the interface to some inline macros handling the watchdog timer present in many AVR de-
vices. In order to prevent the watchdog timer configuration from being accidentally altered by a crashing application,
a special timed sequence is required in order to change it. The macros within this header file handle the required
sequence automatically before changing any value. Interrupts will be disabled during the manipulation.

Note

Depending on the fuse configuration of the particular device, further restrictions might apply, in particular it
might be disallowed to turn off the watchdog timer.

Note that for newer devices (ATmega88 and newer, effectively any AVR that has the option to also generate inter-
rupts), the watchdog timer remains active even after a system reset (except a power-on condition), using the fastest
prescaler value (approximately 15 ms). It is therefore required to turn off the watchdog early during program startup,
the datasheet recommends a sequence like the following:
#include <stdint.h>
#include <avr/wdt.h>

uint8_t mcusr_mirror __attribute__ ((section (".noinit")));

__attribute__((used, unused, naked, section(".init3")))
static void get_mcusr (void);

void get_mcusr (void)
{

mcusr_mirror = MCUSR;
MCUSR = 0;
wdt_disable();

}

Saving the value of MCUSR in mcusr_mirror is only needed if the application later wants to examine the reset
source, but in particular, clearing the watchdog reset flag before disabling the watchdog is required, according to
the datasheet.

21.28.2 Macro Definition Documentation

Generated by Doxygen

272

21.28.2.1 wdt_enable #define wdt_enable(

timeout)

Enable the watchdog timer, configuring it for expiry after timeout (which is a combination of the WDP0 through
WDP2 bits to write into the WDTCR register; For those devices that have a WDTCSR register, it uses the combination
of the WDP0 through WDP3 bits).

See also the symbolic constants WDTO_15MS et al.

21.28.2.2 wdt_reset #define wdt_reset() __asm__ __volatile__ ("wdr")

Reset the watchdog timer. When the watchdog timer is enabled, a call to this instruction is required before the timer
expires, otherwise a watchdog-initiated device reset will occur.

21.28.2.3 WDTO_120MS #define WDTO_120MS 3

See WDTO_15MS

21.28.2.4 WDTO_15MS #define WDTO_15MS 0

Symbolic constants for the watchdog timeout. Since the watchdog timer is based on a free-running RC oscillator,
the times are approximate only and apply to a supply voltage of 5 V. At lower supply voltages, the times will increase.
For older devices, the times will be as large as three times when operating at Vcc = 3 V, while the newer devices (e.
g. ATmega128, ATmega8) only experience a negligible change.

Possible timeout values are: 15 ms, 30 ms, 60 ms, 120 ms, 250 ms, 500 ms, 1 s, 2 s. (Some devices also allow for
4 s and 8 s.) Symbolic constants are formed by the prefix WDTO_, followed by the time.

Example that would select a watchdog timer expiry of approximately 500 ms:
wdt_enable(WDTO_500MS);

21.28.2.5 WDTO_1S #define WDTO_1S 6

See WDTO_15MS

21.28.2.6 WDTO_250MS #define WDTO_250MS 4

See WDTO_15MS

21.28.2.7 WDTO_2S #define WDTO_2S 7

See WDTO_15MS

21.28.2.8 WDTO_30MS #define WDTO_30MS 1

See WDTO_15MS

Generated by Doxygen

21.29 <util/delay.h>: Convenience functions for busy-wait delay loops 273

21.28.2.9 WDTO_4S #define WDTO_4S 8

See WDTO_15MS Note: This is only available on the ATtiny2313, ATtiny24, ATtiny44, ATtiny84, ATtiny84A, ATtiny25,
ATtiny45, ATtiny85, ATtiny261, ATtiny461, ATtiny861, ATmega48∗, ATmega88∗, ATmega168∗, ATmega328∗, AT-
mega164P, ATmega324P, ATmega324PB, ATmega644P, ATmega644, ATmega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561, ATmega8HVA, ATmega16HVA, ATmega32HVB, ATmega406, ATmega1284P, AT90←↩

PWM1, AT90PWM2, AT90PWM2B, AT90PWM3, AT90PWM3B, AT90PWM216, AT90PWM316, AT90PWM81,
AT90PWM161, AT90USB82, AT90USB162, AT90USB646, AT90USB647, AT90USB1286, AT90USB1287, ATtiny48,
ATtiny88.

Note: This value does not match the bit pattern of the respective control register. It is solely meant to be used
together with wdt_enable().

21.28.2.10 WDTO_500MS #define WDTO_500MS 5

See WDTO_15MS

21.28.2.11 WDTO_60MS #define WDTO_60MS 2

See WDTO_15MS

21.28.2.12 WDTO_8S #define WDTO_8S 9

See WDTO_15MS Note: This is only available on the ATtiny2313, ATtiny24, ATtiny44, ATtiny84, ATtiny84A, ATtiny25,
ATtiny45, ATtiny85, ATtiny261, ATtiny461, ATtiny861, ATmega48∗, ATmega88∗, ATmega168∗, ATmega328∗, AT-
mega164P, ATmega324P, ATmega324PB, ATmega644P, ATmega644, ATmega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561, ATmega8HVA, ATmega16HVA, ATmega32HVB, ATmega406, ATmega1284P,
ATmega2564RFR2, ATmega256RFR2, ATmega1284RFR2, ATmega128RFR2, ATmega644RFR2, ATmega64←↩

RFR2 AT90PWM1, AT90PWM2, AT90PWM2B, AT90PWM3, AT90PWM3B, AT90PWM216, AT90PWM316,
AT90PWM81, AT90PWM161, AT90USB82, AT90USB162, AT90USB646, AT90USB647, AT90USB1286, AT90←↩

USB1287, ATtiny48, ATtiny88, ATxmega16a4u, ATxmega32a4u, ATxmega16c4, ATxmega32c4, ATxmega128c3,
ATxmega192c3, ATxmega256c3.

Note: This value does not match the bit pattern of the respective control register. It is solely meant to be used
together with wdt_enable().

21.29 <util/delay.h>: Convenience functions for busy-wait delay loops

Macros

• #define F_CPU 1000000UL

Functions

• static void _delay_ms (double __ms)
• static void _delay_us (double __us)

Generated by Doxygen

274

21.29.1 Detailed Description

#define F_CPU 1000000UL // 1 MHz
//#define F_CPU 14.7456e6
#include <util/delay.h>

Note

As an alternative method, it is possible to pass the F_CPU macro down to the compiler from the Makefile.
Obviously, in that case, no #define statement should be used.

The functions in this header file are wrappers around the basic busy-wait functions from <util/delay_basic.h>.
They are meant as convenience functions where actual time values can be specified rather than a number of cycles
to wait for. The idea behind is that compile-time constant expressions will be eliminated by compiler optimization so
floating-point expressions can be used to calculate the number of delay cycles needed based on the CPU frequency
passed by the macro F_CPU.

Note

In order for these functions to work as intended, compiler optimizations must be enabled, and the delay time
must be an expression that is a known constant at compile-time. If these requirements are not met, the
resulting delay will be much longer (and basically unpredictable), and applications that otherwise do not use
floating-point calculations will experience severe code bloat by the floating-point library routines linked into the
application.

The functions available allow the specification of microsecond, and millisecond delays directly, using the application-
supplied macro F_CPU as the CPU clock frequency (in Hertz).

21.29.2 Macro Definition Documentation

21.29.2.1 F_CPU #define F_CPU 1000000UL

CPU frequency in Hz.

The macro F_CPU specifies the CPU frequency to be considered by the delay macros. This macro is normally
supplied by the environment (e.g. from within a project header, or the project's Makefile). The value 1 MHz here is
only provided as a "vanilla" fallback if no such user-provided definition could be found.

In terms of the delay functions, the CPU frequency can be given as a floating-point constant (e.g. 3.6864e6 for
3.6864 MHz). However, the macros in <util/setbaud.h> require it to be an integer value.

21.29.3 Function Documentation

Generated by Doxygen

21.29 <util/delay.h>: Convenience functions for busy-wait delay loops 275

21.29.3.1 _delay_ms() void _delay_ms (

double __ms) [inline], [static]

Perform a delay of __ms milliseconds, using _delay_loop_2().

The macro F_CPU is supposed to be defined to a constant defining the CPU clock frequency (in Hertz).

The maximal possible delay is 262.14 ms / F_CPU in MHz.

When the user request delay which exceed the maximum possible one, _delay_ms() provides a decreased reso-
lution functionality. In this mode _delay_ms() will work with a resolution of 1/10 ms, providing delays up to 6.5535
seconds (independent from CPU frequency). The user will not be informed about decreased resolution.

If the avr-gcc toolchain has __builtin_avr_delay_cycles() support, maximal possible delay is
4294967.295 ms/ F_CPU in MHz. For values greater than the maximal possible delay, overflow may result in
no delay i.e., 0 ms.

Conversion of __ms into clock cycles may not always result in an integral value. By default, the clock cycles are
rounded up to the next integer. This ensures that the user gets at least __ms microseconds of delay.

Alternatively, by defining the macro __DELAY_ROUND_DOWN__, or __DELAY_ROUND_CLOSEST__, before
including this header file, the algorithm can be made to round down, or round to closest integer, respectively.

Note

The implementation of _delay_ms() based on __builtin_avr_delay_cycles() is not backward com-
patible with older implementations. In order to get functionality backward compatible with previous versions,
the macro __DELAY_BACKWARD_COMPATIBLE__ must be defined before including this header file.

21.29.3.2 _delay_us() void _delay_us (

double __us) [inline], [static]

Perform a delay of __us microseconds, using _delay_loop_1().

The macro F_CPU is supposed to be defined to a constant defining the CPU clock frequency (in Hertz).

The maximal possible delay is 768 µs / F_CPU in MHz.

If the user requests a delay greater than the maximal possible one, _delay_us() will automatically call _delay_ms()
instead. The user will not be informed about this case.

If the avr-gcc toolchain has __builtin_avr_delay_cycles() support, maximal possible delay is 4294967.295 µs/ F_←↩

CPU in MHz. For values greater than the maximal possible delay, overflow may result in no delay i.e., 0 µs.

Conversion of __us into clock cycles may not always result in integer. By default, the clock cycles are rounded up
to next integer. This ensures that the user gets at least __us microseconds of delay.

Alternatively, by defining the macro __DELAY_ROUND_DOWN__, or __DELAY_ROUND_CLOSEST__, before
including this header file, the algorithm can be made to round down, or round to closest integer, respectively.

Note

The implementation of _delay_us() based on __builtin_avr_delay_cycles() is not backward com-
patible with older implementations. In order to get functionality backward compatible with previous versions,
the macro __DELAY_BACKWARD_COMPATIBLE__ must be defined before including this header file.

Generated by Doxygen

276

21.30 <util/atomic.h> Atomically and Non-Atomically Executed Code Blocks

Macros

• #define ATOMIC_BLOCK(type)
• #define NONATOMIC_BLOCK(type)
• #define ATOMIC_RESTORESTATE
• #define ATOMIC_FORCEON
• #define NONATOMIC_RESTORESTATE
• #define NONATOMIC_FORCEOFF

21.30.1 Detailed Description

#include <util/atomic.h>

Note

The macros in this header file require the ISO/IEC 9899:1999 ("ISO C99") feature of for loop variables that are
declared inside the for loop itself. For that reason, this header file can only be used if the standard level of the
compiler (option –std=) is set to either c99, gnu99 or higher.

The macros in this header file deal with code blocks that are guaranteed to be executed Atomically or Non-←↩

Atomically. The term "Atomic" in this context refers to the inability of the respective code to be interrupted.

These macros operate via automatic manipulation of the Global Interrupt Status (I) bit of the SREG register. Exit
paths from both block types are all managed automatically without the need for special considerations, i.e. the
interrupt status will be restored to the same value it had when entering the respective block (unless ATOMIC_←↩

FORCEON or NONATOMIC_FORCEOFF are used).

Warning

The features in this header are implemented by means of a for loop. This means that commands like break
and continue that are located in an atomic block refer to the atomic for loop, not to a loop construct that
hosts the atomic block.

A typical example that requires atomic access is a 16 (or more) bit variable that is shared between the main execution
path and an ISR. While declaring such a variable as volatile ensures that the compiler will not optimize accesses to
it away, it does not guarantee atomic access to it. Assuming the following example:
#include <stdint.h>
#include <avr/interrupt.h>
#include <avr/io.h>

volatile uint16_t ctr;

ISR(TIMER1_OVF_vect)
{

ctr--;
}

...
int
main(void)
{

...
ctr = 0x200;
start_timer();
while (ctr != 0)

// wait
;

...
}

Generated by Doxygen

21.30 <util/atomic.h> Atomically and Non-Atomically Executed Code Blocks 277

There is a chance where the main context will exit its wait loop when the variable ctr just reached the value 0xFF.
This happens because the compiler cannot natively access a 16-bit variable atomically in an 8-bit CPU. So the
variable is for example at 0x100, the compiler then tests the low byte for 0, which succeeds. It then proceeds to
test the high byte, but that moment the ISR triggers, and the main context is interrupted. The ISR will decrement
the variable from 0x100 to 0xFF, and the main context proceeds. It now tests the high byte of the variable which is
(now) also 0, so it concludes the variable has reached 0, and terminates the loop.

Using the macros from this header file, the above code can be rewritten like:
#include <stdint.h>
#include <avr/interrupt.h>
#include <avr/io.h>
#include <util/atomic.h>

volatile uint16_t ctr;

ISR(TIMER1_OVF_vect)
{

ctr--;
}

...
int
main(void)
{

...
ctr = 0x200;
start_timer();
sei();
uint16_t ctr_copy;
do
{

ATOMIC_BLOCK(ATOMIC_FORCEON)
{
ctr_copy = ctr;

}
}
while (ctr_copy != 0);
...

}

This will install the appropriate interrupt protection before accessing variable ctr, so it is guaranteed to be consis-
tently tested. If the global interrupt state were uncertain before entering the ATOMIC_BLOCK, it should be executed
with the parameter ATOMIC_RESTORESTATE rather than ATOMIC_FORCEON.

See Problems with reordering code for things to be taken into account with respect to compiler optimizations.

21.30.2 Macro Definition Documentation

21.30.2.1 ATOMIC_BLOCK #define ATOMIC_BLOCK(

type)

Creates a block of code that is guaranteed to be executed atomically. Upon entering the block the Global Interrupt
Status flag in SREG is disabled, and re-enabled upon exiting the block from any exit path.

Two possible macro parameters are permitted, ATOMIC_RESTORESTATE and ATOMIC_FORCEON.

21.30.2.2 ATOMIC_FORCEON #define ATOMIC_FORCEON

This is a possible parameter for ATOMIC_BLOCK. When used, it will cause the ATOMIC_BLOCK to force the state
of the SREG register on exit, enabling the Global Interrupt Status flag bit. This saves a small amount of flash space,
a register, and one or more processor cycles, since the previous value of the SREG register does not need to be
saved at the start of the block.

Care should be taken that ATOMIC_FORCEON is only used when it is known that interrupts are enabled before
the block's execution or when the side effects of enabling global interrupts at the block's completion are known and
understood.

Generated by Doxygen

278

21.30.2.3 ATOMIC_RESTORESTATE #define ATOMIC_RESTORESTATE

This is a possible parameter for ATOMIC_BLOCK. When used, it will cause the ATOMIC_BLOCK to restore the
previous state of the SREG register, saved before the Global Interrupt Status flag bit was disabled. The net effect
of this is to make the ATOMIC_BLOCK's contents guaranteed atomic, without changing the state of the Global
Interrupt Status flag when execution of the block completes.

21.30.2.4 NONATOMIC_BLOCK #define NONATOMIC_BLOCK(

type)

Creates a block of code that is executed non-atomically. Upon entering the block the Global Interrupt Status flag
in SREG is enabled, and disabled upon exiting the block from any exit path. This is useful when nested inside
ATOMIC_BLOCK sections, allowing for non-atomic execution of small blocks of code while maintaining the atomic
access of the other sections of the parent ATOMIC_BLOCK.

Two possible macro parameters are permitted, NONATOMIC_RESTORESTATE and NONATOMIC_FORCEOFF.

21.30.2.5 NONATOMIC_FORCEOFF #define NONATOMIC_FORCEOFF

This is a possible parameter for NONATOMIC_BLOCK. When used, it will cause the NONATOMIC_BLOCK to force
the state of the SREG register on exit, disabling the Global Interrupt Status flag bit. This saves a small amout of
flash space, a register, and one or more processor cycles, since the previous value of the SREG register does not
need to be saved at the start of the block.

Care should be taken that NONATOMIC_FORCEOFF is only used when it is known that interrupts are disabled
before the block's execution or when the side effects of disabling global interrupts at the block's completion are
known and understood.

21.30.2.6 NONATOMIC_RESTORESTATE #define NONATOMIC_RESTORESTATE

This is a possible parameter for NONATOMIC_BLOCK. When used, it will cause the NONATOMIC_BLOCK to
restore the previous state of the SREG register, saved before the Global Interrupt Status flag bit was enabled. The
net effect of this is to make the NONATOMIC_BLOCK's contents guaranteed non-atomic, without changing the state
of the Global Interrupt Status flag when execution of the block completes.

21.31 <util/crc16.h>: CRC Computations

Functions

• static uint16_t _crc16_update (uint16_t __crc, uint8_t __data)
• static uint16_t _crc_xmodem_update (uint16_t __crc, uint8_t __data)
• static uint16_t _crc_ccitt_update (uint16_t __crc, uint8_t __data)
• static uint8_t _crc_ibutton_update (uint8_t __crc, uint8_t __data)
• static uint8_t _crc8_ccitt_update (uint8_t __crc, uint8_t __data)

Generated by Doxygen

21.31 <util/crc16.h>: CRC Computations 279

21.31.1 Detailed Description

#include <util/crc16.h>

This header file provides a optimized inline functions for calculating cyclic redundancy checks (CRC) using common
polynomials.

References:

See the Dallas Semiconductor app note 27 for 8051 assembler example and general CRC optimization suggestions.
The table on the last page of the app note is the key to understanding these implementations.

Jack Crenshaw's "Implementing CRCs" article in the January 1992 isue of Embedded Systems Programming. This
may be difficult to find, but it explains CRC's in very clear and concise terms. Well worth the effort to obtain a copy.

A typical application would look like:
// Dallas iButton test vector.
uint8_t serno[] = { 0x02, 0x1c, 0xb8, 0x01, 0, 0, 0, 0xa2 };

int
checkcrc (void)
{

uint8_t crc = 0, i;

for (i = 0; i < sizeof serno / sizeof serno[0]; i++)
crc = _crc_ibutton_update (crc, serno[i]);

return crc; // must be 0
}

21.31.2 Function Documentation

21.31.2.1 _crc16_update() static uint16_t _crc16_update (

uint16_t __crc,

uint8_t __data) [inline], [static]

Optimized CRC-16 calculation.

Polynomial: x16 + x15 + x2 + 1 (0xa001)
Initial value: 0xffff

This CRC is normally used in disk-drive controllers.

The following is the equivalent functionality written in C.
uint16_t
crc16_update (uint16_t crc, uint8_t a)
{

crc ^= a;
for (int i = 0; i < 8; ++i)
{

if (crc & 1)
crc = (crc » 1) ^ 0xA001;

else
crc = crc » 1;

}

return crc;
}

Generated by Doxygen

280

21.31.2.2 _crc8_ccitt_update() static uint8_t _crc8_ccitt_update (

uint8_t __crc,

uint8_t __data) [inline], [static]

Optimized CRC-8-CCITT calculation.

Polynomial: x8 + x2 + x + 1 (0xE0)

For use with simple CRC-8
Initial value: 0x0

For use with CRC-8-ROHC
Initial value: 0xff
Reference: http://tools.ietf.org/html/rfc3095#section-5.9.1

For use with CRC-8-ATM/ITU
Initial value: 0xff
Final XOR value: 0x55
Reference: http://www.itu.int/rec/T-REC-I.432.1-199902-I/en

The C equivalent has been originally written by Dave Hylands. Assembly code is based on _crc_ibutton_update
optimization.

The following is the equivalent functionality written in C.
uint8_t
_crc8_ccitt_update (uint8_t inCrc, uint8_t inData)
{

uint8_t data = inCrc ^ inData;

for (int i = 0; i < 8; i++)
{

if ((data & 0x80) != 0)
{

data «= 1;
data ^= 0x07;

}
else
{

data «= 1;
}

}
return data;

}

21.31.2.3 _crc_ccitt_update() static uint16_t _crc_ccitt_update (

uint16_t __crc,

uint8_t __data) [inline], [static]

Optimized CRC-CCITT calculation.

Polynomial: x16 + x12 + x5 + 1 (0x8408)
Initial value: 0xffff

This is the CRC used by PPP and IrDA.

See RFC1171 (PPP protocol) and IrDA IrLAP 1.1

Generated by Doxygen

http://tools.ietf.org/html/rfc3095#section-5.9.1
http://www.itu.int/rec/T-REC-I.432.1-199902-I/en

21.31 <util/crc16.h>: CRC Computations 281

Note

Although the CCITT polynomial is the same as that used by the Xmodem protocol, they are quite different.
The difference is in how the bits are shifted through the alorgithm. Xmodem shifts the MSB of the CRC and
the input first, while CCITT shifts the LSB of the CRC and the input first.

The following is the equivalent functionality written in C.
uint16_t
crc_ccitt_update (uint16_t crc, uint8_t data)
{

data ^= lo8 (crc);
data ^= data « 4;

return ((((uint16_t)data « 8) | hi8 (crc)) ^ (uint8_t)(data » 4)
^ ((uint16_t)data « 3));

}

21.31.2.4 _crc_ibutton_update() static uint8_t _crc_ibutton_update (

uint8_t __crc,

uint8_t __data) [inline], [static]

Optimized Dallas (now Maxim) iButton 8-bit CRC calculation.

Polynomial: x8 + x5 + x4 + 1 (0x8C)
Initial value: 0x0

See http://www.maxim-ic.com/appnotes.cfm/appnote_number/27

The following is the equivalent functionality written in C.
uint8_t
_crc_ibutton_update (uint8_t crc, uint8_t data)
{

crc = crc ^ data;
for (uint8_t i = 0; i < 8; i++)
{

if (crc & 0x01)
crc = (crc » 1) ^ 0x8C;

else
crc »= 1;

}

return crc;
}

21.31.2.5 _crc_xmodem_update() static uint16_t _crc_xmodem_update (

uint16_t __crc,

uint8_t __data) [inline], [static]

Optimized CRC-XMODEM calculation.

Polynomial: x16 + x12 + x5 + 1 (0x1021)
Initial value: 0x0

This is the CRC used by the Xmodem-CRC protocol.

The following is the equivalent functionality written in C.
uint16_t
crc_xmodem_update (uint16_t crc, uint8_t data)
{

crc = crc ^ ((uint16_t)data « 8);
for (int i = 0; i < 8; i++)
{

if (crc & 0x8000)
crc = (crc « 1) ^ 0x1021;

else
crc «= 1;

}

return crc;
}

Generated by Doxygen

http://www.maxim-ic.com/appnotes.cfm/appnote_number/27

282

21.32 <util/delay_basic.h>: Basic busy-wait delay loops

Functions

• void _delay_loop_1 (uint8_t __count)
• void _delay_loop_2 (uint16_t __count)

21.32.1 Detailed Description

#include <util/delay_basic.h>

The functions in this header file implement simple delay loops that perform a busy-waiting. They are typically used
to facilitate short delays in the program execution. They are implemented as count-down loops with a well-known
CPU cycle count per loop iteration. As such, no other processing can occur simultaneously. It should be kept in
mind that the functions described here do not disable interrupts.

In general, for long delays, the use of hardware timers is much preferrable, as they free the CPU, and allow for
concurrent processing of other events while the timer is running. However, in particular for very short delays, the
overhead of setting up a hardware timer is too much compared to the overall delay time.

Two inline functions are provided for the actual delay algorithms.

21.32.2 Function Documentation

21.32.2.1 _delay_loop_1() void _delay_loop_1 (

uint8_t __count)

Delay loop using an 8-bit counter __count, so up to 256 iterations are possible. (The value 256 would have to be
passed as 0.) The loop executes three CPU cycles per iteration, not including the overhead the compiler needs to
setup the counter register.

Thus, at a CPU speed of 1 MHz, delays of up to 768 microseconds can be achieved.

21.32.2.2 _delay_loop_2() void _delay_loop_2 (

uint16_t __count)

Delay loop using a 16-bit counter __count, so up to 65536 iterations are possible. (The value 65536 would have to
be passed as 0.) The loop executes four CPU cycles per iteration, not including the overhead the compiler requires
to setup the counter register pair.

Thus, at a CPU speed of 1 MHz, delays of up to about 262.1 milliseconds can be achieved.

21.33 <util/eu_dst.h>: Daylight Saving function for the European Union.

Functions

• int eu_dst (const time_t ∗timer, int32_t ∗z)

Generated by Doxygen

21.34 <util/parity.h>: Parity bit generation 283

21.33.1 Detailed Description

#include <util/eu_dst.h>

Dayligh Saving Time for the European Union

21.33.2 Function Documentation

21.33.2.1 eu_dst() int eu_dst (

const time_t ∗ timer,

int32_t ∗ z)

To utilize this function, call
set_dst(eu_dst);

Given the time stamp and time zone parameters provided, the Daylight Saving function must return a value appro-
priate for the tm structures' tm_isdst element. That is:

• 0 : If Daylight Saving is not in effect.

• -1 : If it cannot be determined if Daylight Saving is in effect.

• A positive integer: Represents the number of seconds a clock is advanced for Daylight Saving. This will
typically be ONE_HOUR.

Daylight Saving 'rules' are subject to frequent change. For production applications it is recommended to write your
own DST function, which uses 'rules' obtained from, and modifiable by, the end user (perhaps stored in EEPROM).

21.34 <util/parity.h>: Parity bit generation

Functions

• static uint8_t parity_even_bit (uint8_t __val)

21.34.1 Detailed Description

#include <util/parity.h>

This header file contains optimized assembler code to calculate the parity bit for a byte.

21.34.2 Function Documentation

21.34.2.1 parity_even_bit() uint8_t parity_even_bit (

uint8_t val) [inline], [static]

Returns

1 if val has an odd number of bits set, and 0 otherwise.

Generated by Doxygen

284

21.35 <util/setbaud.h>: Helper macros for baud rate calculations

Macros

• #define BAUD_TOL 2
• #define UBRR_VALUE
• #define UBRRL_VALUE
• #define UBRRH_VALUE
• #define USE_2X 0

21.35.1 Detailed Description

#define F_CPU 11059200
#define BAUD 38400
#include <util/setbaud.h>

This header file requires that on entry values are already defined for F_CPU and BAUD. In addition, the macro
BAUD_TOL will define the baud rate tolerance (in percent) that is acceptable during the calculations. The value of
BAUD_TOL will default to 2 %.

This header file defines macros suitable to setup the UART baud rate prescaler registers of an AVR. All calculations
are done using the C preprocessor. Including this header file causes no other side effects so it is possible to include
this file more than once (supposedly, with different values for the BAUD parameter), possibly even within the same
function.

Assuming that the requested BAUD is valid for the given F_CPU then the macro UBRR_VALUE is set to the required
prescaler value. Two additional macros are provided for the low and high bytes of the prescaler, respectively←↩

: UBRRL_VALUE is set to the lower byte of the UBRR_VALUE and UBRRH_VALUE is set to the upper byte. An
additional macro USE_2X will be defined. Its value is set to 1 if the desired BAUD rate within the given tolerance
could only be achieved by setting the U2X bit in the UART configuration. It will be defined to 0 if U2X is not needed.

Example usage:
#include <avr/io.h>

#define F_CPU 4000000

static void
uart_9600(void)
{
#define BAUD 9600
#include <util/setbaud.h>
UBRRH = UBRRH_VALUE;
UBRRL = UBRRL_VALUE;
#if USE_2X
UCSRA |= (1 « U2X);
#else
UCSRA &= ~(1 « U2X);
#endif
}

static void
uart_38400(void)
{
#undef BAUD // avoid compiler warning
#define BAUD 38400
#include <util/setbaud.h>
UBRRH = UBRRH_VALUE;
UBRRL = UBRRL_VALUE;
#if USE_2X
UCSRA |= (1 « U2X);
#else
UCSRA &= ~(1 « U2X);
#endif
}

In this example, two functions are defined to setup the UART to run at 9600 Bd, and 38400 Bd, respectively. Using
a CPU clock of 4 MHz, 9600 Bd can be achieved with an acceptable tolerance without setting U2X (prescaler 25),
while 38400 Bd require U2X to be set (prescaler 12).

Generated by Doxygen

21.35 <util/setbaud.h>: Helper macros for baud rate calculations 285

21.35.2 Macro Definition Documentation

21.35.2.1 BAUD_TOL #define BAUD_TOL 2

Input and output macro for <util/setbaud.h>

Define the acceptable baud rate tolerance in percent. If not set on entry, it will be set to its default value of 2.

21.35.2.2 UBRR_VALUE #define UBRR_VALUE

Output macro from <util/setbaud.h>

Contains the calculated baud rate prescaler value for the UBRR register.

21.35.2.3 UBRRH_VALUE #define UBRRH_VALUE

Output macro from <util/setbaud.h>

Contains the upper byte of the calculated prescaler value (UBRR_VALUE).

21.35.2.4 UBRRL_VALUE #define UBRRL_VALUE

Output macro from <util/setbaud.h>

Contains the lower byte of the calculated prescaler value (UBRR_VALUE).

21.35.2.5 USE_2X #define USE_2X 0

Output macro from <util/setbaud.h>

Contains the value 1 if the desired baud rate tolerance could only be achieved by setting the U2X bit in the UART
configuration. Contains 0 otherwise.

Generated by Doxygen

286

21.36 <util/twi.h>: TWI bit mask definitions

TWSR values

Mnemonics:
TW_MT_xxx - master transmitter
TW_MR_xxx - master receiver
TW_ST_xxx - slave transmitter
TW_SR_xxx - slave receiver

• #define TW_START 0x08
• #define TW_REP_START 0x10
• #define TW_MT_SLA_ACK 0x18
• #define TW_MT_SLA_NACK 0x20
• #define TW_MT_DATA_ACK 0x28
• #define TW_MT_DATA_NACK 0x30
• #define TW_MT_ARB_LOST 0x38
• #define TW_MR_ARB_LOST 0x38
• #define TW_MR_SLA_ACK 0x40
• #define TW_MR_SLA_NACK 0x48
• #define TW_MR_DATA_ACK 0x50
• #define TW_MR_DATA_NACK 0x58
• #define TW_ST_SLA_ACK 0xA8
• #define TW_ST_ARB_LOST_SLA_ACK 0xB0
• #define TW_ST_DATA_ACK 0xB8
• #define TW_ST_DATA_NACK 0xC0
• #define TW_ST_LAST_DATA 0xC8
• #define TW_SR_SLA_ACK 0x60
• #define TW_SR_ARB_LOST_SLA_ACK 0x68
• #define TW_SR_GCALL_ACK 0x70
• #define TW_SR_ARB_LOST_GCALL_ACK 0x78
• #define TW_SR_DATA_ACK 0x80
• #define TW_SR_DATA_NACK 0x88
• #define TW_SR_GCALL_DATA_ACK 0x90
• #define TW_SR_GCALL_DATA_NACK 0x98
• #define TW_SR_STOP 0xA0
• #define TW_NO_INFO 0xF8
• #define TW_BUS_ERROR 0x00
• #define TW_STATUS_MASK
• #define TW_STATUS (TWSR & TW_STATUS_MASK)

R/∼W bit in SLA+R/W address field.

• #define TW_READ 1
• #define TW_WRITE 0

21.36.1 Detailed Description

#include <util/twi.h>

This header file contains bit mask definitions for use with the AVR TWI interface.

Generated by Doxygen

21.36 <util/twi.h>: TWI bit mask definitions 287

21.36.2 Macro Definition Documentation

21.36.2.1 TW_BUS_ERROR #define TW_BUS_ERROR 0x00

illegal start or stop condition

21.36.2.2 TW_MR_ARB_LOST #define TW_MR_ARB_LOST 0x38

arbitration lost in SLA+R or NACK

21.36.2.3 TW_MR_DATA_ACK #define TW_MR_DATA_ACK 0x50

data received, ACK returned

21.36.2.4 TW_MR_DATA_NACK #define TW_MR_DATA_NACK 0x58

data received, NACK returned

21.36.2.5 TW_MR_SLA_ACK #define TW_MR_SLA_ACK 0x40

SLA+R transmitted, ACK received

21.36.2.6 TW_MR_SLA_NACK #define TW_MR_SLA_NACK 0x48

SLA+R transmitted, NACK received

21.36.2.7 TW_MT_ARB_LOST #define TW_MT_ARB_LOST 0x38

arbitration lost in SLA+W or data

21.36.2.8 TW_MT_DATA_ACK #define TW_MT_DATA_ACK 0x28

data transmitted, ACK received

21.36.2.9 TW_MT_DATA_NACK #define TW_MT_DATA_NACK 0x30

data transmitted, NACK received

21.36.2.10 TW_MT_SLA_ACK #define TW_MT_SLA_ACK 0x18

SLA+W transmitted, ACK received

Generated by Doxygen

288

21.36.2.11 TW_MT_SLA_NACK #define TW_MT_SLA_NACK 0x20

SLA+W transmitted, NACK received

21.36.2.12 TW_NO_INFO #define TW_NO_INFO 0xF8

no state information available

21.36.2.13 TW_READ #define TW_READ 1

SLA+R address

21.36.2.14 TW_REP_START #define TW_REP_START 0x10

repeated start condition transmitted

21.36.2.15 TW_SR_ARB_LOST_GCALL_ACK #define TW_SR_ARB_LOST_GCALL_ACK 0x78

arbitration lost in SLA+RW, general call received, ACK returned

21.36.2.16 TW_SR_ARB_LOST_SLA_ACK #define TW_SR_ARB_LOST_SLA_ACK 0x68

arbitration lost in SLA+RW, SLA+W received, ACK returned

21.36.2.17 TW_SR_DATA_ACK #define TW_SR_DATA_ACK 0x80

data received, ACK returned

21.36.2.18 TW_SR_DATA_NACK #define TW_SR_DATA_NACK 0x88

data received, NACK returned

21.36.2.19 TW_SR_GCALL_ACK #define TW_SR_GCALL_ACK 0x70

general call received, ACK returned

21.36.2.20 TW_SR_GCALL_DATA_ACK #define TW_SR_GCALL_DATA_ACK 0x90

general call data received, ACK returned

21.36.2.21 TW_SR_GCALL_DATA_NACK #define TW_SR_GCALL_DATA_NACK 0x98

general call data received, NACK returned

Generated by Doxygen

21.36 <util/twi.h>: TWI bit mask definitions 289

21.36.2.22 TW_SR_SLA_ACK #define TW_SR_SLA_ACK 0x60

SLA+W received, ACK returned

21.36.2.23 TW_SR_STOP #define TW_SR_STOP 0xA0

stop or repeated start condition received while selected

21.36.2.24 TW_ST_ARB_LOST_SLA_ACK #define TW_ST_ARB_LOST_SLA_ACK 0xB0

arbitration lost in SLA+RW, SLA+R received, ACK returned

21.36.2.25 TW_ST_DATA_ACK #define TW_ST_DATA_ACK 0xB8

data transmitted, ACK received

21.36.2.26 TW_ST_DATA_NACK #define TW_ST_DATA_NACK 0xC0

data transmitted, NACK received

21.36.2.27 TW_ST_LAST_DATA #define TW_ST_LAST_DATA 0xC8

last data byte transmitted, ACK received

21.36.2.28 TW_ST_SLA_ACK #define TW_ST_SLA_ACK 0xA8

SLA+R received, ACK returned

21.36.2.29 TW_START #define TW_START 0x08

start condition transmitted

21.36.2.30 TW_STATUS #define TW_STATUS (TWSR & TW_STATUS_MASK)

TWSR, masked by TW_STATUS_MASK

21.36.2.31 TW_STATUS_MASK #define TW_STATUS_MASK

Value:
(_BV(TWS7)|_BV(TWS6)|_BV(TWS5)|_BV(TWS4)|\
_BV(TWS3))

The lower 3 bits of TWSR are reserved on the ATmega163. The 2 LSB carry the prescaler bits on the newer
ATmegas.

Generated by Doxygen

290

21.36.2.32 TW_WRITE #define TW_WRITE 0

SLA+W address

21.37 <util/usa_dst.h>: Daylight Saving function for the USA.

Functions

• int usa_dst (const time_t ∗timer, int32_t ∗z)

21.37.1 Detailed Description

#include <util/usa_dst.h>

Daylight Saving function for the USA.

21.37.2 Function Documentation

21.37.2.1 usa_dst() int usa_dst (

const time_t ∗ timer,

int32_t ∗ z)

To utilize this function, call
set_dst(usa_dst);

Given the time stamp and time zone parameters provided, the Daylight Saving function must return a value appro-
priate for the tm structures' tm_isdst element. That is:

• 0 : If Daylight Saving is not in effect.

• -1 : If it cannot be determined if Daylight Saving is in effect.

• A positive integer : Represents the number of seconds a clock is advanced for Daylight Saving. This will
typically be ONE_HOUR.

Daylight Saving 'rules' are subject to frequent change. For production applications it is recommended to write your
own DST function, which uses 'rules' obtained from, and modifiable by, the end user (perhaps stored in EEPROM).

Generated by Doxygen

21.38 <compat/deprecated.h>: Deprecated items 291

21.38 <compat/deprecated.h>: Deprecated items

Allowing specific system-wide interrupts

In addition to globally enabling interrupts, each device's particular interrupt needs to be enabled separately if inter-
rupts for this device are desired. While some devices maintain their interrupt enable bit inside the device's register
set, external and timer interrupts have system-wide configuration registers.

Example:
// Enable timer 1 overflow interrupts.
timer_enable_int(_BV(TOIE1));

// Do some work...

// Disable all timer interrupts.
timer_enable_int(0);

Note

Be careful when you use these functions. If you already have a different interrupt enabled, you could inadver-
tantly disable it by enabling another intterupt.

• static void timer_enable_int (unsigned char ints)
• #define enable_external_int(mask) (__EICR = mask)
• #define INTERRUPT(signame)
• #define __INTR_ATTRS __used__

Obsolete IO macros

Back in a time when AVR-GCC and AVR-LibC could not handle IO port access in the direct assignment form as
they are handled now, all IO port access had to be done through specific macros that eventually resulted in inline
assembly instructions performing the desired action.

These macros became obsolete, as reading and writing IO ports can be done by simply using the IO port name in
an expression, and all bit manipulation (including those on IO ports) can be done using generic C bit manipulation
operators.

The macros in this group simulate the historical behaviour. While they are supposed to be applied to IO ports, the
emulation actually uses standard C methods, so they could be applied to arbitrary memory locations as well.

• #define inp(port) (port)
• #define outp(val, port) (port) = (val)
• #define inb(port) (port)
• #define outb(port, val) (port) = (val)
• #define sbi(port, bit) (port) |= (1 << (bit))
• #define cbi(port, bit) (port) &= ∼(1 << (bit))

21.38.1 Detailed Description

This header file contains several items that used to be available in previous versions of this library, but have eventu-
ally been deprecated over time.
#include <compat/deprecated.h>

These items are supplied within that header file for backward compatibility reasons only, so old source code that
has been written for previous library versions could easily be maintained until its end-of-life. Use of any of these
items in new code is strongly discouraged.

Generated by Doxygen

292

21.38.2 Macro Definition Documentation

21.38.2.1 cbi #define cbi(

port,

bit) (port) &= ∼(1 << (bit))

Deprecated

Clear bit in IO port port.

21.38.2.2 enable_external_int #define enable_external_int(

mask) (__EICR = mask)

Deprecated

This macro gives access to the GIMSK register (or EIMSK register if using an AVR Mega device or GICR register
for others). Although this macro is essentially the same as assigning to the register, it does adapt slightly to the type
of device being used. This macro is unavailable if none of the registers listed above are defined.

21.38.2.3 inb #define inb(

port) (port)

Deprecated

Read a value from an IO port port.

21.38.2.4 inp #define inp(

port) (port)

Deprecated

Read a value from an IO port port.

21.38.2.5 INTERRUPT #define INTERRUPT(

signame)

Value:
void signame (void) __attribute__ ((__interrupt__,__INTR_ATTRS)); \
void signame (void)

Deprecated

Introduces an interrupt handler function that runs with global interrupts initially enabled. This allows interrupt han-
dlers to be interrupted.

As this macro has been used by too many unsuspecting people in the past, it has been deprecated, and will be
removed in a future version of the library. Users who want to legitimately re-enable interrupts in their interrupt
handlers as quickly as possible are encouraged to explicitly declare their handlers as described above.

Generated by Doxygen

21.39 <compat/ina90.h>: Compatibility with IAR EWB 3.x 293

21.38.2.6 outb #define outb(

port,

val) (port) = (val)

Deprecated

Write val to IO port port.

21.38.2.7 outp #define outp(

val,

port) (port) = (val)

Deprecated

Write val to IO port port.

21.38.2.8 sbi #define sbi(

port,

bit) (port) |= (1 << (bit))

Deprecated

Set bit in IO port port.

21.38.3 Function Documentation

21.38.3.1 timer_enable_int() static void timer_enable_int (

unsigned char ints) [inline], [static]

Deprecated

This function modifies the timsk register. The value you pass via ints is device specific.

21.39 <compat/ina90.h>: Compatibility with IAR EWB 3.x
#include <compat/ina90.h>

This is an attempt to provide some compatibility with header files that come with IAR C, to make porting applications
between different compilers easier. No 100% compatibility though.

Note

For actual documentation, please see the IAR manual.

Generated by Doxygen

294

21.40 Demo projects

Modules

• Combining C and assembly source files
• A simple project
• A more sophisticated project
• Using the standard IO facilities
• Example using the two-wire interface (TWI)

21.40.1 Detailed Description

Various small demo projects are provided to illustrate several aspects of using the opensource utilities for the AVR
controller series. It should be kept in mind that these demos serve mainly educational purposes, and are normally
not directly suitable for use in any production environment. Usually, they have been kept as simple as sufficient to
demonstrate one particular feature.

The simple project is somewhat like the "Hello world!" application for a microcontroller, about the most simple project
that can be done. It is explained in good detail, to allow the reader to understand the basic concepts behind using
the tools on an AVR microcontroller.

The more sophisticated demo project builds on top of that simple project, and adds some controls to it. It touches a
number of AVR-LibC's basic concepts on its way.

A comprehensive example on using the standard IO facilities intends to explain that complex topic, using a practical
microcontroller peripheral setup with one RS-232 connection, and an HD44780-compatible industry-standard LCD
display.

The Example using the two-wire interface (TWI) project explains the use of the two-wire hardware interface (also
known as "I2C") that is present on many AVR controllers.

Finally, the Combining C and assembly source files demo shows how C and assembly language source files can
collaborate within one project. While the overall project is managed by a C program part for easy maintenance, time-
critical parts are written directly in manually optimized assembly language for shortest execution times possible.
Naturally, this kind of project is very closely tied to the hardware design, thus it is custom-tailored to a particular
controller type and peripheral setup. As an alternative to the assembly-language solution, this project also offers a
C-only implementation (deploying the exact same peripheral setup) based on a more sophisticated (and thus more
expensive) but pin-compatible controller.

While the simple demo is meant to run on about any AVR setup possible where a LED could be connected to
the OCR1[A] output, the large and stdio demos are mainly targeted to the Atmel STK500 starter kit, and the TWI
example requires a controller where some 24Cxx two-wire EEPPROM can be connected to. For the STK500 demos,
the default CPU (either an AT90S8515 or an ATmega8515) should be removed from its socket, and the ATmega16
that ships with the kit should be inserted into socket SCKT3100A3. The ATmega16 offers an on-board ADC that is
used in the large demo, and all AVRs with an ADC feature a different pinout than the industry-standard compatible
devices.

In order to fully utilize the large demo, a female 10-pin header with cable, connecting to a 10 kOhm potentiometer
will be useful.

For the stdio demo, an industry-standard HD44780-compatible LCD display of at least 16x1 characters will be
needed. Among other things, the LCD4Linux project page describes many things around these displays, includ-
ing common pinouts.

Generated by Doxygen

http://ssl.bulix.org/projects/lcd4linux/

21.41 Combining C and assembly source files 295

21.41 Combining C and assembly source files

For time- or space-critical applications, it can often be desirable to combine C code (for easy maintenance) and
assembly code (for maximal speed or minimal code size) together. This demo provides an example of how to do
that.

The objective of the demo is to decode radio-controlled model PWM signals, and control an output PWM based
on the current input signal's value. The incoming PWM pulses follow a standard encoding scheme where a pulse
width of 920 microseconds denotes one end of the scale (represented as 0 % pulse width on output), and 2120
microseconds mark the other end (100 % output PWM). Normally, multiple channels would be encoded that way
in subsequent pulses, followed by a larger gap, so the entire frame will repeat each 14 through 20 ms, but this is
ignored for the purpose of the demo, so only a single input PWM channel is assumed.

The basic challenge is to use the cheapest controller available for the task, an ATtiny13 that has only a single timer
channel. As this timer channel is required to run the outgoing PWM signal generation, the incoming PWM decoding
had to be adjusted to the constraints set by the outgoing PWM.

As PWM generation toggles the counting direction of timer 0 between up and down after each 256 timer cycles,
the current time cannot be deduced by reading TCNT0 only, but the current counting direction of the timer needs
to be considered as well. This requires servicing interrupts whenever the timer hits TOP (255) and BOTTOM (0) to
learn about each change of the counting direction. For PWM generation, it is usually desired to run it at the highest
possible speed so filtering the PWM frequency from the modulated output signal is made easy. Thus, the PWM
timer runs at full CPU speed. This causes the overflow and compare match interrupts to be triggered each 256 CPU
clocks, so they must run with the minimal number of processor cycles possible in order to not impose a too high
CPU load by these interrupt service routines. This is the main reason to implement the entire interrupt handling in
fine-tuned assembly code rather than in C.

In order to verify parts of the algorithm, and the underlying hardware, the demo has been set up in a way so the
pin-compatible but more expensive ATtiny45 (or its siblings ATtiny25 and ATtiny85) could be used as well. In that
case, no separate assembly code is required, as two timer channels are avaible.

21.41.1 Hardware setup

The incoming PWM pulse train is fed into PB4. It will generate a pin change interrupt there on eache edge of the
incoming signal.

The outgoing PWM is generated through OC0B of timer channel 0 (PB1). For demonstration purposes, a LED
should be connected to that pin (like, one of the LEDs of an STK500).

The controllers run on their internal calibrated RC oscillators, 1.2 MHz on the ATtiny13, and 1.0 MHz on the ATtiny45.

21.41.2 A code walkthrough

21.41.2.1 asmdemo.c After the usual include files, two variables are defined. The first one, pwm_incoming
is used to communicate the most recent pulse width detected by the incoming PWM decoder up to the main loop.

The second variable actually only constitutes of a single bit, intbits.pwm_received. This bit will be set
whenever the incoming PWM decoder has updated pwm_incoming.

Both variables are marked volatile to ensure their readers will always pick up an updated value, as both variables
will be set by interrupt service routines.

The function ioinit() initializes the microcontroller peripheral devices. In particular, it starts timer 0 to generate
the outgoing PWM signal on OC0B. Setting OCR0A to 255 (which is the TOP value of timer 0) is used to generate
a timer 0 overflow A interrupt on the ATtiny13. This interrupt is used to inform the incoming PWM decoder that the

Generated by Doxygen

296

counting direction of channel 0 is just changing from up to down. Likewise, an overflow interrupt will be generated
whenever the countdown reached BOTTOM (value 0), where the counter will again alter its counting direction to
upwards. This information is needed in order to know whether the current counter value of TCNT0 is to be evaluated
from bottom or top.

Further, ioinit() activates the pin-change interrupt PCINT0 on any edge of PB4. Finally, PB1 (OC0B) will be
activated as an output pin, and global interrupts are being enabled.

In the ATtiny45 setup, the C code contains an ISR for PCINT0. At each pin-change interrupt, it will first be analyzed
whether the interrupt was caused by a rising or a falling edge. In case of the rising edge, timer 1 will be started
with a prescaler of 16 after clearing the current timer value. Then, at the falling edge, the current timer value will be
recorded (and timer 1 stopped), the pin-change interrupt will be suspended, and the upper layer will be notified that
the incoming PWM measurement data is available.

Function main() first initializes the hardware by calling ioinit(), and then waits until some incoming PWM
value is available. If it is, the output PWM will be adjusted by computing the relative value of the incoming PWM.
Finally, the pin-change interrupt is re-enabled, and the CPU is put to sleep.

21.41.2.2 project.h In order for the interrupt service routines to be as fast as possible, some of the CPU registers
are set aside completely for use by these routines, so the compiler would not use them for C code. This is arranged
for in project.h.

The file is divided into one section that will be used by the assembly source code, and another one to be used
by C code. The assembly part is distinguished by the preprocessing macro __ASSEMBLER__ (which will be
automatically set by the compiler front-end when preprocessing an assembly-language file), and it contains just
macros that give symbolic names to a number of CPU registers. The preprocessor will then replace the symbolic
names by their right-hand side definitions before calling the assembler.

In C code, the compiler needs to see variable declarations for these objects. This is done by using declarations
that bind a variable permanently to a CPU register (see How to permanently bind a variable to a register?). Even
in case the C code never has a need to access these variables, declaring the register binding that way causes the
compiler to not use these registers in C code at all.

The flags variable needs to be in the range of r16 through r31 as it is the target of a load immediate (or SER)
instruction that is not applicable to the entire register file.

21.41.2.3 isrs.S This file is a preprocessed assembly source file. The C preprocessor will be run by the compiler
front-end first, resolving all #include, #define etc. directives. The resulting program text will then be passed
on to the assembler.

As the C preprocessor strips all C-style comments, preprocessed assembly source files can have both, C-style (/∗
... ∗/, // ...) as well as assembly-style (; ...) comments.

At the top, the IO register definition file avr/io.h and the project declaration file project.h are included. The
remainder of the file is conditionally assembled only if the target MCU type is an ATtiny13, so it will be completely
ignored for the ATtiny45 option.

Next are the two interrupt service routines for timer 0 compare A match (timer 0 hits TOP, as OCR0A is set to 255)
and timer 0 overflow (timer 0 hits BOTTOM). As discussed above, these are kept as short as possible. They only
save SREG (as the flags will be modified by the INC instruction), increment the counter_hi variable which forms
the high part of the current time counter (the low part is formed by querying TCNT0 directly), and clear or set the
variable flags, respectively, in order to note the current counting direction. The RETI instruction terminates these
interrupt service routines. Total cycle count is 8 CPU cycles, so together with the 4 CPU cycles needed for interrupt
setup, and the 2 cycles for the RJMP from the interrupt vector to the handler, these routines will require 14 out of
each 256 CPU cycles, or about 5 % of the overall CPU time.

The pin-change interrupt PCINT0 will be handled in the final part of this file. The basic algorithm is to quickly
evaluate the current system time by fetching the current timer value of TCNT0, and combining it with the overflow
part in counter_hi. If the counter is currently counting down rather than up, the value fetched from TCNT0 must
be negated. Finally, if this pin-change interrupt was triggered by a rising edge, the time computed will be recorded
as the start time only. Then, at the falling edge, this start time will be subracted from the current time to compute the
actual pulse width seen (left in pwm_incoming), and the upper layers are informed of the new value by setting bit
0 in the intbits flags. At the same time, this pin-change interrupt will be disabled so no new measurement can
be performed until the upper layer had a chance to process the current value.

Generated by Doxygen

21.42 A simple project 297

21.41.3 The source code

The source code is installed under

$prefix/share/doc/avr-libc/examples/asmdemo/,

where $prefix is a configuration option. For Unix systems, it is usually set to either /usr or /usr/local.

21.42 A simple project

At this point, you should have the GNU tools configured, built, and installed on your system. In this chapter, we
present a simple example of using the GNU tools in an AVR project. After reading this chapter, you should have a
better feel as to how the tools are used and how a Makefile can be configured.

21.42.1 The Project

This project will use the pulse-width modulator (PWM) to ramp an LED on and off every two seconds. An AT90S2313
processor will be used as the controller. The circuit for this demonstration is shown in the schematic diagram. If you
have a development kit, you should be able to use it, rather than build the circuit, for this project.

Note

Meanwhile, the AT90S2313 became obsolete. Either use its successor, the (pin-compatible) ATtiny2313 for
the project, or perhaps the ATmega8 or one of its successors (ATmega48/88/168) which have become quite
popular since the original demo project had been established. For all these more modern devices, it is no
longer necessary to use an external crystal for clocking as they ship with the internal 1 MHz oscillator enabled,
so C1, C2, and Q1 can be omitted. Normally, for this experiment, the external circuitry on /RESET (R1, C3)
can be omitted as well, leaving only the AVR, the LED, the bypass capacitor C4, and perhaps R2. For the
ATmega8/48/88/168, use PB1 (pin 15 at the DIP-28 package) to connect the LED to. Additionally, this demo
has been ported to many different other AVRs. The location of the respective OC pin varies between different
AVRs, and it is mandated by the AVR hardware.

GND

(MOSI)PB5

Q
1

4
m
h
z

GND

GND

.
1
u
f

C
4

VCC

R1

20K

.
0
1
u
f

C
3

18pf

C2

18pf

C1
*

See note [8]

R2
LED5MM
D1

IC1

1

10

20

5

4

19

18

17

16

15

14

13

12

11

9

8

7

6

3

2

AT90S2313P

(RXD)PD0

(TXD)PD1

(INT0)PD2

(INT1)PD3

(T0)PD4

(T1)PD5

(ICP)PD6

(AIN0)PB0

(AIN1)PB1

PB2

(OCI)PB3

PB4

(MISO)PB6

(SCK)PB7
RESET

XTAL2

XTAL1

VCC

GND

Figure 4 Schematic of circuit for demo project

The source code is given in demo.c. For the sake of this example, create a file called demo.c containing this
source code. Some of the more important parts of the code are:

Generated by Doxygen

298

Note [1]:

As the AVR microcontroller series has been developed during the past years, new features have been added
over time. Even though the basic concepts of the timer/counter1 are still the same as they used to be back
in early 2001 when this simple demo was written initially, the names of registers and bits have been changed
slightly to reflect the new features. Also, the port and pin mapping of the output compare match 1A (or 1 for
older devices) pin which is used to control the LED varies between different AVRs. The file iocompat.h
tries to abstract between all this differences using some preprocessor #ifdef statements, so the actual
program itself can operate on a common set of symbolic names. The macros defined by that file are:

• OCR the name of the OCR register used to control the PWM (usually either OCR1 or OCR1A)

• DDROC the name of the DDR (data direction register) for the OC output

• OC1 the pin number of the OC1[A] output within its port

• TIMER1_TOP the TOP value of the timer used for the PWM (1023 for 10-bit PWMs, 255 for devices that can
only handle an 8-bit PWM)

• TIMER1_PWM_INIT the initialization bits to be set into control register 1A in order to setup 10-bit (or 8-bit)
phase and frequency correct PWM mode

• TIMER1_CLOCKSOURCE the clock bits to set in the respective control register to start the PWM timer;
usually the timer runs at full CPU clock for 10-bit PWMs, while it runs on a prescaled clock for 8-bit PWMs

Note [2]:

ISR() is a macro that marks the function as an interrupt routine. In this case, the function will get called when
timer 1 overflows. Setting up interrupts is explained in greater detail in <avr/interrupt.h>: Interrupts.

Note [3]:

The PWM is being used in 10-bit mode, so we need a 16-bit variable to remember the current value.

Note [4]:

This section determines the new value of the PWM.

Note [5]:

Here's where the newly computed value is loaded into the PWM register. Since we are in an interrupt routine,
it is safe to use a 16-bit assignment to the register. Outside of an interrupt, the assignment should only be
performed with interrupts disabled if there's a chance that an interrupt routine could also access this register
(or another register that uses TEMP), see the appropriate FAQ entry.

Note [6]:

This routine gets called after a reset. It initializes the PWM and enables interrupts.

Note [7]:

The main loop of the program does nothing – all the work is done by the interrupt routine! The
sleep_mode() puts the processor on sleep until the next interrupt, to conserve power. Of course,
that probably won't be noticable as we are still driving a LED, it is merely mentioned here to demonstrate the
basic principle.

Note [8]:

Early AVR devices saturate their outputs at rather low currents when sourcing current, so the LED can be
connected directly, the resulting current through the LED will be about 15 mA. For modern parts (at least for
the ATmega 128), however Atmel has drastically increased the IO source capability, so when operating at 5
V Vcc, R2 is needed. Its value should be about 150 Ohms. When operating the circuit at 3 V, it can still be
omitted though.

Generated by Doxygen

21.42 A simple project 299

21.42.2 The Source Code

/*
* --

* "THE BEER-WARE LICENSE" (Revision 42):

* <joerg@FreeBSD.ORG> wrote this file. As long as you retain this notice you

* can do whatever you want with this stuff. If we meet some day, and you think

* this stuff is worth it, you can buy me a beer in return. Joerg Wunsch

* --

*
* Simple AVR demonstration. Controls a LED that can be directly

* connected from OC1/OC1A to GND. The brightness of the LED is

* controlled with the PWM. After each period of the PWM, the PWM

* value is either incremented or decremented, that’s all.

*
* Id

*/

#include <inttypes.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/sleep.h>

#include "iocompat.h" /* Note [1] */

enum { UP, DOWN };

ISR (TIMER1_OVF_vect) /* Note [2] */
{

static uint16_t pwm; /* Note [3] */
static uint8_t direction;

switch (direction) /* Note [4] */
{

case UP:
if (++pwm == TIMER1_TOP)

direction = DOWN;
break;

case DOWN:
if (--pwm == 0)

direction = UP;
break;

}

OCR = pwm; /* Note [5] */
}

void
ioinit (void) /* Note [6] */
{

/* Timer 1 is 10-bit PWM (8-bit PWM on some ATtinys). */
TCCR1A = TIMER1_PWM_INIT;
/*
* Start timer 1.

*
* NB: TCCR1A and TCCR1B could actually be the same register, so

* take care to not clobber it.

*/
TCCR1B |= TIMER1_CLOCKSOURCE;
/*
* Run any device-dependent timer 1 setup hook if present.

*/
#if defined(TIMER1_SETUP_HOOK)

TIMER1_SETUP_HOOK();
#endif

/* Set PWM value to 0. */
OCR = 0;

/* Enable OC1 as output. */
DDROC = _BV (OC1);

/* Enable timer 1 overflow interrupt. */
TIMSK = _BV (TOIE1);
sei ();

}

int
main (void)
{

ioinit ();

/* loop forever, the interrupts are doing the rest */

for (;;) /* Note [7] */

Generated by Doxygen

300

sleep_mode();

return (0);
}

21.42.3 Compiling and Linking

This first thing that needs to be done is compile the source. When compiling, the compiler needs to know the
processor type so the -mmcu option is specified. The -Os option will tell the compiler to optimize the code for
efficient space usage (at the possible expense of code execution speed). The -g is used to embed debug info. The
debug info is useful for disassemblies and doesn't end up in the .hex files, so I usually specify it. Finally, the -c tells
the compiler to compile and stop – don't link. This demo is small enough that we could compile and link in one step.
However, real-world projects will have several modules and will typically need to break up the building of the project
into several compiles and one link.

$ avr-gcc -g -Os -mmcu=atmega8 -c demo.c

The compilation will create a demo.o file. Next we link it into a binary called demo.elf.

$ avr-gcc -g -mmcu=atmega8 -o demo.elf demo.o

It is important to specify the MCU type when linking. The compiler uses the -mmcu option to choose start-up
files and run-time libraries that get linked together. If this option isn't specified, the compiler defaults to the 8515
processor environment, which is most certainly what you didn't want.

21.42.4 Examining the Object File

Now we have a binary file. Can we do anything useful with it (besides put it into the processor?) The GNU Binutils
suite is made up of many useful tools for manipulating object files that get generated. One tool is avr-objdump,
which takes information from the object file and displays it in many useful ways. Typing the command by itself will
cause it to list out its options.

For instance, to get a feel of the application's size, the -h option can be used. The output of this option shows
how much space is used in each of the sections (the .stab and .stabstr sections hold the debugging information and
won't make it into the ROM file).

An even more useful option is -S. This option disassembles the binary file and intersperses the source code in the
output! This method is much better, in my opinion, than using the -S with the compiler because this listing includes
routines from the libraries and the vector table contents. Also, all the "fix-ups" have been satisfied. In other words,
the listing generated by this option reflects the actual code that the processor will run.

$ avr-objdump -h -S demo.elf > demo.lst

Here's the output as saved in the demo.lst file:

Generated by Doxygen

21.42 A simple project 301

demo.elf: file format elf32-avr

Sections:
Idx Name Size VMA LMA File off Algn

0 .text 000000dc 00000000 00000000 00000094 2**1
CONTENTS, ALLOC, LOAD, READONLY, CODE

1 .data 00000000 00800060 000000dc 00000170 2**0
CONTENTS, ALLOC, LOAD, DATA

2 .bss 00000003 00800060 00800060 00000170 2**0
ALLOC

3 .stab 00000234 00000000 00000000 00000170 2**2
CONTENTS, READONLY, DEBUGGING

4 .stabstr 0000015e 00000000 00000000 000003a4 2**0
CONTENTS, READONLY, DEBUGGING

5 .comment 00000012 00000000 00000000 00000502 2**0
CONTENTS, READONLY

6 .note.gnu.avr.deviceinfo 0000003c 00000000 00000000 00000514 2**2
CONTENTS, READONLY

7 .debug_info 0000048c 00000000 00000000 00000550 2**0
CONTENTS, READONLY, DEBUGGING

8 .debug_abbrev 0000044e 00000000 00000000 000009dc 2**0
CONTENTS, READONLY, DEBUGGING

9 .debug_line 0000001d 00000000 00000000 00000e2a 2**0
CONTENTS, READONLY, DEBUGGING

10 .debug_str 0000017a 00000000 00000000 00000e47 2**0
CONTENTS, READONLY, DEBUGGING

Disassembly of section .text:

00000000 <__vectors>:
0: 12 c0 rjmp .+36 ; 0x26 <__ctors_end>
2: 5e c0 rjmp .+188 ; 0xc0 <__bad_interrupt>
4: 5d c0 rjmp .+186 ; 0xc0 <__bad_interrupt>
6: 5c c0 rjmp .+184 ; 0xc0 <__bad_interrupt>
8: 5b c0 rjmp .+182 ; 0xc0 <__bad_interrupt>
a: 5a c0 rjmp .+180 ; 0xc0 <__bad_interrupt>
c: 59 c0 rjmp .+178 ; 0xc0 <__bad_interrupt>
e: 58 c0 rjmp .+176 ; 0xc0 <__bad_interrupt>
10: 1a c0 rjmp .+52 ; 0x46 <__vector_8>
12: 56 c0 rjmp .+172 ; 0xc0 <__bad_interrupt>
14: 55 c0 rjmp .+170 ; 0xc0 <__bad_interrupt>
16: 54 c0 rjmp .+168 ; 0xc0 <__bad_interrupt>
18: 53 c0 rjmp .+166 ; 0xc0 <__bad_interrupt>
1a: 52 c0 rjmp .+164 ; 0xc0 <__bad_interrupt>
1c: 51 c0 rjmp .+162 ; 0xc0 <__bad_interrupt>
1e: 50 c0 rjmp .+160 ; 0xc0 <__bad_interrupt>
20: 4f c0 rjmp .+158 ; 0xc0 <__bad_interrupt>
22: 4e c0 rjmp .+156 ; 0xc0 <__bad_interrupt>
24: 4d c0 rjmp .+154 ; 0xc0 <__bad_interrupt>

00000026 <__ctors_end>:
26: 11 24 eor r1, r1
28: 1f be out 0x3f, r1 ; 63
2a: cf e5 ldi r28, 0x5F ; 95
2c: d4 e0 ldi r29, 0x04 ; 4
2e: de bf out 0x3e, r29 ; 62
30: cd bf out 0x3d, r28 ; 61

00000032 <__do_clear_bss>:
32: 20 e0 ldi r18, 0x00 ; 0
34: a0 e6 ldi r26, 0x60 ; 96
36: b0 e0 ldi r27, 0x00 ; 0
38: 01 c0 rjmp .+2 ; 0x3c <.do_clear_bss_start>

0000003a <.do_clear_bss_loop>:
3a: 1d 92 st X+, r1

0000003c <.do_clear_bss_start>:
3c: a3 36 cpi r26, 0x63 ; 99
3e: b2 07 cpc r27, r18
40: e1 f7 brne .-8 ; 0x3a <.do_clear_bss_loop>
42: 3f d0 rcall .+126 ; 0xc2 <main>
44: 47 c0 rjmp .+142 ; 0xd4 <exit>

Generated by Doxygen

302

00000046 <__vector_8>:
#include "iocompat.h" /* Note [1] */

enum { UP, DOWN };

ISR (TIMER1_OVF_vect) /* Note [2] */
{

46: 1f 92 push r1
48: 1f b6 in r1, 0x3f ; 63
4a: 1f 92 push r1
4c: 11 24 eor r1, r1
4e: 2f 93 push r18
50: 8f 93 push r24
52: 9f 93 push r25

static uint16_t pwm; /* Note [3] */
static uint8_t direction;

switch (direction) /* Note [4] */
54: 20 91 62 00 lds r18, 0x0062 ; 0x800062 <direction.1>

{
case UP:

if (++pwm == TIMER1_TOP)
58: 80 91 60 00 lds r24, 0x0060 ; 0x800060 <__DATA_REGION_ORIGIN__>
5c: 90 91 61 00 lds r25, 0x0061 ; 0x800061 <__DATA_REGION_ORIGIN__+0x1>

switch (direction) /* Note [4] */
60: 22 23 and r18, r18
62: a1 f0 breq .+40 ; 0x8c <__vector_8+0x46>
64: 21 30 cpi r18, 0x01 ; 1
66: 49 f4 brne .+18 ; 0x7a <__vector_8+0x34>

direction = DOWN;
break;

case DOWN:
if (--pwm == 0)

68: 01 97 sbiw r24, 0x01 ; 1
6a: 90 93 61 00 sts 0x0061, r25 ; 0x800061 <__DATA_REGION_ORIGIN__+0x1>
6e: 80 93 60 00 sts 0x0060, r24 ; 0x800060 <__DATA_REGION_ORIGIN__>
72: 00 97 sbiw r24, 0x00 ; 0
74: 11 f4 brne .+4 ; 0x7a <__vector_8+0x34>

direction = UP;
76: 10 92 62 00 sts 0x0062, r1 ; 0x800062 <direction.1>

break;
}

OCR = pwm; /* Note [5] */
7a: 9b bd out 0x2b, r25 ; 43
7c: 8a bd out 0x2a, r24 ; 42

}
7e: 9f 91 pop r25
80: 8f 91 pop r24
82: 2f 91 pop r18
84: 1f 90 pop r1
86: 1f be out 0x3f, r1 ; 63
88: 1f 90 pop r1
8a: 18 95 reti

if (++pwm == TIMER1_TOP)
8c: 01 96 adiw r24, 0x01 ; 1
8e: 90 93 61 00 sts 0x0061, r25 ; 0x800061 <__DATA_REGION_ORIGIN__+0x1>
92: 80 93 60 00 sts 0x0060, r24 ; 0x800060 <__DATA_REGION_ORIGIN__>
96: 8f 3f cpi r24, 0xFF ; 255
98: 23 e0 ldi r18, 0x03 ; 3
9a: 92 07 cpc r25, r18
9c: 71 f7 brne .-36 ; 0x7a <__vector_8+0x34>

direction = DOWN;
9e: 21 e0 ldi r18, 0x01 ; 1
a0: 20 93 62 00 sts 0x0062, r18 ; 0x800062 <direction.1>
a4: ea cf rjmp .-44 ; 0x7a <__vector_8+0x34>

000000a6 <ioinit>:

void
ioinit (void) /* Note [6] */

Generated by Doxygen

21.42 A simple project 303

{
/* Timer 1 is 10-bit PWM (8-bit PWM on some ATtinys). */
TCCR1A = TIMER1_PWM_INIT;

a6: 83 e8 ldi r24, 0x83 ; 131
a8: 8f bd out 0x2f, r24 ; 47

* Start timer 1.

*
* NB: TCCR1A and TCCR1B could actually be the same register, so

* take care to not clobber it.

*/
TCCR1B |= TIMER1_CLOCKSOURCE;

aa: 8e b5 in r24, 0x2e ; 46
ac: 81 60 ori r24, 0x01 ; 1
ae: 8e bd out 0x2e, r24 ; 46

#if defined(TIMER1_SETUP_HOOK)
TIMER1_SETUP_HOOK();

#endif

/* Set PWM value to 0. */
OCR = 0;

b0: 1b bc out 0x2b, r1 ; 43
b2: 1a bc out 0x2a, r1 ; 42

/* Enable OC1 as output. */
DDROC = _BV (OC1);

b4: 82 e0 ldi r24, 0x02 ; 2
b6: 87 bb out 0x17, r24 ; 23

/* Enable timer 1 overflow interrupt. */
TIMSK = _BV (TOIE1);

b8: 84 e0 ldi r24, 0x04 ; 4
ba: 89 bf out 0x39, r24 ; 57

sei ();
bc: 78 94 sei

}
be: 08 95 ret

000000c0 <__bad_interrupt>:
c0: 9f cf rjmp .-194 ; 0x0 <__vectors>

000000c2 <main>:

int
main (void)
{

ioinit ();
c2: f1 df rcall .-30 ; 0xa6 <ioinit>

/* loop forever, the interrupts are doing the rest */

for (;;) /* Note [7] */
sleep_mode();

c4: 85 b7 in r24, 0x35 ; 53
c6: 80 68 ori r24, 0x80 ; 128
c8: 85 bf out 0x35, r24 ; 53
ca: 88 95 sleep
cc: 85 b7 in r24, 0x35 ; 53
ce: 8f 77 andi r24, 0x7F ; 127
d0: 85 bf out 0x35, r24 ; 53
d2: f8 cf rjmp .-16 ; 0xc4 <main+0x2>

000000d4 <exit>:
d4: f8 94 cli
d6: 00 c0 rjmp .+0 ; 0xd8 <_exit>

000000d8 <_exit>:
d8: f8 94 cli

000000da <__stop_program>:
da: ff cf rjmp .-2 ; 0xda <__stop_program>

Generated by Doxygen

304

21.42.5 Linker Map Files

avr-objdump is very useful, but sometimes it's necessary to see information about the link that can only be
generated by the linker. A map file contains this information. A map file is useful for monitoring the sizes of your
code and data. It also shows where modules are loaded and which modules were loaded from libraries. It is yet
another view of your application. To get a map file, I usually add -Wl,-Map,demo.map to my link command.
Relink the application using the following command to generate demo.map (a portion of which is shown below).

$ avr-gcc -g -mmcu=atmega8 -Wl,-Map,demo.map -o demo.elf demo.o

Some points of interest in the demo.map file are:
.rela.plt

*(.rela.plt)

.text 0x0000000000000000 0xdc

*(.vectors)
.vectors 0x0000000000000000 0x26 /home/joerg/src/avr-libc/avr/devices/atmega8/crtatmega8.o

0x0000000000000000 __vectors
0x0000000000000000 __vector_default

*(.vectors)

(.progmem.gcc)
0x0000000000000026 . = ALIGN (0x2)
0x0000000000000026 __trampolines_start = .

*(.trampolines)
.trampolines 0x0000000000000026 0x0 linker stubs

(.trampolines)
0x0000000000000026 __trampolines_end = .

libprintf_flt.a:(.progmem.data)

libc.a:(.progmem.data)

(.progmem.)
0x0000000000000026 . = ALIGN (0x2)

*(.lowtext)

(.lowtext)
0x0000000000000026 __ctors_start = .

The .text segment (where program instructions are stored) starts at location 0x0.
*(.fini2)

*(.fini2)

*(.fini1)

*(.fini1)

*(.fini0)
.fini0 0x00000000000000d8 0x4 /usr/local/lib/gcc/avr/11.2.0/avr4/libgcc.a(_exit.o)

*(.fini0)

*(.hightext)

(.hightext)

(.progmemx.)
0x00000000000000dc . = ALIGN (0x2)

*(.jumptables)

(.jumptables)
0x00000000000000dc _etext = .

.data 0x0000000000800060 0x0 load address 0x00000000000000dc
[!provide] PROVIDE (__data_start = .)

*(.data)
.data 0x0000000000800060 0x0 demo.o
.data 0x0000000000800060 0x0 /home/joerg/src/avr-libc/avr/lib/avr4/exit.o
.data 0x0000000000800060 0x0 /home/joerg/src/avr-libc/avr/devices/atmega8/crtatmega8.o
.data 0x0000000000800060 0x0 /usr/local/lib/gcc/avr/11.2.0/avr4/libgcc.a(_exit.o)
.data 0x0000000000800060 0x0 /usr/local/lib/gcc/avr/11.2.0/avr4/libgcc.a(_clear_bss.o)

(.data)

(.gnu.linkonce.d)

*(.rodata)

(.rodata)

(.gnu.linkonce.r)
0x0000000000800060 . = ALIGN (0x2)
0x0000000000800060 _edata = .
[!provide] PROVIDE (__data_end = .)

.bss 0x0000000000800060 0x3
0x0000000000800060 PROVIDE (__bss_start = .)

*(.bss)
.bss 0x0000000000800060 0x3 demo.o
.bss 0x0000000000800063 0x0 /home/joerg/src/avr-libc/avr/lib/avr4/exit.o
.bss 0x0000000000800063 0x0 /home/joerg/src/avr-libc/avr/devices/atmega8/crtatmega8.o
.bss 0x0000000000800063 0x0 /usr/local/lib/gcc/avr/11.2.0/avr4/libgcc.a(_exit.o)
.bss 0x0000000000800063 0x0 /usr/local/lib/gcc/avr/11.2.0/avr4/libgcc.a(_clear_bss.o)

(.bss)

*(COMMON)
0x0000000000800063 PROVIDE (__bss_end = .)

Generated by Doxygen

21.42 A simple project 305

0x00000000000000dc __data_load_start = LOADADDR (.data)
0x00000000000000dc __data_load_end = (__data_load_start + SIZEOF (.data))

.noinit 0x0000000000800063 0x0
[!provide] PROVIDE (__noinit_start = .)

(.noinit)
[!provide] PROVIDE (__noinit_end = .)
0x0000000000800063 _end = .
[!provide] PROVIDE (__heap_start = .)

.eeprom 0x0000000000810000 0x0

(.eeprom)
0x0000000000810000 __eeprom_end = .

The last address in the .text segment is location 0x114 (denoted by _etext), so the instructions use up 276
bytes of FLASH.

The .data segment (where initialized static variables are stored) starts at location 0x60, which is the first address
after the register bank on an ATmega8 processor.

The next available address in the .data segment is also location 0x60, so the application has no initialized data.

The .bss segment (where uninitialized data is stored) starts at location 0x60.

The next available address in the .bss segment is location 0x63, so the application uses 3 bytes of uninitialized data.

The .eeprom segment (where EEPROM variables are stored) starts at location 0x0.

The next available address in the .eeprom segment is also location 0x0, so there aren't any EEPROM variables.

21.42.6 Generating Intel Hex Files

We have a binary of the application, but how do we get it into the processor? Most (if not all) programmers will
not accept a GNU executable as an input file, so we need to do a little more processing. The next step is to
extract portions of the binary and save the information into .hex files. The GNU utility that does this is called
avr-objcopy.

The ROM contents can be pulled from our project's binary and put into the file demo.hex using the following
command:

$ avr-objcopy -j .text -j .data -O ihex demo.elf demo.hex

The resulting demo.hex file contains:

:1000000012C05EC05DC05CC05BC05AC059C058C061
:100010001AC056C055C054C053C052C051C050C081
:100020004FC04EC04DC011241FBECFE5D4E0DEBF8F
:10003000CDBF20E0A0E6B0E001C01D92A336B2071C
:10004000E1F73FD047C01F921FB61F9211242F9394
:100050008F939F9320916200809160009091610046
:100060002223A1F0213049F40197909361008093FD
:100070006000009711F4109262009BBD8ABD9F91B1
:100080008F912F911F901FBE1F90189501969093EE
:100090006100809360008F3F23E0920771F721E0B9
:1000A00020936200EACF83E88FBD8EB581608EBD5C
:1000B0001BBC1ABC82E087BB84E089BF789408959A
:1000C0009FCFF1DF85B7806885BF889585B78F772B
:0C00D00085BFF8CFF89400C0F894FFCF73
:00000001FF

The -j option indicates that we want the information from the .text and .data segment extracted. If we specify the
EEPROM segment, we can generate a .hex file that can be used to program the EEPROM:

$ avr-objcopy -j .eeprom --change-section-lma .eeprom=0 -O ihex demo.elf demo_eeprom.hex

There is no demo_eeprom.hex file written, as that file would be empty.

Starting with version 2.17 of the GNU binutils, the avr-objcopy command that used to generate the empty
EEPROM files now aborts because of the empty input section .eeprom, so these empty files are not generated. It
also signals an error to the Makefile which will be caught there, and makes it print a message about the empty file
not being generated.

Generated by Doxygen

306

21.42.7 Letting Make Build the Project

Rather than type these commands over and over, they can all be placed in a make file. To build the demo project
using make, save the following in a file called Makefile.

Note

This Makefile can only be used as input for the GNU version of make.

PRG = demo
OBJ = demo.o
#MCU_TARGET = at90s2313
#MCU_TARGET = at90s2333
#MCU_TARGET = at90s4414
#MCU_TARGET = at90s4433
#MCU_TARGET = at90s4434
#MCU_TARGET = at90s8515
#MCU_TARGET = at90s8535
#MCU_TARGET = atmega128
#MCU_TARGET = atmega1280
#MCU_TARGET = atmega1281
#MCU_TARGET = atmega1284p
#MCU_TARGET = atmega16
#MCU_TARGET = atmega163
#MCU_TARGET = atmega164p
#MCU_TARGET = atmega165
#MCU_TARGET = atmega165p
#MCU_TARGET = atmega168
#MCU_TARGET = atmega169
#MCU_TARGET = atmega169p
#MCU_TARGET = atmega2560
#MCU_TARGET = atmega2561
#MCU_TARGET = atmega32
#MCU_TARGET = atmega324p
#MCU_TARGET = atmega325
#MCU_TARGET = atmega3250
#MCU_TARGET = atmega329
#MCU_TARGET = atmega3290
#MCU_TARGET = atmega32u4
#MCU_TARGET = atmega48
#MCU_TARGET = atmega64
#MCU_TARGET = atmega640
#MCU_TARGET = atmega644
#MCU_TARGET = atmega644p
#MCU_TARGET = atmega645
#MCU_TARGET = atmega6450
#MCU_TARGET = atmega649
#MCU_TARGET = atmega6490
MCU_TARGET = atmega8
#MCU_TARGET = atmega8515
#MCU_TARGET = atmega8535
#MCU_TARGET = atmega88
#MCU_TARGET = attiny2313
#MCU_TARGET = attiny24
#MCU_TARGET = attiny25
#MCU_TARGET = attiny26
#MCU_TARGET = attiny261
#MCU_TARGET = attiny44
#MCU_TARGET = attiny45
#MCU_TARGET = attiny461
#MCU_TARGET = attiny84
#MCU_TARGET = attiny85
#MCU_TARGET = attiny861
OPTIMIZE = -O2

DEFS =
LIBS =

You should not have to change anything below here.

CC = avr-gcc

Override is only needed by avr-lib build system.

override CFLAGS = -g -Wall $(OPTIMIZE) -mmcu=$(MCU_TARGET) $(DEFS)
override LDFLAGS = -Wl,-Map,$(PRG).map

OBJCOPY = avr-objcopy
OBJDUMP = avr-objdump

all: $(PRG).elf lst text eeprom

$(PRG).elf: $(OBJ)

Generated by Doxygen

21.42 A simple project 307

$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $^ $(LIBS)

dependency:
demo.o: demo.c iocompat.h

clean:
rm -rf *.o $(PRG).elf *.eps *.png *.pdf *.bak
rm -rf *.lst *.map $(EXTRA_CLEAN_FILES)

lst: $(PRG).lst

%.lst: %.elf
$(OBJDUMP) -h -S $< > $@

Rules for building the .text rom images

text: hex bin srec

hex: $(PRG).hex
bin: $(PRG).bin
srec: $(PRG).srec

%.hex: %.elf
$(OBJCOPY) -j .text -j .data -O ihex $< $@

%.srec: %.elf
$(OBJCOPY) -j .text -j .data -O srec $< $@

%.bin: %.elf
$(OBJCOPY) -j .text -j .data -O binary $< $@

Rules for building the .eeprom rom images

eeprom: ehex ebin esrec

ehex: $(PRG)_eeprom.hex
ebin: $(PRG)_eeprom.bin
esrec: $(PRG)_eeprom.srec

%_eeprom.hex: %.elf
$(OBJCOPY) -j .eeprom --change-section-lma .eeprom=0 -O ihex $< $@ \
|| { echo empty $@ not generated; exit 0; }

%_eeprom.srec: %.elf
$(OBJCOPY) -j .eeprom --change-section-lma .eeprom=0 -O srec $< $@ \
|| { echo empty $@ not generated; exit 0; }

%_eeprom.bin: %.elf
$(OBJCOPY) -j .eeprom --change-section-lma .eeprom=0 -O binary $< $@ \
|| { echo empty $@ not generated; exit 0; }

Every thing below here is used by avr-libc’s build system and can be ignored
by the casual user.

FIG2DEV = fig2dev
EXTRA_CLEAN_FILES = *.hex *.bin *.srec

dox: eps png pdf

eps: $(PRG).eps
png: $(PRG).png
pdf: $(PRG).pdf

%.eps: %.fig
$(FIG2DEV) -L eps $< $@

%.pdf: %.fig
$(FIG2DEV) -L pdf $< $@

%.png: %.fig
$(FIG2DEV) -L png $< $@

21.42.8 Reference to the source code

The source code is installed under

$prefix/share/doc/avr-libc/examples/demo/,

where $prefix is a configuration option. For Unix systems, it is usually set to either /usr or /usr/local.

Generated by Doxygen

308

21.43 A more sophisticated project

This project extends the basic idea of the simple project to control a LED with a PWM output, but adds methods to
adjust the LED brightness. It employs a lot of the basic concepts of AVR-LibC to achieve that goal.

Understanding this project assumes the simple project has been understood in full, as well as being acquainted with
the basic hardware concepts of an AVR microcontroller.

21.43.1 Hardware setup

The demo is set up in a way so it can be run on the ATmega16 that ships with the STK500 development kit. The
only external part needed is a potentiometer attached to the ADC. It is connected to a 10-pin ribbon cable for port A,
both ends of the potentiometer to pins 9 (GND) and 10 (VCC), and the wiper to pin 1 (port A0). A bypass capacitor
from pin 1 to pin 9 (like 47 nF) is recommendable.

Figure 5 Setup of the STK500

The coloured patch cables are used to provide various interconnections. As there are only four of them in the
STK500, there are two options to connect them for this demo. The second option for the yellow-green cable is
shown in parenthesis in the table. Alternatively, the "squid" cable from the JTAG ICE kit can be used if available.

Port Header Color Function Connect to
D0 1 brown RxD RXD of the RS-232 header
D1 2 grey TxD TXD of the RS-232 header

D2 3 black button "down" SW0 (pin 1 switches header)

D3 4 red button "up" SW1 (pin 2 switches header)

D4 5 green button "ADC" SW2 (pin 3 switches header)

D5 6 blue LED LED0 (pin 1 LEDs header)

D6 7 (green) clock out LED1 (pin 2 LEDs header)

D7 8 white 1-second flash LED2 (pin 3 LEDs header)

GND 9 unused
VCC 10 unused

Generated by Doxygen

21.43 A more sophisticated project 309

Figure 6 Wiring of the STK500

The following picture shows the alternate wiring where LED1 is connected but SW2 is not:

Figure 7 Wiring option #2 of the STK500

As an alternative, this demo can also be run on the popular ATmega8 controller, or its successor ATmega88 as
well as the ATmega48 and ATmega168 variants of the latter. These controllers do not have a port named "A", so
their ADC inputs are located on port C instead, thus the potentiometer needs to be attached to port C. Likewise,
the OC1A output is not on port D pin 5 but on port B pin 1 (PB1). Thus, the above cabling scheme needs to be
changed so that PB1 connects to the LED0 pin. (PD6 remains unconnected.) When using the STK500, use one of
the jumper cables for this connection. All other port D pins should be connected the same way as described for the
ATmega16 above.

When not using an STK500 starter kit, attach the LEDs through some resistor to Vcc (low-active LEDs), and attach
pushbuttons from the respective input pins to GND. The internal pull-up resistors are enabled for the pushbutton
pins, so no external resistors are needed.

Finally, the demo has been ported to the ATtiny2313 as well. As this AVR does not offer an ADC, everything related
to handling the ADC is disabled in the code for that MCU type. Also, port D of this controller type only features 6
pins, so the 1-second flash LED had to be moved from PD6 to PD4. (PD4 is used as the ADC control button on the
other MCU types, but that is not needed here.) OC1A is located at PB3 on this device.

The MCU_TARGET macro in the Makefile needs to be adjusted appropriately for the alternative controller types.

Generated by Doxygen

310

The flash ROM and RAM consumption of this demo are way below the resources of even an ATmega48, and
still well within the capabilities of an ATtiny2313. The major advantage of experimenting with the ATmega16 (in
addition that it ships together with an STK500 anyway) is that it can be debugged online via JTAG. Likewise, the
ATmega48/88/168 and ATtiny2313 devices can be debugged through debugWire, using the Atmel JTAG ICE mkII
or the low-cost AVR Dragon.

Note that in the explanation below, all port/pin names are applicable to the ATmega16 setup.

21.43.2 Functional overview

PD6 will be toggled with each internal clock tick (approx. 10 ms). PD7 will flash once per second.

PD0 and PD1 are configured as UART IO, and can be used to connect the demo kit to a PC (9600 Bd, 8N1 frame
format). The demo application talks to the serial port, and it can be controlled from the serial port.

PD2 through PD4 are configured as inputs, and control the application unless control has been taken over by the
serial port. Shorting PD2 to GND will decrease the current PWM value, shorting PD3 to GND will increase it.

While PD4 is shorted to GND, one ADC conversion for channel 0 (ADC input is on PA0) will be triggered each
internal clock tick, and the resulting value will be used as the PWM value. So the brightness of the LED follows the
analog input value on PC0. VAREF on the STK500 should be set to the same value as VCC.

When running in serial control mode, the function of the watchdog timer can be demonstrated by typing an `r'. This
will make the demo application run in a tight loop without retriggering the watchdog so after some seconds, the
watchdog will reset the MCU. This situation can be figured out on startup by reading the MCUCSR register.

The current value of the PWM is backed up in an EEPROM cell after about 3 seconds of idle time after the last
change. If that EEPROM cell contains a reasonable (i. e. non-erased) value at startup, it is taken as the initial
value for the PWM. This virtually preserves the last value across power cycles. By not updating the EEPROM
immmediately but only after a timeout, EEPROM wear is reduced considerably compared to immediately writing the
value at each change.

21.43.3 A code walkthrough

This section explains the ideas behind individual parts of the code. The source code has been divided into numbered
parts, and the following subsections explain each of these parts.

21.43.3.1 Part 1: Macro definitions A number of preprocessor macros are defined to improve readability and/or
portability of the application.

The first macros describe the IO pins our LEDs and pushbuttons are connected to. This provides some kind of mini-
HAL (hardware abstraction layer) so should some of the connections be changed, they don't need to be changed
inside the code but only on top. Note that the location of the PWM output itself is mandated by the hardware, so
it cannot be easily changed. As the ATmega48/88/168 controllers belong to a more recent generation of AVRs,
a number of register and bit names have been changed there, so they are mapped back to their ATmega8/16
equivalents to keep the actual program code portable.

The name F_CPU is the conventional name to describe the CPU clock frequency of the controller. This demo
project just uses the internal calibrated 1 MHz RC oscillator that is enabled by default. Note that when using the
<util/delay.h> functions, F_CPU needs to be defined before including that file.

The remaining macros have their own comments in the source code. The macro TMR1_SCALE shows how to use
the preprocessor and the compiler's constant expression computation to calculate the value of timer 1's post-scaler
in a way so it only depends on F_CPU and the desired software clock frequency. While the formula looks a bit
complicated, using a macro offers the advantage that the application will automatically scale to new target softclock
or master CPU frequencies without having to manually re-calculate hardcoded constants.

Generated by Doxygen

21.43 A more sophisticated project 311

21.43.3.2 Part 2: Variable definitions The intflags structure demonstrates a way to allocate bit variables
in memory. Each of the interrupt service routines just sets one bit within that structure, and the application's main
loop then monitors the bits in order to act appropriately.

Like all variables that are used to communicate values between an interrupt service routine and the main application,
it is declared volatile.

The variable ee_pwm is not a variable in the classical C sense that could be used as an lvalue or within an
expression to obtain its value. Instead, the
__attribute__((section(".eeprom")))

marks it as belonging to the EEPROM section. This section is merely used as a placeholder so the compiler
can arrange for each individual variable's location in EEPROM. The compiler will also keep track of initial values
assigned, and usually the Makefile is arranged to extract these initial values into a separate load file (largedemo←↩

_eeprom.∗ in this case) that can be used to initialize the EEPROM.

The actual EEPROM IO must be performed manually.

Similarly, the variable mcucsr is kept in the .noinit section in order to prevent it from being cleared upon application
startup.

21.43.3.3 Part 3: Interrupt service routines The ISR to handle timer 1's overflow interrupt arranges for the
software clock. While timer 1 runs the PWM, it calls its overflow handler rather frequently, so the TMR1_SCALE
value is used as a postscaler to reduce the internal software clock frequency further. If the software clock triggers,
it sets the tmr_int bitfield, and defers all further tasks to the main loop.

The ADC ISR just fetches the value from the ADC conversion, disables the ADC interrupt again, and announces
the presence of the new value in the adc_int bitfield. The interrupt is kept disabled while not needed, because
the ADC will also be triggered by executing the SLEEP instruction in idle mode (which is the default sleep mode).
Another option would be to turn off the ADC completely here, but that increases the ADC's startup time (not that it
would matter much for this application).

21.43.3.4 Part 4: Auxiliary functions The function handle_mcucsr() uses two __attribute__←↩

declarators to achieve specific goals. First, it will instruct the compiler to place the generated code into the .init3
section of the output. Thus, it will become part of the application initialization sequence. This is done in order to
fetch (and clear) the reason of the last hardware reset from MCUCSR as early as possible. There is a short period
of time where the next reset could already trigger before the current reason has been evaluated. This also explains
why the variable mcucsr that mirrors the register's value needs to be placed into the .noinit section, because
otherwise the default initialization (which happens after .init3) would blank the value again.

As the initialization code is not called using CALL/RET instructions but rather concatenated together, the compiler
needs to be instructed to omit the entire function prologue and epilogue. This is performed by the naked attribute.
So while syntactically, handle_mcucsr() is a function to the compiler, the compiler will just emit the instructions
for it without setting up any stack frame, and not even a RET instruction at the end.

Function ioinit() centralizes all hardware setup. The very last part of that function demonstrates the use of
the EEPROM variable ee_pwm to obtain an EEPROM address that can in turn be applied as an argument to
eeprom_read_word().

The following functions handle UART character and string output. (UART input is handled by an ISR.) There
are two string output functions, printstr() and printstr_p(). The latter function fetches the string from
program memory. Both functions translate a newline character into a carriage return/newline sequence, so a simple
\n can be used in the source code.

The function set_pwm() propagates the new PWM value to the PWM, performing range checking. When the
value has been changed, the new percentage will be announced on the serial link. The current value is mirrored
in the variable pwm so others can use it in calculations. In order to allow for a simple calculation of a percentage
value without requiring floating-point mathematics, the maximal value of the PWM is restricted to 1000 rather than
1023, so a simple division by 10 can be used. Due to the nature of the human eye, the difference in LED brightness
between 1000 and 1023 is not noticable anyway.

Generated by Doxygen

312

21.43.3.5 Part 5: main() At the start of main(), a variable mode is declared to keep the current mode of
operation. An enumeration is used to improve the readability. By default, the compiler would allocate a variable
of type int for an enumeration. The packed attribute declarator instructs the compiler to use the smallest possible
integer type (which would be an 8-bit type here).

After some initialization actions, the application's main loop follows. In an embedded application, this is normally an
infinite loop as there is nothing an application could "exit" into anyway.

At the beginning of the loop, the watchdog timer will be retriggered. If that timer is not triggered for about 2 seconds,
it will issue a hardware reset. Care needs to be taken that no code path blocks longer than this, or it needs to
frequently perform watchdog resets of its own. An example of such a code path would be the string IO functions:
for an overly large string to print (about 2000 characters at 9600 Bd), they might block for too long.

The loop itself then acts on the interrupt indication bitfields as appropriate, and will eventually put the CPU on sleep
at its end to conserve power.

The first interrupt bit that is handled is the (software) timer, at a frequency of approximately 100 Hz. The CLOCKOUT
pin will be toggled here, so e. g. an oscilloscope can be used on that pin to measure the accuracy of our software
clock. Then, the LED flasher for LED2 ("We are alive"-LED) is built. It will flash that LED for about 50 ms, and pause
it for another 950 ms. Various actions depending on the operation mode follow. Finally, the 3-second backup timer
is implemented that will write the PWM value back to EEPROM once it is not changing anymore.

The ADC interrupt will just adjust the PWM value only.

Finally, the UART Rx interrupt will dispatch on the last character received from the UART.

All the string literals that are used as informational messages within main() are placed in program memory so
no SRAM needs to be allocated for them. This is done by using the PSTR macro, and passing the string to
printstr_p().

21.43.4 The source code

The source code is installed under

$prefix/share/doc/avr-libc/examples/largedemo/largedemo.c,

where $prefix is a configuration option. For Unix systems, it is usually set to either /usr or /usr/local.

21.44 Using the standard IO facilities

This project illustrates how to use the standard IO facilities (stdio) provided by this library. It assumes a basic
knowledge of how the stdio subsystem is used in standard C applications, and concentrates on the differences in
this library's implementation that mainly result from the differences of the microcontroller environment, compared to
a hosted environment of a standard computer.

This demo is meant to supplement the documentation, not to replace it.

21.44.1 Hardware setup

The demo is set up in a way so it can be run on the ATmega16 that ships with the STK500 development kit. The
UART port needs to be connected to the RS-232 "spare" port by a jumper cable that connects PD0 to RxD and PD1
to TxD. The RS-232 channel is set up as standard input (stdin) and standard output (stdout), respectively.

In order to have a different device available for a standard error channel (stderr), an industry-standard LCD
display with an HD44780-compatible LCD controller has been chosen. This display needs to be connected to port
A of the STK500 in the following way:

Generated by Doxygen

21.44 Using the standard IO facilities 313

Port Header Function
A0 1 LCD D4
A1 2 LCD D5
A2 3 LCD D6
A3 4 LCD D7
A4 5 LCD R/∼W
A5 6 LCD E
A6 7 LCD RS
A7 8 unused
GND 9 GND
VCC 10 Vcc

Figure 8 Wiring of the STK500

The LCD controller is used in 4-bit mode, including polling the "busy" flag so the R/∼W line from the LCD controller
needs to be connected. Note that the LCD controller has yet another supply pin that is used to adjust the LCD's
contrast (V5). Typically, that pin connects to a potentiometer between Vcc and GND. Often, it might work to just
connect that pin to GND, while leaving it unconnected usually yields an unreadable display.

Port A has been chosen as 7 pins are needed to connect the LCD, yet all other ports are already partially in use:
port B has the pins for in-system programming (ISP), port C has the ports for JTAG (can be used for debugging),
and port D is used for the UART connection.

21.44.2 Functional overview

The project consists of the following files:

• stdiodemo.c This is the main example file.

• defines.h Contains some global defines, like the LCD wiring

• hd44780.c Implementation of an HD44780 LCD display driver

• hd44780.h Interface declarations for the HD44780 driver

• lcd.c Implementation of LCD character IO on top of the HD44780 driver

• lcd.h Interface declarations for the LCD driver

• uart.c Implementation of a character IO driver for the internal UART

• uart.h Interface declarations for the UART driver

Generated by Doxygen

314

21.44.3 A code walkthrough

21.44.3.1 stdiodemo.c As usual, include files go first. While conventionally, system header files (those in an-
gular brackets < ... >) go before application-specific header files (in double quotes), defines.h comes as the
first header file here. The main reason is that this file defines the value of F_CPU which needs to be known before
including <utils/delay.h>.

The function ioinit() summarizes all hardware initialization tasks. As this function is declared to be module-
internal only (static), the compiler will notice its simplicity, and with a reasonable optimization level in effect, it will
inline that function. That needs to be kept in mind when debugging, because the inlining might cause the debugger
to "jump around wildly" at a first glance when single-stepping.

The definitions of uart_str and lcd_str set up two stdio streams. The initialization is done using the
FDEV_SETUP_STREAM() initializer template macro, so a static object can be constructed that can be used
for IO purposes. This initializer macro takes three arguments, two function macros to connect the corresponding
output and input functions, respectively, the third one describes the intent of the stream (read, write, or both). Those
functions that are not required by the specified intent (like the input function for lcd_str which is specified to only
perform output operations) can be given as NULL.

The stream uart_str corresponds to input and output operations performed over the RS-232 connection to a
terminal (e.g. from/to a PC running a terminal program), while the lcd_str stream provides a method to display
character data on the LCD text display.

The function delay_1s() suspends program execution for approximately one second. This is done using the
_delay_ms() function from <util/delay.h> which in turn needs the F_CPU macro in order to adjust the
cycle counts. As the _delay_ms() function has a limited range of allowable argument values (depending on
F_CPU), a value of 10 ms has been chosen as the base delay which would be safe for CPU frequencies of up to
about 26 MHz. This function is then called 100 times to accomodate for the actual one-second delay.

In a practical application, long delays like this one were better be handled by a hardware timer, so the main CPU
would be free for other tasks while waiting, or could be put on sleep.

At the beginning of main(), after initializing the peripheral devices, the default stdio streams stdin, stdout,
and stderr are set up by using the existing static FILE stream objects. While this is not mandatory, the availability
of stdin and stdout allows to use the shorthand functions (e.g. printf() instead of fprintf()), and
stderr can mnemonically be referred to when sending out diagnostic messages.

Just for demonstration purposes, stdin and stdout are connected to a stream that will perform UART IO, while
stderr is arranged to output its data to the LCD text display.

Finally, a main loop follows that accepts simple "commands" entered via the RS-232 connection, and performs a
few simple actions based on the commands.

First, a prompt is sent out using printf_P() (which takes a program space string). The string is read into an
internal buffer as one line of input, using fgets(). While it would be also possible to use gets() (which implicitly
reads from stdin), gets() has no control that the user's input does not overflow the input buffer provided so it
should never be used at all.

If fgets() fails to read anything, the main loop is left. Of course, normally the main loop of a microcontroller
application is supposed to never finish, but again, for demonstrational purposes, this explains the error handling of
stdio. fgets() will return NULL in case of an input error or end-of-file condition on input. Both these conditions
are in the domain of the function that is used to establish the stream, uart_putchar() in this case. In short, this
function returns EOF in case of a serial line "break" condition (extended start condition) has been recognized on
the serial line. Common PC terminal programs allow to assert this condition as some kind of out-of-band signalling
on an RS-232 connection.

When leaving the main loop, a goodbye message is sent to standard error output (i.e. to the LCD), followed by three
dots in one-second spacing, followed by a sequence that will clear the LCD. Finally, main() will be terminated,
and the library will add an infinite loop, so only a CPU reset will be able to restart the application.

There are three "commands" recognized, each determined by the first letter of the line entered (converted to lower
case):

Generated by Doxygen

21.44 Using the standard IO facilities 315

• The 'q' (quit) command has the same effect of leaving the main loop.

• The 'l' (LCD) command takes its second argument, and sends it to the LCD.

• The 'u' (UART) command takes its second argument, and sends it back to the UART connection.

Command recognition is done using sscanf() where the first format in the format string just skips over the
command itself (as the assignment suppression modifier ∗ is given).

21.44.3.2 defines.h This file just contains a few peripheral definitions.

The F_CPU macro defines the CPU clock frequency, to be used in delay loops, as well as in the UART baud rate
calculation.

The macro UART_BAUD defines the RS-232 baud rate. Depending on the actual CPU frequency, only a limited
range of baud rates can be supported.

The remaining macros customize the IO port and pins used for the HD44780 LCD driver. Each definition consists
of a letter naming the port this pin is attached to, and a respective bit number. For accessing the data lines, only
the first data line gets its own macro (line D4 on the HD44780, lines D0 through D3 are not used in 4-bit mode), all
other data lines are expected to be in ascending order next to D4.

21.44.3.3 hd44780.h This file describes the public interface of the low-level LCD driver that interfaces to the
HD44780 LCD controller. Public functions are available to initialize the controller into 4-bit mode, to wait for the
controller's busy bit to be clear, and to read or write one byte from or to the controller.

As there are two different forms of controller IO, one to send a command or receive the controller status (RS signal
clear), and one to send or receive data to/from the controller's SRAM (RS asserted), macros are provided that build
on the mentioned function primitives.

Finally, macros are provided for all the controller commands to allow them to be used symbolically. The HD44780
datasheet explains these basic functions of the controller in more detail.

21.44.3.4 hd44780.c This is the implementation of the low-level HD44780 LCD controller driver.

On top, a few preprocessor glueing tricks are used to establish symbolic access to the hardware port pins the LCD
controller is attached to, based on the application's definitions made in defines.h.

The hd44780_pulse_e() function asserts a short pulse to the controller's E (enable) pin. Since reading back
the data asserted by the LCD controller needs to be performed while E is active, this function reads and returns
the input data if the parameter readback is true. When called with a compile-time constant parameter that is
false, the compiler will completely eliminate the unused readback operation, as well as the return value as part of
its optimizations.

As the controller is used in 4-bit interface mode, all byte IO to/from the controller needs to be handled as two
nibble IOs. The functions hd44780_outnibble() and hd44780_innibble() implement this. They do not
belong to the public interface, so they are declared static.

Building upon these, the public functions hd44780_outbyte() and hd44780_inbyte() transfer one byte
to/from the controller.

The function hd44780_wait_ready() waits for the controller to become ready, by continuously polling the
controller's status (which is read by performing a byte read with the RS signal cleard), and examining the BUSY flag
within the status byte. This function needs to be called before performing any controller IO.

Finally, hd44780_init() initializes the LCD controller into 4-bit mode, based on the initialization sequence
mandated by the datasheet. As the BUSY flag cannot be examined yet at this point, this is the only part of this code
where timed delays are used. While the controller can perform a power-on reset when certain constraints on the
power supply rise time are met, always calling the software initialization routine at startup ensures the controller will
be in a known state. This function also puts the interface into 4-bit mode (which would not be done automatically
after a power-on reset).

Generated by Doxygen

316

21.44.3.5 lcd.h This function declares the public interface of the higher-level (character IO) LCD driver.

21.44.3.6 lcd.c The implementation of the higher-level LCD driver. This driver builds on top of the HD44780
low-level LCD controller driver, and offers a character IO interface suitable for direct use by the standard IO facilities.
Where the low-level HD44780 driver deals with setting up controller SRAM addresses, writing data to the controller's
SRAM, and controlling display functions like clearing the display, or moving the cursor, this high-level driver allows
to just write a character to the LCD, in the assumption this will somehow show up on the display.

Control characters can be handled at this level, and used to perform specific actions on the LCD. Currently, there
is only one control character that is being dealt with: a newline character (\n) is taken as an indication to clear
the display and set the cursor into its initial position upon reception of the next character, so a "new line" of text
can be displayed. Therefore, a received newline character is remembered until more characters have been sent by
the application, and will only then cause the display to be cleared before continuing. This provides a convenient
abstraction where full lines of text can be sent to the driver, and will remain visible at the LCD until the next line is to
be displayed.

Further control characters could be implemented, e. g. using a set of escape sequences. That way, it would be
possible to implement self-scrolling display lines etc.

The public function lcd_init() first calls the initialization entry point of the lower-level HD44780 driver, and then
sets up the LCD in a way we'd like to (display cleared, non-blinking cursor enabled, SRAM addresses are increasing
so characters will be written left to right).

The public function lcd_putchar() takes arguments that make it suitable for being passed as a put() function
pointer to the stdio stream initialization functions and macros (fdevopen(), FDEV_SETUP_STREAM() etc.).
Thus, it takes two arguments, the character to display itself, and a reference to the underlying stream object, and it
is expected to return 0 upon success.

This function remembers the last unprocessed newline character seen in the function-local static variable nl_←↩

seen. If a newline character is encountered, it will simply set this variable to a true value, and return to the caller.
As soon as the first non-newline character is to be displayed with nl_seen still true, the LCD controller is told to
clear the display, put the cursor home, and restart at SRAM address 0. All other characters are sent to the display.

The single static function-internal variable nl_seen works for this purpose. If multiple LCDs should be controlled
using the same set of driver functions, that would not work anymore, as a way is needed to distinguish between the
various displays. This is where the second parameter can be used, the reference to the stream itself: instead of
keeping the state inside a private variable of the function, it can be kept inside a private object that is attached to
the stream itself. A reference to that private object can be attached to the stream (e.g. inside the function lcd_←↩

init() that then also needs to be passed a reference to the stream) using fdev_set_udata(), and can be
accessed inside lcd_putchar() using fdev_get_udata().

21.44.3.7 uart.h Public interface definition for the RS-232 UART driver, much like in lcd.h except there is now
also a character input function available.

As the RS-232 input is line-buffered in this example, the macro RX_BUFSIZE determines the size of that buffer.

21.44.3.8 uart.c This implements an stdio-compatible RS-232 driver using an AVR's standard UART (or USART
in asynchronous operation mode). Both, character output as well as character input operations are implemented.
Character output takes care of converting the internal newline \n into its external representation carriage return/line
feed (\r\n).

Character input is organized as a line-buffered operation that allows to minimally edit the current line until it is "sent"
to the application when either a carriage return (\r) or newline (\n) character is received from the terminal. The
line editing functions implemented are:

Generated by Doxygen

21.45 Example using the two-wire interface (TWI) 317

• \b (back space) or \177 (delete) deletes the previous character

• ∧u (control-U, ASCII NAK) deletes the entire input buffer

• ∧w (control-W, ASCII ETB) deletes the previous input word, delimited by white space

• ∧r (control-R, ASCII DC2) sends a \r, then reprints the buffer (refresh)

• \t (tabulator) will be replaced by a single space

The function uart_init() takes care of all hardware initialization that is required to put the UART into a mode
with 8 data bits, no parity, one stop bit (commonly referred to as 8N1) at the baud rate configured in defines.h. At
low CPU clock frequencies, the U2X bit in the UART is set, reducing the oversampling from 16x to 8x, which allows
for a 9600 Bd rate to be achieved with tolerable error using the default 1 MHz RC oscillator.

The public function uart_putchar() again has suitable arguments for direct use by the stdio stream interface.
It performs the \n into \r\n translation by recursively calling itself when it sees a \n character. Just for demon-
stration purposes, the \a (audible bell, ASCII BEL) character is implemented by sending a string to stderr, so it
will be displayed on the LCD.

The public function uart_getchar() implements the line editor. If there are characters available in the line
buffer (variable rxp is not NULL), the next character will be returned from the buffer without any UART interaction.

If there are no characters inside the line buffer, the input loop will be entered. Characters will be read from the
UART, and processed accordingly. If the UART signalled a framing error (FE bit set), typically caused by the
terminal sending a line break condition (start condition held much longer than one character period), the function
will return an end-of-file condition using _FDEV_EOF. If there was a data overrun condition on input (DOR bit set),
an error condition will be returned as _FDEV_ERR.

Line editing characters are handled inside the loop, potentially modifying the buffer status. If characters are at-
tempted to be entered beyond the size of the line buffer, their reception is refused, and a \a character is sent to the
terminal. If a \r or \n character is seen, the variable rxp (receive pointer) is set to the beginning of the buffer, the
loop is left, and the first character of the buffer will be returned to the application. (If no other characters have been
entered, this will just be the newline character, and the buffer is marked as being exhausted immediately again.)

21.44.4 The source code

The source code is installed under

$prefix/share/doc/avr-libc/examples/stdiodemo/,

where $prefix is a configuration option. For Unix systems, it is usually set to either /usr or /usr/local.

21.45 Example using the two-wire interface (TWI)

Some newer devices of the ATmega series contain builtin support for interfacing the microcontroller to a two-wire
bus, called TWI. This is essentially the same called I2C by Philips, but that term is avoided in Atmel's documentation
due to patenting issues.

For further documentation, see:

http://www.nxp.com/documents/user_manual/UM10204.pdf

Generated by Doxygen

http://www.nxp.com/documents/user_manual/UM10204.pdf

318

21.45.1 Introduction into TWI

The two-wire interface consists of two signal lines named SDA (serial data) and SCL (serial clock) (plus a ground
line, of course). All devices participating in the bus are connected together, using open-drain driver circuitry, so the
wires must be terminated using appropriate pullup resistors. The pullups must be small enough to recharge the line
capacity in short enough time compared to the desired maximal clock frequency, yet large enough so all drivers will
not be overloaded. There are formulas in the datasheet that help selecting the pullups.

Devices can either act as a master to the bus (i. e., they initiate a transfer), or as a slave (they only act when being
called by a master). The bus is multi-master capable, and a particular device implementation can act as either
master or slave at different times. Devices are addressed using a 7-bit address (coordinated by Philips) transfered
as the first byte after the so-called start condition. The LSB of that byte is R/∼W, i. e. it determines whether the
request to the slave is to read or write data during the next cycles. (There is also an option to have devices using
10-bit addresses but that is not covered by this example.)

21.45.2 The TWI example project

The ATmega TWI hardware supports both, master and slave operation. This example will only demonstrate how to
use an AVR microcontroller as TWI master. The implementation is kept simple in order to concentrate on the steps
that are required to talk to a TWI slave, so all processing is done in polled-mode, waiting for the TWI interface to
indicate that the next processing step is due (by setting the TWINT interrupt bit). If it is desired to have the entire
TWI communication happen in "background", all this can be implemented in an interrupt-controlled way, where only
the start condition needs to be triggered from outside the interrupt routine.

There is a variety of slave devices available that can be connected to a TWI bus. For the purpose of this example,
an EEPROM device out of the industry-standard 24Cxx series has been chosen (where xx can be one of 01, 02, 04,
08, or 16) which are available from various vendors. The choice was almost arbitrary, mainly triggered by the fact
that an EEPROM device is being talked to in both directions, reading and writing the slave device, so the example
will demonstrate the details of both.

Usually, there is probably not much need to add more EEPROM to an ATmega system that way: the smallest
possible AVR device that offers hardware TWI support is the ATmega8 which comes with 512 bytes of EEPROM,
which is equivalent to an 24C04 device. The ATmega128 already comes with twice as much EEPROM as the
24C16 would offer. One exception might be to use an externally connected EEPROM device that is removable; e.
g. SDRAM PC memory comes with an integrated TWI EEPROM that carries the RAM configuration information.

21.45.3 The Source Code

The source code is installed under

$prefix/share/doc/avr-libc/examples/twitest/twitest.c,

where $prefix is a configuration option. For Unix systems, it is usually set to either /usr or /usr/local.

Note [1]

The header file <util/twi.h> contains some macro definitions for symbolic constants used in the TWI status
register. These definitions match the names used in the Atmel datasheet except that all names have been prefixed
with TW_.

Generated by Doxygen

21.45 Example using the two-wire interface (TWI) 319

Note [2]

The clock is used in timer calculations done by the compiler, for the UART baud rate and the TWI clock rate.

Note [3]

The address assigned for the 24Cxx EEPROM consists of 1010 in the upper four bits. The following three bits are
normally available as slave sub-addresses, allowing to operate more than one device of the same type on a single
bus, where the actual subaddress used for each device is configured by hardware strapping. However, since the
next data packet following the device selection only allows for 8 bits that are used as an EEPROM address, devices
that require more than 8 address bits (24C04 and above) "steal" subaddress bits and use them for the EEPROM cell
address bits 9 to 11 as required. This example simply assumes all subaddress bits are 0 for the smaller devices, so
the E0, E1, and E2 inputs of the 24Cxx must be grounded.

Note [3a]

EEPROMs of type 24C32 and above cannot be addressed anymore even with the subaddress bit trick. Thus, they
require the upper address bits being sent separately on the bus. When activating the WORD_ADDRESS_16BIT
define, the algorithm implements that auxiliary address byte transmission.

Note [4]

For slow clocks, enable the 2 x U[S]ART clock multiplier, to improve the baud rate error. This will allow a 9600 Bd
communication using the standard 1 MHz calibrated RC oscillator. See also the Baud rate tables in the datasheets.

Note [5]

The datasheet explains why a minimum TWBR value of 10 should be maintained when running in master mode.
Thus, for system clocks below 3.6 MHz, we cannot run the bus at the intented clock rate of 100 kHz but have to
slow down accordingly.

Note [6]

This function is used by the standard output facilities that are utilized in this example for debugging and demonstra-
tion purposes.

Note [7]

In order to shorten the data to be sent over the TWI bus, the 24Cxx EEPROMs support multiple data bytes transfered
within a single request, maintaining an internal address counter that is updated after each data byte transfered
successfully. When reading data, one request can read the entire device memory if desired (the counter would
wrap around and start back from 0 when reaching the end of the device).

Generated by Doxygen

320

Note [8]

When reading the EEPROM, a first device selection must be made with write intent (R/∼W bit set to 0 indicating a
write operation) in order to transfer the EEPROM address to start reading from. This is called master transmitter
mode. Each completion of a particular step in TWI communication is indicated by an asserted TWINT bit in TWCR.
(An interrupt would be generated if allowed.) After performing any actions that are needed for the next communica-
tion step, the interrupt condition must be manually cleared by setting the TWINT bit. Unlike with many other interrupt
sources, this would even be required when using a true interrupt routine, since as soon as TWINT is re-asserted,
the next bus transaction will start.

Note [9]

Since the TWI bus is multi-master capable, there is potential for a bus contention when one master starts to access
the bus. Normally, the TWI bus interface unit will detect this situation, and will not initiate a start condition while the
bus is busy. However, in case two masters were starting at exactly the same time, the way bus arbitration works,
there is always a chance that one master could lose arbitration of the bus during any transmit operation. A master
that has lost arbitration is required by the protocol to immediately cease talking on the bus; in particular it must not
initiate a stop condition in order to not corrupt the ongoing transfer from the active master. In this example, upon
detecting a lost arbitration condition, the entire transfer is going to be restarted. This will cause a new start condition
to be initiated, which will normally be delayed until the currently active master has released the bus.

Note [10]

Next, the device slave is going to be reselected (using a so-called repeated start condition which is meant to
guarantee that the bus arbitration will remain at the current master) using the same slave address (SLA), but this
time with read intent (R/∼W bit set to 1) in order to request the device slave to start transfering data from the slave
to the master in the next packet.

Note [11]

If the EEPROM device is still busy writing one or more cells after a previous write request, it will simply leave its bus
interface drivers at high impedance, and does not respond to a selection in any way at all. The master selecting
the device will see the high level at SDA after transfering the SLA+R/W packet as a NACK to its selection request.
Thus, the select process is simply started over (effectively causing a repeated start condition), until the device will
eventually respond. This polling procedure is recommended in the 24Cxx datasheet in order to minimize the busy
wait time when writing. Note that in case a device is broken and never responds to a selection (e. g. since it is no
longer present at all), this will cause an infinite loop. Thus the maximal number of iterations made until the device is
declared to be not responding at all, and an error is returned, will be limited to MAX_ITER.

Note [12]

This is called master receiver mode: the bus master still supplies the SCL clock, but the device slave drives the SDA
line with the appropriate data. After 8 data bits, the master responds with an ACK bit (SDA driven low) in order to
request another data transfer from the slave, or it can leave the SDA line high (NACK), indicating to the slave that it
is going to stop the transfer now. Assertion of ACK is handled by setting the TWEA bit in TWCR when starting the
current transfer.

Generated by Doxygen

22 Data Structure Documentation 321

Note [13]

The control word sent out in order to initiate the transfer of the next data packet is initially set up to assert the TWEA
bit. During the last loop iteration, TWEA is de-asserted so the client will get informed that no further transfer is
desired.

Note [14]

Except in the case of lost arbitration, all bus transactions must properly be terminated by the master initiating a stop
condition.

Note [15]

Writing to the EEPROM device is simpler than reading, since only a master transmitter mode transfer is needed.
Note that the first packet after the SLA+W selection is always considered to be the EEPROM address for the
next operation. (This packet is exactly the same as the one above sent before starting to read the device.) In
case a master transmitter mode transfer is going to send more than one data packet, all following packets will be
considered data bytes to write at the indicated address. The internal address pointer will be incremented after each
write operation.

Note [16]

24Cxx devices can become write-protected by strapping their ∼WC pin to logic high. (Leaving it unconnected is
explicitly allowed, and constitutes logic low level, i. e. no write protection.) In case of a write protected device, all
data transfer attempts will be NACKed by the device. Note that some devices might not implement this.

22 Data Structure Documentation

22.1 div_t Struct Reference

#include <stdlib.h>

Data Fields

• int quot
• int rem

22.1.1 Detailed Description

Result type for function div().

Generated by Doxygen

322

22.1.2 Field Documentation

22.1.2.1 quot int div_t::quot

The Quotient.

22.1.2.2 rem int div_t::rem

The Remainder.

The documentation for this struct was generated from the following file:

• stdlib.h

22.2 ldiv_t Struct Reference

#include <stdlib.h>

Data Fields

• long quot
• long rem

22.2.1 Detailed Description

Result type for function ldiv().

22.2.2 Field Documentation

22.2.2.1 quot long ldiv_t::quot

The Quotient.

22.2.2.2 rem long ldiv_t::rem

The Remainder.

The documentation for this struct was generated from the following file:

• stdlib.h

Generated by Doxygen

22.3 tm Struct Reference 323

22.3 tm Struct Reference

#include <time.h>

Data Fields

• int8_t tm_sec
• int8_t tm_min
• int8_t tm_hour
• int8_t tm_mday
• int8_t tm_wday
• int8_t tm_mon
• int16_t tm_year
• int16_t tm_yday
• int16_t tm_isdst

22.3.1 Detailed Description

The tm structure contains a representation of time 'broken down' into components of the Gregorian calendar.

The value of tm_isdst is zero if Daylight Saving Time is not in effect, and is negative if the information is not available.

When Daylight Saving Time is in effect, the value represents the number of seconds the clock is advanced.

See the set_dst() function for more information about Daylight Saving.

22.3.2 Field Documentation

22.3.2.1 tm_hour int8_t tm::tm_hour

hours since midnight - [0 to 23]

22.3.2.2 tm_isdst int16_t tm::tm_isdst

Daylight Saving Time flag

22.3.2.3 tm_mday int8_t tm::tm_mday

day of the month - [1 to 31]

22.3.2.4 tm_min int8_t tm::tm_min

minutes after the hour - [0 to 59]

Generated by Doxygen

324

22.3.2.5 tm_mon int8_t tm::tm_mon

months since January - [0 to 11]

22.3.2.6 tm_sec int8_t tm::tm_sec

seconds after the minute - [0 to 59]

22.3.2.7 tm_wday int8_t tm::tm_wday

days since Sunday - [0 to 6]

22.3.2.8 tm_yday int16_t tm::tm_yday

days since January 1 - [0 to 365]

22.3.2.9 tm_year int16_t tm::tm_year

years since 1900

The documentation for this struct was generated from the following file:

• time.h

22.4 week_date Struct Reference

#include <time.h>

Data Fields

• int year
• int week
• int day

22.4.1 Detailed Description

Structure which represents a date as a year, week number of that year, and day of week. See http://en.←↩

wikipedia.org/wiki/ISO_week_date for more information.

22.4.2 Field Documentation

Generated by Doxygen

http://en.wikipedia.org/wiki/ISO_week_date
http://en.wikipedia.org/wiki/ISO_week_date

23 File Documentation 325

22.4.2.1 day int week_date::day

day within week

22.4.2.2 week int week_date::week

week number (#1 is where first Thursday is in)

22.4.2.3 year int week_date::year

year number (Gregorian calendar)

The documentation for this struct was generated from the following file:

• time.h

23 File Documentation

23.1 project.h
00001 /*
00002 * --
00003 * "THE BEER-WARE LICENSE" (Revision 42):
00004 * Joerg Wunsch wrote this file. As long as you retain this notice you
00005 * can do whatever you want with this stuff. If we meet some day, and you think
00006 * this stuff is worth it, you can buy me a beer in return. Joerg Wunsch
00007 * --
00008 *
00009 * Demo combining C and assembly source files.
00010 *
00011 * Id
00012 */
00013
00014 /*
00015 * Global register variables.
00016 */
00017 #ifdef __ASSEMBLER__
00018
00019 # define sreg_save r2
00020 # define flags r16
00021 # define counter_hi r4
00022
00023 #else /* !ASSEMBLER */
00024
00025 #include <stdint.h>
00026
00027 register uint8_t sreg_save asm("r2");
00028 register uint8_t flags asm("r16");
00029 register uint8_t counter_hi asm("r4");
00030
00031 #endif /* ASSEMBLER */

23.2 iocompat.h
00001 /*
00002 * --
00003 * "THE BEER-WARE LICENSE" (Revision 42):
00004 * <joerg@FreeBSD.ORG> wrote this file. As long as you retain this notice you
00005 * can do whatever you want with this stuff. If we meet some day, and you think
00006 * this stuff is worth it, you can buy me a beer in return. Joerg Wunsch
00007 * --
00008 *
00009 * IO feature compatibility definitions for various AVRs.
00010 *
00011 * Id
00012 */
00013

Generated by Doxygen

326

00014 #if !defined(IOCOMPAT_H)
00015 #define IOCOMPAT_H 1
00016
00017 /*
00018 * Device-specific adjustments:
00019 *
00020 * Supply definitions for the location of the OCR1[A] port/pin, the
00021 * name of the OCR register controlling the PWM, and adjust interrupt
00022 * vector names that differ from the one used in demo.c
00023 * [TIMER1_OVF_vect].
00024 */
00025 #if defined(__AVR_AT90S2313__)
00026 # define OC1 PB3
00027 # define OCR OCR1
00028 # define DDROC DDRB
00029 # define TIMER1_OVF_vect TIMER1_OVF1_vect
00030 #elif defined(__AVR_AT90S2333__) || defined(__AVR_AT90S4433__)
00031 # define OC1 PB1
00032 # define DDROC DDRB
00033 # define OCR OCR1
00034 #elif defined(__AVR_AT90S4414__) || defined(__AVR_AT90S8515__) || \
00035 defined(__AVR_AT90S4434__) || defined(__AVR_AT90S8535__) || \
00036 defined(__AVR_ATmega163__) || defined(__AVR_ATmega8515__) || \
00037 defined(__AVR_ATmega8535__) || \
00038 defined(__AVR_ATmega164P__) || defined(__AVR_ATmega324P__) || \
00039 defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) || \
00040 defined(__AVR_ATmega1284P__)
00041 # define OC1 PD5
00042 # define DDROC DDRD
00043 # define OCR OCR1A
00044 # if !defined(TIMSK) /* new ATmegas */
00045 # define TIMSK TIMSK1
00046 # endif
00047 #elif defined(__AVR_ATmega8__) || defined(__AVR_ATmega48__) || \
00048 defined(__AVR_ATmega88__) || defined(__AVR_ATmega168__)
00049 # define OC1 PB1
00050 # define DDROC DDRB
00051 # define OCR OCR1A
00052 # if !defined(TIMSK) /* ATmega48/88/168 */
00053 # define TIMSK TIMSK1
00054 # endif /* !defined(TIMSK) */
00055 #elif defined(__AVR_ATtiny2313__)
00056 # define OC1 PB3
00057 # define OCR OCR1A
00058 # define DDROC DDRB
00059 #elif defined(__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || \
00060 defined(__AVR_ATtiny84__)
00061 # define OC1 PA6
00062 # define DDROC DDRA
00063 # if !defined(OCR1A)
00064 # /* work around misspelled name in AVR-LibC 1.4.[0..1] */
00065 # define OCR OCRA1
00066 # else
00067 # define OCR OCR1A
00068 # endif
00069 # define TIMSK TIMSK1
00070 # define TIMER1_OVF_vect TIM1_OVF_vect /* XML and datasheet mismatch */
00071 #elif defined(__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || \
00072 defined(__AVR_ATtiny85__)
00073 /* Timer 1 is only an 8-bit timer on these devices. */
00074 # define OC1 PB1
00075 # define DDROC DDRB
00076 # define OCR OCR1A
00077 # define TCCR1A TCCR1
00078 # define TCCR1B TCCR1
00079 # define TIMER1_OVF_vect TIM1_OVF_vect
00080 # define TIMER1_TOP 255 /* only 8-bit PWM possible */
00081 # define TIMER1_PWM_INIT _BV(PWM1A) | _BV(COM1A1)
00082 # define TIMER1_CLOCKSOURCE _BV(CS12) /* use 1/8 prescaler */
00083 #elif defined(__AVR_ATtiny26__)
00084 /* Rather close to ATtinyX5 but different enough for its own section. */
00085 # define OC1 PB1
00086 # define DDROC DDRB
00087 # define OCR OCR1A
00088 # define TIMER1_OVF_vect TIMER1_OVF1_vect
00089 # define TIMER1_TOP 255 /* only 8-bit PWM possible */
00090 # define TIMER1_PWM_INIT _BV(PWM1A) | _BV(COM1A1)
00091 # define TIMER1_CLOCKSOURCE _BV(CS12) /* use 1/8 prescaler */
00092 /*
00093 * Without setting OCR1C to TOP, the ATtiny26 does not trigger an
00094 * overflow interrupt in PWM mode.
00095 */
00096 # define TIMER1_SETUP_HOOK() OCR1C = 255
00097 #elif defined(__AVR_ATtiny261__) || defined(__AVR_ATtiny461__) || \
00098 defined(__AVR_ATtiny861__)
00099 # define OC1 PB1
00100 # define DDROC DDRB

Generated by Doxygen

23.3 defines.h 327

00101 # define OCR OCR1A
00102 # define TIMER1_PWM_INIT _BV(WGM10) | _BV(PWM1A) | _BV(COM1A1)
00103 /*
00104 * While timer 1 could be operated in 10-bit mode on these devices,
00105 * the handling of the 10-bit IO registers is more complicated than
00106 * that of the 16-bit registers of other AVR devices (no combined
00107 * 16-bit IO operations possible), so we restrict this demo to 8-bit
00108 * mode which is pretty standard.
00109 */
00110 # define TIMER1_TOP 255
00111 # define TIMER1_CLOCKSOURCE _BV(CS12) /* use 1/8 prescaler */
00112 #elif defined(__AVR_ATmega32__) || defined(__AVR_ATmega16__)
00113 # define OC1 PD5
00114 # define DDROC DDRD
00115 # define OCR OCR1A
00116 #elif defined(__AVR_ATmega64__) || defined(__AVR_ATmega128__) || \
00117 defined(__AVR_ATmega165__) || defined(__AVR_ATmega169__) || \
00118 defined(__AVR_ATmega325__) || defined(__AVR_ATmega3250__) || \
00119 defined(__AVR_ATmega645__) || defined(__AVR_ATmega6450__) || \
00120 defined(__AVR_ATmega329__) || defined(__AVR_ATmega3290__) || \
00121 defined(__AVR_ATmega649__) || defined(__AVR_ATmega6490__) || \
00122 defined(__AVR_ATmega640__) || \
00123 defined(__AVR_ATmega1280__) || defined(__AVR_ATmega1281__) || \
00124 defined(__AVR_ATmega2560__) || defined(__AVR_ATmega2561__) || \
00125 defined(__AVR_ATmega32U4__)
00126 # define OC1 PB5
00127 # define DDROC DDRB
00128 # define OCR OCR1A
00129 # if !defined(PB5) /* work around missing bit definition */
00130 # define PB5 5
00131 # endif
00132 # if !defined(TIMSK) /* new ATmegas */
00133 # define TIMSK TIMSK1
00134 # endif
00135 #else
00136 # error "Don’t know what kind of MCU you are compiling for"
00137 #endif
00138
00139 /*
00140 * Map register names for older AVRs here.
00141 */
00142 #if !defined(COM1A1)
00143 # define COM1A1 COM11
00144 #endif
00145
00146 #if !defined(WGM10)
00147 # define WGM10 PWM10
00148 # define WGM11 PWM11
00149 #endif
00150
00151 /*
00152 * Provide defaults for device-specific macros unless overridden
00153 * above.
00154 */
00155 #if !defined(TIMER1_TOP)
00156 # define TIMER1_TOP 1023 /* 10-bit PWM */
00157 #endif
00158
00159 #if !defined(TIMER1_PWM_INIT)
00160 # define TIMER1_PWM_INIT _BV(WGM10) | _BV(WGM11) | _BV(COM1A1)
00161 #endif
00162
00163 #if !defined(TIMER1_CLOCKSOURCE)
00164 # define TIMER1_CLOCKSOURCE _BV(CS10) /* full clock */
00165 #endif
00166
00167 #endif /* !defined(IOCOMPAT_H) */

23.3 defines.h
00001 /*
00002 * --
00003 * "THE BEER-WARE LICENSE" (Revision 42):
00004 * <joerg@FreeBSD.ORG> wrote this file. As long as you retain this notice you
00005 * can do whatever you want with this stuff. If we meet some day, and you think
00006 * this stuff is worth it, you can buy me a beer in return. Joerg Wunsch
00007 * --
00008 *
00009 * General stdiodemo defines
00010 *
00011 * Id
00012 */
00013
00014 /* CPU frequency */

Generated by Doxygen

328

00015 #define F_CPU 1000000UL
00016
00017 /* UART baud rate */
00018 #define UART_BAUD 9600
00019
00020 /* HD44780 LCD port connections */
00021 #define HD44780_RS A, 6
00022 #define HD44780_RW A, 4
00023 #define HD44780_E A, 5
00024 /* The data bits have to be not only in ascending order but also consecutive. */
00025 #define HD44780_D4 A, 0
00026
00027 /* Whether to read the busy flag, or fall back to
00028 worst-time delays. */
00029 #define USE_BUSY_BIT 1

23.4 hd44780.h
00001 /*
00002 * --
00003 * "THE BEER-WARE LICENSE" (Revision 42):
00004 * <joerg@FreeBSD.ORG> wrote this file. As long as you retain this notice you
00005 * can do whatever you want with this stuff. If we meet some day, and you think
00006 * this stuff is worth it, you can buy me a beer in return. Joerg Wunsch
00007 * --
00008 *
00009 * HD44780 LCD display driver
00010 *
00011 * Id
00012 */
00013
00014 /*
00015 * Send byte b to the LCD. rs is the RS signal (register select), 0
00016 * selects instruction register, 1 selects the data register.
00017 */
00018 void hd44780_outbyte(uint8_t b, uint8_t rs);
00019
00020 /*
00021 * Read one byte from the LCD controller. rs is the RS signal, 0
00022 * selects busy flag (bit 7) and address counter, 1 selects the data
00023 * register.
00024 */
00025 uint8_t hd44780_inbyte(uint8_t rs);
00026
00027 /*
00028 * Wait for the busy flag to clear.
00029 */
00030 void hd44780_wait_ready(bool islong);
00031
00032 /*
00033 * Initialize the LCD controller hardware.
00034 */
00035 void hd44780_init(void);
00036
00037 /*
00038 * Prepare the LCD controller pins for powerdown.
00039 */
00040 void hd44780_powerdown(void);
00041
00042
00043 /* Send a command to the LCD controller. */
00044 #define hd44780_outcmd(n) hd44780_outbyte((n), 0)
00045
00046 /* Send a data byte to the LCD controller. */
00047 #define hd44780_outdata(n) hd44780_outbyte((n), 1)
00048
00049 /* Read the address counter and busy flag from the LCD. */
00050 #define hd44780_incmd() hd44780_inbyte(0)
00051
00052 /* Read the current data byte from the LCD. */
00053 #define hd44780_indata() hd44780_inbyte(1)
00054
00055
00056 /* Clear LCD display command. */
00057 #define HD44780_CLR \
00058 0x01
00059
00060 /* Home cursor command. */
00061 #define HD44780_HOME \
00062 0x02
00063
00064 /*
00065 * Select the entry mode. inc determines whether the address counter
00066 * auto-increments, shift selects an automatic display shift.

Generated by Doxygen

23.5 lcd.h 329

00067 */
00068 #define HD44780_ENTMODE(inc, shift) \
00069 (0x04 | ((inc)? 0x02: 0) | ((shift)? 1: 0))
00070
00071 /*
00072 * Selects disp[lay] on/off, cursor on/off, cursor blink[ing]
00073 * on/off.
00074 */
00075 #define HD44780_DISPCTL(disp, cursor, blink) \
00076 (0x08 | ((disp)? 0x04: 0) | ((cursor)? 0x02: 0) | ((blink)? 1: 0))
00077
00078 /*
00079 * With shift = 1, shift display right or left.
00080 * With shift = 0, move cursor right or left.
00081 */
00082 #define HD44780_SHIFT(shift, right) \
00083 (0x10 | ((shift)? 0x08: 0) | ((right)? 0x04: 0))
00084
00085 /*
00086 * Function set. if8bit selects an 8-bit data path, twoline arranges
00087 * for a two-line display, font5x10 selects the 5x10 dot font (5x8
00088 * dots if clear).
00089 */
00090 #define HD44780_FNSET(if8bit, twoline, font5x10) \
00091 (0x20 | ((if8bit)? 0x10: 0) | ((twoline)? 0x08: 0) | \
00092 ((font5x10)? 0x04: 0))
00093
00094 /*
00095 * Set the next character generator address to addr.
00096 */
00097 #define HD44780_CGADDR(addr) \
00098 (0x40 | ((addr) & 0x3f))
00099
00100 /*
00101 * Set the next display address to addr.
00102 */
00103 #define HD44780_DDADDR(addr) \
00104 (0x80 | ((addr) & 0x7f))
00105

23.5 lcd.h
00001 /*
00002 * --
00003 * "THE BEER-WARE LICENSE" (Revision 42):
00004 * <joerg@FreeBSD.ORG> wrote this file. As long as you retain this notice you
00005 * can do whatever you want with this stuff. If we meet some day, and you think
00006 * this stuff is worth it, you can buy me a beer in return. Joerg Wunsch
00007 * --
00008 *
00009 * Stdio demo, upper layer of LCD driver.
00010 *
00011 * Id
00012 */
00013
00014 /*
00015 * Initialize LCD controller. Performs a software reset.
00016 */
00017 void lcd_init(void);
00018
00019 /*
00020 * Send one character to the LCD.
00021 */
00022 int lcd_putchar(char c, FILE *stream);

23.6 uart.h
00001 /*
00002 * --
00003 * "THE BEER-WARE LICENSE" (Revision 42):
00004 * <joerg@FreeBSD.ORG> wrote this file. As long as you retain this notice you
00005 * can do whatever you want with this stuff. If we meet some day, and you think
00006 * this stuff is worth it, you can buy me a beer in return. Joerg Wunsch
00007 * --
00008 *
00009 * Stdio demo, UART declarations
00010 *
00011 * Id
00012 */
00013
00014 /*

Generated by Doxygen

330

00015 * Perform UART startup initialization.
00016 */
00017 void uart_init(void);
00018
00019 /*
00020 * Send one character to the UART.
00021 */
00022 int uart_putchar(char c, FILE *stream);
00023
00024 /*
00025 * Size of internal line buffer used by uart_getchar().
00026 */
00027 #define RX_BUFSIZE 80
00028
00029 /*
00030 * Receive one character from the UART. The actual reception is
00031 * line-buffered, and one character is returned from the buffer at
00032 * each invokation.
00033 */
00034 int uart_getchar(FILE *stream);

23.7 alloca.h
00001 /* Copyright (c) 2007, Dmitry Xmelkov
00002 All rights reserved.
00003
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions are met:
00006
00007 * Redistributions of source code must retain the above copyright
00008 notice, this list of conditions and the following disclaimer.
00009 * Redistributions in binary form must reproduce the above copyright
00010 notice, this list of conditions and the following disclaimer in
00011 the documentation and/or other materials provided with the
00012 distribution.
00013 * Neither the name of the copyright holders nor the names of
00014 contributors may be used to endorse or promote products derived
00015 from this software without specific prior written permission.
00016
00017 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00018 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00019 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00020 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00021 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00022 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00023 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00024 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00025 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00026 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00027 POSSIBILITY OF SUCH DAMAGE. */
00028
00029 /* Id */
00030
00031 #ifndef _ALLOCA_H
00032 #define _ALLOCA_H 1
00033
00034 #include <stddef.h>
00035
00036 /** \defgroup alloca <alloca.h>: Allocate space in the stack */
00037
00038 /** \ingroup alloca
00039 \brief Allocate \a __size bytes of space in the stack frame of the caller.
00040
00041 This temporary space is automatically freed when the function that
00042 called alloca() returns to its caller. AVR-LibC defines the alloca() as
00043 a macro, which is translated into the inlined \c __builtin_alloca()
00044 function. The fact that the code is inlined, means that it is impossible
00045 to take the address of this function, or to change its behaviour by
00046 linking with a different library.
00047
00048 \return alloca() returns a pointer to the beginning of the allocated
00049 space. If the allocation causes stack overflow, program behaviour is
00050 undefined.
00051
00052 \warning Avoid use alloca() inside the list of arguments of a function
00053 call.
00054 */
00055 extern void *alloca (size_t __size);
00056
00057 #define alloca(size) __builtin_alloca (size)
00058
00059 #endif /* alloca.h */

Generated by Doxygen

23.8 assert.h File Reference 331

23.8 assert.h File Reference

Macros

• #define assert(expression)

23.9 assert.h

Go to the documentation of this file.
00001 /* Copyright (c) 2005,2007 Joerg Wunsch
00002 All rights reserved.
00003
00004 Portions of documentation Copyright (c) 1991, 1993
00005 The Regents of the University of California.
00006
00007 All rights reserved.
00008
00009 Redistribution and use in source and binary forms, with or without
00010 modification, are permitted provided that the following conditions are met:
00011
00012 * Redistributions of source code must retain the above copyright
00013 notice, this list of conditions and the following disclaimer.
00014
00015 * Redistributions in binary form must reproduce the above copyright
00016 notice, this list of conditions and the following disclaimer in
00017 the documentation and/or other materials provided with the
00018 distribution.
00019
00020 * Neither the name of the copyright holders nor the names of
00021 contributors may be used to endorse or promote products derived
00022 from this software without specific prior written permission.
00023
00024 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00025 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00026 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00027 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00028 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00029 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00030 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00031 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00032 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00033 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00034 POSSIBILITY OF SUCH DAMAGE.
00035
00036 Id
00037 */
00038
00039 /** \file */
00040 /** \defgroup avr_assert <assert.h>: Diagnostics
00041 \code #include <assert.h> \endcode
00042
00043 This header file defines a debugging aid.
00044
00045 As there is no standard error output stream available for many
00046 applications using this library, the generation of a printable
00047 error message is not enabled by default. These messages will
00048 only be generated if the application defines the macro
00049
00050 \code __ASSERT_USE_STDERR \endcode
00051
00052 before including the \c <assert.h> header file. By default,
00053 only abort() will be called to halt the application.
00054 */
00055
00056 /**@{*/
00057
00058 /*
00059 * The ability to include this file (with or without NDEBUG) is a
00060 * feature.
00061 */
00062
00063 #undef assert
00064
00065 #include <stdlib.h>
00066
00067 #if defined(__DOXYGEN__)
00068 /**
00069 * \def assert
00070 * \param expression Expression to test for.

Generated by Doxygen

332

00071 *
00072 * The assert() macro tests the given expression and if it is false,
00073 * the calling process is terminated. A diagnostic message is written
00074 * to stderr and the function abort() is called, effectively
00075 * terminating the program.
00076 *
00077 * If expression is true, the assert() macro does nothing.
00078 *
00079 * The assert() macro may be removed at compile time by defining
00080 * NDEBUG as a macro (e.g., by using the compiler option -DNDEBUG).
00081 */
00082 # define assert(expression)
00083
00084 #else /* !DOXYGEN */
00085
00086 # if defined(NDEBUG)
00087 # define assert(e) ((void)0)
00088 # else /* !NDEBUG */
00089 # if defined(__ASSERT_USE_STDERR)
00090 # define assert(e) ((e) ? (void)0 : \
00091 __assert(__func__, __FILE__, __LINE__, #e))
00092 # else /* !__ASSERT_USE_STDERR */
00093 # define assert(e) ((e) ? (void)0 : abort())
00094 # endif /* __ASSERT_USE_STDERR */
00095 # endif /* NDEBUG */
00096 #endif /* DOXYGEN */
00097
00098 #if (defined __STDC_VERSION__ && __STDC_VERSION__ >= 201112L) || \
00099 ((_GNUC_ > 4 || (_GNUC_ == 4 && _GNUC_MINOR_ >= 6)) && !defined __cplusplus)
00100 # undef static_assert
00101 # define static_assert _Static_assert
00102 #endif
00103
00104 #ifdef __cplusplus
00105 extern "C" {
00106 #endif
00107
00108 #if !defined(__DOXYGEN__)
00109
00110 extern void __assert(const char *__func, const char *__file,
00111 int __lineno, const char *__sexp);
00112
00113 #endif /* not __DOXYGEN__ */
00114
00115 #ifdef __cplusplus
00116 }
00117 #endif
00118
00119 /**@}*/
00120 /* EOF */

23.10 boot.h File Reference

Macros

• #define BOOTLOADER_SECTION __attribute__ ((__section__(".bootloader")))
• #define boot_spm_interrupt_enable() (__SPM_REG |= (uint8_t)_BV(SPMIE))
• #define boot_spm_interrupt_disable() (__SPM_REG &= (uint8_t)∼_BV(SPMIE))
• #define boot_is_spm_interrupt() (__SPM_REG & (uint8_t)_BV(SPMIE))
• #define boot_rww_busy() (__SPM_REG & (uint8_t)_BV(__COMMON_ASB))
• #define boot_spm_busy() (__SPM_REG & (uint8_t)_BV(__SPM_ENABLE))
• #define boot_spm_busy_wait() do{}while(boot_spm_busy())
• #define GET_LOW_FUSE_BITS (0x0000)
• #define GET_LOCK_BITS (0x0001)
• #define GET_EXTENDED_FUSE_BITS (0x0002)
• #define GET_HIGH_FUSE_BITS (0x0003)
• #define boot_lock_fuse_bits_get(address)
• #define boot_signature_byte_get(addr)
• #define boot_page_fill(address, data) __boot_page_fill_normal(address, data)
• #define boot_page_erase(address) __boot_page_erase_normal(address)
• #define boot_page_write(address) __boot_page_write_normal(address)
• #define boot_rww_enable() __boot_rww_enable()

Generated by Doxygen

23.11 boot.h 333

• #define boot_lock_bits_set(lock_bits) __boot_lock_bits_set(lock_bits)
• #define boot_page_fill_safe(address, data)
• #define boot_page_erase_safe(address)
• #define boot_page_write_safe(address)
• #define boot_rww_enable_safe()
• #define boot_lock_bits_set_safe(lock_bits)

23.11 boot.h

Go to the documentation of this file.
00001 /* Copyright (c) 2002,2003,2004,2005,2006,2007,2008,2009 Eric B. Weddington
00002 All rights reserved.
00003
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions are met:
00006
00007 * Redistributions of source code must retain the above copyright
00008 notice, this list of conditions and the following disclaimer.
00009 * Redistributions in binary form must reproduce the above copyright
00010 notice, this list of conditions and the following disclaimer in
00011 the documentation and/or other materials provided with the
00012 distribution.
00013 * Neither the name of the copyright holders nor the names of
00014 contributors may be used to endorse or promote products derived
00015 from this software without specific prior written permission.
00016
00017 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00018 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00019 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00020 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00021 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00022 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00023 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00024 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00025 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00026 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00027 POSSIBILITY OF SUCH DAMAGE. */
00028
00029 /* Id */
00030
00031 #ifndef _AVR_BOOT_H_
00032 #define _AVR_BOOT_H_ 1
00033
00034 /** \file */
00035 /** \defgroup avr_boot <avr/boot.h>: Bootloader Support Utilities
00036 \code
00037 #include <avr/io.h>
00038 #include <avr/boot.h>
00039 \endcode
00040
00041 The macros in this module provide a C language interface to the
00042 bootloader support functionality of certain AVR processors. These
00043 macros are designed to work with all sizes of flash memory.
00044
00045 Global interrupts are not automatically disabled for these macros. It
00046 is left up to the programmer to do this. See the code example below.
00047 Also see the processor datasheet for caveats on having global interrupts
00048 enabled during writing of the Flash.
00049
00050 \note Not all AVR processors provide bootloader support. See your
00051 processor datasheet to see if it provides bootloader support.
00052
00053 \par API Usage Example
00054 The following code shows typical usage of the boot API.
00055
00056 \code
00057 #include <stdint.h>
00058 #include <avr/interrupt.h>
00059 #include <avr/pgmspace.h>
00060
00061 void boot_program_page (uint32_t page, uint8_t *buf)
00062 {
00063 // Disable interrupts.
00064 uint8_t sreg = SREG;
00065 cli();
00066
00067 eeprom_busy_wait ();
00068
00069 boot_page_erase (page);

Generated by Doxygen

334

00070 boot_spm_busy_wait (); // Wait until the memory is erased.
00071
00072 for (uint16_t i = 0; i < SPM_PAGESIZE; i += 2)
00073 {
00074 // Set up little-endian word.
00075 uint16_t w = *buf++;
00076 w += (*buf++) « 8;
00077
00078 boot_page_fill (page + i, w);
00079 }
00080
00081 boot_page_write (page); // Store buffer in flash page.
00082 boot_spm_busy_wait(); // Wait until the memory is written.
00083
00084 // Reenable RWW-section again. We need this if we want to jump back
00085 // to the application after bootloading.
00086 boot_rww_enable ();
00087
00088 // Re-enable interrupts (if they were ever enabled).
00089 SREG = sreg;
00090 }\endcode */
00091
00092 #include <avr/eeprom.h>
00093 #include <avr/io.h>
00094 #include <inttypes.h>
00095 #include <limits.h>
00096
00097 /* Check for SPM Control Register in processor. */
00098 #if defined (SPMCSR)
00099 # define __SPM_REG SPMCSR
00100 #else
00101 # if defined (SPMCR)
00102 # define __SPM_REG SPMCR
00103 # else
00104 # error AVR processor does not provide bootloader support!
00105 # endif
00106 #endif
00107
00108
00109 /* Check for SPM Enable bit. */
00110 #if defined(SPMEN)
00111 # define __SPM_ENABLE SPMEN
00112 #elif defined(SELFPRGEN)
00113 # define __SPM_ENABLE SELFPRGEN
00114 #else
00115 # error Cannot find SPM Enable bit definition!
00116 #endif
00117
00118 /** \ingroup avr_boot
00119 \def BOOTLOADER_SECTION
00120
00121 Used to declare a function or variable to be placed into a
00122 new section called .bootloader. This section and its contents
00123 can then be relocated to any address (such as the bootloader
00124 NRWW area) at link-time. */
00125
00126 #define BOOTLOADER_SECTION __attribute__ ((__section__(".bootloader")))
00127
00128 #ifndef __DOXYGEN__
00129 /* Create common bit definitions. */
00130 #ifdef ASB
00131 #define __COMMON_ASB ASB
00132 #else
00133 #define __COMMON_ASB RWWSB
00134 #endif
00135
00136 #ifdef ASRE
00137 #define __COMMON_ASRE ASRE
00138 #else
00139 #define __COMMON_ASRE RWWSRE
00140 #endif
00141
00142 /* Define the bit positions of the Boot Lock Bits. */
00143
00144 #define BLB12 5
00145 #define BLB11 4
00146 #define BLB02 3
00147 #define BLB01 2
00148 #endif /* __DOXYGEN__ */
00149
00150 /** \ingroup avr_boot
00151 \def boot_spm_interrupt_enable()
00152 Enable the SPM interrupt. */
00153
00154 #define boot_spm_interrupt_enable() (__SPM_REG |= (uint8_t)_BV(SPMIE))
00155
00156 /** \ingroup avr_boot

Generated by Doxygen

23.11 boot.h 335

00157 \def boot_spm_interrupt_disable()
00158 Disable the SPM interrupt. */
00159
00160 #define boot_spm_interrupt_disable() (__SPM_REG &= (uint8_t)~_BV(SPMIE))
00161
00162 /** \ingroup avr_boot
00163 \def boot_is_spm_interrupt()
00164 Check if the SPM interrupt is enabled. */
00165
00166 #define boot_is_spm_interrupt() (__SPM_REG & (uint8_t)_BV(SPMIE))
00167
00168 /** \ingroup avr_boot
00169 \def boot_rww_busy()
00170 Check if the RWW section is busy. */
00171
00172 #define boot_rww_busy() (__SPM_REG & (uint8_t)_BV(__COMMON_ASB))
00173
00174 /** \ingroup avr_boot
00175 \def boot_spm_busy()
00176 Check if the SPM instruction is busy. */
00177
00178 #define boot_spm_busy() (__SPM_REG & (uint8_t)_BV(__SPM_ENABLE))
00179
00180 /** \ingroup avr_boot
00181 \def boot_spm_busy_wait()
00182 Wait while the SPM instruction is busy. */
00183
00184 #define boot_spm_busy_wait() do{}while(boot_spm_busy())
00185
00186 #ifndef __DOXYGEN__
00187 #define __BOOT_PAGE_ERASE (_BV(__SPM_ENABLE) | _BV(PGERS))
00188 #define __BOOT_PAGE_WRITE (_BV(__SPM_ENABLE) | _BV(PGWRT))
00189 #define __BOOT_PAGE_FILL _BV(__SPM_ENABLE)
00190 #define __BOOT_RWW_ENABLE (_BV(__SPM_ENABLE) | _BV(__COMMON_ASRE))
00191 #if defined(BLBSET)
00192 #define __BOOT_LOCK_BITS_SET (_BV(__SPM_ENABLE) | _BV(BLBSET))
00193 #elif defined(RFLB) /* Some devices have RFLB defined instead of BLBSET. */
00194 #define __BOOT_LOCK_BITS_SET (_BV(__SPM_ENABLE) | _BV(RFLB))
00195 #elif defined(RWFLB) /* Some devices have RWFLB defined instead of BLBSET. */
00196 #define __BOOT_LOCK_BITS_SET (_BV(__SPM_ENABLE) | _BV(RWFLB))
00197 #endif
00198
00199 #define __boot_page_fill_normal(address, data) \
00200 (__extension__({ \
00201 if (_SFR_IO_REG_P(__SPM_REG)) \
00202 __asm__ __volatile__ (\
00203 "movw r0, %3" "\n\t" \
00204 "out %0, %1" "\n\t" \
00205 "spm" "\n\t" \
00206 "clr __zero_reg__" \
00207 : \
00208 : "i" (_SFR_IO_ADDR(__SPM_REG)), \
00209 "r" ((uint8_t)(__BOOT_PAGE_FILL)), \
00210 "z" ((uint16_t)(address)), \
00211 "r" ((uint16_t)(data)) \
00212 : "r0"); \
00213 else \
00214 __asm__ __volatile__ (\
00215 "movw r0, %3" "\n\t" \
00216 "sts %0, %1" "\n\t" \
00217 "spm" "\n\t" \
00218 "clr __zero_reg__" \
00219 : \
00220 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
00221 "r" ((uint8_t)(__BOOT_PAGE_FILL)), \
00222 "z" ((uint16_t)(address)), \
00223 "r" ((uint16_t)(data)) \
00224 : "r0"); \
00225 }))
00226
00227 #define __boot_page_fill_alternate(address, data)\
00228 (__extension__({ \
00229 __asm__ __volatile__ \
00230 (\
00231 "movw r0, %3" "\n\t" \
00232 "sts %0, %1" "\n\t" \
00233 "spm" "\n\t" \
00234 ".word 0xffff" "\n\t" \
00235 "nop" "\n\t" \
00236 "clr __zero_reg__" \
00237 : \
00238 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
00239 "r" ((uint8_t)(__BOOT_PAGE_FILL)), \
00240 "z" ((uint16_t)(address)), \
00241 "r" ((uint16_t)(data)) \
00242 : "r0" \
00243); \

Generated by Doxygen

336

00244 }))
00245
00246 #define __boot_page_fill_extended(address, data) \
00247 (__extension__({ \
00248 __asm__ __volatile__ \
00249 (\
00250 "movw r0, %4" "\n\t" \
00251 "movw r30, %A3" "\n\t" \
00252 "out %1, %C3" "\n\t" \
00253 "sts %0, %2" "\n\t" \
00254 "spm" "\n\t" \
00255 "clr __zero_reg__" \
00256 : \
00257 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
00258 "i" (_SFR_IO_ADDR(RAMPZ)), \
00259 "r" ((uint8_t)(__BOOT_PAGE_FILL)), \
00260 "r" ((uint32_t)(address)), \
00261 "r" ((uint16_t)(data)) \
00262 : "r0", "r30", "r31" \
00263); \
00264 }))
00265
00266 #define __boot_page_erase_normal(address) \
00267 (__extension__({ \
00268 if (_SFR_IO_REG_P(__SPM_REG)) \
00269 __asm__ __volatile__ (\
00270 "out %0, %1" "\n\t" \
00271 "spm" \
00272 : \
00273 : "i" (_SFR_IO_ADDR(__SPM_REG)), \
00274 "r" ((uint8_t)(__BOOT_PAGE_ERASE)), \
00275 "z" ((uint16_t)(address))); \
00276 else \
00277 __asm__ __volatile__ (\
00278 "sts %0, %1" "\n\t" \
00279 "spm" \
00280 : \
00281 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
00282 "r" ((uint8_t)(__BOOT_PAGE_ERASE)), \
00283 "z" ((uint16_t)(address))); \
00284 }))
00285
00286 #define __boot_page_erase_alternate(address) \
00287 (__extension__({ \
00288 __asm__ __volatile__ \
00289 (\
00290 "sts %0, %1" "\n\t" \
00291 "spm" "\n\t" \
00292 ".word 0xffff" "\n\t" \
00293 "nop" \
00294 : \
00295 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
00296 "r" ((uint8_t)(__BOOT_PAGE_ERASE)), \
00297 "z" ((uint16_t)(address)) \
00298); \
00299 }))
00300
00301 #define __boot_page_erase_extended(address) \
00302 (__extension__({ \
00303 __asm__ __volatile__ \
00304 (\
00305 "movw r30, %A3" "\n\t" \
00306 "out %1, %C3" "\n\t" \
00307 "sts %0, %2" "\n\t" \
00308 "spm" \
00309 : \
00310 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
00311 "i" (_SFR_IO_ADDR(RAMPZ)), \
00312 "r" ((uint8_t)(__BOOT_PAGE_ERASE)), \
00313 "r" ((uint32_t)(address)) \
00314 : "r30", "r31" \
00315); \
00316 }))
00317
00318 #define __boot_page_write_normal(address) \
00319 (__extension__({ \
00320 if (_SFR_IO_REG_P(__SPM_REG)) \
00321 __asm__ __volatile__ (\
00322 "out %0, %1" "\n\t" \
00323 "spm" \
00324 : \
00325 : "i" (_SFR_IO_ADDR(__SPM_REG)), \
00326 "r" ((uint8_t)(__BOOT_PAGE_WRITE)), \
00327 "z" ((uint16_t)(address))); \
00328 else \
00329 __asm__ __volatile__ (\
00330 "sts %0, %1" "\n\t" \

Generated by Doxygen

23.11 boot.h 337

00331 "spm" \
00332 : \
00333 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
00334 "r" ((uint8_t)(__BOOT_PAGE_WRITE)), \
00335 "z" ((uint16_t)(address))); \
00336 }))
00337
00338 #define __boot_page_write_alternate(address) \
00339 (__extension__({ \
00340 __asm__ __volatile__ \
00341 (\
00342 "sts %0, %1" "\n\t" \
00343 "spm" "\n\t" \
00344 ".word 0xffff" "\n\t" \
00345 "nop" \
00346 : \
00347 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
00348 "r" ((uint8_t)(__BOOT_PAGE_WRITE)), \
00349 "z" ((uint16_t)(address)) \
00350); \
00351 }))
00352
00353 #define __boot_page_write_extended(address) \
00354 (__extension__({ \
00355 __asm__ __volatile__ \
00356 (\
00357 "movw r30, %A3" "\n\t" \
00358 "out %1, %C3" "\n\t" \
00359 "sts %0, %2" "\n\t" \
00360 "spm" \
00361 : \
00362 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
00363 "i" (_SFR_IO_ADDR(RAMPZ)), \
00364 "r" ((uint8_t)(__BOOT_PAGE_WRITE)), \
00365 "r" ((uint32_t)(address)) \
00366 : "r30", "r31" \
00367); \
00368 }))
00369
00370 #define __boot_rww_enable() \
00371 (__extension__({ \
00372 __asm__ __volatile__ \
00373 (\
00374 "sts %0, %1" "\n\t" \
00375 "spm" \
00376 : \
00377 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
00378 "r" ((uint8_t)(__BOOT_RWW_ENABLE)) \
00379); \
00380 }))
00381
00382 #define __boot_rww_enable_alternate() \
00383 (__extension__({ \
00384 __asm__ __volatile__ \
00385 (\
00386 "sts %0, %1" "\n\t" \
00387 "spm" "\n\t" \
00388 ".word 0xffff" "\n\t" \
00389 "nop" \
00390 : \
00391 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
00392 "r" ((uint8_t)(__BOOT_RWW_ENABLE)) \
00393); \
00394 }))
00395
00396 /* From the mega16/mega128 data sheets (maybe others):
00397
00398 Bits by SPM To set the Boot Loader Lock bits, write the desired data to
00399 R0, write "X0001001" to SPMCR and execute SPM within four clock cycles
00400 after writing SPMCR. The only accessible Lock bits are the Boot Lock bits
00401 that may prevent the Application and Boot Loader section from any
00402 software update by the MCU.
00403
00404 If bits 5..2 in R0 are cleared (zero), the corresponding Boot Lock bit
00405 will be programmed if an SPM instruction is executed within four cycles
00406 after BLBSET and SPMEN (or SELFPRGEN) are set in SPMCR. The Z-pointer is
00407 don’t care during this operation, but for future compatibility it is
00408 recommended to load the Z-pointer with $0001 (same as used for reading the
00409 Lock bits). For future compatibility It is also recommended to set bits 7,
00410 6, 1, and 0 in R0 to 1 when writing the Lock bits. When programming the
00411 Lock bits the entire Flash can be read during the operation. */
00412
00413 #define __boot_lock_bits_set(lock_bits) \
00414 (__extension__({ \
00415 uint8_t value = (uint8_t)(~(lock_bits)); \
00416 __asm__ __volatile__ \
00417 (\

Generated by Doxygen

338

00418 "ldi r30, 1" "\n\t" \
00419 "ldi r31, 0" "\n\t" \
00420 "mov r0, %2" "\n\t" \
00421 "sts %0, %1" "\n\t" \
00422 "spm" \
00423 : \
00424 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
00425 "r" ((uint8_t)(__BOOT_LOCK_BITS_SET)), \
00426 "r" (value) \
00427 : "r0", "r30", "r31" \
00428); \
00429 }))
00430
00431 #define __boot_lock_bits_set_alternate(lock_bits) \
00432 (__extension__({ \
00433 uint8_t value = (uint8_t)(~(lock_bits)); \
00434 __asm__ __volatile__ \
00435 (\
00436 "ldi r30, 1" "\n\t" \
00437 "ldi r31, 0" "\n\t" \
00438 "mov r0, %2" "\n\t" \
00439 "sts %0, %1" "\n\t" \
00440 "spm" "\n\t" \
00441 ".word 0xffff" "\n\t" \
00442 "nop" \
00443 : \
00444 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
00445 "r" ((uint8_t)(__BOOT_LOCK_BITS_SET)), \
00446 "r" (value) \
00447 : "r0", "r30", "r31" \
00448); \
00449 }))
00450 #endif /* __DOXYGEN__ */
00451
00452 /*
00453 Reading lock and fuse bits:
00454
00455 Similarly to writing the lock bits above, set BLBSET and SPMEN (or
00456 SELFPRGEN) bits in __SPMREG, and then (within four clock cycles) issue an
00457 LPM instruction.
00458
00459 Z address: contents:
00460 0x0000 low fuse bits
00461 0x0001 lock bits
00462 0x0002 extended fuse bits
00463 0x0003 high fuse bits
00464
00465 Sounds confusing, doesn’t it?
00466
00467 Unlike the macros in pgmspace.h, no need to care for non-enhanced
00468 cores here as these old cores do not provide SPM support anyway.
00469 */
00470
00471 /** \ingroup avr_boot
00472 \def GET_LOW_FUSE_BITS
00473 address to read the low fuse bits, using boot_lock_fuse_bits_get
00474 */
00475 #define GET_LOW_FUSE_BITS (0x0000)
00476 /** \ingroup avr_boot
00477 \def GET_LOCK_BITS
00478 address to read the lock bits, using boot_lock_fuse_bits_get
00479 */
00480 #define GET_LOCK_BITS (0x0001)
00481 /** \ingroup avr_boot
00482 \def GET_EXTENDED_FUSE_BITS
00483 address to read the extended fuse bits, using boot_lock_fuse_bits_get
00484 */
00485 #define GET_EXTENDED_FUSE_BITS (0x0002)
00486 /** \ingroup avr_boot
00487 \def GET_HIGH_FUSE_BITS
00488 address to read the high fuse bits, using boot_lock_fuse_bits_get
00489 */
00490 #define GET_HIGH_FUSE_BITS (0x0003)
00491
00492 /** \ingroup avr_boot
00493 \def boot_lock_fuse_bits_get(address)
00494
00495 Read the lock or fuse bits at \c address.
00496
00497 Parameter \c address can be any of GET_LOW_FUSE_BITS,
00498 GET_LOCK_BITS, GET_EXTENDED_FUSE_BITS, or GET_HIGH_FUSE_BITS.
00499
00500 \note The lock and fuse bits returned are the physical values,
00501 i.e. a bit returned as 0 means the corresponding fuse or lock bit
00502 is programmed.
00503 */
00504 #define boot_lock_fuse_bits_get(address) \

Generated by Doxygen

23.11 boot.h 339

00505 (__extension__({ \
00506 uint8_t __result; \
00507 __asm__ __volatile__ \
00508 (\
00509 "sts %1, %2\n\t" \
00510 "lpm %0, Z\n\t" \
00511 : "=r" (__result) \
00512 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
00513 "r" ((uint8_t)(__BOOT_LOCK_BITS_SET)), \
00514 "z" ((uint16_t)(address)) \
00515); \
00516 __result; \
00517 }))
00518
00519 #ifndef __DOXYGEN__
00520 # if defined(SIGRD)
00521 # define __BOOT_SIGROW_READ (_BV(__SPM_ENABLE) | _BV(SIGRD))
00522 # elif defined(RSIG)
00523 # define __BOOT_SIGROW_READ (_BV(__SPM_ENABLE) | _BV(RSIG))
00524 # endif
00525 #endif
00526
00527 /** \ingroup avr_boot
00528 \def boot_signature_byte_get(address)
00529
00530 Read the Signature Row byte at \c address. For some MCU types,
00531 this function can also retrieve the factory-stored oscillator
00532 calibration bytes.
00533
00534 Parameter \c address can be 0-0x1f as documented by the datasheet.
00535 \note The values are MCU type dependent.
00536 */
00537
00538 #define boot_signature_byte_get(addr) \
00539 (__extension__({ \
00540 uint8_t __result; \
00541 __asm__ __volatile__ \
00542 (\
00543 "sts %1, %2" "\n\t" \
00544 "lpm %0, Z" \
00545 : "=r" (__result) \
00546 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
00547 "r" ((uint8_t)(__BOOT_SIGROW_READ)), \
00548 "z" ((uint16_t)(addr)) \
00549); \
00550 __result; \
00551 }))
00552
00553 /** \ingroup avr_boot
00554 \def boot_page_fill(address, data)
00555
00556 Fill the bootloader temporary page buffer for flash
00557 address with data word.
00558
00559 \note The address is a byte address. The data is a word. The AVR
00560 writes data to the buffer a word at a time, but addresses the buffer
00561 per byte! So, increment your address by 2 between calls, and send 2
00562 data bytes in a word format! The LSB of the data is written to the lower
00563 address; the MSB of the data is written to the higher address.*/
00564
00565 /** \ingroup avr_boot
00566 \def boot_page_erase(address)
00567
00568 Erase the flash page that contains address.
00569
00570 \note address is a byte address in flash, not a word address. */
00571
00572 /** \ingroup avr_boot
00573 \def boot_page_write(address)
00574
00575 Write the bootloader temporary page buffer
00576 to flash page that contains address.
00577
00578 \note address is a byte address in flash, not a word address. */
00579
00580 /** \ingroup avr_boot
00581 \def boot_rww_enable()
00582
00583 Enable the Read-While-Write memory section. */
00584
00585 /** \ingroup avr_boot
00586 \def boot_lock_bits_set(lock_bits)
00587
00588 Set the bootloader lock bits.
00589
00590 \param lock_bits A mask of which Boot Loader Lock Bits to set.
00591

Generated by Doxygen

340

00592 \note In this context, a ’set bit’ will be written to a zero value.
00593 Note also that only BLBxx bits can be programmed by this command.
00594
00595 For example, to disallow the SPM instruction from writing to the Boot
00596 Loader memory section of flash, you would use this macro as such:
00597
00598 \code
00599 boot_lock_bits_set (_BV (BLB11));
00600 \endcode
00601
00602 \note Like any lock bits, the Boot Loader Lock Bits, once set,
00603 cannot be cleared again except by a chip erase which will in turn
00604 also erase the boot loader itself. */
00605
00606 /* Normal versions of the macros use 16-bit addresses.
00607 Extended versions of the macros use 32-bit addresses.
00608 Alternate versions of the macros use 16-bit addresses and require special
00609 instruction sequences after LPM.
00610
00611 FLASHEND is defined in the ioXXXX.h file.
00612 USHRT_MAX is defined in <limits.h>. */
00613
00614 #if defined(__AVR_ATmega161__) || defined(__AVR_ATmega163__) \
00615 || defined(__AVR_ATmega323__)
00616
00617 /* Alternate: ATmega161/163/323 and 16 bit address */
00618 #define boot_page_fill(address, data) __boot_page_fill_alternate(address, data)
00619 #define boot_page_erase(address) __boot_page_erase_alternate(address)
00620 #define boot_page_write(address) __boot_page_write_alternate(address)
00621 #define boot_rww_enable() __boot_rww_enable_alternate()
00622 #define boot_lock_bits_set(lock_bits) __boot_lock_bits_set_alternate(lock_bits)
00623
00624 #elif (FLASHEND > USHRT_MAX)
00625
00626 /* Extended: >16 bit address */
00627 #define boot_page_fill(address, data) __boot_page_fill_extended(address, data)
00628 #define boot_page_erase(address) __boot_page_erase_extended(address)
00629 #define boot_page_write(address) __boot_page_write_extended(address)
00630 #define boot_rww_enable() __boot_rww_enable()
00631 #define boot_lock_bits_set(lock_bits) __boot_lock_bits_set(lock_bits)
00632
00633 #else
00634
00635 /* Normal: 16 bit address */
00636 #define boot_page_fill(address, data) __boot_page_fill_normal(address, data)
00637 #define boot_page_erase(address) __boot_page_erase_normal(address)
00638 #define boot_page_write(address) __boot_page_write_normal(address)
00639 #define boot_rww_enable() __boot_rww_enable()
00640 #define boot_lock_bits_set(lock_bits) __boot_lock_bits_set(lock_bits)
00641
00642 #endif
00643
00644 /** \ingroup avr_boot
00645
00646 Same as boot_page_fill() except it waits for eeprom and spm operations to
00647 complete before filling the page. */
00648
00649 #define boot_page_fill_safe(address, data) \
00650 do { \
00651 boot_spm_busy_wait(); \
00652 eeprom_busy_wait(); \
00653 boot_page_fill(address, data); \
00654 } while (0)
00655
00656 /** \ingroup avr_boot
00657
00658 Same as boot_page_erase() except it waits for eeprom and spm operations to
00659 complete before erasing the page. */
00660
00661 #define boot_page_erase_safe(address) \
00662 do { \
00663 boot_spm_busy_wait(); \
00664 eeprom_busy_wait(); \
00665 boot_page_erase (address); \
00666 } while (0)
00667
00668 /** \ingroup avr_boot
00669
00670 Same as boot_page_write() except it waits for eeprom and spm operations to
00671 complete before writing the page. */
00672
00673 #define boot_page_write_safe(address) \
00674 do { \
00675 boot_spm_busy_wait(); \
00676 eeprom_busy_wait(); \
00677 boot_page_write (address); \
00678 } while (0)

Generated by Doxygen

23.12 builtins.h File Reference 341

00679
00680 /** \ingroup avr_boot
00681
00682 Same as boot_rww_enable() except waits for eeprom and spm operations to
00683 complete before enabling the RWW mameory. */
00684
00685 #define boot_rww_enable_safe() \
00686 do { \
00687 boot_spm_busy_wait(); \
00688 eeprom_busy_wait(); \
00689 boot_rww_enable(); \
00690 } while (0)
00691
00692 /** \ingroup avr_boot
00693
00694 Same as boot_lock_bits_set() except waits for eeprom and spm operations to
00695 complete before setting the lock bits. */
00696
00697 #define boot_lock_bits_set_safe(lock_bits) \
00698 do { \
00699 boot_spm_busy_wait(); \
00700 eeprom_busy_wait(); \
00701 boot_lock_bits_set (lock_bits); \
00702 } while (0)
00703
00704 #endif /* _AVR_BOOT_H_ */

23.12 builtins.h File Reference

Macros

• #define __HAS_DELAY_CYCLES 1

Functions

• void __builtin_avr_sei (void)
• void __builtin_avr_cli (void)
• void __builtin_avr_sleep (void)
• void __builtin_avr_wdr (void)
• uint8_t __builtin_avr_swap (uint8_t __b)
• uint16_t __builtin_avr_fmul (uint8_t __a, uint8_t __b)
• int16_t __builtin_avr_fmuls (int8_t __a, int8_t __b)
• int16_t __builtin_avr_fmulsu (int8_t __a, uint8_t __b)

23.13 builtins.h

Go to the documentation of this file.
00001 /* Copyright (c) 2008 Anatoly Sokolov
00002 Copyright (c) 2010 Joerg Wunsch
00003 All rights reserved.
00004
00005 Redistribution and use in source and binary forms, with or without
00006 modification, are permitted provided that the following conditions are met:
00007
00008 * Redistributions of source code must retain the above copyright
00009 notice, this list of conditions and the following disclaimer.
00010
00011 * Redistributions in binary form must reproduce the above copyright
00012 notice, this list of conditions and the following disclaimer in
00013 the documentation and/or other materials provided with the
00014 distribution.
00015
00016 * Neither the name of the copyright holders nor the names of
00017 contributors may be used to endorse or promote products derived
00018 from this software without specific prior written permission.
00019
00020 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00021 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

Generated by Doxygen

342

00022 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00023 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00024 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00025 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00026 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00027 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00028 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00029 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00030 POSSIBILITY OF SUCH DAMAGE. */
00031
00032 /* Id */
00033
00034 /*
00035 avr/builtins.h - Intrinsic functions built into the compiler
00036 */
00037
00038 #ifndef _AVR_BUILTINS_H_
00039 #define _AVR_BUILTINS_H_
00040
00041 #ifndef __HAS_DELAY_CYCLES
00042 #define __HAS_DELAY_CYCLES 1
00043 #endif
00044
00045 /* For GCC built-ins, we should not define prototypes,
00046 hence only document that stuff. */
00047 #ifdef __DOXYGEN__
00048
00049 /** \file */
00050 /** \defgroup avr_builtins <avr/builtins.h>: avr-gcc builtins documentation
00051 \code #include <avr/builtins.h> \endcode
00052
00053 \note This file only documents some avr-gcc builtins.
00054 For functions built-in in the compiler, there should be no
00055 prototype declarations.
00056
00057 See also the
00058 <a href="https://gcc.gnu.org/onlinedocs/gcc/AVR-Built-in-Functions.html"
00059 >GCC documentation for a full list of avr-gcc builtins.
00060 */
00061
00062 /**
00063 \ingroup avr_builtins
00064
00065 Enables interrupts by setting the global interrupt mask. */
00066 extern void __builtin_avr_sei(void);
00067
00068 /**
00069 \ingroup avr_builtins
00070
00071 Disables all interrupts by clearing the global interrupt mask. */
00072 extern void __builtin_avr_cli(void);
00073
00074 /**
00075 \ingroup avr_builtins
00076
00077 Emits a \c SLEEP instruction. */
00078
00079 extern void __builtin_avr_sleep(void);
00080
00081 /**
00082 \ingroup avr_builtins
00083
00084 Emits a WDR (watchdog reset) instruction. */
00085 extern void __builtin_avr_wdr(void);
00086
00087 /**
00088 \ingroup avr_builtins
00089
00090 Emits a SWAP (nibble swap) instruction on __b. */
00091 extern uint8_t __builtin_avr_swap(uint8_t __b);
00092
00093 /**
00094 \ingroup avr_builtins
00095
00096 Emits an FMUL (fractional multiply unsigned) instruction. */
00097 extern uint16_t __builtin_avr_fmul(uint8_t __a, uint8_t __b);
00098
00099 /**
00100 \ingroup avr_builtins
00101
00102 Emits an FMUL (fractional multiply signed) instruction. */
00103 extern int16_t __builtin_avr_fmuls(int8_t __a, int8_t __b);
00104
00105 /**
00106 \ingroup avr_builtins
00107
00108 Emits an FMUL (fractional multiply signed with unsigned) instruction. */

Generated by Doxygen

23.14 cpufunc.h File Reference 343

00109 extern int16_t __builtin_avr_fmulsu(int8_t __a, uint8_t __b);
00110
00111 #if __HAS_DELAY_CYCLES
00112 /**
00113 \ingroup avr_builtins
00114
00115 Emits a sequence of instructions causing the CPU to spend
00116 \c __n cycles on it. */
00117 extern void __builtin_avr_delay_cycles(uint32_t __n);
00118 #endif
00119 #endif /* DOXYGEN */
00120 #endif /* _AVR_BUILTINS_H_ */

23.14 cpufunc.h File Reference

Macros

• #define _NOP()
• #define _MemoryBarrier()

Functions

• void ccp_write_io (volatile uint8_t ∗__ioaddr, uint8_t __value)
• void ccp_write_spm (volatile uint8_t ∗__ioaddr, uint8_t __value)

23.15 cpufunc.h

Go to the documentation of this file.
00001 /* Copyright (c) 2010, Joerg Wunsch
00002 All rights reserved.
00003
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions are met:
00006
00007 * Redistributions of source code must retain the above copyright
00008 notice, this list of conditions and the following disclaimer.
00009
00010 * Redistributions in binary form must reproduce the above copyright
00011 notice, this list of conditions and the following disclaimer in
00012 the documentation and/or other materials provided with the
00013 distribution.
00014
00015 * Neither the name of the copyright holders nor the names of
00016 contributors may be used to endorse or promote products derived
00017 from this software without specific prior written permission.
00018
00019 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00020 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00021 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00022 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00023 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00024 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00025 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00026 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00027 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00028 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00029 POSSIBILITY OF SUCH DAMAGE. */
00030
00031 /* Id */
00032
00033 /* avr/cpufunc.h - Special CPU functions */
00034
00035 #ifndef _AVR_CPUFUNC_H_
00036 #define _AVR_CPUFUNC_H_ 1
00037
00038 #include <stdint.h>
00039
00040 /** \file */
00041 /** \defgroup avr_cpufunc <avr/cpufunc.h>: Special AVR CPU functions
00042 \code #include <avr/cpufunc.h> \endcode
00043

Generated by Doxygen

344

00044 This header file contains macros that access special functions of
00045 the AVR CPU which do not fit into any of the other header files.
00046
00047 */
00048
00049 #if defined(__DOXYGEN__)
00050 /**
00051 \ingroup avr_cpufunc
00052 \def _NOP
00053
00054 Execute a <i>no operation</i> (NOP) CPU instruction. This
00055 should not be used to implement delays, better use the functions
00056 from <util/delay_basic.h> or <util/delay.h> for this. For
00057 debugging purposes, a NOP can be useful to have an instruction that
00058 is guaranteed to be not optimized away by the compiler, so it can
00059 always become a breakpoint in the debugger.
00060 */
00061 #define _NOP()
00062 #else /* real code */
00063 #define _NOP() __asm__ __volatile__("nop")
00064 #endif /* __DOXYGEN__ */
00065
00066 #if defined(__DOXYGEN__)
00067 /**
00068 \ingroup avr_cpufunc
00069 \def _MemoryBarrier
00070
00071 Implement a read/write <i>memory barrier</i>. A memory
00072 barrier instructs the compiler to not cache any memory data in
00073 registers beyond the barrier. This can sometimes be more effective
00074 than blocking certain optimizations by declaring some object with a
00075 \c volatile qualifier.
00076
00077 See \ref optim_code_reorder for things to be taken into account
00078 with respect to compiler optimizations.
00079 */
00080 #define _MemoryBarrier()
00081 #else /* real code */
00082 #define _MemoryBarrier() __asm__ __volatile__("":::"memory")
00083 #endif /* __DOXYGEN__ */
00084
00085 #ifdef __cplusplus
00086 extern "C" {
00087 #endif
00088
00089 /**
00090 \ingroup avr_cpufunc
00091
00092 Write \a __value to IO Register Protected (CCP) IO register
00093 at \a __ioaddr. . See also \c _PROTECTED_WRITE(). */
00094 void ccp_write_io (volatile uint8_t *__ioaddr, uint8_t __value);
00095
00096 /**
00097 \ingroup avr_cpufunc
00098
00099 Write \a __value to SPM Instruction Protected (CCP) IO register
00100 at \a __ioaddr. See also \c _PROTECTED_WRITE_SPM(). */
00101 void ccp_write_spm (volatile uint8_t *__ioaddr, uint8_t __value);
00102
00103 #ifdef __cplusplus
00104 }
00105 #endif
00106
00107 #endif /* _AVR_CPUFUNC_H_ */

23.16 eeprom.h
00001 /* Copyright (c) 2002, 2003, 2004, 2007 Marek Michalkiewicz
00002 Copyright (c) 2005, 2006 Bjoern Haase
00003 Copyright (c) 2008 Atmel Corporation
00004 Copyright (c) 2008 Wouter van Gulik
00005 Copyright (c) 2009 Dmitry Xmelkov
00006 All rights reserved.
00007
00008 Redistribution and use in source and binary forms, with or without
00009 modification, are permitted provided that the following conditions are met:
00010
00011 * Redistributions of source code must retain the above copyright
00012 notice, this list of conditions and the following disclaimer.
00013 * Redistributions in binary form must reproduce the above copyright
00014 notice, this list of conditions and the following disclaimer in
00015 the documentation and/or other materials provided with the
00016 distribution.
00017 * Neither the name of the copyright holders nor the names of

Generated by Doxygen

23.16 eeprom.h 345

00018 contributors may be used to endorse or promote products derived
00019 from this software without specific prior written permission.
00020
00021 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00022 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00023 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00024 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00025 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00026 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00027 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00028 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00029 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00030 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00031 POSSIBILITY OF SUCH DAMAGE. */
00032
00033 /* Id */
00034
00035 #ifndef _AVR_EEPROM_H_
00036 #define _AVR_EEPROM_H_ 1
00037
00038 #include <avr/io.h>
00039
00040 #if !E2END && !defined(__DOXYGEN__) && !defined(__COMPILING_AVR_LIBC__)
00041 # warning "Device does not have EEPROM available."
00042 #else
00043
00044 #if defined (EEAR) && !defined (EEARL) && !defined (EEARH)
00045 #define EEARL EEAR
00046 #endif
00047
00048 #ifndef __ASSEMBLER__
00049
00050 #include <stddef.h> /* size_t */
00051 #include <stdint.h>
00052
00053 /** \defgroup avr_eeprom <avr/eeprom.h>: EEPROM handling
00054 \code #include <avr/eeprom.h> \endcode
00055
00056 This header file declares the interface to some simple library
00057 routines suitable for handling the data EEPROM contained in the
00058 AVR microcontrollers. The implementation uses a simple polled
00059 mode interface. Applications that require interrupt-controlled
00060 EEPROM access to ensure that no time will be wasted in spinloops
00061 will have to deploy their own implementation.
00062
00063 \par Notes:
00064
00065 - In addition to the write functions there is a set of update ones.
00066 This functions read each byte first and skip the burning if the
00067 old value is the same with new. The scaning direction is from
00068 high address to low, to obtain quick return in common cases.
00069
00070 - All of the read/write functions first make sure the EEPROM is
00071 ready to be accessed. Since this may cause long delays if a
00072 write operation is still pending, time-critical applications
00073 should first poll the EEPROM e. g. using eeprom_is_ready() before
00074 attempting any actual I/O. But this functions does not wait until
00075 SELFPRGEN in SPMCSR becomes zero. Do this manually, if your
00076 softwate contains the Flash burning.
00077
00078 - As these functions modify IO registers, they are known to be
00079 non-reentrant. If any of these functions are used from both,
00080 standard and interrupt context, the applications must ensure
00081 proper protection (e.g. by disabling interrupts before accessing
00082 them).
00083
00084 - All write functions force erase_and_write programming mode.
00085
00086 - For Xmega the EEPROM start address is 0, like other architectures.
00087 The reading functions add the 0x2000 value to use EEPROM mapping into
00088 data space.
00089 */
00090
00091 #ifdef __cplusplus
00092 extern "C" {
00093 #endif
00094
00095 #ifndef __ATTR_PURE__
00096 # ifdef __DOXYGEN__
00097 # define __ATTR_PURE__
00098 # else
00099 # define __ATTR_PURE__ __attribute__((__pure__))
00100 # endif
00101 #endif
00102
00103 /** \def EEMEM
00104 \ingroup avr_eeprom

Generated by Doxygen

346

00105 Attribute expression causing a variable to be allocated within the
00106 .eeprom section. */
00107 #define EEMEM __attribute__((__section__(".eeprom")))
00108
00109 /** \def eeprom_is_ready
00110 \ingroup avr_eeprom
00111 \returns 1 if EEPROM is ready for a new read/write operation, 0 if not.
00112 */
00113 #if defined (__DOXYGEN__)
00114 # define eeprom_is_ready()
00115 #elif defined (NVM_STATUS)
00116 # define eeprom_is_ready() bit_is_clear (NVM_STATUS, NVM_NVMBUSY_bp)
00117 #elif defined (NVMCTRL_STATUS)
00118 # define eeprom_is_ready() bit_is_clear (NVMCTRL_STATUS, NVMCTRL_EEBUSY_bp)
00119 #elif defined (DEECR)
00120 # define eeprom_is_ready() bit_is_clear (DEECR, BSY)
00121 #elif defined (EEPE)
00122 # define eeprom_is_ready() bit_is_clear (EECR, EEPE)
00123 #else
00124 # define eeprom_is_ready() bit_is_clear (EECR, EEWE)
00125 #endif
00126
00127
00128 /** \def eeprom_busy_wait
00129 \ingroup avr_eeprom
00130 Loops until the eeprom is no longer busy.
00131 \returns Nothing.
00132 */
00133 #define eeprom_busy_wait() do {} while (!eeprom_is_ready())
00134
00135
00136 /** \ingroup avr_eeprom
00137 Read one byte from EEPROM address \a __p.
00138 */
00139 uint8_t eeprom_read_byte (const uint8_t *__p) __ATTR_PURE__;
00140
00141 /** \ingroup avr_eeprom
00142 Read one 16-bit word (little endian) from EEPROM address \a __p.
00143 */
00144 uint16_t eeprom_read_word (const uint16_t *__p) __ATTR_PURE__;
00145
00146 /** \ingroup avr_eeprom
00147 Read one 32-bit double word (little endian) from EEPROM address \a __p.
00148 */
00149 uint32_t eeprom_read_dword (const uint32_t *__p) __ATTR_PURE__;
00150
00151 /** \ingroup avr_eeprom
00152 Read one 64-bit quad word (little endian) from EEPROM address \a __p.
00153 */
00154 #if defined(__DOXYGEN__) || __SIZEOF_LONG_LONG__ == 8
00155 uint64_t eeprom_read_qword (const uint64_t *__p) __ATTR_PURE__;
00156 #endif
00157
00158 /** \ingroup avr_eeprom
00159 Read one float value (little endian) from EEPROM address \a __p.
00160 */
00161 float eeprom_read_float (const float *__p) __ATTR_PURE__;
00162
00163 /** \ingroup avr_eeprom
00164 Read one double value (little endian) from EEPROM address \a __p.
00165 */
00166 #if defined(__DOXYGEN__)
00167 double eeprom_read_double (const double *__p);
00168 #elif __SIZEOF_DOUBLE__ == 4
00169 double eeprom_read_double (const double *__p) __asm("eeprom_read_dword");
00170 #elif __SIZEOF_DOUBLE__ == 8
00171 double eeprom_read_double (const double *__p) __asm("eeprom_read_qword");
00172 #endif
00173
00174 /** \ingroup avr_eeprom
00175 Read one long double value (little endian) from EEPROM address \a __p.
00176 */
00177 #if defined(__DOXYGEN__)
00178 long double eeprom_read_long_double (const long double *__p);
00179 #elif __SIZEOF_LONG_DOUBLE__ == 4
00180 long double eeprom_read_long_double (const long double *__p) __asm("eeprom_read_dword");
00181 #elif __SIZEOF_LONG_DOUBLE__ == 8
00182 long double eeprom_read_long_double (const long double *__p) __asm("eeprom_read_qword");
00183 #endif
00184
00185 /** \ingroup avr_eeprom
00186 Read a block of \a __n bytes from EEPROM address \a __src to SRAM
00187 \a __dst.
00188 */
00189 void eeprom_read_block (void *__dst, const void *__src, size_t __n);
00190
00191

Generated by Doxygen

23.16 eeprom.h 347

00192 /** \ingroup avr_eeprom
00193 Write a byte \a __value to EEPROM address \a __p.
00194 */
00195 void eeprom_write_byte (uint8_t *__p, uint8_t __value);
00196
00197 /** \ingroup avr_eeprom
00198 Write a word \a __value to EEPROM address \a __p.
00199 */
00200 void eeprom_write_word (uint16_t *__p, uint16_t __value);
00201
00202 /** \ingroup avr_eeprom
00203 Write a 32-bit double word \a __value to EEPROM address \a __p.
00204 */
00205 void eeprom_write_dword (uint32_t *__p, uint32_t __value);
00206
00207 /** \ingroup avr_eeprom
00208 Write a 64-bit quad word \a __value to EEPROM address \a __p.
00209 */
00210 #if defined(__DOXYGEN__) || __SIZEOF_LONG_LONG__ == 8
00211 void eeprom_write_qword (uint64_t *__p, uint64_t __value);
00212 #endif
00213
00214 /** \ingroup avr_eeprom
00215 Write a float \a __value to EEPROM address \a __p.
00216 */
00217 void eeprom_write_float (float *__p, float __value);
00218
00219 /** \ingroup avr_eeprom
00220 Write a double \a __value to EEPROM address \a __p.
00221 */
00222 #if defined(__DOXYGEN__)
00223 void eeprom_write_double (double *__p, double __value);
00224 #elif __SIZEOF_DOUBLE__ == 4
00225 void eeprom_write_double (double *__p, double __value) __asm("eeprom_write_dword");
00226 #elif __SIZEOF_DOUBLE__ == 8
00227 void eeprom_write_double (double *__p, double __value) __asm("eeprom_write_qword");
00228 #endif
00229
00230 /** \ingroup avr_eeprom
00231 Write a long double \a __value to EEPROM address \a __p.
00232 */
00233 #if defined(__DOXYGEN__)
00234 void eeprom_write_long_double (long double *__p, long double __value);
00235 #elif __SIZEOF_LONG_DOUBLE__ == 4
00236 void eeprom_write_long_double (long double *__p, long double __value) __asm("eeprom_write_dword");
00237 #elif __SIZEOF_LONG_DOUBLE__ == 8
00238 void eeprom_write_long_double (long double *__p, long double __value) __asm("eeprom_write_qword");
00239 #endif
00240
00241 /** \ingroup avr_eeprom
00242 Write a block of \a __n bytes to EEPROM address \a __dst from \a __src.
00243 \note The argument order is mismatch with common functions like strcpy().
00244 */
00245 void eeprom_write_block (const void *__src, void *__dst, size_t __n);
00246
00247
00248 /** \ingroup avr_eeprom
00249 Update a byte \a __value at EEPROM address \a __p.
00250 */
00251 void eeprom_update_byte (uint8_t *__p, uint8_t __value);
00252
00253 /** \ingroup avr_eeprom
00254 Update a word \a __value at EEPROM address \a __p.
00255 */
00256 void eeprom_update_word (uint16_t *__p, uint16_t __value);
00257
00258 /** \ingroup avr_eeprom
00259 Update a 32-bit double word \a __value at EEPROM address \a __p.
00260 */
00261 void eeprom_update_dword (uint32_t *__p, uint32_t __value);
00262
00263 /** \ingroup avr_eeprom
00264 Update a 64-bit quad word \a __value at EEPROM address \a __p.
00265 */
00266 #if defined(__DOXYGEN__) || __SIZEOF_LONG_LONG__ == 8
00267 void eeprom_update_qword (uint64_t *__p, uint64_t __value);
00268 #endif
00269
00270 /** \ingroup avr_eeprom
00271 Update a float \a __value at EEPROM address \a __p.
00272 */
00273 void eeprom_update_float (float *__p, float __value);
00274
00275 /** \ingroup avr_eeprom
00276 Update a double \a __value at EEPROM address \a __p.
00277 */
00278 #if defined(__DOXYGEN__)

Generated by Doxygen

348

00279 void eeprom_update_double (double *__p, double __value);
00280 #elif __SIZEOF_DOUBLE__ == 4
00281 void eeprom_update_double (double *__p, double __value) __asm("eeprom_update_dword");
00282 #elif __SIZEOF_DOUBLE__ == 8
00283 void eeprom_update_double (double *__p, double __value) __asm("eeprom_update_qword");
00284 #endif
00285
00286 /** \ingroup avr_eeprom
00287 Update a long double \a __value at EEPROM address \a __p.
00288 */
00289 #if defined(__DOXYGEN__)
00290 void eeprom_update_long_double (long double *__p, long double __value);
00291 #elif __SIZEOF_LONG_DOUBLE__ == 4
00292 void eeprom_update_long_double (long double *__p, long double __value) __asm("eeprom_update_dword");
00293 #elif __SIZEOF_LONG_DOUBLE__ == 8
00294 void eeprom_update_long_double (long double *__p, long double __value) __asm("eeprom_update_qword");
00295 #endif
00296
00297 /** \ingroup avr_eeprom
00298 Update a block of \a __n bytes at EEPROM address \a __dst from \a __src.
00299 \note The argument order is mismatch with common functions like strcpy().
00300 */
00301 void eeprom_update_block (const void *__src, void *__dst, size_t __n);
00302
00303
00304 /** \name IAR C compatibility defines */
00305 /**@{*/
00306
00307 /** \def _EEPUT
00308 \ingroup avr_eeprom
00309 Write a byte to EEPROM. Compatibility define for IAR C. */
00310 #define _EEPUT(addr, val) eeprom_write_byte ((uint8_t *)(addr), (uint8_t)(val))
00311
00312 /** \def __EEPUT
00313 \ingroup avr_eeprom
00314 Write a byte to EEPROM. Compatibility define for IAR C. */
00315 #define __EEPUT(addr, val) eeprom_write_byte ((uint8_t *)(addr), (uint8_t)(val))
00316
00317 /** \def _EEGET
00318 \ingroup avr_eeprom
00319 Read a byte from EEPROM. Compatibility define for IAR C. */
00320 #define _EEGET(var, addr) (var) = eeprom_read_byte ((const uint8_t *)(addr))
00321
00322 /** \def __EEGET
00323 \ingroup avr_eeprom
00324 Read a byte from EEPROM. Compatibility define for IAR C. */
00325 #define __EEGET(var, addr) (var) = eeprom_read_byte ((const uint8_t *)(addr))
00326
00327 /**@}*/
00328
00329 #ifdef __cplusplus
00330 }
00331 #endif
00332
00333 #endif /* !__ASSEMBLER__ */
00334 #endif /* E2END || defined(__DOXYGEN__) || defined(__COMPILING_AVR_LIBC__) */
00335 #endif /* !_AVR_EEPROM_H_ */

23.17 fuse.h File Reference

23.18 fuse.h

Go to the documentation of this file.
00001 /* Copyright (c) 2007, Atmel Corporation
00002 All rights reserved.
00003
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions are met:
00006
00007 * Redistributions of source code must retain the above copyright
00008 notice, this list of conditions and the following disclaimer.
00009
00010 * Redistributions in binary form must reproduce the above copyright
00011 notice, this list of conditions and the following disclaimer in
00012 the documentation and/or other materials provided with the
00013 distribution.
00014
00015 * Neither the name of the copyright holders nor the names of
00016 contributors may be used to endorse or promote products derived
00017 from this software without specific prior written permission.

Generated by Doxygen

23.18 fuse.h 349

00018
00019 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00020 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00021 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00022 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00023 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00024 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00025 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00026 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00027 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00028 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00029 POSSIBILITY OF SUCH DAMAGE. */
00030
00031 /* Id */
00032
00033 /* avr/fuse.h - Fuse API */
00034
00035 #ifndef _AVR_FUSE_H_
00036 #define _AVR_FUSE_H_ 1
00037
00038 /* This file must be explicitly included by <avr/io.h>. */
00039 #if !defined(_AVR_IO_H_)
00040 #error "You must #include <avr/io.h> and not <avr/fuse.h> by itself."
00041 #endif
00042
00043
00044 /** \file */
00045 /** \defgroup avr_fuse <avr/fuse.h>: Fuse Support
00046
00047 \par Introduction
00048
00049 The Fuse API allows a user to specify the fuse settings for the specific
00050 AVR device they are compiling for. These fuse settings will be placed
00051 in a special section in the ELF output file, after linking.
00052
00053 Programming tools can take advantage of the fuse information embedded in
00054 the ELF file, by extracting this information and determining if the fuses
00055 need to be programmed before programming the Flash and EEPROM memories.
00056 This also allows a single ELF file to contain all the
00057 information needed to program an AVR.
00058
00059 To use the Fuse API, include the <avr/io.h> header file, which in turn
00060 automatically includes the individual I/O header file and the <avr/fuse.h>
00061 file. These other two files provides everything necessary to set the AVR
00062 fuses.
00063
00064 \par Fuse API
00065
00066 Each I/O header file must define the FUSE_MEMORY_SIZE macro which is
00067 defined to the number of fuse bytes that exist in the AVR device.
00068
00069 A new type, __fuse_t, is defined as a structure. The number of fields in
00070 this structure are determined by the number of fuse bytes in the
00071 FUSE_MEMORY_SIZE macro.
00072
00073 If FUSE_MEMORY_SIZE == 1, there is only a single field: byte, of type
00074 unsigned char.
00075
00076 If FUSE_MEMORY_SIZE == 2, there are two fields: low, and high, of type
00077 unsigned char.
00078
00079 If FUSE_MEMORY_SIZE == 3, there are three fields: low, high, and extended,
00080 of type unsigned char.
00081
00082 If FUSE_MEMORY_SIZE > 3, there is a single field: byte, which is an array
00083 of unsigned char with the size of the array being FUSE_MEMORY_SIZE.
00084
00085 A convenience macro, FUSEMEM, is defined as a GCC attribute for a
00086 custom-named section of ".fuse".
00087
00088 A convenience macro, FUSES, is defined that declares a variable, __fuse, of
00089 type __fuse_t with the attribute defined by FUSEMEM. This variable
00090 allows the end user to easily set the fuse data.
00091
00092 \note If a device-specific I/O header file has previously defined FUSEMEM,
00093 then FUSEMEM is not redefined. If a device-specific I/O header file has
00094 previously defined FUSES, then FUSES is not redefined.
00095
00096 Each AVR device I/O header file has a set of defined macros which specify the
00097 actual fuse bits available on that device. The AVR fuses have inverted
00098 values, logical 1 for an unprogrammed (disabled) bit and logical 0 for a
00099 programmed (enabled) bit. The defined macros for each individual fuse
00100 bit represent this in their definition by a bit-wise inversion of a mask.
00101 For example, the FUSE_EESAVE fuse in the ATmega128 is defined as:
00102 \code
00103 #define FUSE_EESAVE ~_BV(3)
00104 \endcode

Generated by Doxygen

350

00105 \note The _BV macro creates a bit mask from a bit number. It is then
00106 inverted to represent logical values for a fuse memory byte.
00107
00108 To combine the fuse bits macros together to represent a whole fuse byte,
00109 use the bitwise AND operator, like so:
00110 \code
00111 (FUSE_BOOTSZ0 & FUSE_BOOTSZ1 & FUSE_EESAVE & FUSE_SPIEN & FUSE_JTAGEN)
00112 \endcode
00113
00114 Each device I/O header file also defines macros that provide default values
00115 for each fuse byte that is available. LFUSE_DEFAULT is defined for a Low
00116 Fuse byte. HFUSE_DEFAULT is defined for a High Fuse byte. EFUSE_DEFAULT
00117 is defined for an Extended Fuse byte.
00118
00119 If FUSE_MEMORY_SIZE > 3, then the I/O header file defines macros that
00120 provide default values for each fuse byte like so:
00121 FUSE0_DEFAULT
00122 FUSE1_DEFAULT
00123 FUSE2_DEFAULT
00124 FUSE3_DEFAULT
00125 FUSE4_DEFAULT
00126
00127
00128 \par API Usage Example
00129
00130 Putting all of this together is easy. Using C99’s designated initializers:
00131
00132 \code
00133 #include <avr/io.h>
00134
00135 FUSES =
00136 {
00137 .low = LFUSE_DEFAULT,
00138 .high = (FUSE_BOOTSZ0 & FUSE_BOOTSZ1 & FUSE_EESAVE & FUSE_SPIEN & FUSE_JTAGEN),
00139 .extended = EFUSE_DEFAULT,
00140 };
00141
00142 int main(void)
00143 {
00144 return 0;
00145 }
00146 \endcode
00147
00148 Or, using the variable directly instead of the FUSES macro,
00149
00150 \code
00151 #include <avr/io.h>
00152
00153 __fuse_t __fuse __attribute__((section (".fuse"))) =
00154 {
00155 .low = LFUSE_DEFAULT,
00156 .high = (FUSE_BOOTSZ0 & FUSE_BOOTSZ1 & FUSE_EESAVE & FUSE_SPIEN & FUSE_JTAGEN),
00157 .extended = EFUSE_DEFAULT,
00158 };
00159
00160 int main(void)
00161 {
00162 return 0;
00163 }
00164 \endcode
00165
00166 If you are compiling in C++, you cannot use the designated intializers so
00167 you must do:
00168
00169 \code
00170 #include <avr/io.h>
00171
00172 FUSES =
00173 {
00174 LFUSE_DEFAULT, // .low
00175 (FUSE_BOOTSZ0 & FUSE_BOOTSZ1 & FUSE_EESAVE & FUSE_SPIEN & FUSE_JTAGEN), // .high
00176 EFUSE_DEFAULT, // .extended
00177 };
00178
00179 int main(void)
00180 {
00181 return 0;
00182 }
00183 \endcode
00184
00185
00186 However there are a number of caveats that you need to be aware of to
00187 use this API properly.
00188
00189 Be sure to include <avr/io.h> to get all of the definitions for the API.
00190 The FUSES macro defines a global variable to store the fuse data. This
00191 variable is assigned to its own linker section. Assign the desired fuse

Generated by Doxygen

23.18 fuse.h 351

00192 values immediately in the variable initialization.
00193
00194 The .fuse section in the ELF file will get its values from the initial
00195 variable assignment ONLY. This means that you can NOT assign values to
00196 this variable in functions and the new values will not be put into the
00197 ELF .fuse section.
00198
00199 The global variable is declared in the FUSES macro has two leading
00200 underscores, which means that it is reserved for the "implementation",
00201 meaning the library, so it will not conflict with a user-named variable.
00202
00203 You must initialize ALL fields in the __fuse_t structure. This is because
00204 the fuse bits in all bytes default to a logical 1, meaning unprogrammed.
00205 Normal uninitialized data defaults to all locgial zeros. So it is vital that
00206 all fuse bytes are initialized, even with default data. If they are not,
00207 then the fuse bits may not programmed to the desired settings.
00208
00209 Be sure to have the -mmcu=device flag in your compile command line and
00210 your linker command line to have the correct device selected and to have
00211 the correct I/O header file included when you include <avr/io.h>.
00212
00213 You can print out the contents of the .fuse section in the ELF file by
00214 using this command line:
00215 \code
00216 avr-objdump -s -j .fuse <ELF file>
00217 \endcode
00218 The section contents shows the address on the left, then the data going from
00219 lower address to a higher address, left to right.
00220
00221 */
00222
00223 #if !(defined(__ASSEMBLER__) || defined(__DOXYGEN__))
00224
00225 #ifndef FUSEMEM
00226 #define FUSEMEM __attribute__((__used__, __section__ (".fuse")))
00227 #endif
00228
00229 #if FUSE_MEMORY_SIZE > 3
00230
00231 typedef struct
00232 {
00233 unsigned char byte[FUSE_MEMORY_SIZE];
00234 } __fuse_t;
00235
00236
00237 #elif FUSE_MEMORY_SIZE == 3
00238
00239 typedef struct
00240 {
00241 unsigned char low;
00242 unsigned char high;
00243 unsigned char extended;
00244 } __fuse_t;
00245
00246 #elif FUSE_MEMORY_SIZE == 2
00247
00248 typedef struct
00249 {
00250 unsigned char low;
00251 unsigned char high;
00252 } __fuse_t;
00253
00254 #elif FUSE_MEMORY_SIZE == 1
00255
00256 typedef struct
00257 {
00258 unsigned char byte;
00259 } __fuse_t;
00260
00261 #endif
00262
00263 #if !defined(FUSES)
00264 #if defined(__AVR_XMEGA__)
00265 #define FUSES NVM_FUSES_t __fuse FUSEMEM
00266 #else
00267 #define FUSES __fuse_t __fuse FUSEMEM
00268 #endif
00269 #endif
00270
00271
00272 #endif /* !(__ASSEMBLER__ || __DOXYGEN__) */
00273
00274 #endif /* _AVR_FUSE_H_ */

Generated by Doxygen

352

23.19 interrupt.h File Reference

Macros

Global manipulation of the interrupt flag

The global interrupt flag is maintained in the I bit of the status register (SREG).

Handling interrupts frequently requires attention regarding atomic access to objects that could be altered by
code running within an interrupt context, see <util/atomic.h>.

Frequently, interrupts are being disabled for periods of time in order to perform certain operations without be-
ing disturbed; see Problems with reordering code for things to be taken into account with respect to compiler
optimizations.

• #define sei() __asm__ __volatile__ ("sei" ::: "memory")
• #define cli() __asm__ __volatile__ ("cli" ::: "memory")

Macros for writing interrupt handler functions

• #define ISR(vector, attributes)
• #define SIGNAL(vector)
• #define EMPTY_INTERRUPT(vector)
• #define ISR_ALIAS(vector, target_vector)
• #define reti() __asm__ __volatile__ ("reti" ::: "memory")
• #define BADISR_vect

ISR attributes

• #define ISR_BLOCK
• #define ISR_NOBLOCK
• #define ISR_NAKED
• #define ISR_FLATTEN
• #define ISR_NOICF
• #define ISR_NOGCCISR
• #define ISR_ALIASOF(target_vector)

23.20 interrupt.h

Go to the documentation of this file.
00001 /* Copyright (c) 2002,2005,2007 Marek Michalkiewicz
00002 Copyright (c) 2007, Dean Camera
00003
00004 All rights reserved.
00005
00006 Redistribution and use in source and binary forms, with or without
00007 modification, are permitted provided that the following conditions are met:
00008
00009 * Redistributions of source code must retain the above copyright
00010 notice, this list of conditions and the following disclaimer.
00011
00012 * Redistributions in binary form must reproduce the above copyright
00013 notice, this list of conditions and the following disclaimer in
00014 the documentation and/or other materials provided with the
00015 distribution.
00016
00017 * Neither the name of the copyright holders nor the names of
00018 contributors may be used to endorse or promote products derived
00019 from this software without specific prior written permission.
00020
00021 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00022 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00023 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00024 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00025 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00026 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00027 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00028 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

Generated by Doxygen

23.20 interrupt.h 353

00029 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00030 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00031 POSSIBILITY OF SUCH DAMAGE. */
00032
00033 /* Id */
00034
00035 #ifndef _AVR_INTERRUPT_H_
00036 #define _AVR_INTERRUPT_H_
00037
00038 #include <avr/io.h>
00039
00040 #if !defined(__DOXYGEN__) && !defined(__STRINGIFY)
00041 /* Auxiliary macro for ISR_ALIAS(). */
00042 #define __STRINGIFY(x) #x
00043 #endif /* !defined(__DOXYGEN__) */
00044
00045 /** \file */
00046 /**@{*/
00047
00048
00049 /** \name Global manipulation of the interrupt flag
00050
00051 The global interrupt flag is maintained in the I bit of the status
00052 register (SREG).
00053
00054 Handling interrupts frequently requires attention regarding atomic
00055 access to objects that could be altered by code running within an
00056 interrupt context, see <util/atomic.h>.
00057
00058 Frequently, interrupts are being disabled for periods of time in
00059 order to perform certain operations without being disturbed; see
00060 \ref optim_code_reorder for things to be taken into account with
00061 respect to compiler optimizations.
00062 */
00063
00064 /** \def sei()
00065 \ingroup avr_interrupts
00066
00067 Enables interrupts by setting the global interrupt mask. This function
00068 actually compiles into a single line of assembly, so there is no function
00069 call overhead. However, the macro also implies a <i>memory barrier</i>
00070 which can cause additional loss of optimization.
00071
00072 In order to implement atomic access to multi-byte objects,
00073 consider using the macros from <util/atomic.h>, rather than
00074 implementing them manually with cli() and sei().
00075 */
00076 # define sei() __asm__ __volatile__ ("sei" ::: "memory")
00077
00078 /** \def cli()
00079 \ingroup avr_interrupts
00080
00081 Disables all interrupts by clearing the global interrupt mask. This function
00082 actually compiles into a single line of assembly, so there is no function
00083 call overhead. However, the macro also implies a <i>memory barrier</i>
00084 which can cause additional loss of optimization.
00085
00086 In order to implement atomic access to multi-byte objects,
00087 consider using the macros from <util/atomic.h>, rather than
00088 implementing them manually with cli() and sei().
00089 */
00090 # define cli() __asm__ __volatile__ ("cli" ::: "memory")
00091
00092
00093 /** \name Macros for writing interrupt handler functions */
00094
00095
00096 #if defined(__DOXYGEN__)
00097 /** \def ISR(vector [, attributes])
00098 \ingroup avr_interrupts
00099
00100 Introduces an interrupt handler function (interrupt service
00101 routine) that runs with global interrupts initially disabled
00102 by default with no attributes specified.
00103
00104 The attributes are optional and alter the behaviour and resultant
00105 generated code of the interrupt routine. Multiple attributes may
00106 be used for a single function, with a space seperating each
00107 attribute.
00108
00109 Valid attributes are #ISR_BLOCK, #ISR_NOBLOCK, #ISR_NAKED,
00110 #ISR_FLATTEN, #ISR_NOICF, #ISR_NOGCCISR and ISR_ALIASOF(vect).
00111
00112 \c vector must be one of the interrupt vector names that are
00113 valid for the particular MCU type.
00114 */
00115 # define ISR(vector, [attributes])

Generated by Doxygen

354

00116 #else /* real code */
00117
00118 #if (__GNUC__ == 4 && __GNUC_MINOR__ >= 1) || (__GNUC__ > 4)
00119 # define __INTR_ATTRS __used__, __externally_visible__
00120 #else /* GCC < 4.1 */
00121 # define __INTR_ATTRS __used__
00122 #endif
00123
00124 #ifdef __cplusplus
00125 # define ISR(vector, ...) \
00126 extern "C" void vector (void) __attribute__ ((__signal__,__INTR_ATTRS)) __VA_ARGS__; \
00127 void vector (void)
00128 #else
00129 # define ISR(vector, ...) \
00130 void vector (void) __attribute__ ((__signal__,__INTR_ATTRS)) __VA_ARGS__; \
00131 void vector (void)
00132 #endif
00133
00134 #endif /* DOXYGEN */
00135
00136 #if defined(__DOXYGEN__)
00137 /** \def SIGNAL(vector)
00138 \ingroup avr_interrupts
00139
00140 Introduces an interrupt handler function that runs with global interrupts
00141 initially disabled.
00142
00143 This is the same as the ISR macro without optional attributes.
00144 \deprecated Do not use SIGNAL() in new code. Use ISR() instead.
00145 */
00146 # define SIGNAL(vector)
00147 #else /* real code */
00148
00149 #ifdef __cplusplus
00150 # define SIGNAL(vector) \
00151 extern "C" void vector(void) __attribute__ ((__signal__, __INTR_ATTRS)); \
00152 void vector (void)
00153 #else
00154 # define SIGNAL(vector) \
00155 void vector (void) __attribute__ ((__signal__, __INTR_ATTRS)); \
00156 void vector (void)
00157 #endif
00158
00159 #endif /* DOXYGEN */
00160
00161 #if defined(__DOXYGEN__)
00162 /** \def EMPTY_INTERRUPT(vector)
00163 \ingroup avr_interrupts
00164
00165 Defines an empty interrupt handler function. This will not generate
00166 any prolog or epilog code and will only return from the #ISR. Do not
00167 define a function body as this will define it for you.
00168 Example:
00169 \code EMPTY_INTERRUPT(ADC_vect);\endcode */
00170 # define EMPTY_INTERRUPT(vector)
00171 #else /* real code */
00172
00173 #ifdef __cplusplus
00174 # define EMPTY_INTERRUPT(vector) \
00175 extern "C" void vector(void) __attribute__ ((__signal__,__naked__,__INTR_ATTRS)); \
00176 void vector (void) { __asm__ __volatile__ ("reti" ::: "memory"); }
00177 #else
00178 # define EMPTY_INTERRUPT(vector) \
00179 void vector (void) __attribute__ ((__signal__,__naked__,__INTR_ATTRS)); \
00180 void vector (void) { __asm__ __volatile__ ("reti" ::: "memory"); }
00181 #endif
00182
00183 #endif /* DOXYGEN */
00184
00185 #if defined(__DOXYGEN__)
00186 /** \def ISR_ALIAS(vector, target_vector)
00187 \ingroup avr_interrupts
00188
00189 Aliases a given vector to another one in the same manner as the
00190 ISR_ALIASOF attribute for the ISR() macro. Unlike the ISR_ALIASOF
00191 attribute macro however, this is compatible for all versions of
00192 GCC rather than just GCC version 4.2 onwards.
00193
00194 \note This macro creates a trampoline function for the aliased
00195 macro. This will result in a two cycle penalty for the aliased
00196 vector compared to the ISR the vector is aliased to, due to the
00197 JMP/RJMP opcode used.
00198
00199 \deprecated
00200 For new code, the use of ISR(..., ISR_ALIASOF(...)) is
00201 recommended.
00202

Generated by Doxygen

23.20 interrupt.h 355

00203 Example:
00204 \code
00205 ISR(INT0_vect)
00206 {
00207 PORTB = 42;
00208 }
00209
00210 ISR_ALIAS(INT1_vect, INT0_vect);
00211 \endcode
00212
00213 */
00214 # define ISR_ALIAS(vector, target_vector)
00215 #else /* real code */
00216
00217 #ifdef __cplusplus
00218 # define ISR_ALIAS(vector, tgt) extern "C" void vector (void) \
00219 __attribute__((__signal__, __naked__, __INTR_ATTRS)); \
00220 void vector (void) { __asm__ __volatile__ ("%~jmp " __STRINGIFY(tgt) ::); }
00221 #else /* !__cplusplus */
00222 # define ISR_ALIAS(vector, tgt) void vector (void) \
00223 __attribute__((__signal__, __naked__, __INTR_ATTRS)); \
00224 void vector (void) { __asm__ __volatile__ ("%~jmp " __STRINGIFY(tgt) ::); }
00225 #endif /* __cplusplus */
00226
00227 #endif /* DOXYGEN */
00228
00229 /** \def reti()
00230 \ingroup avr_interrupts
00231
00232 Returns from an interrupt routine, enabling global interrupts. This should
00233 be the last command executed before leaving an #ISR defined with the
00234 #ISR_NAKED attribute.
00235
00236 This macro actually compiles into a single line of assembly, so there is
00237 no function call overhead.
00238
00239 \note According to the GCC documentation, the only code supported in
00240 naked functions is \ref inline_asm "inline assembly".
00241 */
00242 # define reti() __asm__ __volatile__ ("reti" ::: "memory")
00243
00244 #if defined(__DOXYGEN__)
00245 /** \def BADISR_vect
00246 \ingroup avr_interrupts
00247
00248 \code #include <avr/interrupt.h> \endcode
00249
00250 This is a vector which is aliased to __vector_default, the vector
00251 executed when an IRQ fires with no accompanying ISR handler. This
00252 may be used along with the ISR() macro to create a catch-all for
00253 undefined but used ISRs for debugging purposes.
00254 */
00255 # define BADISR_vect
00256 #else /* !DOXYGEN */
00257 # define BADISR_vect __vector_default
00258 #endif /* DOXYGEN */
00259
00260 /** \name ISR attributes */
00261
00262 #if defined(__DOXYGEN__)
00263 /** \def ISR_BLOCK
00264 \ingroup avr_interrupts
00265
00266 Identical to an ISR with no attributes specified. Global
00267 interrupts are initially disabled by the AVR hardware when
00268 entering the ISR, without the compiler modifying this state.
00269
00270 Use this attribute in the attributes parameter of the #ISR macro.
00271 */
00272 # define ISR_BLOCK
00273
00274 /** \def ISR_NOBLOCK
00275 \ingroup avr_interrupts
00276
00277 ISR runs with global interrupts initially enabled. The interrupt
00278 enable flag is activated by the compiler as early as possible
00279 within the ISR to ensure minimal processing delay for nested
00280 interrupts.
00281
00282 This may be used to create nested ISRs, however care should be
00283 taken to avoid stack overflows, or to avoid infinitely entering
00284 the ISR for those cases where the AVR hardware does not clear the
00285 respective interrupt flag before entering the ISR.
00286
00287 Use this attribute in the attributes parameter of the #ISR macro.
00288 */
00289 # define ISR_NOBLOCK

Generated by Doxygen

356

00290
00291 /** \def ISR_NAKED
00292 \ingroup avr_interrupts
00293
00294 ISR is created with no prologue or epilogue code. The user code is
00295 responsible for preservation of the machine state including the
00296 SREG register, as well as placing a reti() at the end of the
00297 interrupt routine.
00298
00299 Use this attribute in the attributes parameter of the #ISR macro.
00300
00301 \note According to GCC documentation, the only code supported in
00302 naked functions is \ref inline_asm "inline assembly".
00303 */
00304 # define ISR_NAKED
00305
00306 /** \def ISR_FLATTEN
00307 \ingroup avr_interrupts
00308
00309 The compiler will try to inline all called function into the ISR.
00310 This has an effect with GCC 4.6 and newer only.
00311
00312 Use this attribute in the attributes parameter of the #ISR macro.
00313 */
00314 # define ISR_FLATTEN
00315
00316 /** \def ISR_NOICF
00317 \ingroup avr_interrupts
00318
00319 Avoid identical-code-folding optimization against this ISR.
00320 This has an effect with GCC 5 and newer only.
00321
00322 Use this attribute in the attributes parameter of the #ISR macro.
00323 */
00324 # define ISR_NOICF
00325
00326 /** \def ISR_NOGCCISR
00327 \ingroup avr_interrupts
00328
00329 Do not generate
00330 \c __gcc_isr pseudo

instructions
00331 for this ISR.
00332 This has an effect with
00333 GCC 8
00334 and newer only.
00335
00336 Use this attribute in the attributes parameter of the #ISR macro.
00337 */
00338 # define ISR_NOGCCISR
00339
00340 /** \def ISR_ALIASOF(target_vector)
00341 \ingroup avr_interrupts
00342
00343 The ISR is linked to another ISR, specified by the vect parameter.
00344 This is compatible with GCC 4.2 and greater only.
00345
00346 Use this attribute in the attributes parameter of the #ISR macro.
00347 Example:
00348 \code
00349 ISR (INT0_vect)
00350 {
00351 PORTB = 42;
00352 }
00353
00354 ISR (INT1_vect, ISR_ALIASOF (INT0_vect));
00355 \endcode
00356 */
00357 # define ISR_ALIASOF(target_vector)
00358 #else /* !DOXYGEN */
00359 # define ISR_BLOCK /* empty */
00360 /* FIXME: This won’t work with older versions of avr-gcc as ISR_NOBLOCK
00361 will use ‘signal’ and ‘interrupt’ at the same time. */
00362 # define ISR_NOBLOCK __attribute__((__interrupt__))
00363 # define ISR_NAKED __attribute__((__naked__))
00364
00365 #if (__GNUC__ == 4 && __GNUC_MINOR__ >= 6) || (__GNUC__ >= 5)
00366 # define ISR_FLATTEN __attribute__((__flatten__))
00367 #else
00368 # define ISR_FLATTEN /* empty */
00369 #endif /* has flatten (GCC 4.6+) */
00370
00371 #if defined (__has_attribute)
00372 #if __has_attribute (__no_icf__)
00373 # define ISR_NOICF __attribute__((__no_icf__))
00374 #else
00375 # define ISR_NOICF /* empty */

Generated by Doxygen

23.21 io.h File Reference 357

00376 #endif /* has no_icf */
00377
00378 #if __has_attribute (__no_gccisr__)
00379 # define ISR_NOGCCISR __attribute__((__no_gccisr__))
00380 #else
00381 # define ISR_NOGCCISR /* empty */
00382 #endif /* has no_gccisr */
00383 #endif /* has __has_attribute (GCC 5+) */
00384
00385 # define ISR_ALIASOF(v) __attribute__((__alias__(__STRINGIFY(v))))
00386 #endif /* DOXYGEN */
00387
00388 /**@}*/
00389
00390 #endif

23.21 io.h File Reference

23.22 io.h

Go to the documentation of this file.
00001 /* Copyright (c) 2002,2003,2005,2006,2007 Marek Michalkiewicz, Joerg Wunsch
00002 Copyright (c) 2007 Eric B. Weddington
00003 All rights reserved.
00004
00005 Redistribution and use in source and binary forms, with or without
00006 modification, are permitted provided that the following conditions are met:
00007
00008 * Redistributions of source code must retain the above copyright
00009 notice, this list of conditions and the following disclaimer.
00010
00011 * Redistributions in binary form must reproduce the above copyright
00012 notice, this list of conditions and the following disclaimer in
00013 the documentation and/or other materials provided with the
00014 distribution.
00015
00016 * Neither the name of the copyright holders nor the names of
00017 contributors may be used to endorse or promote products derived
00018 from this software without specific prior written permission.
00019
00020 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00021 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00022 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00023 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00024 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00025 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00026 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00027 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00028 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00029 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00030 POSSIBILITY OF SUCH DAMAGE. */
00031
00032 /* Id */
00033
00034 /** \file */
00035 /** \defgroup avr_io <avr/io.h>: AVR device-specific IO definitions
00036 \code #include <avr/io.h> \endcode
00037
00038 This header file includes the apropriate IO definitions for the
00039 device that has been specified by the <tt>-mmcu=</tt> compiler
00040 command-line switch. This is done by diverting to the appropriate
00041 file <tt><avr/io</tt>XXXX<tt>.h></tt> which should
00042 never be included directly. Some register names common to all
00043 AVR devices are defined directly within <tt><avr/common.h></tt>,
00044 which is included in <tt><avr/io.h></tt>,
00045 but most of the details come from the respective include file.
00046
00047 Note that this file always includes the following files:
00048 \code
00049 #include <avr/sfr_defs.h>
00050 #include <avr/portpins.h>
00051 #include <avr/common.h>
00052 #include <avr/version.h>
00053 \endcode
00054 See \ref avr_sfr for more details about that header file.
00055
00056 Included are definitions of the IO register set and their
00057 respective bit values as specified in the Atmel documentation.
00058 Note that inconsistencies in naming conventions,
00059 so even identical functions sometimes get different names on

Generated by Doxygen

358

00060 different devices.
00061
00062 Also included are the specific names useable for interrupt
00063 function definitions as documented
00064 \ref avr_signames "here".
00065
00066 Finally, the following macros are defined:
00067
00068 - \b RAMEND
00069

00070 The last on-chip RAM address.
00071

00072 - \b XRAMEND
00073

00074 The last possible RAM location that is addressable. This is equal to
00075 RAMEND for devices that do not allow for external RAM. For devices
00076 that allow external RAM, this will be larger than RAMEND.
00077

00078 - \b E2END
00079

00080 The last EEPROM address.
00081

00082 - \b FLASHEND
00083

00084 The last byte address in the Flash program space.
00085

00086 - \b SPM_PAGESIZE
00087

00088 For devices with bootloader support, the flash pagesize
00089 (in bytes) to be used for the \c SPM instruction.
00090 - \b E2PAGESIZE
00091

00092 The size of the EEPROM page.
00093
00094 */
00095
00096 #ifndef _AVR_IO_H_
00097 #define _AVR_IO_H_
00098
00099 #include <avr/sfr_defs.h>
00100
00101 #if defined (__AVR_AT94K__)
00102 # include <avr/ioat94k.h>
00103 #elif defined (__AVR_AT43USB320__)
00104 # include <avr/io43u32x.h>
00105 #elif defined (__AVR_AT43USB355__)
00106 # include <avr/io43u35x.h>
00107 #elif defined (__AVR_AT76C711__)
00108 # include <avr/io76c711.h>
00109 #elif defined (__AVR_AT86RF401__)
00110 # include <avr/io86r401.h>
00111 #elif defined (__AVR_AT90PWM1__)
00112 # include <avr/io90pwm1.h>
00113 #elif defined (__AVR_AT90PWM2__)
00114 # include <avr/io90pwmx.h>
00115 #elif defined (__AVR_AT90PWM2B__)
00116 # include <avr/io90pwm2b.h>
00117 #elif defined (__AVR_AT90PWM3__)
00118 # include <avr/io90pwmx.h>
00119 #elif defined (__AVR_AT90PWM3B__)
00120 # include <avr/io90pwm3b.h>
00121 #elif defined (__AVR_AT90PWM216__)
00122 # include <avr/io90pwm216.h>
00123 #elif defined (__AVR_AT90PWM316__)
00124 # include <avr/io90pwm316.h>
00125 #elif defined (__AVR_AT90PWM161__)
00126 # include <avr/io90pwm161.h>
00127 #elif defined (__AVR_AT90PWM81__)
00128 # include <avr/io90pwm81.h>
00129 #elif defined (__AVR_ATmega8U2__)
00130 # include <avr/iom8u2.h>
00131 #elif defined (__AVR_ATmega16M1__)
00132 # include <avr/iom16m1.h>
00133 #elif defined (__AVR_ATmega16U2__)
00134 # include <avr/iom16u2.h>
00135 #elif defined (__AVR_ATmega16U4__)
00136 # include <avr/iom16u4.h>
00137 #elif defined (__AVR_ATmega32C1__)
00138 # include <avr/iom32c1.h>
00139 #elif defined (__AVR_ATmega32M1__)
00140 # include <avr/iom32m1.h>
00141 #elif defined (__AVR_ATmega32U2__)
00142 # include <avr/iom32u2.h>
00143 #elif defined (__AVR_ATmega32U4__)
00144 # include <avr/iom32u4.h>
00145 #elif defined (__AVR_ATmega32U6__)
00146 # include <avr/iom32u6.h>

Generated by Doxygen

23.22 io.h 359

00147 #elif defined (__AVR_ATmega64C1__)
00148 # include <avr/iom64c1.h>
00149 #elif defined (__AVR_ATmega64M1__)
00150 # include <avr/iom64m1.h>
00151 #elif defined (__AVR_ATmega128__)
00152 # include <avr/iom128.h>
00153 #elif defined (__AVR_ATmega128A__)
00154 # include <avr/iom128a.h>
00155 #elif defined (__AVR_ATmega1280__)
00156 # include <avr/iom1280.h>
00157 #elif defined (__AVR_ATmega1281__)
00158 # include <avr/iom1281.h>
00159 #elif defined (__AVR_ATmega1284__)
00160 # include <avr/iom1284.h>
00161 #elif defined (__AVR_ATmega1284P__)
00162 # include <avr/iom1284p.h>
00163 #elif defined (__AVR_ATmega128RFA1__)
00164 # include <avr/iom128rfa1.h>
00165 #elif defined (__AVR_ATmega1284RFR2__)
00166 # include <avr/iom1284rfr2.h>
00167 #elif defined (__AVR_ATmega128RFR2__)
00168 # include <avr/iom128rfr2.h>
00169 #elif defined (__AVR_ATmega2564RFR2__)
00170 # include <avr/iom2564rfr2.h>
00171 #elif defined (__AVR_ATmega256RFR2__)
00172 # include <avr/iom256rfr2.h>
00173 #elif defined (__AVR_ATmega2560__)
00174 # include <avr/iom2560.h>
00175 #elif defined (__AVR_ATmega2561__)
00176 # include <avr/iom2561.h>
00177 #elif defined (__AVR_AT90CAN32__)
00178 # include <avr/iocan32.h>
00179 #elif defined (__AVR_AT90CAN64__)
00180 # include <avr/iocan64.h>
00181 #elif defined (__AVR_AT90CAN128__)
00182 # include <avr/iocan128.h>
00183 #elif defined (__AVR_AT90USB82__)
00184 # include <avr/iousb82.h>
00185 #elif defined (__AVR_AT90USB162__)
00186 # include <avr/iousb162.h>
00187 #elif defined (__AVR_AT90USB646__)
00188 # include <avr/iousb646.h>
00189 #elif defined (__AVR_AT90USB647__)
00190 # include <avr/iousb647.h>
00191 #elif defined (__AVR_AT90USB1286__)
00192 # include <avr/iousb1286.h>
00193 #elif defined (__AVR_AT90USB1287__)
00194 # include <avr/iousb1287.h>
00195 #elif defined (__AVR_ATmega644RFR2__)
00196 # include <avr/iom644rfr2.h>
00197 #elif defined (__AVR_ATmega64RFR2__)
00198 # include <avr/iom64rfr2.h>
00199 #elif defined (__AVR_ATmega64__)
00200 # include <avr/iom64.h>
00201 #elif defined (__AVR_ATmega64A__)
00202 # include <avr/iom64a.h>
00203 #elif defined (__AVR_ATmega640__)
00204 # include <avr/iom640.h>
00205 #elif defined (__AVR_ATmega644__)
00206 # include <avr/iom644.h>
00207 #elif defined (__AVR_ATmega644A__)
00208 # include <avr/iom644a.h>
00209 #elif defined (__AVR_ATmega644P__)
00210 # include <avr/iom644p.h>
00211 #elif defined (__AVR_ATmega644PA__)
00212 # include <avr/iom644pa.h>
00213 #elif defined (__AVR_ATmega645__) || defined (__AVR_ATmega645A__) || defined (__AVR_ATmega645P__)
00214 # include <avr/iom645.h>
00215 #elif defined (__AVR_ATmega6450__) || defined (__AVR_ATmega6450A__) || defined (__AVR_ATmega6450P__)
00216 # include <avr/iom6450.h>
00217 #elif defined (__AVR_ATmega649__) || defined (__AVR_ATmega649A__)
00218 # include <avr/iom649.h>
00219 #elif defined (__AVR_ATmega6490__) || defined (__AVR_ATmega6490A__) || defined (__AVR_ATmega6490P__)
00220 # include <avr/iom6490.h>
00221 #elif defined (__AVR_ATmega649P__)
00222 # include <avr/iom649p.h>
00223 #elif defined (__AVR_ATmega64HVE__)
00224 # include <avr/iom64hve.h>
00225 #elif defined (__AVR_ATmega64HVE2__)
00226 # include <avr/iom64hve2.h>
00227 #elif defined (__AVR_ATmega103__)
00228 # include <avr/iom103.h>
00229 #elif defined (__AVR_ATmega32__)
00230 # include <avr/iom32.h>
00231 #elif defined (__AVR_ATmega32A__)
00232 # include <avr/iom32a.h>
00233 #elif defined (__AVR_ATmega323__)

Generated by Doxygen

360

00234 # include <avr/iom323.h>
00235 #elif defined (__AVR_ATmega324P__) || defined (__AVR_ATmega324A__)
00236 # include <avr/iom324.h>
00237 #elif defined (__AVR_ATmega324PA__)
00238 # include <avr/iom324pa.h>
00239 #elif defined (__AVR_ATmega324PB__)
00240 # include <avr/iom324pb.h>
00241 #elif defined (__AVR_ATmega325__) || defined (__AVR_ATmega325A__)
00242 # include <avr/iom325.h>
00243 #elif defined (__AVR_ATmega325P__)
00244 # include <avr/iom325.h>
00245 #elif defined (__AVR_ATmega325PA__)
00246 # include <avr/iom325pa.h>
00247 #elif defined (__AVR_ATmega3250__) || defined (__AVR_ATmega3250A__)
00248 # include <avr/iom3250.h>
00249 #elif defined (__AVR_ATmega3250P__)
00250 # include <avr/iom3250.h>
00251 #elif defined (__AVR_ATmega3250PA__)
00252 # include <avr/iom3250pa.h>
00253 #elif defined (__AVR_ATmega328P__) || defined (__AVR_ATmega328__)
00254 # include <avr/iom328p.h>
00255 #elif defined (__AVR_ATmega328PB__)
00256 # include <avr/iom328pb.h>
00257 #elif defined (__AVR_ATmega329__) || defined (__AVR_ATmega329A__)
00258 # include <avr/iom329.h>
00259 #elif defined (__AVR_ATmega329P__) || defined (__AVR_ATmega329PA__)
00260 # include <avr/iom329.h>
00261 #elif defined (__AVR_ATmega3290__) || defined (__AVR_ATmega3290A__)
00262 # include <avr/iom3290.h>
00263 #elif defined (__AVR_ATmega3290P__)
00264 # include <avr/iom3290.h>
00265 #elif defined (__AVR_ATmega3290PA__)
00266 # include <avr/iom3290pa.h>
00267 #elif defined (__AVR_ATmega32HVB__)
00268 # include <avr/iom32hvb.h>
00269 #elif defined (__AVR_ATmega32HVBREVB__)
00270 # include <avr/iom32hvbrevb.h>
00271 #elif defined (__AVR_ATmega406__)
00272 # include <avr/iom406.h>
00273 #elif defined (__AVR_ATmega16__)
00274 # include <avr/iom16.h>
00275 #elif defined (__AVR_ATmega16A__)
00276 # include <avr/iom16a.h>
00277 #elif defined (__AVR_ATmega161__)
00278 # include <avr/iom161.h>
00279 #elif defined (__AVR_ATmega162__)
00280 # include <avr/iom162.h>
00281 #elif defined (__AVR_ATmega163__)
00282 # include <avr/iom163.h>
00283 #elif defined (__AVR_ATmega164P__) || defined (__AVR_ATmega164A__)
00284 # include <avr/iom164.h>
00285 #elif defined (__AVR_ATmega164PA__)
00286 # include <avr/iom164pa.h>
00287 #elif defined (__AVR_ATmega165__)
00288 # include <avr/iom165.h>
00289 #elif defined (__AVR_ATmega165A__)
00290 # include <avr/iom165a.h>
00291 #elif defined (__AVR_ATmega165P__)
00292 # include <avr/iom165p.h>
00293 #elif defined (__AVR_ATmega165PA__)
00294 # include <avr/iom165pa.h>
00295 #elif defined (__AVR_ATmega168__)
00296 # include <avr/iom168.h>
00297 #elif defined (__AVR_ATmega168A__)
00298 # include <avr/iom168a.h>
00299 #elif defined (__AVR_ATmega168P__)
00300 # include <avr/iom168p.h>
00301 #elif defined (__AVR_ATmega168PA__)
00302 # include <avr/iom168pa.h>
00303 #elif defined (__AVR_ATmega168PB__)
00304 # include <avr/iom168pb.h>
00305 #elif defined (__AVR_ATmega169__) || defined (__AVR_ATmega169A__)
00306 # include <avr/iom169.h>
00307 #elif defined (__AVR_ATmega169P__)
00308 # include <avr/iom169p.h>
00309 #elif defined (__AVR_ATmega169PA__)
00310 # include <avr/iom169pa.h>
00311 #elif defined (__AVR_ATmega8HVA__)
00312 # include <avr/iom8hva.h>
00313 #elif defined (__AVR_ATmega16HVA__)
00314 # include <avr/iom16hva.h>
00315 #elif defined (__AVR_ATmega16HVA2__)
00316 # include <avr/iom16hva2.h>
00317 #elif defined (__AVR_ATmega16HVB__)
00318 # include <avr/iom16hvb.h>
00319 #elif defined (__AVR_ATmega16HVBREVB__)
00320 # include <avr/iom16hvbrevb.h>

Generated by Doxygen

23.22 io.h 361

00321 #elif defined (__AVR_ATmega8__)
00322 # include <avr/iom8.h>
00323 #elif defined (__AVR_ATmega8A__)
00324 # include <avr/iom8a.h>
00325 #elif defined (__AVR_ATmega48__)
00326 # include <avr/iom48.h>
00327 #elif defined (__AVR_ATmega48A__)
00328 # include <avr/iom48a.h>
00329 #elif defined (__AVR_ATmega48PA__)
00330 # include <avr/iom48pa.h>
00331 #elif defined (__AVR_ATmega48PB__)
00332 # include <avr/iom48pb.h>
00333 #elif defined (__AVR_ATmega48P__)
00334 # include <avr/iom48p.h>
00335 #elif defined (__AVR_ATmega88__)
00336 # include <avr/iom88.h>
00337 #elif defined (__AVR_ATmega88A__)
00338 # include <avr/iom88a.h>
00339 #elif defined (__AVR_ATmega88P__)
00340 # include <avr/iom88p.h>
00341 #elif defined (__AVR_ATmega88PA__)
00342 # include <avr/iom88pa.h>
00343 #elif defined (__AVR_ATmega88PB__)
00344 # include <avr/iom88pb.h>
00345 #elif defined (__AVR_ATmega8515__)
00346 # include <avr/iom8515.h>
00347 #elif defined (__AVR_ATmega8535__)
00348 # include <avr/iom8535.h>
00349 #elif defined (__AVR_AT90S8535__)
00350 # include <avr/io8535.h>
00351 #elif defined (__AVR_AT90C8534__)
00352 # include <avr/io8534.h>
00353 #elif defined (__AVR_AT90S8515__)
00354 # include <avr/io8515.h>
00355 #elif defined (__AVR_AT90S4434__)
00356 # include <avr/io4434.h>
00357 #elif defined (__AVR_AT90S4433__)
00358 # include <avr/io4433.h>
00359 #elif defined (__AVR_AT90S4414__)
00360 # include <avr/io4414.h>
00361 #elif defined (__AVR_ATtiny22__)
00362 # include <avr/iotn22.h>
00363 #elif defined (__AVR_ATtiny26__)
00364 # include <avr/iotn26.h>
00365 #elif defined (__AVR_AT90S2343__)
00366 # include <avr/io2343.h>
00367 #elif defined (__AVR_AT90S2333__)
00368 # include <avr/io2333.h>
00369 #elif defined (__AVR_AT90S2323__)
00370 # include <avr/io2323.h>
00371 #elif defined (__AVR_AT90S2313__)
00372 # include <avr/io2313.h>
00373 #elif defined (__AVR_ATtiny4__)
00374 # include <avr/iotn4.h>
00375 #elif defined (__AVR_ATtiny5__)
00376 # include <avr/iotn5.h>
00377 #elif defined (__AVR_ATtiny9__)
00378 # include <avr/iotn9.h>
00379 #elif defined (__AVR_ATtiny10__)
00380 # include <avr/iotn10.h>
00381 #elif defined (__AVR_ATtiny102__)
00382 # include <avr/iotn102.h>
00383 #elif defined (__AVR_ATtiny104__)
00384 # include <avr/iotn104.h>
00385 #elif defined (__AVR_ATtiny20__)
00386 # include <avr/iotn20.h>
00387 #elif defined (__AVR_ATtiny40__)
00388 # include <avr/iotn40.h>
00389 #elif defined (__AVR_ATtiny2313__)
00390 # include <avr/iotn2313.h>
00391 #elif defined (__AVR_ATtiny2313A__)
00392 # include <avr/iotn2313a.h>
00393 #elif defined (__AVR_ATtiny13__)
00394 # include <avr/iotn13.h>
00395 #elif defined (__AVR_ATtiny13A__)
00396 # include <avr/iotn13a.h>
00397 #elif defined (__AVR_ATtiny25__)
00398 # include <avr/iotn25.h>
00399 #elif defined (__AVR_ATtiny4313__)
00400 # include <avr/iotn4313.h>
00401 #elif defined (__AVR_ATtiny45__)
00402 # include <avr/iotn45.h>
00403 #elif defined (__AVR_ATtiny85__)
00404 # include <avr/iotn85.h>
00405 #elif defined (__AVR_ATtiny24__)
00406 # include <avr/iotn24.h>
00407 #elif defined (__AVR_ATtiny24A__)

Generated by Doxygen

362

00408 # include <avr/iotn24a.h>
00409 #elif defined (__AVR_ATtiny44__)
00410 # include <avr/iotn44.h>
00411 #elif defined (__AVR_ATtiny44A__)
00412 # include <avr/iotn44a.h>
00413 #elif defined (__AVR_ATtiny441__)
00414 # include <avr/iotn441.h>
00415 #elif defined (__AVR_ATtiny84__)
00416 # include <avr/iotn84.h>
00417 #elif defined (__AVR_ATtiny84A__)
00418 # include <avr/iotn84a.h>
00419 #elif defined (__AVR_ATtiny841__)
00420 # include <avr/iotn841.h>
00421 #elif defined (__AVR_ATtiny261__)
00422 # include <avr/iotn261.h>
00423 #elif defined (__AVR_ATtiny261A__)
00424 # include <avr/iotn261a.h>
00425 #elif defined (__AVR_ATtiny461__)
00426 # include <avr/iotn461.h>
00427 #elif defined (__AVR_ATtiny461A__)
00428 # include <avr/iotn461a.h>
00429 #elif defined (__AVR_ATtiny861__)
00430 # include <avr/iotn861.h>
00431 #elif defined (__AVR_ATtiny861A__)
00432 # include <avr/iotn861a.h>
00433 #elif defined (__AVR_ATtiny43U__)
00434 # include <avr/iotn43u.h>
00435 #elif defined (__AVR_ATtiny48__)
00436 # include <avr/iotn48.h>
00437 #elif defined (__AVR_ATtiny88__)
00438 # include <avr/iotn88.h>
00439 #elif defined (__AVR_ATtiny828__)
00440 # include <avr/iotn828.h>
00441 #elif defined (__AVR_ATtiny87__)
00442 # include <avr/iotn87.h>
00443 #elif defined (__AVR_ATtiny167__)
00444 # include <avr/iotn167.h>
00445 #elif defined (__AVR_ATtiny1634__)
00446 # include <avr/iotn1634.h>
00447 #elif defined (__AVR_ATtiny202__)
00448 # include <avr/iotn202.h>
00449 #elif defined (__AVR_ATtiny204__)
00450 # include <avr/iotn204.h>
00451 #elif defined (__AVR_ATtiny212__)
00452 # include <avr/iotn212.h>
00453 #elif defined (__AVR_ATtiny214__)
00454 # include <avr/iotn214.h>
00455 #elif defined (__AVR_ATtiny402__)
00456 # include <avr/iotn402.h>
00457 #elif defined (__AVR_ATtiny404__)
00458 # include <avr/iotn404.h>
00459 #elif defined (__AVR_ATtiny406__)
00460 # include <avr/iotn406.h>
00461 #elif defined (__AVR_ATtiny412__)
00462 # include <avr/iotn412.h>
00463 #elif defined (__AVR_ATtiny414__)
00464 # include <avr/iotn414.h>
00465 #elif defined (__AVR_ATtiny416__)
00466 # include <avr/iotn416.h>
00467 #elif defined (__AVR_ATtiny417__)
00468 # include <avr/iotn417.h>
00469 #elif defined (__AVR_ATtiny424__)
00470 # include <avr/iotn424.h>
00471 #elif defined (__AVR_ATtiny426__)
00472 # include <avr/iotn426.h>
00473 #elif defined (__AVR_ATtiny427__)
00474 # include <avr/iotn427.h>
00475 #elif defined (__AVR_ATtiny804__)
00476 # include <avr/iotn804.h>
00477 #elif defined (__AVR_ATtiny806__)
00478 # include <avr/iotn806.h>
00479 #elif defined (__AVR_ATtiny807__)
00480 # include <avr/iotn807.h>
00481 #elif defined (__AVR_ATtiny814__)
00482 # include <avr/iotn814.h>
00483 #elif defined (__AVR_ATtiny816__)
00484 # include <avr/iotn816.h>
00485 #elif defined (__AVR_ATtiny817__)
00486 # include <avr/iotn817.h>
00487 #elif defined (__AVR_ATtiny824__)
00488 # include <avr/iotn824.h>
00489 #elif defined (__AVR_ATtiny826__)
00490 # include <avr/iotn826.h>
00491 #elif defined (__AVR_ATtiny827__)
00492 # include <avr/iotn827.h>
00493 #elif defined (__AVR_ATtiny1604__)
00494 # include <avr/iotn1604.h>

Generated by Doxygen

23.22 io.h 363

00495 #elif defined (__AVR_ATtiny1606__)
00496 # include <avr/iotn1606.h>
00497 #elif defined (__AVR_ATtiny1607__)
00498 # include <avr/iotn1607.h>
00499 #elif defined (__AVR_ATtiny1614__)
00500 # include <avr/iotn1614.h>
00501 #elif defined (__AVR_ATtiny1616__)
00502 # include <avr/iotn1616.h>
00503 #elif defined (__AVR_ATtiny1617__)
00504 # include <avr/iotn1617.h>
00505 #elif defined (__AVR_ATtiny1624__)
00506 # include <avr/iotn1624.h>
00507 #elif defined (__AVR_ATtiny1626__)
00508 # include <avr/iotn1626.h>
00509 #elif defined (__AVR_ATtiny1627__)
00510 # include <avr/iotn1627.h>
00511 #elif defined (__AVR_ATtiny3214__)
00512 # include <avr/iotn3214.h>
00513 #elif defined (__AVR_ATtiny3216__)
00514 # include <avr/iotn3216.h>
00515 #elif defined (__AVR_ATtiny3217__)
00516 # include <avr/iotn3217.h>
00517 #elif defined (__AVR_ATtiny3224__)
00518 # include <avr/iotn3224.h>
00519 #elif defined (__AVR_ATtiny3226__)
00520 # include <avr/iotn3226.h>
00521 #elif defined (__AVR_ATtiny3227__)
00522 # include <avr/iotn3227.h>
00523 #elif defined (__AVR_ATmega808__)
00524 # include <avr/iom808.h>
00525 #elif defined (__AVR_ATmega809__)
00526 # include <avr/iom809.h>
00527 #elif defined (__AVR_ATmega1608__)
00528 # include <avr/iom1608.h>
00529 #elif defined (__AVR_ATmega1609__)
00530 # include <avr/iom1609.h>
00531 #elif defined (__AVR_ATmega3208__)
00532 # include <avr/iom3208.h>
00533 #elif defined (__AVR_ATmega3209__)
00534 # include <avr/iom3209.h>
00535 #elif defined (__AVR_ATmega4808__)
00536 # include <avr/iom4808.h>
00537 #elif defined (__AVR_ATmega4809__)
00538 # include <avr/iom4809.h>
00539 #elif defined (__AVR_AT90SCR100__)
00540 # include <avr/io90scr100.h>
00541 #elif defined (__AVR_ATxmega8E5__)
00542 # include <avr/iox8e5.h>
00543 #elif defined (__AVR_ATxmega16A4__)
00544 # include <avr/iox16a4.h>
00545 #elif defined (__AVR_ATxmega16A4U__)
00546 # include <avr/iox16a4u.h>
00547 #elif defined (__AVR_ATxmega16C4__)
00548 # include <avr/iox16c4.h>
00549 #elif defined (__AVR_ATxmega16D4__)
00550 # include <avr/iox16d4.h>
00551 #elif defined (__AVR_ATxmega32A4__)
00552 # include <avr/iox32a4.h>
00553 #elif defined (__AVR_ATxmega32A4U__)
00554 # include <avr/iox32a4u.h>
00555 #elif defined (__AVR_ATxmega32C3__)
00556 # include <avr/iox32c3.h>
00557 #elif defined (__AVR_ATxmega32C4__)
00558 # include <avr/iox32c4.h>
00559 #elif defined (__AVR_ATxmega32D3__)
00560 # include <avr/iox32d3.h>
00561 #elif defined (__AVR_ATxmega32D4__)
00562 # include <avr/iox32d4.h>
00563 #elif defined (__AVR_ATxmega32E5__)
00564 # include <avr/iox32e5.h>
00565 #elif defined (__AVR_ATxmega64A1__)
00566 # include <avr/iox64a1.h>
00567 #elif defined (__AVR_ATxmega64A1U__)
00568 # include <avr/iox64a1u.h>
00569 #elif defined (__AVR_ATxmega64A3__)
00570 # include <avr/iox64a3.h>
00571 #elif defined (__AVR_ATxmega64A3U__)
00572 # include <avr/iox64a3u.h>
00573 #elif defined (__AVR_ATxmega64A4U__)
00574 # include <avr/iox64a4u.h>
00575 #elif defined (__AVR_ATxmega64B1__)
00576 # include <avr/iox64b1.h>
00577 #elif defined (__AVR_ATxmega64B3__)
00578 # include <avr/iox64b3.h>
00579 #elif defined (__AVR_ATxmega64C3__)
00580 # include <avr/iox64c3.h>
00581 #elif defined (__AVR_ATxmega64D3__)

Generated by Doxygen

364

00582 # include <avr/iox64d3.h>
00583 #elif defined (__AVR_ATxmega64D4__)
00584 # include <avr/iox64d4.h>
00585 #elif defined (__AVR_ATxmega128A1__)
00586 # include <avr/iox128a1.h>
00587 #elif defined (__AVR_ATxmega128A1U__)
00588 # include <avr/iox128a1u.h>
00589 #elif defined (__AVR_ATxmega128A4U__)
00590 # include <avr/iox128a4u.h>
00591 #elif defined (__AVR_ATxmega128A3__)
00592 # include <avr/iox128a3.h>
00593 #elif defined (__AVR_ATxmega128A3U__)
00594 # include <avr/iox128a3u.h>
00595 #elif defined (__AVR_ATxmega128B1__)
00596 # include <avr/iox128b1.h>
00597 #elif defined (__AVR_ATxmega128B3__)
00598 # include <avr/iox128b3.h>
00599 #elif defined (__AVR_ATxmega128C3__)
00600 # include <avr/iox128c3.h>
00601 #elif defined (__AVR_ATxmega128D3__)
00602 # include <avr/iox128d3.h>
00603 #elif defined (__AVR_ATxmega128D4__)
00604 # include <avr/iox128d4.h>
00605 #elif defined (__AVR_ATxmega192A3__)
00606 # include <avr/iox192a3.h>
00607 #elif defined (__AVR_ATxmega192A3U__)
00608 # include <avr/iox192a3u.h>
00609 #elif defined (__AVR_ATxmega192C3__)
00610 # include <avr/iox192c3.h>
00611 #elif defined (__AVR_ATxmega192D3__)
00612 # include <avr/iox192d3.h>
00613 #elif defined (__AVR_ATxmega256A3__)
00614 # include <avr/iox256a3.h>
00615 #elif defined (__AVR_ATxmega256A3U__)
00616 # include <avr/iox256a3u.h>
00617 #elif defined (__AVR_ATxmega256A3B__)
00618 # include <avr/iox256a3b.h>
00619 #elif defined (__AVR_ATxmega256A3BU__)
00620 # include <avr/iox256a3bu.h>
00621 #elif defined (__AVR_ATxmega256C3__)
00622 # include <avr/iox256c3.h>
00623 #elif defined (__AVR_ATxmega256D3__)
00624 # include <avr/iox256d3.h>
00625 #elif defined (__AVR_ATxmega384C3__)
00626 # include <avr/iox384c3.h>
00627 #elif defined (__AVR_ATxmega384D3__)
00628 # include <avr/iox384d3.h>
00629 #elif defined (__AVR_ATA5702M322__)
00630 # include <avr/ioa5702m322.h>
00631 #elif defined (__AVR_ATA5782__)
00632 # include <avr/ioa5782.h>
00633 #elif defined (__AVR_ATA5790__)
00634 # include <avr/ioa5790.h>
00635 #elif defined (__AVR_ATA5790N__)
00636 # include <avr/ioa5790n.h>
00637 #elif defined (__AVR_ATA5831__)
00638 # include <avr/ioa5831.h>
00639 #elif defined (__AVR_ATA5272__)
00640 # include <avr/ioa5272.h>
00641 #elif defined (__AVR_ATA5505__)
00642 # include <avr/ioa5505.h>
00643 #elif defined (__AVR_ATA5795__)
00644 # include <avr/ioa5795.h>
00645 #elif defined (__AVR_ATA6285__)
00646 # include <avr/ioa6285.h>
00647 #elif defined (__AVR_ATA6286__)
00648 # include <avr/ioa6286.h>
00649 #elif defined (__AVR_ATA6289__)
00650 # include <avr/ioa6289.h>
00651 #elif defined (__AVR_ATA6612C__)
00652 # include <avr/ioa6612c.h>
00653 #elif defined (__AVR_ATA6613C__)
00654 # include <avr/ioa6613c.h>
00655 #elif defined (__AVR_ATA6614Q__)
00656 # include <avr/ioa6614q.h>
00657 #elif defined (__AVR_ATA6616C__)
00658 # include <avr/ioa6616c.h>
00659 #elif defined (__AVR_ATA6617C__)
00660 # include <avr/ioa6617c.h>
00661 #elif defined (__AVR_ATA664251__)
00662 # include <avr/ioa664251.h>
00663 /* avr1: the following only supported for assembler programs */
00664 #elif defined (__AVR_ATtiny28__)
00665 # include <avr/iotn28.h>
00666 #elif defined (__AVR_AT90S1200__)
00667 # include <avr/io1200.h>
00668 #elif defined (__AVR_ATtiny15__)

Generated by Doxygen

23.22 io.h 365

00669 # include <avr/iotn15.h>
00670 #elif defined (__AVR_ATtiny12__)
00671 # include <avr/iotn12.h>
00672 #elif defined (__AVR_ATtiny11__)
00673 # include <avr/iotn11.h>
00674 #elif defined (__AVR_M3000__)
00675 # include <avr/iom3000.h>
00676 #elif defined (__AVR_AVR32DA28__)
00677 # include <avr/ioavr32da28.h>
00678 #elif defined (__AVR_AVR32DA32__)
00679 # include <avr/ioavr32da32.h>
00680 #elif defined (__AVR_AVR32DA48__)
00681 # include <avr/ioavr32da48.h>
00682 #elif defined (__AVR_AVR64DA28__)
00683 # include <avr/ioavr64da28.h>
00684 #elif defined (__AVR_AVR64DA32__)
00685 # include <avr/ioavr64da32.h>
00686 #elif defined (__AVR_AVR64DA48__)
00687 # include <avr/ioavr64da48.h>
00688 #elif defined (__AVR_AVR64DA64__)
00689 # include <avr/ioavr64da64.h>
00690 #elif defined (__AVR_AVR128DA28__)
00691 # include <avr/ioavr128da28.h>
00692 #elif defined (__AVR_AVR128DA32__)
00693 # include <avr/ioavr128da32.h>
00694 #elif defined (__AVR_AVR128DA48__)
00695 # include <avr/ioavr128da48.h>
00696 #elif defined (__AVR_AVR128DA64__)
00697 # include <avr/ioavr128da64.h>
00698 #elif defined (__AVR_AVR32DB28__)
00699 # include <avr/ioavr32db28.h>
00700 #elif defined (__AVR_AVR32DB32__)
00701 # include <avr/ioavr32db32.h>
00702 #elif defined (__AVR_AVR32DB48__)
00703 # include <avr/ioavr32db48.h>
00704 #elif defined (__AVR_AVR64DB28__)
00705 # include <avr/ioavr64db28.h>
00706 #elif defined (__AVR_AVR64DB32__)
00707 # include <avr/ioavr64db32.h>
00708 #elif defined (__AVR_AVR64DB48__)
00709 # include <avr/ioavr64db48.h>
00710 #elif defined (__AVR_AVR64DB64__)
00711 # include <avr/ioavr64db64.h>
00712 #elif defined (__AVR_AVR128DB28__)
00713 # include <avr/ioavr128db28.h>
00714 #elif defined (__AVR_AVR128DB32__)
00715 # include <avr/ioavr128db32.h>
00716 #elif defined (__AVR_AVR128DB48__)
00717 # include <avr/ioavr128db48.h>
00718 #elif defined (__AVR_AVR128DB64__)
00719 # include <avr/ioavr128db64.h>
00720 #elif defined (__AVR_AVR16DD14__)
00721 # include <avr/ioavr16dd14.h>
00722 #elif defined (__AVR_AVR16DD20__)
00723 # include <avr/ioavr16dd20.h>
00724 #elif defined (__AVR_AVR16DD28__)
00725 # include <avr/ioavr16dd28.h>
00726 #elif defined (__AVR_AVR16DD32__)
00727 # include <avr/ioavr16dd32.h>
00728 #elif defined (__AVR_AVR32DD14__)
00729 # include <avr/ioavr32dd14.h>
00730 #elif defined (__AVR_AVR32DD20__)
00731 # include <avr/ioavr32dd20.h>
00732 #elif defined (__AVR_AVR32DD28__)
00733 # include <avr/ioavr32dd28.h>
00734 #elif defined (__AVR_AVR32DD32__)
00735 # include <avr/ioavr32dd32.h>
00736 #elif defined (__AVR_AVR64DD14__)
00737 # include <avr/ioavr64dd14.h>
00738 #elif defined (__AVR_AVR64DD20__)
00739 # include <avr/ioavr64dd20.h>
00740 #elif defined (__AVR_AVR64DD28__)
00741 # include <avr/ioavr64dd28.h>
00742 #elif defined (__AVR_AVR64DD32__)
00743 # include <avr/ioavr64dd32.h>
00744 #elif defined (__AVR_AVR64DU28__)
00745 # include <avr/ioavr64du28.h>
00746 #elif defined (__AVR_AVR64DU32__)
00747 # include <avr/ioavr64du32.h>
00748 #elif defined (__AVR_AVR16EA28__)
00749 # include <avr/ioavr16ea28.h>
00750 #elif defined (__AVR_AVR16EA32__)
00751 # include <avr/ioavr16ea32.h>
00752 #elif defined (__AVR_AVR16EA48__)
00753 # include <avr/ioavr16ea48.h>
00754 #elif defined (__AVR_AVR16EB14__)
00755 # include <avr/ioavr16eb14.h>

Generated by Doxygen

366

00756 #elif defined (__AVR_AVR16EB20__)
00757 # include <avr/ioavr16eb20.h>
00758 #elif defined (__AVR_AVR16EB28__)
00759 # include <avr/ioavr16eb28.h>
00760 #elif defined (__AVR_AVR16EB32__)
00761 # include <avr/ioavr16eb32.h>
00762 #elif defined (__AVR_AVR32EA28__)
00763 # include <avr/ioavr32ea28.h>
00764 #elif defined (__AVR_AVR32EA32__)
00765 # include <avr/ioavr32ea32.h>
00766 #elif defined (__AVR_AVR32EA48__)
00767 # include <avr/ioavr32ea48.h>
00768 #elif defined (__AVR_AVR64EA28__)
00769 # include <avr/ioavr64ea28.h>
00770 #elif defined (__AVR_AVR64EA32__)
00771 # include <avr/ioavr64ea32.h>
00772 #elif defined (__AVR_AVR64EA48__)
00773 # include <avr/ioavr64ea48.h>
00774 #elif defined (__AVR_DEV_LIB_NAME__)
00775 # define __concat__(a,b) a##b
00776 # define __header1__(a,b) __concat__(a,b)
00777 # define __AVR_DEVICE_HEADER__ <avr/__header1__(io,__AVR_DEV_LIB_NAME__).h>
00778 # include __AVR_DEVICE_HEADER__
00779 #else
00780 # if !defined(__COMPILING_AVR_LIBC__)
00781 # warning "device type not defined"
00782 # endif
00783 #endif
00784
00785 #include <avr/portpins.h>
00786
00787 #include <avr/common.h>
00788
00789 #include <avr/version.h>
00790
00791 #if __AVR_ARCH__ >= 100
00792 # include <avr/xmega.h>
00793 #endif
00794
00795 /* Include fuse.h after individual IO header files. */
00796 #include <avr/fuse.h>
00797
00798 /* Include lock.h after individual IO header files. */
00799 #include <avr/lock.h>
00800
00801 #endif /* _AVR_IO_H_ */

23.23 lock.h File Reference

23.24 lock.h

Go to the documentation of this file.
00001 /* Copyright (c) 2007, Atmel Corporation
00002 All rights reserved.
00003
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions are met:
00006
00007 * Redistributions of source code must retain the above copyright
00008 notice, this list of conditions and the following disclaimer.
00009
00010 * Redistributions in binary form must reproduce the above copyright
00011 notice, this list of conditions and the following disclaimer in
00012 the documentation and/or other materials provided with the
00013 distribution.
00014
00015 * Neither the name of the copyright holders nor the names of
00016 contributors may be used to endorse or promote products derived
00017 from this software without specific prior written permission.
00018
00019 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00020 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00021 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00022 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00023 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00024 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00025 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00026 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00027 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00028 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

Generated by Doxygen

23.24 lock.h 367

00029 POSSIBILITY OF SUCH DAMAGE. */
00030
00031 /* Id */
00032
00033 /* avr/lock.h - Lock Bits API */
00034
00035 #ifndef _AVR_LOCK_H_
00036 #define _AVR_LOCK_H_ 1
00037
00038
00039 /** \file */
00040 /** \defgroup avr_lock <avr/lock.h>: Lockbit Support
00041
00042 \par Introduction
00043
00044 The Lockbit API allows a user to specify the lockbit settings for the
00045 specific AVR device they are compiling for. These lockbit settings will be
00046 placed in a special section in the ELF output file, after linking.
00047
00048 Programming tools can take advantage of the lockbit information embedded in
00049 the ELF file, by extracting this information and determining if the lockbits
00050 need to be programmed after programming the Flash and EEPROM memories.
00051 This also allows a single ELF file to contain all the
00052 information needed to program an AVR.
00053
00054 To use the Lockbit API, include the <avr/io.h> header file, which in turn
00055 automatically includes the individual I/O header file and the <avr/lock.h>
00056 file. These other two files provides everything necessary to set the AVR
00057 lockbits.
00058
00059 \par Lockbit API
00060
00061 Each I/O header file may define up to 3 macros that controls what kinds
00062 of lockbits are available to the user.
00063
00064 If __LOCK_BITS_EXIST is defined, then two lock bits are available to the
00065 user and 3 mode settings are defined for these two bits.
00066
00067 If __BOOT_LOCK_BITS_0_EXIST is defined, then the two BLB0 lock bits are
00068 available to the user and 4 mode settings are defined for these two bits.
00069
00070 If __BOOT_LOCK_BITS_1_EXIST is defined, then the two BLB1 lock bits are
00071 available to the user and 4 mode settings are defined for these two bits.
00072
00073 If __BOOT_LOCK_APPLICATION_TABLE_BITS_EXIST is defined then two lock bits
00074 are available to set the locking mode for the Application Table Section
00075 (which is used in the XMEGA family).
00076
00077 If __BOOT_LOCK_APPLICATION_BITS_EXIST is defined then two lock bits are
00078 available to set the locking mode for the Application Section (which is used
00079 in the XMEGA family).
00080
00081 If __BOOT_LOCK_BOOT_BITS_EXIST is defined then two lock bits are available
00082 to set the locking mode for the Boot Loader Section (which is used in the
00083 XMEGA family).
00084
00085 The AVR lockbit modes have inverted values, logical 1 for an unprogrammed
00086 (disabled) bit and logical 0 for a programmed (enabled) bit. The defined
00087 macros for each individual lock bit represent this in their definition by a
00088 bit-wise inversion of a mask. For example, the LB_MODE_3 macro is defined
00089 as:
00090 \code
00091 #define LB_MODE_3 (0xFC)
00092 ‘ \endcode
00093
00094 To combine the lockbit mode macros together to represent a whole byte,
00095 use the bitwise AND operator, like so:
00096 \code
00097 (LB_MODE_3 & BLB0_MODE_2)
00098 \endcode
00099
00100 <avr/lock.h> also defines a macro that provides a default lockbit value:
00101 LOCKBITS_DEFAULT which is defined to be 0xFF.
00102
00103 See the AVR device specific datasheet for more details about these
00104 lock bits and the available mode settings.
00105
00106 A convenience macro, LOCKMEM, is defined as a GCC attribute for a
00107 custom-named section of ".lock".
00108
00109 A convenience macro, LOCKBITS, is defined that declares a variable, __lock,
00110 of type unsigned char with the attribute defined by LOCKMEM. This variable
00111 allows the end user to easily set the lockbit data.
00112
00113 \note If a device-specific I/O header file has previously defined LOCKMEM,
00114 then LOCKMEM is not redefined. If a device-specific I/O header file has
00115 previously defined LOCKBITS, then LOCKBITS is not redefined. LOCKBITS is

Generated by Doxygen

368

00116 currently known to be defined in the I/O header files for the XMEGA devices.
00117
00118 \par API Usage Example
00119
00120 Putting all of this together is easy:
00121
00122 \code
00123 #include <avr/io.h>
00124
00125 LOCKBITS = (LB_MODE_1 & BLB0_MODE_3 & BLB1_MODE_4);
00126
00127 int main(void)
00128 {
00129 return 0;
00130 }
00131 \endcode
00132
00133 Or:
00134
00135 \code
00136 #include <avr/io.h>
00137
00138 unsigned char __lock __attribute__((section (".lock"))) =
00139 (LB_MODE_1 & BLB0_MODE_3 & BLB1_MODE_4);
00140
00141 int main(void)
00142 {
00143 return 0;
00144 }
00145 \endcode
00146
00147
00148
00149 However there are a number of caveats that you need to be aware of to
00150 use this API properly.
00151
00152 Be sure to include <avr/io.h> to get all of the definitions for the API.
00153 The LOCKBITS macro defines a global variable to store the lockbit data. This
00154 variable is assigned to its own linker section. Assign the desired lockbit
00155 values immediately in the variable initialization.
00156
00157 The .lock section in the ELF file will get its values from the initial
00158 variable assignment ONLY. This means that you can NOT assign values to
00159 this variable in functions and the new values will not be put into the
00160 ELF .lock section.
00161
00162 The global variable is declared in the LOCKBITS macro has two leading
00163 underscores, which means that it is reserved for the "implementation",
00164 meaning the library, so it will not conflict with a user-named variable.
00165
00166 You must initialize the lockbit variable to some meaningful value, even
00167 if it is the default value. This is because the lockbits default to a
00168 logical 1, meaning unprogrammed. Normal uninitialized data defaults to all
00169 locgial zeros. So it is vital that all lockbits are initialized, even with
00170 default data. If they are not, then the lockbits may not programmed to the
00171 desired settings and can possibly put your device into an unrecoverable
00172 state.
00173
00174 Be sure to have the -mmcu=device flag in your compile command line and
00175 your linker command line to have the correct device selected and to have
00176 the correct I/O header file included when you include <avr/io.h>.
00177
00178 You can print out the contents of the .lock section in the ELF file by
00179 using this command line:
00180 \code
00181 avr-objdump -s -j .lock <ELF file>
00182 \endcode
00183
00184 */
00185
00186
00187 #if !(defined(__ASSEMBLER__) || defined(__DOXYGEN__))
00188
00189 #ifndef LOCKMEM
00190 #define LOCKMEM __attribute__((__used__, __section__ (".lock")))
00191 #endif
00192
00193 #ifndef LOCKBITS
00194 #define LOCKBITS unsigned char __lock LOCKMEM
00195 #endif
00196
00197 /* Lock Bit Modes */
00198 #if defined(__LOCK_BITS_EXIST)
00199 #define LB_MODE_1 (0xFF)
00200 #define LB_MODE_2 (0xFE)
00201 #define LB_MODE_3 (0xFC)
00202 #endif

Generated by Doxygen

23.25 pgmspace.h File Reference 369

00203
00204 #if defined(__BOOT_LOCK_BITS_0_EXIST)
00205 #define BLB0_MODE_1 (0xFF)
00206 #define BLB0_MODE_2 (0xFB)
00207 #define BLB0_MODE_3 (0xF3)
00208 #define BLB0_MODE_4 (0xF7)
00209 #endif
00210
00211 #if defined(__BOOT_LOCK_BITS_1_EXIST)
00212 #define BLB1_MODE_1 (0xFF)
00213 #define BLB1_MODE_2 (0xEF)
00214 #define BLB1_MODE_3 (0xCF)
00215 #define BLB1_MODE_4 (0xDF)
00216 #endif
00217
00218 #if defined(__BOOT_LOCK_APPLICATION_TABLE_BITS_EXIST)
00219 #define BLBAT0 ~_BV(2)
00220 #define BLBAT1 ~_BV(3)
00221 #endif
00222
00223 #if defined(__BOOT_LOCK_APPLICATION_BITS_EXIST)
00224 #define BLBA0 ~_BV(4)
00225 #define BLBA1 ~_BV(5)
00226 #endif
00227
00228 #if defined(__BOOT_LOCK_BOOT_BITS_EXIST)
00229 #define BLBB0 ~_BV(6)
00230 #define BLBB1 ~_BV(7)
00231 #endif
00232
00233 #ifndef LOCKBITS_DEFAULT
00234 #define LOCKBITS_DEFAULT (0xFF)
00235 #endif
00236
00237 #endif /* !(__ASSEMBLER || __DOXYGEN__) */
00238
00239
00240 #endif /* _AVR_LOCK_H_ */

23.25 pgmspace.h File Reference

Macros

• #define PROGMEM_FAR __attribute__((__section__(".progmemx.data")))
• #define PROGMEM __attribute__((__progmem__))
• #define PSTR(str) ({ static const PROGMEM char c[] = (str); &c[0]; })
• #define PSTR_FAR(str) ({ static const PROGMEM_FAR char c[] = (str); pgm_get_far_address(c[0]); })
• #define pgm_read_byte_near(__addr) __LPM ((uint16_t)(__addr))
• #define pgm_read_word_near(__addr) __LPM_word ((uint16_t)(__addr))
• #define pgm_read_dword_near(__addr) __LPM_dword ((uint16_t)(__addr))
• #define pgm_read_qword_near(__addr) __LPM_qword ((uint16_t)(__addr))
• #define pgm_read_float_near(addr) pgm_read_float (addr)
• #define pgm_read_ptr_near(__addr) ((void∗) __LPM_word ((uint16_t)(__addr)))
• #define pgm_read_byte_far(__addr) __ELPM (__addr)
• #define pgm_read_word_far(__addr) __ELPM_word (__addr)
• #define pgm_read_dword_far(__addr) __ELPM_dword (__addr)
• #define pgm_read_qword_far(__addr) __ELPM_qword (__addr)
• #define pgm_read_ptr_far(__addr) ((void∗) __ELPM_word (__addr))
• #define pgm_read_byte(__addr) pgm_read_byte_near(__addr)
• #define pgm_read_word(__addr) pgm_read_word_near(__addr)
• #define pgm_read_dword(__addr) pgm_read_dword_near(__addr)
• #define pgm_read_qword(__addr) pgm_read_qword_near(__addr)
• #define pgm_read_ptr(__addr) pgm_read_ptr_near(__addr)
• #define pgm_get_far_address(var)

Generated by Doxygen

370

Functions

• static char pgm_read_char (const char ∗__addr)
• static unsigned char pgm_read_unsigned_char (const unsigned char ∗__addr)
• static signed char pgm_read_signed_char (const signed char ∗__addr)
• static uint8_t pgm_read_u8 (const uint8_t ∗__addr)
• static int8_t pgm_read_i8 (const int8_t ∗__addr)
• static short pgm_read_short (const short ∗__addr)
• static unsigned short pgm_read_unsigned_short (const unsigned short ∗__addr)
• static uint16_t pgm_read_u16 (const uint16_t ∗__addr)
• static int16_t pgm_read_i16 (const int16_t ∗__addr)
• static int pgm_read_int (const int ∗__addr)
• static signed pgm_read_signed (const signed ∗__addr)
• static unsigned pgm_read_unsigned (const unsigned ∗__addr)
• static signed int pgm_read_signed_int (const signed int ∗__addr)
• static unsigned int pgm_read_unsigned_int (const unsigned int ∗__addr)
• static __int24 pgm_read_i24 (const __int24 ∗__addr)
• static __uint24 pgm_read_u24 (const __uint24 ∗__addr)
• static uint32_t pgm_read_u32 (const uint32_t ∗__addr)
• static int32_t pgm_read_i32 (const int32_t ∗__addr)
• static long pgm_read_long (const long ∗__addr)
• static unsigned long pgm_read_unsigned_long (const unsigned long ∗__addr)
• static long long pgm_read_long_long (const long long ∗__addr)
• static unsigned long long pgm_read_unsigned_long_long (const unsigned long long ∗__addr)
• static uint64_t pgm_read_u64 (const uint64_t ∗__addr)
• static int64_t pgm_read_i64 (const int64_t ∗__addr)
• static float pgm_read_float (const float ∗__addr)
• static double pgm_read_double (const double ∗__addr)
• static long double pgm_read_long_double (const long double ∗__addr)
• static char pgm_read_char_far (uint_farptr_t __addr)
• static unsigned char pgm_read_unsigned_char_far (uint_farptr_t __addr)
• static signed char pgm_read_signed_char_far (uint_farptr_t __addr)
• static uint8_t pgm_read_u8_far (uint_farptr_t __addr)
• static int8_t pgm_read_i8_far (uint_farptr_t __addr)
• static short pgm_read_short_far (uint_farptr_t __addr)
• static unsigned short pgm_read_unsigned_short_far (uint_farptr_t __addr)
• static uint16_t pgm_read_u16_far (uint_farptr_t __addr)
• static int16_t pgm_read_i16_far (uint_farptr_t __addr)
• static int pgm_read_int_far (uint_farptr_t __addr)
• static unsigned pgm_read_unsigned_far (uint_farptr_t __addr)
• static unsigned int pgm_read_unsigned_int_far (uint_farptr_t __addr)
• static signed pgm_read_signed_far (uint_farptr_t __addr)
• static signed int pgm_read_signed_int_far (uint_farptr_t __addr)
• static long pgm_read_long_far (uint_farptr_t __addr)
• static unsigned long pgm_read_unsigned_long_far (uint_farptr_t __addr)
• static __int24 pgm_read_i24_far (uint_farptr_t __addr)
• static __uint24 pgm_read_u24_far (uint_farptr_t __addr)
• static uint32_t pgm_read_u32_far (uint_farptr_t __addr)
• static int32_t pgm_read_i32_far (uint_farptr_t __addr)
• static long long pgm_read_long_long_far (uint_farptr_t __addr)
• static unsigned long long pgm_read_unsigned_long_long_far (uint_farptr_t __addr)
• static uint64_t pgm_read_u64_far (uint_farptr_t __addr)
• static int64_t pgm_read_i64_far (uint_farptr_t __addr)
• static float pgm_read_float_far (uint_farptr_t __addr)
• static double pgm_read_double_far (uint_farptr_t __addr)

Generated by Doxygen

23.25 pgmspace.h File Reference 371

• static long double pgm_read_long_double_far (uint_farptr_t __addr)
• const void ∗ memchr_P (const void ∗, int __val, size_t __len)
• int memcmp_P (const void ∗, const void ∗, size_t)
• void ∗ memccpy_P (void ∗, const void ∗, int __val, size_t)
• void ∗ memcpy_P (void ∗, const void ∗, size_t)
• void ∗ memmem_P (const void ∗, size_t, const void ∗, size_t)
• const void ∗ memrchr_P (const void ∗, int __val, size_t __len)
• char ∗ strcat_P (char ∗, const char ∗)
• const char ∗ strchr_P (const char ∗, int __val)
• const char ∗ strchrnul_P (const char ∗, int __val)
• int strcmp_P (const char ∗, const char ∗)
• char ∗ strcpy_P (char ∗, const char ∗)
• int strcasecmp_P (const char ∗, const char ∗)
• char ∗ strcasestr_P (const char ∗, const char ∗)
• size_t strcspn_P (const char ∗__s, const char ∗__reject)
• size_t strlcat_P (char ∗, const char ∗, size_t)
• size_t strlcpy_P (char ∗, const char ∗, size_t)
• size_t strnlen_P (const char ∗, size_t)
• int strncmp_P (const char ∗, const char ∗, size_t)
• int strncasecmp_P (const char ∗, const char ∗, size_t)
• char ∗ strncat_P (char ∗, const char ∗, size_t)
• char ∗ strncpy_P (char ∗, const char ∗, size_t)
• char ∗ strpbrk_P (const char ∗__s, const char ∗__accept)
• const char ∗ strrchr_P (const char ∗, int __val)
• char ∗ strsep_P (char ∗∗__sp, const char ∗__delim)
• size_t strspn_P (const char ∗__s, const char ∗__accept)
• char ∗ strstr_P (const char ∗, const char ∗)
• char ∗ strtok_P (char ∗__s, const char ∗__delim)
• char ∗ strtok_rP (char ∗__s, const char ∗__delim, char ∗∗__last)
• size_t strlen_PF (uint_farptr_t src)
• size_t strnlen_PF (uint_farptr_t src, size_t len)
• void ∗ memcpy_PF (void ∗dest, uint_farptr_t src, size_t len)
• char ∗ strcpy_PF (char ∗dest, uint_farptr_t src)
• char ∗ strncpy_PF (char ∗dest, uint_farptr_t src, size_t len)
• char ∗ strcat_PF (char ∗dest, uint_farptr_t src)
• size_t strlcat_PF (char ∗dst, uint_farptr_t src, size_t siz)
• char ∗ strncat_PF (char ∗dest, uint_farptr_t src, size_t len)
• int strcmp_PF (const char ∗s1, uint_farptr_t s2)
• int strncmp_PF (const char ∗s1, uint_farptr_t s2, size_t n)
• int strcasecmp_PF (const char ∗s1, uint_farptr_t s2)
• int strncasecmp_PF (const char ∗s1, uint_farptr_t s2, size_t n)
• uint_farptr_t strchr_PF (uint_farptr_t, int __val)
• char ∗ strstr_PF (const char ∗s1, uint_farptr_t s2)
• size_t strlcpy_PF (char ∗dst, uint_farptr_t src, size_t siz)
• int memcmp_PF (const void ∗, uint_farptr_t, size_t)
• static size_t strlen_P (const char ∗s)
• template<typename T >

T pgm_read< T > (const T ∗addr)
• template<typename T >

T pgm_read_far< T > (uint_farptr_t addr)

Generated by Doxygen

372

23.26 pgmspace.h

Go to the documentation of this file.
00001 /* Copyright (c) 2002-2007 Marek Michalkiewicz
00002 Copyright (c) 2006, Carlos Lamas
00003 Copyright (c) 2009-2010, Jan Waclawek
00004 All rights reserved.
00005
00006 Redistribution and use in source and binary forms, with or without
00007 modification, are permitted provided that the following conditions are met:
00008
00009 * Redistributions of source code must retain the above copyright
00010 notice, this list of conditions and the following disclaimer.
00011 * Redistributions in binary form must reproduce the above copyright
00012 notice, this list of conditions and the following disclaimer in
00013 the documentation and/or other materials provided with the
00014 distribution.
00015 * Neither the name of the copyright holders nor the names of
00016 contributors may be used to endorse or promote products derived
00017 from this software without specific prior written permission.
00018
00019 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00020 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00021 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00022 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00023 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00024 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00025 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00026 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00027 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00028 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00029 POSSIBILITY OF SUCH DAMAGE. */
00030
00031 /* Id */
00032
00033 /*
00034 pgmspace.h
00035
00036 Contributors:
00037 Created by Marek Michalkiewicz <marekm@linux.org.pl>
00038 Eric B. Weddington <eric@ecentral.com>
00039 Wolfgang Haidinger <wh@vmars.tuwien.ac.at> (pgm_read_dword())
00040 Ivanov Anton <anton@arc.com.ru> (pgm_read_float())
00041 */
00042
00043 /** \file */
00044 /** \defgroup avr_pgmspace <avr/pgmspace.h>: Program Space Utilities
00045 \code
00046 #include <avr/io.h>
00047 #include <avr/pgmspace.h>
00048 \endcode
00049
00050 The functions in this module provide interfaces for a program to access
00051 data stored in program space (flash memory) of the device.
00052
00053 \note These functions are an attempt to provide some compatibility with
00054 header files that come with IAR C, to make porting applications between
00055 different compilers easier. This is not 100% compatibility though (GCC
00056 does not have full support for multiple address spaces yet).
00057
00058 \note If you are working with strings which are completely based in RAM,
00059 use the standard string functions described in \ref avr_string.
00060
00061 \note If possible, put your constant tables in the lower 64 KB and use
00062 pgm_read_byte_near() or pgm_read_word_near() instead of
00063 pgm_read_byte_far() or pgm_read_word_far() since it is more efficient that
00064 way, and you can still use the upper 64K for executable code.
00065 All functions that are suffixed with a \c _P \e require their
00066 arguments to be in the lower 64 KB of the flash ROM, as they do
00067 not use ELPM instructions. This is normally not a big concern as
00068 the linker setup arranges any program space constants declared
00069 using the macros from this header file so they are placed right after
00070 the interrupt vectors, and in front of any executable code. However,
00071 it can become a problem if there are too many of these constants, or
00072 for bootloaders on devices with more than 64 KB of ROM.
00073 All these functions will not work in that situation.
00074
00075 \note For Xmega devices, make sure the NVM controller
00076 command register (\c NVM.CMD or \c NVM_CMD) is set to 0x00 (NOP)
00077 before using any of these functions.
00078 */
00079
00080 #ifndef __PGMSPACE_H_
00081 #define __PGMSPACE_H_ 1
00082
00083 #ifndef __DOXYGEN__

Generated by Doxygen

23.26 pgmspace.h 373

00084 #define __need_size_t
00085 #endif
00086 #include <inttypes.h>
00087 #include <stddef.h>
00088 #include <avr/io.h>
00089
00090 #ifndef __DOXYGEN__
00091 #ifndef __ATTR_CONST__
00092 #define __ATTR_CONST__ __attribute__((__const__))
00093 #endif
00094
00095 #ifndef __ATTR_PROGMEM__
00096 #define __ATTR_PROGMEM__ __attribute__((__progmem__))
00097 #endif
00098
00099 #ifndef __ATTR_PURE__
00100 #define __ATTR_PURE__ __attribute__((__pure__))
00101 #endif
00102
00103 #ifndef __ATTR_ALWAYS_INLINE__
00104 #define __ATTR_ALWAYS_INLINE__ __inline__ __attribute__((__always_inline__))
00105 #endif
00106
00107 #define PROGMEM __ATTR_PROGMEM__
00108
00109 #endif /* !__DOXYGEN__ */
00110
00111 /**
00112 \ingroup avr_pgmspace
00113 \def PROGMEM_FAR
00114
00115 Attribute to use in order to declare an object being located in
00116 far flash ROM. This is similar to #PROGMEM, except that it puts
00117 the static storage object in section
00118 <tt>\ref sec_dot_progmemx ".progmemx.data"</tt>.
00119 In order to access the object,
00120 the <tt>pgm_read_*_far</tt> and \c _PF functions declare in this header
00121 can be used. In order to get its address, see pgm_get_far_address().
00122
00123 It only makes sense to put read-only objects in this section,
00124 though the compiler does not diagnose when this is not the case. */
00125 #define PROGMEM_FAR __attribute__((__section__(".progmemx.data")))
00126
00127 #ifdef __DOXYGEN__
00128
00129 /**
00130 \ingroup avr_pgmspace
00131 \def PROGMEM
00132
00133 Attribute to use in order to declare an object being located in
00134 flash ROM. */
00135 #define PROGMEM __attribute__((__progmem__))
00136
00137 /** \ingroup avr_pgmspace
00138 \fn char pgm_read_char (const char *__addr)
00139 Read a <tt>char</tt> from 16-bit (near) byte-address \p __addr.
00140 The address is in the lower 64 KiB of program memory. */
00141 static inline char pgm_read_char (const char *__addr);
00142
00143 /** \ingroup avr_pgmspace
00144 \fn unsigned char pgm_read_unsigned_char (const unsigned char *__addr)
00145 Read an <tt>unsigned char</tt> from 16-bit (near) byte-address \p __addr.
00146 The address is in the lower 64 KiB of program memory. */
00147 static inline unsigned char pgm_read_unsigned_char (const unsigned char *__addr);
00148
00149 /** \ingroup avr_pgmspace
00150 \fn signed char pgm_read_signed_char (const signed char *__addr)
00151 Read a <tt>signed char</tt> from 16-bit (near) byte-address \p __addr.
00152 The address is in the lower 64 KiB of program memory. */
00153 static inline signed char pgm_read_signed_char (const signed char *__addr);
00154
00155 /** \ingroup avr_pgmspace
00156 \fn uint8_t pgm_read_u8 (const uint8_t *__addr)
00157 Read an <tt>uint8_t</tt> from 16-bit (near) byte-address \p __addr.
00158 The address is in the lower 64 KiB of program memory. */
00159 static inline uint8_t pgm_read_u8 (const uint8_t *__addr);
00160
00161 /** \ingroup avr_pgmspace
00162 \fn int8_t pgm_read_i8 (const int8_t *__addr)
00163 Read an <tt>int8_t</tt> from 16-bit (near) byte-address \p __addr.
00164 The address is in the lower 64 KiB of program memory. */
00165 static inline int8_t pgm_read_i8 (const int8_t *__addr);
00166
00167 /** \ingroup avr_pgmspace
00168 \fn short pgm_read_short (const short *__addr)
00169 Read a <tt>short</tt> from 16-bit (near) byte-address \p __addr.
00170 The address is in the lower 64 KiB of program memory. */

Generated by Doxygen

374

00171 static inline short pgm_read_short (const short *__addr);
00172
00173 /** \ingroup avr_pgmspace
00174 \fn unsigned short pgm_read_unsigned_short (const unsigned short *__addr)
00175 Read an <tt>unsigned short</tt> from 16-bit (near) byte-address \p __addr.
00176 The address is in the lower 64 KiB of program memory. */
00177 static inline unsigned short pgm_read_unsigned_short (const unsigned short *__addr);
00178
00179 /** \ingroup avr_pgmspace
00180 \fn uint16_t pgm_read_u16 (const uint16_t *__addr)
00181 Read an <tt>uint16_t</tt> from 16-bit (near) byte-address \p __addr.
00182 The address is in the lower 64 KiB of program memory. */
00183 static inline uint16_t pgm_read_u16 (const uint16_t *__addr);
00184
00185 /** \ingroup avr_pgmspace
00186 \fn int16_t pgm_read_i16 (const int16_t *__addr)
00187 Read an <tt>int16_t</tt> from 16-bit (near) byte-address \p __addr.
00188 The address is in the lower 64 KiB of program memory. */
00189 static inline int16_t pgm_read_i16 (const int16_t *__addr);
00190
00191 /** \ingroup avr_pgmspace
00192 \fn int pgm_read_int (const int *__addr)
00193 Read an <tt>int</tt> from 16-bit (near) byte-address \p __addr.
00194 The address is in the lower 64 KiB of program memory. */
00195 static inline int pgm_read_int (const int *__addr);
00196
00197 /** \ingroup avr_pgmspace
00198 \fn signed pgm_read_signed (const signed *__addr)
00199 Read a <tt>signed</tt> from 16-bit (near) byte-address \p __addr.
00200 The address is in the lower 64 KiB of program memory. */
00201 static inline signed pgm_read_signed (const signed *__addr);
00202
00203 /** \ingroup avr_pgmspace
00204 \fn unsigned pgm_read_unsigned (const unsigned *__addr)
00205 Read an <tt>unsigned</tt> from 16-bit (near) byte-address \p __addr.
00206 The address is in the lower 64 KiB of program memory. */
00207 static inline unsigned pgm_read_unsigned (const unsigned *__addr);
00208
00209 /** \ingroup avr_pgmspace
00210 \fn signed int pgm_read_signed_int (const signed int *__addr)
00211 Read a <tt>signed int</tt> from 16-bit (near) byte-address \p __addr.
00212 The address is in the lower 64 KiB of program memory. */
00213 static inline signed int pgm_read_signed_int (const signed int *__addr);
00214
00215 /** \ingroup avr_pgmspace
00216 \fn unsigned int pgm_read_unsigned_int (const unsigned int *__addr)
00217 Read an <tt>unsigned int</tt> from 16-bit (near) byte-address \p __addr.
00218 The address is in the lower 64 KiB of program memory. */
00219 static inline unsigned int pgm_read_unsigned_int (const unsigned int *__addr);
00220
00221 /** \ingroup avr_pgmspace
00222 \fn __int24 pgm_read_i24 (const __int24 *__addr)
00223 Read an <tt>__int24</tt> from 16-bit (near) byte-address \p __addr.
00224 The address is in the lower 64 KiB of program memory. */
00225 static inline __int24 pgm_read_i24 (const __int24 *__addr);
00226
00227 /** \ingroup avr_pgmspace
00228 \fn __uint24 pgm_read_u24 (const __uint24 *__addr)
00229 Read an <tt>__uint24</tt> from 16-bit (near) byte-address \p __addr.
00230 The address is in the lower 64 KiB of program memory. */
00231 static inline __uint24 pgm_read_u24 (const __uint24 *__addr);
00232
00233 /** \ingroup avr_pgmspace
00234 \fn uint32_t pgm_read_u32 (const uint32_t *__addr)
00235 Read an <tt>uint32_t</tt> from 16-bit (near) byte-address \p __addr.
00236 The address is in the lower 64 KiB of program memory. */
00237 static inline uint32_t pgm_read_u32 (const uint32_t *__addr);
00238
00239 /** \ingroup avr_pgmspace
00240 \fn int32_t pgm_read_i32 (const int32_t *__addr)
00241 Read an <tt>int32_t</tt> from 16-bit (near) byte-address \p __addr.
00242 The address is in the lower 64 KiB of program memory. */
00243 static inline int32_t pgm_read_i32 (const int32_t *__addr);
00244
00245 /** \ingroup avr_pgmspace
00246 \fn long pgm_read_long (const long *__addr)
00247 Read a <tt>long</tt> from 16-bit (near) byte-address \p __addr.
00248 The address is in the lower 64 KiB of program memory. */
00249 static inline long pgm_read_long (const long *__addr);
00250
00251 /** \ingroup avr_pgmspace
00252 \fn unsigned long pgm_read_unsigned_long (const unsigned long *__addr)
00253 Read an <tt>unsigned long</tt> from 16-bit (near) byte-address \p __addr.
00254 The address is in the lower 64 KiB of program memory. */
00255 static inline unsigned long pgm_read_unsigned_long (const unsigned long *__addr);
00256
00257 /** \ingroup avr_pgmspace

Generated by Doxygen

23.26 pgmspace.h 375

00258 \fn long long pgm_read_long_long (const long long *__addr)
00259 Read a <tt>long long</tt> from 16-bit (near) byte-address \p __addr.
00260 The address is in the lower 64 KiB of program memory. */
00261 static inline long long pgm_read_long_long (const long long *__addr);
00262
00263 /** \ingroup avr_pgmspace
00264 \fn unsigned long long pgm_read_unsigned_long_long (const unsigned long long *__addr)
00265 Read an <tt>unsigned long long</tt> from 16-bit (near) byte-address
00266 \p __addr.
00267 The address is in the lower 64 KiB of program memory. */
00268 static inline unsigned long long pgm_read_unsigned_long_long (const unsigned long long *__addr);
00269
00270 /** \ingroup avr_pgmspace
00271 \fn uint64_t pgm_read_u64 (const uint64_t *__addr)
00272 Read an <tt>uint64_t</tt> from 16-bit (near) byte-address \p __addr.
00273 The address is in the lower 64 KiB of program memory. */
00274 static inline uint64_t pgm_read_u64 (const uint64_t *__addr);
00275
00276 /** \ingroup avr_pgmspace
00277 \fn int64_t pgm_read_i64 (const int64_t *__addr)
00278 Read an <tt>int64_t</tt> from 16-bit (near) byte-address \p __addr.
00279 The address is in the lower 64 KiB of program memory. */
00280 static inline int64_t pgm_read_i64 (const int64_t *__addr);
00281
00282 /** \ingroup avr_pgmspace
00283 \fn float pgm_read_float (const float *__addr)
00284 Read a <tt>float</tt> from 16-bit (near) byte-address \p __addr.
00285 The address is in the lower 64 KiB of program memory. */
00286 static inline float pgm_read_float (const float *__addr);
00287
00288 /** \ingroup avr_pgmspace
00289 \fn double pgm_read_double (const double *__addr)
00290 Read a <tt>double</tt> from 16-bit (near) byte-address \p __addr.
00291 The address is in the lower 64 KiB of program memory. */
00292 static inline double pgm_read_double (const double *__addr);
00293
00294 /** \ingroup avr_pgmspace
00295 \fn long double pgm_read_long_double (const long double *__addr)
00296 Read a <tt>long double</tt> from 16-bit (near) byte-address \p __addr.
00297 The address is in the lower 64 KiB of program memory. */
00298 static inline long double pgm_read_long_double (const long double *__addr);
00299
00300 #else /* !DOXYGEN */
00301 #if defined(__AVR_TINY__)
00302 /* For Reduced Tiny devices, avr-gcc adds 0x4000 when it takes the address
00303 of a PROGMEM object. This means we can use open coded C/C++ to read
00304 from progmem. This assumes we have
00305 - GCC PR71948 - Make progmem work on Reduced Tiny (GCC v7 / 2016-08) */
00306 #define __LPM__1(res, addr) res = *addr
00307 #define __LPM__2(res, addr) res = *addr
00308 #define __LPM__3(res, addr) res = *addr
00309 #define __LPM__4(res, addr) res = *addr
00310 #define __LPM__8(res, addr) res = *addr
00311
00312 #elif defined(__AVR_HAVE_LPMX__)
00313 #define __LPM__1(res, addr) \
00314 __asm __volatile__ ("lpm %0,%a1" \
00315 : "=r" (res) : "z" (addr))
00316
00317 #define __LPM__2(res, addr) \
00318 __asm __volatile__ ("lpm %A0,%a1+" "\n\t" \
00319 "lpm %B0,%a1+" \
00320 : "=r" (res), "+z" (addr))
00321
00322 #define __LPM__3(res, addr) \
00323 __asm __volatile__ ("lpm %A0,%a1+" "\n\t" \
00324 "lpm %B0,%a1+" "\n\t" \
00325 "lpm %C0,%a1+" \
00326 : "=r" (res), "+z" (addr))
00327
00328 #define __LPM__4(res, addr) \
00329 __asm __volatile__ ("lpm %A0,%a1+" "\n\t" \
00330 "lpm %B0,%a1+" "\n\t" \
00331 "lpm %C0,%a1+" "\n\t" \
00332 "lpm %D0,%a1+" \
00333 : "=r" (res), "+z" (addr))
00334
00335 #define __LPM__8(res, addr) \
00336 __asm __volatile__ ("lpm %r0+0,%a1+" "\n\t" \
00337 "lpm %r0+1,%a1+" "\n\t" \
00338 "lpm %r0+2,%a1+" "\n\t" \
00339 "lpm %r0+3,%a1+" "\n\t" \
00340 "lpm %r0+4,%a1+" "\n\t" \
00341 "lpm %r0+5,%a1+" "\n\t" \
00342 "lpm %r0+6,%a1+" "\n\t" \
00343 "lpm %r0+7,%a1+" \
00344 : "=r" (res), "+z" (addr))

Generated by Doxygen

376

00345 #else /* Has no LPMx and no Reduced Tiny => Has LPM. */
00346 #define __LPM__1(res, addr) \
00347 __asm __volatile__ ("lpm $ mov %A0,r0" \
00348 : "=r" (res) : "z" (addr) : "r0")
00349
00350 #define __LPM__2(res, addr) \
00351 __asm __volatile__ ("lpm $ mov %A0,r0 $ adiw %1,1" "\n\t" \
00352 "lpm $ mov %B0,r0" \
00353 : "=r" (res), "+z" (addr) :: "r0")
00354
00355 #define __LPM__3(res, addr) \
00356 __asm __volatile__ ("lpm $ mov %A0,r0 $ adiw %1,1" "\n\t" \
00357 "lpm $ mov %B0,r0 $ adiw %1,1" "\n\t" \
00358 "lpm $ mov %C0,r0" \
00359 : "=r" (res), "+z" (addr) :: "r0")
00360
00361 #define __LPM__4(res, addr) \
00362 __asm __volatile__ ("lpm $ mov %A0,r0 $ adiw %1,1" "\n\t" \
00363 "lpm $ mov %B0,r0 $ adiw %1,1" "\n\t" \
00364 "lpm $ mov %C0,r0 $ adiw %1,1" "\n\t" \
00365 "lpm $ mov %D0,r0" \
00366 : "=r" (res), "+z" (addr) :: "r0")
00367
00368 #define __LPM__8(res, addr) \
00369 __asm __volatile__ ("lpm $ mov %r0+0,r0 $ adiw %1,1" "\n\t" \
00370 "lpm $ mov %r0+1,r0 $ adiw %1,1" "\n\t" \
00371 "lpm $ mov %r0+2,r0 $ adiw %1,1" "\n\t" \
00372 "lpm $ mov %r0+3,r0 $ adiw %1,1" "\n\t" \
00373 "lpm $ mov %r0+4,r0 $ adiw %1,1" "\n\t" \
00374 "lpm $ mov %r0+5,r0 $ adiw %1,1" "\n\t" \
00375 "lpm $ mov %r0+6,r0 $ adiw %1,1" "\n\t" \
00376 "lpm $ mov %r0+7,r0" \
00377 : "=r" (res), "+z" (addr) :: "r0")
00378 #endif /* LPM cases */
00379
00380 #define _Avrlibc_Def_Pgm_1(Name, Typ) \
00381 static __ATTR_ALWAYS_INLINE__ \
00382 Typ pgm_read_##Name (const Typ *__addr) \
00383 { \
00384 Typ __res; \
00385 __LPM__1 (__res, __addr); \
00386 return __res; \
00387 }
00388
00389 #define _Avrlibc_Def_Pgm_2(Name, Typ) \
00390 static __ATTR_ALWAYS_INLINE__ \
00391 Typ pgm_read_##Name (const Typ *__addr) \
00392 { \
00393 Typ __res; \
00394 __LPM__2 (__res, __addr); \
00395 return __res; \
00396 }
00397
00398 #define _Avrlibc_Def_Pgm_3(Name, Typ) \
00399 static __ATTR_ALWAYS_INLINE__ \
00400 Typ pgm_read_##Name (const Typ *__addr) \
00401 { \
00402 Typ __res; \
00403 __LPM__3 (__res, __addr); \
00404 return __res; \
00405 }
00406
00407 #define _Avrlibc_Def_Pgm_4(Name, Typ) \
00408 static __ATTR_ALWAYS_INLINE__ \
00409 Typ pgm_read_##Name (const Typ *__addr) \
00410 { \
00411 Typ __res; \
00412 __LPM__4 (__res, __addr); \
00413 return __res; \
00414 }
00415
00416 #define _Avrlibc_Def_Pgm_8(Name, Typ) \
00417 static __ATTR_ALWAYS_INLINE__ \
00418 Typ pgm_read_##Name (const Typ *__addr) \
00419 { \
00420 Typ __res; \
00421 __LPM__8 (__res, __addr); \
00422 return __res; \
00423 }
00424
00425 _Avrlibc_Def_Pgm_1 (char, char)
00426 _Avrlibc_Def_Pgm_1 (unsigned_char, unsigned char)
00427 _Avrlibc_Def_Pgm_1 (signed_char, signed char)
00428 _Avrlibc_Def_Pgm_1 (u8, uint8_t)
00429 _Avrlibc_Def_Pgm_1 (i8, int8_t)
00430 #if __SIZEOF_INT__ == 1
00431 _Avrlibc_Def_Pgm_1 (int, int)

Generated by Doxygen

23.26 pgmspace.h 377

00432 _Avrlibc_Def_Pgm_1 (signed, signed)
00433 _Avrlibc_Def_Pgm_1 (unsigned, unsigned)
00434 _Avrlibc_Def_Pgm_1 (signed_int, signed int)
00435 _Avrlibc_Def_Pgm_1 (unsigned_int, unsigned int)
00436 #endif
00437 #if __SIZEOF_SHORT__ == 1
00438 _Avrlibc_Def_Pgm_1 (short, short)
00439 _Avrlibc_Def_Pgm_1 (unsigned_short, unsigned short)
00440 #endif
00441
00442 _Avrlibc_Def_Pgm_2 (u16, uint16_t)
00443 _Avrlibc_Def_Pgm_2 (i16, int16_t)
00444 #if __SIZEOF_INT__ == 2
00445 _Avrlibc_Def_Pgm_2 (int, int)
00446 _Avrlibc_Def_Pgm_2 (signed, signed)
00447 _Avrlibc_Def_Pgm_2 (unsigned, unsigned)
00448 _Avrlibc_Def_Pgm_2 (signed_int, signed int)
00449 _Avrlibc_Def_Pgm_2 (unsigned_int, unsigned int)
00450 #endif
00451 #if __SIZEOF_SHORT__ == 2
00452 _Avrlibc_Def_Pgm_2 (short, short)
00453 _Avrlibc_Def_Pgm_2 (unsigned_short, unsigned short)
00454 #endif
00455 #if __SIZEOF_LONG__ == 2
00456 _Avrlibc_Def_Pgm_2 (long, long)
00457 _Avrlibc_Def_Pgm_2 (unsigned_long, unsigned long)
00458 #endif
00459
00460 #if defined(__INT24_MAX__)
00461 _Avrlibc_Def_Pgm_3 (i24, __int24)
00462 _Avrlibc_Def_Pgm_3 (u24, __uint24)
00463 #endif /* Have __int24 */
00464
00465 _Avrlibc_Def_Pgm_4 (u32, uint32_t)
00466 _Avrlibc_Def_Pgm_4 (i32, int32_t)
00467 _Avrlibc_Def_Pgm_4 (float, float)
00468 #if __SIZEOF_LONG__ == 4
00469 _Avrlibc_Def_Pgm_4 (long, long)
00470 _Avrlibc_Def_Pgm_4 (unsigned_long, unsigned long)
00471 #endif
00472 #if __SIZEOF_LONG_LONG__ == 4
00473 _Avrlibc_Def_Pgm_4 (long_long, long long)
00474 _Avrlibc_Def_Pgm_4 (unsigned_long_long, unsigned long long)
00475 #endif
00476 #if __SIZEOF_DOUBLE__ == 4
00477 _Avrlibc_Def_Pgm_4 (double, double)
00478 #endif
00479 #if __SIZEOF_LONG_DOUBLE__ == 4
00480 _Avrlibc_Def_Pgm_4 (long_double, long double)
00481 #endif
00482
00483 #if __SIZEOF_LONG_LONG__ == 8
00484 _Avrlibc_Def_Pgm_8 (u64, uint64_t)
00485 _Avrlibc_Def_Pgm_8 (i64, int64_t)
00486 _Avrlibc_Def_Pgm_8 (long_long, long long)
00487 _Avrlibc_Def_Pgm_8 (unsigned_long_long, unsigned long long)
00488 #endif
00489 #if __SIZEOF_DOUBLE__ == 8
00490 _Avrlibc_Def_Pgm_8 (double, double)
00491 #endif
00492 #if __SIZEOF_LONG_DOUBLE__ == 8
00493 _Avrlibc_Def_Pgm_8 (long_double, long double)
00494 #endif
00495
00496 #endif /* DOXYGEN */
00497
00498 #ifdef __DOXYGEN__
00499
00500 /** \ingroup avr_pgmspace
00501 \fn char pgm_read_char_far (uint_farptr_t __addr)
00502 Read a <tt>char</tt> from far byte-address \p __addr.
00503 The address is in the program memory. */
00504 static inline char pgm_read_char_far (uint_farptr_t __addr);
00505
00506 /** \ingroup avr_pgmspace
00507 \fn unsigned char pgm_read_unsigned_char_far (uint_farptr_t __addr)
00508 Read an <tt>unsigned char</tt> from far byte-address \p __addr.
00509 The address is in the program memory. */
00510 static inline unsigned char pgm_read_unsigned_char_far (uint_farptr_t __addr);
00511
00512 /** \ingroup avr_pgmspace
00513 \fn signed char pgm_read_signed_char_far (uint_farptr_t __addr)
00514 Read a <tt>signed char</tt> from far byte-address \p __addr.
00515 The address is in the program memory. */
00516 static inline signed char pgm_read_signed_char_far (uint_farptr_t __addr);
00517
00518 /** \ingroup avr_pgmspace

Generated by Doxygen

378

00519 \fn uint8_t pgm_read_u8_far (uint_farptr_t __addr)
00520 Read an <tt>uint8_t</tt> from far byte-address \p __addr.
00521 The address is in the program memory. */
00522 static inline uint8_t pgm_read_u8_far (uint_farptr_t __addr);
00523
00524 /** \ingroup avr_pgmspace
00525 \fn int8_t pgm_read_i8_far (uint_farptr_t __addr)
00526 Read an <tt>int8_t</tt> from far byte-address \p __addr.
00527 The address is in the program memory. */
00528 static inline int8_t pgm_read_i8_far (uint_farptr_t __addr);
00529
00530 /** \ingroup avr_pgmspace
00531 \fn short pgm_read_short_far (uint_farptr_t __addr)
00532 Read a <tt>short</tt> from far byte-address \p __addr.
00533 The address is in the program memory. */
00534 static inline short pgm_read_short_far (uint_farptr_t __addr);
00535
00536 /** \ingroup avr_pgmspace
00537 \fn unsigned short pgm_read_unsigned_short_far (uint_farptr_t __addr)
00538 Read an <tt>unsigned short</tt> from far byte-address \p __addr.
00539 The address is in the program memory. */
00540 static inline unsigned short pgm_read_unsigned_short_far (uint_farptr_t __addr);
00541
00542 /** \ingroup avr_pgmspace
00543 \fn uint16_t pgm_read_u16_far (uint_farptr_t __addr)
00544 Read an <tt>uint16_t</tt> from far byte-address \p __addr.
00545 The address is in the program memory. */
00546 static inline uint16_t pgm_read_u16_far (uint_farptr_t __addr);
00547
00548 /** \ingroup avr_pgmspace
00549 \fn int16_t pgm_read_i16_far (uint_farptr_t __addr)
00550 Read an <tt>int16_t</tt> from far byte-address \p __addr.
00551 The address is in the program memory. */
00552 static inline int16_t pgm_read_i16_far (uint_farptr_t __addr);
00553
00554 /** \ingroup avr_pgmspace
00555 \fn int pgm_read_int_far (uint_farptr_t __addr)
00556 Read an <tt>int</tt> from far byte-address \p __addr.
00557 The address is in the program memory. */
00558 static inline int pgm_read_int_far (uint_farptr_t __addr);
00559
00560 /** \ingroup avr_pgmspace
00561 \fn unsigned pgm_read_unsigned_far (uint_farptr_t __addr)
00562 Read an <tt>unsigned</tt> from far byte-address \p __addr.
00563 The address is in the program memory. */
00564 static inline unsigned pgm_read_unsigned_far (uint_farptr_t __addr);
00565
00566 /** \ingroup avr_pgmspace
00567 \fn unsigned int pgm_read_unsigned_int_far (uint_farptr_t __addr)
00568 Read an <tt>unsigned int</tt> from far byte-address \p __addr.
00569 The address is in the program memory. */
00570 static inline unsigned int pgm_read_unsigned_int_far (uint_farptr_t __addr);
00571
00572 /** \ingroup avr_pgmspace
00573 \fn signed pgm_read_signed_far (uint_farptr_t __addr)
00574 Read a <tt>signed</tt> from far byte-address \p __addr.
00575 The address is in the program memory. */
00576 static inline signed pgm_read_signed_far (uint_farptr_t __addr);
00577
00578 /** \ingroup avr_pgmspace
00579 \fn signed int pgm_read_signed_int_far (uint_farptr_t __addr)
00580 Read a <tt>signed int</tt> from far byte-address \p __addr.
00581 The address is in the program memory. */
00582 static inline signed int pgm_read_signed_int_far (uint_farptr_t __addr);
00583
00584 /** \ingroup avr_pgmspace
00585 \fn long pgm_read_long_far (uint_farptr_t __addr)
00586 Read a <tt>long</tt> from far byte-address \p __addr.
00587 The address is in the program memory. */
00588 static inline long pgm_read_long_far (uint_farptr_t __addr);
00589
00590 /** \ingroup avr_pgmspace
00591 \fn unsigned long pgm_read_unsigned_long_far (uint_farptr_t __addr)
00592 Read an <tt>unsigned long</tt> from far byte-address \p __addr.
00593 The address is in the program memory. */
00594 static inline unsigned long pgm_read_unsigned_long_far (uint_farptr_t __addr);
00595
00596 /** \ingroup avr_pgmspace
00597 \fn __int24 pgm_read_i24_far (uint_farptr_t __addr)
00598 Read an <tt>__int24</tt> from far byte-address \p __addr.
00599 The address is in the program memory. */
00600 static inline __int24 pgm_read_i24_far (uint_farptr_t __addr);
00601
00602 /** \ingroup avr_pgmspace
00603 \fn __uint24 pgm_read_u24_far (uint_farptr_t __addr)
00604 Read an <tt>__uint24</tt> from far byte-address \p __addr.
00605 The address is in the program memory. */

Generated by Doxygen

23.26 pgmspace.h 379

00606 static inline __uint24 pgm_read_u24_far (uint_farptr_t __addr);
00607
00608 /** \ingroup avr_pgmspace
00609 \fn uint32_t pgm_read_u32_far (uint_farptr_t __addr)
00610 Read an <tt>uint32_t</tt> from far byte-address \p __addr.
00611 The address is in the program memory. */
00612 static inline uint32_t pgm_read_u32_far (uint_farptr_t __addr);
00613
00614 /** \ingroup avr_pgmspace
00615 \fn int32_t pgm_read_i32_far (uint_farptr_t __addr)
00616 Read an <tt>int32_t</tt> from far byte-address \p __addr.
00617 The address is in the program memory. */
00618 static inline int32_t pgm_read_i32_far (uint_farptr_t __addr);
00619
00620 /** \ingroup avr_pgmspace
00621 \fn long long pgm_read_long_long_far (uint_farptr_t __addr)
00622 Read a <tt>long long</tt> from far byte-address \p __addr.
00623 The address is in the program memory. */
00624 static inline long long pgm_read_long_long_far (uint_farptr_t __addr);
00625
00626 /** \ingroup avr_pgmspace
00627 \fn unsigned long long pgm_read_unsigned_long_long_far (uint_farptr_t __addr)
00628 Read an <tt>unsigned long long</tt> from far byte-address \p __addr.
00629 The address is in the program memory. */
00630 static inline unsigned long long pgm_read_unsigned_long_long_far (uint_farptr_t __addr);
00631
00632 /** \ingroup avr_pgmspace
00633 \fn uint64_t pgm_read_u64_far (uint_farptr_t __addr)
00634 Read an <tt>uint64_t</tt> from far byte-address \p __addr.
00635 The address is in the program memory. */
00636 static inline uint64_t pgm_read_u64_far (uint_farptr_t __addr);
00637
00638 /** \ingroup avr_pgmspace
00639 \fn int64_t pgm_read_i64_far (uint_farptr_t __addr)
00640 Read an <tt>int64_t</tt> from far byte-address \p __addr.
00641 The address is in the program memory. */
00642 static inline int64_t pgm_read_i64_far (uint_farptr_t __addr);
00643
00644 /** \ingroup avr_pgmspace
00645 \fn float pgm_read_float_far (uint_farptr_t __addr)
00646 Read a <tt>float</tt> from far byte-address \p __addr.
00647 The address is in the program memory. */
00648 static inline float pgm_read_float_far (uint_farptr_t __addr);
00649
00650 /** \ingroup avr_pgmspace
00651 \fn double pgm_read_double_far (uint_farptr_t __addr)
00652 Read a <tt>double</tt> from far byte-address \p __addr.
00653 The address is in the program memory. */
00654 static inline double pgm_read_double_far (uint_farptr_t __addr);
00655
00656 /** \ingroup avr_pgmspace
00657 \fn long double pgm_read_long_double_far (uint_farptr_t __addr)
00658 Read a <tt>long double</tt> from far byte-address \p __addr.
00659 The address is in the program memory. */
00660 static inline long double pgm_read_long_double_far (uint_farptr_t __addr);
00661
00662 #else /* !DOXYGEN */
00663
00664 #if defined(__AVR_HAVE_ELPMX__)
00665
00666 #ifdef __AVR_HAVE_RAMPD__
00667 /* For devices with EBI, reset RAMPZ to zero after. */
00668 #define __pgm_clr_RAMPZ_ "\n\t" "out %i2,__zero_reg__"
00669 #else
00670 /* Devices without EBI: no need to reset RAMPZ. */
00671 #define __pgm_clr_RAMPZ_ /* empty */
00672 #endif
00673
00674 #define __ELPM__1(res, addr, T) \
00675 __asm __volatile__ ("movw r30,%1" "\n\t" \
00676 "out %i2,%C1" "\n\t" \
00677 "elpm %A0,Z" \
00678 __pgm_clr_RAMPZ_ \
00679 : "=r" (res) \
00680 : "r" (addr), "n" (& RAMPZ) \
00681 : "r30", "r31")
00682
00683 #define __ELPM__2(res, addr, T) \
00684 __asm __volatile__ ("movw r30,%1" "\n\t" \
00685 "out %i2,%C1" "\n\t" \
00686 "elpm %A0,Z+" "\n\t" \
00687 "elpm %B0,Z+" \
00688 __pgm_clr_RAMPZ_ \
00689 : "=r" (res) \
00690 : "r" (addr), "n" (& RAMPZ) \
00691 : "r30", "r31")
00692

Generated by Doxygen

380

00693 #define __ELPM__3(res, addr, T) \
00694 __asm __volatile__ ("movw r30,%1" "\n\t" \
00695 "out %i2,%C1" "\n\t" \
00696 "elpm %A0,Z+" "\n\t" \
00697 "elpm %B0,Z+" "\n\t" \
00698 "elpm %C0,Z+" \
00699 __pgm_clr_RAMPZ_ \
00700 : "=r" (res) \
00701 : "r" (addr), "n" (& RAMPZ) \
00702 : "r30", "r31")
00703
00704 #define __ELPM__4(res, addr, T) \
00705 __asm __volatile__ ("movw r30,%1" "\n\t" \
00706 "out %i2,%C1" "\n\t" \
00707 "elpm %A0,Z+" "\n\t" \
00708 "elpm %B0,Z+" "\n\t" \
00709 "elpm %C0,Z+" "\n\t" \
00710 "elpm %D0,Z+" \
00711 __pgm_clr_RAMPZ_ \
00712 : "=r" (res) \
00713 : "r" (addr), "n" (& RAMPZ) \
00714 : "r30", "r31")
00715
00716 #define __ELPM__8(res, addr, T) \
00717 __asm __volatile__ ("movw r30,%1" "\n\t" \
00718 "out %i2,%C1" "\n\t" \
00719 "elpm %r0+0,Z+" "\n\t" \
00720 "elpm %r0+1,Z+" "\n\t" \
00721 "elpm %r0+2,Z+" "\n\t" \
00722 "elpm %r0+3,Z+" "\n\t" \
00723 "elpm %r0+4,Z+" "\n\t" \
00724 "elpm %r0+5,Z+" "\n\t" \
00725 "elpm %r0+6,Z+" "\n\t" \
00726 "elpm %r0+7,Z+" \
00727 __pgm_clr_RAMPZ_ \
00728 : "=r" (res) \
00729 : "r" (addr), "n" (& RAMPZ) \
00730 : "r30", "r31")
00731
00732 /* FIXME: AT43USB320 does not have RAMPZ but supports (external) program
00733 memory of 64 KiW, at least that’s what the comments in io43usb32x.h are
00734 indicating. A solution would be to put the device in a different
00735 multilib-set (see GCC PR78275), as io.h has "#define FLASHEND 0x0FFFF".
00736 For now, just exclude AT43USB320 from code that uses RAMPZ. Also note
00737 that the manual asserts that the entire program memory can be accessed
00738 by LPM, implying only 64 KiB of program memory. */
00739 #elif defined(__AVR_HAVE_ELPM__) \
00740 && !defined(__AVR_AT43USB320__)
00741 /* The poor devices without ELPMx: Do 24-bit addresses by hand... */
00742 #define __ELPM__1(res, addr, T) \
00743 __asm __volatile__ ("mov r30,%A1" "\n\t" \
00744 "mov r31,%B1" "\n\t" \
00745 "out %i2,%C1 $ elpm $ mov %A0,r0" \
00746 : "=r" (res) \
00747 : "r" (addr), "n" (& RAMPZ) \
00748 : "r30", "r31", "r0")
00749
00750 #define __ELPM__2(res, addr, T) \
00751 __asm __volatile__ \
00752 ("mov r30,%A1" "\n\t" \
00753 "mov r31,%B1" "\n\t" \
00754 "mov %B0,%C1" "\n\t" \
00755 "out %i2,%B0 $ elpm $ mov %A0,r0 $ adiw r30,1 $ adc %B0,r1" "\n\t" \
00756 "out %i2,%B0 $ elpm $ mov %B0,r0" \
00757 : "=r" (res) \
00758 : "r" (addr), "n" (& RAMPZ) \
00759 : "r30", "r31", "r0")
00760
00761 #define __ELPM__3(res, addr, T) \
00762 __asm __volatile__ \
00763 ("mov r30,%A1" "\n\t" \
00764 "mov r31,%B1" "\n\t" \
00765 "mov %C0,%C1" "\n\t" \
00766 "out %i2,%C0 $ elpm $ mov %A0,r0 $ adiw r30,1 $ adc %C0,r1" "\n\t" \
00767 "out %i2,%C0 $ elpm $ mov %B0,r0 $ adiw r30,1 $ adc %C0,r1" "\n\t" \
00768 "out %i2,%C0 $ elpm $ mov %C0,r0" \
00769 : "=r" (res) \
00770 : "r" (addr), "n" (& RAMPZ) \
00771 : "r30", "r31", "r0")
00772
00773 #define __ELPM__4(res, addr, T) \
00774 __asm __volatile__ \
00775 ("mov r30,%A1" "\n\t" \
00776 "mov r31,%B1" "\n\t" \
00777 "mov %D0,%C1" "\n\t" \
00778 "out %i2,%D0 $ elpm $ mov %A0,r0 $ adiw r30,1 $ adc %D0,r1" "\n\t" \
00779 "out %i2,%D0 $ elpm $ mov %B0,r0 $ adiw r30,1 $ adc %D0,r1" "\n\t" \

Generated by Doxygen

23.26 pgmspace.h 381

00780 "out %i2,%D0 $ elpm $ mov %C0,r0 $ adiw r30,1 $ adc %D0,r1" "\n\t" \
00781 "out %i2,%D0 $ elpm $ mov %D0,r0" \
00782 : "=r" (res) \
00783 : "r" (addr), "n" (& RAMPZ) \
00784 : "r30", "r31", "r0")
00785
00786 #define __ELPM__8(res, addr, T) \
00787 __asm __volatile__ \
00788 ("mov r30,%A1" "\n\t" \
00789 "mov r31,%B1" "\n\t" \
00790 "mov %r0+7,%C1" "\n\t" \
00791 "out %i2,%r0+7 $ elpm $ mov %r0+0,r0 $ adiw r30,1 $ adc %r0+7,r1" "\n\t" \
00792 "out %i2,%r0+7 $ elpm $ mov %r0+1,r0 $ adiw r30,1 $ adc %r0+7,r1" "\n\t" \
00793 "out %i2,%r0+7 $ elpm $ mov %r0+2,r0 $ adiw r30,1 $ adc %r0+7,r1" "\n\t" \
00794 "out %i2,%r0+7 $ elpm $ mov %r0+3,r0 $ adiw r30,1 $ adc %r0+7,r1" "\n\t" \
00795 "out %i2,%r0+7 $ elpm $ mov %r0+4,r0 $ adiw r30,1 $ adc %r0+7,r1" "\n\t" \
00796 "out %i2,%r0+7 $ elpm $ mov %r0+5,r0 $ adiw r30,1 $ adc %r0+7,r1" "\n\t" \
00797 "out %i2,%r0+7 $ elpm $ mov %r0+6,r0 $ adiw r30,1 $ adc %r0+7,r1" "\n\t" \
00798 "out %i2,%r0+7 $ elpm $ mov %r0+7,r0" \
00799 : "=r" (res) \
00800 : "r" (addr), "n" (& RAMPZ) \
00801 : "r30", "r31", "r0")
00802 #else
00803 /* No ELPM: Fall back to __LPM__<N>. */
00804 #define __ELPM__1(r,a,T) const T *__a = (const T*)(uint16_t) a; __LPM__1(r,__a)
00805 #define __ELPM__2(r,a,T) const T *__a = (const T*)(uint16_t) a; __LPM__2(r,__a)
00806 #define __ELPM__3(r,a,T) const T *__a = (const T*)(uint16_t) a; __LPM__3(r,__a)
00807 #define __ELPM__4(r,a,T) const T *__a = (const T*)(uint16_t) a; __LPM__4(r,__a)
00808 #define __ELPM__8(r,a,T) const T *__a = (const T*)(uint16_t) a; __LPM__8(r,__a)
00809 #endif /* ELPM cases */
00810
00811 #define _Avrlibc_Def_Pgm_Far_1(Name, Typ) \
00812 static __ATTR_ALWAYS_INLINE__ \
00813 Typ pgm_read_##Name##_far (uint_farptr_t __addr) \
00814 { \
00815 Typ __res; \
00816 __ELPM__1 (__res, __addr, Typ); \
00817 return __res; \
00818 }
00819
00820 #define _Avrlibc_Def_Pgm_Far_2(Name, Typ) \
00821 static __ATTR_ALWAYS_INLINE__ \
00822 Typ pgm_read_##Name##_far (uint_farptr_t __addr) \
00823 { \
00824 Typ __res; \
00825 __ELPM__2 (__res, __addr, Typ); \
00826 return __res; \
00827 }
00828
00829 #define _Avrlibc_Def_Pgm_Far_3(Name, Typ) \
00830 static __ATTR_ALWAYS_INLINE__ \
00831 Typ pgm_read_##Name##_far (uint_farptr_t __addr) \
00832 { \
00833 Typ __res; \
00834 __ELPM__3 (__res, __addr, Typ); \
00835 return __res; \
00836 }
00837
00838 #define _Avrlibc_Def_Pgm_Far_4(Name, Typ) \
00839 static __ATTR_ALWAYS_INLINE__ \
00840 Typ pgm_read_##Name##_far (uint_farptr_t __addr) \
00841 { \
00842 Typ __res; \
00843 __ELPM__4 (__res, __addr, Typ); \
00844 return __res; \
00845 }
00846
00847 #define _Avrlibc_Def_Pgm_Far_8(Name, Typ) \
00848 static __ATTR_ALWAYS_INLINE__ \
00849 Typ pgm_read_##Name##_far (uint_farptr_t __addr) \
00850 { \
00851 Typ __res; \
00852 __ELPM__8 (__res, __addr, Typ); \
00853 return __res; \
00854 }
00855
00856 _Avrlibc_Def_Pgm_Far_1 (char, char)
00857 _Avrlibc_Def_Pgm_Far_1 (unsigned_char, unsigned char)
00858 _Avrlibc_Def_Pgm_Far_1 (signed_char, signed char)
00859 _Avrlibc_Def_Pgm_Far_1 (u8, uint8_t)
00860 _Avrlibc_Def_Pgm_Far_1 (i8, int8_t)
00861 #if __SIZEOF_INT__ == 1
00862 _Avrlibc_Def_Pgm_Far_1 (int, int)
00863 _Avrlibc_Def_Pgm_Far_1 (unsigned, unsigned)
00864 _Avrlibc_Def_Pgm_Far_1 (unsigned_int, unsigned int)
00865 _Avrlibc_Def_Pgm_Far_1 (signed, signed)
00866 _Avrlibc_Def_Pgm_Far_1 (signed_int, signed int)

Generated by Doxygen

382

00867 #endif
00868 #if __SIZEOF_SHORT__ == 1
00869 _Avrlibc_Def_Pgm_Far_1 (short, short)
00870 _Avrlibc_Def_Pgm_Far_1 (unsigned_short, unsigned short)
00871 #endif
00872
00873 _Avrlibc_Def_Pgm_Far_2 (u16, uint16_t)
00874 _Avrlibc_Def_Pgm_Far_2 (i16, int16_t)
00875 #if __SIZEOF_INT__ == 2
00876 _Avrlibc_Def_Pgm_Far_2 (int, int)
00877 _Avrlibc_Def_Pgm_Far_2 (unsigned, unsigned)
00878 _Avrlibc_Def_Pgm_Far_2 (unsigned_int, unsigned int)
00879 _Avrlibc_Def_Pgm_Far_2 (signed, signed)
00880 _Avrlibc_Def_Pgm_Far_2 (signed_int, signed int)
00881 #endif
00882 #if __SIZEOF_SHORT__ == 2
00883 _Avrlibc_Def_Pgm_Far_2 (short, short)
00884 _Avrlibc_Def_Pgm_Far_2 (unsigned_short, unsigned short)
00885 #endif
00886 #if __SIZEOF_LONG__ == 2
00887 _Avrlibc_Def_Pgm_Far_2 (long, long)
00888 _Avrlibc_Def_Pgm_Far_2 (unsigned_long, unsigned long)
00889 #endif
00890
00891 #if defined(__INT24_MAX__)
00892 _Avrlibc_Def_Pgm_Far_3 (i24, __int24)
00893 _Avrlibc_Def_Pgm_Far_3 (u24, __uint24)
00894 #endif /* Have __int24 */
00895
00896 _Avrlibc_Def_Pgm_Far_4 (u32, uint32_t)
00897 _Avrlibc_Def_Pgm_Far_4 (i32, int32_t)
00898 _Avrlibc_Def_Pgm_Far_4 (float, float)
00899 #if __SIZEOF_LONG__ == 4
00900 _Avrlibc_Def_Pgm_Far_4 (long, long)
00901 _Avrlibc_Def_Pgm_Far_4 (unsigned_long, unsigned long)
00902 #endif
00903 #if __SIZEOF_LONG_LONG__ == 4
00904 _Avrlibc_Def_Pgm_Far_4 (long_long, long long)
00905 _Avrlibc_Def_Pgm_Far_4 (unsigned_long_long, unsigned long long)
00906 #endif
00907 #if __SIZEOF_DOUBLE__ == 4
00908 _Avrlibc_Def_Pgm_Far_4 (double, double)
00909 #endif
00910 #if __SIZEOF_LONG_DOUBLE__ == 4
00911 _Avrlibc_Def_Pgm_Far_4 (long_double, long double)
00912 #endif
00913
00914 #if __SIZEOF_LONG_LONG__ == 8
00915 _Avrlibc_Def_Pgm_Far_8 (u64, uint64_t)
00916 _Avrlibc_Def_Pgm_Far_8 (i64, int64_t)
00917 _Avrlibc_Def_Pgm_Far_8 (long_long, long long)
00918 _Avrlibc_Def_Pgm_Far_8 (unsigned_long_long, unsigned long long)
00919 #endif
00920 #if __SIZEOF_DOUBLE__ == 8
00921 _Avrlibc_Def_Pgm_Far_8 (double, double)
00922 #endif
00923 #if __SIZEOF_LONG_DOUBLE__ == 8
00924 _Avrlibc_Def_Pgm_Far_8 (long_double, long double)
00925 #endif
00926
00927 #endif /* DOXYGEN */
00928
00929 #ifdef __cplusplus
00930 extern "C" {
00931 #endif
00932
00933 #if defined(__DOXYGEN__)
00934 /* No documentation for the deprecated stuff. */
00935 #elif defined(__PROG_TYPES_COMPAT__) /* !DOXYGEN */
00936
00937 typedef void prog_void __attribute__((__progmem__,__deprecated__("prog_void type is deprecated.")));
00938 typedef char prog_char __attribute__((__progmem__,__deprecated__("prog_char type is deprecated.")));
00939 typedef unsigned char prog_uchar __attribute__((__progmem__,__deprecated__("prog_uchar type is

deprecated.")));
00940 typedef int8_t prog_int8_t __attribute__((__progmem__,__deprecated__("prog_int8_t type is

deprecated.")));
00941 typedef uint8_t prog_uint8_t __attribute__((__progmem__,__deprecated__("prog_uint8_t type is

deprecated.")));
00942 typedef int16_t prog_int16_t __attribute__((__progmem__,__deprecated__("prog_int16_t type is

deprecated.")));
00943 typedef uint16_t prog_uint16_t __attribute__((__progmem__,__deprecated__("prog_uint16_t type is

deprecated.")));
00944 typedef int32_t prog_int32_t __attribute__((__progmem__,__deprecated__("prog_int32_t type is

deprecated.")));
00945 typedef uint32_t prog_uint32_t __attribute__((__progmem__,__deprecated__("prog_uint32_t type is

deprecated.")));
00946 #if !__USING_MINT8

Generated by Doxygen

23.26 pgmspace.h 383

00947 typedef int64_t prog_int64_t __attribute__((__progmem__,__deprecated__("prog_int64_t type is
deprecated.")));

00948 typedef uint64_t prog_uint64_t __attribute__((__progmem__,__deprecated__("prog_uint64_t type is
deprecated.")));

00949 #endif
00950
00951 #ifndef PGM_P
00952 #define PGM_P const prog_char *
00953 #endif
00954
00955 #ifndef PGM_VOID_P
00956 #define PGM_VOID_P const prog_void *
00957 #endif
00958
00959 #else /* !defined(__DOXYGEN__), !defined(__PROG_TYPES_COMPAT__) */
00960
00961 #ifndef PGM_P
00962 #define PGM_P const char *
00963 #endif
00964
00965 #ifndef PGM_VOID_P
00966 #define PGM_VOID_P const void *
00967 #endif
00968 #endif /* defined(__DOXYGEN__), defined(__PROG_TYPES_COMPAT__) */
00969
00970 /* Although in C, we can get away with just using __c, it does not work in
00971 C++. We need to use &__c[0] to avoid the compiler puking. Dave Hylands
00972 explaned it thusly,
00973
00974 Let’s suppose that we use PSTR("Test"). In this case, the type returned
00975 by __c is a prog_char[5] and not a prog_char *. While these are
00976 compatible, they aren’t the same thing (especially in C++). The type
00977 returned by &__c[0] is a prog_char *, which explains why it works
00978 fine. */
00979
00980 #if defined(__DOXYGEN__)
00981 /*
00982 * The #define below is just a dummy that serves documentation
00983 * purposes only.
00984 */
00985 /** \ingroup avr_pgmspace
00986 \def PSTR(str)
00987
00988 Used to declare a static pointer to a string in program space. */
00989 # define PSTR(str) ({ static const PROGMEM char c[] = (str); &c[0]; })
00990 #else /* !DOXYGEN */
00991 /* The real thing. */
00992 # define PSTR(s) (__extension__({static const char __c[] PROGMEM = (s); &__c[0];}))
00993 #endif /* DOXYGEN */
00994
00995 #if defined(__DOXYGEN__)
00996 /** \ingroup avr_pgmspace
00997 \def PSTR_FAR(str)
00998
00999 Used to define a string literal in far program space, and to return its
01000 address of type #uint_farptr_t. */
01001 # define PSTR_FAR(str) ({ static const PROGMEM_FAR char c[] = (str); pgm_get_far_address(c[0]); })
01002 #else /* !DOXYGEN */
01003 /* The real thing. */
01004 # define PSTR_FAR(s) (__extension__({static const char __c[] PROGMEM_FAR = (s);

pgm_get_far_address(__c[0]);}))
01005 #endif /* DOXYGEN */
01006
01007 #ifndef __DOXYGEN__
01008
01009 /* These are used down the line for pgm_read_byte[_near] etc. */
01010
01011 #if defined (__AVR_TINY__)
01012 /* Attribute __progmem__ on Reduced Tiny works different than for
01013 all the other devices: When taking the address of a symbol that’s
01014 attributed as progmem, then the compiler adds an offset of 0x4000
01015 to the value of the symbol. This means that accessing data in
01016 progmem can be performed by vanilla C/C++ code. This requires
01017 - GCC PR71948 - Make progmem work on Reduced Tiny (GCC v7 / 2016-08) */
01018 #define __LPM(addr) (* (const uint8_t*)(addr))
01019 #define __LPM_word(addr) (* (const uint16_t*)(addr))
01020 #define __LPM_dword(addr) (* (const uint32_t*)(addr))
01021 # if __SIZEOF_LONG_LONG__ == 8
01022 # define __LPM_qword(addr) (* (const uint64_t*)(addr))
01023 # endif
01024 #else
01025 #define __LPM(addr) \
01026 (__extension__({ \
01027 uint16_t __addr16 = (uint16_t) (addr); \
01028 uint8_t __result; \
01029 __LPM__1 (__result, __addr16); \
01030 __result; \

Generated by Doxygen

384

01031 }))
01032
01033 #define __LPM_word(addr) \
01034 (__extension__({ \
01035 uint16_t __addr16 = (uint16_t) (addr); \
01036 uint16_t __result; \
01037 __LPM__2 (__result, __addr16); \
01038 __result; \
01039 }))
01040
01041 #define __LPM_dword(addr) \
01042 (__extension__({ \
01043 uint16_t __addr16 = (uint16_t) (addr); \
01044 uint32_t __result; \
01045 __LPM__4 (__result, __addr16); \
01046 __result; \
01047 }))
01048
01049 #if __SIZEOF_LONG_LONG__ == 8
01050 #define __LPM_qword(addr) \
01051 (__extension__({ \
01052 uint16_t __addr16 = (uint16_t) (addr); \
01053 uint64_t __result; \
01054 __LPM__8 (__result, __addr16); \
01055 __result; \
01056 }))
01057 #endif
01058 #endif /* AVR_TINY */
01059
01060
01061 #define __ELPM(addr) \
01062 (__extension__({ \
01063 uint_farptr_t __addr32 = (addr); \
01064 uint8_t __result; \
01065 __ELPM__1 (__result, __addr32, uint8_t); \
01066 __result; \
01067 }))
01068
01069 #define __ELPM_word(addr) \
01070 (__extension__({ \
01071 uint_farptr_t __addr32 = (addr); \
01072 uint16_t __result; \
01073 __ELPM__2 (__result, __addr32, uint16_t); \
01074 __result; \
01075 }))
01076
01077 #define __ELPM_dword(addr) \
01078 (__extension__({ \
01079 uint_farptr_t __addr32 = (addr); \
01080 uint32_t __result; \
01081 __ELPM__4 (__result, __addr32, uint32_t); \
01082 __result; \
01083 }))
01084
01085 #if __SIZEOF_LONG_LONG__ == 8
01086 #define __ELPM_qword(addr) \
01087 (__extension__({ \
01088 uint_farptr_t __addr32 = (addr); \
01089 uint64_t __result; \
01090 __ELPM__8 (__result, __addr32, uint64_t); \
01091 __result; \
01092 }))
01093 #endif
01094
01095 #endif /* !__DOXYGEN__ */
01096
01097 /** \ingroup avr_pgmspace
01098 \def pgm_read_byte_near(__addr)
01099 Read a byte from the program space with a 16-bit (near) byte-address. */
01100
01101 #define pgm_read_byte_near(__addr) __LPM ((uint16_t)(__addr))
01102
01103 /** \ingroup avr_pgmspace
01104 \def pgm_read_word_near(__addr)
01105 Read a word from the program space with a 16-bit (near) byte-address. */
01106
01107 #define pgm_read_word_near(__addr) __LPM_word ((uint16_t)(__addr))
01108
01109 /** \ingroup avr_pgmspace
01110 \def pgm_read_dword_near(__addr)
01111 Read a double word from the program space with a 16-bit (near)
01112 byte-address. */
01113
01114 #define pgm_read_dword_near(__addr) \
01115 __LPM_dword ((uint16_t)(__addr))
01116
01117 /** \ingroup avr_pgmspace

Generated by Doxygen

23.26 pgmspace.h 385

01118 \def pgm_read_qword_near(__addr)
01119 Read a quad-word from the program space with a 16-bit (near)
01120 byte-address. */
01121
01122 #define pgm_read_qword_near(__addr) __LPM_qword ((uint16_t)(__addr))
01123
01124 /** \ingroup avr_pgmspace
01125 \def pgm_read_float_near (const float *address)
01126 Read a \c float from the program space with a 16-bit (near) byte-address.*/
01127
01128 #define pgm_read_float_near(addr) pgm_read_float (addr)
01129
01130 /** \ingroup avr_pgmspace
01131 \def pgm_read_ptr_near(__addr)
01132 Read a pointer from the program space with a 16-bit (near) byte-address. */
01133
01134 #define pgm_read_ptr_near(__addr) \
01135 ((void*) __LPM_word ((uint16_t)(__addr)))
01136
01137 /** \ingroup avr_pgmspace
01138 \def pgm_read_byte_far(__addr)
01139 Read a byte from the program space with a 32-bit (far) byte-address. */
01140
01141 #define pgm_read_byte_far(__addr) __ELPM (__addr)
01142
01143 /** \ingroup avr_pgmspace
01144 \def pgm_read_word_far(__addr)
01145 Read a word from the program space with a 32-bit (far) byte-address. */
01146
01147 #define pgm_read_word_far(__addr) __ELPM_word (__addr)
01148
01149 /** \ingroup avr_pgmspace
01150 \def pgm_read_dword_far(__addr)
01151 Read a double word from the program space with a 32-bit (far)
01152 byte-address. */
01153
01154 #define pgm_read_dword_far(__addr) __ELPM_dword (__addr)
01155
01156 /** \ingroup avr_pgmspace
01157 \def pgm_read_qword_far(__addr)
01158 Read a quad-word from the program space with a 32-bit (far)
01159 byte-address. */
01160
01161 #define pgm_read_qword_far(__addr) __ELPM_qword (__addr)
01162
01163 /** \ingroup avr_pgmspace
01164 \def pgm_read_ptr_far(__addr)
01165 Read a pointer from the program space with a 32-bit (far) byte-address. */
01166
01167 #define pgm_read_ptr_far(__addr) ((void*) __ELPM_word (__addr))
01168
01169 /** \ingroup avr_pgmspace
01170 \def pgm_read_byte(__addr)
01171 Read a byte from the program space with a 16-bit (near) nyte-address. */
01172
01173 #define pgm_read_byte(__addr) pgm_read_byte_near(__addr)
01174
01175 /** \ingroup avr_pgmspace
01176 \def pgm_read_word(__addr)
01177 Read a word from the program space with a 16-bit (near) byte-address. */
01178
01179 #define pgm_read_word(__addr) pgm_read_word_near(__addr)
01180
01181 /** \ingroup avr_pgmspace
01182 \def pgm_read_dword(__addr)
01183 Read a double word from the program space with a 16-bit (near)
01184 byte-address. */
01185
01186 #define pgm_read_dword(__addr) pgm_read_dword_near(__addr)
01187
01188 /** \ingroup avr_pgmspace
01189 \def pgm_read_qword(__addr)
01190 Read a quad-word from the program space with a 16-bit (near)
01191 byte-address. */
01192
01193 #define pgm_read_qword(__addr) pgm_read_qword_near(__addr)
01194
01195 /** \ingroup avr_pgmspace
01196 \def pgm_read_ptr(__addr)
01197 Read a pointer from the program space with a 16-bit (near) byte-address. */
01198
01199 #define pgm_read_ptr(__addr) pgm_read_ptr_near(__addr)
01200
01201 /** \ingroup avr_pgmspace
01202 \def pgm_get_far_address(var)
01203
01204 This macro evaluates to a ::uint_farptr_t 32-bit "far" pointer (only

Generated by Doxygen

386

01205 24 bits used) to data even beyond the 64 KiB limit for the 16-bit ordinary
01206 pointer. It is similar to the ’&’ operator, with some limitations.
01207 Example:
01208 \code
01209 #include <avr/pgmspace.h>
01210
01211 // Section .progmemx.data is located after all the code sections.
01212 __attribute__((section(".progmemx.data")))
01213 const int data[] = { 2, 3, 5, 7, 9, 11 };
01214
01215 int get_data (uint8_t idx)
01216 {
01217 uint_farptr_t pdata = pgm_get_far_address (data[0]);
01218 return pgm_read_int_far (pdata + idx * sizeof(int));
01219 }
01220 \endcode
01221
01222 Comments:
01223
01224 - The overhead is minimal and it’s mainly due to the 32-bit size operation.
01225
01226 - 24 bit sizes guarantees the code compatibility for use in future devices.
01227
01228 - \p var has to be resolved at link-time as an existing symbol,
01229 i.e. a simple variable name, an array name, or an array or structure
01230 element provided the offset is known at compile-time, and \p var is
01231 located in static storage, etc.
01232
01233 - The returned value is the symbol’s \ref sec_vma "VMA"
01234 (virtual memory address)
01235 determined by the linker and falls in the corresponding memory region.
01236 The AVR Harvard architecture requires non-overlapping VMA areas for
01237 the multiple \ref sec_memory_regions "memory regions" in the processor:
01238 Flash ROM, RAM, and EEPROM. Typical offset for these are
01239 \c 0x0, \c 0x800xx0, and \c 0x810000 respectively, derived from the
01240 linker script used and linker options.
01241 */
01242
01243 #define pgm_get_far_address(var) \
01244 (__extension__({ \
01245 uint_farptr_t __tmp; \
01246 \
01247 __asm__ __volatile__ (\
01248 "ldi %A0, lo8(%1)" "\n\t" \
01249 "ldi %B0, hi8(%1)" "\n\t" \
01250 "ldi %C0, hh8(%1)" "\n\t" \
01251 "clr %D0" \
01252 : "=d" (__tmp) \
01253 : "i" (&(var)) \
01254); \
01255 __tmp; \
01256 }))
01257
01258
01259
01260 /** \ingroup avr_pgmspace
01261 \fn const void * memchr_P(const void *s, int val, size_t len)
01262 \brief Scan flash memory for a character.
01263
01264 The memchr_P() function scans the first \p len bytes of the flash
01265 memory area pointed to by \p s for the character \p val. The first
01266 byte to match \p val (interpreted as an unsigned character) stops
01267 the operation.
01268
01269 \return The memchr_P() function returns a pointer to the matching
01270 byte or \c NULL if the character does not occur in the given memory
01271 area. */
01272 extern const void * memchr_P(const void *, int __val, size_t __len) __ATTR_CONST__;
01273
01274 /** \ingroup avr_pgmspace
01275 \fn int memcmp_P(const void *s1, const void *s2, size_t len)
01276 \brief Compare memory areas
01277
01278 The memcmp_P() function compares the first \p len bytes of the memory
01279 areas \p s1 and flash \p s2. The comparision is performed using unsigned
01280 char operations.
01281
01282 \returns The memcmp_P() function returns an integer less than, equal
01283 to, or greater than zero if the first \p len bytes of \p s1 is found,
01284 respectively, to be less than, to match, or be greater than the first
01285 \p len bytes of \p s2. */
01286 extern int memcmp_P(const void *, const void *, size_t) __ATTR_PURE__;
01287
01288 /** \ingroup avr_pgmspace
01289 \fn void *memccpy_P (void *dest, const void *src, int val, size_t len)
01290
01291 This function is similar to memccpy() except that \p src is pointer

Generated by Doxygen

23.26 pgmspace.h 387

01292 to a string in program space. */
01293 extern void *memccpy_P(void *, const void *, int __val, size_t);
01294
01295 /** \ingroup avr_pgmspace
01296 \fn void *memcpy_P(void *dest, const void *src, size_t n)
01297
01298 The memcpy_P() function is similar to memcpy(), except the src string
01299 resides in program space.
01300
01301 \returns The memcpy_P() function returns a pointer to dest. */
01302 extern void *memcpy_P(void *, const void *, size_t);
01303
01304 /** \ingroup avr_pgmspace
01305 \fn void *memmem_P(const void *s1, size_t len1, const void *s2, size_t len2)
01306
01307 The memmem_P() function is similar to memmem() except that \p s2 is
01308 pointer to a string in program space. */
01309 extern void *memmem_P(const void *, size_t, const void *, size_t) __ATTR_PURE__;
01310
01311 /** \ingroup avr_pgmspace
01312 \fn const void +memrchr_P(const void *src, int val, size_t len)
01313
01314 The memrchr_P() function is like the memchr_P() function, except
01315 that it searches backwards from the end of the \p len bytes pointed
01316 to by \p src instead of forwards from the front. (Glibc, GNU extension.)
01317
01318 \return The memrchr_P() function returns a pointer to the matching
01319 byte or \c NULL if the character does not occur in the given memory
01320 area. */
01321 extern const void * memrchr_P(const void *, int __val, size_t __len) __ATTR_CONST__;
01322
01323 /** \ingroup avr_pgmspace
01324 \fn char *strcat_P(char *dest, const char *src)
01325
01326 The strcat_P() function is similar to strcat() except that the \e src
01327 string must be located in program space (flash).
01328
01329 \returns The strcat() function returns a pointer to the resulting string
01330 \e dest. */
01331 extern char *strcat_P(char *, const char *);
01332
01333 /** \ingroup avr_pgmspace
01334 \fn const char *strchr_P(const char *s, int val)
01335 \brief Locate character in program space string.
01336
01337 The strchr_P() function locates the first occurrence of \p val
01338 (converted to a char) in the string pointed to by \p s in program
01339 space. The terminating null character is considered to be part of
01340 the string.
01341
01342 The strchr_P() function is similar to strchr() except that \p s is
01343 pointer to a string in program space.
01344
01345 \returns The strchr_P() function returns a pointer to the matched
01346 character or \c NULL if the character is not found. */
01347 extern const char * strchr_P(const char *, int __val) __ATTR_CONST__;
01348
01349 /** \ingroup avr_pgmspace
01350 \fn const char *strchrnul_P(const char *s, int c)
01351
01352 The strchrnul_P() function is like strchr_P() except that if \p c is
01353 not found in \p s, then it returns a pointer to the null byte at the
01354 end of \p s, rather than \c NULL. (Glibc, GNU extension.)
01355
01356 \return The strchrnul_P() function returns a pointer to the matched
01357 character, or a pointer to the null byte at the end of \p s (i.e.,
01358 \c s+strlen(s)) if the character is not found. */
01359 extern const char * strchrnul_P(const char *, int __val) __ATTR_CONST__;
01360
01361 /** \ingroup avr_pgmspace
01362 \fn int strcmp_P(const char *s1, const char *s2)
01363
01364 The strcmp_P() function is similar to strcmp() except that \p s2 is
01365 pointer to a string in program space.
01366
01367 \returns The strcmp_P() function returns an integer less than, equal
01368 to, or greater than zero if \p s1 is found, respectively, to be less
01369 than, to match, or be greater than \p s2. A consequence of the
01370 ordering used by strcmp_P() is that if \p s1 is an initial substring
01371 of \p s2, then \p s1 is considered to be "less than" \p s2. */
01372 extern int strcmp_P(const char *, const char *) __ATTR_PURE__;
01373
01374 /** \ingroup avr_pgmspace
01375 \fn char *strcpy_P(char *dest, const char *src)
01376
01377 The strcpy_P() function is similar to strcpy() except that src is a
01378 pointer to a string in program space.

Generated by Doxygen

388

01379
01380 \returns The strcpy_P() function returns a pointer to the destination
01381 string dest. */
01382 extern char *strcpy_P(char *, const char *);
01383
01384 /** \ingroup avr_pgmspace
01385 \fn int strcasecmp_P(const char *s1, const char *s2)
01386 \brief Compare two strings ignoring case.
01387
01388 The strcasecmp_P() function compares the two strings \p s1 and \p s2,
01389 ignoring the case of the characters.
01390
01391 \param s1 A pointer to a string in the devices SRAM.
01392 \param s2 A pointer to a string in the devices Flash.
01393
01394 \returns The strcasecmp_P() function returns an integer less than,
01395 equal to, or greater than zero if \p s1 is found, respectively, to
01396 be less than, to match, or be greater than \p s2. A consequence of
01397 the ordering used by strcasecmp_P() is that if \p s1 is an initial
01398 substring of \p s2, then \p s1 is considered to be "less than" \p s2. */
01399 extern int strcasecmp_P(const char *, const char *) __ATTR_PURE__;
01400
01401 /** \ingroup avr_pgmspace
01402 \fn char *strcasestr_P(const char *s1, const char *s2)
01403
01404 This funtion is similar to strcasestr() except that \p s2 is pointer
01405 to a string in program space. */
01406 extern char *strcasestr_P(const char *, const char *) __ATTR_PURE__;
01407
01408 /** \ingroup avr_pgmspace
01409 \fn size_t strcspn_P(const char *s, const char *reject)
01410
01411 The strcspn_P() function calculates the length of the initial segment
01412 of \p s which consists entirely of characters not in \p reject. This
01413 function is similar to strcspn() except that \p reject is a pointer
01414 to a string in program space.
01415
01416 \return The strcspn_P() function returns the number of characters in
01417 the initial segment of \p s which are not in the string \p reject.
01418 The terminating zero is not considered as a part of string. */
01419 extern size_t strcspn_P(const char *__s, const char * __reject) __ATTR_PURE__;
01420
01421 /** \ingroup avr_pgmspace
01422 \fn size_t strlcat_P(char *dst, const char *src, size_t siz)
01423 \brief Concatenate two strings.
01424
01425 The strlcat_P() function is similar to strlcat(), except that the \p src
01426 string must be located in program space (flash).
01427
01428 Appends \p src to string \p dst of size \p siz (unlike strncat(),
01429 \p siz is the full size of \p dst, not space left). At most \p siz-1
01430 characters will be copied. Always NULL terminates (unless \p siz <=
01431 \p strlen(dst)).
01432
01433 \returns The strlcat_P() function returns strlen(src) + MIN(siz,
01434 strlen(initial dst)). If retval >= siz, truncation occurred. */
01435 extern size_t strlcat_P (char *, const char *, size_t);
01436
01437 /** \ingroup avr_pgmspace
01438 \fn size_t strlcpy_P(char *dst, const char *src, size_t siz)
01439 \brief Copy a string from progmem to RAM.
01440
01441 Copy \p src to string \p dst of size \p siz. At most \p siz-1
01442 characters will be copied. Always NULL terminates (unless \p siz == 0).
01443 The strlcpy_P() function is similar to strlcpy() except that the
01444 \p src is pointer to a string in memory space.
01445
01446 \returns The strlcpy_P() function returns strlen(src). If
01447 retval >= siz, truncation occurred. */
01448 extern size_t strlcpy_P (char *, const char *, size_t);
01449
01450 /** \ingroup avr_pgmspace
01451 \fn size_t strnlen_P(const char *src, size_t len)
01452 \brief Determine the length of a fixed-size string.
01453
01454 The strnlen_P() function is similar to strnlen(), except that \c src is a
01455 pointer to a string in program space.
01456
01457 \returns The strnlen_P function returns strlen_P(src), if that is less than
01458 \c len, or \c len if there is no ’\\0’ character among the first \c len
01459 characters pointed to by \c src. */
01460 extern size_t strnlen_P(const char *, size_t) __ATTR_CONST__; /* program memory can’t change */
01461
01462 /** \ingroup avr_pgmspace
01463 \fn int strncmp_P(const char *s1, const char *s2, size_t n)
01464
01465 The strncmp_P() function is similar to strcmp_P() except it only compares

Generated by Doxygen

23.26 pgmspace.h 389

01466 the first (at most) n characters of s1 and s2.
01467
01468 \returns The strncmp_P() function returns an integer less than, equal to,
01469 or greater than zero if s1 (or the first n bytes thereof) is found,
01470 respectively, to be less than, to match, or be greater than s2. */
01471 extern int strncmp_P(const char *, const char *, size_t) __ATTR_PURE__;
01472
01473 /** \ingroup avr_pgmspace
01474 \fn int strncasecmp_P(const char *s1, const char *s2, size_t n)
01475 \brief Compare two strings ignoring case.
01476
01477 The strncasecmp_P() function is similar to strcasecmp_P(), except it
01478 only compares the first \p n characters of \p s1.
01479
01480 \param s1 A pointer to a string in the devices SRAM.
01481 \param s2 A pointer to a string in the devices Flash.
01482 \param n The maximum number of bytes to compare.
01483
01484 \returns The strncasecmp_P() function returns an integer less than,
01485 equal to, or greater than zero if \p s1 (or the first \p n bytes
01486 thereof) is found, respectively, to be less than, to match, or be
01487 greater than \p s2. A consequence of the ordering used by
01488 strncasecmp_P() is that if \p s1 is an initial substring of \p s2,
01489 then \p s1 is considered to be "less than" \p s2. */
01490 extern int strncasecmp_P(const char *, const char *, size_t) __ATTR_PURE__;
01491
01492 /** \ingroup avr_pgmspace
01493 \fn char *strncat_P(char *dest, const char *src, size_t len)
01494 \brief Concatenate two strings.
01495
01496 The strncat_P() function is similar to strncat(), except that the \e src
01497 string must be located in program space (flash).
01498
01499 \returns The strncat_P() function returns a pointer to the resulting string
01500 dest. */
01501 extern char *strncat_P(char *, const char *, size_t);
01502
01503 /** \ingroup avr_pgmspace
01504 \fn char *strncpy_P(char *dest, const char *src, size_t n)
01505
01506 The strncpy_P() function is similar to strcpy_P() except that not more
01507 than n bytes of src are copied. Thus, if there is no null byte among the
01508 first n bytes of src, the result will not be null-terminated.
01509
01510 In the case where the length of src is less than that of n, the remainder
01511 of dest will be padded with nulls.
01512
01513 \returns The strncpy_P() function returns a pointer to the destination
01514 string dest. */
01515 extern char *strncpy_P(char *, const char *, size_t);
01516
01517 /** \ingroup avr_pgmspace
01518 \fn char *strpbrk_P(const char *s, const char *accept)
01519
01520 The strpbrk_P() function locates the first occurrence in the string
01521 \p s of any of the characters in the flash string \p accept. This
01522 function is similar to strpbrk() except that \p accept is a pointer
01523 to a string in program space.
01524
01525 \return The strpbrk_P() function returns a pointer to the character
01526 in \p s that matches one of the characters in \p accept, or \c NULL
01527 if no such character is found. The terminating zero is not considered
01528 as a part of string: if one or both args are empty, the result will
01529 \c NULL. */
01530 extern char *strpbrk_P(const char *__s, const char * __accept) __ATTR_PURE__;
01531
01532 /** \ingroup avr_pgmspace
01533 \fn const char *strrchr_P(const char *s, int val)
01534 \brief Locate character in string.
01535
01536 The strrchr_P() function returns a pointer to the last occurrence of
01537 the character \p val in the flash string \p s.
01538
01539 \return The strrchr_P() function returns a pointer to the matched
01540 character or \c NULL if the character is not found. */
01541 extern const char * strrchr_P(const char *, int __val) __ATTR_CONST__;
01542
01543 /** \ingroup avr_pgmspace
01544 \fn char *strsep_P(char **sp, const char *delim)
01545 \brief Parse a string into tokens.
01546
01547 The strsep_P() function locates, in the string referenced by \p *sp,
01548 the first occurrence of any character in the string \p delim (or the
01549 terminating ’\\0’ character) and replaces it with a ’\\0’. The
01550 location of the next character after the delimiter character (or \c
01551 NULL, if the end of the string was reached) is stored in \p *sp. An
01552 “empty” field, i.e. one caused by two adjacent delimiter

Generated by Doxygen

390

01553 characters, can be detected by comparing the location referenced by
01554 the pointer returned in \p *sp to ’\\0’. This function is similar to
01555 strsep() except that \p delim is a pointer to a string in program
01556 space.
01557
01558 \return The strsep_P() function returns a pointer to the original
01559 value of \p *sp. If \p *sp is initially \c NULL, strsep_P() returns
01560 \c NULL. */
01561 extern char *strsep_P(char **__sp, const char * __delim);
01562
01563 /** \ingroup avr_pgmspace
01564 \fn size_t strspn_P(const char *s, const char *accept)
01565
01566 The strspn_P() function calculates the length of the initial segment
01567 of \p s which consists entirely of characters in \p accept. This
01568 function is similar to strspn() except that \p accept is a pointer
01569 to a string in program space.
01570
01571 \return The strspn_P() function returns the number of characters in
01572 the initial segment of \p s which consist only of characters from \p
01573 accept. The terminating zero is not considered as a part of string. */
01574 extern size_t strspn_P(const char *__s, const char * __accept) __ATTR_PURE__;
01575
01576 /** \ingroup avr_pgmspace
01577 \fn char *strstr_P(const char *s1, const char *s2)
01578 \brief Locate a substring.
01579
01580 The strstr_P() function finds the first occurrence of the substring
01581 \p s2 in the string \p s1. The terminating ’\\0’ characters are not
01582 compared. The strstr_P() function is similar to strstr() except that
01583 \p s2 is pointer to a string in program space.
01584
01585 \returns The strstr_P() function returns a pointer to the beginning
01586 of the substring, or NULL if the substring is not found. If \p s2
01587 points to a string of zero length, the function returns \p s1. */
01588 extern char *strstr_P(const char *, const char *) __ATTR_PURE__;
01589
01590 /** \ingroup avr_pgmspace
01591 \fn char *strtok_P(char *s, const char * delim)
01592 \brief Parses the string into tokens.
01593
01594 strtok_P() parses the string \p s into tokens. The first call to
01595 strtok_P() should have \p s as its first argument. Subsequent calls
01596 should have the first argument set to NULL. If a token ends with a
01597 delimiter, this delimiting character is overwritten with a ’\\0’ and a
01598 pointer to the next character is saved for the next call to strtok_P().
01599 The delimiter string \p delim may be different for each call.
01600
01601 The strtok_P() function is similar to strtok() except that \p delim
01602 is pointer to a string in program space.
01603
01604 \returns The strtok_P() function returns a pointer to the next token or
01605 NULL when no more tokens are found.
01606
01607 \note strtok_P() is NOT reentrant. For a reentrant version of this
01608 function see strtok_rP().
01609 */
01610 extern char *strtok_P(char *__s, const char * __delim);
01611
01612 /** \ingroup avr_pgmspace
01613 \fn char *strtok_rP (char *string, const char *delim, char **last)
01614 \brief Parses string into tokens.
01615
01616 The strtok_rP() function parses \p string into tokens. The first call to
01617 strtok_rP() should have string as its first argument. Subsequent calls
01618 should have the first argument set to NULL. If a token ends with a
01619 delimiter, this delimiting character is overwritten with a ’\\0’ and a
01620 pointer to the next character is saved for the next call to strtok_rP().
01621 The delimiter string \p delim may be different for each call. \p last is
01622 a user allocated char* pointer. It must be the same while parsing the
01623 same string. strtok_rP() is a reentrant version of strtok_P().
01624
01625 The strtok_rP() function is similar to strtok_r() except that \p delim
01626 is pointer to a string in program space.
01627
01628 \returns The strtok_rP() function returns a pointer to the next token or
01629 NULL when no more tokens are found. */
01630 extern char *strtok_rP(char *__s, const char * __delim, char **__last);
01631
01632 /** \ingroup avr_pgmspace
01633 \fn size_t strlen_PF(uint_farptr_t s)
01634 \brief Obtain the length of a string
01635
01636 The strlen_PF() function is similar to strlen(), except that \e s is a
01637 far pointer to a string in program space.
01638
01639 \param s A far pointer to the string in flash

Generated by Doxygen

23.26 pgmspace.h 391

01640
01641 \returns The strlen_PF() function returns the number of characters in
01642 \e s. The contents of RAMPZ SFR are undefined when the function returns. */
01643 extern size_t strlen_PF(uint_farptr_t src) __ATTR_CONST__; /* program memory can’t change */
01644
01645 /** \ingroup avr_pgmspace
01646 \fn size_t strnlen_PF(uint_farptr_t s, size_t len)
01647 \brief Determine the length of a fixed-size string
01648
01649 The strnlen_PF() function is similar to strnlen(), except that \e s is a
01650 far pointer to a string in program space.
01651
01652 \param s A far pointer to the string in Flash
01653 \param len The maximum number of length to return
01654
01655 \returns The strnlen_PF function returns strlen_P(\e s), if that is less
01656 than \e len, or \e len if there is no ’\\0’ character among the first \e
01657 len characters pointed to by \e s. The contents of RAMPZ SFR are
01658 undefined when the function returns. */
01659 extern size_t strnlen_PF(uint_farptr_t src, size_t len) __ATTR_CONST__; /* program memory can’t change

*/
01660
01661 /** \ingroup avr_pgmspace
01662 \fn void *memcpy_PF(void *dest, uint_farptr_t src, size_t n)
01663 \brief Copy a memory block from flash to SRAM
01664
01665 The memcpy_PF() function is similar to memcpy(), except the data
01666 is copied from the program space and is addressed using a far pointer.
01667
01668 \param dest A pointer to the destination buffer
01669 \param src A far pointer to the origin of data in flash memory
01670 \param n The number of bytes to be copied
01671
01672 \returns The memcpy_PF() function returns a pointer to \e dst. The contents
01673 of RAMPZ SFR are undefined when the function returns. */
01674 extern void *memcpy_PF(void *dest, uint_farptr_t src, size_t len);
01675
01676 /** \ingroup avr_pgmspace
01677 \fn char *strcpy_PF(char *dst, uint_farptr_t src)
01678 \brief Duplicate a string
01679
01680 The strcpy_PF() function is similar to strcpy() except that \e src is a far
01681 pointer to a string in program space.
01682
01683 \param dst A pointer to the destination string in SRAM
01684 \param src A far pointer to the source string in Flash
01685
01686 \returns The strcpy_PF() function returns a pointer to the destination
01687 string \e dst. The contents of RAMPZ SFR are undefined when the funcion
01688 returns. */
01689 extern char *strcpy_PF(char *dest, uint_farptr_t src);
01690
01691 /** \ingroup avr_pgmspace
01692 \fn char *strncpy_PF(char *dst, uint_farptr_t src, size_t n)
01693 \brief Duplicate a string until a limited length
01694
01695 The strncpy_PF() function is similar to strcpy_PF() except that not more
01696 than \e n bytes of \e src are copied. Thus, if there is no null byte among
01697 the first \e n bytes of \e src, the result will not be null-terminated.
01698
01699 In the case where the length of \e src is less than that of \e n, the
01700 remainder of \e dst will be padded with nulls.
01701
01702 \param dst A pointer to the destination string in SRAM
01703 \param src A far pointer to the source string in Flash
01704 \param n The maximum number of bytes to copy
01705
01706 \returns The strncpy_PF() function returns a pointer to the destination
01707 string \e dst. The contents of RAMPZ SFR are undefined when the function
01708 returns. */
01709 extern char *strncpy_PF(char *dest, uint_farptr_t src, size_t len);
01710
01711 /** \ingroup avr_pgmspace
01712 \fn char *strcat_PF(char *dst, uint_farptr_t src)
01713 \brief Concatenates two strings
01714
01715 The strcat_PF() function is similar to strcat() except that the \e src
01716 string must be located in program space (flash) and is addressed using
01717 a far pointer
01718
01719 \param dst A pointer to the destination string in SRAM
01720 \param src A far pointer to the string to be appended in Flash
01721
01722 \returns The strcat_PF() function returns a pointer to the resulting
01723 string \e dst. The contents of RAMPZ SFR are undefined when the function
01724 returns */
01725 extern char *strcat_PF(char *dest, uint_farptr_t src);

Generated by Doxygen

392

01726
01727 /** \ingroup avr_pgmspace
01728 \fn size_t strlcat_PF(char *dst, uint_farptr_t src, size_t n)
01729 \brief Concatenate two strings
01730
01731 The strlcat_PF() function is similar to strlcat(), except that the \e src
01732 string must be located in program space (flash) and is addressed using
01733 a far pointer.
01734
01735 Appends src to string dst of size \e n (unlike strncat(), \e n is the
01736 full size of \e dst, not space left). At most \e n-1 characters
01737 will be copied. Always NULL terminates (unless \e n <= strlen(\e dst)).
01738
01739 \param dst A pointer to the destination string in SRAM
01740 \param src A far pointer to the source string in Flash
01741 \param n The total number of bytes allocated to the destination string
01742
01743 \returns The strlcat_PF() function returns strlen(\e src) + MIN(\e n,
01744 strlen(initial \e dst)). If retval >= \e n, truncation occurred. The
01745 contents of RAMPZ SFR are undefined when the funcion returns. */
01746 extern size_t strlcat_PF(char *dst, uint_farptr_t src, size_t siz);
01747
01748 /** \ingroup avr_pgmspace
01749 \fn char *strncat_PF(char *dst, uint_farptr_t src, size_t n)
01750 \brief Concatenate two strings
01751
01752 The strncat_PF() function is similar to strncat(), except that the \e src
01753 string must be located in program space (flash) and is addressed using a
01754 far pointer.
01755
01756 \param dst A pointer to the destination string in SRAM
01757 \param src A far pointer to the source string in Flash
01758 \param n The maximum number of bytes to append
01759
01760 \returns The strncat_PF() function returns a pointer to the resulting
01761 string \e dst. The contents of RAMPZ SFR are undefined when the function
01762 returns. */
01763 extern char *strncat_PF(char *dest, uint_farptr_t src, size_t len);
01764
01765 /** \ingroup avr_pgmspace
01766 \fn int strcmp_PF(const char *s1, uint_farptr_t s2)
01767 \brief Compares two strings
01768
01769 The strcmp_PF() function is similar to strcmp() except that \e s2 is a far
01770 pointer to a string in program space.
01771
01772 \param s1 A pointer to the first string in SRAM
01773 \param s2 A far pointer to the second string in Flash
01774
01775 \returns The strcmp_PF() function returns an integer less than, equal to,
01776 or greater than zero if \e s1 is found, respectively, to be less than, to
01777 match, or be greater than \e s2. The contents of RAMPZ SFR are undefined
01778 when the function returns. */
01779 extern int strcmp_PF(const char *s1, uint_farptr_t s2) __ATTR_PURE__;
01780
01781 /** \ingroup avr_pgmspace
01782 \fn int strncmp_PF(const char *s1, uint_farptr_t s2, size_t n)
01783 \brief Compare two strings with limited length
01784
01785 The strncmp_PF() function is similar to strcmp_PF() except it only
01786 compares the first (at most) \e n characters of \e s1 and \e s2.
01787
01788 \param s1 A pointer to the first string in SRAM
01789 \param s2 A far pointer to the second string in Flash
01790 \param n The maximum number of bytes to compare
01791
01792 \returns The strncmp_PF() function returns an integer less than, equal
01793 to, or greater than zero if \e s1 (or the first \e n bytes thereof) is found,
01794 respectively, to be less than, to match, or be greater than \e s2. The
01795 contents of RAMPZ SFR are undefined when the function returns. */
01796 extern int strncmp_PF(const char *s1, uint_farptr_t s2, size_t n) __ATTR_PURE__;
01797
01798 /** \ingroup avr_pgmspace
01799 \fn int strcasecmp_PF(const char *s1, uint_farptr_t s2)
01800 \brief Compare two strings ignoring case
01801
01802 The strcasecmp_PF() function compares the two strings \e s1 and \e s2, ignoring
01803 the case of the characters.
01804
01805 \param s1 A pointer to the first string in SRAM
01806 \param s2 A far pointer to the second string in Flash
01807
01808 \returns The strcasecmp_PF() function returns an integer less than, equal
01809 to, or greater than zero if \e s1 is found, respectively, to be less than, to
01810 match, or be greater than \e s2. The contents of RAMPZ SFR are undefined
01811 when the function returns. */
01812 extern int strcasecmp_PF(const char *s1, uint_farptr_t s2) __ATTR_PURE__;

Generated by Doxygen

23.26 pgmspace.h 393

01813
01814 /** \ingroup avr_pgmspace
01815 \fn int strncasecmp_PF(const char *s1, uint_farptr_t s2, size_t n)
01816 \brief Compare two strings ignoring case
01817
01818 The strncasecmp_PF() function is similar to strcasecmp_PF(), except it
01819 only compares the first \e n characters of \e s1 and the string in flash is
01820 addressed using a far pointer.
01821
01822 \param s1 A pointer to a string in SRAM
01823 \param s2 A far pointer to a string in Flash
01824 \param n The maximum number of bytes to compare
01825
01826 \returns The strncasecmp_PF() function returns an integer less than, equal
01827 to, or greater than zero if \e s1 (or the first \e n bytes thereof) is found,
01828 respectively, to be less than, to match, or be greater than \e s2. The
01829 contents of RAMPZ SFR are undefined when the function returns. */
01830 extern int strncasecmp_PF(const char *s1, uint_farptr_t s2, size_t n) __ATTR_PURE__;
01831
01832 /** \ingroup avr_pgmspace
01833 \fn uint_farptr_t strchr_PF(uint_farptr_t s, int val)
01834 \brief Locate character in far program space string.
01835
01836 The strchr_PF() function locates the first occurrence of \p val
01837 (converted to a char) in the string pointed to by \p s in far program
01838 space. The terminating null character is considered to be part of
01839 the string.
01840
01841 The strchr_PF() function is similar to strchr() except that \p s is
01842 a far pointer to a string in program space that’s \e not \e required to be
01843 located in the lower 64 KiB block like it is the case for strchr_P().
01844
01845 \returns The strchr_PF() function returns a far pointer to the matched
01846 character or \c 0 if the character is not found. */
01847 extern uint_farptr_t strchr_PF(uint_farptr_t, int __val) __ATTR_CONST__;
01848
01849 /** \ingroup avr_pgmspace
01850 \fn char *strstr_PF(const char *s1, uint_farptr_t s2)
01851 \brief Locate a substring.
01852
01853 The strstr_PF() function finds the first occurrence of the substring \c s2
01854 in the string \c s1. The terminating ’\\0’ characters are not
01855 compared.
01856 The strstr_PF() function is similar to strstr() except that \c s2 is a
01857 far pointer to a string in program space.
01858
01859 \returns The strstr_PF() function returns a pointer to the beginning of the
01860 substring, or NULL if the substring is not found.
01861 If \c s2 points to a string of zero length, the function returns \c s1. The
01862 contents of RAMPZ SFR are undefined when the function returns. */
01863 extern char *strstr_PF(const char *s1, uint_farptr_t s2);
01864
01865 /** \ingroup avr_pgmspace
01866 \fn size_t strlcpy_PF(char *dst, uint_farptr_t src, size_t siz)
01867 \brief Copy a string from progmem to RAM.
01868
01869 Copy src to string dst of size siz. At most siz-1 characters will be
01870 copied. Always NULL terminates (unless siz == 0).
01871
01872 \returns The strlcpy_PF() function returns strlen(src). If retval >= siz,
01873 truncation occurred. The contents of RAMPZ SFR are undefined when the
01874 function returns. */
01875 extern size_t strlcpy_PF(char *dst, uint_farptr_t src, size_t siz);
01876
01877 /** \ingroup avr_pgmspace
01878 \fn int memcmp_PF(const void *s1, uint_farptr_t s2, size_t len)
01879 \brief Compare memory areas
01880
01881 The memcmp_PF() function compares the first \p len bytes of the memory
01882 areas \p s1 and flash \p s2. The comparision is performed using unsigned
01883 char operations. It is an equivalent of memcmp_P() function, except
01884 that it is capable working on all FLASH including the exteded area
01885 above 64kB.
01886
01887 \returns The memcmp_PF() function returns an integer less than, equal
01888 to, or greater than zero if the first \p len bytes of \p s1 is found,
01889 respectively, to be less than, to match, or be greater than the first
01890 \p len bytes of \p s2. */
01891 extern int memcmp_PF(const void *, uint_farptr_t, size_t) __ATTR_PURE__;
01892
01893 #ifdef __DOXYGEN__
01894 /** \ingroup avr_pgmspace
01895 \fn size_t strlen_P(const char *src)
01896
01897 The strlen_P() function is similar to strlen(), except that src is a
01898 pointer to a string in program space.
01899

Generated by Doxygen

394

01900 \returns The strlen_P() function returns the number of characters in src.
01901
01902 \note strlen_P() is implemented as an inline function in the avr/pgmspace.h
01903 header file, which will check if the length of the string is a constant
01904 and known at compile time. If it is not known at compile time, the macro
01905 will issue a call to __strlen_P() which will then calculate the length
01906 of the string as normal.
01907 */
01908 static inline size_t strlen_P(const char * s);
01909 #else /* !DOXYGEN */
01910
01911 #ifdef __AVR_TINY__
01912 #define __strlen_P strlen
01913 extern size_t strlen (const char*);
01914 #else
01915 extern size_t __strlen_P(const char *) __ATTR_CONST__; /* internal helper function */
01916 #endif
01917
01918 static __ATTR_ALWAYS_INLINE__ size_t strlen_P(const char * s);
01919 size_t strlen_P(const char *s)
01920 {
01921 return __builtin_constant_p(__builtin_strlen(s))
01922 ? __builtin_strlen(s) : __strlen_P(s);
01923 }
01924 #endif /* DOXYGEN */
01925
01926 #ifdef __cplusplus
01927 } // extern "C"
01928 #endif
01929
01930 #if defined(__cplusplus) && defined(__pgm_read_template__)
01931
01932 /* Caveat: When this file is found via -isystem <path>, then some older
01933 avr-g++ versions come up with
01934
01935 error: template with C linkage
01936
01937 because the target description did not define NO_IMPLICIT_EXTERN_C. */
01938
01939 template<typename __T, size_t>
01940 struct __pgm_read_impl
01941 {
01942 // A default implementaton for T’s with a size not in { 1, 2, 3, 4, 8 }.
01943 // While this works, the performance is absolute scrap because GCC does
01944 // not handle objects well that don’t fit in a register (i.e. avr-gcc
01945 // has no respective machine_mode).
01946 __T operator() (const __T *__addr) const
01947 {
01948 __T __res;
01949 memcpy_P (&__res, __addr, sizeof(__T));
01950 return __res;
01951 }
01952 };
01953
01954 template<typename __T>
01955 struct __pgm_read_impl<__T, 1>
01956 {
01957 __T operator() (const __T *__addr) const
01958 {
01959 __T __res; __LPM__1 (__res, __addr); return __res;
01960 }
01961 };
01962
01963 template<typename __T>
01964 struct __pgm_read_impl<__T, 2>
01965 {
01966 __T operator() (const __T *__addr) const
01967 {
01968 __T __res; __LPM__2 (__res, __addr); return __res;
01969 }
01970 };
01971
01972 template<typename __T>
01973 struct __pgm_read_impl<__T, 3>
01974 {
01975 __T operator() (const __T *__addr) const
01976 {
01977 __T __res; __LPM__3 (__res, __addr); return __res;
01978 }
01979 };
01980
01981 template<typename __T>
01982 struct __pgm_read_impl<__T, 4>
01983 {
01984 __T operator() (const __T *__addr) const
01985 {
01986 __T __res; __LPM__4 (__res, __addr); return __res;

Generated by Doxygen

23.26 pgmspace.h 395

01987 }
01988 };
01989
01990 template<typename __T>
01991 struct __pgm_read_impl<__T, 8>
01992 {
01993 __T operator() (const __T *__addr) const
01994 {
01995 __T __res; __LPM__8 (__res, __addr); return __res;
01996 }
01997 };
01998
01999 template<typename __T>
02000 __T pgm_read (const __T *__addr)
02001 {
02002 return __pgm_read_impl<__T, sizeof(__T)>() (__addr);
02003 }
02004
02005 //
02006
02007 template<typename __T, size_t>
02008 struct __pgm_read_far_impl
02009 {
02010 // A default implementaton for T’s with a size not in { 1, 2, 3, 4, 8 }.
02011 // While this works, the performance is absolute scrap because GCC does
02012 // not handle objects well that don’t fit in a register (i.e. avr-gcc
02013 // has no respective machine_mode).
02014 __T operator() (const __T *__addr) const
02015 {
02016 __T __res;
02017 memcpy_PF (&__res, __addr, sizeof(__T));
02018 return __res;
02019 }
02020 };
02021
02022 template<typename __T>
02023 struct __pgm_read_far_impl<__T, 1>
02024 {
02025 __T operator() (uint_farptr_t __addr) const
02026 {
02027 __T __res; __ELPM__1 (__res, __addr, __T); return __res;
02028 }
02029 };
02030
02031 template<typename __T>
02032 struct __pgm_read_far_impl<__T, 2>
02033 {
02034 __T operator() (uint_farptr_t __addr) const
02035 {
02036 __T __res; __ELPM__2 (__res, __addr, __T); return __res;
02037 }
02038 };
02039
02040 template<typename __T>
02041 struct __pgm_read_far_impl<__T, 3>
02042 {
02043 __T operator() (uint_farptr_t __addr) const
02044 {
02045 __T __res; __ELPM__3 (__res, __addr, __T); return __res;
02046 }
02047 };
02048
02049 template<typename __T>
02050 struct __pgm_read_far_impl<__T, 4>
02051 {
02052 __T operator() (uint_farptr_t __addr) const
02053 {
02054 __T __res; __ELPM__4 (__res, __addr, __T); return __res;
02055 }
02056 };
02057
02058 template<typename __T>
02059 struct __pgm_read_far_impl<__T, 8>
02060 {
02061 __T operator() (uint_farptr_t __addr) const
02062 {
02063 __T __res; __ELPM__8 (__res, __addr, __T); return __res;
02064 }
02065 };
02066
02067 template<typename __T>
02068 __T pgm_read_far (uint_farptr_t __addr)
02069 {
02070 return __pgm_read_far_impl<__T, sizeof(__T)>() (__addr);
02071 }
02072
02073 #endif /* C++ */

Generated by Doxygen

396

02074
02075 #ifdef __DOXYGEN__
02076 /** \ingroup avr_pgmspace
02077 \fn T pgm_read<T> (const T *addr)
02078
02079 Read an object of type \c T from program memory address \p addr and
02080 return it.
02081 This template is only available when macro \c __pgm_read_template__
02082 is defined. */
02083 template<typename T>
02084 T pgm_read<T> (const T *addr);
02085
02086 /** \ingroup avr_pgmspace
02087 \fn T pgm_read_far<T> (uint_farptr_t addr)
02088
02089 Read an object of type \c T from program memory address \p addr and
02090 return it.
02091 This template is only available when macro \c __pgm_read_template__
02092 is defined. */
02093 template<typename T>
02094 T pgm_read_far<T> (uint_farptr_t addr);
02095 #endif /* DOXYGEN */
02096
02097 #endif /* __PGMSPACE_H_ */

23.27 portpins.h
00001 /* Copyright (c) 2003 Theodore A. Roth
00002 All rights reserved.
00003
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions are met:
00006
00007 * Redistributions of source code must retain the above copyright
00008 notice, this list of conditions and the following disclaimer.
00009
00010 * Redistributions in binary form must reproduce the above copyright
00011 notice, this list of conditions and the following disclaimer in
00012 the documentation and/or other materials provided with the
00013 distribution.
00014
00015 * Neither the name of the copyright holders nor the names of
00016 contributors may be used to endorse or promote products derived
00017 from this software without specific prior written permission.
00018
00019 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00020 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00021 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00022 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00023 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00024 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00025 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00026 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00027 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00028 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00029 POSSIBILITY OF SUCH DAMAGE. */
00030
00031 /* Id */
00032
00033 #ifndef _AVR_PORTPINS_H_
00034 #define _AVR_PORTPINS_H_ 1
00035
00036 /* This file should only be included from <avr/io.h>, never directly. */
00037
00038 #ifndef _AVR_IO_H_
00039 # error "Include <avr/io.h> instead of this file."
00040 #endif
00041
00042 /* Define Generic PORTn, DDn, and PINn values. */
00043
00044 /* Port Data Register (generic) */
00045 #define PORT7 7
00046 #define PORT6 6
00047 #define PORT5 5
00048 #define PORT4 4
00049 #define PORT3 3
00050 #define PORT2 2
00051 #define PORT1 1
00052 #define PORT0 0
00053
00054 /* Port Data Direction Register (generic) */
00055 #define DD7 7
00056 #define DD6 6
00057 #define DD5 5

Generated by Doxygen

23.27 portpins.h 397

00058 #define DD4 4
00059 #define DD3 3
00060 #define DD2 2
00061 #define DD1 1
00062 #define DD0 0
00063
00064 /* Port Input Pins (generic) */
00065 #define PIN7 7
00066 #define PIN6 6
00067 #define PIN5 5
00068 #define PIN4 4
00069 #define PIN3 3
00070 #define PIN2 2
00071 #define PIN1 1
00072 #define PIN0 0
00073
00074 /* Define PORTxn an Pxn values for all possible port pins if not defined already by io.h. */
00075
00076 /* PORT A */
00077
00078 #if defined(PA0) && !defined(PORTA0)
00079 # define PORTA0 PA0
00080 #elif defined(PORTA0) && !defined(PA0)
00081 # define PA0 PORTA0
00082 #endif
00083 #if defined(PA1) && !defined(PORTA1)
00084 # define PORTA1 PA1
00085 #elif defined(PORTA1) && !defined(PA1)
00086 # define PA1 PORTA1
00087 #endif
00088 #if defined(PA2) && !defined(PORTA2)
00089 # define PORTA2 PA2
00090 #elif defined(PORTA2) && !defined(PA2)
00091 # define PA2 PORTA2
00092 #endif
00093 #if defined(PA3) && !defined(PORTA3)
00094 # define PORTA3 PA3
00095 #elif defined(PORTA3) && !defined(PA3)
00096 # define PA3 PORTA3
00097 #endif
00098 #if defined(PA4) && !defined(PORTA4)
00099 # define PORTA4 PA4
00100 #elif defined(PORTA4) && !defined(PA4)
00101 # define PA4 PORTA4
00102 #endif
00103 #if defined(PA5) && !defined(PORTA5)
00104 # define PORTA5 PA5
00105 #elif defined(PORTA5) && !defined(PA5)
00106 # define PA5 PORTA5
00107 #endif
00108 #if defined(PA6) && !defined(PORTA6)
00109 # define PORTA6 PA6
00110 #elif defined(PORTA6) && !defined(PA6)
00111 # define PA6 PORTA6
00112 #endif
00113 #if defined(PA7) && !defined(PORTA7)
00114 # define PORTA7 PA7
00115 #elif defined(PORTA7) && !defined(PA7)
00116 # define PA7 PORTA7
00117 #endif
00118
00119 /* PORT B */
00120
00121 #if defined(PB0) && !defined(PORTB0)
00122 # define PORTB0 PB0
00123 #elif defined(PORTB0) && !defined(PB0)
00124 # define PB0 PORTB0
00125 #endif
00126 #if defined(PB1) && !defined(PORTB1)
00127 # define PORTB1 PB1
00128 #elif defined(PORTB1) && !defined(PB1)
00129 # define PB1 PORTB1
00130 #endif
00131 #if defined(PB2) && !defined(PORTB2)
00132 # define PORTB2 PB2
00133 #elif defined(PORTB2) && !defined(PB2)
00134 # define PB2 PORTB2
00135 #endif
00136 #if defined(PB3) && !defined(PORTB3)
00137 # define PORTB3 PB3
00138 #elif defined(PORTB3) && !defined(PB3)
00139 # define PB3 PORTB3
00140 #endif
00141 #if defined(PB4) && !defined(PORTB4)
00142 # define PORTB4 PB4
00143 #elif defined(PORTB4) && !defined(PB4)
00144 # define PB4 PORTB4

Generated by Doxygen

398

00145 #endif
00146 #if defined(PB5) && !defined(PORTB5)
00147 # define PORTB5 PB5
00148 #elif defined(PORTB5) && !defined(PB5)
00149 # define PB5 PORTB5
00150 #endif
00151 #if defined(PB6) && !defined(PORTB6)
00152 # define PORTB6 PB6
00153 #elif defined(PORTB6) && !defined(PB6)
00154 # define PB6 PORTB6
00155 #endif
00156 #if defined(PB7) && !defined(PORTB7)
00157 # define PORTB7 PB7
00158 #elif defined(PORTB7) && !defined(PB7)
00159 # define PB7 PORTB7
00160 #endif
00161
00162 /* PORT C */
00163
00164 #if defined(PC0) && !defined(PORTC0)
00165 # define PORTC0 PC0
00166 #elif defined(PORTC0) && !defined(PC0)
00167 # define PC0 PORTC0
00168 #endif
00169 #if defined(PC1) && !defined(PORTC1)
00170 # define PORTC1 PC1
00171 #elif defined(PORTC1) && !defined(PC1)
00172 # define PC1 PORTC1
00173 #endif
00174 #if defined(PC2) && !defined(PORTC2)
00175 # define PORTC2 PC2
00176 #elif defined(PORTC2) && !defined(PC2)
00177 # define PC2 PORTC2
00178 #endif
00179 #if defined(PC3) && !defined(PORTC3)
00180 # define PORTC3 PC3
00181 #elif defined(PORTC3) && !defined(PC3)
00182 # define PC3 PORTC3
00183 #endif
00184 #if defined(PC4) && !defined(PORTC4)
00185 # define PORTC4 PC4
00186 #elif defined(PORTC4) && !defined(PC4)
00187 # define PC4 PORTC4
00188 #endif
00189 #if defined(PC5) && !defined(PORTC5)
00190 # define PORTC5 PC5
00191 #elif defined(PORTC5) && !defined(PC5)
00192 # define PC5 PORTC5
00193 #endif
00194 #if defined(PC6) && !defined(PORTC6)
00195 # define PORTC6 PC6
00196 #elif defined(PORTC6) && !defined(PC6)
00197 # define PC6 PORTC6
00198 #endif
00199 #if defined(PC7) && !defined(PORTC7)
00200 # define PORTC7 PC7
00201 #elif defined(PORTC7) && !defined(PC7)
00202 # define PC7 PORTC7
00203 #endif
00204
00205 /* PORT D */
00206
00207 #if defined(PD0) && !defined(PORTD0)
00208 # define PORTD0 PD0
00209 #elif defined(PORTD0) && !defined(PD0)
00210 # define PD0 PORTD0
00211 #endif
00212 #if defined(PD1) && !defined(PORTD1)
00213 # define PORTD1 PD1
00214 #elif defined(PORTD1) && !defined(PD1)
00215 # define PD1 PORTD1
00216 #endif
00217 #if defined(PD2) && !defined(PORTD2)
00218 # define PORTD2 PD2
00219 #elif defined(PORTD2) && !defined(PD2)
00220 # define PD2 PORTD2
00221 #endif
00222 #if defined(PD3) && !defined(PORTD3)
00223 # define PORTD3 PD3
00224 #elif defined(PORTD3) && !defined(PD3)
00225 # define PD3 PORTD3
00226 #endif
00227 #if defined(PD4) && !defined(PORTD4)
00228 # define PORTD4 PD4
00229 #elif defined(PORTD4) && !defined(PD4)
00230 # define PD4 PORTD4
00231 #endif

Generated by Doxygen

23.27 portpins.h 399

00232 #if defined(PD5) && !defined(PORTD5)
00233 # define PORTD5 PD5
00234 #elif defined(PORTD5) && !defined(PD5)
00235 # define PD5 PORTD5
00236 #endif
00237 #if defined(PD6) && !defined(PORTD6)
00238 # define PORTD6 PD6
00239 #elif defined(PORTD6) && !defined(PD6)
00240 # define PD6 PORTD6
00241 #endif
00242 #if defined(PD7) && !defined(PORTD7)
00243 # define PORTD7 PD7
00244 #elif defined(PORTD7) && !defined(PD7)
00245 # define PD7 PORTD7
00246 #endif
00247
00248 /* PORT E */
00249
00250 #if defined(PE0) && !defined(PORTE0)
00251 # define PORTE0 PE0
00252 #elif defined(PORTE0) && !defined(PE0)
00253 # define PE0 PORTE0
00254 #endif
00255 #if defined(PE1) && !defined(PORTE1)
00256 # define PORTE1 PE1
00257 #elif defined(PORTE1) && !defined(PE1)
00258 # define PE1 PORTE1
00259 #endif
00260 #if defined(PE2) && !defined(PORTE2)
00261 # define PORTE2 PE2
00262 #elif defined(PORTE2) && !defined(PE2)
00263 # define PE2 PORTE2
00264 #endif
00265 #if defined(PE3) && !defined(PORTE3)
00266 # define PORTE3 PE3
00267 #elif defined(PORTE3) && !defined(PE3)
00268 # define PE3 PORTE3
00269 #endif
00270 #if defined(PE4) && !defined(PORTE4)
00271 # define PORTE4 PE4
00272 #elif defined(PORTE4) && !defined(PE4)
00273 # define PE4 PORTE4
00274 #endif
00275 #if defined(PE5) && !defined(PORTE5)
00276 # define PORTE5 PE5
00277 #elif defined(PORTE5) && !defined(PE5)
00278 # define PE5 PORTE5
00279 #endif
00280 #if defined(PE6) && !defined(PORTE6)
00281 # define PORTE6 PE6
00282 #elif defined(PORTE6) && !defined(PE6)
00283 # define PE6 PORTE6
00284 #endif
00285 #if defined(PE7) && !defined(PORTE7)
00286 # define PORTE7 PE7
00287 #elif defined(PORTE7) && !defined(PE7)
00288 # define PE7 PORTE7
00289 #endif
00290
00291 /* PORT F */
00292
00293 #if defined(PF0) && !defined(PORTF0)
00294 # define PORTF0 PF0
00295 #elif defined(PORTF0) && !defined(PF0)
00296 # define PF0 PORTF0
00297 #endif
00298 #if defined(PF1) && !defined(PORTF1)
00299 # define PORTF1 PF1
00300 #elif defined(PORTF1) && !defined(PF1)
00301 # define PF1 PORTF1
00302 #endif
00303 #if defined(PF2) && !defined(PORTF2)
00304 # define PORTF2 PF2
00305 #elif defined(PORTF2) && !defined(PF2)
00306 # define PF2 PORTF2
00307 #endif
00308 #if defined(PF3) && !defined(PORTF3)
00309 # define PORTF3 PF3
00310 #elif defined(PORTF3) && !defined(PF3)
00311 # define PF3 PORTF3
00312 #endif
00313 #if defined(PF4) && !defined(PORTF4)
00314 # define PORTF4 PF4
00315 #elif defined(PORTF4) && !defined(PF4)
00316 # define PF4 PORTF4
00317 #endif
00318 #if defined(PF5) && !defined(PORTF5)

Generated by Doxygen

400

00319 # define PORTF5 PF5
00320 #elif defined(PORTF5) && !defined(PF5)
00321 # define PF5 PORTF5
00322 #endif
00323 #if defined(PF6) && !defined(PORTF6)
00324 # define PORTF6 PF6
00325 #elif defined(PORTF6) && !defined(PF6)
00326 # define PF6 PORTF6
00327 #endif
00328 #if defined(PF7) && !defined(PORTF7)
00329 # define PORTF7 PF7
00330 #elif defined(PORTF7) && !defined(PF7)
00331 # define PF7 PORTF7
00332 #endif
00333
00334 /* PORT G */
00335
00336 #if defined(PG0) && !defined(PORTG0)
00337 # define PORTG0 PG0
00338 #elif defined(PORTG0) && !defined(PG0)
00339 # define PG0 PORTG0
00340 #endif
00341 #if defined(PG1) && !defined(PORTG1)
00342 # define PORTG1 PG1
00343 #elif defined(PORTG1) && !defined(PG1)
00344 # define PG1 PORTG1
00345 #endif
00346 #if defined(PG2) && !defined(PORTG2)
00347 # define PORTG2 PG2
00348 #elif defined(PORTG2) && !defined(PG2)
00349 # define PG2 PORTG2
00350 #endif
00351 #if defined(PG3) && !defined(PORTG3)
00352 # define PORTG3 PG3
00353 #elif defined(PORTG3) && !defined(PG3)
00354 # define PG3 PORTG3
00355 #endif
00356 #if defined(PG4) && !defined(PORTG4)
00357 # define PORTG4 PG4
00358 #elif defined(PORTG4) && !defined(PG4)
00359 # define PG4 PORTG4
00360 #endif
00361 #if defined(PG5) && !defined(PORTG5)
00362 # define PORTG5 PG5
00363 #elif defined(PORTG5) && !defined(PG5)
00364 # define PG5 PORTG5
00365 #endif
00366 #if defined(PG6) && !defined(PORTG6)
00367 # define PORTG6 PG6
00368 #elif defined(PORTG6) && !defined(PG6)
00369 # define PG6 PORTG6
00370 #endif
00371 #if defined(PG7) && !defined(PORTG7)
00372 # define PORTG7 PG7
00373 #elif defined(PORTG7) && !defined(PG7)
00374 # define PG7 PORTG7
00375 #endif
00376
00377 /* PORT H */
00378
00379 #if defined(PH0) && !defined(PORTH0)
00380 # define PORTH0 PH0
00381 #elif defined(PORTH0) && !defined(PH0)
00382 # define PH0 PORTH0
00383 #endif
00384 #if defined(PH1) && !defined(PORTH1)
00385 # define PORTH1 PH1
00386 #elif defined(PORTH1) && !defined(PH1)
00387 # define PH1 PORTH1
00388 #endif
00389 #if defined(PH2) && !defined(PORTH2)
00390 # define PORTH2 PH2
00391 #elif defined(PORTH2) && !defined(PH2)
00392 # define PH2 PORTH2
00393 #endif
00394 #if defined(PH3) && !defined(PORTH3)
00395 # define PORTH3 PH3
00396 #elif defined(PORTH3) && !defined(PH3)
00397 # define PH3 PORTH3
00398 #endif
00399 #if defined(PH4) && !defined(PORTH4)
00400 # define PORTH4 PH4
00401 #elif defined(PORTH4) && !defined(PH4)
00402 # define PH4 PORTH4
00403 #endif
00404 #if defined(PH5) && !defined(PORTH5)
00405 # define PORTH5 PH5

Generated by Doxygen

23.27 portpins.h 401

00406 #elif defined(PORTH5) && !defined(PH5)
00407 # define PH5 PORTH5
00408 #endif
00409 #if defined(PH6) && !defined(PORTH6)
00410 # define PORTH6 PH6
00411 #elif defined(PORTH6) && !defined(PH6)
00412 # define PH6 PORTH6
00413 #endif
00414 #if defined(PH7) && !defined(PORTH7)
00415 # define PORTH7 PH7
00416 #elif defined(PORTH7) && !defined(PH7)
00417 # define PH7 PORTH7
00418 #endif
00419
00420 /* PORT J */
00421
00422 #if defined(PJ0) && !defined(PORTJ0)
00423 # define PORTJ0 PJ0
00424 #elif defined(PORTJ0) && !defined(PJ0)
00425 # define PJ0 PORTJ0
00426 #endif
00427 #if defined(PJ1) && !defined(PORTJ1)
00428 # define PORTJ1 PJ1
00429 #elif defined(PORTJ1) && !defined(PJ1)
00430 # define PJ1 PORTJ1
00431 #endif
00432 #if defined(PJ2) && !defined(PORTJ2)
00433 # define PORTJ2 PJ2
00434 #elif defined(PORTJ2) && !defined(PJ2)
00435 # define PJ2 PORTJ2
00436 #endif
00437 #if defined(PJ3) && !defined(PORTJ3)
00438 # define PORTJ3 PJ3
00439 #elif defined(PORTJ3) && !defined(PJ3)
00440 # define PJ3 PORTJ3
00441 #endif
00442 #if defined(PJ4) && !defined(PORTJ4)
00443 # define PORTJ4 PJ4
00444 #elif defined(PORTJ4) && !defined(PJ4)
00445 # define PJ4 PORTJ4
00446 #endif
00447 #if defined(PJ5) && !defined(PORTJ5)
00448 # define PORTJ5 PJ5
00449 #elif defined(PORTJ5) && !defined(PJ5)
00450 # define PJ5 PORTJ5
00451 #endif
00452 #if defined(PJ6) && !defined(PORTJ6)
00453 # define PORTJ6 PJ6
00454 #elif defined(PORTJ6) && !defined(PJ6)
00455 # define PJ6 PORTJ6
00456 #endif
00457 #if defined(PJ7) && !defined(PORTJ7)
00458 # define PORTJ7 PJ7
00459 #elif defined(PORTJ7) && !defined(PJ7)
00460 # define PJ7 PORTJ7
00461 #endif
00462
00463 /* PORT K */
00464
00465 #if defined(PK0) && !defined(PORTK0)
00466 # define PORTK0 PK0
00467 #elif defined(PORTK0) && !defined(PK0)
00468 # define PK0 PORTK0
00469 #endif
00470 #if defined(PK1) && !defined(PORTK1)
00471 # define PORTK1 PK1
00472 #elif defined(PORTK1) && !defined(PK1)
00473 # define PK1 PORTK1
00474 #endif
00475 #if defined(PK2) && !defined(PORTK2)
00476 # define PORTK2 PK2
00477 #elif defined(PORTK2) && !defined(PK2)
00478 # define PK2 PORTK2
00479 #endif
00480 #if defined(PK3) && !defined(PORTK3)
00481 # define PORTK3 PK3
00482 #elif defined(PORTK3) && !defined(PK3)
00483 # define PK3 PORTK3
00484 #endif
00485 #if defined(PK4) && !defined(PORTK4)
00486 # define PORTK4 PK4
00487 #elif defined(PORTK4) && !defined(PK4)
00488 # define PK4 PORTK4
00489 #endif
00490 #if defined(PK5) && !defined(PORTK5)
00491 # define PORTK5 PK5
00492 #elif defined(PORTK5) && !defined(PK5)

Generated by Doxygen

402

00493 # define PK5 PORTK5
00494 #endif
00495 #if defined(PK6) && !defined(PORTK6)
00496 # define PORTK6 PK6
00497 #elif defined(PORTK6) && !defined(PK6)
00498 # define PK6 PORTK6
00499 #endif
00500 #if defined(PK7) && !defined(PORTK7)
00501 # define PORTK7 PK7
00502 #elif defined(PORTK7) && !defined(PK7)
00503 # define PK7 PORTK7
00504 #endif
00505
00506 /* PORT L */
00507
00508 #if defined(PL0) && !defined(PORTL0)
00509 # define PORTL0 PL0
00510 #elif defined(PORTL0) && !defined(PL0)
00511 # define PL0 PORTL0
00512 #endif
00513 #if defined(PL1) && !defined(PORTL1)
00514 # define PORTL1 PL1
00515 #elif defined(PORTL1) && !defined(PL1)
00516 # define PL1 PORTL1
00517 #endif
00518 #if defined(PL2) && !defined(PORTL2)
00519 # define PORTL2 PL2
00520 #elif defined(PORTL2) && !defined(PL2)
00521 # define PL2 PORTL2
00522 #endif
00523 #if defined(PL3) && !defined(PORTL3)
00524 # define PORTL3 PL3
00525 #elif defined(PORTL3) && !defined(PL3)
00526 # define PL3 PORTL3
00527 #endif
00528 #if defined(PL4) && !defined(PORTL4)
00529 # define PORTL4 PL4
00530 #elif defined(PORTL4) && !defined(PL4)
00531 # define PL4 PORTL4
00532 #endif
00533 #if defined(PL5) && !defined(PORTL5)
00534 # define PORTL5 PL5
00535 #elif defined(PORTL5) && !defined(PL5)
00536 # define PL5 PORTL5
00537 #endif
00538 #if defined(PL6) && !defined(PORTL6)
00539 # define PORTL6 PL6
00540 #elif defined(PORTL6) && !defined(PL6)
00541 # define PL6 PORTL6
00542 #endif
00543 #if defined(PL7) && !defined(PORTL7)
00544 # define PORTL7 PL7
00545 #elif defined(PORTL7) && !defined(PL7)
00546 # define PL7 PORTL7
00547 #endif
00548
00549 #endif /* _AVR_PORTPINS_H_ */

23.28 power.h File Reference

Macros

• #define clock_prescale_get() (clock_div_t)(CLKPR & (uint8_t)((1<<CLKPS0)|(1<<CLKPS1)|(1<<CLKPS2)|(1<<CLKPS3)))

Functions

• static void power_all_enable ()
• static void power_all_disable ()
• void clock_prescale_set (clock_div_t __x)

Generated by Doxygen

23.29 power.h 403

23.29 power.h

Go to the documentation of this file.
00001 /* Copyright (c) 2006, 2007, 2008 Eric B. Weddington
00002 Copyright (c) 2011 Frédéric Nadeau
00003 All rights reserved.
00004
00005 Redistribution and use in source and binary forms, with or without
00006 modification, are permitted provided that the following conditions are met:
00007
00008 * Redistributions of source code must retain the above copyright
00009 notice, this list of conditions and the following disclaimer.
00010 * Redistributions in binary form must reproduce the above copyright
00011 notice, this list of conditions and the following disclaimer in
00012 the documentation and/or other materials provided with the
00013 distribution.
00014 * Neither the name of the copyright holders nor the names of
00015 contributors may be used to endorse or promote products derived
00016 from this software without specific prior written permission.
00017
00018 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00019 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00020 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00021 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00022 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00023 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00024 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00025 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00026 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00027 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00028 POSSIBILITY OF SUCH DAMAGE. */
00029
00030 /* Id */
00031
00032 #ifndef _AVR_POWER_H_
00033 #define _AVR_POWER_H_ 1
00034
00035 #include <avr/io.h>
00036 #include <stdint.h>
00037
00038 #ifndef __DOXYGEN__
00039 #ifndef __ATTR_ALWAYS_INLINE__
00040 #define __ATTR_ALWAYS_INLINE__ __inline__ __attribute__((__always_inline__))
00041 #endif
00042 #endif /* ! DOXYGEN */
00043
00044 /** \file */
00045 /** \defgroup avr_power <avr/power.h>: Power Reduction Management
00046
00047 \code #include <avr/power.h>\endcode
00048
00049 Many AVRs contain a Power Reduction Register (PRR) or Registers (PRRx) that
00050 allow you to reduce power consumption by disabling or enabling various on-board
00051 peripherals as needed. Some devices have the XTAL Divide Control Register
00052 (XDIV) which offer similar functionality as System Clock Prescale
00053 Register (CLKPR).
00054
00055 There are many macros in this header file that provide an easy interface
00056 to enable or disable on-board peripherals to reduce power. See the table below.
00057
00058 \note Not all AVR devices have a Power Reduction Register (for example
00059 the ATmega8). On those devices without a Power Reduction Register, the
00060 power reduction macros are not available..
00061
00062 \note Not all AVR devices contain the same peripherals (for example, the LCD
00063 interface), or they will be named differently (for example, USART and
00064 USART0). Please consult your device’s datasheet, or the header file, to
00065 find out which macros are applicable to your device.
00066
00067 \note For device using the XTAL Divide Control Register (XDIV), when prescaler
00068 is used, Timer/Counter0 can only be used in asynchronous mode. Keep in mind
00069 that Timer/Counter0 source shall be less than ¼th of peripheral clock.
00070 Therefore, when using a typical 32.768 kHz crystal, one shall not scale
00071 the clock below 131.072 kHz.
00072
00073 \anchor avr_powermacros
00074 <small>
00075 <table>
00076 <caption>Power Macros</caption>
00077 <tr>
00078 <th>Power Macro
00079 <th>Description
00080 </tr>
00081 <tr>
00082 <td>\c power_aca_disable()</td>
00083 <td>Disable the Analog Comparator on PortA</td>

Generated by Doxygen

404

00084 </tr>
00085 <tr>
00086 <td>\c power_aca_enable()</td>
00087 <td>Enable the Analog Comparator on PortA</td>
00088 </tr>
00089 <tr>
00090 <td>\c power_adc_enable()</td>
00091 <td>Enable the Analog to Digital Converter module</td>
00092 </tr>
00093 <tr>
00094 <td>\c power_adc_disable()</td>
00095 <td>Disable the Analog to Digital Converter module</td>
00096 </tr>
00097 <tr>
00098 <td>\c power_adca_disable()</td>
00099 <td>Disable the Analog to Digital Converter module on PortA</td>
00100 </tr>
00101 <tr>
00102 <td>\c power_adca_enable()</td>
00103 <td>Enable the Analog to Digital Converter module on PortA</td>
00104 </tr>
00105 <tr>
00106 <td>\c power_evsys_disable()</td>
00107 <td>Disable the EVSYS module</td>
00108 </tr>
00109 <tr>
00110 <td>\c power_evsys_enable()</td>
00111 <td>Enable the EVSYS module</td>
00112 </tr>
00113 <tr>
00114 <td>\c power_hiresc_disable()</td>
00115 <td>Disable the HIRES module on PortC</td>
00116 </tr>
00117 <tr>
00118 <td>\c power_hiresc_enable()</td>
00119 <td>Enable the HIRES module on PortC</td>
00120 </tr>
00121 <tr>
00122 <td>\c power_lcd_enable()</td>
00123 <td>Enable the LCD module</td>
00124 </tr>
00125 <tr>
00126 <td>\c power_lcd_disable()</td>
00127 <td>Disable the LCD module</td>
00128 </tr>
00129 <tr>
00130 <td>\c power_pga_enable()</td>
00131 <td>Enable the Programmable Gain Amplifier module</td>
00132 </tr>
00133 <tr>
00134 <td>\c power_pga_disable()</td>
00135 <td>Disable the Programmable Gain Amplifier module</td>
00136 </tr>
00137 <tr>
00138 <td>\c power_pscr_enable()</td>
00139 <td>Enable the Reduced Power Stage Controller module</td>
00140 </tr>
00141 <tr>
00142 <td>\c power_pscr_disable()</td>
00143 <td>Disable the Reduced Power Stage Controller module</td>
00144 </tr>
00145 <tr>
00146 <td>\c power_psc0_enable()</td>
00147 <td>Enable the Power Stage Controller 0 module</td>
00148 </tr>
00149 <tr>
00150 <td>\c power_psc0_disable()</td>
00151 <td>Disable the Power Stage Controller 0 module</td>
00152 </tr>
00153 <tr>
00154 <td>\c power_psc1_enable()</td>
00155 <td>Enable the Power Stage Controller 1 module</td>
00156 </tr>
00157 <tr>
00158 <td>\c power_psc1_disable()</td>
00159 <td>Disable the Power Stage Controller 1 module</td>
00160 </tr>
00161 <tr>
00162 <td>\c power_psc2_enable()</td>
00163 <td>Enable the Power Stage Controller 2 module</td>
00164 </tr>
00165 <tr>
00166 <td>\c power_psc2_disable()</td>
00167 <td>Disable the Power Stage Controller 2 module</td>
00168 </tr>
00169 <tr>
00170 <td>\c power_ram0_enable()</td>

Generated by Doxygen

23.29 power.h 405

00171 <td>Enable the SRAM block 0</td>
00172 </tr>
00173 <tr>
00174 <td>\c power_ram0_disable()</td>
00175 <td>Disable the SRAM block 0</td>
00176 </tr>
00177 <tr>
00178 <td>\c power_ram1_enable()</td>
00179 <td>Enable the SRAM block 1</td>
00180 </tr>
00181 <tr>
00182 <td>\c power_ram1_disable()</td>
00183 <td>Disable the SRAM block 1</td>
00184 </tr>
00185 <tr>
00186 <td>\c power_ram2_enable()</td>
00187 <td>Enable the SRAM block 2</td>
00188 </tr>
00189 <tr>
00190 <td>\c power_ram2_disable()</td>
00191 <td>Disable the SRAM block 2</td>
00192 </tr>
00193 <tr>
00194 <td>\c power_ram3_enable()</td>
00195 <td>Enable the SRAM block 3</td>
00196 </tr>
00197 <tr>
00198 <td>\c power_ram3_disable()</td>
00199 <td>Disable the SRAM block 3</td>
00200 </tr>
00201 <tr>
00202 <td>\c power_rtc_disable()</td>
00203 <td>Disable the RTC module</td>
00204 </tr>
00205 <tr>
00206 <td>\c power_rtc_enable()</td>
00207 <td>Enable the RTC module</td>
00208 </tr>
00209 <tr>
00210 <td>\c power_spi_enable()</td>
00211 <td>Enable the Serial Peripheral Interface module</td>
00212 </tr>
00213 <tr>
00214 <td>\c power_spi_disable()</td>
00215 <td>Disable the Serial Peripheral Interface module</td>
00216 </tr>
00217 <tr>
00218 <td>\c power_spic_disable()</td>
00219 <td>Disable the SPI module on PortC</td>
00220 </tr>
00221 <tr>
00222 <td>\c power_spic_enable()</td>
00223 <td>Enable the SPI module on PortC</td>
00224 </tr>
00225 <tr>
00226 <td>\c power_spid_disable()</td>
00227 <td>Disable the SPI module on PortD</td>
00228 </tr>
00229 <tr>
00230 <td>\c power_spid_enable()</td>
00231 <td>Enable the SPI module on PortD</td>
00232 </tr>
00233 <tr>
00234 <td>\c power_tc0c_disable()</td>
00235 <td>Disable the TC0 module on PortC</td>
00236 </tr>
00237 <tr>
00238 <td>\c power_tc0c_enable()</td>
00239 <td>Enable the TC0 module on PortC</td>
00240 </tr>
00241 <tr>
00242 <td>\c power_tc0d_disable()</td>
00243 <td>Disable the TC0 module on PortD</td>
00244 </tr>
00245 <tr>
00246 <td>\c power_tc0d_enable()</td>
00247 <td>Enable the TC0 module on PortD</td>
00248 </tr>
00249 <tr>
00250 <td>\c power_tc0e_disable()</td>
00251 <td>Disable the TC0 module on PortE</td>
00252 </tr>
00253 <tr>
00254 <td>\c power_tc0e_enable()</td>
00255 <td>Enable the TC0 module on PortE</td>
00256 </tr>
00257 <tr>

Generated by Doxygen

406

00258 <td>\c power_tc0f_disable()</td>
00259 <td>Disable the TC0 module on PortF</td>
00260 </tr>
00261 <tr>
00262 <td>\c power_tc0f_enable()</td>
00263 <td>Enable the TC0 module on PortF</td>
00264 </tr>
00265 <tr>
00266 <td>\c power_tc1c_disable()</td>
00267 <td>Disable the TC1 module on PortC</td>
00268 </tr>
00269 <tr>
00270 <td>\c power_tc1c_enable()</td>
00271 <td>Enable the TC1 module on PortC</td>
00272 </tr>
00273 <tr>
00274 <td>\c power_twic_disable()</td>
00275 <td>Disable the Two Wire Interface module on PortC</td>
00276 </tr>
00277 <tr>
00278 <td>\c power_twic_enable()</td>
00279 <td>Enable the Two Wire Interface module on PortC</td>
00280 </tr>
00281 <tr>
00282 <td>\c power_twie_disable()</td>
00283 <td>Disable the Two Wire Interface module on PortE</td>
00284 </tr>
00285 <tr>
00286 <td>\c power_twie_enable()</td>
00287 <td>Enable the Two Wire Interface module on PortE</td>
00288 </tr>
00289 <tr>
00290 <td>\c power_timer0_enable()</td>
00291 <td>Enable the Timer 0 module</td>
00292 </tr>
00293 <tr>
00294 <td>\c power_timer0_disable()</td>
00295 <td>Disable the Timer 0 module</td>
00296 </tr>
00297 <tr>
00298 <td>\c power_timer1_enable()</td>
00299 <td>Enable the Timer 1 module</td>
00300 </tr>
00301 <tr>
00302 <td>\c power_timer1_disable()</td>
00303 <td>Disable the Timer 1 module</td>
00304 </tr>
00305 <tr>
00306 <td>\c power_timer2_enable()</td>
00307 <td>Enable the Timer 2 module</td>
00308 </tr>
00309 <tr>
00310 <td>\c power_timer2_disable()</td>
00311 <td>Disable the Timer 2 module</td>
00312 </tr>
00313 <tr>
00314 <td>\c power_timer3_enable()</td>
00315 <td>Enable the Timer 3 module</td>
00316 </tr>
00317 <tr>
00318 <td>\c power_timer3_disable()</td>
00319 <td>Disable the Timer 3 module</td>
00320 </tr>
00321 <tr>
00322 <td>\c power_timer4_enable()</td>
00323 <td>Enable the Timer 4 module</td>
00324 </tr>
00325 <tr>
00326 <td>\c power_timer4_disable()</td>
00327 <td>Disable the Timer 4 module</td>
00328 </tr>
00329 <tr>
00330 <td>\c power_timer5_enable()</td>
00331 <td>Enable the Timer 5 module</td>
00332 </tr>
00333 <tr>
00334 <td>\c power_timer5_disable()</td>
00335 <td>Disable the Timer 5 module</td>
00336 </tr>
00337 <tr>
00338 <td>\c power_twi_enable()</td>
00339 <td>Enable the Two Wire Interface module</td>
00340 </tr>
00341 <tr>
00342 <td>\c power_twi_disable()</td>
00343 <td>Disable the Two Wire Interface module</td>
00344 </tr>

Generated by Doxygen

23.29 power.h 407

00345 <tr>
00346 <td>\c power_usart_enable()</td>
00347 <td>Enable the USART module</td>
00348 </tr>
00349 <tr>
00350 <td>\c power_usart_disable()</td>
00351 <td>Disable the USART module</td>
00352 </tr>
00353 <tr>
00354 <td>\c power_usart0_enable()</td>
00355 <td>Enable the USART 0 module</td>
00356 </tr>
00357 <tr>
00358 <td>\c power_usart0_disable()</td>
00359 <td>Disable the USART 0 module</td>
00360 </tr>
00361 <tr>
00362 <td>\c power_usart1_enable()</td>
00363 <td>Enable the USART 1 module</td>
00364 </tr>
00365 <tr>
00366 <td>\c power_usart1_disable()</td>
00367 <td>Disable the USART 1 module</td>
00368 </tr>
00369 <tr>
00370 <td>\c power_usart2_enable()</td>
00371 <td>Enable the USART 2 module</td>
00372 </tr>
00373 <tr>
00374 <td>\c power_usart2_disable()</td>
00375 <td>Disable the USART 2 module</td>
00376 </tr>
00377 <tr>
00378 <td>\c power_usart3_enable()</td>
00379 <td>Enable the USART 3 module</td>
00380 </tr>
00381 <tr>
00382 <td>\c power_usart3_disable()</td>
00383 <td>Disable the USART 3 module</td>
00384 </tr>
00385 <tr>
00386 <td>\c power_usartc0_disable()</td>
00387 <td> Disable the USART0 module on PortC</td>
00388 </tr>
00389 <tr>
00390 <td>\c power_usartc0_enable()</td>
00391 <td> Enable the USART0 module on PortC</td>
00392 </tr>
00393 <tr>
00394 <td>\c power_usartd0_disable()</td>
00395 <td> Disable the USART0 module on PortD</td>
00396 </tr>
00397 <tr>
00398 <td>\c power_usartd0_enable()</td>
00399 <td> Enable the USART0 module on PortD</td>
00400 </tr>
00401 <tr>
00402 <td>\c power_usarte0_disable()</td>
00403 <td> Disable the USART0 module on PortE</td>
00404 </tr>
00405 <tr>
00406 <td>\c power_usarte0_enable()</td>
00407 <td> Enable the USART0 module on PortE</td>
00408 </tr>
00409 <tr>
00410 <td>\c power_usartf0_disable()</td>
00411 <td> Disable the USART0 module on PortF</td>
00412 </tr>
00413 <tr>
00414 <td>\c power_usartf0_enable()</td>
00415 <td> Enable the USART0 module on PortF</td>
00416 </tr>
00417 <tr>
00418 <td>\c power_usb_enable()</td>
00419 <td>Enable the USB module</td>
00420 </tr>
00421 <tr>
00422 <td>\c power_usb_disable()</td>
00423 <td>Disable the USB module</td>
00424 </tr>
00425 <tr>
00426 <td>\c power_usi_enable()</td>
00427 <td>Enable the Universal Serial Interface module</td>
00428 </tr>
00429 <tr>
00430 <td>\c power_usi_disable()</td>
00431 <td>Disable the Universal Serial Interface module</td>

Generated by Doxygen

408

00432 </tr>
00433 <tr>
00434 <td>\c power_vadc_enable()</td>
00435 <td>Enable the Voltage ADC module</td>
00436 </tr>
00437 <tr>
00438 <td>\c power_vadc_disable()</td>
00439 <td>Disable the Voltage ADC module</td>
00440 </tr>
00441 <tr>
00442 <td>\c power_all_enable()</td>
00443 <td>Enable all modules</td>
00444 </tr>
00445 <tr>
00446 <td>\c power_all_disable()</td>
00447 <td>Disable all modules</td>
00448 </tr>
00449 </table>
00450 </small>
00451 */
00452
00453 #if defined(__AVR_HAVE_PRR_PRADC)
00454 #define power_adc_enable() (PRR &= (uint8_t)~(1 « PRADC))
00455 #define power_adc_disable() (PRR |= (uint8_t)(1 « PRADC))
00456 #endif
00457
00458 #if defined(__AVR_HAVE_PRR_PRCAN)
00459 #define power_can_enable() (PRR &= (uint8_t)~(1 « PRCAN))
00460 #define power_can_disable() (PRR |= (uint8_t)(1 « PRCAN))
00461 #endif
00462
00463 #if defined(__AVR_HAVE_PRR_PRLCD)
00464 #define power_lcd_enable() (PRR &= (uint8_t)~(1 « PRLCD))
00465 #define power_lcd_disable() (PRR |= (uint8_t)(1 « PRLCD))
00466 #endif
00467
00468 #if defined(__AVR_HAVE_PRR_PRLIN)
00469 #define power_lin_enable() (PRR &= (uint8_t)~(1 « PRLIN))
00470 #define power_lin_disable() (PRR |= (uint8_t)(1 « PRLIN))
00471 #endif
00472
00473 #if defined(__AVR_HAVE_PRR_PRPSC)
00474 #define power_psc_enable() (PRR &= (uint8_t)~(1 « PRPSC))
00475 #define power_psc_disable() (PRR |= (uint8_t)(1 « PRPSC))
00476 #endif
00477
00478 #if defined(__AVR_HAVE_PRR_PRPSC0)
00479 #define power_psc0_enable() (PRR &= (uint8_t)~(1 « PRPSC0))
00480 #define power_psc0_disable() (PRR |= (uint8_t)(1 « PRPSC0))
00481 #endif
00482
00483 #if defined(__AVR_HAVE_PRR_PRPSC1)
00484 #define power_psc1_enable() (PRR &= (uint8_t)~(1 « PRPSC1))
00485 #define power_psc1_disable() (PRR |= (uint8_t)(1 « PRPSC1))
00486 #endif
00487
00488 #if defined(__AVR_HAVE_PRR_PRPSC2)
00489 #define power_psc2_enable() (PRR &= (uint8_t)~(1 « PRPSC2))
00490 #define power_psc2_disable() (PRR |= (uint8_t)(1 « PRPSC2))
00491 #endif
00492
00493 #if defined(__AVR_HAVE_PRR_PRPSCR)
00494 #define power_pscr_enable() (PRR &= (uint8_t)~(1 « PRPSCR))
00495 #define power_pscr_disable() (PRR |= (uint8_t)(1 « PRPSCR))
00496 #endif
00497
00498 #if defined(__AVR_HAVE_PRR_PRSPI)
00499 #define power_spi_enable() (PRR &= (uint8_t)~(1 « PRSPI))
00500 #define power_spi_disable() (PRR |= (uint8_t)(1 « PRSPI))
00501 #endif
00502
00503 #if defined(__AVR_HAVE_PRR_PRTIM0)
00504 #define power_timer0_enable() (PRR &= (uint8_t)~(1 « PRTIM0))
00505 #define power_timer0_disable() (PRR |= (uint8_t)(1 « PRTIM0))
00506 #endif
00507
00508 #if defined(__AVR_HAVE_PRR_PRTIM1)
00509 #define power_timer1_enable() (PRR &= (uint8_t)~(1 « PRTIM1))
00510 #define power_timer1_disable() (PRR |= (uint8_t)(1 « PRTIM1))
00511 #endif
00512
00513 #if defined(__AVR_HAVE_PRR_PRTIM2)
00514 #define power_timer2_enable() (PRR &= (uint8_t)~(1 « PRTIM2))
00515 #define power_timer2_disable() (PRR |= (uint8_t)(1 « PRTIM2))
00516 #endif
00517
00518 #if defined(__AVR_HAVE_PRR_PRTWI)

Generated by Doxygen

23.29 power.h 409

00519 #define power_twi_enable() (PRR &= (uint8_t)~(1 « PRTWI))
00520 #define power_twi_disable() (PRR |= (uint8_t)(1 « PRTWI))
00521 #endif
00522
00523 #if defined(__AVR_HAVE_PRR_PRUSART)
00524 #define power_usart_enable() (PRR &= (uint8_t)~(1 « PRUSART))
00525 #define power_usart_disable() (PRR |= (uint8_t)(1 « PRUSART))
00526 #endif
00527
00528 #if defined(__AVR_HAVE_PRR_PRUSART0)
00529 #define power_usart0_enable() (PRR &= (uint8_t)~(1 « PRUSART0))
00530 #define power_usart0_disable() (PRR |= (uint8_t)(1 « PRUSART0))
00531 #endif
00532
00533 #if defined(__AVR_HAVE_PRR_PRUSART1)
00534 #define power_usart1_enable() (PRR &= (uint8_t)~(1 « PRUSART1))
00535 #define power_usart1_disable() (PRR |= (uint8_t)(1 « PRUSART1))
00536 #endif
00537
00538 #if defined(__AVR_HAVE_PRR_PRUSI)
00539 #define power_usi_enable() (PRR &= (uint8_t)~(1 « PRUSI))
00540 #define power_usi_disable() (PRR |= (uint8_t)(1 « PRUSI))
00541 #endif
00542
00543 #if defined(__AVR_HAVE_PRR0_PRADC)
00544 #define power_adc_enable() (PRR0 &= (uint8_t)~(1 « PRADC))
00545 #define power_adc_disable() (PRR0 |= (uint8_t)(1 « PRADC))
00546 #endif
00547
00548 #if defined(__AVR_HAVE_PRR0_PRC0)
00549 #define power_clock_output_enable() (PRR0 &= (uint8_t)~(1 « PRCO))
00550 #define power_clock_output_disable() (PRR0 |= (uint8_t)(1 « PRCO))
00551 #endif
00552
00553 #if defined(__AVR_HAVE_PRR0_PRCRC)
00554 #define power_crc_enable() (PRR0 &= (uint8_t)~(1 « PRCRC))
00555 #define power_crc_disable() (PRR0 |= (uint8_t)(1 « PRCRC))
00556 #endif
00557
00558 #if defined(__AVR_HAVE_PRR0_PRCU)
00559 #define power_crypto_enable() (PRR0 &= (uint8_t)~(1 « PRCU))
00560 #define power_crypto_disable() (PRR0 |= (uint8_t)(1 « PRCU))
00561 #endif
00562
00563 #if defined(__AVR_HAVE_PRR0_PRDS)
00564 #define power_irdriver_enable() (PRR0 &= (uint8_t)~(1 « PRDS))
00565 #define power_irdriver_disable() (PRR0 |= (uint8_t)(1 « PRDS))
00566 #endif
00567
00568 #if defined(__AVR_HAVE_PRR0_PRLFR)
00569 #define power_lfreceiver_enable() (PRR0 &= (uint8_t)~(1 « PRLFR))
00570 #define power_lfreceiver_disable() (PRR0 |= (uint8_t)(1 « PRLFR))
00571 #endif
00572
00573 #if defined(__AVR_HAVE_PRR0_PRLFRS)
00574 #define power_lfrs_enable() (PRR0 &= (uint8_t)~(1 « PRLFRS))
00575 #define power_lfrs_disable() (PRR0 |= (uint8_t)(1 « PRLFRS))
00576 #endif
00577
00578 #if defined(__AVR_HAVE_PRR0_PRLIN)
00579 #define power_lin_enable() (PRR0 &= (uint8_t)~(1 « PRLIN))
00580 #define power_lin_disable() (PRR0 |= (uint8_t)(1 « PRLIN))
00581 #endif
00582
00583 #if defined(__AVR_HAVE_PRR0_PRPGA)
00584 #define power_pga_enable() (PRR0 &= (uint8_t)~(1 « PRPGA))
00585 #define power_pga_disable() (PRR0 |= (uint8_t)(1 « PRPGA))
00586 #endif
00587
00588 #if defined(__AVR_HAVE_PRR0_PRRXDC)
00589 #define power_receive_dsp_control_enable() (PRR0 &= (uint8_t)~(1 « PRRXDC))
00590 #define power_receive_dsp_control_disable() (PRR0 |= (uint8_t)(1 « PRRXDC))
00591 #endif
00592
00593 #if defined(__AVR_HAVE_PRR0_PRSPI)
00594 #define power_spi_enable() (PRR0 &= (uint8_t)~(1 « PRSPI))
00595 #define power_spi_disable() (PRR0 |= (uint8_t)(1 « PRSPI))
00596 #endif
00597
00598 #if defined(__AVR_HAVE_PRR0_PRT0)
00599 #define power_timer0_enable() (PRR0 &= (uint8_t)~(1 « PRT0))
00600 #define power_timer0_disable() (PRR0 |= (uint8_t)(1 « PRT0))
00601 #endif
00602
00603 #if defined(__AVR_HAVE_PRR0_PRTIM0)
00604 #define power_timer0_enable() (PRR0 &= (uint8_t)~(1 « PRTIM0))
00605 #define power_timer0_disable() (PRR0 |= (uint8_t)(1 « PRTIM0))

Generated by Doxygen

410

00606 #endif
00607
00608 #if defined(__AVR_HAVE_PRR0_PRT1)
00609 #define power_timer1_enable() (PRR0 &= (uint8_t)~(1 « PRT1))
00610 #define power_timer1_disable() (PRR0 |= (uint8_t)(1 « PRT1))
00611 #endif
00612
00613 #if defined(__AVR_HAVE_PRR0_PRTIM1)
00614 #define power_timer1_enable() (PRR0 &= (uint8_t)~(1 « PRTIM1))
00615 #define power_timer1_disable() (PRR0 |= (uint8_t)(1 « PRTIM1))
00616 #endif
00617
00618 #if defined(__AVR_HAVE_PRR0_PRT2)
00619 #define power_timer2_enable() (PRR0 &= (uint8_t)~(1 « PRT2))
00620 #define power_timer2_disable() (PRR0 |= (uint8_t)(1 « PRT2))
00621 #endif
00622
00623 #if defined(__AVR_HAVE_PRR0_PRTIM2)
00624 #define power_timer2_enable() (PRR0 &= (uint8_t)~(1 « PRTIM2))
00625 #define power_timer2_disable() (PRR0 |= (uint8_t)(1 « PRTIM2))
00626 #endif
00627
00628 #if defined(__AVR_HAVE_PRR0_PRT3)
00629 #define power_timer3_enable() (PRR0 &= (uint8_t)~(1 « PRT3))
00630 #define power_timer3_disable() (PRR0 |= (uint8_t)(1 « PRT3))
00631 #endif
00632
00633 #if defined(__AVR_HAVE_PRR0_PRTM)
00634 #define power_timermodulator_enable() (PRR0 &= (uint8_t)~(1 « PRTM))
00635 #define power_timermodulator_disable() (PRR0 |= (uint8_t)(1 « PRTM))
00636 #endif
00637
00638 #if defined(__AVR_HAVE_PRR0_PRTWI)
00639 #define power_twi_enable() (PRR0 &= (uint8_t)~(1 « PRTWI))
00640 #define power_twi_disable() (PRR0 |= (uint8_t)(1 « PRTWI))
00641 #endif
00642
00643 #if defined(__AVR_HAVE_PRR0_PRTWI1)
00644 #define power_twi1_enable() (PRR0 &= (uint8_t)~(1 « PRTWI1))
00645 #define power_twi1_disable() (PRR0 |= (uint8_t)(1 « PRTWI1))
00646 #endif
00647
00648 #if defined(__AVR_HAVE_PRR0_PRTXDC)
00649 #define power_transmit_dsp_control_enable() (PRR0 &= (uint8_t)~(1 « PRTXDC))
00650 #define power_transmit_dsp_control_disable() (PRR0 |= (uint8_t)(1 « PRTXDC))
00651 #endif
00652
00653 #if defined(__AVR_HAVE_PRR0_PRUSART0)
00654 #define power_usart0_enable() (PRR0 &= (uint8_t)~(1 « PRUSART0))
00655 #define power_usart0_disable() (PRR0 |= (uint8_t)(1 « PRUSART0))
00656 #endif
00657
00658 #if defined(__AVR_HAVE_PRR0_PRUSART1)
00659 #define power_usart1_enable() (PRR0 &= (uint8_t)~(1 « PRUSART1))
00660 #define power_usart1_disable() (PRR0 |= (uint8_t)(1 « PRUSART1))
00661 #endif
00662
00663 #if defined(__AVR_HAVE_PRR0_PRVADC)
00664 #define power_vadc_enable() (PRR0 &= (uint8_t)~(1 « PRVADC))
00665 #define power_vadc_disable() (PRR0 |= (uint8_t)(1 « PRVADC))
00666 #endif
00667
00668 #if defined(__AVR_HAVE_PRR0_PRVM)
00669 #define power_voltage_monitor_enable() (PRR0 &= (uint8_t)~(1 « PRVM))
00670 #define power_voltage_monitor_disable() (PRR0 |= (uint8_t)(1 « PRVM))
00671 #endif
00672
00673 #if defined(__AVR_HAVE_PRR0_PRVRM)
00674 #define power_vrm_enable() (PRR0 &= (uint8_t)~(1 « PRVRM))
00675 #define power_vrm_disable() (PRR0 |= (uint8_t)(1 « PRVRM))
00676 #endif
00677
00678 #if defined(__AVR_HAVE_PRR1_PRAES)
00679 #define power_aes_enable() (PRR1 &= (uint8_t)~(1 « PRAES))
00680 #define power_aes_disable() (PRR1 |= (uint8_t)(1 « PRAES))
00681 #endif
00682
00683 #if defined(__AVR_HAVE_PRR1_PRCI)
00684 #define power_cinterface_enable() (PRR1 &= (uint8_t)~(1 « PRCI))
00685 #define power_cinterface_disable() (PRR1 |= (uint8_t)(1 « PRCI))
00686 #endif
00687
00688 #if defined(__AVR_HAVE_PRR1_PRHSSPI)
00689 #define power_hsspi_enable() (PRR1 &= (uint8_t)~(1 « PRHSSPI))
00690 #define power_hsspi_disable() (PRR1 |= (uint8_t)(1 « PRHSSPI))
00691 #endif
00692

Generated by Doxygen

23.29 power.h 411

00693 #if defined(__AVR_HAVE_PRR1_PRKB)
00694 #define power_kb_enable() (PRR1 &= (uint8_t)~(1 « PRKB))
00695 #define power_kb_disable() (PRR1 |= (uint8_t)(1 « PRKB))
00696 #endif
00697
00698 #if defined(__AVR_HAVE_PRR1_PRLFPH)
00699 #define power_lfph_enable() (PRR1 &= (uint8_t)~(1 « PRLFPH))
00700 #define power_lfph_disable() (PRR1 |= (uint8_t)(1 « PRLFPH))
00701 #endif
00702
00703 #if defined(__AVR_HAVE_PRR1_PRLFR)
00704 #define power_lfreceiver_enable() (PRR1 &= (uint8_t)~(1 « PRLFR))
00705 #define power_lfreceiver_disable() (PRR1 |= (uint8_t)(1 « PRLFR))
00706 #endif
00707
00708 #if defined(__AVR_HAVE_PRR1_PRLFTP)
00709 #define power_lftp_enable() (PRR1 &= (uint8_t)~(1 « PRLFTP))
00710 #define power_lftp_disable() (PRR1 |= (uint8_t)(1 « PRLFTP))
00711 #endif
00712
00713 #if defined(__AVR_HAVE_PRR1_PRSCI)
00714 #define power_sci_enable() (PRR1 &= (uint8_t)~(1 « PRSCI))
00715 #define power_sci_disable() (PRR1 |= (uint8_t)(1 « PRSCI))
00716 #endif
00717
00718 #if defined(__AVR_HAVE_PRR1_PRSPI)
00719 #define power_spi_enable() (PRR1 &= (uint8_t)~(1 « PRSPI))
00720 #define power_spi_disable() (PRR1 |= (uint8_t)(1 « PRSPI))
00721 #endif
00722
00723 #if defined(__AVR_HAVE_PRR1_PRT1)
00724 #define power_timer1_enable() (PRR1 &= (uint8_t)~(1 « PRT1))
00725 #define power_timer1_disable() (PRR1 |= (uint8_t)(1 « PRT1))
00726 #endif
00727
00728 #if defined(__AVR_HAVE_PRR1_PRT2)
00729 #define power_timer2_enable() (PRR1 &= (uint8_t)~(1 « PRT2))
00730 #define power_timer2_disable() (PRR1 |= (uint8_t)(1 « PRT2))
00731 #endif
00732
00733 #if defined(__AVR_HAVE_PRR1_PRT3)
00734 #define power_timer3_enable() (PRR1 &= (uint8_t)~(1 « PRT3))
00735 #define power_timer3_disable() (PRR1 |= (uint8_t)(1 « PRT3))
00736 #endif
00737
00738 #if defined(__AVR_HAVE_PRR1_PRT4)
00739 #define power_timer4_enable() (PRR1 &= (uint8_t)~(1 « PRT4))
00740 #define power_timer4_disable() (PRR1 |= (uint8_t)(1 « PRT4))
00741 #endif
00742
00743 #if defined(__AVR_HAVE_PRR1_PRT5)
00744 #define power_timer5_enable() (PRR1 &= (uint8_t)~(1 « PRT5))
00745 #define power_timer5_disable() (PRR1 |= (uint8_t)(1 « PRT5))
00746 #endif
00747
00748 #if defined(__AVR_HAVE_PRR1_PRTIM3)
00749 #define power_timer3_enable() (PRR1 &= (uint8_t)~(1 « PRTIM3))
00750 #define power_timer3_disable() (PRR1 |= (uint8_t)(1 « PRTIM3))
00751 #endif
00752
00753 #if defined(__AVR_HAVE_PRR1_PRTIM4)
00754 #define power_timer4_enable() (PRR1 &= (uint8_t)~(1 « PRTIM4))
00755 #define power_timer4_disable() (PRR1 |= (uint8_t)(1 « PRTIM4))
00756 #endif
00757
00758 #if defined(__AVR_HAVE_PRR1_PRTIM5)
00759 #define power_timer5_enable() (PRR1 &= (uint8_t)~(1 « PRTIM5))
00760 #define power_timer5_disable() (PRR1 |= (uint8_t)(1 « PRTIM5))
00761 #endif
00762
00763 #if defined(__AVR_HAVE_PRR1_PRTRX24)
00764 #define power_transceiver_enable() (PRR1 &= (uint8_t)~(1 « PRTRX24))
00765 #define power_transceiver_disable() (PRR1 |= (uint8_t)(1 « PRTRX24))
00766 #endif
00767
00768 #if defined(__AVR_HAVE_PRR1_PRUSART1)
00769 #define power_usart1_enable() (PRR1 &= (uint8_t)~(1 « PRUSART1))
00770 #define power_usart1_disable() (PRR1 |= (uint8_t)(1 « PRUSART1))
00771 #endif
00772
00773 #if defined(__AVR_HAVE_PRR1_PRUSART2)
00774 #define power_usart2_enable() (PRR1 &= (uint8_t)~(1 « PRUSART2))
00775 #define power_usart2_disable() (PRR1 |= (uint8_t)(1 « PRUSART2))
00776 #endif
00777
00778 #if defined(__AVR_HAVE_PRR1_PRUSART3)
00779 #define power_usart3_enable() (PRR1 &= (uint8_t)~(1 « PRUSART3))

Generated by Doxygen

412

00780 #define power_usart3_disable() (PRR1 |= (uint8_t)(1 « PRUSART3))
00781 #endif
00782
00783 #if defined(__AVR_HAVE_PRR1_PRUSB)
00784 #define power_usb_enable() (PRR1 &= (uint8_t)~(1 « PRUSB))
00785 #define power_usb_disable() (PRR1 |= (uint8_t)(1 « PRUSB))
00786 #endif
00787
00788 #if defined(__AVR_HAVE_PRR1_PRUSBH)
00789 #define power_usbh_enable() (PRR1 &= (uint8_t)~(1 « PRUSBH))
00790 #define power_usbh_disable() (PRR1 |= (uint8_t)(1 « PRUSBH))
00791 #endif
00792
00793 #if defined(__AVR_HAVE_PRR2_PRDF)
00794 #define power_data_fifo_enable() (PRR2 &= (uint8_t)~(1 « PRDF))
00795 #define power_data_fifo_disable() (PRR2 |= (uint8_t)(1 « PRDF))
00796 #endif
00797
00798 #if defined(__AVR_HAVE_PRR2_PRIDS)
00799 #define power_id_scan_enable() (PRR2 &= (uint8_t)~(1 « PRIDS))
00800 #define power_id_scan_disable() (PRR2 |= (uint8_t)(1 « PRIDS))
00801 #endif
00802
00803 #if defined(__AVR_HAVE_PRR2_PRRAM0)
00804 #define power_ram0_enable() (PRR2 &= (uint8_t)~(1 « PRRAM0))
00805 #define power_ram0_disable() (PRR2 |= (uint8_t)(1 « PRRAM0))
00806 #endif
00807
00808 #if defined(__AVR_HAVE_PRR2_PRRAM1)
00809 #define power_ram1_enable() (PRR2 &= (uint8_t)~(1 « PRRAM1))
00810 #define power_ram1_disable() (PRR2 |= (uint8_t)(1 « PRRAM1))
00811 #endif
00812
00813 #if defined(__AVR_HAVE_PRR2_PRRAM2)
00814 #define power_ram2_enable() (PRR2 &= (uint8_t)~(1 « PRRAM2))
00815 #define power_ram2_disable() (PRR2 |= (uint8_t)(1 « PRRAM2))
00816 #endif
00817
00818 #if defined(__AVR_HAVE_PRR2_PRRAM3)
00819 #define power_ram3_enable() (PRR2 &= (uint8_t)~(1 « PRRAM3))
00820 #define power_ram3_disable() (PRR2 |= (uint8_t)(1 « PRRAM3))
00821 #endif
00822
00823 #if defined(__AVR_HAVE_PRR2_PRRS)
00824 #define power_rssi_buffer_enable() (PRR2 &= (uint8_t)~(1 « PRRS))
00825 #define power_rssi_buffer_disable() (PRR2 |= (uint8_t)(1 « PRRS))
00826 #endif
00827
00828 #if defined(__AVR_HAVE_PRR2_PRSF)
00829 #define power_preamble_rssi_fifo_enable() (PRR2 &= (uint8_t)~(1 « PRSF))
00830 #define power_preamble_rssi_fifo_disable() (PRR2 |= (uint8_t)(1 « PRSF))
00831 #endif
00832
00833 #if defined(__AVR_HAVE_PRR2_PRSPI2)
00834 #define power_spi2_enable() (PRR2 &= (uint8_t)~(1 « PRSPI2))
00835 #define power_spi2_disable() (PRR2 |= (uint8_t)(1 « PRSPI2))
00836 #endif
00837
00838 #if defined(__AVR_HAVE_PRR2_PRSSM)
00839 #define power_sequencer_state_machine_enable() (PRR2 &= (uint8_t)~(1 « PRSSM))
00840 #define power_sequencer_state_machine_disable() (PRR2 |= (uint8_t)(1 « PRSSM))
00841 #endif
00842
00843 #if defined(__AVR_HAVE_PRR2_PRTM)
00844 #define power_tx_modulator_enable() (PRR2 &= (uint8_t)~(1 « PRTM))
00845 #define power_tx_modulator_disable() (PRR2 |= (uint8_t)(1 « PRTM))
00846 #endif
00847
00848 #if defined(__AVR_HAVE_PRR2_PRTWI2)
00849 #define power_twi2_enable() (PRR2 &= (uint8_t)~(1 « PRTWI2))
00850 #define power_twi2_disable() (PRR2 |= (uint8_t)(1 « PRTWI2))
00851 #endif
00852
00853 #if defined(__AVR_HAVE_PRR2_PRXA)
00854 #define power_rx_buffer_A_enable() (PRR2 &= (uint8_t)~(1 « PRXA))
00855 #define power_rx_buffer_A_disable() (PRR2 |= (uint8_t)(1 « PRXA))
00856 #endif
00857
00858 #if defined(__AVR_HAVE_PRR2_PRXB)
00859 #define power_rx_buffer_B_enable() (PRR2 &= (uint8_t)~(1 « PRXB))
00860 #define power_rx_buffer_B_disable() (PRR2 |= (uint8_t)(1 « PRXB))
00861 #endif
00862
00863 #if defined(__AVR_HAVE_PRGEN_AES)
00864 #define power_aes_enable() (PR_PRGEN &= (uint8_t)~(PR_AES_bm))
00865 #define power_aes_disable() (PR_PRGEN |= (uint8_t)PR_AES_bm)
00866 #endif

Generated by Doxygen

23.29 power.h 413

00867
00868 #if defined(__AVR_HAVE_PRGEN_DMA)
00869 #define power_dma_enable() (PR_PRGEN &= (uint8_t)~(PR_DMA_bm))
00870 #define power_dma_disable() (PR_PRGEN |= (uint8_t)PR_DMA_bm)
00871 #endif
00872
00873 #if defined(__AVR_HAVE_PRGEN_EBI)
00874 #define power_ebi_enable() (PR_PRGEN &= (uint8_t)~(PR_EBI_bm))
00875 #define power_ebi_disable() (PR_PRGEN |= (uint8_t)PR_EBI_bm)
00876 #endif
00877
00878 #if defined(__AVR_HAVE_PRGEN_EDMA)
00879 #define power_edma_enable() (PR_PRGEN &= (uint8_t)~(PR_EDMA_bm))
00880 #define power_edma_disable() (PR_PRGEN |= (uint8_t)PR_EDMA_bm)
00881 #endif
00882
00883 #if defined(__AVR_HAVE_PRGEN_EVSYS)
00884 #define power_evsys_enable() (PR_PRGEN &= (uint8_t)~(PR_EVSYS_bm))
00885 #define power_evsys_disable() (PR_PRGEN |= (uint8_t)PR_EVSYS_bm)
00886 #endif
00887
00888 #if defined(__AVR_HAVE_PRGEN_LCD)
00889 #define power_lcd_enable() (PR_PRGEN &= (uint8_t)~(PR_LCD_bm))
00890 #define power_lcd_disable() (PR_PRGEN |= (uint8_t)PR_LCD_bm)
00891 #endif
00892
00893 #if defined(__AVR_HAVE_PRGEN_RTC)
00894 #define power_rtc_enable() (PR_PRGEN &= (uint8_t)~(PR_RTC_bm))
00895 #define power_rtc_disable() (PR_PRGEN |= (uint8_t)PR_RTC_bm)
00896 #endif
00897
00898 #if defined(__AVR_HAVE_PRGEN_USB)
00899 #define power_usb_enable() (PR_PRGEN &= (uint8_t)~(PR_USB_bm))
00900 #define power_usb_disable() (PR_PRGEN &= (uint8_t)(PR_USB_bm))
00901 #endif
00902
00903 #if defined(__AVR_HAVE_PRGEN_XCL)
00904 #define power_xcl_enable() (PR_PRGEN &= (uint8_t)~(PR_XCL_bm))
00905 #define power_xcl_disable() (PR_PRGEN |= (uint8_t)PR_XCL_bm)
00906 #endif
00907
00908 #if defined(__AVR_HAVE_PRPA_AC)
00909 #define power_aca_enable() (PR_PRPA &= (uint8_t)~(PR_AC_bm))
00910 #define power_aca_disable() (PR_PRPA |= (uint8_t)PR_AC_bm)
00911 #endif
00912
00913 #if defined(__AVR_HAVE_PRPA_ADC)
00914 #define power_adca_enable() (PR_PRPA &= (uint8_t)~(PR_ADC_bm))
00915 #define power_adca_disable() (PR_PRPA |= (uint8_t)PR_ADC_bm)
00916 #endif
00917
00918 #if defined(__AVR_HAVE_PRPA_DAC)
00919 #define power_daca_enable() (PR_PRPA &= (uint8_t)~(PR_DAC_bm))
00920 #define power_daca_disable() (PR_PRPA |= (uint8_t)PR_DAC_bm)
00921 #endif
00922
00923 #if defined(__AVR_HAVE_PRPB_AC)
00924 #define power_acb_enable() (PR_PRPB &= (uint8_t)~(PR_AC_bm))
00925 #define power_acb_disable() (PR_PRPB |= (uint8_t)PR_AC_bm)
00926 #endif
00927
00928 #if defined(__AVR_HAVE_PRPB_ADC)
00929 #define power_adcb_enable() (PR_PRPB &= (uint8_t)~(PR_ADC_bm))
00930 #define power_adcb_disable() (PR_PRPB |= (uint8_t)PR_ADC_bm)
00931 #endif
00932
00933 #if defined(__AVR_HAVE_PRPB_DAC)
00934 #define power_dacb_enable() (PR_PRPB &= (uint8_t)~(PR_DAC_bm))
00935 #define power_dacb_disable() (PR_PRPB |= (uint8_t)PR_DAC_bm)
00936 #endif
00937
00938 #if defined(__AVR_HAVE_PRPC_HIRES)
00939 #define power_hiresc_enable() (PR_PRPC &= (uint8_t)~(PR_HIRES_bm))
00940 #define power_hiresc_disable() (PR_PRPC |= (uint8_t)PR_HIRES_bm)
00941 #endif
00942
00943 #if defined(__AVR_HAVE_PRPC_SPI)
00944 #define power_spic_enable() (PR_PRPC &= (uint8_t)~(PR_SPI_bm))
00945 #define power_spic_disable() (PR_PRPC |= (uint8_t)PR_SPI_bm)
00946 #endif
00947
00948 #if defined(__AVR_HAVE_PRPC_TC0)
00949 #define power_tc0c_enable() (PR_PRPC &= (uint8_t)~(PR_TC0_bm))
00950 #define power_tc0c_disable() (PR_PRPC |= (uint8_t)PR_TC0_bm)
00951 #endif
00952
00953 #if defined(__AVR_HAVE_PRPC_TC1)

Generated by Doxygen

414

00954 #define power_tc1c_enable() (PR_PRPC &= (uint8_t)~(PR_TC1_bm))
00955 #define power_tc1c_disable() (PR_PRPC |= (uint8_t)PR_TC1_bm)
00956 #endif
00957
00958 #if defined(__AVR_HAVE_PRPC_TC4)
00959 #define power_tc4c_enable() (PR_PRPC &= (uint8_t)~(PR_TC4_bm))
00960 #define power_tc4c_disable() (PR_PRPC |= (uint8_t)PR_TC4_bm)
00961 #endif
00962
00963 #if defined(__AVR_HAVE_PRPC_TC5)
00964 #define power_tc5c_enable() (PR_PRPC &= (uint8_t)~(PR_TC5_bm))
00965 #define power_tc5c_disable() (PR_PRPC |= (uint8_t)PR_TC5_bm)
00966 #endif
00967
00968 #if defined(__AVR_HAVE_PRPC_TWI)
00969 #define power_twic_enable() (PR_PRPC &= (uint8_t)~(PR_TWI_bm))
00970 #define power_twic_disable() (PR_PRPC |= (uint8_t)PR_TWI_bm)
00971 #endif
00972
00973 #if defined(__AVR_HAVE_PRPC_USART0)
00974 #define power_usartc0_enable() (PR_PRPC &= (uint8_t)~(PR_USART0_bm))
00975 #define power_usartc0_disable() (PR_PRPC |= (uint8_t)PR_USART0_bm)
00976 #endif
00977
00978 #if defined(__AVR_HAVE_PRPC_USART1)
00979 #define power_usartc1_enable() (PR_PRPC &= (uint8_t)~(PR_USART1_bm))
00980 #define power_usartc1_disable() (PR_PRPC |= (uint8_t)PR_USART1_bm)
00981 #endif
00982
00983 #if defined(__AVR_HAVE_PRPD_HIRES)
00984 #define power_hiresd_enable() (PR_PRPD &= (uint8_t)~(PR_HIRES_bm))
00985 #define power_hiresd_disable() (PR_PRPD |= (uint8_t)PR_HIRES_bm)
00986 #endif
00987
00988 #if defined(__AVR_HAVE_PRPD_SPI)
00989 #define power_spid_enable() (PR_PRPD &= (uint8_t)~(PR_SPI_bm))
00990 #define power_spid_disable() (PR_PRPD |= (uint8_t)PR_SPI_bm)
00991 #endif
00992
00993 #if defined(__AVR_HAVE_PRPD_TC0)
00994 #define power_tc0d_enable() (PR_PRPD &= (uint8_t)~(PR_TC0_bm))
00995 #define power_tc0d_disable() (PR_PRPD |= (uint8_t)PR_TC0_bm)
00996 #endif
00997
00998 #if defined(__AVR_HAVE_PRPD_TC1)
00999 #define power_tc1d_enable() (PR_PRPD &= (uint8_t)~(PR_TC1_bm))
01000 #define power_tc1d_disable() (PR_PRPD |= (uint8_t)PR_TC1_bm)
01001 #endif
01002
01003 #if defined(__AVR_HAVE_PRPD_TC5)
01004 #define power_tc5d_enable() (PR_PRPD &= (uint8_t)~(PR_TC5_bm))
01005 #define power_tc5d_disable() (PR_PRPD |= (uint8_t)PR_TC5_bm)
01006 #endif
01007
01008 #if defined(__AVR_HAVE_PRPD_TWI)
01009 #define power_twid_enable() (PR_PRPD &= (uint8_t)~(PR_TWI_bm))
01010 #define power_twid_disable() (PR_PRPD |= (uint8_t)PR_TWI_bm)
01011 #endif
01012
01013 #if defined(__AVR_HAVE_PRPD_USART0)
01014 #define power_usartd0_enable() (PR_PRPD &= (uint8_t)~(PR_USART0_bm))
01015 #define power_usartd0_disable() (PR_PRPD |= (uint8_t)PR_USART0_bm)
01016 #endif
01017
01018 #if defined(__AVR_HAVE_PRPD_USART1)
01019 #define power_usartd1_enable() (PR_PRPD &= (uint8_t)~(PR_USART1_bm))
01020 #define power_usartd1_disable() (PR_PRPD |= (uint8_t)PR_USART1_bm)
01021 #endif
01022
01023 #if defined(__AVR_HAVE_PRPE_HIRES)
01024 #define power_hirese_enable() (PR_PRPE &= (uint8_t)~(PR_HIRES_bm))
01025 #define power_hirese_disable() (PR_PRPE |= (uint8_t)PR_HIRES_bm)
01026 #endif
01027
01028 #if defined(__AVR_HAVE_PRPE_SPI)
01029 #define power_spie_enable() (PR_PRPE &= (uint8_t)~(PR_SPI_bm))
01030 #define power_spie_disable() (PR_PRPE |= (uint8_t)PR_SPI_bm)
01031 #endif
01032
01033 #if defined(__AVR_HAVE_PRPE_TC0)
01034 #define power_tc0e_enable() (PR_PRPE &= (uint8_t)~(PR_TC0_bm))
01035 #define power_tc0e_disable() (PR_PRPE |= (uint8_t)PR_TC0_bm)
01036 #endif
01037
01038 #if defined(__AVR_HAVE_PRPE_TC1)
01039 #define power_tc1e_enable() (PR_PRPE &= (uint8_t)~(PR_TC1_bm))
01040 #define power_tc1e_disable() (PR_PRPE |= (uint8_t)PR_TC1_bm)

Generated by Doxygen

23.29 power.h 415

01041 #endif
01042
01043 #if defined(__AVR_HAVE_PRPE_TWI)
01044 #define power_twie_enable() (PR_PRPE &= (uint8_t)~(PR_TWI_bm))
01045 #define power_twie_disable() (PR_PRPE |= (uint8_t)PR_TWI_bm)
01046 #endif
01047
01048 #if defined(__AVR_HAVE_PRPE_USART0)
01049 #define power_usarte0_enable() (PR_PRPE &= (uint8_t)~(PR_USART0_bm))
01050 #define power_usarte0_disable() (PR_PRPE |= (uint8_t)PR_USART0_bm)
01051 #endif
01052
01053 #if defined(__AVR_HAVE_PRPE_USART1)
01054 #define power_usarte1_enable() (PR_PRPE &= (uint8_t)~(PR_USART1_bm))
01055 #define power_usarte1_disable() (PR_PRPE |= (uint8_t)PR_USART1_bm)
01056 #endif
01057
01058 #if defined(__AVR_HAVE_PRPF_HIRES)
01059 #define power_hiresf_enable() (PR_PRPF &= (uint8_t)~(PR_HIRES_bm))
01060 #define power_hiresf_disable() (PR_PRPF |= (uint8_t)PR_HIRES_bm)
01061 #endif
01062
01063 #if defined(__AVR_HAVE_PRPF_SPI)
01064 #define power_spif_enable() (PR_PRPF &= (uint8_t)~(PR_SPI_bm))
01065 #define power_spif_disable() (PR_PRPF |= (uint8_t)PR_SPI_bm)
01066 #endif
01067
01068 #if defined(__AVR_HAVE_PRPF_TC0)
01069 #define power_tc0f_enable() (PR_PRPF &= (uint8_t)~(PR_TC0_bm))
01070 #define power_tc0f_disable() (PR_PRPF |= (uint8_t)PR_TC0_bm)
01071 #endif
01072
01073 #if defined(__AVR_HAVE_PRPF_TC1)
01074 #define power_tc1f_enable() (PR_PRPF &= (uint8_t)~(PR_TC1_bm))
01075 #define power_tc1f_disable() (PR_PRPF |= (uint8_t)PR_TC1_bm)
01076 #endif
01077
01078 #if defined(__AVR_HAVE_PRPF_TWI)
01079 #define power_twif_enable() (PR_PRPF &= (uint8_t)~(PR_TWI_bm))
01080 #define power_twif_disable() (PR_PRPF |= (uint8_t)PR_TWI_bm)
01081 #endif
01082
01083 #if defined(__AVR_HAVE_PRPF_USART0)
01084 #define power_usartf0_enable() (PR_PRPF &= (uint8_t)~(PR_USART0_bm))
01085 #define power_usartf0_disable() (PR_PRPF |= (uint8_t)PR_USART0_bm)
01086 #endif
01087
01088 #if defined(__AVR_HAVE_PRPF_USART1)
01089 #define power_usartf1_enable() (PR_PRPF &= (uint8_t)~(PR_USART1_bm))
01090 #define power_usartf1_disable() (PR_PRPF |= (uint8_t)PR_USART1_bm)
01091 #endif
01092
01093 #ifdef __DOXYGEN__
01094 /**
01095 \ingroup avr_power
01096 \fn void power_all_enable()
01097 Enable all modules.
01098 */
01099 static __ATTR_ALWAYS_INLINE__ void power_all_enable();
01100 #else
01101 static __ATTR_ALWAYS_INLINE__ void __power_all_enable()
01102 {
01103 #ifdef __AVR_HAVE_PRR
01104 PRR &= (uint8_t)~(__AVR_HAVE_PRR);
01105 #endif
01106
01107 #ifdef __AVR_HAVE_PRR0
01108 PRR0 &= (uint8_t)~(__AVR_HAVE_PRR0);
01109 #endif
01110
01111 #ifdef __AVR_HAVE_PRR1
01112 PRR1 &= (uint8_t)~(__AVR_HAVE_PRR1);
01113 #endif
01114
01115 #ifdef __AVR_HAVE_PRR2
01116 PRR2 &= (uint8_t)~(__AVR_HAVE_PRR2);
01117 #endif
01118
01119 #ifdef __AVR_HAVE_PRGEN
01120 PR_PRGEN &= (uint8_t)~(__AVR_HAVE_PRGEN);
01121 #endif
01122
01123 #ifdef __AVR_HAVE_PRPA
01124 PR_PRPA &= (uint8_t)~(__AVR_HAVE_PRPA);
01125 #endif
01126
01127 #ifdef __AVR_HAVE_PRPB

Generated by Doxygen

416

01128 PR_PRPB &= (uint8_t)~(__AVR_HAVE_PRPB);
01129 #endif
01130
01131 #ifdef __AVR_HAVE_PRPC
01132 PR_PRPC &= (uint8_t)~(__AVR_HAVE_PRPC);
01133 #endif
01134
01135 #ifdef __AVR_HAVE_PRPD
01136 PR_PRPD &= (uint8_t)~(__AVR_HAVE_PRPD);
01137 #endif
01138
01139 #ifdef __AVR_HAVE_PRPE
01140 PR_PRPE &= (uint8_t)~(__AVR_HAVE_PRPE);
01141 #endif
01142
01143 #ifdef __AVR_HAVE_PRPF
01144 PR_PRPF &= (uint8_t)~(__AVR_HAVE_PRPF);
01145 #endif
01146 }
01147 #endif /* __DOXYGEN__ */
01148
01149 #ifdef __DOXYGEN__
01150 /**
01151 \ingroup avr_power
01152 \fn void power_all_disable()
01153 Disable all modules.
01154 */
01155 static __ATTR_ALWAYS_INLINE__ void power_all_disable();
01156 #else
01157 static __ATTR_ALWAYS_INLINE__ void __power_all_disable()
01158 {
01159 #ifdef __AVR_HAVE_PRR
01160 PRR |= (uint8_t)(__AVR_HAVE_PRR);
01161 #endif
01162
01163 #ifdef __AVR_HAVE_PRR0
01164 PRR0 |= (uint8_t)(__AVR_HAVE_PRR0);
01165 #endif
01166
01167 #ifdef __AVR_HAVE_PRR1
01168 PRR1 |= (uint8_t)(__AVR_HAVE_PRR1);
01169 #endif
01170
01171 #ifdef __AVR_HAVE_PRR2
01172 PRR2 |= (uint8_t)(__AVR_HAVE_PRR2);
01173 #endif
01174
01175 #ifdef __AVR_HAVE_PRGEN
01176 PR_PRGEN |= (uint8_t)(__AVR_HAVE_PRGEN);
01177 #endif
01178
01179 #ifdef __AVR_HAVE_PRPA
01180 PR_PRPA |= (uint8_t)(__AVR_HAVE_PRPA);
01181 #endif
01182
01183 #ifdef __AVR_HAVE_PRPB
01184 PR_PRPB |= (uint8_t)(__AVR_HAVE_PRPB);
01185 #endif
01186
01187 #ifdef __AVR_HAVE_PRPC
01188 PR_PRPC |= (uint8_t)(__AVR_HAVE_PRPC);
01189 #endif
01190
01191 #ifdef __AVR_HAVE_PRPD
01192 PR_PRPD |= (uint8_t)(__AVR_HAVE_PRPD);
01193 #endif
01194
01195 #ifdef __AVR_HAVE_PRPE
01196 PR_PRPE |= (uint8_t)(__AVR_HAVE_PRPE);
01197 #endif
01198
01199 #ifdef __AVR_HAVE_PRPF
01200 PR_PRPF |= (uint8_t)(__AVR_HAVE_PRPF);
01201 #endif
01202 }
01203 #endif /* __DOXYGEN__ */
01204
01205 #ifndef __DOXYGEN__
01206 #ifndef power_all_enable
01207 #define power_all_enable() __power_all_enable()
01208 #endif
01209
01210 #ifndef power_all_disable
01211 #define power_all_disable() __power_all_disable()
01212 #endif
01213 #endif /* !__DOXYGEN__ */
01214

Generated by Doxygen

23.29 power.h 417

01215
01216 #if defined(__DOXYGEN__) \
01217 || defined(__AVR_AT90CAN32__) \
01218 || defined(__AVR_AT90CAN64__) \
01219 || defined(__AVR_AT90CAN128__) \
01220 || defined(__AVR_AT90PWM1__) \
01221 || defined(__AVR_AT90PWM2__) \
01222 || defined(__AVR_AT90PWM2B__) \
01223 || defined(__AVR_AT90PWM3__) \
01224 || defined(__AVR_AT90PWM3B__) \
01225 || defined(__AVR_AT90PWM81__) \
01226 || defined(__AVR_AT90PWM161__) \
01227 || defined(__AVR_AT90PWM216__) \
01228 || defined(__AVR_AT90PWM316__) \
01229 || defined(__AVR_AT90SCR100__) \
01230 || defined(__AVR_AT90USB646__) \
01231 || defined(__AVR_AT90USB647__) \
01232 || defined(__AVR_AT90USB82__) \
01233 || defined(__AVR_AT90USB1286__) \
01234 || defined(__AVR_AT90USB1287__) \
01235 || defined(__AVR_AT90USB162__) \
01236 || defined(__AVR_ATA5505__) \
01237 || defined(__AVR_ATA5272__) \
01238 || defined(__AVR_ATmega1280__) \
01239 || defined(__AVR_ATmega1281__) \
01240 || defined(__AVR_ATmega1284__) \
01241 || defined(__AVR_ATmega128RFA1__) \
01242 || defined(__AVR_ATmega1284RFR2__) \
01243 || defined(__AVR_ATmega128RFR2__) \
01244 || defined(__AVR_ATmega1284P__) \
01245 || defined(__AVR_ATmega162__) \
01246 || defined(__AVR_ATmega164A__) \
01247 || defined(__AVR_ATmega164P__) \
01248 || defined(__AVR_ATmega164PA__) \
01249 || defined(__AVR_ATmega165__) \
01250 || defined(__AVR_ATmega165A__) \
01251 || defined(__AVR_ATmega165P__) \
01252 || defined(__AVR_ATmega165PA__) \
01253 || defined(__AVR_ATmega168__) \
01254 || defined(__AVR_ATmega168P__) \
01255 || defined(__AVR_ATmega168A__) \
01256 || defined(__AVR_ATmega168PA__) \
01257 || defined(__AVR_ATmega168PB__) \
01258 || defined(__AVR_ATmega169__) \
01259 || defined(__AVR_ATmega169A__) \
01260 || defined(__AVR_ATmega169P__) \
01261 || defined(__AVR_ATmega169PA__) \
01262 || defined(__AVR_ATmega16M1__) \
01263 || defined(__AVR_ATmega16U2__) \
01264 || defined(__AVR_ATmega16U4__) \
01265 || defined(__AVR_ATmega2560__) \
01266 || defined(__AVR_ATmega2561__) \
01267 || defined(__AVR_ATmega2564RFR2__) \
01268 || defined(__AVR_ATmega256RFR2__) \
01269 || defined(__AVR_ATmega324A__) \
01270 || defined(__AVR_ATmega324P__) \
01271 || defined(__AVR_ATmega324PA__) \
01272 || defined(__AVR_ATmega324PB__) \
01273 || defined(__AVR_ATmega325__) \
01274 || defined(__AVR_ATmega325A__) \
01275 || defined(__AVR_ATmega325PA__) \
01276 || defined(__AVR_ATmega3250__) \
01277 || defined(__AVR_ATmega3250A__) \
01278 || defined(__AVR_ATmega3250PA__) \
01279 || defined(__AVR_ATmega328__) \
01280 || defined(__AVR_ATmega328P__) \
01281 || defined(__AVR_ATmega328PB__) \
01282 || defined(__AVR_ATmega329__) \
01283 || defined(__AVR_ATmega329A__) \
01284 || defined(__AVR_ATmega329P__) \
01285 || defined(__AVR_ATmega329PA__) \
01286 || defined(__AVR_ATmega3290__) \
01287 || defined(__AVR_ATmega3290A__) \
01288 || defined(__AVR_ATmega3290P__) \
01289 || defined(__AVR_ATmega3290PA__) \
01290 || defined(__AVR_ATmega32C1__) \
01291 || defined(__AVR_ATmega32M1__) \
01292 || defined(__AVR_ATmega32U2__) \
01293 || defined(__AVR_ATmega32U4__) \
01294 || defined(__AVR_ATmega32U6__) \
01295 || defined(__AVR_ATmega48__) \
01296 || defined(__AVR_ATmega48A__) \
01297 || defined(__AVR_ATmega48PA__) \
01298 || defined(__AVR_ATmega48P__) \
01299 || defined(__AVR_ATmega640__) \
01300 || defined(__AVR_ATmega649P__) \
01301 || defined(__AVR_ATmega644__) \

Generated by Doxygen

418

01302 || defined(__AVR_ATmega644A__) \
01303 || defined(__AVR_ATmega644P__) \
01304 || defined(__AVR_ATmega644PA__) \
01305 || defined(__AVR_ATmega645__) \
01306 || defined(__AVR_ATmega645A__) \
01307 || defined(__AVR_ATmega645P__) \
01308 || defined(__AVR_ATmega6450__) \
01309 || defined(__AVR_ATmega6450A__) \
01310 || defined(__AVR_ATmega6450P__) \
01311 || defined(__AVR_ATmega649__) \
01312 || defined(__AVR_ATmega649A__) \
01313 || defined(__AVR_ATmega64M1__) \
01314 || defined(__AVR_ATmega64C1__) \
01315 || defined(__AVR_ATmega6490__) \
01316 || defined(__AVR_ATmega6490A__) \
01317 || defined(__AVR_ATmega6490P__) \
01318 || defined(__AVR_ATmega644RFR2__) \
01319 || defined(__AVR_ATmega64RFR2__) \
01320 || defined(__AVR_ATmega88__) \
01321 || defined(__AVR_ATmega88A__) \
01322 || defined(__AVR_ATmega88P__) \
01323 || defined(__AVR_ATmega88PA__) \
01324 || defined(__AVR_ATmega8U2__) \
01325 || defined(__AVR_ATmega16U2__) \
01326 || defined(__AVR_ATmega32U2__) \
01327 || defined(__AVR_ATtiny48__) \
01328 || defined(__AVR_ATtiny88__) \
01329 || defined(__AVR_ATtiny87__) \
01330 || defined(__AVR_ATtiny167__)
01331
01332
01333 /** \addtogroup avr_power
01334
01335 Some of the newer AVRs contain a System Clock Prescale Register (CLKPR) that
01336 allows you to decrease the system clock frequency and the power consumption
01337 when the need for processing power is low.
01338 On some earlier AVRs (ATmega103, ATmega64, ATmega128), similar
01339 functionality can be achieved through the XTAL Divide Control Register.
01340 Below are two macros and an enumerated type that can be used to
01341 interface to the Clock Prescale Register or
01342 XTAL Divide Control Register.
01343
01344 \note Not all AVR devices have a clock prescaler. On those devices
01345 without a Clock Prescale Register or XTAL Divide Control Register, these
01346 macros are not available.
01347
01348 \code
01349 typedef enum
01350 {
01351 clock_div_1 = 0,
01352 clock_div_2 = 1,
01353 clock_div_4 = 2,
01354 clock_div_8 = 3,
01355 clock_div_16 = 4,
01356 clock_div_32 = 5,
01357 clock_div_64 = 6,
01358 clock_div_128 = 7,
01359 clock_div_256 = 8,
01360 clock_div_1_rc = 15, // ATmega128RFA1 only
01361 } clock_div_t;
01362 \endcode
01363 Clock prescaler setting enumerations for device using
01364 System Clock Prescale Register.
01365
01366 \code
01367 typedef enum
01368 {
01369 clock_div_1 = 1,
01370 clock_div_2 = 2,
01371 clock_div_4 = 4,
01372 clock_div_8 = 8,
01373 clock_div_16 = 16,
01374 clock_div_32 = 32,
01375 clock_div_64 = 64,
01376 clock_div_128 = 128
01377 } clock_div_t;
01378 \endcode
01379 Clock prescaler setting enumerations for device using
01380 XTAL Divide Control Register.
01381
01382 */
01383 #ifndef __DOXYGEN__
01384 typedef enum
01385 {
01386 clock_div_1 = 0,
01387 clock_div_2 = 1,
01388 clock_div_4 = 2,

Generated by Doxygen

23.29 power.h 419

01389 clock_div_8 = 3,
01390 clock_div_16 = 4,
01391 clock_div_32 = 5,
01392 clock_div_64 = 6,
01393 clock_div_128 = 7,
01394 clock_div_256 = 8
01395 #if defined(__AVR_ATmega128RFA1__) \
01396 || defined(__AVR_ATmega2564RFR2__) \
01397 || defined(__AVR_ATmega1284RFR2__) \
01398 || defined(__AVR_ATmega644RFR2__) \
01399 || defined(__AVR_ATmega256RFR2__) \
01400 || defined(__AVR_ATmega128RFR2__) \
01401 || defined(__AVR_ATmega64RFR2__)
01402 , clock_div_1_rc = 15
01403 #endif
01404 } clock_div_t;
01405
01406 static __ATTR_ALWAYS_INLINE__ void clock_prescale_set(clock_div_t);
01407 #endif /* !__DOXYGEN__ */
01408
01409 /**
01410 \ingroup avr_power
01411 \fn clock_prescale_set(clock_div_t x)
01412
01413 Set the clock prescaler register select bits, selecting a system clock
01414 division setting. This function is inlined, even if compiler
01415 optimizations are disabled.
01416
01417 The type of \c x is \c clock_div_t.
01418
01419 \note For device with XTAL Divide Control Register (XDIV), \c x can actually range
01420 from 1 to 129. Thus, one does not need to use \c clock_div_t type as argument.
01421 */
01422 void clock_prescale_set(clock_div_t __x)
01423 {
01424 uint8_t __tmp = _BV(CLKPCE);
01425 __asm__ __volatile__ (
01426 "in __tmp_reg__,__SREG__" "\n\t"
01427 "cli" "\n\t"
01428 "sts %1, %0" "\n\t"
01429 "sts %1, %2" "\n\t"
01430 "out __SREG__, __tmp_reg__"
01431 : /* no outputs */
01432 : "d" (__tmp),
01433 "M" (_SFR_MEM_ADDR(CLKPR)),
01434 "d" (__x)
01435 : "r0");
01436 }
01437
01438 /** \ingroup avr_power
01439 \def clock_prescale_get()
01440 Gets and returns the clock prescaler register setting. The return type is \c clock_div_t.
01441
01442 \note For device with XTAL Divide Control Register (XDIV), return can actually
01443 range from 1 to 129. Care should be taken has the return value could differ from the
01444 typedef enum clock_div_t. This should only happen if clock_prescale_set was previously
01445 called with a value other than those defined by \c clock_div_t.
01446 */
01447 #define clock_prescale_get() (clock_div_t)(CLKPR &

(uint8_t)((1«CLKPS0)|(1«CLKPS1)|(1«CLKPS2)|(1«CLKPS3)))
01448
01449 #elif defined(__AVR_ATmega16HVB__) \
01450 || defined(__AVR_ATmega16HVBREVB__) \
01451 || defined(__AVR_ATmega32HVB__) \
01452 || defined(__AVR_ATmega32HVBREVB__)
01453
01454 typedef enum
01455 {
01456 clock_div_1 = 0,
01457 clock_div_2 = 1,
01458 clock_div_4 = 2,
01459 clock_div_8 = 3
01460 } clock_div_t;
01461
01462 static __ATTR_ALWAYS_INLINE__ void clock_prescale_set(clock_div_t);
01463
01464 void clock_prescale_set(clock_div_t __x)
01465 {
01466 uint8_t __tmp = _BV(CLKPCE);
01467 __asm__ __volatile__ (
01468 "in __tmp_reg__,__SREG__" "\n\t"
01469 "cli" "\n\t"
01470 "sts %1, %0" "\n\t"
01471 "sts %1, %2" "\n\t"
01472 "out __SREG__, __tmp_reg__"
01473 : /* no outputs */
01474 : "d" (__tmp),

Generated by Doxygen

420

01475 "M" (_SFR_MEM_ADDR(CLKPR)),
01476 "d" (__x)
01477 : "r0");
01478 }
01479
01480 #define clock_prescale_get() (clock_div_t)(CLKPR & (uint8_t)((1«CLKPS0)|(1«CLKPS1)))
01481
01482 #elif defined(__AVR_ATA5790__) \
01483 || defined (__AVR_ATA5795__)
01484
01485 typedef enum
01486 {
01487 clock_div_1 = 0,
01488 clock_div_2 = 1,
01489 clock_div_4 = 2,
01490 clock_div_8 = 3,
01491 clock_div_16 = 4,
01492 clock_div_32 = 5,
01493 clock_div_64 = 6,
01494 clock_div_128 = 7,
01495 } clock_div_t;
01496
01497 static __ATTR_ALWAYS_INLINE__ void system_clock_prescale_set(clock_div_t);
01498
01499 void system_clock_prescale_set(clock_div_t __x)
01500 {
01501 uint8_t __tmp = _BV(CLKPCE);
01502 __asm__ __volatile__ (
01503 "in __tmp_reg__,__SREG__" "\n\t"
01504 "cli" "\n\t"
01505 "out %1, %0" "\n\t"
01506 "out %1, %2" "\n\t"
01507 "out __SREG__, __tmp_reg__"
01508 : /* no outputs */
01509 : "d" (__tmp),
01510 "I" (_SFR_IO_ADDR(CLKPR)),
01511 "d" (__x)
01512 : "r0");
01513 }
01514
01515 #define system_clock_prescale_get() (clock_div_t)(CLKPR &

(uint8_t)((1«CLKPS0)|(1«CLKPS1)|(1«CLKPS2)))
01516
01517 typedef enum
01518 {
01519 timer_clock_div_reset = 0,
01520 timer_clock_div_1 = 1,
01521 timer_clock_div_2 = 2,
01522 timer_clock_div_4 = 3,
01523 timer_clock_div_8 = 4,
01524 timer_clock_div_16 = 5,
01525 timer_clock_div_32 = 6,
01526 timer_clock_div_64 = 7
01527 } timer_clock_div_t;
01528
01529 static __ATTR_ALWAYS_INLINE__ void timer_clock_prescale_set(timer_clock_div_t);
01530
01531 void timer_clock_prescale_set(timer_clock_div_t __x)
01532 {
01533 uint8_t __t;
01534 __asm__ __volatile__ (
01535 "in __tmp_reg__,__SREG__" "\n\t"
01536 "cli" "\n\t"
01537 "in %[temp],%[clkpr]" "\n\t"
01538 "out %[clkpr],%[enable]" "\n\t"
01539 "andi %[temp],%[not_CLTPS]" "\n\t"
01540 "or %[temp], %[set_value]" "\n\t"
01541 "out %[clkpr],%[temp]" "\n\t"
01542 "out __SREG__,__tmp_reg__"
01543 : [temp] "=d" (__t)
01544 : [clkpr] "I" (_SFR_IO_ADDR(CLKPR)),
01545 [enable] "r" (_BV(CLKPCE)),
01546 [not_CLTPS] "M" (0xFF & (~ ((1 « CLTPS2) | (1 « CLTPS1) | (1 « CLTPS0)))),
01547 [set_value] "r" ((__x & 7) « 3)
01548 : "r0");
01549 }
01550
01551 #define timer_clock_prescale_get() (timer_clock_div_t)(CLKPR &

(uint8_t)((1«CLTPS0)|(1«CLTPS1)|(1«CLTPS2)))
01552
01553 #elif defined(__AVR_ATA6285__) \
01554 || defined(__AVR_ATA6286__)
01555
01556 typedef enum
01557 {
01558 clock_div_1 = 0,
01559 clock_div_2 = 1,

Generated by Doxygen

23.29 power.h 421

01560 clock_div_4 = 2,
01561 clock_div_8 = 3,
01562 clock_div_16 = 4,
01563 clock_div_32 = 5,
01564 clock_div_64 = 6,
01565 clock_div_128 = 7
01566 } clock_div_t;
01567
01568 static __ATTR_ALWAYS_INLINE__ void system_clock_prescale_set(clock_div_t);
01569
01570 void system_clock_prescale_set(clock_div_t __x)
01571 {
01572 uint8_t __t;
01573 __asm__ __volatile__ (
01574 "in __tmp_reg__,__SREG__" "\n\t"
01575 "cli" "\n\t"
01576 "in %[temp],%[clpr]" "\n\t"
01577 "out %[clpr],%[enable]" "\n\t"
01578 "andi %[temp],%[not_CLKPS]" "\n\t"
01579 "or %[temp], %[set_value]" "\n\t"
01580 "out %[clpr],%[temp]" "\n\t"
01581 "out __SREG__,__tmp_reg__"
01582 : [temp] "=d" (__t)
01583 : [clpr] "I" (_SFR_IO_ADDR(CLKPR)),
01584 [enable] "r" _BV(CLPCE),
01585 [not_CLKPS] "M" (0xFF & (~ ((1 « CLKPS2) | (1 « CLKPS1) | (1 « CLKPS0)))),
01586 [set_value] "r" (__x & 7)
01587 : "r0");
01588 }
01589
01590 #define system_clock_prescale_get() (clock_div_t)(CLKPR &

(uint8_t)((1«CLKPS0)|(1«CLKPS1)|(1«CLKPS2)))
01591
01592 typedef enum
01593 {
01594 timer_clock_div_reset = 0,
01595 timer_clock_div_1 = 1,
01596 timer_clock_div_2 = 2,
01597 timer_clock_div_4 = 3,
01598 timer_clock_div_8 = 4,
01599 timer_clock_div_16 = 5,
01600 timer_clock_div_32 = 6,
01601 timer_clock_div_64 = 7
01602 } timer_clock_div_t;
01603
01604 static __ATTR_ALWAYS_INLINE__ void timer_clock_prescale_set(timer_clock_div_t);
01605
01606 void timer_clock_prescale_set(timer_clock_div_t __x)
01607 {
01608 uint8_t __t;
01609 __asm__ __volatile__ (
01610 "in __tmp_reg__,__SREG__" "\n\t"
01611 "cli" "\n\t"
01612 "in %[temp],%[clpr]" "\n\t"
01613 "out %[clpr],%[enable]" "\n\t"
01614 "andi %[temp],%[not_CLTPS]" "\n\t"
01615 "or %[temp], %[set_value]" "\n\t"
01616 "out %[clpr],%[temp]" "\n\t"
01617 "out __SREG__,__tmp_reg__"
01618 : [temp] "=d" (__t)
01619 : [clpr] "I" (_SFR_IO_ADDR(CLKPR)),
01620 [enable] "r" (_BV(CLPCE)),
01621 [not_CLTPS] "M" (0xFF & (~ ((1 « CLTPS2) | (1 « CLTPS1) | (1 « CLTPS0)))),
01622 [set_value] "r" ((__x & 7) « 3)
01623 : "r0");
01624 }
01625
01626 #define timer_clock_prescale_get() (timer_clock_div_t)(CLKPR &

(uint8_t)((1«CLTPS0)|(1«CLTPS1)|(1«CLTPS2)))
01627
01628 #elif defined(__AVR_ATtiny24__) \
01629 || defined(__AVR_ATtiny24A__) \
01630 || defined(__AVR_ATtiny44__) \
01631 || defined(__AVR_ATtiny44A__) \
01632 || defined(__AVR_ATtiny84__) \
01633 || defined(__AVR_ATtiny84A__) \
01634 || defined(__AVR_ATtiny25__) \
01635 || defined(__AVR_ATtiny45__) \
01636 || defined(__AVR_ATtiny85__) \
01637 || defined(__AVR_ATtiny261A__) \
01638 || defined(__AVR_ATtiny261__) \
01639 || defined(__AVR_ATtiny461__) \
01640 || defined(__AVR_ATtiny461A__) \
01641 || defined(__AVR_ATtiny861__) \
01642 || defined(__AVR_ATtiny861A__) \
01643 || defined(__AVR_ATtiny2313__) \
01644 || defined(__AVR_ATtiny2313A__) \

Generated by Doxygen

422

01645 || defined(__AVR_ATtiny4313__) \
01646 || defined(__AVR_ATtiny13__) \
01647 || defined(__AVR_ATtiny13A__) \
01648 || defined(__AVR_ATtiny43U__) \
01649
01650 typedef enum
01651 {
01652 clock_div_1 = 0,
01653 clock_div_2 = 1,
01654 clock_div_4 = 2,
01655 clock_div_8 = 3,
01656 clock_div_16 = 4,
01657 clock_div_32 = 5,
01658 clock_div_64 = 6,
01659 clock_div_128 = 7,
01660 clock_div_256 = 8
01661 } clock_div_t;
01662
01663 static __ATTR_ALWAYS_INLINE__ void clock_prescale_set(clock_div_t);
01664
01665 void clock_prescale_set(clock_div_t __x)
01666 {
01667 uint8_t __tmp = _BV(CLKPCE);
01668 __asm__ __volatile__ (
01669 "in __tmp_reg__,__SREG__" "\n\t"
01670 "cli" "\n\t"
01671 "out %1, %0" "\n\t"
01672 "out %1, %2" "\n\t"
01673 "out __SREG__, __tmp_reg__"
01674 : /* no outputs */
01675 : "d" (__tmp),
01676 "I" (_SFR_IO_ADDR(CLKPR)),
01677 "d" (__x)
01678 : "r0");
01679 }
01680
01681
01682 #define clock_prescale_get() (clock_div_t)(CLKPR &

(uint8_t)((1«CLKPS0)|(1«CLKPS1)|(1«CLKPS2)|(1«CLKPS3)))
01683
01684 #elif defined(__AVR_ATtiny441__) \
01685 || defined(__AVR_ATtiny841__)
01686
01687 typedef enum
01688 {
01689 clock_div_1 = 0,
01690 clock_div_2 = 1,
01691 clock_div_4 = 2,
01692 clock_div_8 = 3,
01693 clock_div_16 = 4,
01694 clock_div_32 = 5,
01695 clock_div_64 = 6,
01696 clock_div_128 = 7,
01697 clock_div_256 = 8
01698 } clock_div_t;
01699
01700 static __ATTR_ALWAYS_INLINE__ void clock_prescale_set (clock_div_t);
01701
01702 void clock_prescale_set (clock_div_t __x)
01703 {
01704 __asm__ __volatile__ (
01705 "in __tmp_reg__,__SREG__" "\n\t"
01706 "cli" "\n\t"
01707 "sts %2, %3" "\n\t"
01708 "sts %1, %0" "\n\t"
01709 "out __SREG__, __tmp_reg__"
01710 : /* no outputs */
01711 : "r" (__x),
01712 "n" (_SFR_MEM_ADDR(CLKPR)),
01713 "n" (_SFR_MEM_ADDR(CCP)),
01714 "r" ((uint8_t) 0xD8)
01715 : "r0");
01716 }
01717
01718 #define clock_prescale_get() (clock_div_t) (CLKPR &

(uint8_t)((1«CLKPS0)|(1«CLKPS1)|(1«CLKPS2)|(1«CLKPS3)))
01719
01720 #elif defined(__AVR_ATmega64__) \
01721 || defined(__AVR_ATmega103__) \
01722 || defined(__AVR_ATmega128__)
01723
01724 //Enum is declared for code compatibility
01725 typedef enum
01726 {
01727 clock_div_1 = 1,
01728 clock_div_2 = 2,
01729 clock_div_4 = 4,

Generated by Doxygen

23.29 power.h 423

01730 clock_div_8 = 8,
01731 clock_div_16 = 16,
01732 clock_div_32 = 32,
01733 clock_div_64 = 64,
01734 clock_div_128 = 128
01735 } clock_div_t;
01736
01737 static __ATTR_ALWAYS_INLINE__ void clock_prescale_set(clock_div_t);
01738
01739 void clock_prescale_set(clock_div_t __x)
01740 {
01741 if((__x <= 0) || (__x > 129))
01742 {
01743 return;//Invalid value.
01744 }
01745 else
01746 {
01747 uint8_t __tmp = 0;
01748 //Algo explained:
01749 //1 - Clear XDIV in order for it to accept a new value (actually only
01750 // XDIVEN need to be cleared, but clearing XDIV is faster than
01751 // read-modify-write since we will rewrite XDIV later anyway)
01752 //2 - wait 8 clock cycle for stability, see datasheet errata
01753 //3 - Exit if requested prescaler is 1
01754 //4 - Calculate XDIV6..0 value = 129 - __x
01755 //5 - Set XDIVEN bit in calculated value
01756 //6 - write XDIV with calculated value
01757 //7 - wait 8 clock cycle for stability, see datasheet errata
01758 __asm__ __volatile__ (
01759 "in __tmp_reg__,__SREG__" "\n\t"
01760 "cli" "\n\t"
01761 "out %2, __zero_reg__" "\n\t"
01762 "nop" "\n\t"
01763 "nop" "\n\t"
01764 "nop" "\n\t"
01765 "nop" "\n\t"
01766 "nop" "\n\t"
01767 "nop" "\n\t"
01768 "nop" "\n\t"
01769 "nop" "\n\t"
01770 "cpi %1, 0x01" "\n\t"
01771 "breq L_%=" "\n\t"
01772 "ldi %0, 0x81" "\n\t" //129
01773 "sub %0, %1" "\n\t"
01774 "ori %0, 0x80" "\n\t" //128
01775 "out %2, %0" "\n\t"
01776 "nop" "\n\t"
01777 "nop" "\n\t"
01778 "nop" "\n\t"
01779 "nop" "\n\t"
01780 "nop" "\n\t"
01781 "nop" "\n\t"
01782 "nop" "\n\t"
01783 "nop" "\n\t"
01784 "L_%=: " "out __SREG__, __tmp_reg__"
01785 : "=d" (__tmp)
01786 : "d" (__x),
01787 "I" (_SFR_IO_ADDR(XDIV))
01788 : "r0");
01789 }
01790 }
01791
01792 static __ATTR_ALWAYS_INLINE__ clock_div_t clock_prescale_get(void);
01793
01794 clock_div_t clock_prescale_get(void)
01795 {
01796 if (bit_is_clear(XDIV, XDIVEN))
01797 {
01798 return 1;
01799 }
01800 else
01801 {
01802 return (clock_div_t) (129 - (XDIV & 0x7F));
01803 }
01804 }
01805
01806 #elif defined(__AVR_ATtiny4__) \
01807 || defined(__AVR_ATtiny5__) \
01808 || defined(__AVR_ATtiny9__) \
01809 || defined(__AVR_ATtiny10__) \
01810 || defined(__AVR_ATtiny102__) \
01811 || defined(__AVR_ATtiny104__) \
01812 || defined(__AVR_ATtiny20__) \
01813 || defined(__AVR_ATtiny40__) \
01814
01815 typedef enum
01816 {

Generated by Doxygen

424

01817 clock_div_1 = 0,
01818 clock_div_2 = 1,
01819 clock_div_4 = 2,
01820 clock_div_8 = 3,
01821 clock_div_16 = 4,
01822 clock_div_32 = 5,
01823 clock_div_64 = 6,
01824 clock_div_128 = 7,
01825 clock_div_256 = 8
01826 } clock_div_t;
01827
01828 static __ATTR_ALWAYS_INLINE__ void clock_prescale_set(clock_div_t);
01829
01830 void clock_prescale_set(clock_div_t __x)
01831 {
01832 uint8_t __tmp = 0xD8;
01833 __asm__ __volatile__ (
01834 "in __tmp_reg__,__SREG__" "\n\t"
01835 "cli" "\n\t"
01836 "out %1, %0" "\n\t"
01837 "out %2, %3" "\n\t"
01838 "out __SREG__, __tmp_reg__"
01839 : /* no outputs */
01840 : "d" (__tmp),
01841 "I" (_SFR_IO_ADDR(CCP)),
01842 "I" (_SFR_IO_ADDR(CLKPSR)),
01843 "d" (__x)
01844 : "r16");
01845 }
01846
01847 #define clock_prescale_get() (clock_div_t)(CLKPSR &

(uint8_t)((1«CLKPS0)|(1«CLKPS1)|(1«CLKPS2)|(1«CLKPS3)))
01848
01849 #endif
01850
01851 #endif /* _AVR_POWER_H_ */

23.30 sfr_defs.h
00001 /* Copyright (c) 2002, Marek Michalkiewicz <marekm@amelek.gda.pl>
00002 All rights reserved.
00003
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions are met:
00006
00007 * Redistributions of source code must retain the above copyright
00008 notice, this list of conditions and the following disclaimer.
00009
00010 * Redistributions in binary form must reproduce the above copyright
00011 notice, this list of conditions and the following disclaimer in
00012 the documentation and/or other materials provided with the
00013 distribution.
00014
00015 * Neither the name of the copyright holders nor the names of
00016 contributors may be used to endorse or promote products derived
00017 from this software without specific prior written permission.
00018
00019 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00020 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00021 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00022 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00023 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00024 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00025 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00026 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00027 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00028 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00029 POSSIBILITY OF SUCH DAMAGE. */
00030
00031 /* avr/sfr_defs.h - macros for accessing AVR special function registers */
00032
00033 /* Id */
00034
00035 #ifndef _AVR_SFR_DEFS_H_
00036 #define _AVR_SFR_DEFS_H_ 1
00037
00038 /** \defgroup avr_sfr_notes Additional notes from <avr/sfr_defs.h>
00039 \ingroup avr_sfr
00040
00041 The \c <avr/sfr_defs.h> file is included by all of the \c <avr/ioXXXX.h>
00042 files, which use macros defined here to make the special function register
00043 definitions look like C variables or simple constants, depending on the
00044 <tt>_SFR_ASM_COMPAT</tt> define. Some examples from \c <avr/iocanxx.h> to
00045 show how to define such macros:

Generated by Doxygen

23.30 sfr_defs.h 425

00046
00047 \code
00048 #define PORTA _SFR_IO8(0x02)
00049 #define EEAR _SFR_IO16(0x21)
00050 #define UDR0 _SFR_MEM8(0xC6)
00051 #define TCNT3 _SFR_MEM16(0x94)
00052 #define CANIDT _SFR_MEM32(0xF0)
00053 \endcode
00054
00055 If \c _SFR_ASM_COMPAT is not defined, C programs can use names like
00056 <tt>PORTA</tt> directly in C expressions (also on the left side of
00057 assignment operators) and GCC will do the right thing (use short I/O
00058 instructions if possible). The \c __SFR_OFFSET definition is not used in
00059 any way in this case.
00060
00061 Define \c _SFR_ASM_COMPAT as 1 to make these names work as simple constants
00062 (addresses of the I/O registers). This is necessary when included in
00063 preprocessed assembler (*.S) source files, so it is done automatically if
00064 \c __ASSEMBLER__ is defined. By default, all addresses are defined as if
00065 they were memory addresses (used in \c lds/sts instructions). To use these
00066 addresses in \c in/out instructions, you must subtract 0x20 from them.
00067
00068 For more backwards compatibility, insert the following at the start of your
00069 old assembler source file:
00070
00071 \code
00072 #define __SFR_OFFSET 0
00073 \endcode
00074
00075 This automatically subtracts 0x20 from I/O space addresses, but it’s a
00076 hack, so it is recommended to change your source: wrap such addresses in
00077 macros defined here, as shown below. After this is done, the
00078 <tt>__SFR_OFFSET</tt> definition is no longer necessary and can be removed.
00079
00080 Real example - this code could be used in a boot loader that is portable
00081 between devices with \c SPMCR at different addresses.
00082
00083 \verbatim
00084 <avr/iom163.h>: #define SPMCR _SFR_IO8(0x37)
00085 <avr/iom128.h>: #define SPMCR _SFR_MEM8(0x68)
00086 \endverbatim
00087
00088 \code
00089 #if _SFR_IO_REG_P(SPMCR)
00090 out _SFR_IO_ADDR(SPMCR), r24
00091 #else
00092 sts _SFR_MEM_ADDR(SPMCR), r24
00093 #endif
00094 \endcode
00095
00096 You can use the \c in/out/cbi/sbi/sbic/sbis instructions, without the
00097 <tt>_SFR_IO_REG_P</tt> test, if you know that the register is in the I/O
00098 space (as with \c SREG, for example). If it isn’t, the assembler will
00099 complain (I/O address out of range 0...0x3f), so this should be fairly
00100 safe.
00101
00102 If you do not define \c __SFR_OFFSET (so it will be 0x20 by default), all
00103 special register addresses are defined as memory addresses (so \c SREG is
00104 0x5f), and (if code size and speed are not important, and you don’t like
00105 the ugly \#if above) you can always use lds/sts to access them. But, this
00106 will not work if <tt>__SFR_OFFSET</tt> != 0x20, so use a different macro
00107 (defined only if <tt>__SFR_OFFSET</tt> == 0x20) for safety:
00108
00109 \code
00110 sts _SFR_ADDR(SPMCR), r24
00111 \endcode
00112
00113 In C programs, all 3 combinations of \c _SFR_ASM_COMPAT and
00114 <tt>__SFR_OFFSET</tt> are supported - the \c _SFR_ADDR(SPMCR) macro can be
00115 used to get the address of the \c SPMCR register (0x57 or 0x68 depending on
00116 device). */
00117
00118 #ifdef __ASSEMBLER__
00119 #define _SFR_ASM_COMPAT 1
00120 #elif !defined(_SFR_ASM_COMPAT)
00121 #define _SFR_ASM_COMPAT 0
00122 #endif
00123
00124 #ifndef __ASSEMBLER__
00125 /* These only work in C programs. */
00126 #include <inttypes.h>
00127
00128 #define _MMIO_BYTE(mem_addr) (*(volatile uint8_t *)(mem_addr))
00129 #define _MMIO_WORD(mem_addr) (*(volatile uint16_t *)(mem_addr))
00130 #define _MMIO_DWORD(mem_addr) (*(volatile uint32_t *)(mem_addr))
00131 #endif
00132

Generated by Doxygen

426

00133 #if _SFR_ASM_COMPAT
00134
00135 #ifndef __SFR_OFFSET
00136 /* Define as 0 before including this file for compatibility with old asm
00137 sources that don’t subtract __SFR_OFFSET from symbolic I/O addresses. */
00138 # if __AVR_ARCH__ >= 100
00139 # define __SFR_OFFSET 0x00
00140 # else
00141 # define __SFR_OFFSET 0x20
00142 # endif
00143 #endif
00144
00145 #if (__SFR_OFFSET != 0) && (__SFR_OFFSET != 0x20)
00146 #error "__SFR_OFFSET must be 0 or 0x20"
00147 #endif
00148
00149 #define _SFR_MEM8(mem_addr) (mem_addr)
00150 #define _SFR_MEM16(mem_addr) (mem_addr)
00151 #define _SFR_MEM32(mem_addr) (mem_addr)
00152 #define _SFR_IO8(io_addr) ((io_addr) + __SFR_OFFSET)
00153 #define _SFR_IO16(io_addr) ((io_addr) + __SFR_OFFSET)
00154
00155 #define _SFR_IO_ADDR(sfr) ((sfr) - __SFR_OFFSET)
00156 #define _SFR_MEM_ADDR(sfr) (sfr)
00157 #define _SFR_IO_REG_P(sfr) ((sfr) < 0x40 + __SFR_OFFSET)
00158
00159 #if (__SFR_OFFSET == 0x20)
00160 /* No need to use ?: operator, so works in assembler too. */
00161 #define _SFR_ADDR(sfr) _SFR_MEM_ADDR(sfr)
00162 #elif !defined(__ASSEMBLER__)
00163 #define _SFR_ADDR(sfr) (_SFR_IO_REG_P(sfr) ? (_SFR_IO_ADDR(sfr) + 0x20) : _SFR_MEM_ADDR(sfr))
00164 #endif
00165
00166 #else /* !_SFR_ASM_COMPAT */
00167
00168 #ifndef __SFR_OFFSET
00169 # if __AVR_ARCH__ >= 100
00170 # define __SFR_OFFSET 0x00
00171 # else
00172 # define __SFR_OFFSET 0x20
00173 # endif
00174 #endif
00175
00176 #define _SFR_MEM8(mem_addr) _MMIO_BYTE(mem_addr)
00177 #define _SFR_MEM16(mem_addr) _MMIO_WORD(mem_addr)
00178 #define _SFR_MEM32(mem_addr) _MMIO_DWORD(mem_addr)
00179 #define _SFR_IO8(io_addr) _MMIO_BYTE((io_addr) + __SFR_OFFSET)
00180 #define _SFR_IO16(io_addr) _MMIO_WORD((io_addr) + __SFR_OFFSET)
00181
00182 #define _SFR_MEM_ADDR(sfr) ((uint16_t) &(sfr))
00183 #define _SFR_IO_ADDR(sfr) (_SFR_MEM_ADDR(sfr) - __SFR_OFFSET)
00184 #define _SFR_IO_REG_P(sfr) (_SFR_MEM_ADDR(sfr) < 0x40 + __SFR_OFFSET)
00185
00186 #define _SFR_ADDR(sfr) _SFR_MEM_ADDR(sfr)
00187
00188 #endif /* !_SFR_ASM_COMPAT */
00189
00190 #define _SFR_BYTE(sfr) _MMIO_BYTE(_SFR_ADDR(sfr))
00191 #define _SFR_WORD(sfr) _MMIO_WORD(_SFR_ADDR(sfr))
00192 #define _SFR_DWORD(sfr) _MMIO_DWORD(_SFR_ADDR(sfr))
00193
00194 /** \name Bit manipulation */
00195
00196 /**@{*/
00197 /** \def _BV
00198 \ingroup avr_sfr
00199
00200 \code #include <avr/io.h>\endcode
00201
00202 Converts a bit number into a byte value.
00203
00204 \note The bit shift is performed by the compiler which then inserts the
00205 result into the code. Thus, there is no run-time overhead when using
00206 _BV(). */
00207
00208 #define _BV(bit) (1 « (bit))
00209
00210 /**@}*/
00211
00212 #ifndef _VECTOR
00213 #define _VECTOR(N) __vector_ ## N
00214 #endif
00215
00216 #ifndef __ASSEMBLER__
00217
00218
00219 /** \name IO register bit manipulation */

Generated by Doxygen

23.31 signal.h 427

00220
00221 /**@{*/
00222
00223
00224
00225 /** \def bit_is_set
00226 \ingroup avr_sfr
00227
00228 \code #include <avr/io.h>\endcode
00229
00230 Test whether bit \c bit in IO register \c sfr is set.
00231 This will return a 0 if the bit is clear, and non-zero
00232 if the bit is set. */
00233
00234 #define bit_is_set(sfr, bit) (_SFR_BYTE(sfr) & _BV(bit))
00235
00236 /** \def bit_is_clear
00237 \ingroup avr_sfr
00238
00239 \code #include <avr/io.h>\endcode
00240
00241 Test whether bit \c bit in IO register \c sfr is clear.
00242 This will return non-zero if the bit is clear, and a 0
00243 if the bit is set. */
00244
00245 #define bit_is_clear(sfr, bit) (!(_SFR_BYTE(sfr) & _BV(bit)))
00246
00247 /** \def loop_until_bit_is_set
00248 \ingroup avr_sfr
00249
00250 \code #include <avr/io.h>\endcode
00251
00252 Wait until bit \c bit in IO register \c sfr is set. */
00253
00254 #define loop_until_bit_is_set(sfr, bit) do { } while (bit_is_clear(sfr, bit))
00255
00256 /** \def loop_until_bit_is_clear
00257 \ingroup avr_sfr
00258
00259 \code #include <avr/io.h>\endcode
00260
00261 Wait until bit \c bit in IO register \c sfr is clear. */
00262
00263 #define loop_until_bit_is_clear(sfr, bit) do { } while (bit_is_set(sfr, bit))
00264
00265 /**@}*/
00266
00267 #endif /* !__ASSEMBLER__ */
00268
00269 #endif /* _SFR_DEFS_H_ */

23.31 signal.h
00001 /* Copyright (c) 2002,2005,2006 Marek Michalkiewicz
00002 All rights reserved.
00003
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions are met:
00006
00007 * Redistributions of source code must retain the above copyright
00008 notice, this list of conditions and the following disclaimer.
00009
00010 * Redistributions in binary form must reproduce the above copyright
00011 notice, this list of conditions and the following disclaimer in
00012 the documentation and/or other materials provided with the
00013 distribution.
00014
00015 * Neither the name of the copyright holders nor the names of
00016 contributors may be used to endorse or promote products derived
00017 from this software without specific prior written permission.
00018
00019 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00020 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00021 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00022 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00023 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00024 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00025 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00026 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00027 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00028 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00029 POSSIBILITY OF SUCH DAMAGE. */
00030
00031 /* Id */

Generated by Doxygen

428

00032
00033 #ifndef _AVR_SIGNAL_H_
00034 #define _AVR_SIGNAL_H_
00035
00036 #warning "This header file is obsolete. Use <avr/interrupt.h>."
00037 #include <avr/interrupt.h>
00038
00039 #endif /* _AVR_SIGNAL_H_ */

23.32 signature.h File Reference

23.33 signature.h

Go to the documentation of this file.
00001 /* Copyright (c) 2009, Atmel Corporation
00002 All rights reserved.
00003
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions are met:
00006
00007 * Redistributions of source code must retain the above copyright
00008 notice, this list of conditions and the following disclaimer.
00009
00010 * Redistributions in binary form must reproduce the above copyright
00011 notice, this list of conditions and the following disclaimer in
00012 the documentation and/or other materials provided with the
00013 distribution.
00014
00015 * Neither the name of the copyright holders nor the names of
00016 contributors may be used to endorse or promote products derived
00017 from this software without specific prior written permission.
00018
00019 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00020 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00021 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00022 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00023 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00024 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00025 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00026 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00027 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00028 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00029 POSSIBILITY OF SUCH DAMAGE. */
00030
00031 /* Id */
00032
00033 /* avr/signature.h - Signature API */
00034
00035 #ifndef _AVR_SIGNATURE_H_
00036 #define _AVR_SIGNATURE_H_ 1
00037
00038 /** \file */
00039 /** \defgroup avr_signature <avr/signature.h>: Signature Support
00040
00041 \par Introduction
00042
00043 The <avr/signature.h> header file allows the user to automatically
00044 and easily include the device’s signature data in a special section of
00045 the final linked ELF file.
00046
00047 This value can then be used by programming software to compare the on-device
00048 signature with the signature recorded in the ELF file to look for a match
00049 before programming the device.
00050
00051 \par API Usage Example
00052
00053 Usage is very simple; just include the header file:
00054
00055 \code
00056 #include <avr/signature.h>
00057 \endcode
00058
00059 This will declare a constant unsigned char array and it is initialized with
00060 the three signature bytes, MSB first, that are defined in the device I/O
00061 header file. This array is then placed in the .signature section in the
00062 resulting linked ELF file.
00063
00064 The three signature bytes that are used to initialize the array are
00065 these defined macros in the device I/O header file, from MSB to LSB:
00066 SIGNATURE_2, SIGNATURE_1, SIGNATURE_0.

Generated by Doxygen

23.34 sleep.h File Reference 429

00067
00068 This header file should only be included once in an application.
00069 */
00070
00071 #ifndef __ASSEMBLER__
00072
00073 #include <avr/io.h>
00074
00075 #if defined(SIGNATURE_0) && defined(SIGNATURE_1) && defined(SIGNATURE_2)
00076
00077 const unsigned char __signature[3]
00078 __attribute__((__used__, __section__(".signature"))) =
00079 { SIGNATURE_2, SIGNATURE_1, SIGNATURE_0 };
00080
00081 #endif /* defined(SIGNATURE_0) && defined(SIGNATURE_1) && defined(SIGNATURE_2) */
00082
00083 #endif /* __ASSEMBLER__ */
00084
00085 #endif /* _AVR_SIGNATURE_H_ */

23.34 sleep.h File Reference

Functions

• void sleep_enable (void)
• void sleep_disable (void)
• void sleep_cpu (void)
• void sleep_mode (void)
• void sleep_bod_disable (void)

23.35 sleep.h

Go to the documentation of this file.
00001 /* Copyright (c) 2002, 2004 Theodore A. Roth
00002 Copyright (c) 2004, 2007, 2008 Eric B. Weddington
00003 Copyright (c) 2005, 2006, 2007 Joerg Wunsch
00004 All rights reserved.
00005
00006 Redistribution and use in source and binary forms, with or without
00007 modification, are permitted provided that the following conditions are met:
00008
00009 * Redistributions of source code must retain the above copyright
00010 notice, this list of conditions and the following disclaimer.
00011
00012 * Redistributions in binary form must reproduce the above copyright
00013 notice, this list of conditions and the following disclaimer in
00014 the documentation and/or other materials provided with the
00015 distribution.
00016
00017 * Neither the name of the copyright holders nor the names of
00018 contributors may be used to endorse or promote products derived
00019 from this software without specific prior written permission.
00020
00021 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00022 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00023 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00024 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00025 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00026 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00027 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00028 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00029 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00030 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00031 POSSIBILITY OF SUCH DAMAGE. */
00032
00033 /* Id */
00034
00035 #ifndef _AVR_SLEEP_H_
00036 #define _AVR_SLEEP_H_ 1
00037
00038 #include <avr/io.h>
00039 #include <stdint.h>
00040
00041

Generated by Doxygen

430

00042 /** \file */
00043
00044 /** \defgroup avr_sleep <avr/sleep.h>: Power Management and Sleep Modes */
00045 /**@{*/
00046 /**
00047 \code #include <avr/sleep.h>\endcode
00048
00049 Use of the \c SLEEP instruction can allow an application to reduce its
00050 power comsumption considerably. AVR devices can be put into different
00051 sleep modes. Refer to the datasheet for the details relating to the device
00052 you are using.
00053
00054 There are several macros provided in this header file to actually
00055 put the device into sleep mode. The simplest way is to optionally
00056 set the desired sleep mode using \c set_sleep_mode() (it usually
00057 defaults to idle mode where the CPU is put on sleep but all
00058 peripheral clocks are still running), and then call
00059 \c sleep_mode(). This macro automatically sets the sleep enable bit, goes
00060 to sleep, and clears the sleep enable bit.
00061
00062 Example:
00063 \code
00064 #include <avr/sleep.h>
00065
00066 ...
00067 set_sleep_mode(<mode>);
00068 sleep_mode();
00069 \endcode
00070
00071 Note that unless your purpose is to completely lock the CPU (until a
00072 hardware reset), interrupts need to be enabled before going to sleep.
00073
00074 As the \c sleep_mode() macro might cause race conditions in some
00075 situations, the individual steps of manipulating the sleep enable
00076 (SE) bit, and actually issuing the \c SLEEP instruction, are provided
00077 in the macros \c sleep_enable(), \c sleep_disable(), and
00078 \c sleep_cpu(). This also allows for test-and-sleep scenarios that
00079 take care of not missing the interrupt that will awake the device
00080 from sleep.
00081
00082 Example:
00083 \code
00084 #include <avr/interrupt.h>
00085 #include <avr/sleep.h>
00086
00087 ...
00088 set_sleep_mode(<mode>);
00089 cli();
00090 if (some_condition)
00091 {
00092 sleep_enable();
00093 sei();
00094 sleep_cpu();
00095 sleep_disable();
00096 }
00097 sei();
00098 \endcode
00099
00100 This sequence ensures an atomic test of \c some_condition with
00101 interrupts being disabled. If the condition is met, sleep mode
00102 will be prepared, and the \c SLEEP instruction will be scheduled
00103 immediately after an \c SEI instruction. As the intruction right
00104 after the \c SEI is guaranteed to be executed before an interrupt
00105 could trigger, it is sure the device will really be put to sleep.
00106
00107 Some devices have the ability to disable the Brown Out Detector (BOD) before
00108 going to sleep. This will also reduce power while sleeping. If the
00109 specific AVR device has this ability then an additional macro is defined:
00110 \c sleep_bod_disable(). This macro generates inlined assembly code
00111 that will correctly implement the timed sequence for disabling the BOD
00112 before sleeping. However, there is a limited number of cycles after the
00113 BOD has been disabled that the device can be put into sleep mode, otherwise
00114 the BOD will not truly be disabled. Recommended practice is to disable
00115 the BOD (\c sleep_bod_disable()), set the interrupts (\c sei()), and then
00116 put the device to sleep (\c sleep_cpu()), like so:
00117
00118 \code
00119 #include <avr/interrupt.h>
00120 #include <avr/sleep.h>
00121
00122 ...
00123 set_sleep_mode(<mode>);
00124 cli();
00125 if (some_condition)
00126 {
00127 sleep_enable();
00128 sleep_bod_disable();

Generated by Doxygen

23.35 sleep.h 431

00129 sei();
00130 sleep_cpu();
00131 sleep_disable();
00132 }
00133 sei();
00134 \endcode
00135 */
00136
00137
00138 /* Define an internal sleep control register and an internal sleep enable bit mask. */
00139 #if defined(SLEEP_CTRL)
00140
00141 /* XMEGA devices */
00142 #define _SLEEP_CONTROL_REG SLEEP_CTRL
00143 #define _SLEEP_ENABLE_MASK SLEEP_SEN_bm
00144 #define _SLEEP_SMODE_GROUP_MASK SLEEP_SMODE_gm
00145
00146 #elif defined(SLPCTRL)
00147
00148 /* New xmega devices */
00149 #define _SLEEP_CONTROL_REG SLPCTRL_CTRLA
00150 #define _SLEEP_ENABLE_MASK SLPCTRL_SEN_bm
00151 #define _SLEEP_SMODE_GROUP_MASK SLPCTRL_SMODE_gm
00152
00153 #elif defined(SMCR)
00154
00155 #define _SLEEP_CONTROL_REG SMCR
00156 #define _SLEEP_ENABLE_MASK _BV(SE)
00157
00158 #elif defined(__AVR_AT94K__)
00159
00160 #define _SLEEP_CONTROL_REG MCUR
00161 #define _SLEEP_ENABLE_MASK _BV(SE)
00162
00163 #elif !defined(__DOXYGEN__)
00164
00165 #define _SLEEP_CONTROL_REG MCUCR
00166 #define _SLEEP_ENABLE_MASK _BV(SE)
00167
00168 #endif
00169
00170
00171 /* Special casing these three devices - they are the
00172 only ones that need to write to more than one register. */
00173 #if defined(__AVR_ATmega161__)
00174
00175 #define set_sleep_mode(mode) \
00176 do { \
00177 MCUCR = ((MCUCR & ~_BV(SM1)) | ((mode) == SLEEP_MODE_PWR_DOWN || (mode) == SLEEP_MODE_PWR_SAVE

? _BV(SM1) : 0)); \
00178 EMCUCR = ((EMCUCR & ~_BV(SM0)) | ((mode) == SLEEP_MODE_PWR_SAVE ? _BV(SM0) : 0)); \
00179 } while(0)
00180
00181
00182 #elif defined(__AVR_ATmega162__) \
00183 || defined(__AVR_ATmega8515__)
00184
00185 #define set_sleep_mode(mode) \
00186 do { \
00187 MCUCR = ((MCUCR & ~_BV(SM1)) | ((mode) == SLEEP_MODE_IDLE ? 0 : _BV(SM1))); \
00188 MCUCSR = ((MCUCSR & ~_BV(SM2)) | ((mode) == SLEEP_MODE_STANDBY || (mode) ==

SLEEP_MODE_EXT_STANDBY ? _BV(SM2) : 0)); \
00189 EMCUCR = ((EMCUCR & ~_BV(SM0)) | ((mode) == SLEEP_MODE_PWR_SAVE || (mode) ==

SLEEP_MODE_EXT_STANDBY ? _BV(SM0) : 0)); \
00190 } while(0)
00191
00192 /* For xmegas, check presence of SLEEP_SMODE<n>_bm and define set_sleep_mode accordingly. */
00193 #elif defined(__AVR_XMEGA__)
00194
00195 #define set_sleep_mode(mode) \
00196 do { \
00197 _SLEEP_CONTROL_REG = ((_SLEEP_CONTROL_REG & ~(_SLEEP_SMODE_GROUP_MASK)) | (mode)); \
00198 } while(0)
00199
00200 /* For everything else, check for presence of SM<n> and define set_sleep_mode accordingly. */
00201 #else
00202 #if defined(SM2)
00203
00204 #define set_sleep_mode(mode) \
00205 do { \
00206 _SLEEP_CONTROL_REG = ((_SLEEP_CONTROL_REG & ~(_BV(SM0) | _BV(SM1) | _BV(SM2))) | (mode)); \
00207 } while(0)
00208
00209 #elif defined(SM1)
00210
00211 #define set_sleep_mode(mode) \
00212 do { \

Generated by Doxygen

432

00213 _SLEEP_CONTROL_REG = ((_SLEEP_CONTROL_REG & ~(_BV(SM0) | _BV(SM1))) | (mode)); \
00214 } while(0)
00215
00216 #elif defined(SM)
00217
00218 #define set_sleep_mode(mode) \
00219 do { \
00220 _SLEEP_CONTROL_REG = ((_SLEEP_CONTROL_REG & ~_BV(SM)) | (mode)); \
00221 } while(0)
00222
00223 #else
00224
00225 #error "No SLEEP mode defined for this device."
00226
00227 #endif /* if defined(SM2) */
00228 #endif /* #if defined(__AVR_ATmega161__) */
00229
00230
00231
00232 /** \ingroup avr_sleep
00233
00234 Put the device in sleep mode. How the device is brought out of sleep mode
00235 depends on the specific mode selected with the set_sleep_mode() function.
00236 See the data sheet for your device for more details. */
00237
00238
00239 #if defined(__DOXYGEN__)
00240
00241 /** \ingroup avr_sleep
00242
00243 Set the SE (sleep enable) bit.
00244 */
00245 extern void sleep_enable (void);
00246
00247 #else
00248
00249 #define sleep_enable() \
00250 do { \
00251 _SLEEP_CONTROL_REG |= (uint8_t)_SLEEP_ENABLE_MASK; \
00252 } while(0)
00253
00254 #endif
00255
00256
00257 #if defined(__DOXYGEN__)
00258
00259 /** \ingroup avr_sleep
00260
00261 Clear the SE (sleep enable) bit.
00262 */
00263 extern void sleep_disable (void);
00264
00265 #else
00266
00267 #define sleep_disable() \
00268 do { \
00269 _SLEEP_CONTROL_REG &= (uint8_t)(~_SLEEP_ENABLE_MASK); \
00270 } while(0)
00271
00272 #endif
00273
00274
00275 /** \ingroup avr_sleep
00276
00277 Put the device into sleep mode. The SE bit must be set
00278 beforehand, and it is recommended to clear it afterwards.
00279 */
00280 #if defined(__DOXYGEN__)
00281
00282 extern void sleep_cpu (void);
00283
00284 #else
00285
00286 #define sleep_cpu() \
00287 do { \
00288 __asm__ __volatile__ ("sleep" "\n\t" ::); \
00289 } while(0)
00290
00291 #endif
00292
00293
00294 #if defined(__DOXYGEN__)
00295
00296 /** \ingroup avr_sleep
00297
00298 Put the device into sleep mode, taking care of setting
00299 the SE bit before, and clearing it afterwards. */

Generated by Doxygen

23.36 version.h 433

00300 extern void sleep_mode (void);
00301
00302 #else
00303
00304 #define sleep_mode() \
00305 do { \
00306 sleep_enable(); \
00307 sleep_cpu(); \
00308 sleep_disable(); \
00309 } while (0)
00310
00311 #endif
00312
00313
00314 #if defined(__DOXYGEN__)
00315
00316 /** \ingroup avr_sleep
00317
00318 Disable BOD before going to sleep.
00319 Not available on all devices.
00320 */
00321 extern void sleep_bod_disable (void);
00322
00323 #else
00324
00325 #if defined(BODS) && defined(BODSE)
00326
00327 #ifdef BODCR
00328
00329 #define BOD_CONTROL_REG BODCR
00330
00331 #else
00332
00333 #define BOD_CONTROL_REG MCUCR
00334
00335 #endif
00336
00337 #define sleep_bod_disable() \
00338 do { \
00339 uint8_t tempreg; \
00340 __asm__ __volatile__("in %[tempreg], %[mcucr]" "\n\t" \
00341 "ori %[tempreg], %[bods_bodse]" "\n\t" \
00342 "out %[mcucr], %[tempreg]" "\n\t" \
00343 "andi %[tempreg], %[not_bodse]" "\n\t" \
00344 "out %[mcucr], %[tempreg]" \
00345 : [tempreg] "=&d" (tempreg) \
00346 : [mcucr] "I" _SFR_IO_ADDR(BOD_CONTROL_REG), \
00347 [bods_bodse] "i" (_BV(BODS) | _BV(BODSE)), \
00348 [not_bodse] "i" (~_BV(BODSE))); \
00349 } while (0)
00350
00351 #endif
00352
00353 #endif
00354
00355
00356 /**@}*/
00357
00358 #endif /* _AVR_SLEEP_H_ */

23.36 version.h
00001 /* Copyright (c) 2005, Joerg Wunsch -*- c -*-
00002 All rights reserved.
00003
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions are met:
00006
00007 * Redistributions of source code must retain the above copyright
00008 notice, this list of conditions and the following disclaimer.
00009
00010 * Redistributions in binary form must reproduce the above copyright
00011 notice, this list of conditions and the following disclaimer in
00012 the documentation and/or other materials provided with the
00013 distribution.
00014
00015 * Neither the name of the copyright holders nor the names of
00016 contributors may be used to endorse or promote products derived
00017 from this software without specific prior written permission.
00018
00019 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00020 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00021 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00022 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE

Generated by Doxygen

434

00023 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00024 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00025 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00026 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00027 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00028 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00029 POSSIBILITY OF SUCH DAMAGE. */
00030
00031 /* Id */
00032
00033 /** \defgroup avr_version <avr/version.h>: avr-libc version macros
00034 \code #include <avr/version.h> \endcode
00035
00036 This header file defines macros that contain version numbers and
00037 strings describing the current version of avr-libc.
00038
00039 The version number itself basically consists of three pieces that
00040 are separated by a dot: the major number, the minor number, and
00041 the revision number. For development versions (which use an odd
00042 minor number), the string representation additionally gets the
00043 date code (YYYYMMDD) appended.
00044
00045 This file will also be included by \c <avr/io.h>. That way,
00046 portable tests can be implemented using \c <avr/io.h> that can be
00047 used in code that wants to remain backwards-compatible to library
00048 versions prior to the date when the library version API had been
00049 added, as referenced but undefined C preprocessor macros
00050 automatically evaluate to 0.
00051 */
00052
00053 #ifndef _AVR_VERSION_H_
00054 #define _AVR_VERSION_H_
00055
00056 /** \ingroup avr_version
00057 String literal representation of the current library version. */
00058 #define __AVR_LIBC_VERSION_STRING__ "2.2.0"
00059
00060 /** \ingroup avr_version
00061 Numerical representation of the current library version.
00062
00063 In the numerical representation, the major number is multiplied by
00064 10000, the minor number by 100, and all three parts are then
00065 added. It is intented to provide a monotonically increasing
00066 numerical value that can easily be used in numerical checks.
00067 */
00068 #define __AVR_LIBC_VERSION__ 20200UL
00069
00070 /** \ingroup avr_version
00071 String literal representation of the release date. */
00072 #define __AVR_LIBC_DATE_STRING__ "20240608"
00073
00074 /** \ingroup avr_version
00075 Numerical representation of the release date. */
00076 #define __AVR_LIBC_DATE_ 20240608UL
00077
00078 /** \ingroup avr_version
00079 Library major version number. */
00080 #define __AVR_LIBC_MAJOR__ 2
00081
00082 /** \ingroup avr_version
00083 Library minor version number. */
00084 #define __AVR_LIBC_MINOR__ 2
00085
00086 /** \ingroup avr_version
00087 Library revision number. */
00088 #define __AVR_LIBC_REVISION__ 0
00089
00090 #endif /* _AVR_VERSION_H_ */

23.37 wdt.h File Reference

Macros

• #define wdt_reset() __asm__ __volatile__ ("wdr")
• #define wdt_enable(timeout)
• #define WDTO_15MS 0
• #define WDTO_30MS 1
• #define WDTO_60MS 2

Generated by Doxygen

23.38 wdt.h 435

• #define WDTO_120MS 3
• #define WDTO_250MS 4
• #define WDTO_500MS 5
• #define WDTO_1S 6
• #define WDTO_2S 7
• #define WDTO_4S 8
• #define WDTO_8S 9

Functions

• static void wdt_enable (const uint8_t value)
• static void wdt_disable (void)

23.38 wdt.h

Go to the documentation of this file.
00001 /* Copyright (c) 2002, 2004 Marek Michalkiewicz
00002 Copyright (c) 2005, 2006, 2007 Eric B. Weddington
00003 All rights reserved.
00004
00005 Redistribution and use in source and binary forms, with or without
00006 modification, are permitted provided that the following conditions are met:
00007
00008 * Redistributions of source code must retain the above copyright
00009 notice, this list of conditions and the following disclaimer.
00010
00011 * Redistributions in binary form must reproduce the above copyright
00012 notice, this list of conditions and the following disclaimer in
00013 the documentation and/or other materials provided with the
00014 distribution.
00015
00016 * Neither the name of the copyright holders nor the names of
00017 contributors may be used to endorse or promote products derived
00018 from this software without specific prior written permission.
00019
00020 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00021 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00022 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00023 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00024 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00025 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00026 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00027 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00028 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00029 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00030 POSSIBILITY OF SUCH DAMAGE. */
00031
00032 /* Id */
00033
00034 /*
00035 avr/wdt.h - macros for AVR watchdog timer
00036 */
00037
00038 #ifndef _AVR_WDT_H_
00039 #define _AVR_WDT_H_
00040
00041 #include <avr/io.h>
00042 #include <stdint.h>
00043
00044 /** \file */
00045 /** \defgroup avr_watchdog <avr/wdt.h>: Watchdog timer handling
00046 \code #include <avr/wdt.h> \endcode
00047
00048 This header file declares the interface to some inline macros
00049 handling the watchdog timer present in many AVR devices. In order
00050 to prevent the watchdog timer configuration from being
00051 accidentally altered by a crashing application, a special timed
00052 sequence is required in order to change it. The macros within
00053 this header file handle the required sequence automatically
00054 before changing any value. Interrupts will be disabled during
00055 the manipulation.
00056
00057 \note Depending on the fuse configuration of the particular
00058 device, further restrictions might apply, in particular it might

Generated by Doxygen

436

00059 be disallowed to turn off the watchdog timer.
00060
00061 Note that for newer devices (ATmega88 and newer, effectively any
00062 AVR that has the option to also generate interrupts), the watchdog
00063 timer remains active even after a system reset (except a power-on
00064 condition), using the fastest prescaler value (approximately 15
00065 ms). It is therefore required to turn off the watchdog early
00066 during program startup, the datasheet recommends a sequence like
00067 the following:
00068
00069 \code
00070 #include <stdint.h>
00071 #include <avr/wdt.h>
00072
00073 uint8_t mcusr_mirror __attribute__ ((section (".noinit")));
00074
00075 __attribute__((used, unused, naked, section(".init3")))
00076 static void get_mcusr (void);
00077
00078 void get_mcusr (void)
00079 {
00080 mcusr_mirror = MCUSR;
00081 MCUSR = 0;
00082 wdt_disable();
00083 }
00084 \endcode
00085
00086 Saving the value of MCUSR in \c mcusr_mirror is only needed if the
00087 application later wants to examine the reset source, but in particular,
00088 clearing the watchdog reset flag before disabling the
00089 watchdog is required, according to the datasheet.
00090 */
00091
00092 /**
00093 \ingroup avr_watchdog
00094 Reset the watchdog timer. When the watchdog timer is enabled,
00095 a call to this instruction is required before the timer expires,
00096 otherwise a watchdog-initiated device reset will occur.
00097 */
00098
00099 #define wdt_reset() __asm__ __volatile__ ("wdr")
00100
00101 #ifndef __DOXYGEN__
00102
00103 #ifndef __ATTR_ALWAYS_INLINE__
00104 #define __ATTR_ALWAYS_INLINE__ __inline__ __attribute__((__always_inline__))
00105 #endif
00106
00107 #if defined(WDP3)
00108 # define _WD_PS3_MASK _BV(WDP3)
00109 #else
00110 # define _WD_PS3_MASK 0x00
00111 #endif
00112
00113 #if defined(WDTCSR)
00114 # define _WD_CONTROL_REG WDTCSR
00115 #elif defined(WDTCR)
00116 # define _WD_CONTROL_REG WDTCR
00117 #else
00118 # define _WD_CONTROL_REG WDT
00119 #endif
00120
00121 #if defined(WDTOE)
00122 #define _WD_CHANGE_BIT WDTOE
00123 #else
00124 #define _WD_CHANGE_BIT WDCE
00125 #endif
00126
00127 #endif /* !__DOXYGEN__ */
00128
00129 #ifdef __DOXYGEN__
00130 /**
00131 \ingroup avr_watchdog
00132 Enable the watchdog timer, configuring it for expiry after
00133 \c timeout (which is a combination of the \c WDP0 through
00134 \c WDP2 bits to write into the \c WDTCR register; For those devices
00135 that have a \c WDTCSR register, it uses the combination of the \c WDP0
00136 through \c WDP3 bits).
00137
00138 See also the symbolic constants \c WDTO_15MS et al.
00139 */
00140 #define wdt_enable(timeout)
00141 #endif /* __DOXYGEN__ */
00142
00143
00144 #if defined(__AVR_XMEGA__)
00145

Generated by Doxygen

23.38 wdt.h 437

00146 #if defined (WDT_CTRLA) && !defined(RAMPD)
00147
00148 #define wdt_enable(timeout) \
00149 do { \
00150 uint8_t __temp; \
00151 __asm__ __volatile__ (\
00152 "wdr" "\n\t" \
00153 "out %[ccp_reg], %[ioreg_cen_mask]" "\n\t" \
00154 "lds %[tmp], %[wdt_reg]" "\n\t" \
00155 "sbr %[tmp], %[wdt_enable_timeout]" "\n\t" \
00156 "sts %[wdt_reg], %[tmp]" "\n\t" \
00157 "1:lds %[tmp], %[wdt_status_reg]" "\n\t" \
00158 "sbrc %[tmp], %[wdt_syncbusy_bit]" "\n\t" \
00159 "rjmp 1b" \
00160 : [tmp] "=d" (__temp) \
00161 : [ccp_reg] "I" (_SFR_IO_ADDR(CCP)), \
00162 [ioreg_cen_mask] "r" ((uint8_t)CCP_IOREG_gc), \
00163 [wdt_reg] "n" (_SFR_MEM_ADDR(WDT_CTRLA)), \
00164 [wdt_enable_timeout] "M" (timeout), \
00165 [wdt_status_reg] "n" (_SFR_MEM_ADDR(WDT_STATUS)), \
00166 [wdt_syncbusy_bit] "I" (WDT_SYNCBUSY_bm) \
00167); \
00168 } while(0)
00169
00170 #define wdt_disable() \
00171 do { \
00172 uint8_t __temp; \
00173 __asm__ __volatile__ (\
00174 "wdr" "\n\t" \
00175 "out %[ccp_reg], %[ioreg_cen_mask]" "\n\t" \
00176 "lds %[tmp], %[wdt_reg]" "\n\t" \
00177 "cbr %[tmp], %[timeout_mask]" "\n\t" \
00178 "sts %[wdt_reg], %[tmp]" \
00179 : [tmp] "=d" (__temp) \
00180 : [ccp_reg] "I" (_SFR_IO_ADDR(CCP)), \
00181 [ioreg_cen_mask] "r" ((uint8_t)CCP_IOREG_gc), \
00182 [wdt_reg] "n" (_SFR_MEM_ADDR(WDT_CTRLA)),\
00183 [timeout_mask] "I" (WDT_PERIOD_gm) \
00184); \
00185 } while(0)
00186
00187 #else // defined (WDT_CTRLA) && !defined(RAMPD)
00188
00189 /*
00190 wdt_enable(timeout) for xmega devices
00191 ** write signature (CCP_IOREG_gc) that enables change of protected I/O
00192 registers to the CCP register
00193 ** At the same time,
00194 1) set WDT change enable (WDT_CEN_bm)
00195 2) enable WDT (WDT_ENABLE_bm)
00196 3) set timeout (timeout)
00197 ** Synchronization starts when ENABLE bit of WDT is set. So, wait till it
00198 finishes (SYNCBUSY of STATUS register is automatically cleared after the
00199 sync is finished).
00200 */
00201 #define wdt_enable(timeout) \
00202 do { \
00203 uint8_t __temp; \
00204 __asm__ __volatile__ (\
00205 "in __tmp_reg__, %[rampd]" "\n\t" \
00206 "out %[rampd], __zero_reg__" "\n\t" \
00207 "out %[ccp_reg], %[ioreg_cen_mask]" "\n\t" \
00208 "sts %[wdt_reg], %[wdt_enable_timeout]" "\n\t" \
00209 "1:lds %[tmp], %[wdt_status_reg]" "\n\t" \
00210 "sbrc %[tmp], %[wdt_syncbusy_bit]" "\n\t" \
00211 "rjmp 1b" "\n\t" \
00212 "out %[rampd], __tmp_reg__" \
00213 : [tmp] "=r" (__temp) \
00214 : [rampd] "I" (_SFR_IO_ADDR(RAMPD)), \
00215 [ccp_reg] "I" (_SFR_IO_ADDR(CCP)), \
00216 [ioreg_cen_mask] "r" ((uint8_t)CCP_IOREG_gc), \
00217 [wdt_reg] "n" (_SFR_MEM_ADDR(WDT_CTRL)), \
00218 [wdt_enable_timeout] "r" ((uint8_t)(WDT_CEN_bm | WDT_ENABLE_bm | timeout)), \
00219 [wdt_status_reg] "n" (_SFR_MEM_ADDR(WDT_STATUS)), \
00220 [wdt_syncbusy_bit] "I" (WDT_SYNCBUSY_bm) \
00221 : "r0" \
00222); \
00223 } while(0)
00224
00225 #define wdt_disable() \
00226 __asm__ __volatile__ (\
00227 "in __tmp_reg__, %[rampd]" "\n\t" \
00228 "out %[rampd], __zero_reg__" "\n\t" \
00229 "out %[ccp_reg], %[ioreg_cen_mask]" "\n\t" \
00230 "sts %[wdt_reg], %[disable_mask]" "\n\t" \
00231 "out %[rampd], __tmp_reg__" \
00232 : /* no outputs */ \

Generated by Doxygen

438

00233 : [rampd] "I" (_SFR_IO_ADDR(RAMPD)), \
00234 [ccp_reg] "I" (_SFR_IO_ADDR(CCP)), \
00235 [ioreg_cen_mask] "r" ((uint8_t)CCP_IOREG_gc), \
00236 [wdt_reg] "n" (_SFR_MEM_ADDR(WDT_CTRL)), \
00237 [disable_mask] "r" ((uint8_t)((~WDT_ENABLE_bm) | WDT_CEN_bm)) \
00238 : "r0" \
00239)
00240
00241 #endif // defined (WDT_CTRLA) && !defined(RAMPD)
00242
00243 #elif defined(__AVR_TINY__)
00244
00245 #define wdt_enable(value) \
00246 __asm__ __volatile__ (\
00247 "in __tmp_reg__,__SREG__" "\n\t" \
00248 "cli" "\n\t" \
00249 "wdr" "\n\t" \
00250 "out %[CCPADDRESS],%[SIGNATURE]" "\n\t" \
00251 "out %[WDTREG],%[WDVALUE]" "\n\t" \
00252 "out __SREG__,__tmp_reg__" \
00253 : /* no outputs */ \
00254 : [CCPADDRESS] "I" (_SFR_IO_ADDR(CCP)), \
00255 [SIGNATURE] "r" ((uint8_t)0xD8), \
00256 [WDTREG] "I" (_SFR_IO_ADDR(_WD_CONTROL_REG)), \
00257 [WDVALUE] "r" ((uint8_t)((value & 0x08 ? _WD_PS3_MASK : 0x00) \
00258 | _BV(WDE) | (value & 0x07))) \
00259 : "r16" \
00260)
00261
00262 #define wdt_disable() \
00263 do { \
00264 uint8_t __temp_wd; \
00265 __asm__ __volatile__ (\
00266 "in __tmp_reg__,__SREG__" "\n\t" \
00267 "cli" "\n\t" \
00268 "wdr" "\n\t" \
00269 "out %[CCPADDRESS],%[SIGNATURE]" "\n\t" \
00270 "in %[TEMP_WD],%[WDTREG]" "\n\t" \
00271 "cbr %[TEMP_WD],%[WDVALUE]" "\n\t" \
00272 "out %[WDTREG],%[TEMP_WD]" "\n\t" \
00273 "out __SREG__,__tmp_reg__" \
00274 : [TEMP_WD] "=d" (__temp_wd) \
00275 : [CCPADDRESS] "I" (_SFR_IO_ADDR(CCP)), \
00276 [SIGNATURE] "r" ((uint8_t)0xD8), \
00277 [WDTREG] "I" (_SFR_IO_ADDR(_WD_CONTROL_REG)), \
00278 [WDVALUE] "n" (1 « WDE) \
00279 : "r16" \
00280); \
00281 } while(0)
00282
00283 #elif defined(CCP)
00284
00285 static __ATTR_ALWAYS_INLINE__
00286 void wdt_enable (const uint8_t value)
00287 {
00288 if (!_SFR_IO_REG_P (CCP) && !_SFR_IO_REG_P (_WD_CONTROL_REG))
00289 {
00290 __asm__ __volatile__ (
00291 "in __tmp_reg__,__SREG__" "\n\t"
00292 "cli" "\n\t"
00293 "wdr" "\n\t"
00294 "sts %[CCPADDRESS],%[SIGNATURE]" "\n\t"
00295 "sts %[WDTREG],%[WDVALUE]" "\n\t"
00296 "out __SREG__,__tmp_reg__"
00297 : /* no outputs */
00298 : [CCPADDRESS] "n" (_SFR_MEM_ADDR(CCP)),
00299 [SIGNATURE] "r" ((uint8_t)0xD8),
00300 [WDTREG] "n" (_SFR_MEM_ADDR(_WD_CONTROL_REG)),
00301 [WDVALUE] "r" ((uint8_t)((value & 0x08 ? _WD_PS3_MASK : 0x00)
00302 | _BV(WDE) | (value & 0x07)))
00303 : "r0"
00304);
00305 }
00306 else if (!_SFR_IO_REG_P (CCP) && _SFR_IO_REG_P (_WD_CONTROL_REG))
00307 {
00308 __asm__ __volatile__ (
00309 "in __tmp_reg__,__SREG__" "\n\t"
00310 "cli" "\n\t"
00311 "wdr" "\n\t"
00312 "sts %[CCPADDRESS],%[SIGNATURE]" "\n\t"
00313 "out %[WDTREG],%[WDVALUE]" "\n\t"
00314 "out __SREG__,__tmp_reg__"
00315 : /* no outputs */
00316 : [CCPADDRESS] "n" (_SFR_MEM_ADDR(CCP)),
00317 [SIGNATURE] "r" ((uint8_t)0xD8),
00318 [WDTREG] "I" (_SFR_IO_ADDR(_WD_CONTROL_REG)),
00319 [WDVALUE] "r" ((uint8_t)((value & 0x08 ? _WD_PS3_MASK : 0x00)

Generated by Doxygen

23.38 wdt.h 439

00320 | _BV(WDE) | (value & 0x07)))
00321 : "r0"
00322);
00323 }
00324 else if (_SFR_IO_REG_P (CCP) && !_SFR_IO_REG_P (_WD_CONTROL_REG))
00325 {
00326 __asm__ __volatile__ (
00327 "in __tmp_reg__,__SREG__" "\n\t"
00328 "cli" "\n\t"
00329 "wdr" "\n\t"
00330 "out %[CCPADDRESS],%[SIGNATURE]" "\n\t"
00331 "sts %[WDTREG],%[WDVALUE]" "\n\t"
00332 "out __SREG__,__tmp_reg__"
00333 : /* no outputs */
00334 : [CCPADDRESS] "I" (_SFR_IO_ADDR(CCP)),
00335 [SIGNATURE] "r" ((uint8_t)0xD8),
00336 [WDTREG] "n" (_SFR_MEM_ADDR(_WD_CONTROL_REG)),
00337 [WDVALUE] "r" ((uint8_t)((value & 0x08 ? _WD_PS3_MASK : 0x00)
00338 | _BV(WDE) | (value & 0x07)))
00339 : "r0"
00340);
00341 }
00342 else
00343 {
00344 __asm__ __volatile__ (
00345 "in __tmp_reg__,__SREG__" "\n\t"
00346 "cli" "\n\t"
00347 "wdr" "\n\t"
00348 "out %[CCPADDRESS],%[SIGNATURE]" "\n\t"
00349 "out %[WDTREG],%[WDVALUE]" "\n\t"
00350 "out __SREG__,__tmp_reg__"
00351 : /* no outputs */
00352 : [CCPADDRESS] "I" (_SFR_IO_ADDR(CCP)),
00353 [SIGNATURE] "r" ((uint8_t)0xD8),
00354 [WDTREG] "I" (_SFR_IO_ADDR(_WD_CONTROL_REG)),
00355 [WDVALUE] "r" ((uint8_t)((value & 0x08 ? _WD_PS3_MASK : 0x00)
00356 | _BV(WDE) | (value & 0x07)))
00357 : "r0"
00358);
00359 }
00360 }
00361
00362 static __ATTR_ALWAYS_INLINE__
00363 void wdt_disable (void)
00364 {
00365 if (!_SFR_IO_REG_P (CCP) && !_SFR_IO_REG_P(_WD_CONTROL_REG))
00366 {
00367 uint8_t __temp_wd;
00368 __asm__ __volatile__ (
00369 "in __tmp_reg__,__SREG__" "\n\t"
00370 "cli" "\n\t"
00371 "wdr" "\n\t"
00372 "sts %[CCPADDRESS],%[SIGNATURE]" "\n\t"
00373 "lds %[TEMP_WD],%[WDTREG]" "\n\t"
00374 "cbr %[TEMP_WD],%[WDVALUE]" "\n\t"
00375 "sts %[WDTREG],%[TEMP_WD]" "\n\t"
00376 "out __SREG__,__tmp_reg__"
00377 : [TEMP_WD] "=d" (__temp_wd)
00378 : [CCPADDRESS] "n" (_SFR_MEM_ADDR(CCP)),
00379 [SIGNATURE] "r" ((uint8_t)0xD8),
00380 [WDTREG] "n" (_SFR_MEM_ADDR(_WD_CONTROL_REG)),
00381 [WDVALUE] "n" (1 « WDE)
00382 : "r0"
00383);
00384 }
00385 else if (!_SFR_IO_REG_P (CCP) && _SFR_IO_REG_P(_WD_CONTROL_REG))
00386 {
00387 uint8_t __temp_wd;
00388 __asm__ __volatile__ (
00389 "in __tmp_reg__,__SREG__" "\n\t"
00390 "cli" "\n\t"
00391 "wdr" "\n\t"
00392 "sts %[CCPADDRESS],%[SIGNATURE]" "\n\t"
00393 "in %[TEMP_WD],%[WDTREG]" "\n\t"
00394 "cbr %[TEMP_WD],%[WDVALUE]" "\n\t"
00395 "out %[WDTREG],%[TEMP_WD]" "\n\t"
00396 "out __SREG__,__tmp_reg__"
00397 : [TEMP_WD] "=d" (__temp_wd)
00398 : [CCPADDRESS] "n" (_SFR_MEM_ADDR(CCP)),
00399 [SIGNATURE] "r" ((uint8_t)0xD8),
00400 [WDTREG] "I" (_SFR_IO_ADDR(_WD_CONTROL_REG)),
00401 [WDVALUE] "n" (1 « WDE)
00402 : "r0"
00403);
00404 }
00405 else if (_SFR_IO_REG_P (CCP) && !_SFR_IO_REG_P(_WD_CONTROL_REG))
00406 {

Generated by Doxygen

440

00407 uint8_t __temp_wd;
00408 __asm__ __volatile__ (
00409 "in __tmp_reg__,__SREG__" "\n\t"
00410 "cli" "\n\t"
00411 "wdr" "\n\t"
00412 "out %[CCPADDRESS],%[SIGNATURE]" "\n\t"
00413 "lds %[TEMP_WD],%[WDTREG]" "\n\t"
00414 "cbr %[TEMP_WD],%[WDVALUE]" "\n\t"
00415 "sts %[WDTREG],%[TEMP_WD]" "\n\t"
00416 "out __SREG__,__tmp_reg__"
00417 : [TEMP_WD] "=d" (__temp_wd)
00418 : [CCPADDRESS] "I" (_SFR_IO_ADDR(CCP)),
00419 [SIGNATURE] "r" ((uint8_t)0xD8),
00420 [WDTREG] "n" (_SFR_MEM_ADDR(_WD_CONTROL_REG)),
00421 [WDVALUE] "n" (1 « WDE)
00422 : "r0"
00423);
00424 }
00425 else
00426 {
00427 uint8_t __temp_wd;
00428 __asm__ __volatile__ (
00429 "in __tmp_reg__,__SREG__" "\n\t"
00430 "cli" "\n\t"
00431 "wdr" "\n\t"
00432 "out %[CCPADDRESS],%[SIGNATURE]" "\n\t"
00433 "in %[TEMP_WD],%[WDTREG]" "\n\t"
00434 "cbr %[TEMP_WD],%[WDVALUE]" "\n\t"
00435 "out %[WDTREG],%[TEMP_WD]" "\n\t"
00436 "out __SREG__,__tmp_reg__"
00437 : [TEMP_WD] "=d" (__temp_wd)
00438 : [CCPADDRESS] "I" (_SFR_IO_ADDR(CCP)),
00439 [SIGNATURE] "r" ((uint8_t)0xD8),
00440 [WDTREG] "I" (_SFR_IO_ADDR(_WD_CONTROL_REG)),
00441 [WDVALUE] "n" (1 « WDE)
00442 : "r0"
00443);
00444 }
00445 }
00446
00447 #else
00448
00449 static __ATTR_ALWAYS_INLINE__
00450 void wdt_enable (const uint8_t value)
00451 {
00452 if (_SFR_IO_REG_P (_WD_CONTROL_REG))
00453 {
00454 __asm__ __volatile__ (
00455 "in __tmp_reg__,__SREG__" "\n\t"
00456 "cli" "\n\t"
00457 "wdr" "\n\t"
00458 "out %0, %1" "\n\t"
00459 "out __SREG__,__tmp_reg__" "\n\t"
00460 "out %0, %2"
00461 : /* no outputs */
00462 : "I" (_SFR_IO_ADDR(_WD_CONTROL_REG)),
00463 "r" ((uint8_t)(_BV(_WD_CHANGE_BIT) | _BV(WDE))),
00464 "r" ((uint8_t) ((value & 0x08 ? _WD_PS3_MASK : 0x00) |
00465 _BV(WDE) | (value & 0x07)))
00466 : "r0"
00467);
00468 }
00469 else
00470 {
00471 __asm__ __volatile__ (
00472 "in __tmp_reg__,__SREG__" "\n\t"
00473 "cli" "\n\t"
00474 "wdr" "\n\t"
00475 "sts %0, %1" "\n\t"
00476 "out __SREG__,__tmp_reg__" "\n\t"
00477 "sts %0, %2"
00478 : /* no outputs */
00479 : "n" (_SFR_MEM_ADDR(_WD_CONTROL_REG)),
00480 "r" ((uint8_t)(_BV(_WD_CHANGE_BIT) | _BV(WDE))),
00481 "r" ((uint8_t) ((value & 0x08 ? _WD_PS3_MASK : 0x00) |
00482 _BV(WDE) | (value & 0x07)))
00483 : "r0"
00484);
00485 }
00486 }
00487
00488 static __ATTR_ALWAYS_INLINE__
00489 void wdt_disable (void)
00490 {
00491 if (_SFR_IO_REG_P (_WD_CONTROL_REG))
00492 {
00493 uint8_t __temp_reg;

Generated by Doxygen

23.38 wdt.h 441

00494 __asm__ __volatile__ (
00495 "in __tmp_reg__,__SREG__" "\n\t"
00496 "cli" "\n\t"
00497 "wdr" "\n\t"
00498 "in %[TEMPREG],%[WDTREG]" "\n\t"
00499 "ori %[TEMPREG],%[WDCE_WDE]" "\n\t"
00500 "out %[WDTREG],%[TEMPREG]" "\n\t"
00501 "out %[WDTREG],__zero_reg__" "\n\t"
00502 "out __SREG__,__tmp_reg__"
00503 : [TEMPREG] "=d" (__temp_reg)
00504 : [WDTREG] "I" (_SFR_IO_ADDR(_WD_CONTROL_REG)),
00505 [WDCE_WDE] "n" ((uint8_t)(_BV(_WD_CHANGE_BIT) | _BV(WDE)))
00506 : "r0"
00507);
00508 }
00509 else
00510 {
00511 uint8_t __temp_reg;
00512 __asm__ __volatile__ (
00513 "in __tmp_reg__,__SREG__" "\n\t"
00514 "cli" "\n\t"
00515 "wdr" "\n\t"
00516 "lds %[TEMPREG],%[WDTREG]" "\n\t"
00517 "ori %[TEMPREG],%[WDCE_WDE]" "\n\t"
00518 "sts %[WDTREG],%[TEMPREG]" "\n\t"
00519 "sts %[WDTREG],__zero_reg__" "\n\t"
00520 "out __SREG__,__tmp_reg__"
00521 : [TEMPREG] "=d" (__temp_reg)
00522 : [WDTREG] "n" (_SFR_MEM_ADDR(_WD_CONTROL_REG)),
00523 [WDCE_WDE] "n" ((uint8_t)(_BV(_WD_CHANGE_BIT) | _BV(WDE)))
00524 : "r0"
00525);
00526 }
00527 }
00528
00529 #endif
00530
00531
00532 /**
00533 \ingroup avr_watchdog
00534 Symbolic constants for the watchdog timeout. Since the watchdog
00535 timer is based on a free-running RC oscillator, the times are
00536 approximate only and apply to a supply voltage of 5 V. At lower
00537 supply voltages, the times will increase. For older devices, the
00538 times will be as large as three times when operating at Vcc = 3 V,
00539 while the newer devices (e. g. ATmega128, ATmega8) only experience
00540 a negligible change.
00541
00542 Possible timeout values are: 15 ms, 30 ms, 60 ms, 120 ms, 250 ms,
00543 500 ms, 1 s, 2 s. (Some devices also allow for 4 s and 8 s.)
00544 Symbolic constants are formed by the prefix
00545 \c WDTO_, followed by the time.
00546
00547 Example that would select a watchdog timer expiry of approximately
00548 500 ms:
00549 \code
00550 wdt_enable(WDTO_500MS);
00551 \endcode
00552 */
00553 #define WDTO_15MS 0
00554
00555 /** \ingroup avr_watchdog
00556 See \c WDTO_15MS */
00557 #define WDTO_30MS 1
00558
00559 /** \ingroup avr_watchdog
00560 See \c WDTO_15MS */
00561 #define WDTO_60MS 2
00562
00563 /** \ingroup avr_watchdog
00564 See \c WDTO_15MS */
00565 #define WDTO_120MS 3
00566
00567 /** \ingroup avr_watchdog
00568 See \c WDTO_15MS */
00569 #define WDTO_250MS 4
00570
00571 /** \ingroup avr_watchdog
00572 See \c WDTO_15MS */
00573 #define WDTO_500MS 5
00574
00575 /** \ingroup avr_watchdog
00576 See \c WDTO_15MS */
00577 #define WDTO_1S 6
00578
00579 /** \ingroup avr_watchdog
00580 See \c WDTO_15MS */

Generated by Doxygen

442

00581 #define WDTO_2S 7
00582
00583 #if defined(__DOXYGEN__) || defined(WDP3)
00584
00585 /** \ingroup avr_watchdog
00586 See \c WDTO_15MS
00587 Note: This is only available on the
00588 ATtiny2313,
00589 ATtiny24, ATtiny44, ATtiny84, ATtiny84A,
00590 ATtiny25, ATtiny45, ATtiny85,
00591 ATtiny261, ATtiny461, ATtiny861,
00592 ATmega48*, ATmega88*, ATmega168*, ATmega328*,
00593 ATmega164P, ATmega324P, ATmega324PB, ATmega644P, ATmega644,
00594 ATmega640, ATmega1280, ATmega1281, ATmega2560, ATmega2561,
00595 ATmega8HVA, ATmega16HVA, ATmega32HVB,
00596 ATmega406, ATmega1284P,
00597 AT90PWM1, AT90PWM2, AT90PWM2B, AT90PWM3, AT90PWM3B, AT90PWM216, AT90PWM316,
00598 AT90PWM81, AT90PWM161,
00599 AT90USB82, AT90USB162,
00600 AT90USB646, AT90USB647, AT90USB1286, AT90USB1287,
00601 ATtiny48, ATtiny88.
00602
00603 Note: This value does not match the bit pattern of the
00604 respective control register. It is solely meant to be used together
00605 with wdt_enable().
00606 */
00607 #define WDTO_4S 8
00608
00609 /** \ingroup avr_watchdog
00610 See \c WDTO_15MS
00611 Note: This is only available on the
00612 ATtiny2313,
00613 ATtiny24, ATtiny44, ATtiny84, ATtiny84A,
00614 ATtiny25, ATtiny45, ATtiny85,
00615 ATtiny261, ATtiny461, ATtiny861,
00616 ATmega48*, ATmega88*, ATmega168*, ATmega328*,
00617 ATmega164P, ATmega324P, ATmega324PB, ATmega644P, ATmega644,
00618 ATmega640, ATmega1280, ATmega1281, ATmega2560, ATmega2561,
00619 ATmega8HVA, ATmega16HVA, ATmega32HVB,
00620 ATmega406, ATmega1284P,
00621 ATmega2564RFR2, ATmega256RFR2, ATmega1284RFR2, ATmega128RFR2, ATmega644RFR2, ATmega64RFR2
00622 AT90PWM1, AT90PWM2, AT90PWM2B, AT90PWM3, AT90PWM3B, AT90PWM216, AT90PWM316,
00623 AT90PWM81, AT90PWM161,
00624 AT90USB82, AT90USB162,
00625 AT90USB646, AT90USB647, AT90USB1286, AT90USB1287,
00626 ATtiny48, ATtiny88,
00627 ATxmega16a4u, ATxmega32a4u,
00628 ATxmega16c4, ATxmega32c4,
00629 ATxmega128c3, ATxmega192c3, ATxmega256c3.
00630
00631 Note: This value does not match the bit pattern of the
00632 respective control register. It is solely meant to be used together
00633 with wdt_enable().
00634 */
00635 #define WDTO_8S 9
00636
00637 #endif /* defined(__DOXYGEN__) || defined(WDP3) */
00638
00639
00640 #endif /* _AVR_WDT_H_ */

23.39 xmega.h
00001 /* Copyright (c) 2012 Joerg Wunsch
00002 All rights reserved.
00003
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions are met:
00006
00007 * Redistributions of source code must retain the above copyright
00008 notice, this list of conditions and the following disclaimer.
00009
00010 * Redistributions in binary form must reproduce the above copyright
00011 notice, this list of conditions and the following disclaimer in
00012 the documentation and/or other materials provided with the
00013 distribution.
00014
00015 * Neither the name of the copyright holders nor the names of
00016 contributors may be used to endorse or promote products derived
00017 from this software without specific prior written permission.
00018
00019 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00020 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00021 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

Generated by Doxygen

23.40 deprecated.h 443

00022 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00023 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00024 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00025 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00026 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00027 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00028 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00029 POSSIBILITY OF SUCH DAMAGE. */
00030
00031 /* Id */
00032
00033 /*
00034 * This file is included by <avr/io.h> whenever compiling for an Xmega
00035 * device. It abstracts certain features common to the Xmega device
00036 * families.
00037 */
00038
00039 #ifndef _AVR_XMEGA_H
00040 #define _AVR_XMEGA_H
00041
00042 #ifdef __DOXYGEN__
00043 /**
00044 \def _PROTECTED_WRITE
00045 \ingroup avr_io
00046
00047 Write value \c value to IO register \c reg that is protected through
00048 the Xmega configuration change protection (CCP) mechanism. This
00049 implements the timed sequence that is required for CCP.
00050
00051 Example to modify the CPU clock:
00052 \code
00053 #include <avr/io.h>
00054
00055 _PROTECTED_WRITE(CLK_PSCTRL, CLK_PSADIV0_bm);
00056 _PROTECTED_WRITE(CLK_CTRL, CLK_SCLKSEL0_bm);
00057 \endcode
00058 */
00059 #define _PROTECTED_WRITE(reg, value)
00060
00061 /**
00062 \def _PROTECTED_WRITE_SPM
00063 \ingroup avr_io
00064
00065 Write value \c value to register \c reg that is protected through
00066 the Xmega configuration change protection (CCP) key for self
00067 programming (SPM). This implements the timed sequence that is
00068 required for CCP.
00069
00070 Example to modify the CPU clock:
00071 \code
00072 #include <avr/io.h>
00073
00074 _PROTECTED_WRITE_SPM(NVMCTRL_CTRLA, NVMCTRL_CMD_PAGEERASEWRITE_gc);
00075 \endcode
00076 */
00077 #define _PROTECTED_WRITE_SPM(reg, value)
00078
00079 #else /* !__DOXYGEN__ */
00080
00081 #define _PROTECTED_WRITE(reg, value) \
00082 __asm__ __volatile__("out %[ccp], %[ccp_ioreg]" "\n\t" \
00083 "sts %[ioreg], %[val]" \
00084 : \
00085 : [ccp] "I" (_SFR_IO_ADDR(CCP)), \
00086 [ccp_ioreg] "d" ((uint8_t)CCP_IOREG_gc), \
00087 [ioreg] "n" (_SFR_MEM_ADDR(reg)), \
00088 [val] "r" ((uint8_t)value))
00089
00090 #define _PROTECTED_WRITE_SPM(reg, value) \
00091 __asm__ __volatile__("out %[ccp], %[ccp_spm_mask]" "\n\t" \
00092 "sts %[ioreg], %[val]" \
00093 : \
00094 : [ccp] "I" (_SFR_IO_ADDR(CCP)), \
00095 [ccp_spm_mask] "d" ((uint8_t)CCP_SPM_gc), \
00096 [ioreg] "n" (_SFR_MEM_ADDR(reg)), \
00097 [val] "r" ((uint8_t)value))
00098 #endif /* DOXYGEN */
00099
00100 #endif /* _AVR_XMEGA_H */

23.40 deprecated.h
00001 /* Copyright (c) 2005,2006 Joerg Wunsch
00002 All rights reserved.

Generated by Doxygen

444

00003
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions are met:
00006
00007 * Redistributions of source code must retain the above copyright
00008 notice, this list of conditions and the following disclaimer.
00009
00010 * Redistributions in binary form must reproduce the above copyright
00011 notice, this list of conditions and the following disclaimer in
00012 the documentation and/or other materials provided with the
00013 distribution.
00014
00015 * Neither the name of the copyright holders nor the names of
00016 contributors may be used to endorse or promote products derived
00017 from this software without specific prior written permission.
00018
00019 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00020 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00021 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00022 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00023 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00024 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00025 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00026 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00027 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00028 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00029 POSSIBILITY OF SUCH DAMAGE. */
00030
00031 /* Id */
00032
00033 #ifndef _COMPAT_DEPRECATED_H_
00034 #define _COMPAT_DEPRECATED_H_
00035
00036 /** \defgroup deprecated_items <compat/deprecated.h>: Deprecated items
00037
00038 This header file contains several items that used to be available
00039 in previous versions of this library, but have eventually been
00040 deprecated over time.
00041
00042 \code #include <compat/deprecated.h> \endcode
00043
00044 These items are supplied within that header file for backward
00045 compatibility reasons only, so old source code that has been
00046 written for previous library versions could easily be maintained
00047 until its end-of-life. Use of any of these items in new code is
00048 strongly discouraged.
00049 */
00050
00051 /** \name Allowing specific system-wide interrupts
00052
00053 In addition to globally enabling interrupts, each device’s particular
00054 interrupt needs to be enabled separately if interrupts for this device are
00055 desired. While some devices maintain their interrupt enable bit inside
00056 the device’s register set, external and timer interrupts have system-wide
00057 configuration registers.
00058
00059 Example:
00060
00061 \code
00062 // Enable timer 1 overflow interrupts.
00063 timer_enable_int(_BV(TOIE1));
00064
00065 // Do some work...
00066
00067 // Disable all timer interrupts.
00068 timer_enable_int(0);
00069 \endcode
00070
00071 \note Be careful when you use these functions. If you already have a
00072 different interrupt enabled, you could inadvertantly disable it by
00073 enabling another intterupt. */
00074
00075 /**@{*/
00076
00077 /** \ingroup deprecated_items
00078 \def enable_external_int(mask)
00079 \deprecated
00080
00081 This macro gives access to the \c GIMSK register (or \c EIMSK register
00082 if using an AVR Mega device or \c GICR register for others). Although this
00083 macro is essentially the same as assigning to the register, it does
00084 adapt slightly to the type of device being used. This macro is
00085 unavailable if none of the registers listed above are defined. */
00086
00087 /* Define common register definition if available. */
00088 #if defined(EIMSK)
00089 # define __EICR EIMSK

Generated by Doxygen

23.40 deprecated.h 445

00090 #elif defined(GIMSK)
00091 # define __EICR GIMSK
00092 #elif defined(GICR)
00093 # define __EICR GICR
00094 #endif
00095
00096 /* If common register defined, define macro. */
00097 #if defined(__EICR) || defined(__DOXYGEN__)
00098 #define enable_external_int(mask) (__EICR = mask)
00099 #endif
00100
00101 /** \ingroup deprecated_items
00102 \deprecated
00103
00104 This function modifies the \c timsk register.
00105 The value you pass via \c ints is device specific. */
00106
00107 static __inline__ void timer_enable_int (unsigned char ints)
00108 {
00109 #ifdef TIMSK
00110 TIMSK = ints;
00111 #endif
00112 }
00113
00114 /** \def INTERRUPT(signame)
00115 \ingroup deprecated_items
00116 \deprecated
00117
00118 Introduces an interrupt handler function that runs with global interrupts
00119 initially enabled. This allows interrupt handlers to be interrupted.
00120
00121 As this macro has been used by too many unsuspecting people in the
00122 past, it has been deprecated, and will be removed in a future
00123 version of the library. Users who want to legitimately re-enable
00124 interrupts in their interrupt handlers as quickly as possible are
00125 encouraged to explicitly declare their handlers as described
00126 \ref attr_interrupt "above".
00127 */
00128
00129 #if (__GNUC__ == 4 && __GNUC_MINOR__ >= 1) || (__GNUC__ > 4)
00130 # define __INTR_ATTRS __used__, __externally_visible__
00131 #else /* GCC < 4.1 */
00132 # define __INTR_ATTRS __used__
00133 #endif
00134
00135 #ifdef __cplusplus
00136 #define INTERRUPT(signame) \
00137 extern "C" void signame(void); \
00138 void signame (void) __attribute__ ((__interrupt__,__INTR_ATTRS)); \
00139 void signame (void)
00140 #else
00141 #define INTERRUPT(signame) \
00142 void signame (void) __attribute__ ((__interrupt__,__INTR_ATTRS)); \
00143 void signame (void)
00144 #endif
00145
00146 /**@}*/
00147
00148 /**
00149 \name Obsolete IO macros
00150
00151 Back in a time when AVR-GCC and AVR-LibC could not handle IO port
00152 access in the direct assignment form as they are handled now, all
00153 IO port access had to be done through specific macros that
00154 eventually resulted in inline assembly instructions performing the
00155 desired action.
00156
00157 These macros became obsolete, as reading and writing IO ports can
00158 be done by simply using the IO port name in an expression, and all
00159 bit manipulation (including those on IO ports) can be done using
00160 generic C bit manipulation operators.
00161
00162 The macros in this group simulate the historical behaviour. While
00163 they are supposed to be applied to IO ports, the emulation actually
00164 uses standard C methods, so they could be applied to arbitrary
00165 memory locations as well.
00166 */
00167
00168 /**@{*/
00169
00170 /**
00171 \ingroup deprecated_items
00172 \def inp(port)
00173 \deprecated
00174
00175 Read a value from an IO port \c port.
00176 */

Generated by Doxygen

446

00177 #define inp(port) (port)
00178
00179 /**
00180 \ingroup deprecated_items
00181 \def outp(val, port)
00182 \deprecated
00183
00184 Write \c val to IO port \c port.
00185 */
00186 #define outp(val, port) (port) = (val)
00187
00188 /**
00189 \ingroup deprecated_items
00190 \def inb(port)
00191 \deprecated
00192
00193 Read a value from an IO port \c port.
00194 */
00195 #define inb(port) (port)
00196
00197 /**
00198 \ingroup deprecated_items
00199 \def outb(port, val)
00200 \deprecated
00201
00202 Write \c val to IO port \c port.
00203 */
00204 #define outb(port, val) (port) = (val)
00205
00206 /**
00207 \ingroup deprecated_items
00208 \def sbi(port, bit)
00209 \deprecated
00210
00211 Set \c bit in IO port \c port.
00212 */
00213 #define sbi(port, bit) (port) |= (1 « (bit))
00214
00215 /**
00216 \ingroup deprecated_items
00217 \def cbi(port, bit)
00218 \deprecated
00219
00220 Clear \c bit in IO port \c port.
00221 */
00222 #define cbi(port, bit) (port) &= ~(1 « (bit))
00223
00224 /**@}*/
00225
00226 #endif /* _COMPAT_DEPRECATED_H_ */

23.41 ina90.h
00001 /* Copyright (c) 2002,2004 Marek Michalkiewicz
00002 All rights reserved.
00003
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions are met:
00006
00007 * Redistributions of source code must retain the above copyright
00008 notice, this list of conditions and the following disclaimer.
00009
00010 * Redistributions in binary form must reproduce the above copyright
00011 notice, this list of conditions and the following disclaimer in
00012 the documentation and/or other materials provided with the
00013 distribution.
00014
00015 * Neither the name of the copyright holders nor the names of
00016 contributors may be used to endorse or promote products derived
00017 from this software without specific prior written permission.
00018
00019 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00020 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00021 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00022 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00023 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00024 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00025 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00026 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00027 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00028 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00029 POSSIBILITY OF SUCH DAMAGE. */
00030
00031 /* Id */

Generated by Doxygen

23.42 ctype.h File Reference 447

00032 /* copied from: Id: avr/ina90.h,v 1.8 2004/11/09 19:16:09 arcanum Exp */
00033
00034 /*
00035 ina90.h
00036
00037 Contributors:
00038 Created by Marek Michalkiewicz <marekm@linux.org.pl>
00039 */
00040
00041 /**
00042 \defgroup compat_ina90 <compat/ina90.h>: Compatibility with IAR EWB 3.x
00043
00044 \code #include <compat/ina90.h> \endcode
00045
00046 This is an attempt to provide some compatibility with
00047 header files that come with IAR C, to make porting applications
00048 between different compilers easier. No 100% compatibility though.
00049
00050 \note For actual documentation, please see the IAR manual.
00051 */
00052
00053 #ifndef _INA90_H_
00054 #define _INA90_H_ 1
00055
00056 #define _CLI() do { __asm__ __volatile__ ("cli"); } while (0)
00057 #define _SEI() do { __asm__ __volatile__ ("sei"); } while (0)
00058 #define _NOP() do { __asm__ __volatile__ ("nop"); } while (0)
00059 #define _WDR() do { __asm__ __volatile__ ("wdr"); } while (0)
00060 #define _SLEEP() do { __asm__ __volatile__ ("sleep"); } while (0)
00061 #define _OPC(op) do { __asm__ __volatile__ (".word %0" : : "n" (op)); } while (0)
00062
00063 /* _LPM, _ELPM */
00064 #include <avr/pgmspace.h>
00065 #define _LPM(x) do { __LPM(x); } while (0)
00066 #define _ELPM(x) do { __ELPM(x); } while (0)
00067
00068 /* _EEGET, _EEPUT */
00069 #include <avr/eeprom.h>
00070
00071 #define input(port) (port)
00072 #define output(port, val) do { (port) = (val); } while (0)
00073
00074 #define __inp_blk__(port, addr, cnt, op) do { \
00075 unsigned char __i = (cnt); \
00076 unsigned char *__addr = (addr); \
00077 while (__i) { \
00078 *(__addr op) = input(port); \
00079 __i--; \
00080 } \
00081 } while (0)
00082
00083 #define input_block_inc(port, addr, cnt) __inp_blk__(port, addr, cnt, ++)
00084 #define input_block_dec(port, addr, cnt) __inp_blk__(port, addr, cnt, --)
00085
00086 #define __out_blk__(port, addr, cnt, op) do { \
00087 unsigned char __i = (cnt); \
00088 const unsigned char *__addr = (addr); \
00089 while (__i) { \
00090 output(port, *(__addr op)); \
00091 __i--; \
00092 } \
00093 } while (0)
00094
00095 #define output_block_inc(port, addr, cnt) __out_blk__(port, addr, cnt, ++)
00096 #define output_block_dec(port, addr, cnt) __out_blk__(port, addr, cnt, --)
00097
00098 #endif
00099

23.42 ctype.h File Reference

Functions

Character classification routines

These functions perform character classification. They return true or false status depending whether the char-
acter passed to the function falls into the function's classification (i.e. isdigit() returns true if its argument is any
value '0' though '9', inclusive). If the input is not an unsigned char value, all of this function return false.

• int isalnum (int __c)

Generated by Doxygen

448

• int isalpha (int __c)
• int isascii (int __c)
• int isblank (int __c)
• int iscntrl (int __c)
• int isdigit (int __c)
• int isgraph (int __c)
• int islower (int __c)
• int isprint (int __c)
• int ispunct (int __c)
• int isspace (int __c)
• int isupper (int __c)
• int isxdigit (int __c)

Character convertion routines

This realization permits all possible values of integer argument. The toascii() function clears all highest bits. The
tolower() and toupper() functions return an input argument as is, if it is not an unsigned char value.

• int toascii (int __c)
• int tolower (int __c)
• int toupper (int __c)

23.43 ctype.h

Go to the documentation of this file.
00001 /* Copyright (c) 2002,2007 Michael Stumpf
00002 All rights reserved.
00003
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions are met:
00006
00007 * Redistributions of source code must retain the above copyright
00008 notice, this list of conditions and the following disclaimer.
00009
00010 * Redistributions in binary form must reproduce the above copyright
00011 notice, this list of conditions and the following disclaimer in
00012 the documentation and/or other materials provided with the
00013 distribution.
00014
00015 * Neither the name of the copyright holders nor the names of
00016 contributors may be used to endorse or promote products derived
00017 from this software without specific prior written permission.
00018
00019 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00020 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00021 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00022 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00023 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00024 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00025 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00026 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00027 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00028 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00029 POSSIBILITY OF SUCH DAMAGE. */
00030
00031 /* Id */
00032
00033 /*
00034 ctype.h - character conversion macros and ctype macros
00035
00036 Author : Michael Stumpf
00037 Michael.Stumpf@t-online.de
00038 */
00039
00040 #ifndef __CTYPE_H_
00041 #define __CTYPE_H_ 1
00042
00043 #ifdef __cplusplus
00044 extern "C" {
00045 #endif
00046
00047 /** \file */
00048 /** \defgroup ctype <ctype.h>: Character Operations
00049 These functions perform various operations on characters.
00050

Generated by Doxygen

23.43 ctype.h 449

00051 \code #include <ctype.h>\endcode
00052
00053 */
00054
00055 /** \name Character classification routines
00056
00057 These functions perform character classification. They return true or
00058 false status depending whether the character passed to the function falls
00059 into the function’s classification (i.e. isdigit() returns true if its
00060 argument is any value ’0’ though ’9’, inclusive). If the input is not
00061 an unsigned char value, all of this function return false. */
00062
00063 /**@{*/
00064
00065 /** \ingroup ctype
00066
00067 Checks for an alphanumeric character. It is equivalent to <tt>(isalpha(c)
00068 || isdigit(c))</tt>. */
00069
00070 extern int isalnum(int __c);
00071
00072 /** \ingroup ctype
00073
00074 Checks for an alphabetic character. It is equivalent to <tt>(isupper(c) ||
00075 islower(c))</tt>. */
00076
00077 extern int isalpha(int __c);
00078
00079 /** \ingroup ctype
00080
00081 Checks whether \c c is a 7-bit unsigned char value that fits into the
00082 ASCII character set. */
00083
00084 extern int isascii(int __c);
00085
00086 /** \ingroup ctype
00087
00088 Checks for a blank character, that is, a space or a tab. */
00089
00090 extern int isblank(int __c);
00091
00092 /** \ingroup ctype
00093
00094 Checks for a control character. */
00095
00096 extern int iscntrl(int __c);
00097
00098 /** \ingroup ctype
00099
00100 Checks for a digit (0 through 9). */
00101
00102 extern int isdigit(int __c);
00103
00104 /** \ingroup ctype
00105
00106 Checks for any printable character except space. */
00107
00108 extern int isgraph(int __c);
00109
00110 /** \ingroup ctype
00111
00112 Checks for a lower-case character. */
00113
00114 extern int islower(int __c);
00115
00116 /** \ingroup ctype
00117
00118 Checks for any printable character including space. */
00119
00120 extern int isprint(int __c);
00121
00122 /** \ingroup ctype
00123
00124 Checks for any printable character which is not a space or an alphanumeric
00125 character. */
00126
00127 extern int ispunct(int __c);
00128
00129 /** \ingroup ctype
00130
00131 Checks for white-space characters. For the AVR-LibC library, these are:
00132 space, form-feed (’\\f’), newline (’\\n’), carriage return (’\\r’),
00133 horizontal tab (’\\t’), and vertical tab (’\\v’). */
00134
00135 extern int isspace(int __c);
00136
00137 /** \ingroup ctype

Generated by Doxygen

450

00138
00139 Checks for an uppercase letter. */
00140
00141 extern int isupper(int __c);
00142
00143 /** \ingroup ctype
00144
00145 Checks for a hexadecimal digits, i.e. one of 0 1 2 3 4 5 6 7 8 9 a b c d e
00146 f A B C D E F. */
00147
00148 extern int isxdigit(int __c);
00149
00150 /**@}*/
00151
00152 /** \name Character convertion routines
00153
00154 This realization permits all possible values of integer argument.
00155 The toascii() function clears all highest bits. The tolower() and
00156 toupper() functions return an input argument as is, if it is not an
00157 unsigned char value. */
00158
00159 /**@{*/
00160
00161 /** \ingroup ctype
00162
00163 Converts \c c to a 7-bit unsigned char value that fits into the ASCII
00164 character set, by clearing the high-order bits.
00165
00166 \warning Many people will be unhappy if you use this function. This
00167 function will convert accented letters into random characters. */
00168
00169 extern int toascii(int __c);
00170
00171 /** \ingroup ctype
00172
00173 Converts the letter \c c to lower case, if possible. */
00174
00175 extern int tolower(int __c);
00176
00177 /** \ingroup ctype
00178
00179 Converts the letter \c c to upper case, if possible. */
00180
00181 extern int toupper(int __c);
00182
00183 /**@}*/
00184
00185 #ifdef __cplusplus
00186 }
00187 #endif
00188
00189 #endif

23.44 errno.h File Reference

Macros

• #define EDOM 33
• #define ERANGE 34

Variables

• int errno

23.45 errno.h

Go to the documentation of this file.
00001 /* Copyright (c) 2002,2007 Marek Michalkiewicz
00002 All rights reserved.
00003
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions are met:

Generated by Doxygen

23.45 errno.h 451

00006
00007 * Redistributions of source code must retain the above copyright
00008 notice, this list of conditions and the following disclaimer.
00009
00010 * Redistributions in binary form must reproduce the above copyright
00011 notice, this list of conditions and the following disclaimer in
00012 the documentation and/or other materials provided with the
00013 distribution.
00014
00015 * Neither the name of the copyright holders nor the names of
00016 contributors may be used to endorse or promote products derived
00017 from this software without specific prior written permission.
00018
00019 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00020 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00021 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00022 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00023 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00024 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00025 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00026 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00027 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00028 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00029 POSSIBILITY OF SUCH DAMAGE. */
00030
00031 /* Id */
00032
00033 #ifndef __ERRNO_H_
00034 #define __ERRNO_H_ 1
00035
00036 /** \file */
00037 /** \defgroup avr_errno <errno.h>: System Errors
00038
00039 \code #include <errno.h>\endcode
00040
00041 Some functions in the library set the global variable \c errno when an
00042 error occurs. The file, \c <errno.h>, provides symbolic names for various
00043 error codes.
00044 */
00045
00046 #ifdef __cplusplus
00047 extern "C" {
00048 #endif
00049
00050 /** \ingroup avr_errno
00051 \brief Error code for last error encountered by library
00052
00053 The variable \c errno holds the last error code encountered by
00054 a library function. This variable must be cleared by the
00055 user prior to calling a library function.
00056
00057 \warning The \c errno global variable is not safe to use in a threaded or
00058 multi-task system. A race condition can occur if a task is interrupted
00059 between the call which sets \c error and when the task examines \c
00060 errno. If another task changes \c errno during this time, the result will
00061 be incorrect for the interrupted task. */
00062 extern int errno;
00063
00064 #ifdef __cplusplus
00065 }
00066 #endif
00067
00068 /** \ingroup avr_errno
00069 \def EDOM
00070
00071 Domain error. */
00072 #define EDOM 33
00073
00074 /** \ingroup avr_errno
00075 \def ERANGE
00076
00077 Range error. */
00078 #define ERANGE 34
00079
00080 #ifndef __DOXYGEN__
00081
00082 /* (((((’E’-64)*26+(’N’-64))*26+(’O’-64))*26+(’S’-64))*26+(’Y’-64))*26+’S’-64 */
00083 #define ENOSYS ((int)(66081697 & 0x7fff))
00084
00085 /* ((((’E’-64)*26+(’I’-64))*26+(’N’-64))*26+(’T’-64))*26+(’R’-64) */
00086 #define EINTR ((int)(2453066 & 0x7fff))
00087
00088 #define E2BIG ENOERR
00089 #define EACCES ENOERR
00090 #define EADDRINUSE ENOERR
00091 #define EADDRNOTAVAIL ENOERR
00092 #define EAFNOSUPPORT ENOERR

Generated by Doxygen

452

00093 #define EAGAIN ENOERR
00094 #define EALREADY ENOERR
00095 #define EBADF ENOERR
00096 #define EBUSY ENOERR
00097 #define ECHILD ENOERR
00098 #define ECONNABORTED ENOERR
00099 #define ECONNREFUSED ENOERR
00100 #define ECONNRESET ENOERR
00101 #define EDEADLK ENOERR
00102 #define EDESTADDRREQ ENOERR
00103 #define EEXIST ENOERR
00104 #define EFAULT ENOERR
00105 #define EFBIG ENOERR
00106 #define EHOSTUNREACH ENOERR
00107 #define EILSEQ ENOERR
00108 #define EINPROGRESS ENOERR
00109 #define EINVAL ENOERR
00110 #define EIO ENOERR
00111 #define EISCONN ENOERR
00112 #define EISDIR ENOERR
00113 #define ELOOP ENOERR
00114 #define EMFILE ENOERR
00115 #define EMLINK ENOERR
00116 #define EMSGSIZE ENOERR
00117 #define ENAMETOOLONG ENOERR
00118 #define ENETDOWN ENOERR
00119 #define ENETRESET ENOERR
00120 #define ENETUNREACH ENOERR
00121 #define ENFILE ENOERR
00122 #define ENOBUFS ENOERR
00123 #define ENODEV ENOERR
00124 #define ENOENT ENOERR
00125 #define ENOEXEC ENOERR
00126 #define ENOLCK ENOERR
00127 #define ENOMEM ENOERR
00128 #define ENOMSG ENOERR
00129 #define ENOPROTOOPT ENOERR
00130 #define ENOSPC ENOERR
00131 #define ENOTCONN ENOERR
00132 #define ENOTDIR ENOERR
00133 #define ENOTEMPTY ENOERR
00134 #define ENOTSOCK ENOERR
00135 #define ENOTTY ENOERR
00136 #define ENXIO ENOERR
00137 #define EOPNOTSUPP ENOERR
00138 #define EPERM ENOERR
00139 #define EPIPE ENOERR
00140 #define EPROTONOSUPPORT ENOERR
00141 #define EPROTOTYPE ENOERR
00142 #define EROFS ENOERR
00143 #define ESPIPE ENOERR
00144 #define ESRCH ENOERR
00145 #define ETIMEDOUT ENOERR
00146 #define EWOULDBLOCK ENOERR
00147 #define EXDEV ENOERR
00148
00149 /* (((((’E’-64)*26+(’N’-64))*26+(’O’-64))*26+(’E’-64))*26+(’R’-64))*26+’R’-64 */
00150 #define ENOERR ((int)(66072050 & 0xffff))
00151
00152 #endif /* !__DOXYGEN__ */
00153
00154 #endif

23.46 inttypes.h File Reference

Macros

macros for printf and scanf format specifiers

For C++, these are only included if __STDC_LIMIT_MACROS is defined before including <inttypes.h>.

• #define PRId8 "d"
• #define PRIdLEAST8 "d"
• #define PRIdFAST8 "d"
• #define PRIi8 "i"
• #define PRIiLEAST8 "i"
• #define PRIiFAST8 "i"
• #define PRId16 "d"

Generated by Doxygen

23.46 inttypes.h File Reference 453

• #define PRIdLEAST16 "d"
• #define PRIdFAST16 "d"
• #define PRIi16 "i"
• #define PRIiLEAST16 "i"
• #define PRIiFAST16 "i"
• #define PRId32 "ld"
• #define PRIdLEAST32 "ld"
• #define PRIdFAST32 "ld"
• #define PRIi32 "li"
• #define PRIiLEAST32 "li"
• #define PRIiFAST32 "li"
• #define PRIdPTR PRId16
• #define PRIiPTR PRIi16
• #define PRIo8 "o"
• #define PRIoLEAST8 "o"
• #define PRIoFAST8 "o"
• #define PRIu8 "u"
• #define PRIuLEAST8 "u"
• #define PRIuFAST8 "u"
• #define PRIx8 "x"
• #define PRIxLEAST8 "x"
• #define PRIxFAST8 "x"
• #define PRIX8 "X"
• #define PRIXLEAST8 "X"
• #define PRIXFAST8 "X"
• #define PRIo16 "o"
• #define PRIoLEAST16 "o"
• #define PRIoFAST16 "o"
• #define PRIu16 "u"
• #define PRIuLEAST16 "u"
• #define PRIuFAST16 "u"
• #define PRIx16 "x"
• #define PRIxLEAST16 "x"
• #define PRIxFAST16 "x"
• #define PRIX16 "X"
• #define PRIXLEAST16 "X"
• #define PRIXFAST16 "X"
• #define PRIo32 "lo"
• #define PRIoLEAST32 "lo"
• #define PRIoFAST32 "lo"
• #define PRIu32 "lu"
• #define PRIuLEAST32 "lu"
• #define PRIuFAST32 "lu"
• #define PRIx32 "lx"
• #define PRIxLEAST32 "lx"
• #define PRIxFAST32 "lx"
• #define PRIX32 "lX"
• #define PRIXLEAST32 "lX"
• #define PRIXFAST32 "lX"
• #define PRIoPTR PRIo16
• #define PRIuPTR PRIu16
• #define PRIxPTR PRIx16
• #define PRIXPTR PRIX16
• #define SCNd8 "hhd"
• #define SCNdLEAST8 "hhd"
• #define SCNdFAST8 "hhd"
• #define SCNi8 "hhi"
• #define SCNiLEAST8 "hhi"
• #define SCNiFAST8 "hhi"
• #define SCNd16 "d"
• #define SCNdLEAST16 "d"
• #define SCNdFAST16 "d"
• #define SCNi16 "i"
• #define SCNiLEAST16 "i"

Generated by Doxygen

454

• #define SCNiFAST16 "i"
• #define SCNd32 "ld"
• #define SCNdLEAST32 "ld"
• #define SCNdFAST32 "ld"
• #define SCNi32 "li"
• #define SCNiLEAST32 "li"
• #define SCNiFAST32 "li"
• #define SCNdPTR SCNd16
• #define SCNiPTR SCNi16
• #define SCNo8 "hho"
• #define SCNoLEAST8 "hho"
• #define SCNoFAST8 "hho"
• #define SCNu8 "hhu"
• #define SCNuLEAST8 "hhu"
• #define SCNuFAST8 "hhu"
• #define SCNx8 "hhx"
• #define SCNxLEAST8 "hhx"
• #define SCNxFAST8 "hhx"
• #define SCNo16 "o"
• #define SCNoLEAST16 "o"
• #define SCNoFAST16 "o"
• #define SCNu16 "u"
• #define SCNuLEAST16 "u"
• #define SCNuFAST16 "u"
• #define SCNx16 "x"
• #define SCNxLEAST16 "x"
• #define SCNxFAST16 "x"
• #define SCNo32 "lo"
• #define SCNoLEAST32 "lo"
• #define SCNoFAST32 "lo"
• #define SCNu32 "lu"
• #define SCNuLEAST32 "lu"
• #define SCNuFAST32 "lu"
• #define SCNx32 "lx"
• #define SCNxLEAST32 "lx"
• #define SCNxFAST32 "lx"
• #define SCNoPTR SCNo16
• #define SCNuPTR SCNu16
• #define SCNxPTR SCNx16

Typedefs

Far pointers for memory access > 64K

• typedef int32_t int_farptr_t
• typedef uint32_t uint_farptr_t

23.47 inttypes.h

Go to the documentation of this file.
00001 /* Copyright (c) 2004,2005,2007,2012 Joerg Wunsch
00002 Copyright (c) 2005, Carlos Lamas
00003 All rights reserved.
00004
00005 Redistribution and use in source and binary forms, with or without
00006 modification, are permitted provided that the following conditions are met:
00007
00008 * Redistributions of source code must retain the above copyright
00009 notice, this list of conditions and the following disclaimer.
00010
00011 * Redistributions in binary form must reproduce the above copyright
00012 notice, this list of conditions and the following disclaimer in
00013 the documentation and/or other materials provided with the
00014 distribution.

Generated by Doxygen

23.47 inttypes.h 455

00015
00016 * Neither the name of the copyright holders nor the names of
00017 contributors may be used to endorse or promote products derived
00018 from this software without specific prior written permission.
00019
00020 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00021 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00022 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00023 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00024 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00025 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00026 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00027 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00028 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00029 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00030 POSSIBILITY OF SUCH DAMAGE. */
00031
00032 /* Id */
00033
00034 #ifndef __INTTYPES_H_
00035 #define __INTTYPES_H_
00036
00037 #include <stdint.h>
00038
00039 /** \file */
00040 /** \defgroup avr_inttypes <inttypes.h>: Integer Type conversions
00041 \code #include <inttypes.h> \endcode
00042
00043 This header file includes the exact-width integer definitions from
00044 <tt><stdint.h></tt>, and extends them with additional facilities
00045 provided by the implementation.
00046
00047 Currently, the extensions include two additional integer types
00048 that could hold a "far" pointer (i.e. a code pointer that can
00049 address more than 64 KB), as well as standard names for all printf
00050 and scanf formatting options that are supported by the \ref avr_stdio.
00051 As the library does not support the full range of conversion
00052 specifiers from ISO 9899:1999, only those conversions that are
00053 actually implemented will be listed here.
00054
00055 The idea behind these conversion macros is that, for each of the
00056 types defined by <stdint.h>, a macro will be supplied that portably
00057 allows formatting an object of that type in printf() or scanf()
00058 operations. Example:
00059
00060 \code
00061 #include <inttypes.h>
00062
00063 uint8_t smallval;
00064 int32_t longval;
00065 ...
00066 printf("The hexadecimal value of smallval is %" PRIx8
00067 ", the decimal value of longval is %" PRId32 ".\n",
00068 smallval, longval);
00069 \endcode
00070 */
00071
00072 /** \name Far pointers for memory access > 64K */
00073
00074 /**@{*/
00075 /** \ingroup avr_inttypes
00076 signed integer type that can hold a pointer > 64 KiB */
00077 typedef int32_t int_farptr_t;
00078
00079 /** \ingroup avr_inttypes
00080 unsigned integer type that can hold a pointer > 64 KiB,
00081 see also pgm_get_far_address()
00082 */
00083 typedef uint32_t uint_farptr_t;
00084 /**@}*/
00085
00086 #if !defined(__cplusplus) || defined(__STDC_LIMIT_MACROS)
00087
00088
00089 /** \name macros for printf and scanf format specifiers
00090
00091 For C++, these are only included if __STDC_LIMIT_MACROS
00092 is defined before including <inttypes.h>.
00093 */
00094
00095 /**@{*/
00096 /** \ingroup avr_inttypes
00097 decimal printf format for int8_t */
00098 #define PRId8 "d"
00099 /** \ingroup avr_inttypes
00100 decimal printf format for int_least8_t */
00101 #define PRIdLEAST8 "d"

Generated by Doxygen

456

00102 /** \ingroup avr_inttypes
00103 decimal printf format for int_fast8_t */
00104 #define PRIdFAST8 "d"
00105
00106 /** \ingroup avr_inttypes
00107 integer printf format for int8_t */
00108 #define PRIi8 "i"
00109 /** \ingroup avr_inttypes
00110 integer printf format for int_least8_t */
00111 #define PRIiLEAST8 "i"
00112 /** \ingroup avr_inttypes
00113 integer printf format for int_fast8_t */
00114 #define PRIiFAST8 "i"
00115
00116
00117 /** \ingroup avr_inttypes
00118 decimal printf format for int16_t */
00119 #define PRId16 "d"
00120 /** \ingroup avr_inttypes
00121 decimal printf format for int_least16_t */
00122 #define PRIdLEAST16 "d"
00123 /** \ingroup avr_inttypes
00124 decimal printf format for int_fast16_t */
00125 #define PRIdFAST16 "d"
00126
00127 /** \ingroup avr_inttypes
00128 integer printf format for int16_t */
00129 #define PRIi16 "i"
00130 /** \ingroup avr_inttypes
00131 integer printf format for int_least16_t */
00132 #define PRIiLEAST16 "i"
00133 /** \ingroup avr_inttypes
00134 integer printf format for int_fast16_t */
00135 #define PRIiFAST16 "i"
00136
00137
00138 /** \ingroup avr_inttypes
00139 decimal printf format for int32_t */
00140 #define PRId32 "ld"
00141 /** \ingroup avr_inttypes
00142 decimal printf format for int_least32_t */
00143 #define PRIdLEAST32 "ld"
00144 /** \ingroup avr_inttypes
00145 decimal printf format for int_fast32_t */
00146 #define PRIdFAST32 "ld"
00147
00148 /** \ingroup avr_inttypes
00149 integer printf format for int32_t */
00150 #define PRIi32 "li"
00151 /** \ingroup avr_inttypes
00152 integer printf format for int_least32_t */
00153 #define PRIiLEAST32 "li"
00154 /** \ingroup avr_inttypes
00155 integer printf format for int_fast32_t */
00156 #define PRIiFAST32 "li"
00157
00158
00159 #ifdef __avr_libc_does_not_implement_long_long_in_printf_or_scanf
00160
00161 #define PRId64 "lld"
00162 #define PRIdLEAST64 "lld"
00163 #define PRIdFAST64 "lld"
00164
00165 #define PRIi64 "lli"
00166 #define PRIiLEAST64 "lli"
00167 #define PRIiFAST64 "lli"
00168
00169
00170 #define PRIdMAX "lld"
00171 #define PRIiMAX "lli"
00172
00173 #endif
00174
00175 /** \ingroup avr_inttypes
00176 decimal printf format for intptr_t */
00177 #define PRIdPTR PRId16
00178 /** \ingroup avr_inttypes
00179 integer printf format for intptr_t */
00180 #define PRIiPTR PRIi16
00181
00182 /** \ingroup avr_inttypes
00183 octal printf format for uint8_t */
00184 #define PRIo8 "o"
00185 /** \ingroup avr_inttypes
00186 octal printf format for uint_least8_t */
00187 #define PRIoLEAST8 "o"
00188 /** \ingroup avr_inttypes

Generated by Doxygen

23.47 inttypes.h 457

00189 octal printf format for uint_fast8_t */
00190 #define PRIoFAST8 "o"
00191
00192 /** \ingroup avr_inttypes
00193 decimal printf format for uint8_t */
00194 #define PRIu8 "u"
00195 /** \ingroup avr_inttypes
00196 decimal printf format for uint_least8_t */
00197 #define PRIuLEAST8 "u"
00198 /** \ingroup avr_inttypes
00199 decimal printf format for uint_fast8_t */
00200 #define PRIuFAST8 "u"
00201
00202 /** \ingroup avr_inttypes
00203 hexadecimal printf format for uint8_t */
00204 #define PRIx8 "x"
00205 /** \ingroup avr_inttypes
00206 hexadecimal printf format for uint_least8_t */
00207 #define PRIxLEAST8 "x"
00208 /** \ingroup avr_inttypes
00209 hexadecimal printf format for uint_fast8_t */
00210 #define PRIxFAST8 "x"
00211
00212 /** \ingroup avr_inttypes
00213 uppercase hexadecimal printf format for uint8_t */
00214 #define PRIX8 "X"
00215 /** \ingroup avr_inttypes
00216 uppercase hexadecimal printf format for uint_least8_t */
00217 #define PRIXLEAST8 "X"
00218 /** \ingroup avr_inttypes
00219 uppercase hexadecimal printf format for uint_fast8_t */
00220 #define PRIXFAST8 "X"
00221
00222
00223 /** \ingroup avr_inttypes
00224 octal printf format for uint16_t */
00225 #define PRIo16 "o"
00226 /** \ingroup avr_inttypes
00227 octal printf format for uint_least16_t */
00228 #define PRIoLEAST16 "o"
00229 /** \ingroup avr_inttypes
00230 octal printf format for uint_fast16_t */
00231 #define PRIoFAST16 "o"
00232
00233 /** \ingroup avr_inttypes
00234 decimal printf format for uint16_t */
00235 #define PRIu16 "u"
00236 /** \ingroup avr_inttypes
00237 decimal printf format for uint_least16_t */
00238 #define PRIuLEAST16 "u"
00239 /** \ingroup avr_inttypes
00240 decimal printf format for uint_fast16_t */
00241 #define PRIuFAST16 "u"
00242
00243 /** \ingroup avr_inttypes
00244 hexadecimal printf format for uint16_t */
00245 #define PRIx16 "x"
00246 /** \ingroup avr_inttypes
00247 hexadecimal printf format for uint_least16_t */
00248 #define PRIxLEAST16 "x"
00249 /** \ingroup avr_inttypes
00250 hexadecimal printf format for uint_fast16_t */
00251 #define PRIxFAST16 "x"
00252
00253 /** \ingroup avr_inttypes
00254 uppercase hexadecimal printf format for uint16_t */
00255 #define PRIX16 "X"
00256 /** \ingroup avr_inttypes
00257 uppercase hexadecimal printf format for uint_least16_t */
00258 #define PRIXLEAST16 "X"
00259 /** \ingroup avr_inttypes
00260 uppercase hexadecimal printf format for uint_fast16_t */
00261 #define PRIXFAST16 "X"
00262
00263
00264 /** \ingroup avr_inttypes
00265 octal printf format for uint32_t */
00266 #define PRIo32 "lo"
00267 /** \ingroup avr_inttypes
00268 octal printf format for uint_least32_t */
00269 #define PRIoLEAST32 "lo"
00270 /** \ingroup avr_inttypes
00271 octal printf format for uint_fast32_t */
00272 #define PRIoFAST32 "lo"
00273
00274 /** \ingroup avr_inttypes
00275 decimal printf format for uint32_t */

Generated by Doxygen

458

00276 #define PRIu32 "lu"
00277 /** \ingroup avr_inttypes
00278 decimal printf format for uint_least32_t */
00279 #define PRIuLEAST32 "lu"
00280 /** \ingroup avr_inttypes
00281 decimal printf format for uint_fast32_t */
00282 #define PRIuFAST32 "lu"
00283
00284 /** \ingroup avr_inttypes
00285 hexadecimal printf format for uint32_t */
00286 #define PRIx32 "lx"
00287 /** \ingroup avr_inttypes
00288 hexadecimal printf format for uint_least32_t */
00289 #define PRIxLEAST32 "lx"
00290 /** \ingroup avr_inttypes
00291 hexadecimal printf format for uint_fast32_t */
00292 #define PRIxFAST32 "lx"
00293
00294 /** \ingroup avr_inttypes
00295 uppercase hexadecimal printf format for uint32_t */
00296 #define PRIX32 "lX"
00297 /** \ingroup avr_inttypes
00298 uppercase hexadecimal printf format for uint_least32_t */
00299 #define PRIXLEAST32 "lX"
00300 /** \ingroup avr_inttypes
00301 uppercase hexadecimal printf format for uint_fast32_t */
00302 #define PRIXFAST32 "lX"
00303
00304
00305 #ifdef __avr_libc_does_not_implement_long_long_in_printf_or_scanf
00306
00307 #define PRIo64 "llo"
00308 #define PRIoLEAST64 "llo"
00309 #define PRIoFAST64 "llo"
00310
00311 #define PRIu64 "llu"
00312 #define PRIuLEAST64 "llu"
00313 #define PRIuFAST64 "llu"
00314
00315 #define PRIx64 "llx"
00316 #define PRIxLEAST64 "llx"
00317 #define PRIxFAST64 "llx"
00318
00319 #define PRIX64 "llX"
00320 #define PRIXLEAST64 "llX"
00321 #define PRIXFAST64 "llX"
00322
00323 #define PRIoMAX "llo"
00324 #define PRIuMAX "llu"
00325 #define PRIxMAX "llx"
00326 #define PRIXMAX "llX"
00327
00328 #endif
00329
00330 /** \ingroup avr_inttypes
00331 octal printf format for uintptr_t */
00332 #define PRIoPTR PRIo16
00333 /** \ingroup avr_inttypes
00334 decimal printf format for uintptr_t */
00335 #define PRIuPTR PRIu16
00336 /** \ingroup avr_inttypes
00337 hexadecimal printf format for uintptr_t */
00338 #define PRIxPTR PRIx16
00339 /** \ingroup avr_inttypes
00340 uppercase hexadecimal printf format for uintptr_t */
00341 #define PRIXPTR PRIX16
00342
00343
00344 /** \ingroup avr_inttypes
00345 decimal scanf format for int8_t */
00346 #define SCNd8 "hhd"
00347 /** \ingroup avr_inttypes
00348 decimal scanf format for int_least8_t */
00349 #define SCNdLEAST8 "hhd"
00350 /** \ingroup avr_inttypes
00351 decimal scanf format for int_fast8_t */
00352 #define SCNdFAST8 "hhd"
00353
00354 /** \ingroup avr_inttypes
00355 generic-integer scanf format for int8_t */
00356 #define SCNi8 "hhi"
00357 /** \ingroup avr_inttypes
00358 generic-integer scanf format for int_least8_t */
00359 #define SCNiLEAST8 "hhi"
00360 /** \ingroup avr_inttypes
00361 generic-integer scanf format for int_fast8_t */
00362 #define SCNiFAST8 "hhi"

Generated by Doxygen

23.47 inttypes.h 459

00363
00364
00365 /** \ingroup avr_inttypes
00366 decimal scanf format for int16_t */
00367 #define SCNd16 "d"
00368 /** \ingroup avr_inttypes
00369 decimal scanf format for int_least16_t */
00370 #define SCNdLEAST16 "d"
00371 /** \ingroup avr_inttypes
00372 decimal scanf format for int_fast16_t */
00373 #define SCNdFAST16 "d"
00374
00375 /** \ingroup avr_inttypes
00376 generic-integer scanf format for int16_t */
00377 #define SCNi16 "i"
00378 /** \ingroup avr_inttypes
00379 generic-integer scanf format for int_least16_t */
00380 #define SCNiLEAST16 "i"
00381 /** \ingroup avr_inttypes
00382 generic-integer scanf format for int_fast16_t */
00383 #define SCNiFAST16 "i"
00384
00385
00386 /** \ingroup avr_inttypes
00387 decimal scanf format for int32_t */
00388 #define SCNd32 "ld"
00389 /** \ingroup avr_inttypes
00390 decimal scanf format for int_least32_t */
00391 #define SCNdLEAST32 "ld"
00392 /** \ingroup avr_inttypes
00393 decimal scanf format for int_fast32_t */
00394 #define SCNdFAST32 "ld"
00395
00396 /** \ingroup avr_inttypes
00397 generic-integer scanf format for int32_t */
00398 #define SCNi32 "li"
00399 /** \ingroup avr_inttypes
00400 generic-integer scanf format for int_least32_t */
00401 #define SCNiLEAST32 "li"
00402 /** \ingroup avr_inttypes
00403 generic-integer scanf format for int_fast32_t */
00404 #define SCNiFAST32 "li"
00405
00406
00407 #ifdef __avr_libc_does_not_implement_long_long_in_printf_or_scanf
00408
00409 #define SCNd64 "lld"
00410 #define SCNdLEAST64 "lld"
00411 #define SCNdFAST64 "lld"
00412
00413 #define SCNi64 "lli"
00414 #define SCNiLEAST64 "lli"
00415 #define SCNiFAST64 "lli"
00416
00417 #define SCNdMAX "lld"
00418 #define SCNiMAX "lli"
00419
00420 #endif
00421
00422 /** \ingroup avr_inttypes
00423 decimal scanf format for intptr_t */
00424 #define SCNdPTR SCNd16
00425 /** \ingroup avr_inttypes
00426 generic-integer scanf format for intptr_t */
00427 #define SCNiPTR SCNi16
00428
00429 /** \ingroup avr_inttypes
00430 octal scanf format for uint8_t */
00431 #define SCNo8 "hho"
00432 /** \ingroup avr_inttypes
00433 octal scanf format for uint_least8_t */
00434 #define SCNoLEAST8 "hho"
00435 /** \ingroup avr_inttypes
00436 octal scanf format for uint_fast8_t */
00437 #define SCNoFAST8 "hho"
00438
00439 /** \ingroup avr_inttypes
00440 decimal scanf format for uint8_t */
00441 #define SCNu8 "hhu"
00442 /** \ingroup avr_inttypes
00443 decimal scanf format for uint_least8_t */
00444 #define SCNuLEAST8 "hhu"
00445 /** \ingroup avr_inttypes
00446 decimal scanf format for uint_fast8_t */
00447 #define SCNuFAST8 "hhu"
00448
00449 /** \ingroup avr_inttypes

Generated by Doxygen

460

00450 hexadecimal scanf format for uint8_t */
00451 #define SCNx8 "hhx"
00452 /** \ingroup avr_inttypes
00453 hexadecimal scanf format for uint_least8_t */
00454 #define SCNxLEAST8 "hhx"
00455 /** \ingroup avr_inttypes
00456 hexadecimal scanf format for uint_fast8_t */
00457 #define SCNxFAST8 "hhx"
00458
00459 /** \ingroup avr_inttypes
00460 octal scanf format for uint16_t */
00461 #define SCNo16 "o"
00462 /** \ingroup avr_inttypes
00463 octal scanf format for uint_least16_t */
00464 #define SCNoLEAST16 "o"
00465 /** \ingroup avr_inttypes
00466 octal scanf format for uint_fast16_t */
00467 #define SCNoFAST16 "o"
00468
00469 /** \ingroup avr_inttypes
00470 decimal scanf format for uint16_t */
00471 #define SCNu16 "u"
00472 /** \ingroup avr_inttypes
00473 decimal scanf format for uint_least16_t */
00474 #define SCNuLEAST16 "u"
00475 /** \ingroup avr_inttypes
00476 decimal scanf format for uint_fast16_t */
00477 #define SCNuFAST16 "u"
00478
00479 /** \ingroup avr_inttypes
00480 hexadecimal scanf format for uint16_t */
00481 #define SCNx16 "x"
00482 /** \ingroup avr_inttypes
00483 hexadecimal scanf format for uint_least16_t */
00484 #define SCNxLEAST16 "x"
00485 /** \ingroup avr_inttypes
00486 hexadecimal scanf format for uint_fast16_t */
00487 #define SCNxFAST16 "x"
00488
00489
00490 /** \ingroup avr_inttypes
00491 octal scanf format for uint32_t */
00492 #define SCNo32 "lo"
00493 /** \ingroup avr_inttypes
00494 octal scanf format for uint_least32_t */
00495 #define SCNoLEAST32 "lo"
00496 /** \ingroup avr_inttypes
00497 octal scanf format for uint_fast32_t */
00498 #define SCNoFAST32 "lo"
00499
00500 /** \ingroup avr_inttypes
00501 decimal scanf format for uint32_t */
00502 #define SCNu32 "lu"
00503 /** \ingroup avr_inttypes
00504 decimal scanf format for uint_least32_t */
00505 #define SCNuLEAST32 "lu"
00506 /** \ingroup avr_inttypes
00507 decimal scanf format for uint_fast32_t */
00508 #define SCNuFAST32 "lu"
00509
00510 /** \ingroup avr_inttypes
00511 hexadecimal scanf format for uint32_t */
00512 #define SCNx32 "lx"
00513 /** \ingroup avr_inttypes
00514 hexadecimal scanf format for uint_least32_t */
00515 #define SCNxLEAST32 "lx"
00516 /** \ingroup avr_inttypes
00517 hexadecimal scanf format for uint_fast32_t */
00518 #define SCNxFAST32 "lx"
00519
00520
00521 #ifdef __avr_libc_does_not_implement_long_long_in_printf_or_scanf
00522
00523 #define SCNo64 "llo"
00524 #define SCNoLEAST64 "llo"
00525 #define SCNoFAST64 "llo"
00526
00527 #define SCNu64 "llu"
00528 #define SCNuLEAST64 "llu"
00529 #define SCNuFAST64 "llu"
00530
00531 #define SCNx64 "llx"
00532 #define SCNxLEAST64 "llx"
00533 #define SCNxFAST64 "llx"
00534
00535 #define SCNoMAX "llo"
00536 #define SCNuMAX "llu"

Generated by Doxygen

23.48 math.h File Reference 461

00537 #define SCNxMAX "llx"
00538
00539 #endif
00540
00541 /** \ingroup avr_inttypes
00542 octal scanf format for uintptr_t */
00543 #define SCNoPTR SCNo16
00544 /** \ingroup avr_inttypes
00545 decimal scanf format for uintptr_t */
00546 #define SCNuPTR SCNu16
00547 /** \ingroup avr_inttypes
00548 hexadecimal scanf format for uintptr_t */
00549 #define SCNxPTR SCNx16
00550
00551 /**@}*/
00552
00553
00554 #endif /* !defined(__cplusplus) || defined(__STDC_LIMIT_MACROS) */
00555
00556
00557 #endif /* __INTTYPES_H_ */

23.48 math.h File Reference

Macros

• #define M_E 2.7182818284590452354
• #define M_LOG2E 1.4426950408889634074
• #define M_LOG10E 0.43429448190325182765
• #define M_LN2 0.69314718055994530942
• #define M_LN10 2.30258509299404568402
• #define M_PI 3.14159265358979323846
• #define M_PI_2 1.57079632679489661923
• #define M_PI_4 0.78539816339744830962
• #define M_1_PI 0.31830988618379067154
• #define M_2_PI 0.63661977236758134308
• #define M_2_SQRTPI 1.12837916709551257390
• #define M_SQRT2 1.41421356237309504880
• #define M_SQRT1_2 0.70710678118654752440
• #define NAN __builtin_nan("")
• #define nanf(__tagp) __builtin_nanf(__tag)
• #define nan(__tag) __builtin_nan(__tag)
• #define nanl(__tag) __builtin_nanl(__tag)
• #define INFINITY __builtin_inf()
• #define HUGE_VALF __builtin_huge_valf()
• #define HUGE_VAL __builtin_huge_val()
• #define HUGE_VALL __builtin_huge_vall()

Functions

• float cosf (float x)
• double cos (double x)
• long double cosl (long double x)
• float sinf (float x)
• double sin (double x)
• long double sinl (long double x)
• float tanf (float x)
• double tan (double x)
• long double tanl (long double x)
• static float fabsf (float __x)

Generated by Doxygen

462

• static double fabs (double __x)
• static long double fabsl (long double __x)
• float fmodf (float x, float y)
• double fmod (double x, double y)
• long double fmodl (long double x, long double y)
• float modff (float x, float ∗iptr)
• double modf (double x, double ∗iptr)
• long double modfl (long double x, long double ∗iptr)
• float sqrtf (float x)
• double sqrt (double x)
• long double sqrtl (long double x)
• float cbrtf (float x)
• double cbrt (double x)
• long double cbrtl (long double x)
• float hypotf (float x, float y)
• double hypot (double x, double y)
• long double hypotl (long double x, long double y)
• float floorf (float x)
• double floor (double x)
• long double floorl (long double x)
• float ceilf (float x)
• double ceil (double x)
• long double ceill (long double x)
• float frexpf (float x, int ∗pexp)
• double frexp (double x, int ∗pexp)
• long double frexpl (long double x, int ∗pexp)
• float ldexpf (float x, int iexp)
• double ldexp (double x, int iexp)
• long double ldexpl (long double x, int iexp)
• float expf (float x)
• double exp (double x)
• long double expl (long double x)
• float coshf (float x)
• double cosh (double x)
• long double coshl (long double x)
• float sinhf (float x)
• double sinh (double x)
• long double sinhl (long double x)
• float tanhf (float x)
• double tanh (double x)
• long double tanhl (long double x)
• float acosf (float x)
• double acos (double x)
• long double acosl (long double x)
• float asinf (float x)
• double asin (double x)
• long double asinl (long double x)
• float atanf (float x)
• double atan (double x)
• long double atanl (long double x)
• float atan2f (float y, float x)
• double atan2 (double y, double x)
• long double atan2l (long double y, long double x)
• float logf (float x)
• double log (double x)

Generated by Doxygen

23.48 math.h File Reference 463

• long double logl (long double x)
• float log10f (float x)
• double log10 (double x)
• long double log10l (long double x)
• float powf (float x, float y)
• double pow (double x, double y)
• long double powl (long double x, long double y)
• int isnanf (float x)
• int isnan (double x)
• int isnanl (long double x)
• int isinff (float x)
• int isinf (double x)
• int isinfl (long double x)
• static int isfinitef (float __x)
• static int isfinite (double __x)
• static int isfinitel (long double __x)
• static float copysignf (float __x, float __y)
• static double copysign (double __x, double __y)
• static long double copysignl (long double __x, long double __y)
• int signbitf (float x)
• int signbit (double x)
• int signbitl (long double x)
• float fdimf (float x, float y)
• double fdim (double x, double y)
• long double fdiml (long double x, long double y)
• float fmaf (float x, float y, float z)
• double fma (double x, double y, double z)
• long double fmal (long double x, long double y, long double z)
• float fmaxf (float x, float y)
• double fmax (double x, double y)
• long double fmaxl (long double x, long double y)
• float fminf (float x, float y)
• double fmin (double x, double y)
• long double fminl (long double x, long double y)
• float truncf (float x)
• double trunc (double x)
• long double truncl (long double x)
• float roundf (float x)
• double round (double x)
• long double roundl (long double x)
• long lroundf (float x)
• long lround (double x)
• long lroundl (long double x)
• long lrintf (float x)
• long lrint (double x)
• long lrintl (long double x)

Non-Standard Math Functions

• float squaref (float x)
• double square (double x)
• long double squarel (long double x)

Generated by Doxygen

464

23.49 math.h

Go to the documentation of this file.
00001 /* Copyright (c) 2002,2007-2009 Michael Stumpf
00002
00003 Portions of documentation Copyright (c) 1990 - 1994
00004 The Regents of the University of California.
00005
00006 All rights reserved.
00007
00008 Redistribution and use in source and binary forms, with or without
00009 modification, are permitted provided that the following conditions are met:
00010
00011 * Redistributions of source code must retain the above copyright
00012 notice, this list of conditions and the following disclaimer.
00013
00014 * Redistributions in binary form must reproduce the above copyright
00015 notice, this list of conditions and the following disclaimer in
00016 the documentation and/or other materials provided with the
00017 distribution.
00018
00019 * Neither the name of the copyright holders nor the names of
00020 contributors may be used to endorse or promote products derived
00021 from this software without specific prior written permission.
00022
00023 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00024 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00025 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00026 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00027 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00028 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00029 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00030 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00031 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00032 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00033 POSSIBILITY OF SUCH DAMAGE. */
00034
00035 /* Id */
00036
00037 /*
00038 math.h - mathematical functions
00039
00040 Author : Michael Stumpf
00041 Michael.Stumpf@t-online.de
00042
00043 __ATTR_CONST__ added by marekm@linux.org.pl for functions
00044 that "do not examine any values except their arguments, and have
00045 no effects except the return value", for better optimization by gcc.
00046 */
00047
00048 #ifndef __MATH_H
00049 #define __MATH_H
00050
00051 #ifdef __cplusplus
00052 extern "C" {
00053 #endif
00054
00055 /** \file */
00056 /** \defgroup avr_math <math.h>: Mathematics
00057 \code #include <math.h> \endcode
00058
00059 This header file declares basic mathematics constants and
00060 functions.
00061
00062 \par Notes:
00063 - Math functions do not raise exceptions and do not change the
00064 \c errno variable. Therefore the majority of them are declared
00065 with \c const attribute, for better optimization by GCC.
00066 - 64-bit floating-point arithmetic is only available in
00067 avr-gcc v10
00068 and up.
00069 The size of the \c double and \c long \c double type can be selected
00070 at compile-time with options like <tt>-mdouble=64</tt> and
00071 <tt>-mlong-double=32</tt>. Whether such options are available,
00072 and their default values,
00073 depend on how the compiler has been configured.
00074 - The implementation of 64-bit floating-point arithmetic has some
00075 shortcomings and limitations, see the
00076 avr-gcc Wiki
00077 for details.
00078 - In order to access the <tt>float</tt> functions,
00079 in avr-gcc v4.6 and older it is usually
00080 also required to link with \c -lm. In avr-gcc v4.7 and up, \c -lm
00081 is added automatically to all linker invocations.
00082 */
00083

Generated by Doxygen

23.49 math.h 465

00084
00085 /** \ingroup avr_math */
00086 /**@{*/
00087
00088 /** The constant Euler’s number \a e. */
00089 #define M_E 2.7182818284590452354
00090
00091 /** The constant logarithm of Euler’s number \a e to base 2. */
00092 #define M_LOG2E 1.4426950408889634074
00093
00094 /** The constant logarithm of Euler’s number \a e to base 10. */
00095 #define M_LOG10E 0.43429448190325182765
00096
00097 /** The constant natural logarithm of 2. */
00098 #define M_LN2 0.69314718055994530942
00099
00100 /** The constant natural logarithm of 10. */
00101 #define M_LN10 2.30258509299404568402
00102
00103 /** The constant \a pi. */
00104 #define M_PI 3.14159265358979323846
00105
00106 /** The constant \a pi/2. */
00107 #define M_PI_2 1.57079632679489661923
00108
00109 /** The constant \a pi/4. */
00110 #define M_PI_4 0.78539816339744830962
00111
00112 /** The constant \a 1/pi. */
00113 #define M_1_PI 0.31830988618379067154
00114
00115 /** The constant \a 2/pi. */
00116 #define M_2_PI 0.63661977236758134308
00117
00118 /** The constant \a 2/sqrt(pi). */
00119 #define M_2_SQRTPI 1.12837916709551257390
00120
00121 /** The square root of 2. */
00122 #define M_SQRT2 1.41421356237309504880
00123
00124 /** The constant \a 1/sqrt(2). */
00125 #define M_SQRT1_2 0.70710678118654752440
00126
00127 /** The \c double representation of a constant quiet NaN. */
00128 #define NAN __builtin_nan("")
00129
00130 /** The \c float representation of a constant quiet NaN.
00131 \p __tag is a string constant like \c "" or \c "123". */
00132 #define nanf(__tagp) __builtin_nanf(__tag)
00133
00134 /** The \c double representation of a constant quiet NaN.
00135 \p __tag is a string constant like \c "" or \c "123". */
00136 #define nan(__tag) __builtin_nan(__tag)
00137
00138 /** The \c long \c double representation of a constant quiet NaN.
00139 \p __tag is a string constant like \c "" or \c "123". */
00140 #define nanl(__tag) __builtin_nanl(__tag)
00141
00142 /** \c double infinity constant. */
00143 #define INFINITY __builtin_inf()
00144
00145 /** \c float infinity constant. */
00146 #define HUGE_VALF __builtin_huge_valf()
00147
00148 /** \c double infinity constant. */
00149 #define HUGE_VAL __builtin_huge_val()
00150
00151 /** \c long \c double infinity constant. */
00152 #define HUGE_VALL __builtin_huge_vall()
00153
00154 #ifndef __DOXYGEN__
00155 #ifndef __ATTR_CONST__
00156 # define __ATTR_CONST__ __attribute__((__const__))
00157 #endif
00158
00159 #ifndef __ATTR_ALWAYS_INLINE__
00160 #define __ATTR_ALWAYS_INLINE__ __inline__ __attribute__((__always_inline__))
00161 #endif
00162 #endif /* ! DOXYGEN */
00163
00164 /** The cosf() function returns the cosine of \a x, measured in radians. */
00165 __ATTR_CONST__ extern float cosf (float x);
00166 /** The cos() function returns the cosine of \a x, measured in radians. */
00167 __ATTR_CONST__ extern double cos (double x);
00168 /** The cosl() function returns the cosine of \a x, measured in radians. */
00169 __ATTR_CONST__ extern long double cosl (long double x);
00170

Generated by Doxygen

466

00171 /** The sinf() function returns the sine of \a x, measured in radians. */
00172 __ATTR_CONST__ extern float sinf (float x);
00173 /** The sin() function returns the sine of \a x, measured in radians. */
00174 __ATTR_CONST__ extern double sin (double x);
00175 /** The sinl() function returns the sine of \a x, measured in radians. */
00176 __ATTR_CONST__ extern long double sinl (long double x);
00177
00178 /** The tanf() function returns the tangent of \a x, measured in radians. */
00179 __ATTR_CONST__ extern float tanf (float x);
00180 /** The tan() function returns the tangent of \a x, measured in radians. */
00181 __ATTR_CONST__ extern double tan (double x);
00182 /** The tanl() function returns the tangent of \a x, measured in radians. */
00183 __ATTR_CONST__ extern long double tanl (long double x);
00184
00185 /** The fabsf() function computes the absolute value of a floating-point number \a x. */
00186 static __ATTR_ALWAYS_INLINE__ float fabsf (float __x)
00187 {
00188 return __builtin_fabsf (__x);
00189 }
00190
00191 /** The fabs() function computes the absolute value of a floating-point number \a x. */
00192 static __ATTR_ALWAYS_INLINE__ double fabs (double __x)
00193 {
00194 return __builtin_fabs (__x);
00195 }
00196
00197 /** The fabsl() function computes the absolute value of a floating-point number \a x. */
00198 static __ATTR_ALWAYS_INLINE__ long double fabsl (long double __x)
00199 {
00200 return __builtin_fabsl (__x);
00201 }
00202
00203 /** The function fmodf() returns the floating-point remainder of x / y. */
00204 __ATTR_CONST__ extern float fmodf (float x, float y);
00205 /** The function fmod() returns the floating-point remainder of x / y. */
00206 __ATTR_CONST__ extern double fmod (double x, double y);
00207 /** The function fmodl() returns the floating-point remainder of x / y. */
00208 __ATTR_CONST__ extern long double fmodl (long double x, long double y);
00209
00210 /** The modff() function breaks the argument \a x into integral and
00211 fractional parts, each of which has the same sign as the argument.
00212 It stores the integral part as a \c float in the object pointed to by
00213 \a iptr.
00214
00215 The modff() function returns the signed fractional part of \a x.
00216
00217 \note This implementation skips writing by zero pointer. However,
00218 the GCC 4.3 can replace this function with inline code that does not
00219 permit to use NULL address for the avoiding of storing. */
00220 extern float modff (float x, float *iptr);
00221 /** The modf() function breaks the argument \a x into integral and
00222 fractional parts, each of which has the same sign as the argument.
00223 It stores the integral part as a \c double in the object pointed to by
00224 \a iptr.
00225
00226 The modf() function returns the signed fractional part of \a x. */
00227 extern double modf (double x, double *iptr);
00228 /** The modfl() function breaks the argument \a x into integral and
00229 fractional parts, each of which has the same sign as the argument.
00230 It stores the integral part as a \c long \c double in the object pointed to by
00231 \a iptr.
00232
00233 The modf() function returns the signed fractional part of \a x. */
00234 extern long double modfl (long double x, long double *iptr);
00235
00236 /** The sqrtf() function returns the non-negative square root of \a x. */
00237 __ATTR_CONST__ extern float sqrtf (float x);
00238 /** The sqrt() function returns the non-negative square root of \a x. */
00239 __ATTR_CONST__ extern double sqrt (double x);
00240 /** The sqrtl() function returns the non-negative square root of \a x. */
00241 __ATTR_CONST__ extern long double sqrtl (long double x);
00242
00243 /** The cbrtf() function returns the cube root of \a x. */
00244 __ATTR_CONST__ extern float cbrtf (float x);
00245 /** The cbrt() function returns the cube root of \a x. */
00246 __ATTR_CONST__ extern double cbrt (double x);
00247 /** The cbrtl() function returns the cube root of \a x. */
00248 __ATTR_CONST__ extern long double cbrtl (long double x);
00249
00250 /** The hypotf() function returns sqrtf(x*x + y*y). This
00251 is the length of the hypotenuse of a right triangle with sides of
00252 length \a x and \a y, or the distance of the point (\a x, \a
00253 y) from the origin. Using this function instead of the direct
00254 formula is wise, since the error is much smaller. No underflow with
00255 small \a x and \a y. No overflow if result is in range. */
00256 __ATTR_CONST__ extern float hypotf (float x, float y);
00257 /** The hypot() function returns sqrt(x*x + y*y). This

Generated by Doxygen

23.49 math.h 467

00258 is the length of the hypotenuse of a right triangle with sides of
00259 length \a x and \a y, or the distance of the point (\a x, \a
00260 y) from the origin. Using this function instead of the direct
00261 formula is wise, since the error is much smaller. No underflow with
00262 small \a x and \a y. No overflow if result is in range. */
00263 __ATTR_CONST__ extern double hypot (double x, double y);
00264 /** The hypotl() function returns sqrtl(x*x + y*y). This
00265 is the length of the hypotenuse of a right triangle with sides of
00266 length \a x and \a y, or the distance of the point (\a x, \a
00267 y) from the origin. Using this function instead of the direct
00268 formula is wise, since the error is much smaller. No underflow with
00269 small \a x and \a y. No overflow if result is in range. */
00270 __ATTR_CONST__ extern long double hypotl (long double x, long double y);
00271
00272 /** The floorf() function returns the largest integral value less than or
00273 equal to \a x, expressed as a floating-point number. */
00274 __ATTR_CONST__ extern float floorf (float x);
00275 /** The floor() function returns the largest integral value less than or
00276 equal to \a x, expressed as a floating-point number. */
00277 __ATTR_CONST__ extern double floor (double x);
00278 /** The floorl() function returns the largest integral value less than or
00279 equal to \a x, expressed as a floating-point number. */
00280 __ATTR_CONST__ extern long double floorl (long double x);
00281
00282 /** The ceilf() function returns the smallest integral value greater than
00283 or equal to \a x, expressed as a floating-point number. */
00284 __ATTR_CONST__ extern float ceilf (float x);
00285 /** The ceil() function returns the smallest integral value greater than
00286 or equal to \a x, expressed as a floating-point number. */
00287 __ATTR_CONST__ extern double ceil (double x);
00288 /** The ceill() function returns the smallest integral value greater than
00289 or equal to \a x, expressed as a floating-point number. */
00290 __ATTR_CONST__ extern long double ceill (long double x);
00291
00292 /** The frexpf() function breaks a floating-point number into a normalized
00293 fraction and an integral power of 2. It stores the integer in the \c
00294 int object pointed to by \a pexp.
00295
00296 If \a x is a normal float point number, the frexpf() function
00297 returns the value \c v, such that \c v has a magnitude in the
00298 interval [1/2, 1) or zero, and \a x equals \c v times 2 raised to
00299 the power \a pexp. If \a x is zero, both parts of the result are
00300 zero. If \a x is not a finite number, the frexpf() returns \a x as
00301 is and stores 0 by \a pexp.
00302
00303 \note This implementation permits a zero pointer as a directive to
00304 skip a storing the exponent.
00305 */
00306 extern float frexpf (float x, int *pexp);
00307 /** The frexp() function breaks a floating-point number into a normalized
00308 fraction and an integral power of 2. It stores the integer in the \c
00309 int object pointed to by \a pexp.
00310
00311 If \a x is a normal float point number, the frexp() function
00312 returns the value \c v, such that \c v has a magnitude in the
00313 interval [1/2, 1) or zero, and \a x equals \c v times 2 raised to
00314 the power \a pexp. If \a x is zero, both parts of the result are
00315 zero. If \a x is not a finite number, the frexp() returns \a x as
00316 is and stores 0 by \a pexp. */
00317 extern double frexp (double x, int *pexp);
00318 /** The frexpl() function breaks a floating-point number into a normalized
00319 fraction and an integral power of 2. It stores the integer in the \c
00320 int object pointed to by \a pexp.
00321
00322 If \a x is a normal float point number, the frexpl() function
00323 returns the value \c v, such that \c v has a magnitude in the
00324 interval [1/2, 1) or zero, and \a x equals \c v times 2 raised to
00325 the power \a pexp. If \a x is zero, both parts of the result are
00326 zero. If \a x is not a finite number, the frexpl() returns \a x as
00327 is and stores 0 by \a pexp. */
00328 extern long double frexpl (long double x, int *pexp);
00329
00330 /** The ldexpf() function multiplies a floating-point number by an integral
00331 power of 2. It returns the value of \a x times 2 raised to the power
00332 \a iexp. */
00333 __ATTR_CONST__ extern float ldexpf (float x, int iexp);
00334 /** The ldexp() function multiplies a floating-point number by an integral
00335 power of 2. It returns the value of \a x times 2 raised to the power
00336 \a iexp. */
00337 __ATTR_CONST__ extern double ldexp (double x, int iexp);
00338 /** The ldexpl() function multiplies a floating-point number by an integral
00339 power of 2. It returns the value of \a x times 2 raised to the power
00340 \a iexp. */
00341 __ATTR_CONST__ extern long double ldexpl (long double x, int iexp);
00342
00343 /** The expf() function returns the exponential value of \a x. */
00344 __ATTR_CONST__ extern float expf (float x);

Generated by Doxygen

468

00345 /** The exp() function returns the exponential value of \a x. */
00346 __ATTR_CONST__ extern double exp (double x);
00347 /** The expl() function returns the exponential value of \a x. */
00348 __ATTR_CONST__ extern long double expl (long double x);
00349
00350 /** The coshf() function returns the hyperbolic cosine of \a x. */
00351 __ATTR_CONST__ extern float coshf (float x);
00352 /** The cosh() function returns the hyperbolic cosine of \a x. */
00353 __ATTR_CONST__ extern double cosh (double x);
00354 /** The coshl() function returns the hyperbolic cosine of \a x. */
00355 __ATTR_CONST__ extern long double coshl (long double x);
00356
00357 /** The sinhf() function returns the hyperbolic sine of \a x. */
00358 __ATTR_CONST__ extern float sinhf (float x);
00359 /** The sinh() function returns the hyperbolic sine of \a x. */
00360 __ATTR_CONST__ extern double sinh (double x);
00361 /** The sinhl() function returns the hyperbolic sine of \a x. */
00362 __ATTR_CONST__ extern long double sinhl (long double x);
00363
00364 /** The tanhf() function returns the hyperbolic tangent of \a x. */
00365 __ATTR_CONST__ extern float tanhf (float x);
00366 /** The tanh() function returns the hyperbolic tangent of \a x. */
00367 __ATTR_CONST__ extern double tanh (double x);
00368 /** The tanhl() function returns the hyperbolic tangent of \a x. */
00369 __ATTR_CONST__ extern long double tanhl (long double x);
00370
00371 /** The acosf() function computes the principal value of the arc cosine of
00372 \a x. The returned value is in the range [0, pi] radians. A domain
00373 error occurs for arguments not in the range [−1, +1]. */
00374 __ATTR_CONST__ extern float acosf (float x);
00375 /** The acos() function computes the principal value of the arc cosine of
00376 \a x. The returned value is in the range [0, pi] radians or NaN. */
00377 __ATTR_CONST__ extern double acos (double x);
00378 /** The acosl() function computes the principal value of the arc cosine of
00379 \a x. The returned value is in the range [0, pi] radians or NaN. */
00380 __ATTR_CONST__ extern long double acosl (long double x);
00381
00382 /** The asinf() function computes the principal value of the arc sine of
00383 \a x. The returned value is in the range [−pi/2, pi/2] radians. A
00384 domain error occurs for arguments not in the range [−1, +1]. */
00385 __ATTR_CONST__ extern float asinf (float x);
00386 /** The asin() function computes the principal value of the arc sine of
00387 \a x. The returned value is in the range [−pi/2, pi/2] radians or NaN. */
00388 __ATTR_CONST__ extern double asin (double x);
00389 /** The asinl() function computes the principal value of the arc sine of
00390 \a x. The returned value is in the range [−pi/2, pi/2] radians or NaN. */
00391 __ATTR_CONST__ extern long double asinl (long double x);
00392
00393 /** The atanf() function computes the principal value of the arc tangent
00394 of \a x. The returned value is in the range [−pi/2, pi/2] radians. */
00395 __ATTR_CONST__ extern float atanf (float x);
00396 /** The atan() function computes the principal value of the arc tangent
00397 of \a x. The returned value is in the range [−pi/2, pi/2] radians. */
00398 __ATTR_CONST__ extern double atan (double x);
00399 /** The atanl() function computes the principal value of the arc tangent
00400 of \a x. The returned value is in the range [−pi/2, pi/2] radians. */
00401 __ATTR_CONST__ extern long double atanl (long double x);
00402
00403 /** The atan2f() function computes the principal value of the arc tangent
00404 of y / x, using the signs of both arguments to determine
00405 the quadrant of the return value. The returned value is in the range
00406 [−pi, +pi] radians. */
00407 __ATTR_CONST__ extern float atan2f (float y, float x);
00408 /** The atan2() function computes the principal value of the arc tangent
00409 of y / x, using the signs of both arguments to determine
00410 the quadrant of the return value. The returned value is in the range
00411 [−pi, +pi] radians. */
00412 __ATTR_CONST__ extern double atan2 (double y, double x);
00413 /** The atan2l() function computes the principal value of the arc tangent
00414 of y / x, using the signs of both arguments to determine
00415 the quadrant of the return value. The returned value is in the range
00416 [−pi, +pi] radians. */
00417 __ATTR_CONST__ extern long double atan2l (long double y, long double x);
00418
00419 /** The logf() function returns the natural logarithm of argument \a x. */
00420 __ATTR_CONST__ extern float logf (float x);
00421 /** The log() function returns the natural logarithm of argument \a x. */
00422 __ATTR_CONST__ extern double log (double x);
00423 /** The logl() function returns the natural logarithm of argument \a x. */
00424 __ATTR_CONST__ extern long double logl (long double x);
00425
00426 /** The log10f() function returns the logarithm of argument \a x to base 10. */
00427 __ATTR_CONST__ extern float log10f (float x);
00428 /** The log10() function returns the logarithm of argument \a x to base 10. */
00429 __ATTR_CONST__ extern double log10 (double x);
00430 /** The log10l() function returns the logarithm of argument \a x to base 10. */
00431 __ATTR_CONST__ extern long double log10l (long double x);

Generated by Doxygen

23.49 math.h 469

00432
00433 /** The function powf() returns the value of \a x to the exponent \a y.
00434 \n Notice that for integer exponents, there is the more efficient
00435 <code>float __builtin_powif(float x, int y)</code>. */
00436 __ATTR_CONST__ extern float powf (float x, float y);
00437 /** The function pow() returns the value of \a x to the exponent \a y.
00438 \n Notice that for integer exponents, there is the more efficient
00439 <code>double __builtin_powi(double x, int y)</code>. */
00440 __ATTR_CONST__ extern double pow (double x, double y);
00441 /** The function powl() returns the value of \a x to the exponent \a y.
00442 \n Notice that for integer exponents, there is the more efficient
00443 <code>long double __builtin_powil(long double x, int y)</code>. */
00444 __ATTR_CONST__ extern long double powl (long double x, long double y);
00445
00446 /** The function isnanf() returns 1 if the argument \a x represents a
00447 "not-a-number" (NaN) object, otherwise 0. */
00448 __ATTR_CONST__ extern int isnanf (float x);
00449 /** The function isnan() returns 1 if the argument \a x represents a
00450 "not-a-number" (NaN) object, otherwise 0. */
00451 __ATTR_CONST__ extern int isnan (double x);
00452 /** The function isnanl() returns 1 if the argument \a x represents a
00453 "not-a-number" (NaN) object, otherwise 0. */
00454 __ATTR_CONST__ extern int isnanl (long double x);
00455
00456 /** The function isinff() returns 1 if the argument \a x is positive
00457 infinity, −1 if \a x is negative infinity, and 0 otherwise. */
00458 __ATTR_CONST__ extern int isinff (float x);
00459 /** The function isinf() returns 1 if the argument \a x is positive
00460 infinity, −1 if \a x is negative infinity, and 0 otherwise. */
00461 __ATTR_CONST__ extern int isinf (double x);
00462 /** The function isinfl() returns 1 if the argument \a x is positive
00463 infinity, −1 if \a x is negative infinity, and 0 otherwise. */
00464 __ATTR_CONST__ extern int isinfl (long double x);
00465
00466 /** The isfinitef() function returns a nonzero value if \a __x is finite:
00467 not plus or minus infinity, and not NaN. */
00468 __ATTR_CONST__ static __ATTR_ALWAYS_INLINE__ int isfinitef (float __x)
00469 {
00470 unsigned char __exp;
00471 __asm__ (
00472 "mov %0, %C1" "\n\t"
00473 "lsl %0" "\n\t"
00474 "mov %0, %D1" "\n\t"
00475 "rol %0"
00476 : "=&r" (__exp)
00477 : "r" (__x));
00478 return __exp != 0xff;
00479 }
00480
00481 /** The isfinite() function returns a nonzero value if \a __x is finite:
00482 not plus or minus infinity, and not NaN. */
00483 #ifdef __DOXYGEN__
00484 static __ATTR_ALWAYS_INLINE__ int isfinite (double __x);
00485 #elif __SIZEOF_DOUBLE__ == __SIZEOF_FLOAT__
00486 static __ATTR_ALWAYS_INLINE__ int isfinite (double __x)
00487 {
00488 return isfinitef (__x);
00489 }
00490 #else
00491 int isfinite (double __x);
00492 #endif /* double = float */
00493
00494 /** The isfinite() function returns a nonzero value if \a __x is finite:
00495 not plus or minus infinity, and not NaN. */
00496 #ifdef __DOXYGEN__
00497 static __ATTR_ALWAYS_INLINE__ int isfinitel (long double __x);
00498 #elif __SIZEOF_LONG_DOUBLE__ == __SIZEOF_FLOAT__
00499 static __ATTR_ALWAYS_INLINE__ int isfinitel (long double __x)
00500 {
00501 return isfinitef (__x);
00502 }
00503 #else
00504 int isfinitel (long double __x);
00505 #endif /* long double = float */
00506
00507 /** The copysignf() function returns \a __x but with the sign of \a __y.
00508 They work even if \a __x or \a __y are NaN or zero. */
00509 __ATTR_CONST__ static __ATTR_ALWAYS_INLINE__ float copysignf (float __x, float __y)
00510 {
00511 __asm__ (
00512 "bst %D2, 7" "\n\t"
00513 "bld %D0, 7"
00514 : "=r" (__x)
00515 : "0" (__x), "r" (__y));
00516 return __x;
00517 }
00518

Generated by Doxygen

470

00519 /** The copysign() function returns \a __x but with the sign of \a __y.
00520 They work even if \a __x or \a __y are NaN or zero. */
00521 __ATTR_CONST__ static __ATTR_ALWAYS_INLINE__ double copysign (double __x, double __y)
00522 {
00523 __asm__ (
00524 "bst %r1+%2-1, 7" "\n\t"
00525 "bld %r0+%2-1, 7"
00526 : "+r" (__x)
00527 : "r" (__y), "n" (__SIZEOF_DOUBLE__));
00528 return __x;
00529 }
00530
00531 /** The copysignl() function returns \a __x but with the sign of \a __y.
00532 They work even if \a __x or \a __y are NaN or zero. */
00533 __ATTR_CONST__ static __ATTR_ALWAYS_INLINE__ long double copysignl (long double __x, long double __y)
00534 {
00535 __asm__ (
00536 "bst %r1+%2-1, 7" "\n\t"
00537 "bld %r0+%2-1, 7"
00538 : "+r" (__x)
00539 : "r" (__y), "n" (__SIZEOF_LONG_DOUBLE__));
00540 return __x;
00541 }
00542
00543 /** The signbitf() function returns a nonzero value if the value of \a x
00544 has its sign bit set. This is not the same as ‘\a x < 0.0’,
00545 because IEEE 754 floating point allows zero to be signed. The
00546 comparison ’−0.0 < 0.0’ is false, but ‘signbit (−0.0)’ will return a
00547 nonzero value. */
00548 __ATTR_CONST__ extern int signbitf (float x);
00549 /** The signbit() function returns a nonzero value if the value of \a x
00550 has its sign bit set. This is not the same as ‘\a x < 0.0’,
00551 because IEEE 754 floating point allows zero to be signed. The
00552 comparison ’−0.0 < 0.0’ is false, but ‘signbit (−0.0)’ will return a
00553 nonzero value. */
00554 __ATTR_CONST__ extern int signbit (double x);
00555 /** The signbitl() function returns a nonzero value if the value of \a x
00556 has its sign bit set. This is not the same as ‘\a x < 0.0’,
00557 because IEEE 754 floating point allows zero to be signed. The
00558 comparison ’−0.0 < 0.0’ is false, but ‘signbit (−0.0)’ will return a
00559 nonzero value. */
00560 __ATTR_CONST__ extern int signbitl (long double x);
00561
00562 /** The fdimf() function returns max(x − y, 0). If \a x or
00563 \a y or both are NaN, NaN is returned. */
00564 __ATTR_CONST__ extern float fdimf (float x, float y);
00565 /** The fdim() function returns max(x − y, 0). If \a x or
00566 \a y or both are NaN, NaN is returned. */
00567 __ATTR_CONST__ extern double fdim (double x, double y);
00568 /** The fdiml() function returns max(x − y, 0). If \a x or
00569 \a y or both are NaN, NaN is returned. */
00570 __ATTR_CONST__ extern long double fdiml (long double x, long double y);
00571
00572 /** The fmaf() function performs floating-point multiply-add. This is the
00573 operation (x * y) + z, but the intermediate result is
00574 not rounded to the destination type. This can sometimes improve the
00575 precision of a calculation. */
00576 __ATTR_CONST__ extern float fmaf (float x, float y, float z);
00577 /** The fma() function performs floating-point multiply-add. This is the
00578 operation (x * y) + z, but the intermediate result is
00579 not rounded to the destination type. This can sometimes improve the
00580 precision of a calculation. */
00581 __ATTR_CONST__ extern double fma (double x, double y, double z);
00582 /** The fmal() function performs floating-point multiply-add. This is the
00583 operation (x * y) + z, but the intermediate result is
00584 not rounded to the destination type. This can sometimes improve the
00585 precision of a calculation. */
00586 __ATTR_CONST__ extern long double fmal (long double x, long double y, long double z);
00587
00588 /** The fmaxf() function returns the greater of the two values \a x and
00589 \a y. If an argument is NaN, the other argument is returned. If
00590 both arguments are NaN, NaN is returned. */
00591 __ATTR_CONST__ extern float fmaxf (float x, float y);
00592 /** The fmax() function returns the greater of the two values \a x and
00593 \a y. If an argument is NaN, the other argument is returned. If
00594 both arguments are NaN, NaN is returned. */
00595 __ATTR_CONST__ extern double fmax (double x, double y);
00596 /** The fmaxl() function returns the greater of the two values \a x and
00597 \a y. If an argument is NaN, the other argument is returned. If
00598 both arguments are NaN, NaN is returned. */
00599 __ATTR_CONST__ extern long double fmaxl (long double x, long double y);
00600
00601 /** The fminf() function returns the lesser of the two values \a x and
00602 \a y. If an argument is NaN, the other argument is returned. If
00603 both arguments are NaN, NaN is returned. */
00604 __ATTR_CONST__ extern float fminf (float x, float y);
00605 /** The fmin() function returns the lesser of the two values \a x and

Generated by Doxygen

23.49 math.h 471

00606 \a y. If an argument is NaN, the other argument is returned. If
00607 both arguments are NaN, NaN is returned. */
00608 __ATTR_CONST__ extern double fmin (double x, double y);
00609 /** The fminl() function returns the lesser of the two values \a x and
00610 \a y. If an argument is NaN, the other argument is returned. If
00611 both arguments are NaN, NaN is returned. */
00612 __ATTR_CONST__ extern long double fminl (long double x, long double y);
00613
00614 /** The truncf() function rounds \a x to the nearest integer not larger
00615 in absolute value. */
00616 __ATTR_CONST__ extern float truncf (float x);
00617 /** The trunc() function rounds \a x to the nearest integer not larger
00618 in absolute value. */
00619 __ATTR_CONST__ extern double trunc (double x);
00620 /** The truncl() function rounds \a x to the nearest integer not larger
00621 in absolute value. */
00622 __ATTR_CONST__ extern long double truncl (long double x);
00623
00624 /** The roundf() function rounds \a x to the nearest integer, but rounds
00625 halfway cases away from zero (instead of to the nearest even integer).
00626 Overflow is impossible.
00627
00628 \return The rounded value. If \a x is an integral or infinite, \a
00629 x itself is returned. If \a x is \c NaN, then \c NaN is returned. */
00630 __ATTR_CONST__ extern float roundf (float x);
00631 /** The round() function rounds \a x to the nearest integer, but rounds
00632 halfway cases away from zero (instead of to the nearest even integer).
00633 Overflow is impossible.
00634
00635 \return The rounded value. If \a x is an integral or infinite, \a
00636 x itself is returned. If \a x is \c NaN, then \c NaN is returned. */
00637 __ATTR_CONST__ extern double round (double x);
00638 /** The roundl() function rounds \a x to the nearest integer, but rounds
00639 halfway cases away from zero (instead of to the nearest even integer).
00640 Overflow is impossible.
00641
00642 \return The rounded value. If \a x is an integral or infinite, \a
00643 x itself is returned. If \a x is \c NaN, then \c NaN is returned. */
00644 __ATTR_CONST__ extern long double roundl (long double x);
00645
00646 /** The lroundf() function rounds \a x to the nearest integer, but rounds
00647 halfway cases away from zero (instead of to the nearest even integer).
00648 This function is similar to round() function, but it differs in type of
00649 return value and in that an overflow is possible.
00650
00651 \return The rounded long integer value. If \a x is not a finite number
00652 or an overflow was, this realization returns the \c LONG_MIN value
00653 (0x80000000). */
00654 __ATTR_CONST__ extern long lroundf (float x);
00655 /** The lround() function rounds \a x to the nearest integer, but rounds
00656 halfway cases away from zero (instead of to the nearest even integer).
00657 This function is similar to round() function, but it differs in type of
00658 return value and in that an overflow is possible.
00659
00660 \return The rounded long integer value. If \a x is not a finite number
00661 or an overflow was, this realization returns the \c LONG_MIN value
00662 (0x80000000). */
00663 __ATTR_CONST__ extern long lround (double x);
00664 /** The lroundl() function rounds \a x to the nearest integer, but rounds
00665 halfway cases away from zero (instead of to the nearest even integer).
00666 This function is similar to round() function, but it differs in type of
00667 return value and in that an overflow is possible.
00668
00669 \return The rounded long integer value. If \a x is not a finite number
00670 or an overflow was, this realization returns the \c LONG_MIN value
00671 (0x80000000). */
00672 __ATTR_CONST__ extern long lroundl (long double x);
00673
00674 /** The lrintf() function rounds \a x to the nearest integer, rounding the
00675 halfway cases to the even integer direction. (That is both 1.5 and 2.5
00676 values are rounded to 2). This function is similar to rintf() function,
00677 but it differs in type of return value and in that an overflow is
00678 possible.
00679
00680 \return The rounded long integer value. If \a x is not a finite
00681 number or an overflow was, this realization returns the \c LONG_MIN
00682 value (0x80000000). */
00683 __ATTR_CONST__ extern long lrintf (float x);
00684 /** The lrint() function rounds \a x to the nearest integer, rounding the
00685 halfway cases to the even integer direction. (That is both 1.5 and 2.5
00686 values are rounded to 2). This function is similar to rint() function,
00687 but it differs in type of return value and in that an overflow is
00688 possible.
00689
00690 \return The rounded long integer value. If \a x is not a finite
00691 number or an overflow was, this realization returns the \c LONG_MIN
00692 value (0x80000000). */

Generated by Doxygen

472

00693 __ATTR_CONST__ extern long lrint (double x);
00694 /** The lrintl() function rounds \a x to the nearest integer, rounding the
00695 halfway cases to the even integer direction. (That is both 1.5 and 2.5
00696 values are rounded to 2). This function is similar to rintl() function,
00697 but it differs in type of return value and in that an overflow is
00698 possible.
00699
00700 \return The rounded long integer value. If \a x is not a finite
00701 number or an overflow was, this realization returns the \c LONG_MIN
00702 value (0x80000000). */
00703 __ATTR_CONST__ extern long lrintl (long double x);
00704
00705 /**@}*/
00706
00707 /**@{*/
00708 /**
00709 \name Non-Standard Math Functions
00710 */
00711
00712 /** \ingroup avr_math
00713 The function squaref() returns x * x.
00714 \note This function does not belong to the C standard definition. */
00715 __ATTR_CONST__ extern float squaref (float x);
00716
00717 /** The function square() returns x * x.
00718 \note This function does not belong to the C standard definition. */
00719
00720 #if defined(__DOXYGEN__) || __SIZEOF_DOUBLE__ == __SIZEOF_FLOAT__
00721 __ATTR_CONST__ extern double square (double x);
00722 #elif defined(__WITH_LIBF7_MATH__)
00723 __ATTR_CONST__ extern double square (double x) __asm("__f7_square");
00724 #endif
00725
00726 /** The function squarel() returns x * x.
00727 \note This function does not belong to the C standard definition. */
00728 #if defined(__DOXYGEN__) || __SIZEOF_LONG_DOUBLE__ == __SIZEOF_FLOAT__
00729 __ATTR_CONST__ extern long double squarel (long double x);
00730 #elif defined(__WITH_LIBF7_MATH__)
00731 __ATTR_CONST__ extern long double squarel (long double x) __asm("__f7_square");
00732 #endif
00733
00734 /**@}*/
00735
00736 #ifdef __cplusplus
00737 }
00738 #endif
00739
00740 #endif /* !__MATH_H */

23.50 setjmp.h File Reference

Functions

• int setjmp (jmp_buf __jmpb)
• void longjmp (jmp_buf __jmpb, int __ret)

23.51 setjmp.h

Go to the documentation of this file.
00001 /* Copyright (c) 2002,2007 Marek Michalkiewicz
00002 All rights reserved.
00003
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions are met:
00006
00007 * Redistributions of source code must retain the above copyright
00008 notice, this list of conditions and the following disclaimer.
00009
00010 * Redistributions in binary form must reproduce the above copyright
00011 notice, this list of conditions and the following disclaimer in
00012 the documentation and/or other materials provided with the
00013 distribution.
00014
00015 * Neither the name of the copyright holders nor the names of
00016 contributors may be used to endorse or promote products derived
00017 from this software without specific prior written permission.

Generated by Doxygen

23.51 setjmp.h 473

00018
00019 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00020 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00021 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00022 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00023 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00024 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00025 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00026 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00027 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00028 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00029 POSSIBILITY OF SUCH DAMAGE. */
00030
00031 /* Id */
00032
00033 #ifndef __SETJMP_H_
00034 #define __SETJMP_H_ 1
00035
00036 #ifdef __cplusplus
00037 extern "C" {
00038 #endif
00039
00040 /*
00041 jmp_buf:
00042 offset size description
00043 0 16/2 call-saved registers (r2-r17)
00044 (AVR_TINY arch has only 2 call saved registers (r18,r19))
00045 16/2 2 frame pointer (r29:r28)
00046 18/4 2 stack pointer (SPH:SPL)
00047 20/6 1 status register (SREG)
00048 21/7 2/3 return address (PC) (2 bytes used for <=128Kw flash)
00049 23/24/9 = total size (AVR_TINY arch always has 2 bytes PC)
00050 */
00051
00052 #if !defined(__DOXYGEN__)
00053
00054 #if defined(__AVR_TINY__)
00055 # define _JBLEN 9
00056 #elif defined(__AVR_3_BYTE_PC__) && __AVR_3_BYTE_PC__
00057 # define _JBLEN 24
00058 #else
00059 # define _JBLEN 23
00060 #endif
00061 typedef struct _jmp_buf { unsigned char _jb[_JBLEN]; } jmp_buf[1];
00062
00063 #endif /* not __DOXYGEN__ */
00064
00065 /** \file */
00066 /** \defgroup setjmp <setjmp.h>: Non-local goto
00067
00068 While the C language has the dreaded \c goto statement, it can only be
00069 used to jump to a label in the same (local) function. In order to jump
00070 directly to another (non-local) function, the C library provides the
00071 #setjmp and #longjmp functions. setjmp and longjmp are useful for
00072 dealing with errors and interrupts encountered in a low-level subroutine
00073 of a program.
00074
00075 \note #setjmp and #longjmp make programs hard to understand and maintain.
00076 If possible, an alternative should be used.
00077
00078 \note longjmp can destroy changes made to global register
00079 variables (see \ref faq_regbind).
00080
00081 For a very detailed discussion of setjmp/longjmp, see Chapter 7 of
00082 Advanced Programming in the UNIX Environment, by W. Richard
00083 Stevens.
00084
00085 Example:
00086
00087 \code
00088 #include <setjmp.h>
00089
00090 jmp_buf env;
00091
00092 int main (void)
00093 {
00094 if (setjmp (env))
00095 {
00096 // Handle error ...
00097 }
00098
00099 while (1)
00100 {
00101 // Main processing loop which calls foo() somewhere ...
00102 }
00103 }
00104

Generated by Doxygen

474

00105 void foo (void)
00106 {
00107 // blah, blah, blah ...
00108
00109 if (err)
00110 {
00111 longjmp (env, 1);
00112 }
00113 }
00114 \endcode */
00115
00116 #ifndef __DOXYGEN__
00117 #ifndef __ATTR_NORETURN__
00118 #define __ATTR_NORETURN__ __attribute__((__noreturn__))
00119 #endif
00120 #endif /* ! DOXYGEN */
00121
00122 /** \ingroup setjmp
00123 \brief Save stack context for non-local goto.
00124
00125 \code #include <setjmp.h>\endcode
00126
00127 setjmp() saves the stack context/environment in \e __jmpb for later use by
00128 longjmp(). The stack context will be invalidated if the function which
00129 called setjmp() returns.
00130
00131 \param __jmpb Variable of type \c jmp_buf which holds the stack
00132 information such that the environment can be restored.
00133
00134 \returns setjmp() returns 0 if returning directly, and
00135 non-zero when returning from longjmp() using the saved context. */
00136
00137 extern int setjmp(jmp_buf __jmpb);
00138
00139 /** \ingroup setjmp
00140 \brief Non-local jump to a saved stack context.
00141
00142 \code #include <setjmp.h>\endcode
00143
00144 longjmp() restores the environment saved by the last call of setjmp() with
00145 the corresponding \e __jmpb argument. After longjmp() is completed,
00146 program execution continues as if the corresponding call of setjmp() had
00147 just returned the value \e __ret.
00148
00149 \note longjmp() cannot cause 0 to be returned. If longjmp() is invoked
00150 with a second argument of 0, 1 will be returned instead.
00151
00152 \param __jmpb Information saved by a previous call to setjmp().
00153 \param __ret Value to return to the caller of setjmp().
00154
00155 \returns This function never returns. */
00156
00157 extern void longjmp(jmp_buf __jmpb, int __ret) __ATTR_NORETURN__;
00158
00159 #ifdef __cplusplus
00160 }
00161 #endif
00162
00163 #endif /* !__SETJMP_H_ */

23.52 stdint.h File Reference

Macros

Limits of specified-width integer types

C++ implementations should define these macros only when __STDC_LIMIT_MACROS is defined before
<stdint.h> is included

• #define INT8_MAX 0x7f
• #define INT8_MIN (-INT8_MAX - 1)
• #define UINT8_MAX (INT8_MAX ∗ 2 + 1)
• #define INT16_MAX 0x7fff
• #define INT16_MIN (-INT16_MAX - 1)
• #define UINT16_MAX (__CONCAT(INT16_MAX, U) ∗ 2U + 1U)
• #define INT32_MAX 0x7fffffffL
• #define INT32_MIN (-INT32_MAX - 1L)
• #define UINT32_MAX (__CONCAT(INT32_MAX, U) ∗ 2UL + 1UL)

Generated by Doxygen

23.52 stdint.h File Reference 475

• #define INT64_MAX 0x7fffffffffffffffLL
• #define INT64_MIN (-INT64_MAX - 1LL)
• #define UINT64_MAX (__CONCAT(INT64_MAX, U) ∗ 2ULL + 1ULL)

Limits of minimum-width integer types

• #define INT_LEAST8_MAX INT8_MAX
• #define INT_LEAST8_MIN INT8_MIN
• #define UINT_LEAST8_MAX UINT8_MAX
• #define INT_LEAST16_MAX INT16_MAX
• #define INT_LEAST16_MIN INT16_MIN
• #define UINT_LEAST16_MAX UINT16_MAX
• #define INT_LEAST32_MAX INT32_MAX
• #define INT_LEAST32_MIN INT32_MIN
• #define UINT_LEAST32_MAX UINT32_MAX
• #define INT_LEAST64_MAX INT64_MAX
• #define INT_LEAST64_MIN INT64_MIN
• #define UINT_LEAST64_MAX UINT64_MAX

Limits of fastest minimum-width integer types

• #define INT_FAST8_MAX INT8_MAX
• #define INT_FAST8_MIN INT8_MIN
• #define UINT_FAST8_MAX UINT8_MAX
• #define INT_FAST16_MAX INT16_MAX
• #define INT_FAST16_MIN INT16_MIN
• #define UINT_FAST16_MAX UINT16_MAX
• #define INT_FAST32_MAX INT32_MAX
• #define INT_FAST32_MIN INT32_MIN
• #define UINT_FAST32_MAX UINT32_MAX
• #define INT_FAST64_MAX INT64_MAX
• #define INT_FAST64_MIN INT64_MIN
• #define UINT_FAST64_MAX UINT64_MAX

Limits of integer types capable of holding object pointers

• #define INTPTR_MAX INT16_MAX
• #define INTPTR_MIN INT16_MIN
• #define UINTPTR_MAX UINT16_MAX

Limits of greatest-width integer types

• #define INTMAX_MAX INT64_MAX
• #define INTMAX_MIN INT64_MIN
• #define UINTMAX_MAX UINT64_MAX

Limits of other integer types

C++ implementations should define these macros only when __STDC_LIMIT_MACROS is defined before
<stdint.h> is included

• #define PTRDIFF_MAX INT16_MAX
• #define PTRDIFF_MIN INT16_MIN
• #define SIG_ATOMIC_MAX INT8_MAX
• #define SIG_ATOMIC_MIN INT8_MIN
• #define SIZE_MAX UINT16_MAX
• #define WCHAR_MAX __WCHAR_MAX__
• #define WCHAR_MIN __WCHAR_MIN__
• #define WINT_MAX __WINT_MAX__
• #define WINT_MIN __WINT_MIN__

Generated by Doxygen

476

Macros for integer constants

C++ implementations should define these macros only when __STDC_CONSTANT_MACROS is defined before
<stdint.h> is included.

These definitions are valid for integer constants without suffix and for macros defined as integer constant without
suffix

• #define INT8_C(value) ((int8_t) value)
• #define UINT8_C(value) ((uint8_t) __CONCAT(value, U))
• #define INT16_C(value) value
• #define UINT16_C(value) __CONCAT(value, U)
• #define INT32_C(value) __CONCAT(value, L)
• #define UINT32_C(value) __CONCAT(value, UL)
• #define INT64_C(value) __CONCAT(value, LL)
• #define UINT64_C(value) __CONCAT(value, ULL)
• #define INTMAX_C(value) __CONCAT(value, LL)
• #define UINTMAX_C(value) __CONCAT(value, ULL)

Typedefs

Exact-width integer types

Integer types having exactly the specified width

• typedef signed char int8_t
• typedef unsigned char uint8_t
• typedef signed int int16_t
• typedef unsigned int uint16_t
• typedef signed long int int32_t
• typedef unsigned long int uint32_t
• typedef signed long long int int64_t
• typedef unsigned long long int uint64_t

Integer types capable of holding object pointers

These allow you to declare variables of the same size as a pointer.

• typedef int16_t intptr_t
• typedef uint16_t uintptr_t

Minimum-width integer types

Integer types having at least the specified width

• typedef int8_t int_least8_t
• typedef uint8_t uint_least8_t
• typedef int16_t int_least16_t
• typedef uint16_t uint_least16_t
• typedef int32_t int_least32_t
• typedef uint32_t uint_least32_t
• typedef int64_t int_least64_t
• typedef uint64_t uint_least64_t

Fastest minimum-width integer types

Integer types being usually fastest having at least the specified width

• typedef int8_t int_fast8_t
• typedef uint8_t uint_fast8_t
• typedef int16_t int_fast16_t
• typedef uint16_t uint_fast16_t
• typedef int32_t int_fast32_t
• typedef uint32_t uint_fast32_t

Generated by Doxygen

23.53 stdint.h 477

• typedef int64_t int_fast64_t
• typedef uint64_t uint_fast64_t

Greatest-width integer types

Types designating integer data capable of representing any value of any integer type in the corresponding signed
or unsigned category

• typedef int64_t intmax_t
• typedef uint64_t uintmax_t

23.53 stdint.h

Go to the documentation of this file.
00001 /* Copyright (c) 2002,2004,2005 Marek Michalkiewicz
00002 Copyright (c) 2005, Carlos Lamas
00003 Copyright (c) 2005,2007 Joerg Wunsch
00004 Copyright (c) 2013 Embecosm
00005 All rights reserved.
00006
00007 Redistribution and use in source and binary forms, with or without
00008 modification, are permitted provided that the following conditions are met:
00009
00010 * Redistributions of source code must retain the above copyright
00011 notice, this list of conditions and the following disclaimer.
00012
00013 * Redistributions in binary form must reproduce the above copyright
00014 notice, this list of conditions and the following disclaimer in
00015 the documentation and/or other materials provided with the
00016 distribution.
00017
00018 * Neither the name of the copyright holders nor the names of
00019 contributors may be used to endorse or promote products derived
00020 from this software without specific prior written permission.
00021
00022 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00023 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00024 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00025 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00026 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00027 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00028 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00029 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00030 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00031 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00032 POSSIBILITY OF SUCH DAMAGE. */
00033
00034 /* Id */
00035
00036 /*
00037 * ISO/IEC 9899:1999 7.18 Integer types <stdint.h>
00038 */
00039
00040 #ifndef __STDINT_H_
00041 #define __STDINT_H_
00042
00043 /** \file */
00044 /** \defgroup avr_stdint <stdint.h>: Standard Integer Types
00045 \code #include <stdint.h> \endcode
00046
00047 Use [u]intN_t if you need exactly N bits.
00048
00049 Since these typedefs are mandated by the C99 standard, they are preferred
00050 over rolling your own typedefs. */
00051
00052 #ifndef __DOXYGEN__
00053 /*
00054 * __USING_MINT8 is defined to 1 if the -mint8 option is in effect.
00055 */
00056 #if __INT_MAX__ == 127
00057 # define __USING_MINT8 1
00058 #else
00059 # define __USING_MINT8 0
00060 #endif
00061
00062 #endif /* !__DOXYGEN__ */
00063
00064 /* Integer types */

Generated by Doxygen

478

00065
00066 #if defined(__DOXYGEN__)
00067
00068 /* doxygen gets confused by the __attribute__ stuff */
00069
00070 /** \name Exact-width integer types
00071 Integer types having exactly the specified width */
00072
00073 /**@{*/
00074
00075 /** \ingroup avr_stdint
00076 8-bit signed type. */
00077
00078 typedef signed char int8_t;
00079
00080 /** \ingroup avr_stdint
00081 8-bit unsigned type. */
00082
00083 typedef unsigned char uint8_t;
00084
00085 /** \ingroup avr_stdint
00086 16-bit signed type. */
00087
00088 typedef signed int int16_t;
00089
00090 /** \ingroup avr_stdint
00091 16-bit unsigned type. */
00092
00093 typedef unsigned int uint16_t;
00094
00095 /** \ingroup avr_stdint
00096 32-bit signed type. */
00097
00098 typedef signed long int int32_t;
00099
00100 /** \ingroup avr_stdint
00101 32-bit unsigned type. */
00102
00103 typedef unsigned long int uint32_t;
00104
00105 /** \ingroup avr_stdint
00106 64-bit signed type.
00107 \note This type is not available when the compiler
00108 option -mint8 is in effect. */
00109
00110 typedef signed long long int int64_t;
00111
00112 /** \ingroup avr_stdint
00113 64-bit unsigned type.
00114 \note This type is not available when the compiler
00115 option -mint8 is in effect. */
00116
00117 typedef unsigned long long int uint64_t;
00118
00119 /**@}*/
00120
00121 #else /* !defined(__DOXYGEN__) */
00122
00123 /* actual implementation goes here */
00124
00125 typedef signed int int8_t __attribute__((__mode__(__QI__)));
00126 typedef unsigned int uint8_t __attribute__((__mode__(__QI__)));
00127 typedef signed int int16_t __attribute__ ((__mode__ (__HI__)));
00128 typedef unsigned int uint16_t __attribute__ ((__mode__ (__HI__)));
00129 typedef signed int int32_t __attribute__ ((__mode__ (__SI__)));
00130 typedef unsigned int uint32_t __attribute__ ((__mode__ (__SI__)));
00131 #if !__USING_MINT8
00132 typedef signed int int64_t __attribute__((__mode__(__DI__)));
00133 typedef unsigned int uint64_t __attribute__((__mode__(__DI__)));
00134 #endif
00135
00136 #endif /* defined(__DOXYGEN__) */
00137
00138 /** \name Integer types capable of holding object pointers
00139 These allow you to declare variables of the same size as a pointer. */
00140
00141 /**@{*/
00142
00143 /** \ingroup avr_stdint
00144 Signed pointer compatible type. */
00145
00146 typedef int16_t intptr_t;
00147
00148 /** \ingroup avr_stdint
00149 Unsigned pointer compatible type. */
00150
00151 typedef uint16_t uintptr_t;

Generated by Doxygen

23.53 stdint.h 479

00152
00153 /**@}*/
00154
00155 /** \name Minimum-width integer types
00156 Integer types having at least the specified width */
00157
00158 /**@{*/
00159
00160 /** \ingroup avr_stdint
00161 signed int with at least 8 bits. */
00162
00163 typedef int8_t int_least8_t;
00164
00165 /** \ingroup avr_stdint
00166 unsigned int with at least 8 bits. */
00167
00168 typedef uint8_t uint_least8_t;
00169
00170 /** \ingroup avr_stdint
00171 signed int with at least 16 bits. */
00172
00173 typedef int16_t int_least16_t;
00174
00175 /** \ingroup avr_stdint
00176 unsigned int with at least 16 bits. */
00177
00178 typedef uint16_t uint_least16_t;
00179
00180 /** \ingroup avr_stdint
00181 signed int with at least 32 bits. */
00182
00183 typedef int32_t int_least32_t;
00184
00185 /** \ingroup avr_stdint
00186 unsigned int with at least 32 bits. */
00187
00188 typedef uint32_t uint_least32_t;
00189
00190 #if !__USING_MINT8 || defined(__DOXYGEN__)
00191 /** \ingroup avr_stdint
00192 signed int with at least 64 bits.
00193 \note This type is not available when the compiler
00194 option -mint8 is in effect. */
00195
00196 typedef int64_t int_least64_t;
00197
00198 /** \ingroup avr_stdint
00199 unsigned int with at least 64 bits.
00200 \note This type is not available when the compiler
00201 option -mint8 is in effect. */
00202
00203 typedef uint64_t uint_least64_t;
00204 #endif
00205
00206 /**@}*/
00207
00208
00209 /** \name Fastest minimum-width integer types
00210 Integer types being usually fastest having at least the specified width */
00211
00212 /**@{*/
00213
00214 /** \ingroup avr_stdint
00215 fastest signed int with at least 8 bits. */
00216
00217 typedef int8_t int_fast8_t;
00218
00219 /** \ingroup avr_stdint
00220 fastest unsigned int with at least 8 bits. */
00221
00222 typedef uint8_t uint_fast8_t;
00223
00224 /** \ingroup avr_stdint
00225 fastest signed int with at least 16 bits. */
00226
00227 typedef int16_t int_fast16_t;
00228
00229 /** \ingroup avr_stdint
00230 fastest unsigned int with at least 16 bits. */
00231
00232 typedef uint16_t uint_fast16_t;
00233
00234 /** \ingroup avr_stdint
00235 fastest signed int with at least 32 bits. */
00236
00237 typedef int32_t int_fast32_t;
00238

Generated by Doxygen

480

00239 /** \ingroup avr_stdint
00240 fastest unsigned int with at least 32 bits. */
00241
00242 typedef uint32_t uint_fast32_t;
00243
00244 #if !__USING_MINT8 || defined(__DOXYGEN__)
00245 /** \ingroup avr_stdint
00246 fastest signed int with at least 64 bits.
00247 \note This type is not available when the compiler
00248 option -mint8 is in effect. */
00249
00250 typedef int64_t int_fast64_t;
00251
00252 /** \ingroup avr_stdint
00253 fastest unsigned int with at least 64 bits.
00254 \note This type is not available when the compiler
00255 option -mint8 is in effect. */
00256
00257 typedef uint64_t uint_fast64_t;
00258 #endif
00259
00260 /**@}*/
00261
00262
00263 /** \name Greatest-width integer types
00264 Types designating integer data capable of representing any value of
00265 any integer type in the corresponding signed or unsigned category */
00266
00267 /**@{*/
00268
00269 #if __USING_MINT8
00270 typedef int32_t intmax_t;
00271
00272 typedef uint32_t uintmax_t;
00273 #else /* !__USING_MINT8 */
00274 /** \ingroup avr_stdint
00275 largest signed int available. */
00276
00277 typedef int64_t intmax_t;
00278
00279 /** \ingroup avr_stdint
00280 largest unsigned int available. */
00281
00282 typedef uint64_t uintmax_t;
00283 #endif /* __USING_MINT8 */
00284
00285 /**@}*/
00286
00287 #ifndef __DOXYGEN__
00288 /* Helping macro */
00289 #ifndef __CONCAT
00290 #define __CONCATenate(left, right) left ## right
00291 #define __CONCAT(left, right) __CONCATenate(left, right)
00292 #endif
00293
00294 #endif /* !__DOXYGEN__ */
00295
00296 #if !defined(__cplusplus) || defined(__STDC_LIMIT_MACROS)
00297
00298 /** \name Limits of specified-width integer types
00299 C++ implementations should define these macros only when
00300 __STDC_LIMIT_MACROS is defined before <stdint.h> is included */
00301
00302 /**@{*/
00303
00304 /** \ingroup avr_stdint
00305 largest positive value an int8_t can hold. */
00306
00307 #define INT8_MAX 0x7f
00308
00309 /** \ingroup avr_stdint
00310 smallest negative value an int8_t can hold. */
00311
00312 #define INT8_MIN (-INT8_MAX - 1)
00313
00314 #if __USING_MINT8
00315
00316 #define UINT8_MAX (__CONCAT(INT8_MAX, U) * 2U + 1U)
00317
00318 #define INT16_MAX 0x7fffL
00319 #define INT16_MIN (-INT16_MAX - 1L)
00320 #define UINT16_MAX (__CONCAT(INT16_MAX, U) * 2UL + 1UL)
00321
00322 #define INT32_MAX 0x7fffffffLL
00323 #define INT32_MIN (-INT32_MAX - 1LL)
00324 #define UINT32_MAX (__CONCAT(INT32_MAX, U) * 2ULL + 1ULL)
00325

Generated by Doxygen

23.53 stdint.h 481

00326 #else /* !__USING_MINT8 */
00327
00328 /** \ingroup avr_stdint
00329 largest value an uint8_t can hold. */
00330
00331 #define UINT8_MAX (INT8_MAX * 2 + 1)
00332
00333 /** \ingroup avr_stdint
00334 largest positive value an int16_t can hold. */
00335
00336 #define INT16_MAX 0x7fff
00337
00338 /** \ingroup avr_stdint
00339 smallest negative value an int16_t can hold. */
00340
00341 #define INT16_MIN (-INT16_MAX - 1)
00342
00343 /** \ingroup avr_stdint
00344 largest value an uint16_t can hold. */
00345
00346 #define UINT16_MAX (__CONCAT(INT16_MAX, U) * 2U + 1U)
00347
00348 /** \ingroup avr_stdint
00349 largest positive value an int32_t can hold. */
00350
00351 #define INT32_MAX 0x7fffffffL
00352
00353 /** \ingroup avr_stdint
00354 smallest negative value an int32_t can hold. */
00355
00356 #define INT32_MIN (-INT32_MAX - 1L)
00357
00358 /** \ingroup avr_stdint
00359 largest value an uint32_t can hold. */
00360
00361 #define UINT32_MAX (__CONCAT(INT32_MAX, U) * 2UL + 1UL)
00362
00363 #endif /* __USING_MINT8 */
00364
00365 /** \ingroup avr_stdint
00366 largest positive value an int64_t can hold. */
00367
00368 #define INT64_MAX 0x7fffffffffffffffLL
00369
00370 /** \ingroup avr_stdint
00371 smallest negative value an int64_t can hold. */
00372
00373 #define INT64_MIN (-INT64_MAX - 1LL)
00374
00375 /** \ingroup avr_stdint
00376 largest value an uint64_t can hold. */
00377
00378 #define UINT64_MAX (__CONCAT(INT64_MAX, U) * 2ULL + 1ULL)
00379
00380 /**@}*/
00381
00382 /** \name Limits of minimum-width integer types */
00383 /**@{*/
00384
00385 /** \ingroup avr_stdint
00386 largest positive value an int_least8_t can hold. */
00387
00388 #define INT_LEAST8_MAX INT8_MAX
00389
00390 /** \ingroup avr_stdint
00391 smallest negative value an int_least8_t can hold. */
00392
00393 #define INT_LEAST8_MIN INT8_MIN
00394
00395 /** \ingroup avr_stdint
00396 largest value an uint_least8_t can hold. */
00397
00398 #define UINT_LEAST8_MAX UINT8_MAX
00399
00400 /** \ingroup avr_stdint
00401 largest positive value an int_least16_t can hold. */
00402
00403 #define INT_LEAST16_MAX INT16_MAX
00404
00405 /** \ingroup avr_stdint
00406 smallest negative value an int_least16_t can hold. */
00407
00408 #define INT_LEAST16_MIN INT16_MIN
00409
00410 /** \ingroup avr_stdint
00411 largest value an uint_least16_t can hold. */
00412

Generated by Doxygen

482

00413 #define UINT_LEAST16_MAX UINT16_MAX
00414
00415 /** \ingroup avr_stdint
00416 largest positive value an int_least32_t can hold. */
00417
00418 #define INT_LEAST32_MAX INT32_MAX
00419
00420 /** \ingroup avr_stdint
00421 smallest negative value an int_least32_t can hold. */
00422
00423 #define INT_LEAST32_MIN INT32_MIN
00424
00425 /** \ingroup avr_stdint
00426 largest value an uint_least32_t can hold. */
00427
00428 #define UINT_LEAST32_MAX UINT32_MAX
00429
00430 /** \ingroup avr_stdint
00431 largest positive value an int_least64_t can hold. */
00432
00433 #define INT_LEAST64_MAX INT64_MAX
00434
00435 /** \ingroup avr_stdint
00436 smallest negative value an int_least64_t can hold. */
00437
00438 #define INT_LEAST64_MIN INT64_MIN
00439
00440 /** \ingroup avr_stdint
00441 largest value an uint_least64_t can hold. */
00442
00443 #define UINT_LEAST64_MAX UINT64_MAX
00444
00445 /**@}*/
00446
00447 /** \name Limits of fastest minimum-width integer types */
00448
00449 /**@{*/
00450
00451 /** \ingroup avr_stdint
00452 largest positive value an int_fast8_t can hold. */
00453
00454 #define INT_FAST8_MAX INT8_MAX
00455
00456 /** \ingroup avr_stdint
00457 smallest negative value an int_fast8_t can hold. */
00458
00459 #define INT_FAST8_MIN INT8_MIN
00460
00461 /** \ingroup avr_stdint
00462 largest value an uint_fast8_t can hold. */
00463
00464 #define UINT_FAST8_MAX UINT8_MAX
00465
00466 /** \ingroup avr_stdint
00467 largest positive value an int_fast16_t can hold. */
00468
00469 #define INT_FAST16_MAX INT16_MAX
00470
00471 /** \ingroup avr_stdint
00472 smallest negative value an int_fast16_t can hold. */
00473
00474 #define INT_FAST16_MIN INT16_MIN
00475
00476 /** \ingroup avr_stdint
00477 largest value an uint_fast16_t can hold. */
00478
00479 #define UINT_FAST16_MAX UINT16_MAX
00480
00481 /** \ingroup avr_stdint
00482 largest positive value an int_fast32_t can hold. */
00483
00484 #define INT_FAST32_MAX INT32_MAX
00485
00486 /** \ingroup avr_stdint
00487 smallest negative value an int_fast32_t can hold. */
00488
00489 #define INT_FAST32_MIN INT32_MIN
00490
00491 /** \ingroup avr_stdint
00492 largest value an uint_fast32_t can hold. */
00493
00494 #define UINT_FAST32_MAX UINT32_MAX
00495
00496 /** \ingroup avr_stdint
00497 largest positive value an int_fast64_t can hold. */
00498
00499 #define INT_FAST64_MAX INT64_MAX

Generated by Doxygen

23.53 stdint.h 483

00500
00501 /** \ingroup avr_stdint
00502 smallest negative value an int_fast64_t can hold. */
00503
00504 #define INT_FAST64_MIN INT64_MIN
00505
00506 /** \ingroup avr_stdint
00507 largest value an uint_fast64_t can hold. */
00508
00509 #define UINT_FAST64_MAX UINT64_MAX
00510
00511 /**@}*/
00512
00513 /** \name Limits of integer types capable of holding object pointers */
00514
00515 /**@{*/
00516
00517 /** \ingroup avr_stdint
00518 largest positive value an intptr_t can hold. */
00519
00520 #define INTPTR_MAX INT16_MAX
00521
00522 /** \ingroup avr_stdint
00523 smallest negative value an intptr_t can hold. */
00524
00525 #define INTPTR_MIN INT16_MIN
00526
00527 /** \ingroup avr_stdint
00528 largest value an uintptr_t can hold. */
00529
00530 #define UINTPTR_MAX UINT16_MAX
00531
00532 /**@}*/
00533
00534 /** \name Limits of greatest-width integer types */
00535
00536 /**@{*/
00537
00538 /** \ingroup avr_stdint
00539 largest positive value an intmax_t can hold. */
00540
00541 #define INTMAX_MAX INT64_MAX
00542
00543 /** \ingroup avr_stdint
00544 smallest negative value an intmax_t can hold. */
00545
00546 #define INTMAX_MIN INT64_MIN
00547
00548 /** \ingroup avr_stdint
00549 largest value an uintmax_t can hold. */
00550
00551 #define UINTMAX_MAX UINT64_MAX
00552
00553 /**@}*/
00554
00555 /** \name Limits of other integer types
00556 C++ implementations should define these macros only when
00557 __STDC_LIMIT_MACROS is defined before <stdint.h> is included */
00558
00559 /**@{*/
00560
00561 /** \ingroup avr_stdint
00562 largest positive value a ptrdiff_t can hold. */
00563
00564 #define PTRDIFF_MAX INT16_MAX
00565
00566 /** \ingroup avr_stdint
00567 smallest negative value a ptrdiff_t can hold. */
00568
00569 #define PTRDIFF_MIN INT16_MIN
00570
00571
00572 /* Limits of sig_atomic_t */
00573 /* signal.h is currently not implemented (not avr/signal.h) */
00574
00575 /** \ingroup avr_stdint
00576 largest positive value a sig_atomic_t can hold. */
00577
00578 #define SIG_ATOMIC_MAX INT8_MAX
00579
00580 /** \ingroup avr_stdint
00581 smallest negative value a sig_atomic_t can hold. */
00582
00583 #define SIG_ATOMIC_MIN INT8_MIN
00584
00585
00586 /** \ingroup avr_stdint

Generated by Doxygen

484

00587 largest value a size_t can hold. */
00588
00589 #define SIZE_MAX UINT16_MAX
00590
00591
00592 /* Limits of wchar_t */
00593 /* wchar.h is currently not implemented */
00594 /* #define WCHAR_MAX */
00595 /* #define WCHAR_MIN */
00596
00597
00598 /* Limits of wint_t */
00599 /* wchar.h is currently not implemented */
00600 #ifndef WCHAR_MAX
00601 #define WCHAR_MAX __WCHAR_MAX__
00602 #define WCHAR_MIN __WCHAR_MIN__
00603 #endif
00604 #ifndef WINT_MAX
00605 #define WINT_MAX __WINT_MAX__
00606 #define WINT_MIN __WINT_MIN__
00607 #endif
00608
00609
00610 #endif /* !defined(__cplusplus) || defined(__STDC_LIMIT_MACROS) */
00611
00612 #if (!defined __cplusplus || __cplusplus >= 201103L \
00613 || defined __STDC_CONSTANT_MACROS)
00614
00615 /** \name Macros for integer constants
00616 C++ implementations should define these macros only when
00617 __STDC_CONSTANT_MACROS is defined before <stdint.h> is included.
00618
00619 These definitions are valid for integer constants without suffix and
00620 for macros defined as integer constant without suffix */
00621
00622 /* The GNU C preprocessor defines special macros in the implementation
00623 namespace to allow a definition that works in #if expressions. */
00624 #ifdef __INT8_C
00625 #define INT8_C(c) __INT8_C(c)
00626 #define INT16_C(c) __INT16_C(c)
00627 #define INT32_C(c) __INT32_C(c)
00628 #define INT64_C(c) __INT64_C(c)
00629 #define UINT8_C(c) __UINT8_C(c)
00630 #define UINT16_C(c) __UINT16_C(c)
00631 #define UINT32_C(c) __UINT32_C(c)
00632 #define UINT64_C(c) __UINT64_C(c)
00633 #define INTMAX_C(c) __INTMAX_C(c)
00634 #define UINTMAX_C(c) __UINTMAX_C(c)
00635 #else
00636 /** \ingroup avr_stdint
00637 define a constant of type int8_t */
00638
00639 #define INT8_C(value) ((int8_t) value)
00640
00641 /** \ingroup avr_stdint
00642 define a constant of type uint8_t */
00643
00644 #define UINT8_C(value) ((uint8_t) __CONCAT(value, U))
00645
00646 #if __USING_MINT8
00647
00648 #define INT16_C(value) __CONCAT(value, L)
00649 #define UINT16_C(value) __CONCAT(value, UL)
00650
00651 #define INT32_C(value) ((int32_t) __CONCAT(value, LL))
00652 #define UINT32_C(value) ((uint32_t) __CONCAT(value, ULL))
00653
00654 #else /* !__USING_MINT8 */
00655
00656 /** \ingroup avr_stdint
00657 define a constant of type int16_t */
00658
00659 #define INT16_C(value) value
00660
00661 /** \ingroup avr_stdint
00662 define a constant of type uint16_t */
00663
00664 #define UINT16_C(value) __CONCAT(value, U)
00665
00666 /** \ingroup avr_stdint
00667 define a constant of type int32_t */
00668
00669 #define INT32_C(value) __CONCAT(value, L)
00670
00671 /** \ingroup avr_stdint
00672 define a constant of type uint32_t */
00673

Generated by Doxygen

23.54 stdio.h File Reference 485

00674 #define UINT32_C(value) __CONCAT(value, UL)
00675
00676 #endif /* __USING_MINT8 */
00677
00678 /** \ingroup avr_stdint
00679 define a constant of type int64_t */
00680
00681 #define INT64_C(value) __CONCAT(value, LL)
00682
00683 /** \ingroup avr_stdint
00684 define a constant of type uint64_t */
00685
00686 #define UINT64_C(value) __CONCAT(value, ULL)
00687
00688 /** \ingroup avr_stdint
00689 define a constant of type intmax_t */
00690
00691 #define INTMAX_C(value) __CONCAT(value, LL)
00692
00693 /** \ingroup avr_stdint
00694 define a constant of type uintmax_t */
00695
00696 #define UINTMAX_C(value) __CONCAT(value, ULL)
00697
00698 #endif /* !__INT8_C */
00699
00700 /**@}*/
00701
00702 #endif /* (!defined __cplusplus || __cplusplus >= 201103L \
00703 || defined __STDC_CONSTANT_MACROS) */
00704
00705
00706 #endif /* _STDINT_H_ */

23.54 stdio.h File Reference

Macros

• #define stdin (__iob[0])
• #define stdout (__iob[1])
• #define stderr (__iob[2])
• #define EOF (-1)
• #define fdev_set_udata(stream, u) do { (stream)->udata = u; } while(0)
• #define fdev_get_udata(stream) ((stream)->udata)
• #define fdev_setup_stream(stream, put, get, rwflag)
• #define _FDEV_SETUP_READ __SRD
• #define _FDEV_SETUP_WRITE __SWR
• #define _FDEV_SETUP_RW (__SRD|__SWR)
• #define _FDEV_ERR (-1)
• #define _FDEV_EOF (-2)
• #define FDEV_SETUP_STREAM(put, get, rwflag)
• #define fdev_close()
• #define putc(__c, __stream) fputc(__c, __stream)
• #define putchar(__c) fputc(__c, stdout)
• #define getc(__stream) fgetc(__stream)
• #define getchar() fgetc(stdin)

Typedefs

• typedef struct __file FILE

Generated by Doxygen

486

Functions

• int fclose (FILE ∗__stream)
• int vfprintf (FILE ∗__stream, const char ∗__fmt, va_list __ap)
• int vfprintf_P (FILE ∗__stream, const char ∗__fmt, va_list __ap)
• int fputc (int __c, FILE ∗__stream)
• int printf (const char ∗__fmt,...)
• int printf_P (const char ∗__fmt,...)
• int vprintf (const char ∗__fmt, va_list __ap)
• int sprintf (char ∗__s, const char ∗__fmt,...)
• int sprintf_P (char ∗__s, const char ∗__fmt,...)
• int snprintf (char ∗__s, size_t __n, const char ∗__fmt,...)
• int snprintf_P (char ∗__s, size_t __n, const char ∗__fmt,...)
• int vsprintf (char ∗__s, const char ∗__fmt, va_list ap)
• int vsprintf_P (char ∗__s, const char ∗__fmt, va_list ap)
• int vsnprintf (char ∗__s, size_t __n, const char ∗__fmt, va_list ap)
• int vsnprintf_P (char ∗__s, size_t __n, const char ∗__fmt, va_list ap)
• int fprintf (FILE ∗__stream, const char ∗__fmt,...)
• int fprintf_P (FILE ∗__stream, const char ∗__fmt,...)
• int fputs (const char ∗__str, FILE ∗__stream)
• int fputs_P (const char ∗__str, FILE ∗__stream)
• int puts (const char ∗__str)
• int puts_P (const char ∗__str)
• size_t fwrite (const void ∗__ptr, size_t __size, size_t __nmemb, FILE ∗__stream)
• int fgetc (FILE ∗__stream)
• int ungetc (int __c, FILE ∗__stream)
• char ∗ fgets (char ∗__str, int __size, FILE ∗__stream)
• char ∗ gets (char ∗__str)
• size_t fread (void ∗__ptr, size_t __size, size_t __nmemb, FILE ∗__stream)
• void clearerr (FILE ∗__stream)
• int feof (FILE ∗__stream)
• int ferror (FILE ∗__stream)
• int vfscanf (FILE ∗__stream, const char ∗__fmt, va_list __ap)
• int vfscanf_P (FILE ∗__stream, const char ∗__fmt, va_list __ap)
• int fscanf (FILE ∗__stream, const char ∗__fmt,...)
• int fscanf_P (FILE ∗__stream, const char ∗__fmt,...)
• int scanf (const char ∗__fmt,...)
• int scanf_P (const char ∗__fmt,...)
• int vscanf (const char ∗__fmt, va_list __ap)
• int sscanf (const char ∗__buf, const char ∗__fmt,...)
• int sscanf_P (const char ∗__buf, const char ∗__fmt,...)
• int fflush (FILE ∗stream)

23.55 stdio.h

Go to the documentation of this file.
00001 /* Copyright (c) 2002, 2005, 2007 Joerg Wunsch
00002 All rights reserved.
00003
00004 Portions of documentation Copyright (c) 1990, 1991, 1993
00005 The Regents of the University of California.
00006
00007 All rights reserved.
00008
00009 Redistribution and use in source and binary forms, with or without
00010 modification, are permitted provided that the following conditions are met:
00011
00012 * Redistributions of source code must retain the above copyright

Generated by Doxygen

23.55 stdio.h 487

00013 notice, this list of conditions and the following disclaimer.
00014
00015 * Redistributions in binary form must reproduce the above copyright
00016 notice, this list of conditions and the following disclaimer in
00017 the documentation and/or other materials provided with the
00018 distribution.
00019
00020 * Neither the name of the copyright holders nor the names of
00021 contributors may be used to endorse or promote products derived
00022 from this software without specific prior written permission.
00023
00024 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00025 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00026 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00027 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00028 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00029 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00030 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00031 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00032 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00033 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00034 POSSIBILITY OF SUCH DAMAGE.
00035
00036 Id
00037 */
00038
00039 #ifndef _STDIO_H_
00040 #define _STDIO_H_ 1
00041
00042 #ifndef __ASSEMBLER__
00043
00044 #include <inttypes.h>
00045 #include <stdarg.h>
00046
00047 #ifndef __DOXYGEN__
00048 #define __need_NULL
00049 #define __need_size_t
00050 #include <stddef.h>
00051 #endif /* !__DOXYGEN__ */
00052
00053 /** \file */
00054 /** \defgroup avr_stdio <stdio.h>: Standard IO facilities
00055 \code #include <stdio.h> \endcode
00056
00057 <h3>Introduction to the Standard IO facilities</h3>
00058
00059 This file declares the standard IO facilities that are implemented
00060 in AVR-LibC. Due to the nature of the underlying hardware,
00061 only a limited subset of standard IO is implemented. There is no
00062 actual file implementation available, so only device IO can be
00063 performed. Since there’s no operating system, the application
00064 needs to provide enough details about their devices in order to
00065 make them usable by the standard IO facilities.
00066
00067 Due to space constraints, some functionality has not been
00068 implemented at all (like some of the \c printf conversions that
00069 have been left out). Nevertheless, potential users of this
00070 implementation should be warned: the \c printf and \c scanf families of functions, although
00071 usually associated with presumably simple things like the
00072 famous "Hello, world!" program, are actually fairly complex
00073 which causes their inclusion to eat up a fair amount of code space.
00074 Also, they are not fast due to the nature of interpreting the
00075 format string at run-time. Whenever possible, resorting to the
00076 (sometimes non-standard) predetermined conversion facilities that are
00077 offered by AVR-LibC will usually cost much less in terms of speed
00078 and code size.
00079
00080 <h3>Tunable options for code size vs. feature set</h3>
00081
00082 In order to allow programmers a code size vs. functionality tradeoff,
00083 the function vfprintf() which is the heart of the printf family can be
00084 selected in different flavours using linker options. See the
00085 documentation of vfprintf() for a detailed description. The same
00086 applies to vfscanf() and the \c scanf family of functions.
00087
00088 <h3>Outline of the chosen API</h3>
00089
00090 The standard streams \c stdin, \c stdout, and \c stderr are
00091 provided, but contrary to the C standard, since AVR-LibC has no
00092 knowledge about applicable devices, these streams are not already
00093 pre-initialized at application startup. Also, since there is no
00094 notion of "file" whatsoever to AVR-LibC, there is no function
00095 \c fopen() that could be used to associate a stream to some device.
00096 (See \ref stdio_note1 "note 1".) Instead, the function \c fdevopen()
00097 is provided to associate a stream to a device, where the device
00098 needs to provide a function to send a character, to receive a
00099 character, or both. There is no differentiation between "text" and

Generated by Doxygen

488

00100 "binary" streams inside AVR-LibC. Character \c \\n is sent
00101 literally down to the device’s \c put() function. If the device
00102 requires a carriage return (\c \\r) character to be sent before
00103 the linefeed, its \c put() routine must implement this (see
00104 \ref stdio_note2 "note 2").
00105
00106 As an alternative method to fdevopen(), the macro
00107 fdev_setup_stream() might be used to setup a user-supplied FILE
00108 structure.
00109
00110 It should be noted that the automatic conversion of a newline
00111 character into a carriage return - newline sequence breaks binary
00112 transfers. If binary transfers are desired, no automatic
00113 conversion should be performed, but instead any string that aims
00114 to issue a CR-LF sequence must use <tt>"\r\n"</tt> explicitly.
00115
00116 For convenience, the first call to \c fdevopen() that opens a
00117 stream for reading will cause the resulting stream to be aliased
00118 to \c stdin. Likewise, the first call to \c fdevopen() that opens
00119 a stream for writing will cause the resulting stream to be aliased
00120 to both, \c stdout, and \c stderr. Thus, if the open was done
00121 with both, read and write intent, all three standard streams will
00122 be identical. Note that these aliases are indistinguishable from
00123 each other, thus calling \c fclose() on such a stream will also
00124 effectively close all of its aliases (\ref stdio_note3 "note 3").
00125
00126 It is possible to tie additional user data to a stream, using
00127 fdev_set_udata(). The backend put and get functions can then
00128 extract this user data using fdev_get_udata(), and act
00129 appropriately. For example, a single put function could be used
00130 to talk to two different UARTs that way, or the put and get
00131 functions could keep internal state between calls there.
00132
00133 <h3>Format strings in flash ROM</h3>
00134
00135 All the \c printf and \c scanf family functions come in two flavours: the
00136 standard name, where the format string is expected to be in
00137 SRAM, as well as a version with the suffix "_P" where the format
00138 string is expected to reside in the flash ROM. The macro
00139 #PSTR (explained in \ref avr_pgmspace) becomes very handy
00140 for declaring these format strings.
00141
00142 \anchor stdio_without_malloc
00143 <h3>Running stdio without malloc()</h3>
00144
00145 By default, fdevopen() requires malloc(). As this is often
00146 not desired in the limited environment of a microcontroller, an
00147 alternative option is provided to run completely without malloc().
00148
00149 The macro fdev_setup_stream() is provided to prepare a
00150 user-supplied FILE buffer for operation with stdio.
00151
00152 <h4>Example</h4>
00153
00154 \code
00155 #include <stdio.h>
00156
00157 static int uart_putchar(char c, FILE *stream);
00158
00159 static FILE mystdout = FDEV_SETUP_STREAM(uart_putchar, NULL,
00160 _FDEV_SETUP_WRITE);
00161
00162 static int
00163 uart_putchar(char c, FILE *stream)
00164 {
00165
00166 if (c == ’\n’)
00167 uart_putchar(’\r’, stream);
00168 loop_until_bit_is_set(UCSRA, UDRE);
00169 UDR = c;
00170 return 0;
00171 }
00172
00173 int
00174 main(void)
00175 {
00176 init_uart();
00177 stdout = &mystdout;
00178 printf("Hello, world!\n");
00179
00180 return 0;
00181 }
00182 \endcode
00183
00184 This example uses the initializer form FDEV_SETUP_STREAM() rather
00185 than the function-like fdev_setup_stream(), so all data
00186 initialization happens during C start-up.

Generated by Doxygen

23.55 stdio.h 489

00187
00188 If streams initialized that way are no longer needed, they can be
00189 destroyed by first calling the macro fdev_close(), and then
00190 destroying the object itself. No call to fclose() should be
00191 issued for these streams. While calling fclose() itself is
00192 harmless, it will cause an undefined reference to free() and thus
00193 cause the linker to link the malloc module into the application.
00194
00195 <h3>Notes</h3>
00196
00197 <dl>
00198 <dt>\anchor stdio_note1 Note 1:</dt>
00199 <dd>
00200 It might have been possible to implement a device abstraction that
00201 is compatible with \c fopen() but since this would have required
00202 to parse a string, and to take all the information needed either
00203 out of this string, or out of an additional table that would need to be
00204 provided by the application, this approach was not taken.
00205 </dd>
00206 <dt>\anchor stdio_note2 Note 2:</dt>
00207 <dd>
00208 This basically follows the Unix approach: if a device such as a
00209 terminal needs special handling, it is in the domain of the
00210 terminal device driver to provide this functionality. Thus, a
00211 simple function suitable as \c put() for \c fdevopen() that talks
00212 to a UART interface might look like this:
00213
00214 \code
00215 int
00216 uart_putchar(char c, FILE *stream)
00217 {
00218
00219 if (c == ’\n’)
00220 uart_putchar(’\r’, stream);
00221 loop_until_bit_is_set(UCSRA, UDRE);
00222 UDR = c;
00223 return 0;
00224 }
00225 \endcode
00226 </dd>
00227 <dt>\anchor stdio_note3 Note 3:</dt>
00228 <dd>
00229 This implementation has been chosen because the cost of maintaining
00230 an alias is considerably smaller than the cost of maintaining full
00231 copies of each stream. Yet, providing an implementation that offers
00232 the complete set of standard streams was deemed to be useful. Not
00233 only that writing \c printf() instead of <tt>fprintf(mystream, ...)</tt>
00234 saves typing work, but since avr-gcc needs to resort to pass all
00235 arguments of variadic functions on the stack (as opposed to passing
00236 them in registers for functions that take a fixed number of
00237 parameters), the ability to pass one parameter less by implying
00238 \c stdin or stdout will also save some execution time.
00239 </dd>
00240 </dl>
00241 */
00242
00243 #if !defined(__DOXYGEN__)
00244
00245 /*
00246 * This is an internal structure of the library that is subject to be
00247 * changed without warnings at any time. Please do *never* reference
00248 * elements of it beyond by using the official interfaces provided.
00249 */
00250 struct __file {
00251 char *buf; /* buffer pointer */
00252 unsigned char unget; /* ungetc() buffer */
00253 uint8_t flags; /* flags, see below */
00254 #define __SRD 0x0001 /* OK to read */
00255 #define __SWR 0x0002 /* OK to write */
00256 #define __SSTR 0x0004 /* this is an sprintf/snprintf string */
00257 #define __SPGM 0x0008 /* fmt string is in progmem */
00258 #define __SERR 0x0010 /* found error */
00259 #define __SEOF 0x0020 /* found EOF */
00260 #define __SUNGET 0x040 /* ungetc() happened */
00261 #define __SMALLOC 0x80 /* handle is malloc()ed */
00262 #if 0
00263 /* possible future extensions, will require uint16_t flags */
00264 #define __SRW 0x0100 /* open for reading & writing */
00265 #define __SLBF 0x0200 /* line buffered */
00266 #define __SNBF 0x0400 /* unbuffered */
00267 #define __SMBF 0x0800 /* buf is from malloc */
00268 #endif
00269 int size; /* size of buffer */
00270 int len; /* characters read or written so far */
00271 int (*put)(char, struct __file *); /* function to write one char to device */
00272 int (*get)(struct __file *); /* function to read one char from device */
00273 void *udata; /* User defined and accessible data. */

Generated by Doxygen

490

00274 };
00275
00276 #endif /* not __DOXYGEN__ */
00277
00278 /**@{*/
00279 /**
00280 \c FILE is the opaque structure that is passed around between the
00281 various standard IO functions.
00282 */
00283 typedef struct __file FILE;
00284
00285 /**
00286 Stream that will be used as an input stream by the simplified
00287 functions that don’t take a \c stream argument.
00288
00289 The first stream opened with read intent using \c fdevopen()
00290 will be assigned to \c stdin.
00291 */
00292 #define stdin (__iob[0])
00293
00294 /**
00295 Stream that will be used as an output stream by the simplified
00296 functions that don’t take a \c stream argument.
00297
00298 The first stream opened with write intent using \c fdevopen()
00299 will be assigned to both, \c stdin, and \c stderr.
00300 */
00301 #define stdout (__iob[1])
00302
00303 /**
00304 Stream destined for error output. Unless specifically assigned,
00305 identical to \c stdout.
00306
00307 If \c stderr should point to another stream, the result of
00308 another \c fdevopen() must be explicitly assigned to it without
00309 closing the previous \c stderr (since this would also close
00310 \c stdout).
00311 */
00312 #define stderr (__iob[2])
00313
00314 /**
00315 \c EOF declares the value that is returned by various standard IO
00316 functions in case of an error. Since the AVR platform (currently)
00317 doesn’t contain an abstraction for actual files, its origin as
00318 "end of file" is somewhat meaningless here.
00319 */
00320 #define EOF (-1)
00321
00322 /** This macro inserts a pointer to user defined data into a FILE
00323 stream object.
00324
00325 The user data can be useful for tracking state in the put and get
00326 functions supplied to the fdevopen() function. */
00327 #define fdev_set_udata(stream, u) do { (stream)->udata = u; } while(0)
00328
00329 /** This macro retrieves a pointer to user defined data from a FILE
00330 stream object. */
00331 #define fdev_get_udata(stream) ((stream)->udata)
00332
00333 #if defined(__DOXYGEN__)
00334 /**
00335 \brief Setup a user-supplied buffer as an stdio stream
00336
00337 This macro takes a user-supplied buffer \c stream, and sets it up
00338 as a stream that is valid for stdio operations, similar to one that
00339 has been obtained dynamically from fdevopen(). The buffer to setup
00340 must be of type #FILE.
00341
00342 The arguments \c put and \c get are identical to those that need to
00343 be passed to fdevopen().
00344
00345 The \c rwflag argument can take one of the values #_FDEV_SETUP_READ,
00346 #_FDEV_SETUP_WRITE, or #_FDEV_SETUP_RW, for read, write, or read/write
00347 intent, respectively.
00348
00349 \note No assignments to the standard streams will be performed by
00350 fdev_setup_stream(). If standard streams are to be used, these
00351 need to be assigned by the user. See also under
00352 \ref stdio_without_malloc "Running stdio without malloc()".
00353 */
00354 #define fdev_setup_stream(stream, put, get, rwflag)
00355 #else /* !DOXYGEN */
00356 #define fdev_setup_stream(stream, p, g, f) \
00357 do { \
00358 (stream)->put = p; \
00359 (stream)->get = g; \
00360 (stream)->flags = f; \

Generated by Doxygen

23.55 stdio.h 491

00361 (stream)->udata = 0; \
00362 } while(0)
00363 #endif /* DOXYGEN */
00364
00365 #define _FDEV_SETUP_READ __SRD /**< fdev_setup_stream() with read intent */
00366 #define _FDEV_SETUP_WRITE __SWR /**< fdev_setup_stream() with write intent */
00367 #define _FDEV_SETUP_RW (__SRD|__SWR) /**< fdev_setup_stream() with read/write intent */
00368
00369 /**
00370 * Return code for an error condition during device read.
00371 *
00372 * To be used in the get function of fdevopen().
00373 */
00374 #define _FDEV_ERR (-1)
00375
00376 /**
00377 * Return code for an end-of-file condition during device read.
00378 *
00379 * To be used in the get function of fdevopen().
00380 */
00381 #define _FDEV_EOF (-2)
00382
00383 #if defined(__DOXYGEN__)
00384 /**
00385 \brief Initializer for a user-supplied stdio stream
00386
00387 This macro acts similar to fdev_setup_stream(), but it is to be
00388 used as the initializer of a variable of type FILE.
00389
00390 The remaining arguments are to be used as explained in
00391 fdev_setup_stream().
00392 */
00393 #define FDEV_SETUP_STREAM(put, get, rwflag)
00394 #else /* !DOXYGEN */
00395 /* In order to work with C++, we have to mention the fields in the order
00396 as they appear in struct __file. Also, designated initializers are
00397 only supported since C++20. */
00398 #define FDEV_SETUP_STREAM(PU, GE, FL) \
00399 { \
00400 (char*) 0 /* buf */, \
00401 0u /* unget */, \
00402 FL /* flags */, \
00403 0 /* size */, \
00404 0 /* len */, \
00405 PU /* put */, \
00406 GE /* get */, \
00407 (void*) 0 /* udata */ \
00408 }
00409 #endif /* DOXYGEN */
00410
00411 #ifdef __cplusplus
00412 extern "C" {
00413 #endif
00414
00415 #if !defined(__DOXYGEN__)
00416 /*
00417 * Doxygen documentation can be found in fdevopen.c.
00418 */
00419
00420 extern struct __file *__iob[];
00421
00422 #if defined(__STDIO_FDEVOPEN_COMPAT_12)
00423 /*
00424 * Declare prototype for the discontinued version of fdevopen() that
00425 * has been in use up to AVR-LibC 1.2.x. The new implementation has
00426 * some backwards compatibility with the old version.
00427 */
00428 extern FILE *fdevopen(int (*__put)(char), int (*__get)(void),
00429 int __opts __attribute__((unused)));
00430 #else /* !defined(__STDIO_FDEVOPEN_COMPAT_12) */
00431 /* New prototype for AVR-LibC 1.4 and above. */
00432 extern FILE *fdevopen(int (*__put)(char, FILE*), int (*__get)(FILE*));
00433 #endif /* defined(__STDIO_FDEVOPEN_COMPAT_12) */
00434
00435 #endif /* not __DOXYGEN__ */
00436
00437 /**
00438 This function closes \c stream, and disallows and further
00439 IO to and from it.
00440
00441 When using fdevopen() to setup the stream, a call to fclose() is
00442 needed in order to free the internal resources allocated.
00443
00444 If the stream has been set up using fdev_setup_stream() or
00445 FDEV_SETUP_STREAM(), use fdev_close() instead.
00446
00447 It currently always returns 0 (for success).

Generated by Doxygen

492

00448 */
00449 extern int fclose(FILE *__stream);
00450
00451 /**
00452 This macro frees up any library resources that might be associated
00453 with \c stream. It should be called if \c stream is no longer
00454 needed, right before the application is going to destroy the
00455 \c stream object itself.
00456
00457 (Currently, this macro evaluates to nothing, but this might change
00458 in future versions of the library.)
00459 */
00460 #if defined(__DOXYGEN__)
00461 # define fdev_close()
00462 #else
00463 # define fdev_close() ((void)0)
00464 #endif
00465
00466 /**
00467 \c vfprintf is the central facility of the \c printf family of
00468 functions. It outputs values to \c stream under control of a
00469 format string passed in \c fmt. The actual values to print are
00470 passed as a variable argument list \c ap.
00471
00472 \c vfprintf returns the number of characters written to \c stream,
00473 or \c EOF in case of an error. Currently, this will only happen
00474 if \c stream has not been opened with write intent.
00475
00476 The format string is composed of zero or more directives: ordinary
00477 characters (not \c %), which are copied unchanged to the output
00478 stream; and conversion specifications, each of which results in
00479 fetching zero or more subsequent arguments. Each conversion
00480 specification is introduced by the \c % character. The arguments must
00481 properly correspond (after type promotion) with the conversion
00482 specifier. After the \c %, the following appear in sequence:
00483
00484 - Zero or more of the following flags:
00485
00486 \c # The value should be converted to an "alternate form". For
00487 c, d, i, s, and u conversions, this option has no effect.
00488 For o conversions, the precision of the number is
00489 increased to force the first character of the output
00490 string to a zero (except if a zero value is printed with
00491 an explicit precision of zero). For x and X conversions,
00492 a non-zero result has the string ‘0x’ (or ‘0X’ for X
00493 conversions) prepended to it.
00494 \c 0 (zero) Zero padding. For all conversions, the converted
00495 value is padded on the left with zeros rather than blanks.
00496 If a precision is given with a numeric conversion (d, i,
00497 o, u, i, x, and X), the 0 flag is ignored.
00498 \c - A negative field width flag; the converted value is to be
00499 left adjusted on the field boundary. The converted value
00500 is padded on the right with blanks, rather than on the
00501 left with blanks or zeros. A - overrides a 0 if both are
00502 given.
00503 ’ ’ (space) A blank should be left before a positive number
00504 produced by a signed conversion (d, or i).
00505 \c + A sign must always be placed before a number produced by a
00506 signed conversion. A + overrides a space if both are
00507 used.
00508
00509
00510 - An optional decimal digit string specifying a minimum field width.
00511 If the converted value has fewer characters than the field width, it
00512 will be padded with spaces on the left (or right, if the left-adjustment
00513 flag has been given) to fill out the field width.
00514 - An optional precision, in the form of a period . followed by an
00515 optional digit string. If the digit string is omitted, the
00516 precision is taken as zero. This gives the minimum number of
00517 digits to appear for d, i, o, u, x, and X conversions, or the
00518 maximum number of characters to be printed from a string for \c s
00519 conversions.
00520 - An optional \c l or \c h length modifier, that specifies that the
00521 argument for the d, i, o, u, x, or X conversion is a \c "long int"
00522 rather than \c int. The \c h is ignored, as \c "short int" is
00523 equivalent to \c int.
00524 - A character that specifies the type of conversion to be applied.
00525
00526 The conversion specifiers and their meanings are:
00527
00528 - \c diouxX The int (or appropriate variant) argument is converted
00529 to signed decimal (d and i), unsigned octal (o), unsigned
00530 decimal (u), or unsigned hexadecimal (x and X) notation.
00531 The letters "abcdef" are used for x conversions; the
00532 letters "ABCDEF" are used for X conversions. The
00533 precision, if any, gives the minimum number of digits that
00534 must appear; if the converted value requires fewer digits,

Generated by Doxygen

23.55 stdio.h 493

00535 it is padded on the left with zeros.
00536 - \c p The <tt>void *</tt> argument is taken as an unsigned integer,
00537 and converted similarly as a <tt>%\#x</tt> command would do.
00538 - \c c The \c int argument is converted to an \c "unsigned char", and the
00539 resulting character is written.
00540 - \c s The \c "char *" argument is expected to be a pointer to an array
00541 of character type (pointer to a string). Characters from
00542 the array are written up to (but not including) a
00543 terminating NUL character; if a precision is specified, no
00544 more than the number specified are written. If a precision
00545 is given, no null character need be present; if the
00546 precision is not specified, or is greater than the size of
00547 the array, the array must contain a terminating NUL
00548 character.
00549 - \c % A \c % is written. No argument is converted. The complete
00550 conversion specification is "%%".
00551 - \c eE The double argument is rounded and converted in the format
00552 \c "[-]d.ddde±dd" where there is one digit before the
00553 decimal-point character and the number of digits after it
00554 is equal to the precision; if the precision is missing, it
00555 is taken as 6; if the precision is zero, no decimal-point
00556 character appears. An \e E conversion uses the letter \c ’E’
00557 (rather than \c ’e’) to introduce the exponent. The exponent
00558 always contains two digits; if the value is zero,
00559 the exponent is 00.
00560 - \c fF The double argument is rounded and converted to decimal notation
00561 in the format \c "[-]ddd.ddd", where the number of digits after the
00562 decimal-point character is equal to the precision specification.
00563 If the precision is missing, it is taken as 6; if the precision
00564 is explicitly zero, no decimal-point character appears. If a
00565 decimal point appears, at least one digit appears before it.
00566 - \c gG The double argument is converted in style \c f or \c e (or
00567 \c F or \c E for \c G conversions). The precision
00568 specifies the number of significant digits. If the
00569 precision is missing, 6 digits are given; if the precision
00570 is zero, it is treated as 1. Style \c e is used if the
00571 exponent from its conversion is less than -4 or greater
00572 than or equal to the precision. Trailing zeros are removed
00573 from the fractional part of the result; a decimal point
00574 appears only if it is followed by at least one digit.
00575 - \c S Similar to the \c s format, except the pointer is expected to
00576 point to a program-memory (ROM) string instead of a RAM string.
00577
00578 In no case does a non-existent or small field width cause truncation of a
00579 numeric field; if the result of a conversion is wider than the field
00580 width, the field is expanded to contain the conversion result.
00581
00582 Since the full implementation of all the mentioned features becomes
00583 fairly large, three different flavours of vfprintf() can be
00584 selected using linker options. The default vfprintf() implements
00585 all the mentioned functionality except floating point conversions.
00586 A minimized version of vfprintf() is available that only implements
00587 the very basic integer and string conversion facilities, but only
00588 the \c # additional option can be specified using conversion
00589 flags (these flags are parsed correctly from the format
00590 specification, but then simply ignored). This version can be
00591 requested using the following \ref gcc_minusW "compiler options":
00592
00593 \code
00594 -Wl,-u,vfprintf -lprintf_min
00595 \endcode
00596
00597 If the full functionality including the floating point conversions
00598 is required, the following options should be used:
00599
00600 \code
00601 -Wl,-u,vfprintf -lprintf_flt -lm
00602 \endcode
00603
00604 \par Limitations:
00605 - The specified width and precision can be at most 255.
00606
00607 \par Notes:
00608 - For floating-point conversions, if you link default or minimized
00609 version of vfprintf(), the symbol \c ? will be output and double
00610 argument will be skipped. So you output below will not be crashed.
00611 For default version the width field and the "pad to left" (symbol
00612 minus) option will work in this case.
00613 - The \c hh length modifier is ignored (\c char argument is
00614 promouted to \c int). More exactly, this realization does not check
00615 the number of \c h symbols.
00616 - But the \c ll length modifier will to abort the output, as this
00617 realization does not operate \c long \c long arguments.
00618 - The variable width or precision field (an asterisk \c * symbol)
00619 is not realized and will to abort the output.
00620
00621 */

Generated by Doxygen

494

00622
00623 extern int vfprintf(FILE *__stream, const char *__fmt, va_list __ap);
00624
00625 /**
00626 Variant of \c vfprintf() that uses a \c fmt string that resides
00627 in program memory.
00628 */
00629 extern int vfprintf_P(FILE *__stream, const char *__fmt, va_list __ap);
00630
00631 /**
00632 The function \c fputc sends the character \c c (though given as type
00633 \c int) to \c stream. It returns the character, or \c EOF in case
00634 an error occurred.
00635 */
00636 extern int fputc(int __c, FILE *__stream);
00637
00638 #if !defined(__DOXYGEN__)
00639
00640 /* putc() function implementation, required by standard */
00641 extern int putc(int __c, FILE *__stream);
00642
00643 /* putchar() function implementation, required by standard */
00644 extern int putchar(int __c);
00645
00646 #endif /* not __DOXYGEN__ */
00647
00648 /**
00649 The macro \c putc used to be a "fast" macro implementation with a
00650 functionality identical to fputc(). For space constraints, in
00651 AVR-LibC, it is just an alias for \c fputc.
00652 */
00653 #define putc(__c, __stream) fputc(__c, __stream)
00654
00655 /**
00656 The macro \c putchar sends character \c c to \c stdout.
00657 */
00658 #define putchar(__c) fputc(__c, stdout)
00659
00660 /**
00661 The function \c printf performs formatted output to stream
00662 \c stdout. See \c vfprintf() for details.
00663 */
00664 extern int printf(const char *__fmt, ...);
00665
00666 /**
00667 Variant of \c printf() that uses a \c fmt string that resides
00668 in program memory.
00669 */
00670 extern int printf_P(const char *__fmt, ...);
00671
00672 /**
00673 The function \c vprintf performs formatted output to stream
00674 \c stdout, taking a variable argument list as in vfprintf().
00675
00676 See vfprintf() for details.
00677 */
00678 extern int vprintf(const char *__fmt, va_list __ap);
00679
00680 /**
00681 Variant of \c printf() that sends the formatted characters
00682 to string \c s.
00683 */
00684 extern int sprintf(char *__s, const char *__fmt, ...);
00685
00686 /**
00687 Variant of \c sprintf() that uses a \c fmt string that resides
00688 in program memory.
00689 */
00690 extern int sprintf_P(char *__s, const char *__fmt, ...);
00691
00692 /**
00693 Like \c sprintf(), but instead of assuming \c s to be of infinite
00694 size, no more than \c n characters (including the trailing NUL
00695 character) will be converted to \c s.
00696
00697 Returns the number of characters that would have been written to
00698 \c s if there were enough space.
00699 */
00700 extern int snprintf(char *__s, size_t __n, const char *__fmt, ...);
00701
00702 /**
00703 Variant of \c snprintf() that uses a \c fmt string that resides
00704 in program memory.
00705 */
00706 extern int snprintf_P(char *__s, size_t __n, const char *__fmt, ...);
00707
00708 /**

Generated by Doxygen

23.55 stdio.h 495

00709 Like \c sprintf() but takes a variable argument list for the
00710 arguments.
00711 */
00712 extern int vsprintf(char *__s, const char *__fmt, va_list ap);
00713
00714 /**
00715 Variant of \c vsprintf() that uses a \c fmt string that resides
00716 in program memory.
00717 */
00718 extern int vsprintf_P(char *__s, const char *__fmt, va_list ap);
00719
00720 /**
00721 Like \c vsprintf(), but instead of assuming \c s to be of infinite
00722 size, no more than \c n characters (including the trailing NUL
00723 character) will be converted to \c s.
00724
00725 Returns the number of characters that would have been written to
00726 \c s if there were enough space.
00727 */
00728 extern int vsnprintf(char *__s, size_t __n, const char *__fmt, va_list ap);
00729
00730 /**
00731 Variant of \c vsnprintf() that uses a \c fmt string that resides
00732 in program memory.
00733 */
00734 extern int vsnprintf_P(char *__s, size_t __n, const char *__fmt, va_list ap);
00735 /**
00736 The function \c fprintf performs formatted output to \c stream.
00737 See \c vfprintf() for details.
00738 */
00739 extern int fprintf(FILE *__stream, const char *__fmt, ...);
00740
00741 /**
00742 Variant of \c fprintf() that uses a \c fmt string that resides
00743 in program memory.
00744 */
00745 extern int fprintf_P(FILE *__stream, const char *__fmt, ...);
00746
00747 /**
00748 Write the string pointed to by \c str to stream \c stream.
00749
00750 Returns 0 on success and EOF on error.
00751 */
00752 extern int fputs(const char *__str, FILE *__stream);
00753
00754 /**
00755 Variant of fputs() where \c str resides in program memory.
00756 */
00757 extern int fputs_P(const char *__str, FILE *__stream);
00758
00759 /**
00760 Write the string pointed to by \c str, and a trailing newline
00761 character, to \c stdout.
00762 */
00763 extern int puts(const char *__str);
00764
00765 /**
00766 Variant of puts() where \c str resides in program memory.
00767 */
00768 extern int puts_P(const char *__str);
00769
00770 /**
00771 Write \c nmemb objects, \c size bytes each, to \c stream.
00772 The first byte of the first object is referenced by \c ptr.
00773
00774 Returns the number of objects successfully written, i. e.
00775 \c nmemb unless an output error occured.
00776 */
00777 extern size_t fwrite(const void *__ptr, size_t __size, size_t __nmemb,
00778 FILE *__stream);
00779
00780 /**
00781 The function \c fgetc reads a character from \c stream. It returns
00782 the character, or \c EOF in case end-of-file was encountered or an
00783 error occurred. The routines feof() or ferror() must be used to
00784 distinguish between both situations.
00785 */
00786 extern int fgetc(FILE *__stream);
00787
00788 #if !defined(__DOXYGEN__)
00789
00790 /* getc() function implementation, required by standard */
00791 extern int getc(FILE *__stream);
00792
00793 /* getchar() function implementation, required by standard */
00794 extern int getchar(void);
00795

Generated by Doxygen

496

00796 #endif /* not __DOXYGEN__ */
00797
00798 /**
00799 The macro \c getc used to be a "fast" macro implementation with a
00800 functionality identical to fgetc(). For space constraints, in
00801 AVR-LibC, it is just an alias for \c fgetc.
00802 */
00803 #define getc(__stream) fgetc(__stream)
00804
00805 /**
00806 The macro \c getchar reads a character from \c stdin. Return
00807 values and error handling is identical to fgetc().
00808 */
00809 #define getchar() fgetc(stdin)
00810
00811 /**
00812 The ungetc() function pushes the character \c c (converted to an
00813 unsigned char) back onto the input stream pointed to by \c stream.
00814 The pushed-back character will be returned by a subsequent read on
00815 the stream.
00816
00817 Currently, only a single character can be pushed back onto the
00818 stream.
00819
00820 The ungetc() function returns the character pushed back after the
00821 conversion, or \c EOF if the operation fails. If the value of the
00822 argument \c c character equals \c EOF, the operation will fail and
00823 the stream will remain unchanged.
00824 */
00825 extern int ungetc(int __c, FILE *__stream);
00826
00827 /**
00828 Read at most <tt>size - 1</tt> bytes from \c stream, until a
00829 newline character was encountered, and store the characters in the
00830 buffer pointed to by \c str. Unless an error was encountered while
00831 reading, the string will then be terminated with a \c NUL
00832 character.
00833
00834 If an error was encountered, the function returns NULL and sets the
00835 error flag of \c stream, which can be tested using ferror().
00836 Otherwise, a pointer to the string will be returned. */
00837 extern char *fgets(char *__str, int __size, FILE *__stream);
00838
00839 /**
00840 Similar to fgets() except that it will operate on stream \c stdin,
00841 and the trailing newline (if any) will not be stored in the string.
00842 It is the caller’s responsibility to provide enough storage to hold
00843 the characters read. */
00844 extern char *gets(char *__str);
00845
00846 /**
00847 Read \c nmemb objects, \c size bytes each, from \c stream,
00848 to the buffer pointed to by \c ptr.
00849
00850 Returns the number of objects successfully read, i. e.
00851 \c nmemb unless an input error occured or end-of-file was
00852 encountered. feof() and ferror() must be used to distinguish
00853 between these two conditions.
00854 */
00855 extern size_t fread(void *__ptr, size_t __size, size_t __nmemb,
00856 FILE *__stream);
00857
00858 /**
00859 Clear the error and end-of-file flags of \c stream.
00860 */
00861 extern void clearerr(FILE *__stream);
00862
00863 #if !defined(__DOXYGEN__)
00864 /* fast inlined version of clearerr() */
00865 #define clearerror(s) do { (s)->flags &= ~(__SERR | __SEOF); } while(0)
00866 #endif /* !defined(__DOXYGEN__) */
00867
00868 /**
00869 Test the end-of-file flag of \c stream. This flag can only be cleared
00870 by a call to clearerr().
00871 */
00872 extern int feof(FILE *__stream);
00873
00874 #if !defined(__DOXYGEN__)
00875 /* fast inlined version of feof() */
00876 #define feof(s) ((s)->flags & __SEOF)
00877 #endif /* !defined(__DOXYGEN__) */
00878
00879 /**
00880 Test the error flag of \c stream. This flag can only be cleared
00881 by a call to clearerr().
00882 */

Generated by Doxygen

23.55 stdio.h 497

00883 extern int ferror(FILE *__stream);
00884
00885 #if !defined(__DOXYGEN__)
00886 /* fast inlined version of ferror() */
00887 #define ferror(s) ((s)->flags & __SERR)
00888 #endif /* !defined(__DOXYGEN__) */
00889
00890 extern int vfscanf(FILE *__stream, const char *__fmt, va_list __ap);
00891
00892 /**
00893 Variant of vfscanf() using a \c fmt string in program memory.
00894 */
00895 extern int vfscanf_P(FILE *__stream, const char *__fmt, va_list __ap);
00896
00897 /**
00898 The function \c fscanf performs formatted input, reading the
00899 input data from \c stream.
00900
00901 See vfscanf() for details.
00902 */
00903 extern int fscanf(FILE *__stream, const char *__fmt, ...);
00904
00905 /**
00906 Variant of fscanf() using a \c fmt string in program memory.
00907 */
00908 extern int fscanf_P(FILE *__stream, const char *__fmt, ...);
00909
00910 /**
00911 The function \c scanf performs formatted input from stream \c stdin.
00912
00913 See vfscanf() for details.
00914 */
00915 extern int scanf(const char *__fmt, ...);
00916
00917 /**
00918 Variant of scanf() where \c fmt resides in program memory.
00919 */
00920 extern int scanf_P(const char *__fmt, ...);
00921
00922 /**
00923 The function \c vscanf performs formatted input from stream
00924 \c stdin, taking a variable argument list as in vfscanf().
00925
00926 See vfscanf() for details.
00927 */
00928 extern int vscanf(const char *__fmt, va_list __ap);
00929
00930 /**
00931 The function \c sscanf performs formatted input, reading the
00932 input data from the buffer pointed to by \c buf.
00933
00934 See vfscanf() for details.
00935 */
00936 extern int sscanf(const char *__buf, const char *__fmt, ...);
00937
00938 /**
00939 Variant of sscanf() using a \c fmt string in program memory.
00940 */
00941 extern int sscanf_P(const char *__buf, const char *__fmt, ...);
00942
00943 #if defined(__DOXYGEN__)
00944 /**
00945 Flush \c stream.
00946
00947 This is a null operation provided for source-code compatibility
00948 only, as the standard IO implementation currently does not perform
00949 any buffering.
00950 */
00951 extern int fflush(FILE *stream);
00952 #else
00953 static __inline__ int fflush(FILE *stream __attribute__((unused)))
00954 {
00955 return 0;
00956 }
00957 #endif
00958
00959 #ifndef __DOXYGEN__
00960 /* only mentioned for libstdc++ support, not implemented in library */
00961 #define BUFSIZ 1024
00962 #define _IONBF 0
00963 __extension__ typedef long long fpos_t;
00964 extern int fgetpos(FILE *stream, fpos_t *pos);
00965 extern FILE *fopen(const char *path, const char *mode);
00966 extern FILE *freopen(const char *path, const char *mode, FILE *stream);
00967 extern FILE *fdopen(int, const char *);
00968 extern int fseek(FILE *stream, long offset, int whence);
00969 extern int fsetpos(FILE *stream, fpos_t *pos);

Generated by Doxygen

498

00970 extern long ftell(FILE *stream);
00971 extern int fileno(FILE *);
00972 extern void perror(const char *s);
00973 extern int remove(const char *pathname);
00974 extern int rename(const char *oldpath, const char *newpath);
00975 extern void rewind(FILE *stream);
00976 extern void setbuf(FILE *stream, char *buf);
00977 extern int setvbuf(FILE *stream, char *buf, int mode, size_t size);
00978 extern FILE *tmpfile(void);
00979 extern char *tmpnam (char *s);
00980 #endif /* !__DOXYGEN__ */
00981
00982 #ifdef __cplusplus
00983 }
00984 #endif
00985
00986 /**@}*/
00987
00988 #ifndef __DOXYGEN__
00989 /*
00990 * The following constants are currently not used by AVR-LibC’s
00991 * stdio subsystem. They are defined here since the gcc build
00992 * environment expects them to be here.
00993 */
00994 #define SEEK_SET 0
00995 #define SEEK_CUR 1
00996 #define SEEK_END 2
00997
00998 #endif
00999
01000 #endif /* __ASSEMBLER */
01001
01002 #endif /* _STDIO_H_ */

23.56 stdlib.h File Reference

Data Structures

• struct div_t
• struct ldiv_t

Macros

• #define RAND_MAX 0x7FFF

Typedefs

• typedef int(∗ __compar_fn_t) (const void ∗, const void ∗)

Functions

• void abort (void)
• int abs (int __i)
• long labs (long __i)
• void ∗ bsearch (const void ∗__key, const void ∗__base, size_t __nmemb, size_t __size, int(∗__compar)(const

void ∗, const void ∗))
• div_t div (int __num, int __denom) __asm__("__divmodhi4")
• ldiv_t ldiv (long __num, long __denom) __asm__("__divmodsi4")
• void qsort (void ∗__base, size_t __nmemb, size_t __size, __compar_fn_t __compar)
• long strtol (const char ∗__nptr, char ∗∗__endptr, int __base)
• unsigned long strtoul (const char ∗__nptr, char ∗∗__endptr, int __base)
• long atol (const char ∗__s)
• int atoi (const char ∗__s)

Generated by Doxygen

23.56 stdlib.h File Reference 499

• void exit (int __status)
• void ∗ malloc (size_t __size)
• void free (void ∗__ptr)
• void ∗ calloc (size_t __nele, size_t __size)
• void ∗ realloc (void ∗__ptr, size_t __size)
• float strtof (const char ∗__nptr, char ∗∗__endptr)
• double strtod (const char ∗__nptr, char ∗∗__endptr)
• long double strtold (const char ∗__nptr, char ∗∗__endptr)
• int atexit (void(∗func)(void))
• float atoff (const char ∗__nptr)
• double atof (const char ∗__nptr)
• long double atofl (const char ∗__nptr)
• int rand (void)
• void srand (unsigned int __seed)
• int rand_r (unsigned long ∗__ctx)

Variables

• size_t __malloc_margin
• char ∗ __malloc_heap_start
• char ∗ __malloc_heap_end

Non-standard (i.e. non-ISO C) functions.

• #define RANDOM_MAX 0x7FFFFFFF
• char ∗ itoa (int val, char ∗s, int radix)
• char ∗ ltoa (long val, char ∗s, int radix)
• char ∗ utoa (unsigned int val, char ∗s, int radix)
• char ∗ ultoa (unsigned long val, char ∗s, int radix)
• long random (void)
• void srandom (unsigned long __seed)
• long random_r (unsigned long ∗__ctx)

Conversion functions for double arguments.

• #define DTOSTR_ALWAYS_SIGN 0x01 /∗ put '+' or ' ' for positives ∗/
• #define DTOSTR_PLUS_SIGN 0x02 /∗ put '+' rather than ' ' ∗/
• #define DTOSTR_UPPERCASE 0x04 /∗ put 'E' rather 'e' ∗/
• #define EXIT_SUCCESS 0
• #define EXIT_FAILURE 1
• char ∗ ftostre (float __val, char ∗__s, unsigned char __prec, unsigned char __flags)
• char ∗ dtostre (double __val, char ∗__s, unsigned char __prec, unsigned char __flags)
• char ∗ ldtostre (long double __val, char ∗__s, unsigned char __prec, unsigned char __flags)
• char ∗ ftostrf (float __val, signed char __width, unsigned char __prec, char ∗__s)
• char ∗ dtostrf (double __val, signed char __width, unsigned char __prec, char ∗__s)
• char ∗ ldtostrf (long double __val, signed char __width, unsigned char __prec, char ∗__s)

Generated by Doxygen

500

23.57 stdlib.h

Go to the documentation of this file.
00001 /* Copyright (c) 2002, Marek Michalkiewicz
00002 Copyright (c) 2004,2007 Joerg Wunsch
00003
00004 Portions of documentation Copyright (c) 1990, 1991, 1993, 1994
00005 The Regents of the University of California.
00006
00007 All rights reserved.
00008
00009 Redistribution and use in source and binary forms, with or without
00010 modification, are permitted provided that the following conditions are met:
00011
00012 * Redistributions of source code must retain the above copyright
00013 notice, this list of conditions and the following disclaimer.
00014
00015 * Redistributions in binary form must reproduce the above copyright
00016 notice, this list of conditions and the following disclaimer in
00017 the documentation and/or other materials provided with the
00018 distribution.
00019
00020 * Neither the name of the copyright holders nor the names of
00021 contributors may be used to endorse or promote products derived
00022 from this software without specific prior written permission.
00023
00024 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00025 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00026 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00027 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00028 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00029 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00030 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00031 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00032 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00033 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00034 POSSIBILITY OF SUCH DAMAGE.
00035
00036 Id
00037 */
00038
00039 #ifndef _STDLIB_H_
00040 #define _STDLIB_H_ 1
00041
00042 #ifndef __ASSEMBLER__
00043
00044 #ifndef __DOXYGEN__
00045 #define __need_NULL
00046 #define __need_size_t
00047 #define __need_wchar_t
00048 #include <stddef.h>
00049
00050 #ifndef __ptr_t
00051 #define __ptr_t void *
00052 #endif
00053 #endif /* !__DOXYGEN__ */
00054
00055 #ifdef __cplusplus
00056 extern "C" {
00057 #endif
00058
00059 /** \file */
00060
00061 /** \defgroup avr_stdlib <stdlib.h>: General utilities
00062 \code #include <stdlib.h> \endcode
00063
00064 This file declares some basic C macros and functions as
00065 defined by the ISO standard, plus some AVR-specific extensions.
00066 */
00067
00068 /** \ingroup avr_stdlib */
00069 /**@{*/
00070 /** Result type for function div(). */
00071 typedef struct {
00072 int quot; /**< The Quotient. */
00073 int rem; /**< The Remainder. */
00074 } div_t;
00075
00076 /** Result type for function ldiv(). */
00077 typedef struct {
00078 long quot; /**< The Quotient. */
00079 long rem; /**< The Remainder. */
00080 } ldiv_t;
00081
00082 /** Comparision function type for qsort(), just for convenience. */
00083 typedef int (*__compar_fn_t)(const void *, const void *);

Generated by Doxygen

23.57 stdlib.h 501

00084
00085 #ifndef __DOXYGEN__
00086
00087 #ifndef __ATTR_CONST__
00088 # define __ATTR_CONST__ __attribute__((__const__))
00089 #endif
00090
00091 #ifndef __ATTR_MALLOC__
00092 # define __ATTR_MALLOC__ __attribute__((__malloc__))
00093 #endif
00094
00095 #ifndef __ATTR_NORETURN__
00096 # define __ATTR_NORETURN__ __attribute__((__noreturn__))
00097 #endif
00098
00099 #ifndef __ATTR_PURE__
00100 # define __ATTR_PURE__ __attribute__((__pure__))
00101 #endif
00102
00103 #ifndef __ATTR_GNU_INLINE__
00104 # ifdef __GNUC_STDC_INLINE__
00105 # define __ATTR_GNU_INLINE__ __attribute__((__gnu_inline__))
00106 # else
00107 # define __ATTR_GNU_INLINE__
00108 # endif
00109 #endif
00110
00111 #ifndef __ATTR_ALWAYS_INLINE__
00112 #define __ATTR_ALWAYS_INLINE__ __inline__ __attribute__((__always_inline__))
00113 #endif
00114
00115 #endif
00116
00117 /** The abort() function causes abnormal program termination to occur.
00118 This realization disables interrupts and jumps to _exit() function
00119 with argument equal to 1. In the limited AVR environment, execution is
00120 effectively halted by entering an infinite loop. */
00121 extern void abort(void) __ATTR_NORETURN__;
00122
00123 #ifndef __DOXYGEN__
00124 static __ATTR_ALWAYS_INLINE__
00125 int abs (int __i)
00126 {
00127 return __builtin_abs (__i);
00128 }
00129 #endif
00130 /** The abs() function computes the absolute value of the integer \c i.
00131 \note The abs() and labs() functions are builtins of gcc.
00132 */
00133 extern int abs(int __i) __ATTR_CONST__;
00134
00135 #ifndef __DOXYGEN__
00136 static __ATTR_ALWAYS_INLINE__
00137 long labs (long __i)
00138 {
00139 return __builtin_labs (__i);
00140 }
00141 #endif
00142 /** The labs() function computes the absolute value of the long integer
00143 \c i.
00144 \note The abs() and labs() functions are builtins of gcc.
00145 */
00146 extern long labs(long __i) __ATTR_CONST__;
00147
00148 /**
00149 The bsearch() function searches an array of \c nmemb objects, the
00150 initial member of which is pointed to by \c base, for a member
00151 that matches the object pointed to by \c key. The size of each
00152 member of the array is specified by \c size.
00153
00154 The contents of the array should be in ascending sorted order
00155 according to the comparison function referenced by \c compar.
00156 The \c compar routine is expected to have two arguments which
00157 point to the key object and to an array member, in that order,
00158 and should return an integer less than, equal to, or greater than
00159 zero if the key object is found, respectively, to be less than,
00160 to match, or be greater than the array member.
00161
00162 The bsearch() function returns a pointer to a matching member of
00163 the array, or a null pointer if no match is found. If two
00164 members compare as equal, which member is matched is unspecified.
00165 */
00166 extern void *bsearch(const void *__key, const void *__base, size_t __nmemb,
00167 size_t __size, int (*__compar)(const void *, const void *));
00168
00169 /* __divmodhi4 and __divmodsi4 from libgcc.a */
00170 /**

Generated by Doxygen

502

00171 The div() function computes the value \c num/denom and returns
00172 the quotient and remainder in a structure named \c div_t that
00173 contains two int members named \c quot and \c rem.
00174 */
00175 extern div_t div(int __num, int __denom) __asm__("__divmodhi4") __ATTR_CONST__;
00176 /**
00177 The ldiv() function computes the value \c num/denom and returns
00178 the quotient and remainder in a structure named \c ldiv_t that
00179 contains two long integer members named \c quot and \c rem.
00180 */
00181 extern ldiv_t ldiv(long __num, long __denom) __asm__("__divmodsi4") __ATTR_CONST__;
00182
00183 /**
00184 The qsort() function is a modified partition-exchange sort, or
00185 quicksort.
00186
00187 The qsort() function sorts an array of \c nmemb objects, the
00188 initial member of which is pointed to by \c base. The size of
00189 each object is specified by \c size. The contents of the array
00190 base are sorted in ascending order according to a comparison
00191 function pointed to by \c compar, which requires two arguments
00192 pointing to the objects being compared.
00193
00194 The comparison function must return an integer less than, equal
00195 to, or greater than zero if the first argument is considered to
00196 be respectively less than, equal to, or greater than the second.
00197 */
00198 extern void qsort(void *__base, size_t __nmemb, size_t __size,
00199 __compar_fn_t __compar);
00200
00201 /**
00202 The strtol() function converts the string in \c nptr to a long
00203 value. The conversion is done according to the given base, which
00204 must be between 2 and 36 inclusive, or be the special value 0.
00205
00206 The string may begin with an arbitrary amount of white space (as
00207 determined by isspace()) followed by a single optional \c ’+’ or \c ’-’
00208 sign. If \c base is zero or 16, the string may then include a
00209 \c "0x" prefix, and the number will be read in base 16; otherwise,
00210 a zero base is taken as 10 (decimal) unless the next character is
00211 \c ’0’, in which case it is taken as 8 (octal).
00212
00213 The remainder of the string is converted to a long value in the
00214 obvious manner, stopping at the first character which is not a
00215 valid digit in the given base. (In bases above 10, the letter \c ’A’
00216 in either upper or lower case represents 10, \c ’B’ represents 11,
00217 and so forth, with \c ’Z’ representing 35.)
00218
00219 If \c endptr is not NULL, strtol() stores the address of the first
00220 invalid character in \c *endptr. If there were no digits at all,
00221 however, strtol() stores the original value of \c nptr in \c
00222 *endptr. (Thus, if \c *nptr is not \c ’\\0’ but \c **endptr is \c ’\\0’
00223 on return, the entire string was valid.)
00224
00225 The strtol() function returns the result of the conversion, unless
00226 the value would underflow or overflow. If no conversion could be
00227 performed, 0 is returned. If an overflow or underflow occurs, \c
00228 errno is set to \ref avr_errno "ERANGE" and the function return value
00229 is clamped to \c LONG_MIN or \c LONG_MAX, respectively.
00230 */
00231 extern long strtol(const char *__nptr, char **__endptr, int __base);
00232
00233 /**
00234 The strtoul() function converts the string in \c nptr to an
00235 unsigned long value. The conversion is done according to the
00236 given base, which must be between 2 and 36 inclusive, or be the
00237 special value 0.
00238
00239 The string may begin with an arbitrary amount of white space (as
00240 determined by isspace()) followed by a single optional \c ’+’ or \c ’-’
00241 sign. If \c base is zero or 16, the string may then include a
00242 \c "0x" prefix, and the number will be read in base 16; otherwise,
00243 a zero base is taken as 10 (decimal) unless the next character is
00244 \c ’0’, in which case it is taken as 8 (octal).
00245
00246 The remainder of the string is converted to an unsigned long value
00247 in the obvious manner, stopping at the first character which is
00248 not a valid digit in the given base. (In bases above 10, the
00249 letter \c ’A’ in either upper or lower case represents 10, \c ’B’
00250 represents 11, and so forth, with \c ’Z’ representing 35.)
00251
00252 If \c endptr is not NULL, strtoul() stores the address of the first
00253 invalid character in \c *endptr. If there were no digits at all,
00254 however, strtoul() stores the original value of \c nptr in \c
00255 *endptr. (Thus, if \c *nptr is not \c ’\\0’ but \c **endptr is \c ’\\0’
00256 on return, the entire string was valid.)
00257

Generated by Doxygen

23.57 stdlib.h 503

00258 The strtoul() function return either the result of the conversion
00259 or, if there was a leading minus sign, the negation of the result
00260 of the conversion, unless the original (non-negated) value would
00261 overflow; in the latter case, strtoul() returns ULONG_MAX, and \c
00262 errno is set to \ref avr_errno "ERANGE". If no conversion could
00263 be performed, 0 is returned.
00264 */
00265 extern unsigned long strtoul(const char *__nptr, char **__endptr, int __base);
00266
00267 /**
00268 The atol() function converts the initial portion of the string
00269 pointed to by \p s to long integer representation. In contrast to
00270
00271 \code strtol(s, (char **)NULL, 10); \endcode
00272
00273 this function does not detect overflow (\c errno is not changed and
00274 the result value is not predictable), uses smaller memory (flash and
00275 stack) and works more quickly.
00276 */
00277 extern long atol(const char *__s) __ATTR_PURE__;
00278
00279 /**
00280 The atoi() function converts the initial portion of the string
00281 pointed to by \p s to integer representation. In contrast to
00282
00283 \code (int)strtol(s, (char **)NULL, 10); \endcode
00284
00285 this function does not detect overflow (\c errno is not changed and
00286 the result value is not predictable), uses smaller memory (flash and
00287 stack) and works more quickly.
00288 */
00289 extern int atoi(const char *__s) __ATTR_PURE__;
00290
00291 /**
00292 The exit() function terminates the application. Since there is no
00293 environment to return to, \c status is ignored, and code execution
00294 will eventually reach an infinite loop, thereby effectively halting
00295 all code processing. Before entering the infinite loop, interrupts
00296 are globally disabled.
00297
00298 Global destructors will be called before halting
00299 execution, see the \ref sec_dot_fini ".fini" sections.
00300 */
00301 extern void exit(int __status) __ATTR_NORETURN__;
00302
00303 /**
00304 The malloc() function allocates \c size bytes of memory.
00305 If malloc() fails, a NULL pointer is returned.
00306
00307 Note that malloc() does \e not initialize the returned memory to
00308 zero bytes.
00309
00310 See the chapter about \ref malloc "malloc() usage" for implementation
00311 details.
00312 */
00313 extern void *malloc(size_t __size) __ATTR_MALLOC__;
00314
00315 /**
00316 The free() function causes the allocated memory referenced by \c
00317 ptr to be made available for future allocations. If \c ptr is
00318 NULL, no action occurs.
00319 */
00320 extern void free(void *__ptr);
00321
00322 /**
00323 \c malloc() \ref malloc_tunables "tunable".
00324 */
00325 extern size_t __malloc_margin;
00326
00327 /**
00328 \c malloc() \ref malloc_tunables "tunable".
00329 */
00330 extern char *__malloc_heap_start;
00331
00332 /**
00333 \c malloc() \ref malloc_tunables "tunable".
00334 */
00335 extern char *__malloc_heap_end;
00336
00337 /**
00338 Allocate \c nele elements of \c size each. Identical to calling
00339 \c malloc() using <tt>nele * size</tt> as argument, except the
00340 allocated memory will be cleared to zero.
00341 */
00342 extern void *calloc(size_t __nele, size_t __size) __ATTR_MALLOC__;
00343
00344 /**

Generated by Doxygen

504

00345 The realloc() function tries to change the size of the region
00346 allocated at \c ptr to the new \c size value. It returns a
00347 pointer to the new region. The returned pointer might be the
00348 same as the old pointer, or a pointer to a completely different
00349 region.
00350
00351 The contents of the returned region up to either the old or the new
00352 size value (whatever is less) will be identical to the contents of
00353 the old region, even in case a new region had to be allocated.
00354
00355 It is acceptable to pass \c ptr as NULL, in which case realloc()
00356 will behave identical to malloc().
00357
00358 If the new memory cannot be allocated, realloc() returns NULL, and
00359 the region at \c ptr will not be changed.
00360 */
00361 extern void *realloc(void *__ptr, size_t __size) __ATTR_MALLOC__;
00362
00363 extern float strtof(const char *__nptr, char **__endptr);
00364 /** \ingroup avr_stdlib
00365 The strtod() function is similar to strtof(), except that the conversion
00366 result is of type \c double instead of \c float.
00367
00368 strtod() is currently only supported when \c double is a 32-bit type. */
00369 extern double strtod(const char *__nptr, char **__endptr);
00370 /** \ingroup avr_stdlib
00371 The strtold() function is similar to strtof(), except that the conversion
00372 result is of type \c long \c double instead of \c float.
00373
00374 strtold() is currently only supported when \c long \c double is a
00375 32-bit type. */
00376 extern long double strtold(const char *__nptr, char **__endptr);
00377
00378 /**
00379 \ingroup avr_stdlib
00380 The atexit() function registers function \a func to be run as part of
00381 the \c exit() function during \ref sec_dot_fini ".fini8".
00382 atexit() calls malloc().
00383 */
00384 extern int atexit(void (*func)(void));
00385
00386 /** \ingroup avr_stdlib
00387 \fn float atoff (const char *nptr)
00388
00389 The atoff() function converts the initial portion of the string pointed
00390 to by \a nptr to \c float representation.
00391
00392 It is equivalent to calling
00393 \code strtof(nptr, (char**) 0); \endcode */
00394 extern float atoff(const char *__nptr);
00395 /** \ingroup avr_stdlib
00396 \fn double atof (const char *nptr)
00397
00398 The atof() function converts the initial portion of the string pointed
00399 to by \a nptr to \c double representation.
00400
00401 It is equivalent to calling
00402 \code strtod(nptr, (char**) 0); \endcode */
00403 extern double atof(const char *__nptr);
00404 /** \ingroup avr_stdlib
00405 \fn long double atofl (const char *nptr)
00406
00407 The atofl() function converts the initial portion of the string pointed
00408 to by \a nptr to \c long \c double representation.
00409
00410 It is equivalent to calling
00411 \code strtold(nptr, (char**) 0); \endcode */
00412 extern long double atofl(const char *__nptr);
00413
00414 /** Highest number that can be generated by rand(). */
00415 #define RAND_MAX 0x7FFF
00416
00417 /**
00418 The rand() function computes a sequence of pseudo-random integers in the
00419 range of 0 to \c RAND_MAX (as defined by the header file <stdlib.h>).
00420
00421 The srand() function sets its argument \c seed as the seed for a new
00422 sequence of pseudo-random numbers to be returned by rand(). These
00423 sequences are repeatable by calling srand() with the same seed value.
00424
00425 If no seed value is provided, the functions are automatically seeded with
00426 a value of 1.
00427
00428 In compliance with the C standard, these functions operate on
00429 \c int arguments. Since the underlying algorithm already uses
00430 32-bit calculations, this causes a loss of precision. See
00431 \c random() for an alternate set of functions that retains full

Generated by Doxygen

23.57 stdlib.h 505

00432 32-bit precision.
00433 */
00434 extern int rand(void);
00435 /**
00436 Pseudo-random number generator seeding; see rand().
00437 */
00438 extern void srand(unsigned int __seed);
00439
00440 /**
00441 Variant of rand() that stores the context in the user-supplied
00442 variable located at \c ctx instead of a static library variable
00443 so the function becomes re-entrant.
00444 */
00445 extern int rand_r(unsigned long *__ctx);
00446 /**@}*/
00447
00448 /**@{*/
00449 /** \name Non-standard (i.e. non-ISO C) functions.
00450 \ingroup avr_stdlib
00451 */
00452 /**
00453 \brief Convert an integer to a string.
00454
00455 The function itoa() converts the integer value from \c val into an
00456 ASCII representation that will be stored under \c s. The caller
00457 is responsible for providing sufficient storage in \c s.
00458
00459 \note The minimal size of the buffer \c s depends on the choice of
00460 radix. For example, if the radix is 2 (binary), you need to supply a buffer
00461 with a minimal length of 8 * sizeof (int) + 1 characters, i.e. one
00462 character for each bit plus one for the string terminator. Using a larger
00463 radix will require a smaller minimal buffer size.
00464
00465 \warning If the buffer is too small, you risk a buffer overflow.
00466
00467 Conversion is done using the \c radix as base, which may be a
00468 number between 2 (binary conversion) and up to 36. If \c radix
00469 is greater than 10, the next digit after \c ’9’ will be the letter
00470 \c ’a’.
00471
00472 If radix is 10 and val is negative, a minus sign will be prepended.
00473
00474 The itoa() function returns the pointer passed as \c s.
00475 */
00476 #ifdef __DOXYGEN__
00477 extern char *itoa(int val, char *s, int radix);
00478 #else
00479 extern __inline__ __ATTR_GNU_INLINE__
00480 char *itoa (int __val, char *__s, int __radix)
00481 {
00482 if (!__builtin_constant_p (__radix)) {
00483 extern char *__itoa (int, char *, int);
00484 return __itoa (__val, __s, __radix);
00485 } else if (__radix < 2 || __radix > 36) {
00486 *__s = 0;
00487 return __s;
00488 } else {
00489 extern char *__itoa_ncheck (int, char *, unsigned char);
00490 return __itoa_ncheck (__val, __s, __radix);
00491 }
00492 }
00493 #endif
00494
00495 /**
00496 \ingroup avr_stdlib
00497
00498 \brief Convert a long integer to a string.
00499
00500 The function ltoa() converts the long integer value from \c val into an
00501 ASCII representation that will be stored under \c s. The caller
00502 is responsible for providing sufficient storage in \c s.
00503
00504 \note The minimal size of the buffer \c s depends on the choice of
00505 radix. For example, if the radix is 2 (binary), you need to supply a buffer
00506 with a minimal length of 8 * sizeof (long int) + 1 characters, i.e. one
00507 character for each bit plus one for the string terminator. Using a larger
00508 radix will require a smaller minimal buffer size.
00509
00510 \warning If the buffer is too small, you risk a buffer overflow.
00511
00512 Conversion is done using the \c radix as base, which may be a
00513 number between 2 (binary conversion) and up to 36. If \c radix
00514 is greater than 10, the next digit after \c ’9’ will be the letter
00515 \c ’a’.
00516
00517 If radix is 10 and val is negative, a minus sign will be prepended.
00518

Generated by Doxygen

506

00519 The ltoa() function returns the pointer passed as \c s.
00520 */
00521 #ifdef __DOXYGEN__
00522 extern char *ltoa(long val, char *s, int radix);
00523 #else
00524 extern __inline__ __ATTR_GNU_INLINE__
00525 char *ltoa (long __val, char *__s, int __radix)
00526 {
00527 if (!__builtin_constant_p (__radix))
00528 {
00529 extern char *__ltoa (long, char *, int);
00530 return __ltoa (__val, __s, __radix);
00531 }
00532 else if (__radix < 2 || __radix > 36)
00533 {
00534 *__s = 0;
00535 return __s;
00536 }
00537 else
00538 {
00539 extern char *__ltoa_ncheck (long, char *, unsigned char);
00540 return __ltoa_ncheck (__val, __s, __radix);
00541 }
00542 }
00543 #endif
00544
00545 /**
00546 \ingroup avr_stdlib
00547
00548 \brief Convert an unsigned integer to a string.
00549
00550 The function utoa() converts the unsigned integer value from \c val into an
00551 ASCII representation that will be stored under \c s. The caller
00552 is responsible for providing sufficient storage in \c s.
00553
00554 \note The minimal size of the buffer \c s depends on the choice of
00555 radix. For example, if the radix is 2 (binary), you need to supply a buffer
00556 with a minimal length of 8 * sizeof (unsigned int) + 1 characters, i.e. one
00557 character for each bit plus one for the string terminator. Using a larger
00558 radix will require a smaller minimal buffer size.
00559
00560 \warning If the buffer is too small, you risk a buffer overflow.
00561
00562 Conversion is done using the \c radix as base, which may be a
00563 number between 2 (binary conversion) and up to 36. If \c radix
00564 is greater than 10, the next digit after \c ’9’ will be the letter
00565 \c ’a’.
00566
00567 The utoa() function returns the pointer passed as \c s.
00568 */
00569 #ifdef __DOXYGEN__
00570 extern char *utoa(unsigned int val, char *s, int radix);
00571 #else
00572 extern __inline__ __ATTR_GNU_INLINE__
00573 char *utoa (unsigned int __val, char *__s, int __radix)
00574 {
00575 if (!__builtin_constant_p (__radix))
00576 {
00577 extern char *__utoa (unsigned int, char *, int);
00578 return __utoa (__val, __s, __radix);
00579 }
00580 else if (__radix < 2 || __radix > 36)
00581 {
00582 *__s = 0;
00583 return __s;
00584 }
00585 else
00586 {
00587 extern char *__utoa_ncheck (unsigned int, char *, unsigned char);
00588 return __utoa_ncheck (__val, __s, __radix);
00589 }
00590 }
00591 #endif
00592
00593 /**
00594 \ingroup avr_stdlib
00595 \brief Convert an unsigned long integer to a string.
00596
00597 The function ultoa() converts the unsigned long integer value from
00598 \c val into an ASCII representation that will be stored under \c s.
00599 The caller is responsible for providing sufficient storage in \c s.
00600
00601 \note The minimal size of the buffer \c s depends on the choice of
00602 radix. For example, if the radix is 2 (binary), you need to supply a buffer
00603 with a minimal length of 8 * sizeof (unsigned long int) + 1 characters,
00604 i.e. one character for each bit plus one for the string terminator. Using a
00605 larger radix will require a smaller minimal buffer size.

Generated by Doxygen

23.57 stdlib.h 507

00606
00607 \warning If the buffer is too small, you risk a buffer overflow.
00608
00609 Conversion is done using the \c radix as base, which may be a
00610 number between 2 (binary conversion) and up to 36. If \c radix
00611 is greater than 10, the next digit after \c ’9’ will be the letter
00612 \c ’a’.
00613
00614 The ultoa() function returns the pointer passed as \c s.
00615 */
00616 #ifdef __DOXYGEN__
00617 extern char *ultoa(unsigned long val, char *s, int radix);
00618 #else
00619 extern __inline__ __ATTR_GNU_INLINE__
00620 char *ultoa (unsigned long __val, char *__s, int __radix)
00621 {
00622 if (!__builtin_constant_p (__radix)) {
00623 extern char *__ultoa (unsigned long, char *, int);
00624 return __ultoa (__val, __s, __radix);
00625 } else if (__radix < 2 || __radix > 36) {
00626 *__s = 0;
00627 return __s;
00628 } else {
00629 extern char *__ultoa_ncheck (unsigned long, char *, unsigned char);
00630 return __ultoa_ncheck (__val, __s, __radix);
00631 }
00632 }
00633 #endif
00634
00635 /** \ingroup avr_stdlib
00636 Highest number that can be generated by random(). */
00637 #define RANDOM_MAX 0x7FFFFFFF
00638
00639 /**
00640 \ingroup avr_stdlib
00641 The random() function computes a sequence of pseudo-random integers in the
00642 range of 0 to \c RANDOM_MAX (as defined by the header file <stdlib.h>).
00643
00644 The srandom() function sets its argument \c seed as the seed for a new
00645 sequence of pseudo-random numbers to be returned by rand(). These
00646 sequences are repeatable by calling srandom() with the same seed value.
00647
00648 If no seed value is provided, the functions are automatically seeded with
00649 a value of 1.
00650 */
00651 extern long random(void);
00652 /**
00653 \ingroup avr_stdlib
00654 Pseudo-random number generator seeding; see random().
00655 */
00656 extern void srandom(unsigned long __seed);
00657
00658 /**
00659 \ingroup avr_stdlib
00660 Variant of random() that stores the context in the user-supplied
00661 variable located at \c ctx instead of a static library variable
00662 so the function becomes re-entrant.
00663 */
00664 extern long random_r(unsigned long *__ctx);
00665 #endif /* __ASSEMBLER */
00666 /**@}*/
00667
00668 /**@{*/
00669 /** \name Conversion functions for double arguments. */
00670 /** \ingroup avr_stdlib
00671 Bit value that can be passed in \c flags to ftostre(),
00672 dtostre() and ldtostre(). */
00673 #define DTOSTR_ALWAYS_SIGN 0x01 /* put ’+’ or ’ ’ for positives */
00674 /** \ingroup avr_stdlib
00675 Bit value that can be passed in \c flags to ftostre(),
00676 dtostre() and ldtostre(). */
00677 #define DTOSTR_PLUS_SIGN 0x02 /* put ’+’ rather than ’ ’ */
00678 /** \ingroup avr_stdlib
00679 Bit value that can be passed in \c flags to ftostre(),
00680 dtostre() and ldtostre(). */
00681 #define DTOSTR_UPPERCASE 0x04 /* put ’E’ rather ’e’ */
00682
00683 #ifndef __ASSEMBLER__
00684
00685 /**
00686 \ingroup avr_stdlib
00687 The ftostre() function converts the \c float value passed in \c val into
00688 an ASCII representation that will be stored under \c s. The caller
00689 is responsible for providing sufficient storage in \c s.
00690
00691 Conversion is done in the format
00692 <tt>"[-]d.ddde±dd"</tt> where there is

Generated by Doxygen

508

00693 one digit before the decimal-point character and the number of
00694 digits after it is equal to the precision \c prec; if the precision
00695 is zero, no decimal-point character appears. If \c flags has the
00696 #DTOSTR_UPPERCASE bit set, the letter \c ’E’ (rather than \c ’e’) will be
00697 used to introduce the exponent. The exponent always contains two
00698 digits; if the value is zero, the exponent is \c "00".
00699
00700 If \c flags has the #DTOSTR_ALWAYS_SIGN bit set, a space character
00701 will be placed into the leading position for positive numbers.
00702
00703 If \c flags has the #DTOSTR_PLUS_SIGN bit set, a plus sign will be
00704 used instead of a space character in this case.
00705
00706 The ftostre() function returns the pointer to the converted string \c s.
00707 */
00708 extern char *ftostre(float __val, char *__s, unsigned char __prec,
00709 unsigned char __flags);
00710 /**
00711 \ingroup avr_stdlib
00712 The dtostre() function is similar to the ftostre() function, except that
00713 it converts a \c double value instead of a \c float value.
00714
00715 dtostre() is currently only supported when \c double is a 32-bit type. */
00716 extern char *dtostre(double __val, char *__s, unsigned char __prec,
00717 unsigned char __flags);
00718 /**
00719 \ingroup avr_stdlib
00720 The ldtostre() function is similar to the ftostre() function, except that
00721 it converts a \c long \c double value instead of a \c float value.
00722
00723 ldtostre() is currently only supported when \c long \c double is a
00724 32-bit type. */
00725 extern char *ldtostre(long double __val, char *__s, unsigned char __prec,
00726 unsigned char __flags);
00727
00728 /**
00729 \ingroup avr_stdlib
00730 The ftostrf() function converts the \c float value passed in \c val into
00731 an ASCII representationthat will be stored in \c s. The caller
00732 is responsible for providing sufficient storage in \c s.
00733
00734 Conversion is done in the format \c "[-]d.ddd". The minimum field
00735 width of the output string (including the possible \c ’.’ and the possible
00736 sign for negative values) is given in \c width, and \c prec determines
00737 the number of digits after the decimal sign. \c width is signed value,
00738 negative for left adjustment.
00739
00740 The ftostrf() function returns the pointer to the converted string \c s.
00741 */
00742 extern char *ftostrf(float __val, signed char __width,
00743 unsigned char __prec, char *__s);
00744 /**
00745 \ingroup avr_stdlib
00746 The dtostrf() function is similar to the ftostrf() function, except that
00747 converts a \c double value instead of a \c float value.
00748
00749 ldtostre() is currently only supported when \c double is a 32-bit type. */
00750 extern char *dtostrf(double __val, signed char __width,
00751 unsigned char __prec, char *__s);
00752 /**
00753 \ingroup avr_stdlib
00754 The ldtostrf() function is similar to the ftostrf() function, except that
00755 converts a \c long \c double value instead of a \c float value.
00756
00757 ldtostre() is currently only supported when \c long \c double is a
00758 32-bit type. */
00759 extern char *ldtostrf(long double __val, signed char __width,
00760 unsigned char __prec, char *__s);
00761
00762 /**
00763 \ingroup avr_stdlib
00764 Successful termination for exit(); evaluates to 0.
00765 */
00766 #define EXIT_SUCCESS 0
00767
00768 /**
00769 \ingroup avr_stdlib
00770 Unsuccessful termination for exit(); evaluates to a non-zero value.
00771 */
00772 #define EXIT_FAILURE 1
00773
00774 /**@}*/
00775
00776 #ifndef __DOXYGEN__
00777 /* dummy declarations for libstdc++ compatibility */
00778 extern int system (const char *);
00779 extern char *getenv (const char *);

Generated by Doxygen

23.58 string.h File Reference 509

00780 #endif /* __DOXYGEN__ */
00781
00782 #ifdef __cplusplus
00783 }
00784 #endif
00785
00786 #endif /* __ASSEMBLER */
00787
00788 #endif /* _STDLIB_H_ */

23.58 string.h File Reference

Macros

• #define _FFS(x)

Functions

• int ffs (int __val)
• int ffsl (long __val)
• int ffsll (long long __val)
• void ∗ memccpy (void ∗, const void ∗, int, size_t)
• void ∗ memchr (const void ∗, int, size_t)
• int memcmp (const void ∗, const void ∗, size_t)
• void ∗ memcpy (void ∗, const void ∗, size_t)
• void ∗ memmem (const void ∗, size_t, const void ∗, size_t)
• void ∗ memmove (void ∗, const void ∗, size_t)
• void ∗ memrchr (const void ∗, int, size_t)
• void ∗ memset (void ∗, int, size_t)
• char ∗ strcat (char ∗, const char ∗)
• char ∗ strchr (const char ∗, int)
• char ∗ strchrnul (const char ∗, int)
• int strcmp (const char ∗, const char ∗)
• char ∗ strcpy (char ∗, const char ∗)
• int strcasecmp (const char ∗, const char ∗)
• char ∗ strcasestr (const char ∗, const char ∗)
• size_t strcspn (const char ∗__s, const char ∗__reject)
• char ∗ strdup (const char ∗s1)
• char ∗ strndup (const char ∗s, size_t n)
• size_t strlcat (char ∗, const char ∗, size_t)
• size_t strlcpy (char ∗, const char ∗, size_t)
• size_t strlen (const char ∗)
• char ∗ strlwr (char ∗)
• char ∗ strncat (char ∗, const char ∗, size_t)
• int strncmp (const char ∗, const char ∗, size_t)
• char ∗ strncpy (char ∗, const char ∗, size_t)
• int strncasecmp (const char ∗, const char ∗, size_t)
• size_t strnlen (const char ∗, size_t)
• char ∗ strpbrk (const char ∗__s, const char ∗__accept)
• char ∗ strrchr (const char ∗, int)
• char ∗ strrev (char ∗)
• char ∗ strsep (char ∗∗, const char ∗)
• size_t strspn (const char ∗__s, const char ∗__accept)
• char ∗ strstr (const char ∗, const char ∗)
• char ∗ strtok (char ∗, const char ∗)
• char ∗ strtok_r (char ∗, const char ∗, char ∗∗)
• char ∗ strupr (char ∗)

Generated by Doxygen

510

23.59 string.h

Go to the documentation of this file.
00001 /* Copyright (c) 2002,2007 Marek Michalkiewicz
00002 All rights reserved.
00003
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions are met:
00006
00007 * Redistributions of source code must retain the above copyright
00008 notice, this list of conditions and the following disclaimer.
00009
00010 * Redistributions in binary form must reproduce the above copyright
00011 notice, this list of conditions and the following disclaimer in
00012 the documentation and/or other materials provided with the
00013 distribution.
00014
00015 * Neither the name of the copyright holders nor the names of
00016 contributors may be used to endorse or promote products derived
00017 from this software without specific prior written permission.
00018
00019 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00020 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00021 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00022 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00023 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00024 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00025 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00026 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00027 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00028 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00029 POSSIBILITY OF SUCH DAMAGE. */
00030
00031 /* Id */
00032
00033 /*
00034 string.h
00035
00036 Contributors:
00037 Created by Marek Michalkiewicz <marekm@linux.org.pl>
00038 */
00039
00040 #ifndef _STRING_H_
00041 #define _STRING_H_ 1
00042
00043 #ifndef __DOXYGEN__
00044 #define __need_NULL
00045 #define __need_size_t
00046 #include <stddef.h>
00047
00048 #ifndef __ATTR_PURE__
00049 #define __ATTR_PURE__ __attribute__((__pure__))
00050 #endif
00051
00052 #ifndef __ATTR_CONST__
00053 # define __ATTR_CONST__ __attribute__((__const__))
00054 #endif
00055 #endif /* !__DOXYGEN__ */
00056
00057 #ifdef __cplusplus
00058 extern "C" {
00059 #endif
00060
00061 /** \file */
00062 /** \defgroup avr_string <string.h>: Strings
00063 \code #include <string.h> \endcode
00064
00065 The string functions perform string operations on \c NULL terminated
00066 strings.
00067
00068 \note If the strings you are working on resident in program space (flash),
00069 you will need to use the string functions described in \ref avr_pgmspace. */
00070
00071
00072 /** \ingroup avr_string
00073
00074 This macro finds the first (least significant) bit set in the
00075 input value.
00076
00077 This macro is very similar to the function ffs() except that
00078 it evaluates its argument at compile-time, so it should only
00079 be applied to compile-time constant expressions where it will
00080 reduce to a constant itself.
00081 Application of this macro to expressions that are not constant
00082 at compile-time is not recommended, and might result in a huge
00083 amount of code generated.

Generated by Doxygen

23.59 string.h 511

00084
00085 \returns The _FFS() macro returns the position of the first
00086 (least significant) bit set in the word val, or 0 if no bits are set.
00087 The least significant bit is position 1. Only 16 bits of argument
00088 are evaluted.
00089 */
00090 #if defined(__DOXYGEN__)
00091 #define _FFS(x)
00092 #else /* !DOXYGEN */
00093 #define _FFS(x) \
00094 (1 \
00095 + (((x) & 1) == 0) \
00096 + (((x) & 3) == 0) \
00097 + (((x) & 7) == 0) \
00098 + (((x) & 017) == 0) \
00099 + (((x) & 037) == 0) \
00100 + (((x) & 077) == 0) \
00101 + (((x) & 0177) == 0) \
00102 + (((x) & 0377) == 0) \
00103 + (((x) & 0777) == 0) \
00104 + (((x) & 01777) == 0) \
00105 + (((x) & 03777) == 0) \
00106 + (((x) & 07777) == 0) \
00107 + (((x) & 017777) == 0) \
00108 + (((x) & 037777) == 0) \
00109 + (((x) & 077777) == 0) \
00110 - (((x) & 0177777) == 0) * 16)
00111 #endif /* DOXYGEN */
00112
00113 /** \ingroup avr_string
00114 \fn int ffs(int val);
00115
00116 \brief This function finds the first (least significant) bit set in the input value.
00117
00118 \returns The ffs() function returns the position of the first
00119 (least significant) bit set in the word \p val, or 0 if no bits are set.
00120 The least significant bit is position 1.
00121
00122 \note For expressions that are constant at compile time, consider
00123 using the \ref _FFS macro instead.
00124 */
00125 extern int ffs(int __val) __ATTR_CONST__;
00126
00127 /** \ingroup avr_string
00128 \fn int ffsl(long val);
00129
00130 \brief Same as ffs(), for an argument of type long. */
00131 extern int ffsl(long __val) __ATTR_CONST__;
00132
00133 /** \ingroup avr_string
00134 \fn int ffsll(long long val);
00135
00136 \brief Same as ffs(), for an argument of type <tt>long long</tt>. */
00137 __extension__ extern int ffsll(long long __val) __ATTR_CONST__;
00138
00139 /** \ingroup avr_string
00140 \fn void *memccpy(void *dest, const void *src, int val, size_t len)
00141 \brief Copy memory area.
00142
00143 The memccpy() function copies no more than \p len bytes from memory
00144 area \p src to memory area \p dest, stopping when the character \p val
00145 is found.
00146
00147 \returns The memccpy() function returns a pointer to the next character
00148 in \p dest after \p val, or \c NULL if \p val was not found in the first
00149 \p len characters of \p src. */
00150 extern void *memccpy(void *, const void *, int, size_t);
00151
00152 /** \ingroup avr_string
00153 \fn void *memchr(const void *src, int val, size_t len)
00154 \brief Scan memory for a character.
00155
00156 The memchr() function scans the first len bytes of the memory area pointed
00157 to by src for the character val. The first byte to match val (interpreted
00158 as an unsigned character) stops the operation.
00159
00160 \returns The memchr() function returns a pointer to the matching byte or
00161 NULL if the character does not occur in the given memory area. */
00162 extern void *memchr(const void *, int, size_t) __ATTR_PURE__;
00163
00164 /** \ingroup avr_string
00165 \fn int memcmp(const void *s1, const void *s2, size_t len)
00166 \brief Compare memory areas
00167
00168 The memcmp() function compares the first len bytes of the memory areas s1
00169 and s2. The comparision is performed using unsigned char operations.
00170

Generated by Doxygen

512

00171 \returns The memcmp() function returns an integer less than, equal to, or
00172 greater than zero if the first len bytes of s1 is found, respectively, to be
00173 less than, to match, or be greater than the first len bytes of s2.
00174
00175 \note Be sure to store the result in a 16 bit variable since you may get
00176 incorrect results if you use an unsigned char or char due to truncation.
00177
00178 \warning This function is not -mint8 compatible, although if you only care
00179 about testing for equality, this function should be safe to use. */
00180 extern int memcmp(const void *, const void *, size_t) __ATTR_PURE__;
00181
00182 /** \ingroup avr_string
00183 \fn void *memcpy(void *dest, const void *src, size_t len)
00184 \brief Copy a memory area.
00185
00186 The memcpy() function copies len bytes from memory area src to memory area
00187 dest. The memory areas may not overlap. Use memmove() if the memory
00188 areas do overlap.
00189
00190 \returns The memcpy() function returns a pointer to dest. */
00191 extern void *memcpy(void *, const void *, size_t);
00192
00193 /** \ingroup avr_string
00194 \fn void *memmem(const void *s1, size_t len1, const void *s2, size_t len2)
00195
00196 The memmem() function finds the start of the first occurrence of the
00197 substring \p s2 of length \p len2 in the memory area \p s1 of length
00198 \p len1.
00199
00200 \return The memmem() function returns a pointer to the beginning of
00201 the substring, or \c NULL if the substring is not found. If \p len2
00202 is zero, the function returns \p s1. */
00203 extern void *memmem(const void *, size_t, const void *, size_t) __ATTR_PURE__;
00204
00205 /** \ingroup avr_string
00206 \fn void *memmove(void *dest, const void *src, size_t len)
00207 \brief Copy memory area.
00208
00209 The memmove() function copies len bytes from memory area src to memory area
00210 dest. The memory areas may overlap.
00211
00212 \returns The memmove() function returns a pointer to dest. */
00213 extern void *memmove(void *, const void *, size_t);
00214
00215 /** \ingroup avr_string
00216 \fn void *memrchr(const void *src, int val, size_t len)
00217
00218 The memrchr() function is like the memchr() function, except that it
00219 searches backwards from the end of the \p len bytes pointed to by \p
00220 src instead of forwards from the front. (Glibc, GNU extension.)
00221
00222 \return The memrchr() function returns a pointer to the matching
00223 byte or \c NULL if the character does not occur in the given memory
00224 area. */
00225 extern void *memrchr(const void *, int, size_t) __ATTR_PURE__;
00226
00227 /** \ingroup avr_string
00228 \fn void *memset(void *dest, int val, size_t len)
00229 \brief Fill memory with a constant byte.
00230
00231 The memset() function fills the first len bytes of the memory area pointed
00232 to by dest with the constant byte val.
00233
00234 \returns The memset() function returns a pointer to the memory area dest. */
00235 extern void *memset(void *, int, size_t);
00236
00237 /** \ingroup avr_string
00238 \fn char *strcat(char *dest, const char *src)
00239 \brief Concatenate two strings.
00240
00241 The strcat() function appends the src string to the dest string
00242 overwriting the ’\\0’ character at the end of dest, and then adds a
00243 terminating ’\\0’ character. The strings may not overlap, and the dest
00244 string must have enough space for the result.
00245
00246 \returns The strcat() function returns a pointer to the resulting string
00247 dest. */
00248 extern char *strcat(char *, const char *);
00249
00250 /** \ingroup avr_string
00251 \fn char *strchr(const char *src, int val)
00252 \brief Locate character in string.
00253
00254 \returns The strchr() function returns a pointer to the first occurrence of
00255 the character \p val in the string \p src, or \c NULL if the character
00256 is not found.
00257

Generated by Doxygen

23.59 string.h 513

00258 Here "character" means "byte" -- these functions do not work with
00259 wide or multi-byte characters. */
00260 extern char *strchr(const char *, int) __ATTR_PURE__;
00261
00262 /** \ingroup avr_string
00263 \fn char *strchrnul(const char *s, int c)
00264
00265 The strchrnul() function is like strchr() except that if \p c is not
00266 found in \p s, then it returns a pointer to the null byte at the end
00267 of \p s, rather than \c NULL. (Glibc, GNU extension.)
00268
00269 \return The strchrnul() function returns a pointer to the matched
00270 character, or a pointer to the null byte at the end of \p s (i.e.,
00271 \c s+strlen(s)) if the character is not found. */
00272 extern char *strchrnul(const char *, int) __ATTR_PURE__;
00273
00274 /** \ingroup avr_string
00275 \fn int strcmp(const char *s1, const char *s2)
00276 \brief Compare two strings.
00277
00278 The strcmp() function compares the two strings \p s1 and \p s2.
00279
00280 \returns The strcmp() function returns an integer less than, equal
00281 to, or greater than zero if \p s1 is found, respectively, to be less
00282 than, to match, or be greater than \p s2. A consequence of the
00283 ordering used by strcmp() is that if \p s1 is an initial substring
00284 of \p s2, then \p s1 is considered to be "less than" \p s2. */
00285 extern int strcmp(const char *, const char *) __ATTR_PURE__;
00286
00287 /** \ingroup avr_string
00288 \fn char *strcpy(char *dest, const char *src)
00289 \brief Copy a string.
00290
00291 The strcpy() function copies the string pointed to by src (including the
00292 terminating ’\\0’ character) to the array pointed to by dest. The strings
00293 may not overlap, and the destination string dest must be large enough to
00294 receive the copy.
00295
00296 \returns The strcpy() function returns a pointer to the destination
00297 string dest.
00298
00299 \note If the destination string of a strcpy() is not large enough (that
00300 is, if the programmer was stupid/lazy, and failed to check the size before
00301 copying) then anything might happen. Overflowing fixed length strings is
00302 a favourite cracker technique. */
00303 extern char *strcpy(char *, const char *);
00304
00305 /** \ingroup avr_string
00306 \fn int strcasecmp(const char *s1, const char *s2)
00307 \brief Compare two strings ignoring case.
00308
00309 The strcasecmp() function compares the two strings \p s1 and \p s2,
00310 ignoring the case of the characters.
00311
00312 \returns The strcasecmp() function returns an integer less than,
00313 equal to, or greater than zero if \p s1 is found, respectively, to
00314 be less than, to match, or be greater than \p s2. A consequence of
00315 the ordering used by strcasecmp() is that if \p s1 is an initial
00316 substring of \p s2, then \p s1 is considered to be "less than"
00317 \p s2. */
00318 extern int strcasecmp(const char *, const char *) __ATTR_PURE__;
00319
00320 /** \ingroup avr_string
00321 \fn char *strcasestr(const char *s1, const char *s2)
00322
00323 The strcasestr() function finds the first occurrence of the
00324 substring \p s2 in the string \p s1. This is like strstr(), except
00325 that it ignores case of alphabetic symbols in searching for the
00326 substring. (Glibc, GNU extension.)
00327
00328 \return The strcasestr() function returns a pointer to the beginning
00329 of the substring, or \c NULL if the substring is not found. If \p s2
00330 points to a string of zero length, the function returns \p s1. */
00331 extern char *strcasestr(const char *, const char *) __ATTR_PURE__;
00332
00333 /** \ingroup avr_string
00334 \fn size_t strcspn(const char *s, const char *reject)
00335
00336 The strcspn() function calculates the length of the initial segment
00337 of \p s which consists entirely of characters not in \p reject.
00338
00339 \return The strcspn() function returns the number of characters in
00340 the initial segment of \p s which are not in the string \p reject.
00341 The terminating zero is not considered as a part of string. */
00342 extern size_t strcspn(const char *__s, const char *__reject) __ATTR_PURE__;
00343
00344 /** \ingroup avr_string

Generated by Doxygen

514

00345 \fn char *strdup(const char *s1)
00346 \brief Duplicate a string.
00347
00348 The strdup() function allocates memory and copies into it the string
00349 addressed by \p s1, including the terminating null character.
00350
00351 \warning The strdup() function calls malloc() to allocate the memory
00352 for the duplicated string! The user is responsible for freeing the
00353 memory by calling free().
00354
00355 \returns The strdup() function returns a pointer to the resulting string
00356 dest. If malloc() cannot allocate enough storage for the string, strdup()
00357 will return \c NULL.
00358
00359 \warning Be sure to check the return value of the strdup() function to
00360 make sure that the function has succeeded in allocating the memory!
00361 */
00362 extern char *strdup(const char *s1);
00363
00364 /** \ingroup avr_string
00365 \fn char *strndup(const char *s, size_t len)
00366 \brief Duplicate a string.
00367
00368 The strndup() function is similar to strdup(), but copies at most
00369 \p len bytes. If \p s is longer than \p len, only \p len bytes are copied,
00370 and a terminating null byte (<tt>’\0’</tt>) is added.
00371
00372 Memory for the new string is obtained with malloc(), and can be freed
00373 with free().
00374
00375 \returns The strndup() function returns the location of the newly malloc’ed
00376 memory, or \c NULL if the allocation failed.
00377 */
00378 extern char *strndup(const char *s, size_t n);
00379
00380 /** \ingroup avr_string
00381 \fn size_t strlcat(char *dst, const char *src, size_t siz)
00382 \brief Concatenate two strings.
00383
00384 Appends \p src to string \p dst of size \p siz (unlike strncat(),
00385 \p siz is the full size of \p dst, not space left). At most \p siz-1
00386 characters will be copied. Always \p ’\\0’ terminated (unless \p siz <=
00387 \p strlen(dst)).
00388
00389 \returns The strlcat() function returns strlen(src) + MIN(siz,
00390 strlen(initial dst)). If retval >= siz, truncation occurred. */
00391 extern size_t strlcat(char *, const char *, size_t);
00392
00393 /** \ingroup avr_string
00394 \fn size_t strlcpy(char *dst, const char *src, size_t siz)
00395 \brief Copy a string.
00396
00397 Copy \p src to string \p dst of size \p siz. At most \p siz-1
00398 characters will be copied. Always ’\\0’ terminated (unless \p siz == 0).
00399
00400 \returns The strlcpy() function returns strlen(src). If retval >= siz,
00401 truncation occurred. */
00402 extern size_t strlcpy(char *, const char *, size_t);
00403
00404 /** \ingroup avr_string
00405 \fn size_t strlen(const char *src)
00406 \brief Calculate the length of a string.
00407
00408 The strlen() function calculates the length of the string \p src, not
00409 including the terminating ’\\0’ character.
00410
00411 \returns The strlen() function returns the number of characters in
00412 \p src. */
00413 extern size_t strlen(const char *) __ATTR_PURE__;
00414
00415 /** \ingroup avr_string
00416 \fn char *strlwr(char *s)
00417 \brief Convert a string to lower case.
00418
00419 The strlwr() function will convert a string to lower case. Only the upper
00420 case alphabetic characters [A .. Z] are converted. Non-alphabetic
00421 characters will not be changed.
00422
00423 \returns The strlwr() function returns a pointer to the converted
00424 string. Conversion is perfomed in-place. */
00425 extern char *strlwr(char *);
00426
00427 /** \ingroup avr_string
00428 \fn char *strncat(char *dest, const char *src, size_t len)
00429 \brief Concatenate two strings.
00430
00431 The strncat() function is similar to strcat(), except that only the first

Generated by Doxygen

23.59 string.h 515

00432 \p len characters of \p src are appended to \p dest.
00433
00434 \returns The strncat() function returns a pointer to the resulting string
00435 \p dest. */
00436 extern char *strncat(char *, const char *, size_t);
00437
00438 /** \ingroup avr_string
00439 \fn int strncmp(const char *s1, const char *s2, size_t len)
00440 \brief Compare two strings.
00441
00442 The strncmp() function is similar to strcmp(), except it only compares the
00443 first (at most) \p len characters of \p s1 and \p s2.
00444
00445 \returns The strncmp() function returns an integer less than, equal to, or
00446 greater than zero if \p s1 (or the first \p len bytes thereof) is found,
00447 respectively, to be less than, to match, or be greater than \p s2. */
00448 extern int strncmp(const char *, const char *, size_t) __ATTR_PURE__;
00449
00450 /** \ingroup avr_string
00451 \fn char *strncpy(char *dest, const char *src, size_t len)
00452 \brief Copy a string.
00453
00454 The strncpy() function is similar to strcpy(), except that not more than
00455 \p len bytes of \p src are copied. Thus, if there is no null byte among
00456 the first \p len bytes of \p src, the result will not be null-terminated.
00457
00458 In the case where the length of \p src is less than that of \p len,
00459 the remainder of \p dest will be padded with nulls (<tt>’\0’</tt>).
00460
00461 \returns The strncpy() function returns a pointer to the destination
00462 string \p dest. */
00463 extern char *strncpy(char *, const char *, size_t);
00464
00465 /** \ingroup avr_string
00466 \fn int strncasecmp(const char *s1, const char *s2, size_t len)
00467 \brief Compare two strings ignoring case.
00468
00469 The strncasecmp() function is similar to strcasecmp(), except it
00470 only compares the first \p len characters of \p s1.
00471
00472 \returns The strncasecmp() function returns an integer less than,
00473 equal to, or greater than zero if \p s1 (or the first \p len bytes
00474 thereof) is found, respectively, to be less than, to match, or be
00475 greater than \p s2. A consequence of the ordering used by
00476 strncasecmp() is that if \p s1 is an initial substring of \p s2,
00477 then \p s1 is considered to be "less than" \p s2. */
00478 extern int strncasecmp(const char *, const char *, size_t) __ATTR_PURE__;
00479
00480 /** \ingroup avr_string
00481 \fn size_t strnlen(const char *src, size_t len)
00482 \brief Determine the length of a fixed-size string.
00483
00484 The strnlen() function returns the number of characters in the string
00485 pointed to by \p src, not including the terminating ’\\0’ character, but at
00486 most \p len. In doing this, strnlen() looks only at the first \p len
00487 characters at \p src and never beyond \p src + \p len.
00488
00489 \returns The strnlen function returns strlen(src), if that is less than
00490 \p len, or \p len if there is no ’\\0’ character among the first \p len
00491 characters pointed to by \p src. */
00492 extern size_t strnlen(const char *, size_t) __ATTR_PURE__;
00493
00494 /** \ingroup avr_string
00495 \fn char *strpbrk(const char *s, const char *accept)
00496
00497 The strpbrk() function locates the first occurrence in the string
00498 \p s of any of the characters in the string \p accept.
00499
00500 \return The strpbrk() function returns a pointer to the character
00501 in \p s that matches one of the characters in \p accept, or \c NULL
00502 if no such character is found. The terminating zero is not
00503 considered as a part of string: if one or both args are empty, the
00504 result will be \c NULL. */
00505 extern char *strpbrk(const char *__s, const char *__accept) __ATTR_PURE__;
00506
00507 /** \ingroup avr_string
00508 \fn char *strrchr(const char *src, int val)
00509 \brief Locate character in string.
00510
00511 The strrchr() function returns a pointer to the last occurrence of the
00512 character val in the string src.
00513
00514 Here "character" means "byte" -- these functions do not work with wide or
00515 multi-byte characters.
00516
00517 \returns The strrchr() function returns a pointer to the matched character
00518 or \c NULL if the character is not found. */

Generated by Doxygen

516

00519 extern char *strrchr(const char *, int) __ATTR_PURE__;
00520
00521 /** \ingroup avr_string
00522 \fn char *strrev(char *s)
00523 \brief Reverse a string.
00524
00525 The strrev() function reverses the order of the string.
00526
00527 \returns The strrev() function returns a pointer to the beginning of the
00528 reversed string. */
00529 extern char *strrev(char *);
00530
00531 /** \ingroup avr_string
00532 \fn char *strsep(char **sp, const char *delim)
00533 \brief Parse a string into tokens.
00534
00535 The strsep() function locates, in the string referenced by \p *sp,
00536 the first occurrence of any character in the string \p delim (or the
00537 terminating ’\\0’ character) and replaces it with a ’\\0’. The
00538 location of the next character after the delimiter character (or \c
00539 NULL, if the end of the string was reached) is stored in \p *sp. An
00540 “empty” field, i.e. one caused by two adjacent delimiter
00541 characters, can be detected by comparing the location referenced by
00542 the pointer returned in \p *sp to ’\\0’.
00543
00544 \return The strsep() function returns a pointer to the original
00545 value of \p *sp. If \p *sp is initially \c NULL, strsep() returns
00546 \c NULL. */
00547 extern char *strsep(char **, const char *);
00548
00549 /** \ingroup avr_string
00550 \fn size_t strspn(const char *s, const char *accept)
00551
00552 The strspn() function calculates the length of the initial segment
00553 of \p s which consists entirely of characters in \p accept.
00554
00555 \return The strspn() function returns the number of characters in
00556 the initial segment of \p s which consist only of characters from \p
00557 accept. The terminating zero is not considered as a part of string. */
00558 extern size_t strspn(const char *__s, const char *__accept) __ATTR_PURE__;
00559
00560 /** \ingroup avr_string
00561 \fn char *strstr(const char *s1, const char *s2)
00562 \brief Locate a substring.
00563
00564 The strstr() function finds the first occurrence of the substring \p
00565 s2 in the string \p s1. The terminating ’\\0’ characters are not
00566 compared.
00567
00568 \returns The strstr() function returns a pointer to the beginning of
00569 the substring, or \c NULL if the substring is not found. If \p s2
00570 points to a string of zero length, the function returns \p s1. */
00571 extern char *strstr(const char *, const char *) __ATTR_PURE__;
00572
00573 /** \ingroup avr_string
00574 \fn char *strtok(char *s, const char *delim)
00575 \brief Parses the string s into tokens.
00576
00577 strtok parses the string s into tokens. The first call to strtok
00578 should have s as its first argument. Subsequent calls should have
00579 the first argument set to \c NULL. If a token ends with a delimiter, this
00580 delimiting character is overwritten with a ’\\0’ and a pointer to the next
00581 character is saved for the next call to strtok. The delimiter string
00582 delim may be different for each call.
00583
00584 \returns The strtok() function returns a pointer to the next token or
00585 \c NULL when no more tokens are found.
00586
00587 \note strtok() is NOT reentrant. For a reentrant version of this function
00588 see \c strtok_r().
00589 */
00590 extern char *strtok(char *, const char *);
00591
00592 /** \ingroup avr_string
00593 \fn char *strtok_r(char *string, const char *delim, char **last)
00594 \brief Parses string into tokens.
00595
00596 strtok_r parses string into tokens. The first call to strtok_r
00597 should have string as its first argument. Subsequent calls should have
00598 the first argument set to \c NULL. If a token ends with a delimiter, this
00599 delimiting character is overwritten with a ’\\0’ and a pointer to the next
00600 character is saved for the next call to strtok_r. The delimiter string
00601 \p delim may be different for each call. \p last is a user allocated char*
00602 pointer. It must be the same while parsing the same string. strtok_r is
00603 a reentrant version of strtok().
00604
00605 \returns The strtok_r() function returns a pointer to the next token or

Generated by Doxygen

23.60 time.h File Reference 517

00606 \c NULL when no more tokens are found. */
00607 extern char *strtok_r(char *, const char *, char **);
00608
00609 /** \ingroup avr_string
00610 \fn char *strupr(char *s)
00611 \brief Convert a string to upper case.
00612
00613 The strupr() function will convert a string to upper case. Only the lower
00614 case alphabetic characters [a .. z] are converted. Non-alphabetic
00615 characters will not be changed.
00616
00617 \returns The strupr() function returns a pointer to the converted
00618 string. The pointer is the same as that passed in since the operation is
00619 perform in place. */
00620 extern char *strupr(char *);
00621
00622 #ifndef __DOXYGEN__
00623 /* libstdc++ compatibility, dummy declarations */
00624 extern int strcoll(const char *s1, const char *s2);
00625 extern char *strerror(int errnum);
00626 extern size_t strxfrm(char *dest, const char *src, size_t n);
00627 #endif /* !__DOXYGEN__ */
00628
00629 #ifdef __cplusplus
00630 }
00631 #endif
00632
00633 #endif /* _STRING_H_ */
00634

23.60 time.h File Reference

Data Structures

• struct tm
• struct week_date

Macros

• #define ONE_HOUR 3600
• #define ONE_DEGREE 3600
• #define ONE_DAY 86400
• #define UNIX_OFFSET 946684800
• #define NTP_OFFSET 3155673600

Typedefs

• typedef uint32_t time_t

Enumerations

• enum _WEEK_DAYS_ {
SUNDAY , MONDAY , TUESDAY , WEDNESDAY ,
THURSDAY , FRIDAY , SATURDAY }

• enum _MONTHS_ {
JANUARY , FEBRUARY , MARCH , APRIL ,
MAY , JUNE , JULY , AUGUST ,
SEPTEMBER , OCTOBER , NOVEMBER , DECEMBER }

Generated by Doxygen

518

Functions

• time_t time (time_t ∗timer)
• int32_t difftime (time_t time1, time_t time0)
• time_t mktime (struct tm ∗timeptr)
• time_t mk_gmtime (const struct tm ∗timeptr)
• struct tm ∗ gmtime (const time_t ∗timer)
• void gmtime_r (const time_t ∗timer, struct tm ∗timeptr)
• struct tm ∗ localtime (const time_t ∗timer)
• void localtime_r (const time_t ∗timer, struct tm ∗timeptr)
• char ∗ asctime (const struct tm ∗timeptr)
• void asctime_r (const struct tm ∗timeptr, char ∗buf)
• char ∗ ctime (const time_t ∗timer)
• void ctime_r (const time_t ∗timer, char ∗buf)
• char ∗ isotime (const struct tm ∗tmptr)
• void isotime_r (const struct tm ∗, char ∗)
• size_t strftime (char ∗s, size_t maxsize, const char ∗format, const struct tm ∗timeptr)
• void set_dst (int(∗)(const time_t ∗, int32_t ∗))
• void set_zone (int32_t)
• void set_system_time (time_t timestamp)
• void system_tick (void)
• uint8_t is_leap_year (int16_t year)
• uint8_t month_length (int16_t year, uint8_t month)
• uint8_t week_of_year (const struct tm ∗timeptr, uint8_t start)
• uint8_t week_of_month (const struct tm ∗timeptr, uint8_t start)
• struct week_date ∗ iso_week_date (int year, int yday)
• void iso_week_date_r (int year, int yday, struct week_date ∗)
• uint32_t fatfs_time (const struct tm ∗timeptr)
• void set_position (int32_t latitude, int32_t longitude)
• int16_t equation_of_time (const time_t ∗timer)
• int32_t daylight_seconds (const time_t ∗timer)
• time_t solar_noon (const time_t ∗timer)
• time_t sun_rise (const time_t ∗timer)
• time_t sun_set (const time_t ∗timer)
• float solar_declinationf (const time_t ∗timer)
• double solar_declination (const time_t ∗timer)
• long double solar_declinationl (const time_t ∗timer)
• int8_t moon_phase (const time_t ∗timer)
• unsigned long gm_sidereal (const time_t ∗timer)
• unsigned long lm_sidereal (const time_t ∗timer)

23.61 time.h

Go to the documentation of this file.
00001 /*
00002 * (C)2012 Michael Duane Rice All rights reserved.
00003 *
00004 * Redistribution and use in source and binary forms, with or without
00005 * modification, are permitted provided that the following conditions are
00006 * met:
00007 *
00008 * Redistributions of source code must retain the above copyright notice, this
00009 * list of conditions and the following disclaimer. Redistributions in binary
00010 * form must reproduce the above copyright notice, this list of conditions
00011 * and the following disclaimer in the documentation and/or other materials
00012 * provided with the distribution. Neither the name of the copyright holders
00013 * nor the names of contributors may be used to endorse or promote products
00014 * derived from this software without specific prior written permission.
00015 *

Generated by Doxygen

23.61 time.h 519

00016 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00017 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00018 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00019 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00020 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00021 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00022 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00023 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00024 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00025 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00026 * POSSIBILITY OF SUCH DAMAGE.
00027 */
00028
00029 /* Id */
00030
00031 #ifndef TIME_H
00032 #define TIME_H
00033
00034 #ifdef __cplusplus
00035 extern "C" {
00036 #endif
00037
00038 #include <stdint.h>
00039 #include <stdlib.h>
00040
00041 /** \file */
00042
00043 /** \defgroup avr_time <time.h>: Time
00044 \code #include <time.h> \endcode
00045 <h3>Introduction to the Time functions</h3>
00046 This file declares the time functions implemented in AVR-LibC.
00047
00048 The implementation aspires to conform with ISO/IEC 9899 (C90). However, due to limitations of the
00049 target processor and the nature of its development environment, a practical implementation must
00050 of necessity deviate from the standard.
00051
00052 Section 7.23.2.1 clock()
00053 The type clock_t, the macro CLOCKS_PER_SEC, and the function clock() are not implemented. We
00054 consider these items belong to operating system code, or to application code when no operating
00055 system is present.
00056
00057 Section 7.23.2.3 mktime()
00058 The standard specifies that mktime() should return (time_t) -1, if the time cannot be represented.
00059 This implementation always returns a ’best effort’ representation.
00060
00061 Section 7.23.2.4 time()
00062 The standard specifies that time() should return (time_t) -1, if the time is not available.
00063 Since the application must initialize the time system, this functionality is not implemented.
00064
00065 Section 7.23.2.2, difftime()
00066 Due to the lack of a 64 bit double, the function difftime() returns a long integer. In most cases
00067 this change will be invisible to the user, handled automatically by the compiler.
00068
00069 Section 7.23.1.4 struct tm
00070 Per the standard, struct tm->tm_isdst is greater than zero when Daylight Saving time is in effect.
00071 This implementation further specifies that, when positive, the value of tm_isdst represents
00072 the amount time is advanced during Daylight Saving time.
00073
00074 Section 7.23.3.5 strftime()
00075 Only the ’C’ locale is supported, therefore the modifiers ’E’ and ’O’ are ignored.
00076 The ’Z’ conversion is also ignored, due to the lack of time zone name.
00077
00078 In addition to the above departures from the standard, there are some behaviors which are

different
00079 from what is often expected, though allowed under the standard.
00080
00081 There is no ’platform standard’ method to obtain the current time, time zone, or
00082 daylight savings ’rules’ in the AVR environment. Therefore the application must initialize
00083 the time system with this information. The functions set_zone(), set_dst(), and
00084 set_system_time() are provided for initialization. Once initialized, system time is maintained by
00085 calling the function system_tick() at one second intervals.
00086
00087 Though not specified in the standard, it is often expected that time_t is a signed integer
00088 representing an offset in seconds from Midnight Jan 1 1970... i.e. ’Unix time’. This

implementation
00089 uses an unsigned 32 bit integer offset from Midnight Jan 1 2000. The use of this ’epoch’ helps to
00090 simplify the conversion functions, while the 32 bit value allows time to be properly represented
00091 until Tue Feb 7 06:28:15 2136 UTC. The macros UNIX_OFFSET and NTP_OFFSET are defined to assist in
00092 converting to and from Unix and NTP time stamps.
00093
00094 Unlike desktop counterparts, it is impractical to implement or maintain the ’zoneinfo’ database.
00095 Therefore no attempt is made to account for time zone, daylight saving, or leap seconds in past

dates.
00096 All calculations are made according to the currently configured time zone and daylight saving

’rule’.
00097
00098 In addition to C standard functions, re-entrant versions of ctime(), asctime(), gmtime() and

Generated by Doxygen

520

00099 localtime() are provided which, in addition to being re-entrant, have the property of claiming
00100 less permanent storage in RAM. An additional time conversion, isotime() and its re-entrant

version,
00101 uses far less storage than either ctime() or asctime().
00102
00103 Along with the usual smattering of utility functions, such as is_leap_year(), this library

includes
00104 a set of functions related the sun and moon, as well as sidereal time functions.
00105 */
00106
00107 /** \ingroup avr_time */
00108 /**@{*/
00109
00110 /**
00111 time_t represents seconds elapsed from Midnight, Jan 1 2000 UTC (the Y2K ’epoch’).
00112 Its range allows this implementation to represent time up to Tue Feb 7 06:28:15 2136 UTC.
00113 */
00114 typedef uint32_t time_t;
00115
00116 /**
00117 The time function returns the systems current time stamp.
00118 If timer is not a null pointer, the return value is also assigned to the object it points to.
00119 */
00120 time_t time(time_t *timer);
00121
00122 /**
00123 The difftime function returns the difference between two binary time stamps,
00124 time1 - time0.
00125 */
00126 int32_t difftime(time_t time1, time_t time0);
00127
00128
00129 /**
00130 The tm structure contains a representation of time ’broken down’ into components of the
00131 Gregorian calendar.
00132
00133 The value of tm_isdst is zero if Daylight Saving Time is not in effect, and is negative if
00134 the information is not available.
00135
00136 When Daylight Saving Time is in effect, the value represents the number of
00137 seconds the clock is advanced.
00138
00139 See the set_dst() function for more information about Daylight Saving.
00140 */
00141 struct tm {
00142 int8_t tm_sec; /**< seconds after the minute - [0 to 59] */
00143 int8_t tm_min; /**< minutes after the hour - [0 to 59] */
00144 int8_t tm_hour; /**< hours since midnight - [0 to 23] */
00145 int8_t tm_mday; /**< day of the month - [1 to 31] */
00146 int8_t tm_wday; /**< days since Sunday - [0 to 6] */
00147 int8_t tm_mon; /**< months since January - [0 to 11] */
00148 int16_t tm_year; /**< years since 1900 */
00149 int16_t tm_yday; /**< days since January 1 - [0 to 365] */
00150 int16_t tm_isdst; /**< Daylight Saving Time flag */
00151 };
00152
00153 #ifndef __DOXYGEN__
00154 /* We have to provide clock_t / CLOCKS_PER_SEC so that libstdc++-v3 can
00155 be built. We define CLOCKS_PER_SEC via a symbol _CLOCKS_PER_SEC_
00156 so that the user can provide the value on the link line, which should
00157 result in little or no run-time overhead compared with a constant. */
00158 typedef unsigned long clock_t;
00159 extern char *_CLOCKS_PER_SEC_;
00160 #define CLOCKS_PER_SEC ((clock_t) _CLOCKS_PER_SEC_)
00161 extern clock_t clock(void);
00162 #endif /* !__DOXYGEN__ */
00163
00164 /**
00165 This function ’compiles’ the elements of a broken-down time structure, returning a binary time

stamp.
00166 The elements of timeptr are interpreted as representing Local Time.
00167
00168 The original values of the tm_wday and tm_yday elements of the structure are ignored,
00169 and the original values of the other elements are not restricted to the ranges stated for struct

tm.
00170
00171 The element tm_isdst is used for input and output. If set to 0 or a positive value on input, this
00172 requests calculation for Daylight Savings Time being off or on, respectively. If set to a negative
00173 value on input, it requests calculation to return whether Daylight Savings Time is in effect or
00174 not according to the other values.
00175
00176 On successful completion, the values of all elements of timeptr are set to the appropriate range.
00177 */
00178 time_t mktime(struct tm * timeptr);
00179
00180 /**
00181 This function ’compiles’ the elements of a broken-down time structure, returning a binary time

Generated by Doxygen

23.61 time.h 521

stamp.
00182 The elements of timeptr are interpreted as representing UTC.
00183
00184 The original values of the tm_wday and tm_yday elements of the structure are ignored,
00185 and the original values of the other elements are not restricted to the ranges stated for struct

tm.
00186
00187 Unlike mktime(), this function DOES NOT modify the elements of timeptr.
00188 */
00189 time_t mk_gmtime(const struct tm * timeptr);
00190
00191 /**
00192 The gmtime function converts the time stamp pointed to by timer into broken-down time,
00193 expressed as UTC.
00194 */
00195 struct tm *gmtime(const time_t * timer);
00196
00197 /**
00198 Re entrant version of gmtime().
00199 */
00200 void gmtime_r(const time_t * timer, struct tm * timeptr);
00201
00202 /**
00203 The localtime function converts the time stamp pointed to by timer into broken-down time,
00204 expressed as Local time.
00205 */
00206 struct tm *localtime(const time_t * timer);
00207
00208 /**
00209 Re entrant version of localtime().
00210 */
00211 void localtime_r(const time_t * timer, struct tm * timeptr);
00212
00213 /**
00214 The asctime function converts the broken-down time of timeptr, into an ascii string in the form
00215
00216 Sun Mar 23 01:03:52 2013
00217 */
00218 char *asctime(const struct tm * timeptr);
00219
00220 /**
00221 Re entrant version of asctime().
00222 */
00223 void asctime_r(const struct tm * timeptr, char *buf);
00224
00225 /**
00226 The ctime function is equivalent to asctime(localtime(timer))
00227 */
00228 char *ctime(const time_t * timer);
00229
00230 /**
00231 Re entrant version of ctime().
00232 */
00233 void ctime_r(const time_t * timer, char *buf);
00234
00235 /**
00236 The isotime function constructs an ascii string in the form
00237 \code2013-03-23 01:03:52\endcode
00238 */
00239 char *isotime(const struct tm * tmptr);
00240
00241 /**
00242 Re entrant version of isotime()
00243 */
00244 void isotime_r(const struct tm *, char *);
00245
00246 /**
00247 A complete description of strftime() is beyond the pale of this document.
00248 Refer to ISO/IEC document 9899 for details.
00249
00250 All conversions are made using the ’C Locale’, ignoring the E or O modifiers. Due to the lack of
00251 a time zone ’name’, the ’Z’ conversion is also ignored.
00252 */
00253 size_t strftime(char *s, size_t maxsize, const char *format, const struct tm * timeptr);
00254
00255 /**
00256 Specify the Daylight Saving function.
00257
00258 The Daylight Saving function should examine its parameters to determine whether
00259 Daylight Saving is in effect, and return a value appropriate for tm_isdst.
00260
00261 Working examples for the USA and the EU are available..
00262
00263 \code #include <util/eu_dst.h>\endcode
00264 for the European Union, and
00265 \code #include <util/usa_dst.h>\endcode
00266 for the United States

Generated by Doxygen

522

00267
00268 If a Daylight Saving function is not specified, the system will ignore Daylight Saving.
00269 */
00270 void set_dst(int (*) (const time_t *, int32_t *));
00271
00272 /**
00273 Set the ’time zone’. The parameter is given in seconds East of the Prime Meridian.
00274 Example for New York City:
00275 \code set_zone(-5 * ONE_HOUR);\endcode
00276
00277 If the time zone is not set, the time system will operate in UTC only.
00278 */
00279 void set_zone(int32_t);
00280
00281 /**
00282 Initialize the system time. Examples are...
00283
00284 From a Clock / Calendar type RTC:
00285 \code
00286 struct tm rtc_time;
00287
00288 read_rtc(&rtc_time);
00289 rtc_time.tm_isdst = 0;
00290 set_system_time(mktime(&rtc_time));
00291 \endcode
00292
00293 From a Network Time Protocol time stamp:
00294 \code
00295 set_system_time(ntp_timestamp - NTP_OFFSET);
00296 \endcode
00297
00298 From a UNIX time stamp:
00299 \code
00300 set_system_time(unix_timestamp - UNIX_OFFSET);
00301 \endcode
00302
00303 */
00304 void set_system_time(time_t timestamp);
00305
00306 /**
00307 Maintain the system time by calling this function at a rate of 1 Hertz.
00308
00309 It is anticipated that this function will typically be called from within an
00310 Interrupt Service Routine, (though that is not required). It therefore includes code which
00311 makes it simple to use from within a ’Naked’ ISR, avoiding the cost of saving and restoring
00312 all the cpu registers.
00313
00314 Such an ISR may resemble the following example...
00315 \code
00316 ISR(RTC_OVF_vect, ISR_NAKED)
00317 {
00318 system_tick();
00319 reti();
00320 }
00321 \endcode
00322 */
00323 void system_tick(void);
00324
00325 /**
00326 Enumerated labels for the days of the week.
00327 */
00328 enum _WEEK_DAYS_ {
00329 SUNDAY,
00330 MONDAY,
00331 TUESDAY,
00332 WEDNESDAY,
00333 THURSDAY,
00334 FRIDAY,
00335 SATURDAY
00336 };
00337
00338 /**
00339 Enumerated labels for the months.
00340 */
00341 enum _MONTHS_ {
00342 JANUARY,
00343 FEBRUARY,
00344 MARCH,
00345 APRIL,
00346 MAY,
00347 JUNE,
00348 JULY,
00349 AUGUST,
00350 SEPTEMBER,
00351 OCTOBER,
00352 NOVEMBER,
00353 DECEMBER

Generated by Doxygen

23.61 time.h 523

00354 };
00355
00356 /**
00357 Return 1 if year is a leap year, zero if it is not.
00358 */
00359 uint8_t is_leap_year(int16_t year);
00360
00361 /**
00362 Return the length of month, given the year and month, where month is in the range 1 to 12.
00363 */
00364 uint8_t month_length(int16_t year, uint8_t month);
00365
00366 /**
00367 Return the calendar week of year, where week 1 is considered to begin on the
00368 day of week specified by ’start’. The returned value may range from zero to 52.
00369 */
00370 uint8_t week_of_year(const struct tm * timeptr, uint8_t start);
00371
00372 /**
00373 Return the calendar week of month, where the first week is considered to begin on the
00374 day of week specified by ’start’. The returned value may range from zero to 5.
00375 */
00376 uint8_t week_of_month(const struct tm * timeptr, uint8_t start);
00377
00378 /**
00379 Structure which represents a date as a year, week number of that year, and day of week.
00380 See http://en.wikipedia.org/wiki/ISO_week_date for more information.
00381 */
00382 struct week_date {
00383 int year; /**< year number (Gregorian calendar) */
00384 int week; /**< week number (#1 is where first Thursday is in) */
00385 int day; /**< day within week */
00386 };
00387
00388 /**
00389 Return a week_date structure with the ISO_8601 week based date corresponding to the given
00390 year and day of year. See http://en.wikipedia.org/wiki/ISO_week_date for more
00391 information.
00392 */
00393 struct week_date * iso_week_date(int year, int yday);
00394
00395 /**
00396 Re-entrant version of iso-week_date.
00397 */
00398 void iso_week_date_r(int year, int yday, struct week_date *);
00399
00400 /**
00401 Convert a Y2K time stamp into a FAT file system time stamp.
00402 */
00403 uint32_t fatfs_time(const struct tm * timeptr);
00404
00405 /** One hour, expressed in seconds */
00406 #define ONE_HOUR 3600
00407
00408 /** Angular degree, expressed in arc seconds */
00409 #define ONE_DEGREE 3600
00410
00411 /** One day, expressed in seconds */
00412 #define ONE_DAY 86400
00413
00414 /** Difference between the Y2K and the UNIX epochs, in seconds. To convert a Y2K
00415 timestamp to UNIX...
00416 \code
00417 long unix;
00418 time_t y2k;
00419
00420 y2k = time(NULL);
00421 unix = y2k + UNIX_OFFSET;
00422 \endcode
00423 */
00424 #define UNIX_OFFSET 946684800
00425
00426 /** Difference between the Y2K and the NTP epochs, in seconds. To convert a Y2K
00427 timestamp to NTP...
00428 \code
00429 unsigned long ntp;
00430 time_t y2k;
00431
00432 y2k = time(NULL);
00433 ntp = y2k + NTP_OFFSET;
00434 \endcode
00435 */
00436 #define NTP_OFFSET 3155673600
00437
00438 /*
00439 * ===
00440 * Ephemera

Generated by Doxygen

524

00441 */
00442
00443 /**
00444 Set the geographic coordinates of the ’observer’, for use with several of the
00445 following functions. Parameters are passed as seconds of North Latitude, and seconds
00446 of East Longitude.
00447
00448 For New York City...
00449 \code set_position(40.7142 * ONE_DEGREE, -74.0064 * ONE_DEGREE); \endcode
00450 */
00451 void set_position(int32_t latitude, int32_t longitude);
00452
00453 /**
00454 Computes the difference between apparent solar time and mean solar time.
00455 The returned value is in seconds.
00456 */
00457 int16_t equation_of_time(const time_t * timer);
00458
00459 /**
00460 Computes the amount of time the sun is above the horizon, at the location of the observer.
00461
00462 NOTE: At observer locations inside a polar circle, this value can be zero during the winter,
00463 and can exceed ONE_DAY during the summer.
00464
00465 The returned value is in seconds.
00466 */
00467 int32_t daylight_seconds(const time_t * timer);
00468
00469 /**
00470 Computes the time of solar noon, at the location of the observer.
00471 */
00472 time_t solar_noon(const time_t * timer);
00473
00474 /**
00475 Return the time of sunrise, at the location of the observer. See the note about

daylight_seconds().
00476 */
00477 time_t sun_rise(const time_t * timer);
00478
00479 /**
00480 Return the time of sunset, at the location of the observer. See the note about daylight_seconds().
00481 */
00482 time_t sun_set(const time_t * timer);
00483
00484 /**
00485 Returns the declination of the sun in radians.
00486 */
00487 float solar_declinationf(const time_t * timer);
00488
00489 /**
00490 Returns the declination of the sun in radians.
00491
00492 This implementation is only available when \c double is a 32-bit type.
00493 */
00494 double solar_declination(const time_t * timer);
00495
00496 /**
00497 Returns the declination of the sun in radians.
00498
00499 This implementation is only available when <tt>long double</tt> is
00500 a 32-bit type.
00501 */
00502 long double solar_declinationl(const time_t * timer);
00503
00504 /**
00505 Returns an approximation to the phase of the moon.
00506 The sign of the returned value indicates a waning or waxing phase.
00507 The magnitude of the returned value indicates the percentage illumination.
00508 */
00509 int8_t moon_phase(const time_t * timer);
00510
00511 /**
00512 Returns Greenwich Mean Sidereal Time, as seconds into the sidereal day.
00513 The returned value will range from 0 through 86399 seconds.
00514 */
00515 unsigned long gm_sidereal(const time_t * timer);
00516
00517 /**
00518 Returns Local Mean Sidereal Time, as seconds into the sidereal day.
00519 The returned value will range from 0 through 86399 seconds.
00520 */
00521 unsigned long lm_sidereal(const time_t * timer);
00522
00523 /**@}*/
00524 #ifdef __cplusplus
00525 }
00526 #endif

Generated by Doxygen

23.62 atomic.h File Reference 525

00527
00528 #endif /* TIME_H */

23.62 atomic.h File Reference

Macros

• #define ATOMIC_BLOCK(type)
• #define NONATOMIC_BLOCK(type)
• #define ATOMIC_RESTORESTATE
• #define ATOMIC_FORCEON
• #define NONATOMIC_RESTORESTATE
• #define NONATOMIC_FORCEOFF

23.63 atomic.h

Go to the documentation of this file.
00001 /* Copyright (c) 2007 Dean Camera
00002 All rights reserved.
00003
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions are met:
00006
00007 * Redistributions of source code must retain the above copyright
00008 notice, this list of conditions and the following disclaimer.
00009
00010 * Redistributions in binary form must reproduce the above copyright
00011 notice, this list of conditions and the following disclaimer in
00012 the documentation and/or other materials provided with the
00013 distribution.
00014
00015 * Neither the name of the copyright holders nor the names of
00016 contributors may be used to endorse or promote products derived
00017 from this software without specific prior written permission.
00018
00019 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00020 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00021 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00022 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00023 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00024 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00025 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00026 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00027 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00028 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00029 POSSIBILITY OF SUCH DAMAGE.
00030 */
00031
00032 /* Id */
00033
00034 #ifndef _UTIL_ATOMIC_H_
00035 #define _UTIL_ATOMIC_H_ 1
00036
00037 #include <avr/io.h>
00038 #include <avr/interrupt.h>
00039
00040 #if !defined(__DOXYGEN__)
00041 /* Internal helper functions. */
00042 static __inline__ uint8_t __iSeiRetVal(void)
00043 {
00044 sei();
00045 return 1;
00046 }
00047
00048 static __inline__ uint8_t __iCliRetVal(void)
00049 {
00050 cli();
00051 return 1;
00052 }
00053
00054 static __inline__ void __iSeiParam(const uint8_t *__s)
00055 {
00056 sei();

Generated by Doxygen

526

00057 __asm__ volatile ("" ::: "memory");
00058 (void)__s;
00059 }
00060
00061 static __inline__ void __iCliParam(const uint8_t *__s)
00062 {
00063 cli();
00064 __asm__ volatile ("" ::: "memory");
00065 (void)__s;
00066 }
00067
00068 static __inline__ void __iRestore(const uint8_t *__s)
00069 {
00070 SREG = *__s;
00071 __asm__ volatile ("" ::: "memory");
00072 }
00073 #endif /* !__DOXYGEN__ */
00074
00075 /** \file */
00076 /** \defgroup util_atomic <util/atomic.h> Atomically and Non-Atomically Executed Code Blocks
00077
00078 \code
00079 #include <util/atomic.h>
00080 \endcode
00081
00082 \note The macros in this header file require the ISO/IEC 9899:1999
00083 ("ISO C99") feature of for loop variables that are declared inside
00084 the for loop itself. For that reason, this header file can only
00085 be used if the standard level of the compiler (option --std=) is
00086 set to either \c c99, \c gnu99 or higher.
00087
00088 The macros in this header file deal with code blocks that are
00089 guaranteed to be executed Atomically or Non-Atomically. The term
00090 "Atomic" in this context refers to the inability of the respective
00091 code to be interrupted.
00092
00093 These macros operate via automatic manipulation of the Global
00094 Interrupt Status (I) bit of the SREG register. Exit paths from
00095 both block types are all managed automatically without the need
00096 for special considerations, i.e. the interrupt status will be
00097 restored to the same value it had when entering the respective
00098 block (unless ATOMIC_FORCEON or NONATOMIC_FORCEOFF are used).
00099 \warning The features in this header are implemented by means of
00100 a for loop. This means that commands like \c break and \c continue
00101 that are located in an atomic block refer to the atomic for loop,
00102 not to a loop construct that hosts the atomic block.
00103
00104 A typical example that requires atomic access is a 16 (or more)
00105 bit variable that is shared between the main execution path and an
00106 ISR. While declaring such a variable as volatile ensures that the
00107 compiler will not optimize accesses to it away, it does not
00108 guarantee atomic access to it. Assuming the following example:
00109
00110 \code
00111 #include <stdint.h>
00112 #include <avr/interrupt.h>
00113 #include <avr/io.h>
00114
00115 volatile uint16_t ctr;
00116
00117 ISR(TIMER1_OVF_vect)
00118 {
00119 ctr--;
00120 }
00121
00122 ...
00123 int
00124 main(void)
00125 {
00126 ...
00127 ctr = 0x200;
00128 start_timer();
00129 while (ctr != 0)
00130 // wait
00131 ;
00132 ...
00133 }
00134 \endcode
00135
00136 There is a chance where the main context will exit its wait loop
00137 when the variable \c ctr just reached the value 0xFF. This happens
00138 because the compiler cannot natively access a 16-bit variable
00139 atomically in an 8-bit CPU. So the variable is for example at
00140 0x100, the compiler then tests the low byte for 0, which succeeds.
00141 It then proceeds to test the high byte, but that moment the ISR
00142 triggers, and the main context is interrupted. The ISR will
00143 decrement the variable from 0x100 to 0xFF, and the main context

Generated by Doxygen

23.63 atomic.h 527

00144 proceeds. It now tests the high byte of the variable which is
00145 (now) also 0, so it concludes the variable has reached 0, and
00146 terminates the loop.
00147
00148 Using the macros from this header file, the above code can be
00149 rewritten like:
00150
00151 \code
00152 #include <stdint.h>
00153 #include <avr/interrupt.h>
00154 #include <avr/io.h>
00155 #include <util/atomic.h>
00156
00157 volatile uint16_t ctr;
00158
00159 ISR(TIMER1_OVF_vect)
00160 {
00161 ctr--;
00162 }
00163
00164 ...
00165 int
00166 main(void)
00167 {
00168 ...
00169 ctr = 0x200;
00170 start_timer();
00171 sei();
00172 uint16_t ctr_copy;
00173 do
00174 {
00175 ATOMIC_BLOCK(ATOMIC_FORCEON)
00176 {
00177 ctr_copy = ctr;
00178 }
00179 }
00180 while (ctr_copy != 0);
00181 ...
00182 }
00183 \endcode
00184
00185 This will install the appropriate interrupt protection before
00186 accessing variable \c ctr, so it is guaranteed to be consistently
00187 tested. If the global interrupt state were uncertain before
00188 entering the #ATOMIC_BLOCK, it should be executed with the
00189 parameter #ATOMIC_RESTORESTATE rather than #ATOMIC_FORCEON.
00190
00191 See \ref optim_code_reorder for things to be taken into account
00192 with respect to compiler optimizations.
00193 */
00194
00195 /** \def ATOMIC_BLOCK(type)
00196 \ingroup util_atomic
00197
00198 Creates a block of code that is guaranteed to be executed
00199 atomically. Upon entering the block the Global Interrupt Status
00200 flag in SREG is disabled, and re-enabled upon exiting the block
00201 from any exit path.
00202
00203 Two possible macro parameters are permitted, #ATOMIC_RESTORESTATE
00204 and #ATOMIC_FORCEON.
00205 */
00206 #if defined(__DOXYGEN__)
00207 #define ATOMIC_BLOCK(type)
00208 #else
00209 #define ATOMIC_BLOCK(type) for (type, __ToDo = __iCliRetVal(); \
00210 __ToDo ; __ToDo = 0)
00211 #endif /* __DOXYGEN__ */
00212
00213 /** \def NONATOMIC_BLOCK(type)
00214 \ingroup util_atomic
00215
00216 Creates a block of code that is executed non-atomically. Upon
00217 entering the block the Global Interrupt Status flag in SREG is
00218 enabled, and disabled upon exiting the block from any exit
00219 path. This is useful when nested inside ATOMIC_BLOCK sections,
00220 allowing for non-atomic execution of small blocks of code while
00221 maintaining the atomic access of the other sections of the parent
00222 ATOMIC_BLOCK.
00223
00224 Two possible macro parameters are permitted,
00225 #NONATOMIC_RESTORESTATE and #NONATOMIC_FORCEOFF.
00226 */
00227 #if defined(__DOXYGEN__)
00228 #define NONATOMIC_BLOCK(type)
00229 #else
00230 #define NONATOMIC_BLOCK(type) for (type, __ToDo = __iSeiRetVal(); \

Generated by Doxygen

528

00231 __ToDo ; __ToDo = 0)
00232 #endif /* __DOXYGEN__ */
00233
00234 /** \def ATOMIC_RESTORESTATE
00235 \ingroup util_atomic
00236
00237 This is a possible parameter for #ATOMIC_BLOCK. When used, it will
00238 cause the ATOMIC_BLOCK to restore the previous state of the SREG
00239 register, saved before the Global Interrupt Status flag bit was
00240 disabled. The net effect of this is to make the ATOMIC_BLOCK’s
00241 contents guaranteed atomic, without changing the state of the
00242 Global Interrupt Status flag when execution of the block
00243 completes.
00244 */
00245 #if defined(__DOXYGEN__)
00246 #define ATOMIC_RESTORESTATE
00247 #else
00248 #define ATOMIC_RESTORESTATE uint8_t sreg_save \
00249 __attribute__((__cleanup__(__iRestore))) = SREG
00250 #endif /* __DOXYGEN__ */
00251
00252 /** \def ATOMIC_FORCEON
00253 \ingroup util_atomic
00254
00255 This is a possible parameter for #ATOMIC_BLOCK. When used, it will
00256 cause the ATOMIC_BLOCK to force the state of the SREG register on
00257 exit, enabling the Global Interrupt Status flag bit. This saves a
00258 small amount of flash space, a register, and one or more processor
00259 cycles, since the previous value of the SREG register does not need
00260 to be saved at the start of the block.
00261
00262 Care should be taken that ATOMIC_FORCEON is only used when it is
00263 known that interrupts are enabled before the block’s execution or
00264 when the side effects of enabling global interrupts at the block’s
00265 completion are known and understood.
00266 */
00267 #if defined(__DOXYGEN__)
00268 #define ATOMIC_FORCEON
00269 #else
00270 #define ATOMIC_FORCEON uint8_t sreg_save \
00271 __attribute__((__cleanup__(__iSeiParam))) = 0
00272 #endif /* __DOXYGEN__ */
00273
00274 /** \def NONATOMIC_RESTORESTATE
00275 \ingroup util_atomic
00276
00277 This is a possible parameter for #NONATOMIC_BLOCK. When used, it
00278 will cause the NONATOMIC_BLOCK to restore the previous state of
00279 the SREG register, saved before the Global Interrupt Status flag
00280 bit was enabled. The net effect of this is to make the
00281 NONATOMIC_BLOCK’s contents guaranteed non-atomic, without changing
00282 the state of the Global Interrupt Status flag when execution of
00283 the block completes.
00284 */
00285 #if defined(__DOXYGEN__)
00286 #define NONATOMIC_RESTORESTATE
00287 #else
00288 #define NONATOMIC_RESTORESTATE uint8_t sreg_save \
00289 __attribute__((__cleanup__(__iRestore))) = SREG
00290 #endif /* __DOXYGEN__ */
00291
00292 /** \def NONATOMIC_FORCEOFF
00293 \ingroup util_atomic
00294
00295 This is a possible parameter for #NONATOMIC_BLOCK. When used, it
00296 will cause the NONATOMIC_BLOCK to force the state of the SREG
00297 register on exit, disabling the Global Interrupt Status flag
00298 bit. This saves a small amout of flash space, a register, and one
00299 or more processor cycles, since the previous value of the SREG
00300 register does not need to be saved at the start of the block.
00301
00302 Care should be taken that NONATOMIC_FORCEOFF is only used when it
00303 is known that interrupts are disabled before the block’s execution
00304 or when the side effects of disabling global interrupts at the
00305 block’s completion are known and understood.
00306 */
00307 #if defined(__DOXYGEN__)
00308 #define NONATOMIC_FORCEOFF
00309 #else
00310 #define NONATOMIC_FORCEOFF uint8_t sreg_save \
00311 __attribute__((__cleanup__(__iCliParam))) = 0
00312 #endif /* __DOXYGEN__ */
00313
00314 #endif

Generated by Doxygen

23.64 crc16.h File Reference 529

23.64 crc16.h File Reference

Functions

• static uint16_t _crc16_update (uint16_t __crc, uint8_t __data)
• static uint16_t _crc_xmodem_update (uint16_t __crc, uint8_t __data)
• static uint16_t _crc_ccitt_update (uint16_t __crc, uint8_t __data)
• static uint8_t _crc_ibutton_update (uint8_t __crc, uint8_t __data)
• static uint8_t _crc8_ccitt_update (uint8_t __crc, uint8_t __data)

23.65 crc16.h

Go to the documentation of this file.
00001 /* Copyright (c) 2002, 2003, 2004 Marek Michalkiewicz
00002 Copyright (c) 2005, 2007 Joerg Wunsch
00003 Copyright (c) 2013 Dave Hylands
00004 Copyright (c) 2013 Frederic Nadeau
00005 All rights reserved.
00006
00007 Redistribution and use in source and binary forms, with or without
00008 modification, are permitted provided that the following conditions are met:
00009
00010 * Redistributions of source code must retain the above copyright
00011 notice, this list of conditions and the following disclaimer.
00012
00013 * Redistributions in binary form must reproduce the above copyright
00014 notice, this list of conditions and the following disclaimer in
00015 the documentation and/or other materials provided with the
00016 distribution.
00017
00018 * Neither the name of the copyright holders nor the names of
00019 contributors may be used to endorse or promote products derived
00020 from this software without specific prior written permission.
00021
00022 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00023 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00024 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00025 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00026 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00027 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00028 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00029 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00030 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00031 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00032 POSSIBILITY OF SUCH DAMAGE. */
00033
00034 /* Id */
00035
00036 #ifndef _UTIL_CRC16_H_
00037 #define _UTIL_CRC16_H_
00038
00039 #include <stdint.h>
00040
00041 #ifndef __DOXYGEN__
00042 #ifndef __ATTR_ALWAYS_INLINE__
00043 #define __ATTR_ALWAYS_INLINE__ __inline__ __attribute__((__always_inline__))
00044 #endif
00045 #endif /* ! DOXYGEN */
00046
00047 /** \file */
00048 /** \defgroup util_crc <util/crc16.h>: CRC Computations
00049 \code#include <util/crc16.h>\endcode
00050
00051 This header file provides a optimized inline functions for calculating
00052 cyclic redundancy checks (CRC) using common polynomials.
00053
00054 \par References:
00055
00056 \par
00057
00058 See the Dallas Semiconductor app note 27 for 8051 assembler example and
00059 general CRC optimization suggestions. The table on the last page of the
00060 app note is the key to understanding these implementations.
00061
00062 \par
00063
00064 Jack Crenshaw’s "Implementing CRCs" article in the January 1992 isue of \e

Generated by Doxygen

530

00065 Embedded \e Systems \e Programming. This may be difficult to find, but it
00066 explains CRC’s in very clear and concise terms. Well worth the effort to
00067 obtain a copy.
00068
00069 A typical application would look like:
00070
00071 \code
00072 // Dallas iButton test vector.
00073 uint8_t serno[] = { 0x02, 0x1c, 0xb8, 0x01, 0, 0, 0, 0xa2 };
00074
00075 int
00076 checkcrc (void)
00077 {
00078 uint8_t crc = 0, i;
00079
00080 for (i = 0; i < sizeof serno / sizeof serno[0]; i++)
00081 crc = _crc_ibutton_update (crc, serno[i]);
00082
00083 return crc; // must be 0
00084 }
00085 \endcode
00086 */
00087
00088 /** \ingroup util_crc
00089 Optimized CRC-16 calculation.
00090
00091 Polynomial: x¹⁶ + x¹⁵ + x² + 1 (0xa001)

00092 Initial value: \c 0xffff
00093
00094 This CRC is normally used in disk-drive controllers.
00095
00096 The following is the equivalent functionality written in C.
00097
00098 \code
00099 uint16_t
00100 crc16_update (uint16_t crc, uint8_t a)
00101 {
00102 crc ^= a;
00103 for (int i = 0; i < 8; ++i)
00104 {
00105 if (crc & 1)
00106 crc = (crc » 1) ^ 0xA001;
00107 else
00108 crc = crc » 1;
00109 }
00110
00111 return crc;
00112 }
00113 \endcode */
00114
00115 static __ATTR_ALWAYS_INLINE__ uint16_t
00116 _crc16_update(uint16_t __crc, uint8_t __data)
00117 {
00118 uint8_t __tmp;
00119 uint16_t __ret;
00120
00121 __asm__ __volatile__ (
00122 "eor %A0,%2" "\n\t"
00123 "mov %1,%A0" "\n\t"
00124 "swap %1" "\n\t"
00125 "eor %1,%A0" "\n\t"
00126 "mov __tmp_reg__,%1" "\n\t"
00127 "lsr %1" "\n\t"
00128 "lsr %1" "\n\t"
00129 "eor %1,__tmp_reg__" "\n\t"
00130 "mov __tmp_reg__,%1" "\n\t"
00131 "lsr %1" "\n\t"
00132 "eor %1,__tmp_reg__" "\n\t"
00133 "andi %1,0x07" "\n\t"
00134 "mov __tmp_reg__,%A0" "\n\t"
00135 "mov %A0,%B0" "\n\t"
00136 "lsr %1" "\n\t"
00137 "ror __tmp_reg__" "\n\t"
00138 "ror %1" "\n\t"
00139 "mov %B0,__tmp_reg__" "\n\t"
00140 "eor %A0,%1" "\n\t"
00141 "lsr __tmp_reg__" "\n\t"
00142 "ror %1" "\n\t"
00143 "eor %B0,__tmp_reg__" "\n\t"
00144 "eor %A0,%1"
00145 : "=r" (__ret), "=d" (__tmp)
00146 : "r" (__data), "0" (__crc)
00147 : "r0"
00148);
00149 return __ret;
00150 }
00151

Generated by Doxygen

23.65 crc16.h 531

00152 /** \ingroup util_crc
00153 Optimized CRC-XMODEM calculation.
00154
00155 Polynomial: x¹⁶ + x¹² + x⁵ + 1 (0x1021)

00156 Initial value: \c 0x0
00157
00158 This is the CRC used by the Xmodem-CRC protocol.
00159
00160 The following is the equivalent functionality written in C.
00161
00162 \code
00163 uint16_t
00164 crc_xmodem_update (uint16_t crc, uint8_t data)
00165 {
00166 crc = crc ^ ((uint16_t)data « 8);
00167 for (int i = 0; i < 8; i++)
00168 {
00169 if (crc & 0x8000)
00170 crc = (crc « 1) ^ 0x1021;
00171 else
00172 crc «= 1;
00173 }
00174
00175 return crc;
00176 }
00177 \endcode */
00178
00179 static __ATTR_ALWAYS_INLINE__ uint16_t
00180 _crc_xmodem_update (uint16_t __crc, uint8_t __data)
00181 {
00182 uint16_t __ret; /* %B0:%A0 (alias for __crc) */
00183 uint8_t __tmp1; /* %1 */
00184 uint8_t __tmp2; /* %2 */
00185 /* %3 __data */
00186
00187 __asm__ __volatile__ (
00188 "eor %B0,%3" "\n\t"
00189 "mov %1,%A0" "\n\t"
00190 "mov %2,%B0" "\n\t"
00191
00192 "mov %A0,%B0" "\n\t"
00193 "swap %B0" "\n\t"
00194 "eor %A0,%B0" "\n\t"
00195
00196 "andi %A0,0xf0" "\n\t"
00197 "andi %B0,0x0f" "\n\t"
00198
00199 "eor %1,%A0" "\n\t"
00200 "eor %2,%B0" "\n\t"
00201
00202 "lsl %A0" "\n\t"
00203 "rol %B0" "\n\t"
00204
00205 "eor %B0,%1" "\n\t"
00206 "eor %A0,%2"
00207 : "=d" (__ret), "=r" (__tmp1), "=r" (__tmp2)
00208 : "r" (__data), "0" (__crc)
00209);
00210 return __ret;
00211 }
00212
00213 /** \ingroup util_crc
00214 Optimized CRC-CCITT calculation.
00215
00216 Polynomial: x¹⁶ + x¹² + x⁵ + 1 (0x8408)

00217 Initial value: \c 0xffff
00218
00219 This is the CRC used by PPP and IrDA.
00220
00221 See RFC1171 (PPP protocol) and IrDA IrLAP 1.1
00222
00223 \note Although the CCITT polynomial is the same as that used by the Xmodem
00224 protocol, they are quite different. The difference is in how the bits are
00225 shifted through the alorgithm. Xmodem shifts the MSB of the CRC and the
00226 input first, while CCITT shifts the LSB of the CRC and the input first.
00227
00228 The following is the equivalent functionality written in C.
00229
00230 \code
00231 uint16_t
00232 crc_ccitt_update (uint16_t crc, uint8_t data)
00233 {
00234 data ^= lo8 (crc);
00235 data ^= data « 4;
00236
00237 return ((((uint16_t)data « 8) | hi8 (crc)) ^ (uint8_t)(data » 4)
00238 ^ ((uint16_t)data « 3));

Generated by Doxygen

532

00239 }
00240 \endcode */
00241
00242 static __ATTR_ALWAYS_INLINE__ uint16_t
00243 _crc_ccitt_update (uint16_t __crc, uint8_t __data)
00244 {
00245 uint16_t __ret;
00246
00247 __asm__ __volatile__ (
00248 "eor %A0,%1" "\n\t"
00249
00250 "mov __tmp_reg__,%A0" "\n\t"
00251 "swap %A0" "\n\t"
00252 "andi %A0,0xf0" "\n\t"
00253 "eor %A0,__tmp_reg__" "\n\t"
00254
00255 "mov __tmp_reg__,%B0" "\n\t"
00256
00257 "mov %B0,%A0" "\n\t"
00258
00259 "swap %A0" "\n\t"
00260 "andi %A0,0x0f" "\n\t"
00261 "eor __tmp_reg__,%A0" "\n\t"
00262
00263 "lsr %A0" "\n\t"
00264 "eor %B0,%A0" "\n\t"
00265
00266 "eor %A0,%B0" "\n\t"
00267 "lsl %A0" "\n\t"
00268 "lsl %A0" "\n\t"
00269 "lsl %A0" "\n\t"
00270 "eor %A0,__tmp_reg__"
00271
00272 : "=d" (__ret)
00273 : "r" (__data), "0" (__crc)
00274 : "r0"
00275);
00276 return __ret;
00277 }
00278
00279 /** \ingroup util_crc
00280 Optimized Dallas (now Maxim) iButton 8-bit CRC calculation.
00281
00282 Polynomial: x⁸ + x⁵ + x⁴ + 1 (0x8C)

00283 Initial value: \c 0x0
00284
00285 See http://www.maxim-ic.com/appnotes.cfm/appnote_number/27
00286
00287 The following is the equivalent functionality written in C.
00288
00289 \code
00290 uint8_t
00291 _crc_ibutton_update (uint8_t crc, uint8_t data)
00292 {
00293 crc = crc ^ data;
00294 for (uint8_t i = 0; i < 8; i++)
00295 {
00296 if (crc & 0x01)
00297 crc = (crc » 1) ^ 0x8C;
00298 else
00299 crc »= 1;
00300 }
00301
00302 return crc;
00303 }
00304 \endcode
00305 */
00306
00307 static __ATTR_ALWAYS_INLINE__ uint8_t
00308 _crc_ibutton_update (uint8_t __crc, uint8_t __data)
00309 {
00310 uint8_t __i, __pattern;
00311 __asm__ __volatile__ (
00312 "eor %0, %4" "\n\t"
00313 "ldi %1, 8" "\n\t"
00314 "ldi %2, 0x8C" "\n"
00315 "1: lsr %0" "\n\t"
00316 "brcc 2f" "\n\t"
00317 "eor %0, %2" "\n"
00318 "2: dec %1" "\n\t"
00319 "brne 1b"
00320 : "=r" (__crc), "=d" (__i), "=d" (__pattern)
00321 : "0" (__crc), "r" (__data));
00322 return __crc;
00323 }
00324
00325 /** \ingroup util_crc

Generated by Doxygen

23.66 delay.h File Reference 533

00326 Optimized CRC-8-CCITT calculation.
00327
00328 Polynomial: x⁸ + x² + x + 1 (0xE0)

00329
00330 For use with simple CRC-8

00331 Initial value: 0x0
00332
00333 For use with CRC-8-ROHC

00334 Initial value: 0xff

00335 Reference: http://tools.ietf.org/html/rfc3095#section-5.9.1
00336
00337 For use with CRC-8-ATM/ITU

00338 Initial value: 0xff

00339 Final XOR value: 0x55

00340 Reference: http://www.itu.int/rec/T-REC-I.432.1-199902-I/en
00341
00342 The C equivalent has been originally written by Dave Hylands.
00343 Assembly code is based on _crc_ibutton_update optimization.
00344
00345 The following is the equivalent functionality written in C.
00346
00347 \code
00348 uint8_t
00349 _crc8_ccitt_update (uint8_t inCrc, uint8_t inData)
00350 {
00351 uint8_t data = inCrc ^ inData;
00352
00353 for (int i = 0; i < 8; i++)
00354 {
00355 if ((data & 0x80) != 0)
00356 {
00357 data «= 1;
00358 data ^= 0x07;
00359 }
00360 else
00361 {
00362 data «= 1;
00363 }
00364 }
00365 return data;
00366 }
00367 \endcode
00368 */
00369
00370 static __ATTR_ALWAYS_INLINE__ uint8_t
00371 _crc8_ccitt_update(uint8_t __crc, uint8_t __data)
00372 {
00373 uint8_t __i, __pattern;
00374 __asm__ __volatile__ (
00375 "eor %0, %4" "\n\t"
00376 "ldi %1, 8" "\n\t"
00377 "ldi %2, 0x07" "\n"
00378 "1: lsl %0" "\n\t"
00379 "brcc 2f" "\n\t"
00380 "eor %0, %2" "\n"
00381 "2: dec %1" "\n\t"
00382 "brne 1b"
00383 : "=r" (__crc), "=d" (__i), "=d" (__pattern)
00384 : "0" (__crc), "r" (__data));
00385 return __crc;
00386 }
00387
00388 #endif /* _UTIL_CRC16_H_ */

23.66 delay.h File Reference

Macros

• #define F_CPU 1000000UL

Functions

• static void _delay_ms (double __ms)
• static void _delay_us (double __us)

Generated by Doxygen

534

23.67 delay.h

Go to the documentation of this file.
00001 /* Copyright (c) 2002, Marek Michalkiewicz
00002 Copyright (c) 2004,2005,2007 Joerg Wunsch
00003 Copyright (c) 2007 Florin-Viorel Petrov
00004 All rights reserved.
00005
00006 Redistribution and use in source and binary forms, with or without
00007 modification, are permitted provided that the following conditions are met:
00008
00009 * Redistributions of source code must retain the above copyright
00010 notice, this list of conditions and the following disclaimer.
00011
00012 * Redistributions in binary form must reproduce the above copyright
00013 notice, this list of conditions and the following disclaimer in
00014 the documentation and/or other materials provided with the
00015 distribution.
00016
00017 * Neither the name of the copyright holders nor the names of
00018 contributors may be used to endorse or promote products derived
00019 from this software without specific prior written permission.
00020
00021 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00022 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00023 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00024 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00025 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00026 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00027 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00028 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00029 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00030 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00031 POSSIBILITY OF SUCH DAMAGE. */
00032
00033 /* Id */
00034
00035 #ifndef _UTIL_DELAY_H_
00036 #define _UTIL_DELAY_H_ 1
00037
00038 #ifndef __DOXYGEN__
00039 # ifndef __HAS_DELAY_CYCLES
00040 # define __HAS_DELAY_CYCLES 1
00041 # endif
00042
00043 # ifndef __ATTR_ALWAYS_INLINE__
00044 # define __ATTR_ALWAYS_INLINE__ __inline__ __attribute__((__always_inline__))
00045 # endif
00046
00047 #endif /* __DOXYGEN__ */
00048
00049 #include <stdint.h>
00050 #include <util/delay_basic.h>
00051
00052 /** \file */
00053 /** \defgroup util_delay <util/delay.h>: Convenience functions for busy-wait delay loops
00054 \code
00055 #define F_CPU 1000000UL // 1 MHz
00056 //#define F_CPU 14.7456e6
00057 #include <util/delay.h>
00058 \endcode
00059
00060 \note As an alternative method, it is possible to pass the
00061 F_CPU macro down to the compiler from the Makefile.
00062 Obviously, in that case, no \c \#define statement should be
00063 used.
00064
00065 The functions in this header file are wrappers around the basic
00066 busy-wait functions from <tt>\<util/delay_basic.h\></tt>. They are meant as
00067 convenience functions where actual time values can be specified
00068 rather than a number of cycles to wait for. The idea behind is
00069 that compile-time constant expressions will be eliminated by
00070 compiler optimization so floating-point expressions can be used
00071 to calculate the number of delay cycles needed based on the CPU
00072 frequency passed by the macro F_CPU.
00073
00074 \note In order for these functions to work as intended, compiler
00075 optimizations must be enabled, and the delay time
00076 must be an expression that is a known constant at
00077 compile-time. If these requirements are not met, the resulting
00078 delay will be much longer (and basically unpredictable), and
00079 applications that otherwise do not use floating-point calculations
00080 will experience severe code bloat by the floating-point library
00081 routines linked into the application.
00082
00083 The functions available allow the specification of microsecond, and

Generated by Doxygen

23.67 delay.h 535

00084 millisecond delays directly, using the application-supplied macro
00085 F_CPU as the CPU clock frequency (in Hertz).
00086 */
00087
00088
00089 #ifndef F_CPU
00090 /* prevent compiler error by supplying a default */
00091 # warning "F_CPU not defined for <util/delay.h>"
00092 /** \ingroup util_delay
00093 \def F_CPU
00094 \brief CPU frequency in Hz
00095
00096 The macro F_CPU specifies the CPU frequency to be considered by
00097 the delay macros. This macro is normally supplied by the
00098 environment (e.g. from within a project header, or the project’s
00099 Makefile). The value 1 MHz here is only provided as a "vanilla"
00100 fallback if no such user-provided definition could be found.
00101
00102 In terms of the delay functions, the CPU frequency can be given as
00103 a floating-point constant (e.g. 3.6864e6 for 3.6864 MHz).
00104 However, the macros in <util/setbaud.h> require it to be an
00105 integer value.
00106 */
00107 # define F_CPU 1000000UL
00108 #endif
00109
00110 #ifndef __OPTIMIZE__
00111 # warning "Compiler optimizations disabled; functions from <util/delay.h> won’t work as designed"
00112 #endif
00113
00114 /**
00115 \ingroup util_delay
00116
00117 Perform a delay of \c __ms milliseconds, using _delay_loop_2().
00118
00119 The macro #F_CPU is supposed to be defined to a
00120 constant defining the CPU clock frequency (in Hertz).
00121
00122 The maximal possible delay is 262.14 ms / F_CPU in MHz.
00123
00124 When the user request delay which exceed the maximum possible one,
00125 _delay_ms() provides a decreased resolution functionality. In this
00126 mode _delay_ms() will work with a resolution of 1/10 ms, providing
00127 delays up to 6.5535 seconds (independent from CPU frequency). The
00128 user will not be informed about decreased resolution.
00129
00130 If the avr-gcc toolchain has \c __builtin_avr_delay_cycles()
00131 support, maximal possible delay is 4294967.295 ms/ F_CPU in MHz. For
00132 values greater than the maximal possible delay, overflow may result in
00133 no delay i.e., 0 ms.
00134
00135 Conversion of \c __ms into clock cycles may not always result in
00136 an integral value. By default, the clock cycles are rounded up to the next
00137 integer. This ensures that the user gets at least \c __ms
00138 microseconds of delay.
00139
00140 Alternatively, by defining the macro \c __DELAY_ROUND_DOWN__, or
00141 \c __DELAY_ROUND_CLOSEST__, before including this header file, the
00142 algorithm can be made to round down, or round to closest integer,
00143 respectively.
00144
00145 \note The implementation of _delay_ms() based on
00146 \c __builtin_avr_delay_cycles() is not backward compatible with older
00147 implementations. In order to get functionality backward compatible
00148 with previous versions, the macro \c __DELAY_BACKWARD_COMPATIBLE__
00149 must be defined before including this header file.
00150 */
00151 static __ATTR_ALWAYS_INLINE__ void _delay_ms(double __ms);
00152
00153 void
00154 _delay_ms(double __ms)
00155 {
00156 double __tmp ;
00157 #if __HAS_DELAY_CYCLES && defined(__OPTIMIZE__) \
00158 && !defined(__DELAY_BACKWARD_COMPATIBLE__)
00159 uint32_t __ticks_dc;
00160 extern void __builtin_avr_delay_cycles(uint32_t);
00161 __tmp = ((F_CPU) / 1e3) * __ms;
00162
00163 #if defined(__DELAY_ROUND_DOWN__)
00164 __ticks_dc = (uint32_t)__builtin_fabs(__tmp);
00165
00166 #elif defined(__DELAY_ROUND_CLOSEST__)
00167 __ticks_dc = (uint32_t)(__builtin_fabs(__tmp)+0.5);
00168
00169 #else
00170 //round up by default

Generated by Doxygen

536

00171 __ticks_dc = (uint32_t)(__builtin_ceil(__builtin_fabs(__tmp)));
00172 #endif
00173
00174 __builtin_avr_delay_cycles(__ticks_dc);
00175
00176 #else
00177 uint16_t __ticks;
00178 __tmp = ((F_CPU) / 4e3) * __ms;
00179 if (__tmp < 1.0)
00180 __ticks = 1;
00181 else if (__tmp > 65535)
00182 {
00183 // __ticks = requested delay in 1/10 ms
00184 __ticks = (uint16_t) (__ms * 10.0);
00185 while(__ticks)
00186 {
00187 // wait 1/10 ms
00188 _delay_loop_2(((F_CPU) / 4e3) / 10);
00189 __ticks --;
00190 }
00191 return;
00192 }
00193 else
00194 __ticks = (uint16_t)__tmp;
00195 _delay_loop_2(__ticks);
00196 #endif
00197 }
00198
00199 /**
00200 \ingroup util_delay
00201
00202 Perform a delay of \c __us microseconds, using _delay_loop_1().
00203
00204 The macro #F_CPU is supposed to be defined to a
00205 constant defining the CPU clock frequency (in Hertz).
00206
00207 The maximal possible delay is 768 μs / F_CPU in MHz.
00208
00209 If the user requests a delay greater than the maximal possible one,
00210 _delay_us() will automatically call _delay_ms() instead. The user
00211 will not be informed about this case.
00212
00213 If the avr-gcc toolchain has __builtin_avr_delay_cycles()
00214 support, maximal possible delay is 4294967.295 μs/ F_CPU in MHz. For
00215 values greater than the maximal possible delay, overflow may result in
00216 no delay i.e., 0 μs.
00217
00218 Conversion of \c __us into clock cycles may not always result in
00219 integer. By default, the clock cycles are rounded up to next
00220 integer. This ensures that the user gets at least \c __us
00221 microseconds of delay.
00222
00223 Alternatively, by defining the macro \c __DELAY_ROUND_DOWN__, or
00224 \c __DELAY_ROUND_CLOSEST__, before including this header file, the
00225 algorithm can be made to round down, or round to closest integer,
00226 respectively.
00227
00228 \note The implementation of _delay_us() based on
00229 \c __builtin_avr_delay_cycles() is not backward compatible with older
00230 implementations. In order to get functionality backward compatible
00231 with previous versions, the macro \c __DELAY_BACKWARD_COMPATIBLE__
00232 must be defined before including this header file.
00233 */
00234 static __ATTR_ALWAYS_INLINE__ void _delay_us(double __us);
00235
00236 void
00237 _delay_us(double __us)
00238 {
00239 double __tmp ;
00240 #if __HAS_DELAY_CYCLES && defined(__OPTIMIZE__) \
00241 && !defined(__DELAY_BACKWARD_COMPATIBLE__)
00242 uint32_t __ticks_dc;
00243 extern void __builtin_avr_delay_cycles(uint32_t);
00244 __tmp = ((F_CPU) / 1e6) * __us;
00245
00246 #if defined(__DELAY_ROUND_DOWN__)
00247 __ticks_dc = (uint32_t)__builtin_fabs(__tmp);
00248
00249 #elif defined(__DELAY_ROUND_CLOSEST__)
00250 __ticks_dc = (uint32_t)(__builtin_fabs(__tmp)+0.5);
00251
00252 #else
00253 //round up by default
00254 __ticks_dc = (uint32_t)(__builtin_ceil(__builtin_fabs(__tmp)));
00255 #endif
00256
00257 __builtin_avr_delay_cycles(__ticks_dc);

Generated by Doxygen

23.68 delay_basic.h File Reference 537

00258
00259 #else
00260 uint8_t __ticks;
00261 double __tmp2 ;
00262 __tmp = ((F_CPU) / 3e6) * __us;
00263 __tmp2 = ((F_CPU) / 4e6) * __us;
00264 if (__tmp < 1.0)
00265 __ticks = 1;
00266 else if (__tmp2 > 65535)
00267 {
00268 _delay_ms(__us / 1000.0);
00269 return;
00270 }
00271 else if (__tmp > 255)
00272 {
00273 uint16_t __ticks=(uint16_t)__tmp2;
00274 _delay_loop_2(__ticks);
00275 return;
00276 }
00277 else
00278 __ticks = (uint8_t)__tmp;
00279 _delay_loop_1(__ticks);
00280 #endif
00281 }
00282
00283
00284 #endif /* _UTIL_DELAY_H_ */

23.68 delay_basic.h File Reference

Functions

• void _delay_loop_1 (uint8_t __count)
• void _delay_loop_2 (uint16_t __count)

23.69 delay_basic.h

Go to the documentation of this file.
00001 /* Copyright (c) 2002, Marek Michalkiewicz
00002 Copyright (c) 2007 Joerg Wunsch
00003 All rights reserved.
00004
00005 Redistribution and use in source and binary forms, with or without
00006 modification, are permitted provided that the following conditions are met:
00007
00008 * Redistributions of source code must retain the above copyright
00009 notice, this list of conditions and the following disclaimer.
00010
00011 * Redistributions in binary form must reproduce the above copyright
00012 notice, this list of conditions and the following disclaimer in
00013 the documentation and/or other materials provided with the
00014 distribution.
00015
00016 * Neither the name of the copyright holders nor the names of
00017 contributors may be used to endorse or promote products derived
00018 from this software without specific prior written permission.
00019
00020 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00021 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00022 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00023 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00024 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00025 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00026 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00027 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00028 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00029 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00030 POSSIBILITY OF SUCH DAMAGE. */
00031
00032 /* Id */
00033
00034 #ifndef _UTIL_DELAY_BASIC_H_
00035 #define _UTIL_DELAY_BASIC_H_ 1
00036
00037 #include <inttypes.h>
00038

Generated by Doxygen

538

00039 #if !defined(__DOXYGEN__)
00040 static __inline__ void _delay_loop_1(uint8_t __count) __attribute__((__always_inline__));
00041 static __inline__ void _delay_loop_2(uint16_t __count) __attribute__((__always_inline__));
00042 #endif
00043
00044 /** \file */
00045 /** \defgroup util_delay_basic <util/delay_basic.h>: Basic busy-wait delay loops
00046 \code
00047 #include <util/delay_basic.h>
00048 \endcode
00049
00050 The functions in this header file implement simple delay loops
00051 that perform a busy-waiting. They are typically used to
00052 facilitate short delays in the program execution. They are
00053 implemented as count-down loops with a well-known CPU cycle
00054 count per loop iteration. As such, no other processing can
00055 occur simultaneously. It should be kept in mind that the
00056 functions described here do not disable interrupts.
00057
00058 In general, for long delays, the use of hardware timers is
00059 much preferrable, as they free the CPU, and allow for
00060 concurrent processing of other events while the timer is
00061 running. However, in particular for very short delays, the
00062 overhead of setting up a hardware timer is too much compared
00063 to the overall delay time.
00064
00065 Two inline functions are provided for the actual delay algorithms.
00066
00067 */
00068
00069 /** \ingroup util_delay_basic
00070
00071 Delay loop using an 8-bit counter \c __count, so up to 256
00072 iterations are possible. (The value 256 would have to be passed
00073 as 0.) The loop executes three CPU cycles per iteration, not
00074 including the overhead the compiler needs to setup the counter
00075 register.
00076
00077 Thus, at a CPU speed of 1 MHz, delays of up to 768 microseconds
00078 can be achieved.
00079 */
00080 void
00081 _delay_loop_1(uint8_t __count)
00082 {
00083 __asm__ volatile (
00084 "1: dec %0" "\n\t"
00085 "brne 1b"
00086 : "=r" (__count)
00087 : "0" (__count)
00088);
00089 }
00090
00091 /** \ingroup util_delay_basic
00092
00093 Delay loop using a 16-bit counter \c __count, so up to 65536
00094 iterations are possible. (The value 65536 would have to be
00095 passed as 0.) The loop executes four CPU cycles per iteration,
00096 not including the overhead the compiler requires to setup the
00097 counter register pair.
00098
00099 Thus, at a CPU speed of 1 MHz, delays of up to about 262.1
00100 milliseconds can be achieved.
00101 */
00102 void
00103 _delay_loop_2(uint16_t __count)
00104 {
00105 #if defined (__AVR_TINY__)
00106 __asm__ volatile (
00107 "1: subi %A0,1" "\n\t"
00108 " sbci %B0,0" "\n\t"
00109 "brne 1b"
00110 : "+d" (__count)
00111);
00112 #else
00113 __asm__ volatile (
00114 "1: sbiw %0,1" "\n\t"
00115 "brne 1b"
00116 : "+w" (__count)
00117);
00118 #endif /* AVR_TINY */
00119 }
00120
00121 #endif /* _UTIL_DELAY_BASIC_H_ */

Generated by Doxygen

23.70 eu_dst.h File Reference 539

23.70 eu_dst.h File Reference

Functions

• int eu_dst (const time_t ∗timer, int32_t ∗z)

23.71 eu_dst.h

Go to the documentation of this file.
00001 /*
00002 * (c)2012 Michael Duane Rice All rights reserved.
00003 *
00004 * Redistribution and use in source and binary forms, with or without
00005 * modification, are permitted provided that the following conditions are
00006 * met:
00007 *
00008 * Redistributions of source code must retain the above copyright notice, this
00009 * list of conditions and the following disclaimer. Redistributions in binary
00010 * form must reproduce the above copyright notice, this list of conditions
00011 * and the following disclaimer in the documentation and/or other materials
00012 * provided with the distribution. Neither the name of the copyright holders
00013 * nor the names of contributors may be used to endorse or promote products
00014 * derived from this software without specific prior written permission.
00015 *
00016 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00017 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00018 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00019 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00020 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00021 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00022 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00023 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00024 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00025 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00026 * POSSIBILITY OF SUCH DAMAGE.
00027 */
00028
00029 /* Id */
00030
00031 #ifndef EU_DST_H
00032 #define EU_DST_H
00033
00034 #ifdef __cplusplus
00035 extern "C" {
00036 #endif
00037
00038 #include <time.h>
00039 #include <stdint.h>
00040
00041 /** \file */
00042 /** \defgroup eu_dst <util/eu_dst.h>: Daylight Saving function for the European Union.
00043
00044 \code #include <util/eu_dst.h> \endcode
00045 Dayligh Saving Time for the European Union */
00046
00047 /** \ingroup eu_dst
00048 \fn int eu_dst (const time_t *timer, int32_t *z)
00049 To utilize this function, call \code set_dst(eu_dst); \endcode
00050
00051 Given the time stamp and time zone parameters provided, the Daylight
00052 Saving function must return a value appropriate for the tm structures’
00053 tm_isdst element. That is:
00054
00055 - \c 0 : If Daylight Saving is not in effect.
00056
00057 - \c -1 : If it cannot be determined if Daylight Saving is in effect.
00058
00059 - A positive integer: Represents the number of seconds a clock is advanced
00060 for Daylight Saving. This will typically be ONE_HOUR.
00061
00062 Daylight Saving ’rules’ are subject to frequent change. For production
00063 applications it is recommended to write your own DST function, which
00064 uses ’rules’ obtained from, and modifiable by, the end user (perhaps
00065 stored in EEPROM).
00066 */
00067 int eu_dst (const time_t *timer, int32_t *z);
00068
00069 #ifdef __cplusplus
00070 }
00071 #endif
00072
00073 #endif

Generated by Doxygen

540

23.72 parity.h File Reference

Functions

• static uint8_t parity_even_bit (uint8_t __val)

23.73 parity.h

Go to the documentation of this file.
00001 /* Copyright (c) 2002, Marek Michalkiewicz
00002 Copyright (c) 2004,2005,2007 Joerg Wunsch
00003 All rights reserved.
00004
00005 Redistribution and use in source and binary forms, with or without
00006 modification, are permitted provided that the following conditions are met:
00007
00008 * Redistributions of source code must retain the above copyright
00009 notice, this list of conditions and the following disclaimer.
00010
00011 * Redistributions in binary form must reproduce the above copyright
00012 notice, this list of conditions and the following disclaimer in
00013 the documentation and/or other materials provided with the
00014 distribution.
00015
00016 * Neither the name of the copyright holders nor the names of
00017 contributors may be used to endorse or promote products derived
00018 from this software without specific prior written permission.
00019
00020 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00021 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00022 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00023 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00024 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00025 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00026 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00027 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00028 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00029 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00030 POSSIBILITY OF SUCH DAMAGE. */
00031
00032 /* Id */
00033
00034 #ifndef _UTIL_PARITY_H_
00035 #define _UTIL_PARITY_H_
00036
00037 #include <stdint.h>
00038
00039 #ifndef __DOXYGEN__
00040 #ifndef __ATTR_ALWAYS_INLINE__
00041 #define __ATTR_ALWAYS_INLINE__ __inline__ __attribute__((__always_inline__))
00042 #endif
00043 #endif /* !DOXYGEN */
00044
00045 /** \file */
00046 /** \defgroup util_parity <util/parity.h>: Parity bit generation
00047 \code #include <util/parity.h> \endcode
00048
00049 This header file contains optimized assembler code to calculate
00050 the parity bit for a byte.
00051 */
00052 /** \fn uint8_t parity_even_bit (uint8_t val);
00053 \ingroup util_parity
00054 \returns 1 if \c val has an odd number of bits set, and 0 otherwise. */
00055
00056 static __ATTR_ALWAYS_INLINE__
00057 uint8_t parity_even_bit (uint8_t __val)
00058 {
00059 if (__builtin_constant_p (__builtin_parity (__val)))
00060 return (uint8_t) __builtin_parity (__val);
00061
00062 __asm (/* parity is in [0..7] */
00063 "mov __tmp_reg__, %0" "\n\t"
00064 "swap __tmp_reg__" "\n\t"
00065 "eor %0, __tmp_reg__" "\n\t"
00066 /* parity is in [0..3] */
00067 "subi %0, -4" "\n\t"
00068 "andi %0, -5" "\n\t"
00069 "subi %0, -6" "\n\t"
00070 /* parity is in [0,3] */

Generated by Doxygen

23.74 setbaud.h File Reference 541

00071 "sbrc %0, 3" "\n\t"
00072 "inc %0"
00073 /* parity is in [0] */
00074 : "+d" (__val) :: "r0");
00075
00076 return __val & 1;
00077 }
00078
00079 #endif /* _UTIL_PARITY_H_ */

23.74 setbaud.h File Reference

Macros

• #define BAUD_TOL 2
• #define UBRR_VALUE
• #define UBRRL_VALUE
• #define UBRRH_VALUE
• #define USE_2X 0

23.75 setbaud.h

Go to the documentation of this file.
00001 /* Copyright (c) 2007 Cliff Lawson
00002 Copyright (c) 2007 Carlos Lamas
00003 All rights reserved.
00004
00005 Redistribution and use in source and binary forms, with or without
00006 modification, are permitted provided that the following conditions are met:
00007
00008 * Redistributions of source code must retain the above copyright
00009 notice, this list of conditions and the following disclaimer.
00010
00011 * Redistributions in binary form must reproduce the above copyright
00012 notice, this list of conditions and the following disclaimer in
00013 the documentation and/or other materials provided with the
00014 distribution.
00015
00016 * Neither the name of the copyright holders nor the names of
00017 contributors may be used to endorse or promote products derived
00018 from this software without specific prior written permission.
00019
00020 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00021 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00022 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00023 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00024 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00025 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00026 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00027 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00028 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00029 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00030 POSSIBILITY OF SUCH DAMAGE. */
00031
00032 /* Id */
00033
00034 /**
00035 \file
00036 */
00037
00038 /**
00039 \defgroup util_setbaud <util/setbaud.h>: Helper macros for baud rate calculations
00040 \code
00041 #define F_CPU 11059200
00042 #define BAUD 38400
00043 #include <util/setbaud.h>
00044 \endcode
00045
00046 This header file requires that on entry values are already defined
00047 for F_CPU and BAUD. In addition, the macro BAUD_TOL will define
00048 the baud rate tolerance (in percent) that is acceptable during
00049 the calculations. The value of BAUD_TOL will default to 2 %.
00050
00051 This header file defines macros suitable to setup the UART baud

Generated by Doxygen

542

00052 rate prescaler registers of an AVR. All calculations are done
00053 using the C preprocessor. Including this header file causes no
00054 other side effects so it is possible to include this file more than
00055 once (supposedly, with different values for the BAUD parameter),
00056 possibly even within the same function.
00057
00058 Assuming that the requested BAUD is valid for the given F_CPU then
00059 the macro UBRR_VALUE is set to the required prescaler value. Two
00060 additional macros are provided for the low and high bytes of the
00061 prescaler, respectively: UBRRL_VALUE is set to the lower byte of
00062 the UBRR_VALUE and UBRRH_VALUE is set to the upper byte. An
00063 additional macro USE_2X will be defined. Its value is set to 1 if
00064 the desired BAUD rate within the given tolerance could only be
00065 achieved by setting the U2X bit in the UART configuration. It will
00066 be defined to 0 if U2X is not needed.
00067
00068 Example usage:
00069
00070 \code
00071 #include <avr/io.h>
00072
00073 #define F_CPU 4000000
00074
00075 static void
00076 uart_9600(void)
00077 {
00078 #define BAUD 9600
00079 #include <util/setbaud.h>
00080 UBRRH = UBRRH_VALUE;
00081 UBRRL = UBRRL_VALUE;
00082 #if USE_2X
00083 UCSRA |= (1 « U2X);
00084 #else
00085 UCSRA &= ~(1 « U2X);
00086 #endif
00087 }
00088
00089 static void
00090 uart_38400(void)
00091 {
00092 #undef BAUD // avoid compiler warning
00093 #define BAUD 38400
00094 #include <util/setbaud.h>
00095 UBRRH = UBRRH_VALUE;
00096 UBRRL = UBRRL_VALUE;
00097 #if USE_2X
00098 UCSRA |= (1 « U2X);
00099 #else
00100 UCSRA &= ~(1 « U2X);
00101 #endif
00102 }
00103 \endcode
00104
00105 In this example, two functions are defined to setup the UART
00106 to run at 9600 Bd, and 38400 Bd, respectively. Using a CPU
00107 clock of 4 MHz, 9600 Bd can be achieved with an acceptable
00108 tolerance without setting U2X (prescaler 25), while 38400 Bd
00109 require U2X to be set (prescaler 12).
00110 */
00111
00112 #ifndef F_CPU
00113 # error "setbaud.h requires F_CPU to be defined"
00114 #endif
00115
00116 #ifndef BAUD
00117 # error "setbaud.h requires BAUD to be defined"
00118 #endif
00119
00120 #if !(F_CPU)
00121 # error "F_CPU must be a constant value"
00122 #endif
00123
00124 #if !(BAUD)
00125 # error "BAUD must be a constant value"
00126 #endif
00127
00128 #if defined(__DOXYGEN__)
00129 /**
00130 \def BAUD_TOL
00131 \ingroup util_setbaud
00132
00133 Input and output macro for <util/setbaud.h>
00134
00135 Define the acceptable baud rate tolerance in percent. If not set
00136 on entry, it will be set to its default value of 2.
00137 */
00138 #define BAUD_TOL 2

Generated by Doxygen

23.75 setbaud.h 543

00139
00140 /**
00141 \def UBRR_VALUE
00142 \ingroup util_setbaud
00143
00144 Output macro from <util/setbaud.h>
00145
00146 Contains the calculated baud rate prescaler value for the UBRR
00147 register.
00148 */
00149 #define UBRR_VALUE
00150
00151 /**
00152 \def UBRRL_VALUE
00153 \ingroup util_setbaud
00154
00155 Output macro from <util/setbaud.h>
00156
00157 Contains the lower byte of the calculated prescaler value
00158 (UBRR_VALUE).
00159 */
00160 #define UBRRL_VALUE
00161
00162 /**
00163 \def UBRRH_VALUE
00164 \ingroup util_setbaud
00165
00166 Output macro from <util/setbaud.h>
00167
00168 Contains the upper byte of the calculated prescaler value
00169 (UBRR_VALUE).
00170 */
00171 #define UBRRH_VALUE
00172
00173 /**
00174 \def USE_2X
00175 \ingroup util_setbaud
00176
00177 Output macro from <util/setbaud.h>
00178
00179 Contains the value 1 if the desired baud rate tolerance could only
00180 be achieved by setting the U2X bit in the UART configuration.
00181 Contains 0 otherwise.
00182 */
00183 #define USE_2X 0
00184
00185 #else /* !__DOXYGEN__ */
00186
00187 #undef USE_2X
00188
00189 /* Baud rate tolerance is 2 % unless previously defined */
00190 #ifndef BAUD_TOL
00191 # define BAUD_TOL 2
00192 #endif
00193
00194 #ifdef __ASSEMBLER__
00195 #define UBRR_VALUE (((F_CPU) + 8 * (BAUD)) / (16 * (BAUD)) -1)
00196 #else
00197 #define UBRR_VALUE (((F_CPU) + 8UL * (BAUD)) / (16UL * (BAUD)) -1UL)
00198 #endif
00199
00200 #if 100 * (F_CPU) > \
00201 (16 * ((UBRR_VALUE) + 1)) * (100 * (BAUD) + (BAUD) * (BAUD_TOL))
00202 # define USE_2X 1
00203 #elif 100 * (F_CPU) < \
00204 (16 * ((UBRR_VALUE) + 1)) * (100 * (BAUD) - (BAUD) * (BAUD_TOL))
00205 # define USE_2X 1
00206 #else
00207 # define USE_2X 0
00208 #endif
00209
00210 #if USE_2X
00211 /* U2X required, recalculate */
00212 #undef UBRR_VALUE
00213
00214 #ifdef __ASSEMBLER__
00215 #define UBRR_VALUE (((F_CPU) + 4 * (BAUD)) / (8 * (BAUD)) -1)
00216 #else
00217 #define UBRR_VALUE (((F_CPU) + 4UL * (BAUD)) / (8UL * (BAUD)) -1UL)
00218 #endif
00219
00220 #if 100 * (F_CPU) > \
00221 (8 * ((UBRR_VALUE) + 1)) * (100 * (BAUD) + (BAUD) * (BAUD_TOL))
00222 # warning "Baud rate achieved is higher than allowed"
00223 #endif
00224
00225 #if 100 * (F_CPU) < \

Generated by Doxygen

544

00226 (8 * ((UBRR_VALUE) + 1)) * (100 * (BAUD) - (BAUD) * (BAUD_TOL))
00227 # warning "Baud rate achieved is lower than allowed"
00228 #endif
00229
00230 #endif /* USE_U2X */
00231
00232 #ifdef UBRR_VALUE
00233 /* Check for overflow */
00234 # if UBRR_VALUE >= (1 « 12)
00235 # warning "UBRR value overflow"
00236 # endif
00237
00238 # define UBRRL_VALUE (UBRR_VALUE & 0xff)
00239 # define UBRRH_VALUE (UBRR_VALUE » 8)
00240 #endif
00241
00242 #endif /* __DOXYGEN__ */
00243 /* end of util/setbaud.h */

23.76 compat/twi.h
00001 /* Copyright (c) 2005 Joerg Wunsch
00002 All rights reserved.
00003
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions are met:
00006
00007 * Redistributions of source code must retain the above copyright
00008 notice, this list of conditions and the following disclaimer.
00009
00010 * Redistributions in binary form must reproduce the above copyright
00011 notice, this list of conditions and the following disclaimer in
00012 the documentation and/or other materials provided with the
00013 distribution.
00014
00015 * Neither the name of the copyright holders nor the names of
00016 contributors may be used to endorse or promote products derived
00017 from this software without specific prior written permission.
00018
00019 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00020 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00021 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00022 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00023 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00024 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00025 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00026 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00027 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00028 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00029 POSSIBILITY OF SUCH DAMAGE. */
00030
00031 /* Id */
00032
00033 #ifndef _COMPAT_TWI_H_
00034 #define _COMPAT_TWI_H_
00035
00036 #include <util/twi.h>
00037
00038 #endif /* _COMPAT_TWI_H_ */

23.77 twi.h File Reference

Macros

TWSR values

Mnemonics:
TW_MT_xxx - master transmitter
TW_MR_xxx - master receiver
TW_ST_xxx - slave transmitter
TW_SR_xxx - slave receiver

• #define TW_START 0x08
• #define TW_REP_START 0x10
• #define TW_MT_SLA_ACK 0x18

Generated by Doxygen

23.78 util/twi.h 545

• #define TW_MT_SLA_NACK 0x20
• #define TW_MT_DATA_ACK 0x28
• #define TW_MT_DATA_NACK 0x30
• #define TW_MT_ARB_LOST 0x38
• #define TW_MR_ARB_LOST 0x38
• #define TW_MR_SLA_ACK 0x40
• #define TW_MR_SLA_NACK 0x48
• #define TW_MR_DATA_ACK 0x50
• #define TW_MR_DATA_NACK 0x58
• #define TW_ST_SLA_ACK 0xA8
• #define TW_ST_ARB_LOST_SLA_ACK 0xB0
• #define TW_ST_DATA_ACK 0xB8
• #define TW_ST_DATA_NACK 0xC0
• #define TW_ST_LAST_DATA 0xC8
• #define TW_SR_SLA_ACK 0x60
• #define TW_SR_ARB_LOST_SLA_ACK 0x68
• #define TW_SR_GCALL_ACK 0x70
• #define TW_SR_ARB_LOST_GCALL_ACK 0x78
• #define TW_SR_DATA_ACK 0x80
• #define TW_SR_DATA_NACK 0x88
• #define TW_SR_GCALL_DATA_ACK 0x90
• #define TW_SR_GCALL_DATA_NACK 0x98
• #define TW_SR_STOP 0xA0
• #define TW_NO_INFO 0xF8
• #define TW_BUS_ERROR 0x00
• #define TW_STATUS_MASK
• #define TW_STATUS (TWSR & TW_STATUS_MASK)

R/∼W bit in SLA+R/W address field.

• #define TW_READ 1
• #define TW_WRITE 0

23.78 util/twi.h

Go to the documentation of this file.
00001 /* Copyright (c) 2002, Marek Michalkiewicz
00002 Copyright (c) 2005, 2007 Joerg Wunsch
00003 All rights reserved.
00004
00005 Redistribution and use in source and binary forms, with or without
00006 modification, are permitted provided that the following conditions are met:
00007
00008 * Redistributions of source code must retain the above copyright
00009 notice, this list of conditions and the following disclaimer.
00010
00011 * Redistributions in binary form must reproduce the above copyright
00012 notice, this list of conditions and the following disclaimer in
00013 the documentation and/or other materials provided with the
00014 distribution.
00015
00016 * Neither the name of the copyright holders nor the names of
00017 contributors may be used to endorse or promote products derived
00018 from this software without specific prior written permission.
00019
00020 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00021 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00022 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00023 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00024 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00025 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00026 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00027 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00028 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00029 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00030 POSSIBILITY OF SUCH DAMAGE. */
00031
00032 /* Id */
00033 /* copied from: Id: avr/twi.h,v 1.4 2004/11/01 21:19:54 arcanum Exp */
00034

Generated by Doxygen

546

00035 #ifndef _UTIL_TWI_H_
00036 #define _UTIL_TWI_H_ 1
00037
00038 #include <avr/io.h>
00039
00040 /** \file */
00041 /** \defgroup util_twi <util/twi.h>: TWI bit mask definitions
00042 \code #include <util/twi.h> \endcode
00043
00044 This header file contains bit mask definitions for use with
00045 the AVR TWI interface.
00046 */
00047 /** \name TWSR values
00048
00049 Mnemonics:
00050
TW_MT_xxx - master transmitter
00051
TW_MR_xxx - master receiver
00052
TW_ST_xxx - slave transmitter
00053
TW_SR_xxx - slave receiver
00054 */
00055
00056 /**@{*/
00057 /* Master */
00058 /** \ingroup util_twi
00059 \def TW_START
00060 start condition transmitted */
00061 #define TW_START 0x08
00062
00063 /** \ingroup util_twi
00064 \def TW_REP_START
00065 repeated start condition transmitted */
00066 #define TW_REP_START 0x10
00067
00068 /* Master Transmitter */
00069 /** \ingroup util_twi
00070 \def TW_MT_SLA_ACK
00071 SLA+W transmitted, ACK received */
00072 #define TW_MT_SLA_ACK 0x18
00073
00074 /** \ingroup util_twi
00075 \def TW_MT_SLA_NACK
00076 SLA+W transmitted, NACK received */
00077 #define TW_MT_SLA_NACK 0x20
00078
00079 /** \ingroup util_twi
00080 \def TW_MT_DATA_ACK
00081 data transmitted, ACK received */
00082 #define TW_MT_DATA_ACK 0x28
00083
00084 /** \ingroup util_twi
00085 \def TW_MT_DATA_NACK
00086 data transmitted, NACK received */
00087 #define TW_MT_DATA_NACK 0x30
00088
00089 /** \ingroup util_twi
00090 \def TW_MT_ARB_LOST
00091 arbitration lost in SLA+W or data */
00092 #define TW_MT_ARB_LOST 0x38
00093
00094 /* Master Receiver */
00095 /** \ingroup util_twi
00096 \def TW_MR_ARB_LOST
00097 arbitration lost in SLA+R or NACK */
00098 #define TW_MR_ARB_LOST 0x38
00099
00100 /** \ingroup util_twi
00101 \def TW_MR_SLA_ACK
00102 SLA+R transmitted, ACK received */
00103 #define TW_MR_SLA_ACK 0x40
00104
00105 /** \ingroup util_twi
00106 \def TW_MR_SLA_NACK
00107 SLA+R transmitted, NACK received */
00108 #define TW_MR_SLA_NACK 0x48
00109
00110 /** \ingroup util_twi
00111 \def TW_MR_DATA_ACK
00112 data received, ACK returned */
00113 #define TW_MR_DATA_ACK 0x50
00114
00115 /** \ingroup util_twi
00116 \def TW_MR_DATA_NACK
00117 data received, NACK returned */
00118 #define TW_MR_DATA_NACK 0x58
00119
00120 /* Slave Transmitter */
00121 /** \ingroup util_twi

Generated by Doxygen

23.78 util/twi.h 547

00122 \def TW_ST_SLA_ACK
00123 SLA+R received, ACK returned */
00124 #define TW_ST_SLA_ACK 0xA8
00125
00126 /** \ingroup util_twi
00127 \def TW_ST_ARB_LOST_SLA_ACK
00128 arbitration lost in SLA+RW, SLA+R received, ACK returned */
00129 #define TW_ST_ARB_LOST_SLA_ACK 0xB0
00130
00131 /** \ingroup util_twi
00132 \def TW_ST_DATA_ACK
00133 data transmitted, ACK received */
00134 #define TW_ST_DATA_ACK 0xB8
00135
00136 /** \ingroup util_twi
00137 \def TW_ST_DATA_NACK
00138 data transmitted, NACK received */
00139 #define TW_ST_DATA_NACK 0xC0
00140
00141 /** \ingroup util_twi
00142 \def TW_ST_LAST_DATA
00143 last data byte transmitted, ACK received */
00144 #define TW_ST_LAST_DATA 0xC8
00145
00146 /* Slave Receiver */
00147 /** \ingroup util_twi
00148 \def TW_SR_SLA_ACK
00149 SLA+W received, ACK returned */
00150 #define TW_SR_SLA_ACK 0x60
00151
00152 /** \ingroup util_twi
00153 \def TW_SR_ARB_LOST_SLA_ACK
00154 arbitration lost in SLA+RW, SLA+W received, ACK returned */
00155 #define TW_SR_ARB_LOST_SLA_ACK 0x68
00156
00157 /** \ingroup util_twi
00158 \def TW_SR_GCALL_ACK
00159 general call received, ACK returned */
00160 #define TW_SR_GCALL_ACK 0x70
00161
00162 /** \ingroup util_twi
00163 \def TW_SR_ARB_LOST_GCALL_ACK
00164 arbitration lost in SLA+RW, general call received, ACK returned */
00165 #define TW_SR_ARB_LOST_GCALL_ACK 0x78
00166
00167 /** \ingroup util_twi
00168 \def TW_SR_DATA_ACK
00169 data received, ACK returned */
00170 #define TW_SR_DATA_ACK 0x80
00171
00172 /** \ingroup util_twi
00173 \def TW_SR_DATA_NACK
00174 data received, NACK returned */
00175 #define TW_SR_DATA_NACK 0x88
00176
00177 /** \ingroup util_twi
00178 \def TW_SR_GCALL_DATA_ACK
00179 general call data received, ACK returned */
00180 #define TW_SR_GCALL_DATA_ACK 0x90
00181
00182 /** \ingroup util_twi
00183 \def TW_SR_GCALL_DATA_NACK
00184 general call data received, NACK returned */
00185 #define TW_SR_GCALL_DATA_NACK 0x98
00186
00187 /** \ingroup util_twi
00188 \def TW_SR_STOP
00189 stop or repeated start condition received while selected */
00190 #define TW_SR_STOP 0xA0
00191
00192 /* Misc */
00193 /** \ingroup util_twi
00194 \def TW_NO_INFO
00195 no state information available */
00196 #define TW_NO_INFO 0xF8
00197
00198 /** \ingroup util_twi
00199 \def TW_BUS_ERROR
00200 illegal start or stop condition */
00201 #define TW_BUS_ERROR 0x00
00202
00203
00204 /**
00205 * \ingroup util_twi
00206 * \def TW_STATUS_MASK
00207 * The lower 3 bits of TWSR are reserved on the ATmega163.
00208 * The 2 LSB carry the prescaler bits on the newer ATmegas.

Generated by Doxygen

548

00209 */
00210 #define TW_STATUS_MASK (_BV(TWS7)|_BV(TWS6)|_BV(TWS5)|_BV(TWS4)|\
00211 _BV(TWS3))
00212 /**
00213 * \ingroup util_twi
00214 * \def TW_STATUS
00215 *
00216 * TWSR, masked by TW_STATUS_MASK
00217 */
00218 #define TW_STATUS (TWSR & TW_STATUS_MASK)
00219 /**@}*/
00220
00221 /**
00222 * \name R/~W bit in SLA+R/W address field.
00223 */
00224
00225 /**@{*/
00226 /** \ingroup util_twi
00227 \def TW_READ
00228 SLA+R address */
00229 #define TW_READ 1
00230
00231 /** \ingroup util_twi
00232 \def TW_WRITE
00233 SLA+W address */
00234 #define TW_WRITE 0
00235 /**@}*/
00236
00237 #endif /* _UTIL_TWI_H_ */

23.79 usa_dst.h File Reference

Functions

• int usa_dst (const time_t ∗timer, int32_t ∗z)

23.80 usa_dst.h

Go to the documentation of this file.
00001 /*
00002 * (c)2012 Michael Duane Rice All rights reserved.
00003 *
00004 * Redistribution and use in source and binary forms, with or without
00005 * modification, are permitted provided that the following conditions are
00006 * met:
00007 *
00008 * Redistributions of source code must retain the above copyright notice, this
00009 * list of conditions and the following disclaimer. Redistributions in binary
00010 * form must reproduce the above copyright notice, this list of conditions
00011 * and the following disclaimer in the documentation and/or other materials
00012 * provided with the distribution. Neither the name of the copyright holders
00013 * nor the names of contributors may be used to endorse or promote products
00014 * derived from this software without specific prior written permission.
00015 *
00016 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00017 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00018 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00019 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00020 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00021 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00022 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00023 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00024 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00025 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00026 * POSSIBILITY OF SUCH DAMAGE.
00027 */
00028
00029 /* Id */
00030
00031 #ifndef USA_DST_H
00032 #define USA_DST_H
00033
00034 #ifdef __cplusplus
00035 extern "C" {
00036 #endif
00037

Generated by Doxygen

23.81 eedef.h 549

00038 #include <time.h>
00039 #include <stdint.h>
00040
00041 /** \file */
00042 /** \defgroup usa_dst <util/usa_dst.h>: Daylight Saving function for the USA.
00043 \code #include <util/usa_dst.h> \endcode
00044 Daylight Saving function for the USA. */
00045
00046 /** \ingroup usa_dst
00047 \fn int usa_dst (const time_t *timer, int32_t *z)
00048 To utilize this function, call
00049 \code set_dst(usa_dst); \endcode
00050
00051 Given the time stamp and time zone parameters provided, the Daylight
00052 Saving function must return a value appropriate for the tm structures’
00053 tm_isdst element. That is:
00054
00055 - \c 0 : If Daylight Saving is not in effect.
00056
00057 - \c -1 : If it cannot be determined if Daylight Saving is in effect.
00058
00059 - A positive integer : Represents the number of seconds a clock is
00060 advanced for Daylight Saving. This will typically be ONE_HOUR.
00061
00062 Daylight Saving ’rules’ are subject to frequent change. For production
00063 applications it is recommended to write your own DST function, which
00064 uses ’rules’ obtained from, and modifiable by, the end user
00065 (perhaps stored in EEPROM).
00066 */
00067 int usa_dst (const time_t *timer, int32_t *z);
00068
00069 #ifdef __cplusplus
00070 }
00071 #endif
00072
00073 #endif

23.81 eedef.h
00001 /* Copyright (c) 2009 Dmitry Xmelkov
00002 All rights reserved.
00003
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions are met:
00006
00007 * Redistributions of source code must retain the above copyright
00008 notice, this list of conditions and the following disclaimer.
00009 * Redistributions in binary form must reproduce the above copyright
00010 notice, this list of conditions and the following disclaimer in
00011 the documentation and/or other materials provided with the
00012 distribution.
00013 * Neither the name of the copyright holders nor the names of
00014 contributors may be used to endorse or promote products derived
00015 from this software without specific prior written permission.
00016
00017 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00018 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00019 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00020 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00021 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00022 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00023 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00024 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00025 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00026 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00027 POSSIBILITY OF SUCH DAMAGE. */
00028
00029 /* Id */
00030
00031 #ifndef _EEDEF_H_
00032 #define _EEDEF_H_ 1
00033
00034 #ifndef __DOXYGEN__
00035
00036 /* EEPROM address arg for a set of byte/word/dword functions and for
00037 the internal eeprom_read_blraw(). */
00038 #define addr_lo r24
00039 #define addr_hi r25
00040
00041 /* Number of bytes arg for all block read/write functions, include
00042 internal. */
00043 #define n_lo r20
00044 #define n_hi r21
00045

Generated by Doxygen

550

00046 #if __AVR_XMEGA__
00047
00048 # define NVM_BASE NVM_ADDR0
00049
00050 #if defined(NVMCTRL_CTRLA)
00051 # undef NVM_BASE
00052 # define NVM_BASE NVMCTRL_CTRLA
00053
00054 # define NVM_ADDR0 NVMCTRL_ADDR0
00055 # define NVM_ADDR1 NVMCTRL_ADDR1
00056 # define NVM_DATA0 NVMCTRL_DATA0
00057 # define NVM_DATA1 NVMCTRL_DATA1
00058 # define NVM_NVMBUSY_bp NVMCTRL_EEBUSY_bp
00059 # define NVM_STATUS NVMCTRL_STATUS
00060 # define NVM_CTRLA NVMCTRL_CTRLA
00061 # define NVM_CTRLB NVMCTRL_CTRLB
00062 # ifndef CCP_SPM_gc
00063 # define CCP_SPM_gc (0x9D)
00064 # endif
00065 # ifndef NVMCTRL_CMD_PAGEERASEWRITE_gc
00066 # if NVMCTRL_CMD_gm == 0x7F
00067 # if defined (__AVR_AVR16EA28__) || defined (__AVR_AVR16EA32__) || defined (__AVR_AVR16EA48__) ||

\
00068 defined (__AVR_AVR16EB14__) || defined (__AVR_AVR16EB20__) || defined (__AVR_AVR16EB28__) ||

\
00069 defined (__AVR_AVR16EB32__) || defined (__AVR_AVR32EA28__) || defined (__AVR_AVR32EA32__) ||

\
00070 defined (__AVR_AVR32EA48__) || defined (__AVR_AVR64EA28__) || defined (__AVR_AVR64EA32__) ||

\
00071 defined (__AVR_AVR64EA48__)
00072 /* AVR-Ex family
00073 * value of NVMCTRL_CMD_enum.NVMCTRL_CMD_EEPERW_gc */
00074 # define NVMCTRL_CMD_PAGEERASEWRITE_gc (0x15«0)
00075 # elif defined (__AVR_AVR32DA28__) || defined (__AVR_AVR32DA32__) || defined (__AVR_AVR32DA48__)

|| \
00076 defined (__AVR_AVR64DA28__) || defined (__AVR_AVR64DA32__) || defined (__AVR_AVR64DA48__)

|| \
00077 defined (__AVR_AVR64DA64__) || defined (__AVR_AVR128DA28__) || defined

(__AVR_AVR128DA32__) || \
00078 defined (__AVR_AVR128DA48__) || defined (__AVR_AVR128DA64__) || defined

(__AVR_AVR32DB28__) || \
00079 defined (__AVR_AVR32DB32__) || defined (__AVR_AVR32DB48__) || defined (__AVR_AVR64DB28__)

|| \
00080 defined (__AVR_AVR64DB32__) || defined (__AVR_AVR64DB48__) || defined (__AVR_AVR64DB64__)

|| \
00081 defined (__AVR_AVR128DB28__) || defined (__AVR_AVR128DB32__) || defined

(__AVR_AVR128DB48__) || \
00082 defined (__AVR_AVR128DB64__) || defined (__AVR_AVR16DD14__) || defined (__AVR_AVR16DD20__)

|| \
00083 defined (__AVR_AVR16DD28__) || defined (__AVR_AVR16DD32__) || defined (__AVR_AVR32DD14__)

|| \
00084 defined (__AVR_AVR32DD20__) || defined (__AVR_AVR32DD32__) || defined (__AVR_AVR32DD28__)

|| \
00085 defined (__AVR_AVR64DD14__) || defined (__AVR_AVR64DD20__) || defined (__AVR_AVR64DD28__)

|| \
00086 defined (__AVR_AVR64DD32__) \
00087 || defined (__AVR_AVR64DU28__) || defined (__AVR_AVR64DU32__)
00088 /* AVR-Dx family
00089 * value of NVMCTRL_CMD_enum.NVMCTRL_CMD_EEERWR_gc */
00090 # define NVMCTRL_CMD_PAGEERASEWRITE_gc (0x13«0)
00091 # else
00092 /* To add support for a new device, define NVMCTRL CMD_PAGEERASEWRITE_gc with the value
00093 * of "Erase and Write EEPROM Page" comand code for - Persistent Memory Controller

(NVMCTRL).*/
00094 # error "Not supported devices"
00095 # endif
00096 # else
00097 /* the rest of the AVR devices with NVMCTRL_CTRLA (0x07)
00098 * value of NVMCTRL_CMD_enum.NVMCTRL_CMD_PAGEERASEWRITE_gc */
00099 # define NVMCTRL_CMD_PAGEERASEWRITE_gc 3
00100 # endif
00101 # endif /* NVMCTRL_CMD_PAGEERASEWRITE_gc */
00102 #endif /* defined(NVMCTRL_CTRLA) */
00103 #else
00104
00105 # if !defined (EECR) && defined (DEECR) /* AT86RF401 */
00106 # define EECR DEECR
00107 # define EEARL DEEAR
00108 # define EEDR DEEDR
00109 # endif
00110
00111 # if !defined (EERE) && defined (EER) /* AT86RF401 */
00112 # define EERE EER
00113 # endif
00114
00115 # if !defined (EEWE) && defined (EEPE) /* A part of Mega and Tiny */
00116 # define EEWE EEPE

Generated by Doxygen

23.82 fdevopen.c File Reference 551

00117 # endif
00118 # if !defined (EEWE) && defined (EEL) /* AT86RF401 */
00119 # define EEWE EEL
00120 # endif
00121
00122 # if !defined (EEMWE) && defined (EEMPE) /* A part of Mega and Tiny */
00123 # define EEMWE EEMPE
00124 # endif
00125 # if !defined (EEMWE) && defined (EEU) /* AT86RF401 */
00126 # define EEMWE EEU
00127 # endif
00128
00129 # if !_SFR_IO_REG_P (EECR) \
00130 || !_SFR_IO_REG_P (EEDR) \
00131 || !_SFR_IO_REG_P (EEARL) \
00132 || (defined (EEARH) && !_SFR_IO_REG_P (EEARH))
00133 # error
00134 # endif
00135
00136 #endif /* !__AVR_XMEGA__ */
00137 #endif /* !__DOXYGEN__ */
00138 #endif /* !_EEDEF_H_ */

23.82 fdevopen.c File Reference

Functions

• FILE ∗ fdevopen (int(∗put)(char, FILE ∗), int(∗get)(FILE ∗))

23.83 stdio_private.h
00001 /* Copyright (c) 2002,2005, Joerg Wunsch
00002 All rights reserved.
00003
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions are met:
00006
00007 * Redistributions of source code must retain the above copyright
00008 notice, this list of conditions and the following disclaimer.
00009 * Redistributions in binary form must reproduce the above copyright
00010 notice, this list of conditions and the following disclaimer in
00011 the documentation and/or other materials provided with the
00012 distribution.
00013 * Neither the name of the copyright holders nor the names of
00014 contributors may be used to endorse or promote products derived
00015 from this software without specific prior written permission.
00016
00017 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00018 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00019 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00020 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00021 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00022 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00023 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00024 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00025 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00026 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00027 POSSIBILITY OF SUCH DAMAGE.
00028 */
00029
00030 /* Id */
00031
00032 #include <stdint.h>
00033 #include <stdio.h>
00034
00035 /* values for PRINTF_LEVEL */
00036 #define PRINTF_MIN 1
00037 #define PRINTF_STD 2
00038 #define PRINTF_FLT 3
00039
00040 /* values for SCANF_LEVEL */
00041 #define SCANF_MIN 1
00042 #define SCANF_STD 2
00043 #define SCANF_FLT 3

Generated by Doxygen

552

23.84 xtoa_fast.h
00001 /* Copyright (c) 2005, Dmitry Xmelkov
00002 All rights reserved.
00003
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions are met:
00006
00007 * Redistributions of source code must retain the above copyright
00008 notice, this list of conditions and the following disclaimer.
00009 * Redistributions in binary form must reproduce the above copyright
00010 notice, this list of conditions and the following disclaimer in
00011 the documentation and/or other materials provided with the
00012 distribution.
00013 * Neither the name of the copyright holders nor the names of
00014 contributors may be used to endorse or promote products derived
00015 from this software without specific prior written permission.
00016
00017 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00018 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00019 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00020 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00021 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00022 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00023 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00024 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00025 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00026 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00027 POSSIBILITY OF SUCH DAMAGE. */
00028
00029 /* Id */
00030
00031 #ifndef _XTOA_FAST_H_
00032 #define _XTOA_FAST_H_
00033
00034 #ifndef __ASSEMBLER__
00035
00036 #include <stddef.h> /* for ’size_t’ */
00037
00038 char * itoa_fast (int val, char *s, int base);
00039 char * utoa_fast (unsigned val, char *s, int base);
00040 char * ltoa_fast (long val, char *s, int base);
00041 char * ultoa_fast (unsigned long val, char *s, int base);
00042
00043 char * itoa_width (int val, char *s, int base, size_t width);
00044 char * utoa_width (unsigned val, char *s, int base, size_t width);
00045 char * ltoa_width (long val, char *s, int base, size_t width);
00046 char * ultoa_width (unsigned long val, char *s, int base, size_t width);
00047
00048 /* Internal function for use from ‘printf’. */
00049 char * __ultoa_invert (unsigned long val, char *s, int base);
00050
00051 #endif /* ifndef __ASSEMBLER__ */
00052
00053 /* Next flags are to use with ‘base’. Unused fields are reserved. */
00054 #define XTOA_PREFIX 0x0100 /* put prefix for octal or hex */
00055 #define XTOA_UPPER 0x0200 /* use upper case letters */
00056
00057 #endif /* _XTOA_FAST_H_ */

23.85 dtoa_conv.h
00001 /* Copyright (c) 2005, Dmitry Xmelkov
00002 All rights reserved.
00003
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions are met:
00006
00007 * Redistributions of source code must retain the above copyright
00008 notice, this list of conditions and the following disclaimer.
00009 * Redistributions in binary form must reproduce the above copyright
00010 notice, this list of conditions and the following disclaimer in
00011 the documentation and/or other materials provided with the
00012 distribution.
00013 * Neither the name of the copyright holders nor the names of
00014 contributors may be used to endorse or promote products derived
00015 from this software without specific prior written permission.
00016
00017 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00018 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00019 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00020 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00021 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00022 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

Generated by Doxygen

23.86 stdlib_private.h 553

00023 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00024 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00025 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00026 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00027 POSSIBILITY OF SUCH DAMAGE. */
00028
00029 /* Id */
00030
00031 #ifndef _DTOA_CONV_H
00032 #define _DTOA_CONV_H
00033
00034 #include <stdio.h>
00035
00036 int ftoa_prf (float val, char *s, unsigned char width, unsigned char prec,
00037 unsigned char flags);
00038
00039 #define DTOA_SPACE 0x01 /* put space for positives */
00040 #define DTOA_PLUS 0x02 /* put ’+’ for positives */
00041 #define DTOA_UPPER 0x04 /* use uppercase letters */
00042 #define DTOA_ZFILL 0x08 /* fill zeroes */
00043 #define DTOA_LEFT 0x10 /* adjust to left */
00044 #define DTOA_NOFILL 0x20 /* do not fill to width */
00045 #define DTOA_EXP 0x40 /* d2stream: ’e(E)’ format */
00046 #define DTOA_FIX 0x80 /* d2stream: ’f(F)’ format */
00047
00048 #define DTOA_EWIDTH (-1) /* Width too small */
00049 #define DTOA_NONFINITE (-2) /* Value is NaN or Inf */
00050
00051 #endif /* !_DTOA_CONV_H */

23.86 stdlib_private.h
00001 /* Copyright (c) 2004, Joerg Wunsch
00002 All rights reserved.
00003
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions are met:
00006
00007 * Redistributions of source code must retain the above copyright
00008 notice, this list of conditions and the following disclaimer.
00009 * Redistributions in binary form must reproduce the above copyright
00010 notice, this list of conditions and the following disclaimer in
00011 the documentation and/or other materials provided with the
00012 distribution.
00013 * Neither the name of the copyright holders nor the names of
00014 contributors may be used to endorse or promote products derived
00015 from this software without specific prior written permission.
00016
00017 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00018 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00019 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00020 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00021 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00022 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00023 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00024 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00025 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00026 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00027 POSSIBILITY OF SUCH DAMAGE.
00028 */
00029
00030 /* Id */
00031
00032 #include <inttypes.h>
00033 #include <stdlib.h>
00034 #include <avr/io.h>
00035
00036 #if !defined(__DOXYGEN__)
00037
00038 struct __freelist {
00039 size_t sz;
00040 struct __freelist *nx;
00041 };
00042
00043 #endif
00044
00045 extern char *__brkval; /* first location not yet allocated */
00046 extern struct __freelist *__flp; /* freelist pointer (head of freelist) */
00047 extern size_t __malloc_margin; /* user-changeable before the first malloc() */
00048 extern char *__malloc_heap_start;
00049 extern char *__malloc_heap_end;
00050
00051 #ifndef __AVR__
00052

Generated by Doxygen

554

00053 /*
00054 * When compiling malloc.c/realloc.c natively on a host machine, it will
00055 * include a main() that performs a regression test. This is meant as
00056 * a debugging aid, where a normal source-level debugger will help to
00057 * verify that the various allocator structures have the desired
00058 * appearance at each stage.
00059 *
00060 * When cross-compiling with avr-gcc, it will compile into just the
00061 * library functions malloc() and free().
00062 */
00063 #define MALLOC_TEST
00064
00065 #endif /* !__AVR__ */
00066
00067 #ifdef MALLOC_TEST
00068
00069 extern void *mymalloc(size_t);
00070 extern void myfree(void *);
00071 extern void *myrealloc(void *, size_t);
00072
00073 #define malloc mymalloc
00074 #define free myfree
00075 #define realloc myrealloc
00076
00077 #define __heap_start mymem[0]
00078 #define __heap_end mymem[256]
00079 extern char mymem[];
00080 #define STACK_POINTER() (mymem + 256)
00081
00082 #else /* !MALLOC_TEST */
00083
00084 extern char __heap_start;
00085 extern char __heap_end;
00086
00087 /* Needed for definition of AVR_STACK_POINTER_REG. */
00088 #include <avr/io.h>
00089
00090 #define STACK_POINTER() ((char *)AVR_STACK_POINTER_REG)
00091
00092 #endif /* MALLOC_TEST */

23.87 ephemera_common.h
00001 /*
00002 * (C)2012 Michael Duane Rice All rights reserved.
00003 *
00004 * Redistribution and use in source and binary forms, with or without
00005 * modification, are permitted provided that the following conditions are
00006 * met:
00007 *
00008 * Redistributions of source code must retain the above copyright notice, this
00009 * list of conditions and the following disclaimer. Redistributions in binary
00010 * form must reproduce the above copyright notice, this list of conditions
00011 * and the following disclaimer in the documentation and/or other materials
00012 * provided with the distribution. Neither the name of the copyright holders
00013 * nor the names of contributors may be used to endorse or promote products
00014 * derived from this software without specific prior written permission.
00015 *
00016 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00017 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00018 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00019 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00020 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00021 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00022 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00023 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00024 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00025 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00026 * POSSIBILITY OF SUCH DAMAGE.
00027 */
00028
00029 /* Id */
00030
00031 #ifndef EPHEMERA_PRIVATE_H
00032 #define EPHEMERA_PRIVATE_H
00033
00034 #define TROP_YEAR 31556925
00035 #define ANOM_YEAR 31558433
00036 #define INCLINATION 0.409105176667471 /* Earths axial tilt at the epoch */
00037 #define PERIHELION 31316400 /* perihelion of 1999, 03 jan 13:00 UTC */
00038 #define SOLSTICE 836160 /* winter solstice of 1999, 22 Dec 07:44 UTC */
00039 #define TWO_PI 6.283185307179586
00040 #define TROP_CYCLE 5022440.6025
00041 #define ANOM_CYCLE 5022680.6082

Generated by Doxygen

23.87 ephemera_common.h 555

00042 #define DELTA_V 0.03342044 /* 2x orbital eccentricity */
00043
00044 #endif

Generated by Doxygen

Index

<alloca.h>: Allocate space in the stack, 103
alloca, 103

<assert.h>: Diagnostics, 104
assert, 104

<avr/boot.h>: Bootloader Support Utilities, 207
boot_is_spm_interrupt, 208
boot_lock_bits_set, 208
boot_lock_bits_set_safe, 209
boot_lock_fuse_bits_get, 209
boot_page_erase, 209
boot_page_erase_safe, 209
boot_page_fill, 210
boot_page_fill_safe, 210
boot_page_write, 210
boot_page_write_safe, 210
boot_rww_busy, 211
boot_rww_enable, 211
boot_rww_enable_safe, 211
boot_signature_byte_get, 211
boot_spm_busy, 211
boot_spm_busy_wait, 212
boot_spm_interrupt_disable, 212
boot_spm_interrupt_enable, 212
BOOTLOADER_SECTION, 212
GET_EXTENDED_FUSE_BITS, 212
GET_HIGH_FUSE_BITS, 212
GET_LOCK_BITS, 212
GET_LOW_FUSE_BITS, 212

<avr/builtins.h>: avr-gcc builtins documentation, 269
__builtin_avr_cli, 269
__builtin_avr_fmul, 270
__builtin_avr_fmuls, 270
__builtin_avr_fmulsu, 270
__builtin_avr_sei, 270
__builtin_avr_sleep, 270
__builtin_avr_swap, 270
__builtin_avr_wdr, 270

<avr/cpufunc.h>: Special AVR CPU functions, 212
_MemoryBarrier, 213
_NOP, 213
ccp_write_io, 213
ccp_write_spm, 213

<avr/eeprom.h>: EEPROM handling, 214
_EEGET, 215
_EEPUT, 215
__EEGET, 215
__EEPUT, 215
EEMEM, 216
eeprom_busy_wait, 216
eeprom_is_ready, 216
eeprom_read_block, 216
eeprom_read_byte, 216
eeprom_read_double, 216
eeprom_read_dword, 216
eeprom_read_float, 217

eeprom_read_long_double, 217
eeprom_read_qword, 217
eeprom_read_word, 217
eeprom_update_block, 217
eeprom_update_byte, 217
eeprom_update_double, 217
eeprom_update_dword, 217
eeprom_update_float, 218
eeprom_update_long_double, 218
eeprom_update_qword, 218
eeprom_update_word, 218
eeprom_write_block, 218
eeprom_write_byte, 218
eeprom_write_double, 218
eeprom_write_dword, 219
eeprom_write_float, 219
eeprom_write_long_double, 219
eeprom_write_qword, 219
eeprom_write_word, 219

<avr/fuse.h>: Fuse Support, 219
<avr/interrupt.h>: Interrupts, 222

BADISR_vect, 225
cli, 225
EMPTY_INTERRUPT, 226
ISR, 226
ISR_ALIAS, 226
ISR_ALIASOF, 226
ISR_BLOCK, 227
ISR_FLATTEN, 227
ISR_NAKED, 227
ISR_NOBLOCK, 227
ISR_NOGCCISR, 227
ISR_NOICF, 228
reti, 228
sei, 228
SIGNAL, 228

<avr/io.h>: AVR device-specific IO definitions, 228
_PROTECTED_WRITE, 229
_PROTECTED_WRITE_SPM, 229

<avr/lock.h>: Lockbit Support, 230
<avr/pgmspace.h>: Program Space Utilities, 232

memccpy_P, 237
memchr_P, 237
memcmp_P, 238
memcmp_PF, 238
memcpy_P, 238
memcpy_PF, 239
memmem_P, 239
memrchr_P, 239
pgm_get_far_address, 234
pgm_read< T >, 240
pgm_read_byte, 235
pgm_read_byte_far, 235
pgm_read_byte_near, 235
pgm_read_char, 240

Generated by Doxygen

558 INDEX

pgm_read_char_far, 240
pgm_read_double, 240
pgm_read_double_far, 240
pgm_read_dword, 235
pgm_read_dword_far, 236
pgm_read_dword_near, 236
pgm_read_far< T >, 240
pgm_read_float, 240
pgm_read_float_far, 240
pgm_read_float_near, 236
pgm_read_i16, 241
pgm_read_i16_far, 241
pgm_read_i24, 241
pgm_read_i24_far, 241
pgm_read_i32, 241
pgm_read_i32_far, 241
pgm_read_i64, 241
pgm_read_i64_far, 241
pgm_read_i8, 241
pgm_read_i8_far, 242
pgm_read_int, 242
pgm_read_int_far, 242
pgm_read_long, 242
pgm_read_long_double, 242
pgm_read_long_double_far, 242
pgm_read_long_far, 242
pgm_read_long_long, 242
pgm_read_long_long_far, 242
pgm_read_ptr, 236
pgm_read_ptr_far, 236
pgm_read_ptr_near, 236
pgm_read_qword, 236
pgm_read_qword_far, 236
pgm_read_qword_near, 236
pgm_read_short, 243
pgm_read_short_far, 243
pgm_read_signed, 243
pgm_read_signed_char, 243
pgm_read_signed_char_far, 243
pgm_read_signed_far, 243
pgm_read_signed_int, 243
pgm_read_signed_int_far, 243
pgm_read_u16, 243
pgm_read_u16_far, 244
pgm_read_u24, 244
pgm_read_u24_far, 244
pgm_read_u32, 244
pgm_read_u32_far, 244
pgm_read_u64, 244
pgm_read_u64_far, 244
pgm_read_u8, 244
pgm_read_u8_far, 244
pgm_read_unsigned, 245
pgm_read_unsigned_char, 245
pgm_read_unsigned_char_far, 245
pgm_read_unsigned_far, 245
pgm_read_unsigned_int, 245
pgm_read_unsigned_int_far, 245

pgm_read_unsigned_long, 245
pgm_read_unsigned_long_far, 245
pgm_read_unsigned_long_long, 245
pgm_read_unsigned_long_long_far, 246
pgm_read_unsigned_short, 246
pgm_read_unsigned_short_far, 246
pgm_read_word, 236
pgm_read_word_far, 237
pgm_read_word_near, 237
PROGMEM, 237
PROGMEM_FAR, 237
PSTR, 237
PSTR_FAR, 237
strcasecmp_P, 246
strcasecmp_PF, 246
strcasestr_P, 247
strcat_P, 247
strcat_PF, 247
strchr_P, 248
strchr_PF, 248
strchrnul_P, 248
strcmp_P, 248
strcmp_PF, 249
strcpy_P, 249
strcpy_PF, 249
strcspn_P, 250
strlcat_P, 250
strlcat_PF, 250
strlcpy_P, 251
strlcpy_PF, 251
strlen_P, 251
strlen_PF, 252
strncasecmp_P, 252
strncasecmp_PF, 253
strncat_P, 253
strncat_PF, 253
strncmp_P, 254
strncmp_PF, 254
strncpy_P, 254
strncpy_PF, 255
strnlen_P, 255
strnlen_PF, 255
strpbrk_P, 256
strrchr_P, 256
strsep_P, 256
strspn_P, 257
strstr_P, 257
strstr_PF, 257
strtok_P, 258
strtok_rP, 258

<avr/power.h>: Power Reduction Management, 259
clock_prescale_get, 261
clock_prescale_set, 262
power_all_disable, 262
power_all_enable, 262

<avr/sfr_defs.h>: Special function registers, 263
_BV, 264
bit_is_clear, 265

Generated by Doxygen

INDEX 559

bit_is_set, 265
loop_until_bit_is_clear, 265
loop_until_bit_is_set, 265

<avr/signature.h>: Signature Support, 265
<avr/sleep.h>: Power Management and Sleep Modes,

266
sleep_bod_disable, 266
sleep_cpu, 266
sleep_disable, 266
sleep_enable, 266
sleep_mode, 267

<avr/version.h>: avr-libc version macros, 268
__AVR_LIBC_DATE_, 268
__AVR_LIBC_DATE_STRING__, 268
__AVR_LIBC_MAJOR__, 268
__AVR_LIBC_MINOR__, 268
__AVR_LIBC_REVISION__, 269
__AVR_LIBC_VERSION_STRING__, 269
__AVR_LIBC_VERSION__, 269

<avr/wdt.h>: Watchdog timer handling, 271
wdt_enable, 271
wdt_reset, 272
WDTO_120MS, 272
WDTO_15MS, 272
WDTO_1S, 272
WDTO_250MS, 272
WDTO_2S, 272
WDTO_30MS, 272
WDTO_4S, 272
WDTO_500MS, 273
WDTO_60MS, 273
WDTO_8S, 273

<compat/deprecated.h>: Deprecated items, 291
cbi, 292
enable_external_int, 292
inb, 292
inp, 292
INTERRUPT, 292
outb, 292
outp, 293
sbi, 293
timer_enable_int, 293

<compat/ina90.h>: Compatibility with IAR EWB 3.x,
293

<ctype.h>: Character Operations, 105
isalnum, 105
isalpha, 106
isascii, 106
isblank, 106
iscntrl, 106
isdigit, 106
isgraph, 106
islower, 106
isprint, 106
ispunct, 106
isspace, 106
isupper, 107
isxdigit, 107

toascii, 107
tolower, 107
toupper, 107

<errno.h>: System Errors, 107
EDOM, 108
ERANGE, 108
errno, 108

<inttypes.h>: Integer Type conversions, 108
int_farptr_t, 121
PRId16, 111
PRId32, 111
PRId8, 111
PRIdFAST16, 111
PRIdFAST32, 111
PRIdFAST8, 111
PRIdLEAST16, 112
PRIdLEAST32, 112
PRIdLEAST8, 112
PRIdPTR, 112
PRIi16, 112
PRIi32, 112
PRIi8, 112
PRIiFAST16, 112
PRIiFAST32, 112
PRIiFAST8, 112
PRIiLEAST16, 112
PRIiLEAST32, 113
PRIiLEAST8, 113
PRIiPTR, 113
PRIo16, 113
PRIo32, 113
PRIo8, 113
PRIoFAST16, 113
PRIoFAST32, 113
PRIoFAST8, 113
PRIoLEAST16, 113
PRIoLEAST32, 113
PRIoLEAST8, 114
PRIoPTR, 114
PRIu16, 114
PRIu32, 114
PRIu8, 114
PRIuFAST16, 114
PRIuFAST32, 114
PRIuFAST8, 114
PRIuLEAST16, 114
PRIuLEAST32, 114
PRIuLEAST8, 114
PRIuPTR, 115
PRIX16, 115
PRIx16, 115
PRIX32, 115
PRIx32, 115
PRIX8, 115
PRIx8, 115
PRIXFAST16, 115
PRIxFAST16, 115
PRIXFAST32, 115

Generated by Doxygen

560 INDEX

PRIxFAST32, 115
PRIXFAST8, 116
PRIxFAST8, 116
PRIXLEAST16, 116
PRIxLEAST16, 116
PRIXLEAST32, 116
PRIxLEAST32, 116
PRIXLEAST8, 116
PRIxLEAST8, 116
PRIXPTR, 116
PRIxPTR, 116
SCNd16, 116
SCNd32, 117
SCNd8, 117
SCNdFAST16, 117
SCNdFAST32, 117
SCNdFAST8, 117
SCNdLEAST16, 117
SCNdLEAST32, 117
SCNdLEAST8, 117
SCNdPTR, 117
SCNi16, 117
SCNi32, 117
SCNi8, 118
SCNiFAST16, 118
SCNiFAST32, 118
SCNiFAST8, 118
SCNiLEAST16, 118
SCNiLEAST32, 118
SCNiLEAST8, 118
SCNiPTR, 118
SCNo16, 118
SCNo32, 118
SCNo8, 118
SCNoFAST16, 119
SCNoFAST32, 119
SCNoFAST8, 119
SCNoLEAST16, 119
SCNoLEAST32, 119
SCNoLEAST8, 119
SCNoPTR, 119
SCNu16, 119
SCNu32, 119
SCNu8, 119
SCNuFAST16, 119
SCNuFAST32, 120
SCNuFAST8, 120
SCNuLEAST16, 120
SCNuLEAST32, 120
SCNuLEAST8, 120
SCNuPTR, 120
SCNx16, 120
SCNx32, 120
SCNx8, 120
SCNxFAST16, 120
SCNxFAST32, 120
SCNxFAST8, 121
SCNxLEAST16, 121

SCNxLEAST32, 121
SCNxLEAST8, 121
SCNxPTR, 121
uint_farptr_t, 121

<math.h>: Mathematics, 122
acos, 127
acosf, 127
acosl, 127
asin, 127
asinf, 127
asinl, 127
atan, 127
atan2, 127
atan2f, 128
atan2l, 128
atanf, 128
atanl, 128
cbrt, 128
cbrtf, 128
cbrtl, 128
ceil, 128
ceilf, 129
ceill, 129
copysign, 129
copysignf, 129
copysignl, 129
cos, 129
cosf, 129
cosh, 129
coshf, 129
coshl, 130
cosl, 130
exp, 130
expf, 130
expl, 130
fabs, 130
fabsf, 130
fabsl, 130
fdim, 130
fdimf, 131
fdiml, 131
floor, 131
floorf, 131
floorl, 131
fma, 131
fmaf, 131
fmal, 131
fmax, 132
fmaxf, 132
fmaxl, 132
fmin, 132
fminf, 132
fminl, 132
fmod, 132
fmodf, 133
fmodl, 133
frexp, 133
frexpf, 133

Generated by Doxygen

INDEX 561

frexpl, 133
HUGE_VAL, 125
HUGE_VALF, 125
HUGE_VALL, 125
hypot, 133
hypotf, 134
hypotl, 134
INFINITY, 125
isfinite, 134
isfinitef, 134
isfinitel, 134
isinf, 134
isinff, 134
isinfl, 134
isnan, 135
isnanf, 135
isnanl, 135
ldexp, 135
ldexpf, 135
ldexpl, 135
log, 135
log10, 135
log10f, 135
log10l, 136
logf, 136
logl, 136
lrint, 136
lrintf, 136
lrintl, 136
lround, 137
lroundf, 137
lroundl, 137
M_1_PI, 125
M_2_PI, 125
M_2_SQRTPI, 125
M_E, 125
M_LN10, 125
M_LN2, 125
M_LOG10E, 125
M_LOG2E, 126
M_PI, 126
M_PI_2, 126
M_PI_4, 126
M_SQRT1_2, 126
M_SQRT2, 126
modf, 137
modff, 138
modfl, 138
NAN, 126
nan, 126
nanf, 126
nanl, 126
pow, 138
powf, 138
powl, 138
round, 139
roundf, 139
roundl, 139

signbit, 139
signbitf, 139
signbitl, 140
sin, 140
sinf, 140
sinh, 140
sinhf, 140
sinhl, 140
sinl, 140
sqrt, 140
sqrtf, 140
sqrtl, 141
square, 141
squaref, 141
squarel, 141
tan, 141
tanf, 141
tanh, 142
tanhf, 142
tanhl, 142
tanl, 142
trunc, 142
truncf, 142
truncl, 142

<setjmp.h>: Non-local goto, 142
longjmp, 143
setjmp, 144

<stdint.h>: Standard Integer Types, 144
INT16_C, 147
INT16_MAX, 147
INT16_MIN, 147
int16_t, 152
INT32_C, 147
INT32_MAX, 147
INT32_MIN, 148
int32_t, 152
INT64_C, 148
INT64_MAX, 148
INT64_MIN, 148
int64_t, 153
INT8_C, 148
INT8_MAX, 148
INT8_MIN, 148
int8_t, 153
INT_FAST16_MAX, 148
INT_FAST16_MIN, 148
int_fast16_t, 153
INT_FAST32_MAX, 148
INT_FAST32_MIN, 148
int_fast32_t, 153
INT_FAST64_MAX, 149
INT_FAST64_MIN, 149
int_fast64_t, 153
INT_FAST8_MAX, 149
INT_FAST8_MIN, 149
int_fast8_t, 153
INT_LEAST16_MAX, 149
INT_LEAST16_MIN, 149

Generated by Doxygen

562 INDEX

int_least16_t, 153
INT_LEAST32_MAX, 149
INT_LEAST32_MIN, 149
int_least32_t, 153
INT_LEAST64_MAX, 149
INT_LEAST64_MIN, 149
int_least64_t, 153
INT_LEAST8_MAX, 149
INT_LEAST8_MIN, 150
int_least8_t, 154
INTMAX_C, 150
INTMAX_MAX, 150
INTMAX_MIN, 150
intmax_t, 154
INTPTR_MAX, 150
INTPTR_MIN, 150
intptr_t, 154
PTRDIFF_MAX, 150
PTRDIFF_MIN, 150
SIG_ATOMIC_MAX, 150
SIG_ATOMIC_MIN, 150
SIZE_MAX, 150
UINT16_C, 151
UINT16_MAX, 151
uint16_t, 154
UINT32_C, 151
UINT32_MAX, 151
uint32_t, 154
UINT64_C, 151
UINT64_MAX, 151
uint64_t, 154
UINT8_C, 151
UINT8_MAX, 151
uint8_t, 154
UINT_FAST16_MAX, 151
uint_fast16_t, 154
UINT_FAST32_MAX, 151
uint_fast32_t, 154
UINT_FAST64_MAX, 151
uint_fast64_t, 155
UINT_FAST8_MAX, 152
uint_fast8_t, 155
UINT_LEAST16_MAX, 152
uint_least16_t, 155
UINT_LEAST32_MAX, 152
uint_least32_t, 155
UINT_LEAST64_MAX, 152
uint_least64_t, 155
UINT_LEAST8_MAX, 152
uint_least8_t, 155
UINTMAX_C, 152
UINTMAX_MAX, 152
uintmax_t, 155
UINTPTR_MAX, 152
uintptr_t, 155

<stdio.h>: Standard IO facilities, 156
_FDEV_EOF, 159
_FDEV_ERR, 159

_FDEV_SETUP_READ, 159
_FDEV_SETUP_RW, 159
_FDEV_SETUP_WRITE, 159
clearerr, 162
EOF, 159
fclose, 162
fdev_close, 160
fdev_get_udata, 160
fdev_set_udata, 160
FDEV_SETUP_STREAM, 160
fdev_setup_stream, 160
fdevopen, 162
feof, 162
ferror, 163
fflush, 163
fgetc, 163
fgets, 163
FILE, 161
fprintf, 163
fprintf_P, 163
fputc, 163
fputs, 164
fputs_P, 164
fread, 164
fscanf, 164
fscanf_P, 164
fwrite, 164
getc, 160
getchar, 161
gets, 165
printf, 165
printf_P, 165
putc, 161
putchar, 161
puts, 165
puts_P, 165
scanf, 165
scanf_P, 165
snprintf, 165
snprintf_P, 166
sprintf, 166
sprintf_P, 166
sscanf, 166
sscanf_P, 166
stderr, 161
stdin, 161
stdout, 161
ungetc, 166
vfprintf, 167
vfprintf_P, 169
vfscanf, 169
vfscanf_P, 170
vprintf, 171
vscanf, 171
vsnprintf, 171
vsnprintf_P, 171
vsprintf, 171
vsprintf_P, 171

Generated by Doxygen

INDEX 563

<stdlib.h>: General utilities, 172
__compar_fn_t, 174
__malloc_heap_end, 183
__malloc_heap_start, 184
__malloc_margin, 184
abort, 174
abs, 174
atexit, 174
atof, 175
atoff, 175
atofl, 175
atoi, 175
atol, 175
bsearch, 175
calloc, 176
div, 176
DTOSTR_ALWAYS_SIGN, 173
DTOSTR_PLUS_SIGN, 173
DTOSTR_UPPERCASE, 173
dtostre, 176
dtostrf, 176
exit, 176
EXIT_FAILURE, 174
EXIT_SUCCESS, 174
free, 177
ftostre, 177
ftostrf, 177
itoa, 177
labs, 178
ldiv, 178
ldtostre, 178
ldtostrf, 178
ltoa, 179
malloc, 179
qsort, 179
rand, 180
RAND_MAX, 174
rand_r, 180
random, 180
RANDOM_MAX, 174
random_r, 180
realloc, 180
srand, 181
srandom, 181
strtod, 181
strtof, 181
strtol, 181
strtold, 182
strtoul, 182
ultoa, 182
utoa, 183

<string.h>: Strings, 184
_FFS, 185
ffs, 185
ffsl, 185
ffsll, 186
memccpy, 186
memchr, 186

memcmp, 186
memcpy, 187
memmem, 187
memmove, 187
memrchr, 188
memset, 188
strcasecmp, 188
strcasestr, 189
strcat, 189
strchr, 189
strchrnul, 189
strcmp, 190
strcpy, 190
strcspn, 190
strdup, 191
strlcat, 191
strlcpy, 191
strlen, 192
strlwr, 192
strncasecmp, 192
strncat, 193
strncmp, 193
strncpy, 193
strndup, 194
strnlen, 194
strpbrk, 194
strrchr, 195
strrev, 195
strsep, 195
strspn, 195
strstr, 196
strtok, 196
strtok_r, 196
strupr, 197

<time.h>: Time, 197
MONTHS, 200
_WEEK_DAYS_, 200
asctime, 201
asctime_r, 201
ctime, 201
ctime_r, 201
daylight_seconds, 201
difftime, 201
equation_of_time, 201
fatfs_time, 202
gm_sidereal, 202
gmtime, 202
gmtime_r, 202
is_leap_year, 202
iso_week_date, 202
iso_week_date_r, 202
isotime, 202
isotime_r, 203
lm_sidereal, 203
localtime, 203
localtime_r, 203
mk_gmtime, 203
mktime, 203

Generated by Doxygen

564 INDEX

month_length, 203
moon_phase, 204
NTP_OFFSET, 199
ONE_DAY, 200
ONE_DEGREE, 200
ONE_HOUR, 200
set_dst, 204
set_position, 204
set_system_time, 204
set_zone, 204
solar_declination, 205
solar_declinationf, 205
solar_declinationl, 205
solar_noon, 205
strftime, 205
sun_rise, 205
sun_set, 205
system_tick, 206
time, 206
time_t, 200
UNIX_OFFSET, 200
week_of_month, 206
week_of_year, 206

<util/atomic.h> Atomically and Non-Atomically Exe-
cuted Code Blocks, 276

ATOMIC_BLOCK, 277
ATOMIC_FORCEON, 277
ATOMIC_RESTORESTATE, 277
NONATOMIC_BLOCK, 278
NONATOMIC_FORCEOFF, 278
NONATOMIC_RESTORESTATE, 278

<util/crc16.h>: CRC Computations, 278
_crc16_update, 279
_crc8_ccitt_update, 279
_crc_ccitt_update, 280
_crc_ibutton_update, 281
_crc_xmodem_update, 281

<util/delay.h>: Convenience functions for busy-wait de-
lay loops, 273

_delay_ms, 274
_delay_us, 275
F_CPU, 274

<util/delay_basic.h>: Basic busy-wait delay loops, 282
_delay_loop_1, 282
_delay_loop_2, 282

<util/eu_dst.h>: Daylight Saving function for the Euro-
pean Union., 282

eu_dst, 283
<util/parity.h>: Parity bit generation, 283

parity_even_bit, 283
<util/setbaud.h>: Helper macros for baud rate calcula-

tions, 284
BAUD_TOL, 285
UBRR_VALUE, 285
UBRRH_VALUE, 285
UBRRL_VALUE, 285
USE_2X, 285

<util/twi.h>: TWI bit mask definitions, 286

TW_BUS_ERROR, 287
TW_MR_ARB_LOST, 287
TW_MR_DATA_ACK, 287
TW_MR_DATA_NACK, 287
TW_MR_SLA_ACK, 287
TW_MR_SLA_NACK, 287
TW_MT_ARB_LOST, 287
TW_MT_DATA_ACK, 287
TW_MT_DATA_NACK, 287
TW_MT_SLA_ACK, 287
TW_MT_SLA_NACK, 287
TW_NO_INFO, 288
TW_READ, 288
TW_REP_START, 288
TW_SR_ARB_LOST_GCALL_ACK, 288
TW_SR_ARB_LOST_SLA_ACK, 288
TW_SR_DATA_ACK, 288
TW_SR_DATA_NACK, 288
TW_SR_GCALL_ACK, 288
TW_SR_GCALL_DATA_ACK, 288
TW_SR_GCALL_DATA_NACK, 288
TW_SR_SLA_ACK, 288
TW_SR_STOP, 289
TW_ST_ARB_LOST_SLA_ACK, 289
TW_ST_DATA_ACK, 289
TW_ST_DATA_NACK, 289
TW_ST_LAST_DATA, 289
TW_ST_SLA_ACK, 289
TW_START, 289
TW_STATUS, 289
TW_STATUS_MASK, 289
TW_WRITE, 289

<util/usa_dst.h>: Daylight Saving function for the USA.,
290

usa_dst, 290
--prefix, 77
$PATH, 77
$PREFIX, 77
_BV

<avr/sfr_defs.h>: Special function registers, 264
_EEGET

<avr/eeprom.h>: EEPROM handling, 215
_EEPUT

<avr/eeprom.h>: EEPROM handling, 215
_FDEV_EOF

<stdio.h>: Standard IO facilities, 159
_FDEV_ERR

<stdio.h>: Standard IO facilities, 159
_FDEV_SETUP_READ

<stdio.h>: Standard IO facilities, 159
_FDEV_SETUP_RW

<stdio.h>: Standard IO facilities, 159
_FDEV_SETUP_WRITE

<stdio.h>: Standard IO facilities, 159
_FFS

<string.h>: Strings, 185
MONTHS

<time.h>: Time, 200

Generated by Doxygen

INDEX 565

_MemoryBarrier
<avr/cpufunc.h>: Special AVR CPU functions, 213

_NOP
<avr/cpufunc.h>: Special AVR CPU functions, 213

_PROTECTED_WRITE
<avr/io.h>: AVR device-specific IO definitions, 229

_PROTECTED_WRITE_SPM
<avr/io.h>: AVR device-specific IO definitions, 229

_WEEK_DAYS_
<time.h>: Time, 200

__AVR_LIBC_DATE_
<avr/version.h>: avr-libc version macros, 268

__AVR_LIBC_DATE_STRING__
<avr/version.h>: avr-libc version macros, 268

__AVR_LIBC_MAJOR__
<avr/version.h>: avr-libc version macros, 268

__AVR_LIBC_MINOR__
<avr/version.h>: avr-libc version macros, 268

__AVR_LIBC_REVISION__
<avr/version.h>: avr-libc version macros, 269

__AVR_LIBC_VERSION_STRING__
<avr/version.h>: avr-libc version macros, 269

__AVR_LIBC_VERSION__
<avr/version.h>: avr-libc version macros, 269

__EEGET
<avr/eeprom.h>: EEPROM handling, 215

__EEPUT
<avr/eeprom.h>: EEPROM handling, 215

__builtin_avr_cli
<avr/builtins.h>: avr-gcc builtins documentation,

269
__builtin_avr_fmul

<avr/builtins.h>: avr-gcc builtins documentation,
270

__builtin_avr_fmuls
<avr/builtins.h>: avr-gcc builtins documentation,

270
__builtin_avr_fmulsu

<avr/builtins.h>: avr-gcc builtins documentation,
270

__builtin_avr_sei
<avr/builtins.h>: avr-gcc builtins documentation,

270
__builtin_avr_sleep

<avr/builtins.h>: avr-gcc builtins documentation,
270

__builtin_avr_swap
<avr/builtins.h>: avr-gcc builtins documentation,

270
__builtin_avr_wdr

<avr/builtins.h>: avr-gcc builtins documentation,
270

__compar_fn_t
<stdlib.h>: General utilities, 174

__malloc_heap_end
<stdlib.h>: General utilities, 183

__malloc_heap_start
<stdlib.h>: General utilities, 184

__malloc_margin
<stdlib.h>: General utilities, 184

_crc16_update
<util/crc16.h>: CRC Computations, 279

_crc8_ccitt_update
<util/crc16.h>: CRC Computations, 279

_crc_ccitt_update
<util/crc16.h>: CRC Computations, 280

_crc_ibutton_update
<util/crc16.h>: CRC Computations, 281

_crc_xmodem_update
<util/crc16.h>: CRC Computations, 281

_delay_loop_1
<util/delay_basic.h>: Basic busy-wait delay loops,

282
_delay_loop_2

<util/delay_basic.h>: Basic busy-wait delay loops,
282

_delay_ms
<util/delay.h>: Convenience functions for busy-

wait delay loops, 274
_delay_us

<util/delay.h>: Convenience functions for busy-
wait delay loops, 275

A more sophisticated project, 308
A simple project, 297
abort

<stdlib.h>: General utilities, 174
abs

<stdlib.h>: General utilities, 174
acos

<math.h>: Mathematics, 127
acosf

<math.h>: Mathematics, 127
acosl

<math.h>: Mathematics, 127
Additional notes from <avr/sfr_defs.h>, 263
alloca

<alloca.h>: Allocate space in the stack, 103
alloca.h, 330
asctime

<time.h>: Time, 201
asctime_r

<time.h>: Time, 201
asin

<math.h>: Mathematics, 127
asinf

<math.h>: Mathematics, 127
asinl

<math.h>: Mathematics, 127
assert

<assert.h>: Diagnostics, 104
assert.h, 331
atan

<math.h>: Mathematics, 127
atan2

<math.h>: Mathematics, 127
atan2f

Generated by Doxygen

566 INDEX

<math.h>: Mathematics, 128
atan2l

<math.h>: Mathematics, 128
atanf

<math.h>: Mathematics, 128
atanl

<math.h>: Mathematics, 128
atexit

<stdlib.h>: General utilities, 174
atof

<stdlib.h>: General utilities, 175
atoff

<stdlib.h>: General utilities, 175
atofl

<stdlib.h>: General utilities, 175
atoi

<stdlib.h>: General utilities, 175
atol

<stdlib.h>: General utilities, 175
atomic.h, 525
ATOMIC_BLOCK

<util/atomic.h> Atomically and Non-Atomically Ex-
ecuted Code Blocks, 277

ATOMIC_FORCEON
<util/atomic.h> Atomically and Non-Atomically Ex-

ecuted Code Blocks, 277
ATOMIC_RESTORESTATE

<util/atomic.h> Atomically and Non-Atomically Ex-
ecuted Code Blocks, 277

avrdude, usage, 97
avrprog, usage, 97

BADISR_vect
<avr/interrupt.h>: Interrupts, 225

BAUD_TOL
<util/setbaud.h>: Helper macros for baud rate cal-

culations, 285
bit_is_clear

<avr/sfr_defs.h>: Special function registers, 265
bit_is_set

<avr/sfr_defs.h>: Special function registers, 265
boot.h, 332, 333
boot_is_spm_interrupt

<avr/boot.h>: Bootloader Support Utilities, 208
boot_lock_bits_set

<avr/boot.h>: Bootloader Support Utilities, 208
boot_lock_bits_set_safe

<avr/boot.h>: Bootloader Support Utilities, 209
boot_lock_fuse_bits_get

<avr/boot.h>: Bootloader Support Utilities, 209
boot_page_erase

<avr/boot.h>: Bootloader Support Utilities, 209
boot_page_erase_safe

<avr/boot.h>: Bootloader Support Utilities, 209
boot_page_fill

<avr/boot.h>: Bootloader Support Utilities, 210
boot_page_fill_safe

<avr/boot.h>: Bootloader Support Utilities, 210
boot_page_write

<avr/boot.h>: Bootloader Support Utilities, 210
boot_page_write_safe

<avr/boot.h>: Bootloader Support Utilities, 210
boot_rww_busy

<avr/boot.h>: Bootloader Support Utilities, 211
boot_rww_enable

<avr/boot.h>: Bootloader Support Utilities, 211
boot_rww_enable_safe

<avr/boot.h>: Bootloader Support Utilities, 211
boot_signature_byte_get

<avr/boot.h>: Bootloader Support Utilities, 211
boot_spm_busy

<avr/boot.h>: Bootloader Support Utilities, 211
boot_spm_busy_wait

<avr/boot.h>: Bootloader Support Utilities, 212
boot_spm_interrupt_disable

<avr/boot.h>: Bootloader Support Utilities, 212
boot_spm_interrupt_enable

<avr/boot.h>: Bootloader Support Utilities, 212
BOOTLOADER_SECTION

<avr/boot.h>: Bootloader Support Utilities, 212
bsearch

<stdlib.h>: General utilities, 175
builtins.h, 341

calloc
<stdlib.h>: General utilities, 176

cbi
<compat/deprecated.h>: Deprecated items, 292

cbrt
<math.h>: Mathematics, 128

cbrtf
<math.h>: Mathematics, 128

cbrtl
<math.h>: Mathematics, 128

ccp_write_io
<avr/cpufunc.h>: Special AVR CPU functions, 213

ccp_write_spm
<avr/cpufunc.h>: Special AVR CPU functions, 213

ceil
<math.h>: Mathematics, 128

ceilf
<math.h>: Mathematics, 129

ceill
<math.h>: Mathematics, 129

clearerr
<stdio.h>: Standard IO facilities, 162

cli
<avr/interrupt.h>: Interrupts, 225

clock_prescale_get
<avr/power.h>: Power Reduction Management,

261
clock_prescale_set

<avr/power.h>: Power Reduction Management,
262

Combining C and assembly source files, 295
copysign

<math.h>: Mathematics, 129
copysignf

Generated by Doxygen

INDEX 567

<math.h>: Mathematics, 129
copysignl

<math.h>: Mathematics, 129
cos

<math.h>: Mathematics, 129
cosf

<math.h>: Mathematics, 129
cosh

<math.h>: Mathematics, 129
coshf

<math.h>: Mathematics, 129
coshl

<math.h>: Mathematics, 130
cosl

<math.h>: Mathematics, 130
cpufunc.h, 343
crc16.h, 529
ctime

<time.h>: Time, 201
ctime_r

<time.h>: Time, 201
ctype.h, 447, 448

day
week_date, 324

daylight_seconds
<time.h>: Time, 201

defines.h, 327
delay.h, 533, 534
delay_basic.h, 537
Demo projects, 294
deprecated.h, 443
difftime

<time.h>: Time, 201
disassembling, 300
div

<stdlib.h>: General utilities, 176
div_t, 321

quot, 322
rem, 322

dtoa_conv.h, 552
DTOSTR_ALWAYS_SIGN

<stdlib.h>: General utilities, 173
DTOSTR_PLUS_SIGN

<stdlib.h>: General utilities, 173
DTOSTR_UPPERCASE

<stdlib.h>: General utilities, 173
dtostre

<stdlib.h>: General utilities, 176
dtostrf

<stdlib.h>: General utilities, 176

EDOM
<errno.h>: System Errors, 108

eedef.h, 549
EEMEM

<avr/eeprom.h>: EEPROM handling, 216
eeprom.h, 344
eeprom_busy_wait

<avr/eeprom.h>: EEPROM handling, 216
eeprom_is_ready

<avr/eeprom.h>: EEPROM handling, 216
eeprom_read_block

<avr/eeprom.h>: EEPROM handling, 216
eeprom_read_byte

<avr/eeprom.h>: EEPROM handling, 216
eeprom_read_double

<avr/eeprom.h>: EEPROM handling, 216
eeprom_read_dword

<avr/eeprom.h>: EEPROM handling, 216
eeprom_read_float

<avr/eeprom.h>: EEPROM handling, 217
eeprom_read_long_double

<avr/eeprom.h>: EEPROM handling, 217
eeprom_read_qword

<avr/eeprom.h>: EEPROM handling, 217
eeprom_read_word

<avr/eeprom.h>: EEPROM handling, 217
eeprom_update_block

<avr/eeprom.h>: EEPROM handling, 217
eeprom_update_byte

<avr/eeprom.h>: EEPROM handling, 217
eeprom_update_double

<avr/eeprom.h>: EEPROM handling, 217
eeprom_update_dword

<avr/eeprom.h>: EEPROM handling, 217
eeprom_update_float

<avr/eeprom.h>: EEPROM handling, 218
eeprom_update_long_double

<avr/eeprom.h>: EEPROM handling, 218
eeprom_update_qword

<avr/eeprom.h>: EEPROM handling, 218
eeprom_update_word

<avr/eeprom.h>: EEPROM handling, 218
eeprom_write_block

<avr/eeprom.h>: EEPROM handling, 218
eeprom_write_byte

<avr/eeprom.h>: EEPROM handling, 218
eeprom_write_double

<avr/eeprom.h>: EEPROM handling, 218
eeprom_write_dword

<avr/eeprom.h>: EEPROM handling, 219
eeprom_write_float

<avr/eeprom.h>: EEPROM handling, 219
eeprom_write_long_double

<avr/eeprom.h>: EEPROM handling, 219
eeprom_write_qword

<avr/eeprom.h>: EEPROM handling, 219
eeprom_write_word

<avr/eeprom.h>: EEPROM handling, 219
EMPTY_INTERRUPT

<avr/interrupt.h>: Interrupts, 226
enable_external_int

<compat/deprecated.h>: Deprecated items, 292
EOF

<stdio.h>: Standard IO facilities, 159
ephemera_common.h, 554

Generated by Doxygen

568 INDEX

equation_of_time
<time.h>: Time, 201

ERANGE
<errno.h>: System Errors, 108

errno
<errno.h>: System Errors, 108

errno.h, 450
eu_dst

<util/eu_dst.h>: Daylight Saving function for the
European Union., 283

eu_dst.h, 539
Example using the two-wire interface (TWI), 317
exit

<stdlib.h>: General utilities, 176
EXIT_FAILURE

<stdlib.h>: General utilities, 174
EXIT_SUCCESS

<stdlib.h>: General utilities, 174
exp

<math.h>: Mathematics, 130
expf

<math.h>: Mathematics, 130
expl

<math.h>: Mathematics, 130

F_CPU
<util/delay.h>: Convenience functions for busy-

wait delay loops, 274
fabs

<math.h>: Mathematics, 130
fabsf

<math.h>: Mathematics, 130
fabsl

<math.h>: Mathematics, 130
FAQ, 53
fatfs_time

<time.h>: Time, 202
fclose

<stdio.h>: Standard IO facilities, 162
fdev_close

<stdio.h>: Standard IO facilities, 160
fdev_get_udata

<stdio.h>: Standard IO facilities, 160
fdev_set_udata

<stdio.h>: Standard IO facilities, 160
FDEV_SETUP_STREAM

<stdio.h>: Standard IO facilities, 160
fdev_setup_stream

<stdio.h>: Standard IO facilities, 160
fdevopen

<stdio.h>: Standard IO facilities, 162
fdevopen.c, 551
fdim

<math.h>: Mathematics, 130
fdimf

<math.h>: Mathematics, 131
fdiml

<math.h>: Mathematics, 131
feof

<stdio.h>: Standard IO facilities, 162
ferror

<stdio.h>: Standard IO facilities, 163
fflush

<stdio.h>: Standard IO facilities, 163
ffs

<string.h>: Strings, 185
ffsl

<string.h>: Strings, 185
ffsll

<string.h>: Strings, 186
fgetc

<stdio.h>: Standard IO facilities, 163
fgets

<stdio.h>: Standard IO facilities, 163
FILE

<stdio.h>: Standard IO facilities, 161
floor

<math.h>: Mathematics, 131
floorf

<math.h>: Mathematics, 131
floorl

<math.h>: Mathematics, 131
fma

<math.h>: Mathematics, 131
fmaf

<math.h>: Mathematics, 131
fmal

<math.h>: Mathematics, 131
fmax

<math.h>: Mathematics, 132
fmaxf

<math.h>: Mathematics, 132
fmaxl

<math.h>: Mathematics, 132
fmin

<math.h>: Mathematics, 132
fminf

<math.h>: Mathematics, 132
fminl

<math.h>: Mathematics, 132
fmod

<math.h>: Mathematics, 132
fmodf

<math.h>: Mathematics, 133
fmodl

<math.h>: Mathematics, 133
fprintf

<stdio.h>: Standard IO facilities, 163
fprintf_P

<stdio.h>: Standard IO facilities, 163
fputc

<stdio.h>: Standard IO facilities, 163
fputs

<stdio.h>: Standard IO facilities, 164
fputs_P

<stdio.h>: Standard IO facilities, 164
fread

Generated by Doxygen

INDEX 569

<stdio.h>: Standard IO facilities, 164
free

<stdlib.h>: General utilities, 177
frexp

<math.h>: Mathematics, 133
frexpf

<math.h>: Mathematics, 133
frexpl

<math.h>: Mathematics, 133
fscanf

<stdio.h>: Standard IO facilities, 164
fscanf_P

<stdio.h>: Standard IO facilities, 164
ftostre

<stdlib.h>: General utilities, 177
ftostrf

<stdlib.h>: General utilities, 177
fuse.h, 348
fwrite

<stdio.h>: Standard IO facilities, 164

GET_EXTENDED_FUSE_BITS
<avr/boot.h>: Bootloader Support Utilities, 212

GET_HIGH_FUSE_BITS
<avr/boot.h>: Bootloader Support Utilities, 212

GET_LOCK_BITS
<avr/boot.h>: Bootloader Support Utilities, 212

GET_LOW_FUSE_BITS
<avr/boot.h>: Bootloader Support Utilities, 212

getc
<stdio.h>: Standard IO facilities, 160

getchar
<stdio.h>: Standard IO facilities, 161

gets
<stdio.h>: Standard IO facilities, 165

gm_sidereal
<time.h>: Time, 202

gmtime
<time.h>: Time, 202

gmtime_r
<time.h>: Time, 202

hd44780.h, 328
HUGE_VAL

<math.h>: Mathematics, 125
HUGE_VALF

<math.h>: Mathematics, 125
HUGE_VALL

<math.h>: Mathematics, 125
hypot

<math.h>: Mathematics, 133
hypotf

<math.h>: Mathematics, 134
hypotl

<math.h>: Mathematics, 134

ina90.h, 446
inb

<compat/deprecated.h>: Deprecated items, 292

INFINITY
<math.h>: Mathematics, 125

inp
<compat/deprecated.h>: Deprecated items, 292

installation, 76
installation, avarice, 81
installation, avr-libc, 80
installation, avrdude, 80
installation, avrprog, 80
installation, binutils, 78
installation, gcc, 79
installation, simulavr, 81
INT16_C

<stdint.h>: Standard Integer Types, 147
INT16_MAX

<stdint.h>: Standard Integer Types, 147
INT16_MIN

<stdint.h>: Standard Integer Types, 147
int16_t

<stdint.h>: Standard Integer Types, 152
INT32_C

<stdint.h>: Standard Integer Types, 147
INT32_MAX

<stdint.h>: Standard Integer Types, 147
INT32_MIN

<stdint.h>: Standard Integer Types, 148
int32_t

<stdint.h>: Standard Integer Types, 152
INT64_C

<stdint.h>: Standard Integer Types, 148
INT64_MAX

<stdint.h>: Standard Integer Types, 148
INT64_MIN

<stdint.h>: Standard Integer Types, 148
int64_t

<stdint.h>: Standard Integer Types, 153
INT8_C

<stdint.h>: Standard Integer Types, 148
INT8_MAX

<stdint.h>: Standard Integer Types, 148
INT8_MIN

<stdint.h>: Standard Integer Types, 148
int8_t

<stdint.h>: Standard Integer Types, 153
int_farptr_t

<inttypes.h>: Integer Type conversions, 121
INT_FAST16_MAX

<stdint.h>: Standard Integer Types, 148
INT_FAST16_MIN

<stdint.h>: Standard Integer Types, 148
int_fast16_t

<stdint.h>: Standard Integer Types, 153
INT_FAST32_MAX

<stdint.h>: Standard Integer Types, 148
INT_FAST32_MIN

<stdint.h>: Standard Integer Types, 148
int_fast32_t

<stdint.h>: Standard Integer Types, 153

Generated by Doxygen

570 INDEX

INT_FAST64_MAX
<stdint.h>: Standard Integer Types, 149

INT_FAST64_MIN
<stdint.h>: Standard Integer Types, 149

int_fast64_t
<stdint.h>: Standard Integer Types, 153

INT_FAST8_MAX
<stdint.h>: Standard Integer Types, 149

INT_FAST8_MIN
<stdint.h>: Standard Integer Types, 149

int_fast8_t
<stdint.h>: Standard Integer Types, 153

INT_LEAST16_MAX
<stdint.h>: Standard Integer Types, 149

INT_LEAST16_MIN
<stdint.h>: Standard Integer Types, 149

int_least16_t
<stdint.h>: Standard Integer Types, 153

INT_LEAST32_MAX
<stdint.h>: Standard Integer Types, 149

INT_LEAST32_MIN
<stdint.h>: Standard Integer Types, 149

int_least32_t
<stdint.h>: Standard Integer Types, 153

INT_LEAST64_MAX
<stdint.h>: Standard Integer Types, 149

INT_LEAST64_MIN
<stdint.h>: Standard Integer Types, 149

int_least64_t
<stdint.h>: Standard Integer Types, 153

INT_LEAST8_MAX
<stdint.h>: Standard Integer Types, 149

INT_LEAST8_MIN
<stdint.h>: Standard Integer Types, 150

int_least8_t
<stdint.h>: Standard Integer Types, 154

INTERRUPT
<compat/deprecated.h>: Deprecated items, 292

interrupt.h, 352
INTMAX_C

<stdint.h>: Standard Integer Types, 150
INTMAX_MAX

<stdint.h>: Standard Integer Types, 150
INTMAX_MIN

<stdint.h>: Standard Integer Types, 150
intmax_t

<stdint.h>: Standard Integer Types, 154
INTPTR_MAX

<stdint.h>: Standard Integer Types, 150
INTPTR_MIN

<stdint.h>: Standard Integer Types, 150
intptr_t

<stdint.h>: Standard Integer Types, 154
inttypes.h, 452, 454
io.h, 357
iocompat.h, 325
is_leap_year

<time.h>: Time, 202

isalnum
<ctype.h>: Character Operations, 105

isalpha
<ctype.h>: Character Operations, 106

isascii
<ctype.h>: Character Operations, 106

isblank
<ctype.h>: Character Operations, 106

iscntrl
<ctype.h>: Character Operations, 106

isdigit
<ctype.h>: Character Operations, 106

isfinite
<math.h>: Mathematics, 134

isfinitef
<math.h>: Mathematics, 134

isfinitel
<math.h>: Mathematics, 134

isgraph
<ctype.h>: Character Operations, 106

isinf
<math.h>: Mathematics, 134

isinff
<math.h>: Mathematics, 134

isinfl
<math.h>: Mathematics, 134

islower
<ctype.h>: Character Operations, 106

isnan
<math.h>: Mathematics, 135

isnanf
<math.h>: Mathematics, 135

isnanl
<math.h>: Mathematics, 135

iso_week_date
<time.h>: Time, 202

iso_week_date_r
<time.h>: Time, 202

isotime
<time.h>: Time, 202

isotime_r
<time.h>: Time, 203

isprint
<ctype.h>: Character Operations, 106

ispunct
<ctype.h>: Character Operations, 106

ISR
<avr/interrupt.h>: Interrupts, 226

ISR_ALIAS
<avr/interrupt.h>: Interrupts, 226

ISR_ALIASOF
<avr/interrupt.h>: Interrupts, 226

ISR_BLOCK
<avr/interrupt.h>: Interrupts, 227

ISR_FLATTEN
<avr/interrupt.h>: Interrupts, 227

ISR_NAKED
<avr/interrupt.h>: Interrupts, 227

Generated by Doxygen

INDEX 571

ISR_NOBLOCK
<avr/interrupt.h>: Interrupts, 227

ISR_NOGCCISR
<avr/interrupt.h>: Interrupts, 227

ISR_NOICF
<avr/interrupt.h>: Interrupts, 228

isspace
<ctype.h>: Character Operations, 106

isupper
<ctype.h>: Character Operations, 107

isxdigit
<ctype.h>: Character Operations, 107

itoa
<stdlib.h>: General utilities, 177

labs
<stdlib.h>: General utilities, 178

lcd.h, 329
ldexp

<math.h>: Mathematics, 135
ldexpf

<math.h>: Mathematics, 135
ldexpl

<math.h>: Mathematics, 135
ldiv

<stdlib.h>: General utilities, 178
ldiv_t, 322

quot, 322
rem, 322

ldtostre
<stdlib.h>: General utilities, 178

ldtostrf
<stdlib.h>: General utilities, 178

lm_sidereal
<time.h>: Time, 203

localtime
<time.h>: Time, 203

localtime_r
<time.h>: Time, 203

lock.h, 366
log

<math.h>: Mathematics, 135
log10

<math.h>: Mathematics, 135
log10f

<math.h>: Mathematics, 135
log10l

<math.h>: Mathematics, 136
logf

<math.h>: Mathematics, 136
logl

<math.h>: Mathematics, 136
longjmp

<setjmp.h>: Non-local goto, 143
loop_until_bit_is_clear

<avr/sfr_defs.h>: Special function registers, 265
loop_until_bit_is_set

<avr/sfr_defs.h>: Special function registers, 265
lrint

<math.h>: Mathematics, 136
lrintf

<math.h>: Mathematics, 136
lrintl

<math.h>: Mathematics, 136
lround

<math.h>: Mathematics, 137
lroundf

<math.h>: Mathematics, 137
lroundl

<math.h>: Mathematics, 137
ltoa

<stdlib.h>: General utilities, 179

M_1_PI
<math.h>: Mathematics, 125

M_2_PI
<math.h>: Mathematics, 125

M_2_SQRTPI
<math.h>: Mathematics, 125

M_E
<math.h>: Mathematics, 125

M_LN10
<math.h>: Mathematics, 125

M_LN2
<math.h>: Mathematics, 125

M_LOG10E
<math.h>: Mathematics, 125

M_LOG2E
<math.h>: Mathematics, 126

M_PI
<math.h>: Mathematics, 126

M_PI_2
<math.h>: Mathematics, 126

M_PI_4
<math.h>: Mathematics, 126

M_SQRT1_2
<math.h>: Mathematics, 126

M_SQRT2
<math.h>: Mathematics, 126

malloc
<stdlib.h>: General utilities, 179

math.h, 461, 464
memccpy

<string.h>: Strings, 186
memccpy_P

<avr/pgmspace.h>: Program Space Utilities, 237
memchr

<string.h>: Strings, 186
memchr_P

<avr/pgmspace.h>: Program Space Utilities, 237
memcmp

<string.h>: Strings, 186
memcmp_P

<avr/pgmspace.h>: Program Space Utilities, 238
memcmp_PF

<avr/pgmspace.h>: Program Space Utilities, 238
memcpy

<string.h>: Strings, 187

Generated by Doxygen

572 INDEX

memcpy_P
<avr/pgmspace.h>: Program Space Utilities, 238

memcpy_PF
<avr/pgmspace.h>: Program Space Utilities, 239

memmem
<string.h>: Strings, 187

memmem_P
<avr/pgmspace.h>: Program Space Utilities, 239

memmove
<string.h>: Strings, 187

memrchr
<string.h>: Strings, 188

memrchr_P
<avr/pgmspace.h>: Program Space Utilities, 239

memset
<string.h>: Strings, 188

mk_gmtime
<time.h>: Time, 203

mktime
<time.h>: Time, 203

modf
<math.h>: Mathematics, 137

modff
<math.h>: Mathematics, 138

modfl
<math.h>: Mathematics, 138

month_length
<time.h>: Time, 203

moon_phase
<time.h>: Time, 204

NAN
<math.h>: Mathematics, 126

nan
<math.h>: Mathematics, 126

nanf
<math.h>: Mathematics, 126

nanl
<math.h>: Mathematics, 126

NONATOMIC_BLOCK
<util/atomic.h> Atomically and Non-Atomically Ex-

ecuted Code Blocks, 278
NONATOMIC_FORCEOFF

<util/atomic.h> Atomically and Non-Atomically Ex-
ecuted Code Blocks, 278

NONATOMIC_RESTORESTATE
<util/atomic.h> Atomically and Non-Atomically Ex-

ecuted Code Blocks, 278
NTP_OFFSET

<time.h>: Time, 199

ONE_DAY
<time.h>: Time, 200

ONE_DEGREE
<time.h>: Time, 200

ONE_HOUR
<time.h>: Time, 200

outb
<compat/deprecated.h>: Deprecated items, 292

outp
<compat/deprecated.h>: Deprecated items, 293

parity.h, 540
parity_even_bit

<util/parity.h>: Parity bit generation, 283
pgm_get_far_address

<avr/pgmspace.h>: Program Space Utilities, 234
pgm_read< T >

<avr/pgmspace.h>: Program Space Utilities, 240
pgm_read_byte

<avr/pgmspace.h>: Program Space Utilities, 235
pgm_read_byte_far

<avr/pgmspace.h>: Program Space Utilities, 235
pgm_read_byte_near

<avr/pgmspace.h>: Program Space Utilities, 235
pgm_read_char

<avr/pgmspace.h>: Program Space Utilities, 240
pgm_read_char_far

<avr/pgmspace.h>: Program Space Utilities, 240
pgm_read_double

<avr/pgmspace.h>: Program Space Utilities, 240
pgm_read_double_far

<avr/pgmspace.h>: Program Space Utilities, 240
pgm_read_dword

<avr/pgmspace.h>: Program Space Utilities, 235
pgm_read_dword_far

<avr/pgmspace.h>: Program Space Utilities, 236
pgm_read_dword_near

<avr/pgmspace.h>: Program Space Utilities, 236
pgm_read_far< T >

<avr/pgmspace.h>: Program Space Utilities, 240
pgm_read_float

<avr/pgmspace.h>: Program Space Utilities, 240
pgm_read_float_far

<avr/pgmspace.h>: Program Space Utilities, 240
pgm_read_float_near

<avr/pgmspace.h>: Program Space Utilities, 236
pgm_read_i16

<avr/pgmspace.h>: Program Space Utilities, 241
pgm_read_i16_far

<avr/pgmspace.h>: Program Space Utilities, 241
pgm_read_i24

<avr/pgmspace.h>: Program Space Utilities, 241
pgm_read_i24_far

<avr/pgmspace.h>: Program Space Utilities, 241
pgm_read_i32

<avr/pgmspace.h>: Program Space Utilities, 241
pgm_read_i32_far

<avr/pgmspace.h>: Program Space Utilities, 241
pgm_read_i64

<avr/pgmspace.h>: Program Space Utilities, 241
pgm_read_i64_far

<avr/pgmspace.h>: Program Space Utilities, 241
pgm_read_i8

<avr/pgmspace.h>: Program Space Utilities, 241
pgm_read_i8_far

<avr/pgmspace.h>: Program Space Utilities, 242
pgm_read_int

Generated by Doxygen

INDEX 573

<avr/pgmspace.h>: Program Space Utilities, 242
pgm_read_int_far

<avr/pgmspace.h>: Program Space Utilities, 242
pgm_read_long

<avr/pgmspace.h>: Program Space Utilities, 242
pgm_read_long_double

<avr/pgmspace.h>: Program Space Utilities, 242
pgm_read_long_double_far

<avr/pgmspace.h>: Program Space Utilities, 242
pgm_read_long_far

<avr/pgmspace.h>: Program Space Utilities, 242
pgm_read_long_long

<avr/pgmspace.h>: Program Space Utilities, 242
pgm_read_long_long_far

<avr/pgmspace.h>: Program Space Utilities, 242
pgm_read_ptr

<avr/pgmspace.h>: Program Space Utilities, 236
pgm_read_ptr_far

<avr/pgmspace.h>: Program Space Utilities, 236
pgm_read_ptr_near

<avr/pgmspace.h>: Program Space Utilities, 236
pgm_read_qword

<avr/pgmspace.h>: Program Space Utilities, 236
pgm_read_qword_far

<avr/pgmspace.h>: Program Space Utilities, 236
pgm_read_qword_near

<avr/pgmspace.h>: Program Space Utilities, 236
pgm_read_short

<avr/pgmspace.h>: Program Space Utilities, 243
pgm_read_short_far

<avr/pgmspace.h>: Program Space Utilities, 243
pgm_read_signed

<avr/pgmspace.h>: Program Space Utilities, 243
pgm_read_signed_char

<avr/pgmspace.h>: Program Space Utilities, 243
pgm_read_signed_char_far

<avr/pgmspace.h>: Program Space Utilities, 243
pgm_read_signed_far

<avr/pgmspace.h>: Program Space Utilities, 243
pgm_read_signed_int

<avr/pgmspace.h>: Program Space Utilities, 243
pgm_read_signed_int_far

<avr/pgmspace.h>: Program Space Utilities, 243
pgm_read_u16

<avr/pgmspace.h>: Program Space Utilities, 243
pgm_read_u16_far

<avr/pgmspace.h>: Program Space Utilities, 244
pgm_read_u24

<avr/pgmspace.h>: Program Space Utilities, 244
pgm_read_u24_far

<avr/pgmspace.h>: Program Space Utilities, 244
pgm_read_u32

<avr/pgmspace.h>: Program Space Utilities, 244
pgm_read_u32_far

<avr/pgmspace.h>: Program Space Utilities, 244
pgm_read_u64

<avr/pgmspace.h>: Program Space Utilities, 244
pgm_read_u64_far

<avr/pgmspace.h>: Program Space Utilities, 244
pgm_read_u8

<avr/pgmspace.h>: Program Space Utilities, 244
pgm_read_u8_far

<avr/pgmspace.h>: Program Space Utilities, 244
pgm_read_unsigned

<avr/pgmspace.h>: Program Space Utilities, 245
pgm_read_unsigned_char

<avr/pgmspace.h>: Program Space Utilities, 245
pgm_read_unsigned_char_far

<avr/pgmspace.h>: Program Space Utilities, 245
pgm_read_unsigned_far

<avr/pgmspace.h>: Program Space Utilities, 245
pgm_read_unsigned_int

<avr/pgmspace.h>: Program Space Utilities, 245
pgm_read_unsigned_int_far

<avr/pgmspace.h>: Program Space Utilities, 245
pgm_read_unsigned_long

<avr/pgmspace.h>: Program Space Utilities, 245
pgm_read_unsigned_long_far

<avr/pgmspace.h>: Program Space Utilities, 245
pgm_read_unsigned_long_long

<avr/pgmspace.h>: Program Space Utilities, 245
pgm_read_unsigned_long_long_far

<avr/pgmspace.h>: Program Space Utilities, 246
pgm_read_unsigned_short

<avr/pgmspace.h>: Program Space Utilities, 246
pgm_read_unsigned_short_far

<avr/pgmspace.h>: Program Space Utilities, 246
pgm_read_word

<avr/pgmspace.h>: Program Space Utilities, 236
pgm_read_word_far

<avr/pgmspace.h>: Program Space Utilities, 237
pgm_read_word_near

<avr/pgmspace.h>: Program Space Utilities, 237
pgmspace.h, 369, 372
portpins.h, 396
pow

<math.h>: Mathematics, 138
power.h, 402, 403
power_all_disable

<avr/power.h>: Power Reduction Management,
262

power_all_enable
<avr/power.h>: Power Reduction Management,

262
powf

<math.h>: Mathematics, 138
powl

<math.h>: Mathematics, 138
PRId16

<inttypes.h>: Integer Type conversions, 111
PRId32

<inttypes.h>: Integer Type conversions, 111
PRId8

<inttypes.h>: Integer Type conversions, 111
PRIdFAST16

<inttypes.h>: Integer Type conversions, 111

Generated by Doxygen

574 INDEX

PRIdFAST32
<inttypes.h>: Integer Type conversions, 111

PRIdFAST8
<inttypes.h>: Integer Type conversions, 111

PRIdLEAST16
<inttypes.h>: Integer Type conversions, 112

PRIdLEAST32
<inttypes.h>: Integer Type conversions, 112

PRIdLEAST8
<inttypes.h>: Integer Type conversions, 112

PRIdPTR
<inttypes.h>: Integer Type conversions, 112

PRIi16
<inttypes.h>: Integer Type conversions, 112

PRIi32
<inttypes.h>: Integer Type conversions, 112

PRIi8
<inttypes.h>: Integer Type conversions, 112

PRIiFAST16
<inttypes.h>: Integer Type conversions, 112

PRIiFAST32
<inttypes.h>: Integer Type conversions, 112

PRIiFAST8
<inttypes.h>: Integer Type conversions, 112

PRIiLEAST16
<inttypes.h>: Integer Type conversions, 112

PRIiLEAST32
<inttypes.h>: Integer Type conversions, 113

PRIiLEAST8
<inttypes.h>: Integer Type conversions, 113

PRIiPTR
<inttypes.h>: Integer Type conversions, 113

printf
<stdio.h>: Standard IO facilities, 165

printf_P
<stdio.h>: Standard IO facilities, 165

PRIo16
<inttypes.h>: Integer Type conversions, 113

PRIo32
<inttypes.h>: Integer Type conversions, 113

PRIo8
<inttypes.h>: Integer Type conversions, 113

PRIoFAST16
<inttypes.h>: Integer Type conversions, 113

PRIoFAST32
<inttypes.h>: Integer Type conversions, 113

PRIoFAST8
<inttypes.h>: Integer Type conversions, 113

PRIoLEAST16
<inttypes.h>: Integer Type conversions, 113

PRIoLEAST32
<inttypes.h>: Integer Type conversions, 113

PRIoLEAST8
<inttypes.h>: Integer Type conversions, 114

PRIoPTR
<inttypes.h>: Integer Type conversions, 114

PRIu16
<inttypes.h>: Integer Type conversions, 114

PRIu32
<inttypes.h>: Integer Type conversions, 114

PRIu8
<inttypes.h>: Integer Type conversions, 114

PRIuFAST16
<inttypes.h>: Integer Type conversions, 114

PRIuFAST32
<inttypes.h>: Integer Type conversions, 114

PRIuFAST8
<inttypes.h>: Integer Type conversions, 114

PRIuLEAST16
<inttypes.h>: Integer Type conversions, 114

PRIuLEAST32
<inttypes.h>: Integer Type conversions, 114

PRIuLEAST8
<inttypes.h>: Integer Type conversions, 114

PRIuPTR
<inttypes.h>: Integer Type conversions, 115

PRIX16
<inttypes.h>: Integer Type conversions, 115

PRIx16
<inttypes.h>: Integer Type conversions, 115

PRIX32
<inttypes.h>: Integer Type conversions, 115

PRIx32
<inttypes.h>: Integer Type conversions, 115

PRIX8
<inttypes.h>: Integer Type conversions, 115

PRIx8
<inttypes.h>: Integer Type conversions, 115

PRIXFAST16
<inttypes.h>: Integer Type conversions, 115

PRIxFAST16
<inttypes.h>: Integer Type conversions, 115

PRIXFAST32
<inttypes.h>: Integer Type conversions, 115

PRIxFAST32
<inttypes.h>: Integer Type conversions, 115

PRIXFAST8
<inttypes.h>: Integer Type conversions, 116

PRIxFAST8
<inttypes.h>: Integer Type conversions, 116

PRIXLEAST16
<inttypes.h>: Integer Type conversions, 116

PRIxLEAST16
<inttypes.h>: Integer Type conversions, 116

PRIXLEAST32
<inttypes.h>: Integer Type conversions, 116

PRIxLEAST32
<inttypes.h>: Integer Type conversions, 116

PRIXLEAST8
<inttypes.h>: Integer Type conversions, 116

PRIxLEAST8
<inttypes.h>: Integer Type conversions, 116

PRIXPTR
<inttypes.h>: Integer Type conversions, 116

PRIxPTR
<inttypes.h>: Integer Type conversions, 116

Generated by Doxygen

INDEX 575

PROGMEM
<avr/pgmspace.h>: Program Space Utilities, 237

PROGMEM_FAR
<avr/pgmspace.h>: Program Space Utilities, 237

project.h, 325
PSTR

<avr/pgmspace.h>: Program Space Utilities, 237
PSTR_FAR

<avr/pgmspace.h>: Program Space Utilities, 237
PTRDIFF_MAX

<stdint.h>: Standard Integer Types, 150
PTRDIFF_MIN

<stdint.h>: Standard Integer Types, 150
putc

<stdio.h>: Standard IO facilities, 161
putchar

<stdio.h>: Standard IO facilities, 161
puts

<stdio.h>: Standard IO facilities, 165
puts_P

<stdio.h>: Standard IO facilities, 165

qsort
<stdlib.h>: General utilities, 179

quot
div_t, 322
ldiv_t, 322

rand
<stdlib.h>: General utilities, 180

RAND_MAX
<stdlib.h>: General utilities, 174

rand_r
<stdlib.h>: General utilities, 180

random
<stdlib.h>: General utilities, 180

RANDOM_MAX
<stdlib.h>: General utilities, 174

random_r
<stdlib.h>: General utilities, 180

realloc
<stdlib.h>: General utilities, 180

rem
div_t, 322
ldiv_t, 322

reti
<avr/interrupt.h>: Interrupts, 228

round
<math.h>: Mathematics, 139

roundf
<math.h>: Mathematics, 139

roundl
<math.h>: Mathematics, 139

sbi
<compat/deprecated.h>: Deprecated items, 293

scanf
<stdio.h>: Standard IO facilities, 165

scanf_P

<stdio.h>: Standard IO facilities, 165
SCNd16

<inttypes.h>: Integer Type conversions, 116
SCNd32

<inttypes.h>: Integer Type conversions, 117
SCNd8

<inttypes.h>: Integer Type conversions, 117
SCNdFAST16

<inttypes.h>: Integer Type conversions, 117
SCNdFAST32

<inttypes.h>: Integer Type conversions, 117
SCNdFAST8

<inttypes.h>: Integer Type conversions, 117
SCNdLEAST16

<inttypes.h>: Integer Type conversions, 117
SCNdLEAST32

<inttypes.h>: Integer Type conversions, 117
SCNdLEAST8

<inttypes.h>: Integer Type conversions, 117
SCNdPTR

<inttypes.h>: Integer Type conversions, 117
SCNi16

<inttypes.h>: Integer Type conversions, 117
SCNi32

<inttypes.h>: Integer Type conversions, 117
SCNi8

<inttypes.h>: Integer Type conversions, 118
SCNiFAST16

<inttypes.h>: Integer Type conversions, 118
SCNiFAST32

<inttypes.h>: Integer Type conversions, 118
SCNiFAST8

<inttypes.h>: Integer Type conversions, 118
SCNiLEAST16

<inttypes.h>: Integer Type conversions, 118
SCNiLEAST32

<inttypes.h>: Integer Type conversions, 118
SCNiLEAST8

<inttypes.h>: Integer Type conversions, 118
SCNiPTR

<inttypes.h>: Integer Type conversions, 118
SCNo16

<inttypes.h>: Integer Type conversions, 118
SCNo32

<inttypes.h>: Integer Type conversions, 118
SCNo8

<inttypes.h>: Integer Type conversions, 118
SCNoFAST16

<inttypes.h>: Integer Type conversions, 119
SCNoFAST32

<inttypes.h>: Integer Type conversions, 119
SCNoFAST8

<inttypes.h>: Integer Type conversions, 119
SCNoLEAST16

<inttypes.h>: Integer Type conversions, 119
SCNoLEAST32

<inttypes.h>: Integer Type conversions, 119
SCNoLEAST8

Generated by Doxygen

576 INDEX

<inttypes.h>: Integer Type conversions, 119
SCNoPTR

<inttypes.h>: Integer Type conversions, 119
SCNu16

<inttypes.h>: Integer Type conversions, 119
SCNu32

<inttypes.h>: Integer Type conversions, 119
SCNu8

<inttypes.h>: Integer Type conversions, 119
SCNuFAST16

<inttypes.h>: Integer Type conversions, 119
SCNuFAST32

<inttypes.h>: Integer Type conversions, 120
SCNuFAST8

<inttypes.h>: Integer Type conversions, 120
SCNuLEAST16

<inttypes.h>: Integer Type conversions, 120
SCNuLEAST32

<inttypes.h>: Integer Type conversions, 120
SCNuLEAST8

<inttypes.h>: Integer Type conversions, 120
SCNuPTR

<inttypes.h>: Integer Type conversions, 120
SCNx16

<inttypes.h>: Integer Type conversions, 120
SCNx32

<inttypes.h>: Integer Type conversions, 120
SCNx8

<inttypes.h>: Integer Type conversions, 120
SCNxFAST16

<inttypes.h>: Integer Type conversions, 120
SCNxFAST32

<inttypes.h>: Integer Type conversions, 120
SCNxFAST8

<inttypes.h>: Integer Type conversions, 121
SCNxLEAST16

<inttypes.h>: Integer Type conversions, 121
SCNxLEAST32

<inttypes.h>: Integer Type conversions, 121
SCNxLEAST8

<inttypes.h>: Integer Type conversions, 121
SCNxPTR

<inttypes.h>: Integer Type conversions, 121
sei

<avr/interrupt.h>: Interrupts, 228
set_dst

<time.h>: Time, 204
set_position

<time.h>: Time, 204
set_system_time

<time.h>: Time, 204
set_zone

<time.h>: Time, 204
setbaud.h, 541
setjmp

<setjmp.h>: Non-local goto, 144
setjmp.h, 472
sfr_defs.h, 424

SIG_ATOMIC_MAX
<stdint.h>: Standard Integer Types, 150

SIG_ATOMIC_MIN
<stdint.h>: Standard Integer Types, 150

SIGNAL
<avr/interrupt.h>: Interrupts, 228

signal.h, 427
signature.h, 428
signbit

<math.h>: Mathematics, 139
signbitf

<math.h>: Mathematics, 139
signbitl

<math.h>: Mathematics, 140
sin

<math.h>: Mathematics, 140
sinf

<math.h>: Mathematics, 140
sinh

<math.h>: Mathematics, 140
sinhf

<math.h>: Mathematics, 140
sinhl

<math.h>: Mathematics, 140
sinl

<math.h>: Mathematics, 140
SIZE_MAX

<stdint.h>: Standard Integer Types, 150
sleep.h, 429
sleep_bod_disable

<avr/sleep.h>: Power Management and Sleep
Modes, 266

sleep_cpu
<avr/sleep.h>: Power Management and Sleep

Modes, 266
sleep_disable

<avr/sleep.h>: Power Management and Sleep
Modes, 266

sleep_enable
<avr/sleep.h>: Power Management and Sleep

Modes, 266
sleep_mode

<avr/sleep.h>: Power Management and Sleep
Modes, 267

snprintf
<stdio.h>: Standard IO facilities, 165

snprintf_P
<stdio.h>: Standard IO facilities, 166

solar_declination
<time.h>: Time, 205

solar_declinationf
<time.h>: Time, 205

solar_declinationl
<time.h>: Time, 205

solar_noon
<time.h>: Time, 205

sprintf
<stdio.h>: Standard IO facilities, 166

Generated by Doxygen

INDEX 577

sprintf_P
<stdio.h>: Standard IO facilities, 166

sqrt
<math.h>: Mathematics, 140

sqrtf
<math.h>: Mathematics, 140

sqrtl
<math.h>: Mathematics, 141

square
<math.h>: Mathematics, 141

squaref
<math.h>: Mathematics, 141

squarel
<math.h>: Mathematics, 141

srand
<stdlib.h>: General utilities, 181

srandom
<stdlib.h>: General utilities, 181

sscanf
<stdio.h>: Standard IO facilities, 166

sscanf_P
<stdio.h>: Standard IO facilities, 166

stderr
<stdio.h>: Standard IO facilities, 161

stdin
<stdio.h>: Standard IO facilities, 161

stdint.h, 474, 477
stdio.h, 485, 486
stdio_private.h, 551
stdlib.h, 498, 500
stdlib_private.h, 553
stdout

<stdio.h>: Standard IO facilities, 161
strcasecmp

<string.h>: Strings, 188
strcasecmp_P

<avr/pgmspace.h>: Program Space Utilities, 246
strcasecmp_PF

<avr/pgmspace.h>: Program Space Utilities, 246
strcasestr

<string.h>: Strings, 189
strcasestr_P

<avr/pgmspace.h>: Program Space Utilities, 247
strcat

<string.h>: Strings, 189
strcat_P

<avr/pgmspace.h>: Program Space Utilities, 247
strcat_PF

<avr/pgmspace.h>: Program Space Utilities, 247
strchr

<string.h>: Strings, 189
strchr_P

<avr/pgmspace.h>: Program Space Utilities, 248
strchr_PF

<avr/pgmspace.h>: Program Space Utilities, 248
strchrnul

<string.h>: Strings, 189
strchrnul_P

<avr/pgmspace.h>: Program Space Utilities, 248
strcmp

<string.h>: Strings, 190
strcmp_P

<avr/pgmspace.h>: Program Space Utilities, 248
strcmp_PF

<avr/pgmspace.h>: Program Space Utilities, 249
strcpy

<string.h>: Strings, 190
strcpy_P

<avr/pgmspace.h>: Program Space Utilities, 249
strcpy_PF

<avr/pgmspace.h>: Program Space Utilities, 249
strcspn

<string.h>: Strings, 190
strcspn_P

<avr/pgmspace.h>: Program Space Utilities, 250
strdup

<string.h>: Strings, 191
strftime

<time.h>: Time, 205
string.h, 509, 510
strlcat

<string.h>: Strings, 191
strlcat_P

<avr/pgmspace.h>: Program Space Utilities, 250
strlcat_PF

<avr/pgmspace.h>: Program Space Utilities, 250
strlcpy

<string.h>: Strings, 191
strlcpy_P

<avr/pgmspace.h>: Program Space Utilities, 251
strlcpy_PF

<avr/pgmspace.h>: Program Space Utilities, 251
strlen

<string.h>: Strings, 192
strlen_P

<avr/pgmspace.h>: Program Space Utilities, 251
strlen_PF

<avr/pgmspace.h>: Program Space Utilities, 252
strlwr

<string.h>: Strings, 192
strncasecmp

<string.h>: Strings, 192
strncasecmp_P

<avr/pgmspace.h>: Program Space Utilities, 252
strncasecmp_PF

<avr/pgmspace.h>: Program Space Utilities, 253
strncat

<string.h>: Strings, 193
strncat_P

<avr/pgmspace.h>: Program Space Utilities, 253
strncat_PF

<avr/pgmspace.h>: Program Space Utilities, 253
strncmp

<string.h>: Strings, 193
strncmp_P

<avr/pgmspace.h>: Program Space Utilities, 254

Generated by Doxygen

578 INDEX

strncmp_PF
<avr/pgmspace.h>: Program Space Utilities, 254

strncpy
<string.h>: Strings, 193

strncpy_P
<avr/pgmspace.h>: Program Space Utilities, 254

strncpy_PF
<avr/pgmspace.h>: Program Space Utilities, 255

strndup
<string.h>: Strings, 194

strnlen
<string.h>: Strings, 194

strnlen_P
<avr/pgmspace.h>: Program Space Utilities, 255

strnlen_PF
<avr/pgmspace.h>: Program Space Utilities, 255

strpbrk
<string.h>: Strings, 194

strpbrk_P
<avr/pgmspace.h>: Program Space Utilities, 256

strrchr
<string.h>: Strings, 195

strrchr_P
<avr/pgmspace.h>: Program Space Utilities, 256

strrev
<string.h>: Strings, 195

strsep
<string.h>: Strings, 195

strsep_P
<avr/pgmspace.h>: Program Space Utilities, 256

strspn
<string.h>: Strings, 195

strspn_P
<avr/pgmspace.h>: Program Space Utilities, 257

strstr
<string.h>: Strings, 196

strstr_P
<avr/pgmspace.h>: Program Space Utilities, 257

strstr_PF
<avr/pgmspace.h>: Program Space Utilities, 257

strtod
<stdlib.h>: General utilities, 181

strtof
<stdlib.h>: General utilities, 181

strtok
<string.h>: Strings, 196

strtok_P
<avr/pgmspace.h>: Program Space Utilities, 258

strtok_r
<string.h>: Strings, 196

strtok_rP
<avr/pgmspace.h>: Program Space Utilities, 258

strtol
<stdlib.h>: General utilities, 181

strtold
<stdlib.h>: General utilities, 182

strtoul
<stdlib.h>: General utilities, 182

strupr
<string.h>: Strings, 197

sun_rise
<time.h>: Time, 205

sun_set
<time.h>: Time, 205

supported devices, 2
system_tick

<time.h>: Time, 206

tan
<math.h>: Mathematics, 141

tanf
<math.h>: Mathematics, 141

tanh
<math.h>: Mathematics, 142

tanhf
<math.h>: Mathematics, 142

tanhl
<math.h>: Mathematics, 142

tanl
<math.h>: Mathematics, 142

time
<time.h>: Time, 206

time.h, 517, 518
time_t

<time.h>: Time, 200
timer_enable_int

<compat/deprecated.h>: Deprecated items, 293
tm, 323

tm_hour, 323
tm_isdst, 323
tm_mday, 323
tm_min, 323
tm_mon, 323
tm_sec, 324
tm_wday, 324
tm_yday, 324
tm_year, 324

tm_hour
tm, 323

tm_isdst
tm, 323

tm_mday
tm, 323

tm_min
tm, 323

tm_mon
tm, 323

tm_sec
tm, 324

tm_wday
tm, 324

tm_yday
tm, 324

tm_year
tm, 324

toascii
<ctype.h>: Character Operations, 107

Generated by Doxygen

INDEX 579

tolower
<ctype.h>: Character Operations, 107

tools, optional, 77
tools, required, 76
toupper

<ctype.h>: Character Operations, 107
trunc

<math.h>: Mathematics, 142
truncf

<math.h>: Mathematics, 142
truncl

<math.h>: Mathematics, 142
TW_BUS_ERROR

<util/twi.h>: TWI bit mask definitions, 287
TW_MR_ARB_LOST

<util/twi.h>: TWI bit mask definitions, 287
TW_MR_DATA_ACK

<util/twi.h>: TWI bit mask definitions, 287
TW_MR_DATA_NACK

<util/twi.h>: TWI bit mask definitions, 287
TW_MR_SLA_ACK

<util/twi.h>: TWI bit mask definitions, 287
TW_MR_SLA_NACK

<util/twi.h>: TWI bit mask definitions, 287
TW_MT_ARB_LOST

<util/twi.h>: TWI bit mask definitions, 287
TW_MT_DATA_ACK

<util/twi.h>: TWI bit mask definitions, 287
TW_MT_DATA_NACK

<util/twi.h>: TWI bit mask definitions, 287
TW_MT_SLA_ACK

<util/twi.h>: TWI bit mask definitions, 287
TW_MT_SLA_NACK

<util/twi.h>: TWI bit mask definitions, 287
TW_NO_INFO

<util/twi.h>: TWI bit mask definitions, 288
TW_READ

<util/twi.h>: TWI bit mask definitions, 288
TW_REP_START

<util/twi.h>: TWI bit mask definitions, 288
TW_SR_ARB_LOST_GCALL_ACK

<util/twi.h>: TWI bit mask definitions, 288
TW_SR_ARB_LOST_SLA_ACK

<util/twi.h>: TWI bit mask definitions, 288
TW_SR_DATA_ACK

<util/twi.h>: TWI bit mask definitions, 288
TW_SR_DATA_NACK

<util/twi.h>: TWI bit mask definitions, 288
TW_SR_GCALL_ACK

<util/twi.h>: TWI bit mask definitions, 288
TW_SR_GCALL_DATA_ACK

<util/twi.h>: TWI bit mask definitions, 288
TW_SR_GCALL_DATA_NACK

<util/twi.h>: TWI bit mask definitions, 288
TW_SR_SLA_ACK

<util/twi.h>: TWI bit mask definitions, 288
TW_SR_STOP

<util/twi.h>: TWI bit mask definitions, 289

TW_ST_ARB_LOST_SLA_ACK
<util/twi.h>: TWI bit mask definitions, 289

TW_ST_DATA_ACK
<util/twi.h>: TWI bit mask definitions, 289

TW_ST_DATA_NACK
<util/twi.h>: TWI bit mask definitions, 289

TW_ST_LAST_DATA
<util/twi.h>: TWI bit mask definitions, 289

TW_ST_SLA_ACK
<util/twi.h>: TWI bit mask definitions, 289

TW_START
<util/twi.h>: TWI bit mask definitions, 289

TW_STATUS
<util/twi.h>: TWI bit mask definitions, 289

TW_STATUS_MASK
<util/twi.h>: TWI bit mask definitions, 289

TW_WRITE
<util/twi.h>: TWI bit mask definitions, 289

twi.h, 544, 545

uart.h, 329
UBRR_VALUE

<util/setbaud.h>: Helper macros for baud rate cal-
culations, 285

UBRRH_VALUE
<util/setbaud.h>: Helper macros for baud rate cal-

culations, 285
UBRRL_VALUE

<util/setbaud.h>: Helper macros for baud rate cal-
culations, 285

UINT16_C
<stdint.h>: Standard Integer Types, 151

UINT16_MAX
<stdint.h>: Standard Integer Types, 151

uint16_t
<stdint.h>: Standard Integer Types, 154

UINT32_C
<stdint.h>: Standard Integer Types, 151

UINT32_MAX
<stdint.h>: Standard Integer Types, 151

uint32_t
<stdint.h>: Standard Integer Types, 154

UINT64_C
<stdint.h>: Standard Integer Types, 151

UINT64_MAX
<stdint.h>: Standard Integer Types, 151

uint64_t
<stdint.h>: Standard Integer Types, 154

UINT8_C
<stdint.h>: Standard Integer Types, 151

UINT8_MAX
<stdint.h>: Standard Integer Types, 151

uint8_t
<stdint.h>: Standard Integer Types, 154

uint_farptr_t
<inttypes.h>: Integer Type conversions, 121

UINT_FAST16_MAX
<stdint.h>: Standard Integer Types, 151

uint_fast16_t

Generated by Doxygen

580 INDEX

<stdint.h>: Standard Integer Types, 154
UINT_FAST32_MAX

<stdint.h>: Standard Integer Types, 151
uint_fast32_t

<stdint.h>: Standard Integer Types, 154
UINT_FAST64_MAX

<stdint.h>: Standard Integer Types, 151
uint_fast64_t

<stdint.h>: Standard Integer Types, 155
UINT_FAST8_MAX

<stdint.h>: Standard Integer Types, 152
uint_fast8_t

<stdint.h>: Standard Integer Types, 155
UINT_LEAST16_MAX

<stdint.h>: Standard Integer Types, 152
uint_least16_t

<stdint.h>: Standard Integer Types, 155
UINT_LEAST32_MAX

<stdint.h>: Standard Integer Types, 152
uint_least32_t

<stdint.h>: Standard Integer Types, 155
UINT_LEAST64_MAX

<stdint.h>: Standard Integer Types, 152
uint_least64_t

<stdint.h>: Standard Integer Types, 155
UINT_LEAST8_MAX

<stdint.h>: Standard Integer Types, 152
uint_least8_t

<stdint.h>: Standard Integer Types, 155
UINTMAX_C

<stdint.h>: Standard Integer Types, 152
UINTMAX_MAX

<stdint.h>: Standard Integer Types, 152
uintmax_t

<stdint.h>: Standard Integer Types, 155
UINTPTR_MAX

<stdint.h>: Standard Integer Types, 152
uintptr_t

<stdint.h>: Standard Integer Types, 155
ultoa

<stdlib.h>: General utilities, 182
ungetc

<stdio.h>: Standard IO facilities, 166
UNIX_OFFSET

<time.h>: Time, 200
usa_dst

<util/usa_dst.h>: Daylight Saving function for the
USA., 290

usa_dst.h, 548
USE_2X

<util/setbaud.h>: Helper macros for baud rate cal-
culations, 285

Using the standard IO facilities, 312
utoa

<stdlib.h>: General utilities, 183

version.h, 433
vfprintf

<stdio.h>: Standard IO facilities, 167

vfprintf_P
<stdio.h>: Standard IO facilities, 169

vfscanf
<stdio.h>: Standard IO facilities, 169

vfscanf_P
<stdio.h>: Standard IO facilities, 170

vprintf
<stdio.h>: Standard IO facilities, 171

vscanf
<stdio.h>: Standard IO facilities, 171

vsnprintf
<stdio.h>: Standard IO facilities, 171

vsnprintf_P
<stdio.h>: Standard IO facilities, 171

vsprintf
<stdio.h>: Standard IO facilities, 171

vsprintf_P
<stdio.h>: Standard IO facilities, 171

wdt.h, 434, 435
wdt_enable

<avr/wdt.h>: Watchdog timer handling, 271
wdt_reset

<avr/wdt.h>: Watchdog timer handling, 272
WDTO_120MS

<avr/wdt.h>: Watchdog timer handling, 272
WDTO_15MS

<avr/wdt.h>: Watchdog timer handling, 272
WDTO_1S

<avr/wdt.h>: Watchdog timer handling, 272
WDTO_250MS

<avr/wdt.h>: Watchdog timer handling, 272
WDTO_2S

<avr/wdt.h>: Watchdog timer handling, 272
WDTO_30MS

<avr/wdt.h>: Watchdog timer handling, 272
WDTO_4S

<avr/wdt.h>: Watchdog timer handling, 272
WDTO_500MS

<avr/wdt.h>: Watchdog timer handling, 273
WDTO_60MS

<avr/wdt.h>: Watchdog timer handling, 273
WDTO_8S

<avr/wdt.h>: Watchdog timer handling, 273
week

week_date, 325
week_date, 324

day, 324
week, 325
year, 325

week_of_month
<time.h>: Time, 206

week_of_year
<time.h>: Time, 206

xmega.h, 442
xtoa_fast.h, 552

year

Generated by Doxygen

INDEX 581

week_date, 325

Generated by Doxygen

	1 AVR-LibC
	1.1 Introduction
	1.2 General Information about this Library
	1.3 Supported Devices
	1.4 AVR-LibC License

	2 Toolchain Overview
	2.1 Introduction
	2.2 FSF and GNU
	2.3 GCC
	2.4 GNU Binutils
	2.5 AVR-LibC
	2.6 Building Software
	2.7 AVRDUDE
	2.8 GDB / Insight / DDD
	2.9 AVaRICE
	2.10 SimulAVR
	2.11 Utilities
	2.12 Toolchain Distributions (Distros)
	2.13 Open Source

	3 Memory Areas and Using malloc()
	3.1 Introduction
	3.2 Internal vs. external RAM
	3.3 Tunables for malloc()
	3.4 Implementation details

	4 Memory Sections
	4.1 Concepts
	4.1.1 Named Sections
	4.1.2 Orphan Sections
	4.1.3 LMA: Load Memory Address
	4.1.4 VMA: Virtual Memory Address

	4.2 The Linker Script: Building Blocks
	4.2.1 Input Sections and Output Sections
	4.2.2 Memory Regions

	4.3 Output Sections of the Default Linker Script
	4.3.1 The .text Output Section
	4.3.2 The .data Output Section
	4.3.3 The .bss Output Section
	4.3.4 The .noinit Output Section
	4.3.5 The .rodata Output Section
	4.3.6 The .eeprom Output Section
	4.3.7 The .fuse, .lock and .signature Output Sections
	4.3.8 The .note.gnu.avr.deviceinfo Section

	4.4 Symbols in the Default Linker Script
	4.5 Output Sections and Code Size
	4.6 Using Sections
	4.6.1 In C/C++ Code
	4.6.2 In Assembly Code

	5 Data in Program Space
	5.1 Introduction
	5.2 A Note On const
	5.3 Storing and Retrieving Data in the Program Space
	5.4 Storing and Retrieving Strings in the Program Space
	5.5 Caveats

	6 AVR-LibC and Assembler Programs
	6.1 Introduction
	6.2 Invoking the Compiler
	6.3 Example Program
	6.4 Assembler Directives
	6.5 Operand Modifiers

	7 Inline Assembler Cookbook
	7.1 About this Document
	7.2 The Anatomy of a GCC asm Statement
	7.3 Special Sequences
	7.4 Constraints
	7.5 Print Modifiers
	7.6 Operand Modifiers
	7.7 Examples
	7.7.1 Swapping Nibbles
	7.7.2 Swapping Bytes
	7.7.3 Accessing Memory
	7.7.4 Accessing Bytes of wider Expressions
	7.7.5 Jumping and Branching

	7.8 Binding local Variables to Registers
	7.8.1 Interfacing non-ABI Functions

	7.9 Specifying the Assembly Name of Static Objects
	7.10 What won't work
	7.10.1 Setting a Register on one asm and using it in a different one
	7.10.2 Letting an Operand cross the Boundaries of the Y Register
	7.10.3 Using Matching Constraints `¨=0`¨...`¨=9`¨ with Output Operands

	8 How to Build a Library
	8.1 Introduction
	8.2 How the Linker Works
	8.3 How to Design a Library
	8.4 Creating a Library
	8.5 Using a Library

	9 Benchmarks
	9.1 A few of libc functions.
	9.2 Math functions.

	10 Porting From IAR to AVR GCC
	10.1 Introduction
	10.2 Registers
	10.3 Interrupt Service Routines (ISRs)
	10.4 Intrinsic Routines
	10.5 Flash Variables
	10.6 Non-Returning main()
	10.7 Locking Registers

	11 Frequently Asked Questions
	11.1 FAQ Index
	11.2 Why doesn't my program recognize a variable updated in an interrupt routine?
	11.3 How to permanently bind a variable to a register?
	11.4 How to modify MCUCR or WDTCR early?
	11.5 What is all this _BV() stuff about?
	11.6 Can I use C++ on the AVR?
	11.7 Shouldn't I initialize all my variables?
	11.8 Why do some 16-bit timer registers sometimes get trashed?
	11.9 How do I use a #define'd constant in an asm statement?
	11.10 Why does the PC randomly jump around when single-stepping through my program in avr-gdb?
	11.11 How do I trace an assembler file in avr-gdb?
	11.12 How do I pass an IO port as a parameter to a function?
	11.13 What registers are used by the C compiler?
	11.14 How do I put an array of strings completely in ROM?
	11.14.1 Using named address-spaces

	11.15 How to use external RAM?
	11.16 Which -O flag to use?
	11.17 How do I relocate code to a fixed address?
	11.18 My UART is generating nonsense! My ATmega128 keeps crashing! Port F is completely broken!
	11.19 Why do all my `¨foo...bar`¨ strings eat up the SRAM?
	11.20 How to detect RAM memory and variable overlap problems?
	11.21 Is it really impossible to program the ATtinyXX in C?
	11.22 What is this `¨clock skew detected`¨ message?
	11.23 Why are (many) interrupt flags cleared by writing a logical 1?
	11.24 Why have `¨programmed`¨ fuses the bit value 0?
	11.25 Which AVR-specific assembler operators are available?
	11.26 Why are interrupts re-enabled in the middle of writing the stack pointer?
	11.27 Why are there five different linker scripts?
	11.28 How to add a raw binary image to linker output?
	11.29 How do I perform a software reset of the AVR?
	11.30 What pitfalls exist when writing reentrant code?
	11.31 Why are some addresses of the EEPROM corrupted (usually address zero)?
	11.32 Why is my baud rate wrong?
	11.33 On a device with more than 128 KiB of flash, how to make function pointers work?
	11.34 Why is assigning ports in a `¨chain`¨ a bad idea?
	11.35 Which header files are included in my program?
	11.36 Which macros are defined in my program? Where are they defined, and to what value?
	11.37 What ISR names are available for my device?

	12 Building and Installing the GNU Tool Chain
	12.1 Required AVR Tools
	12.2 Optional AVR Tools
	12.3 Building and Installing under Linux, FreeBSD, and Others
	12.3.1 Preparations
	12.3.2 GNU Binutils for the AVR target
	12.3.3 GCC for the AVR target
	12.3.4 AVR-LibC
	12.3.5 AVRDUDE
	12.3.6 SimulAVR
	12.3.7 AVaRICE

	12.4 Building and Installing under Windows
	12.4.1 Tools Required for Building the Toolchain for Windows
	12.4.2 Building the Toolchain for Windows

	12.5 Canadian Cross Builds
	12.6 Using Git

	13 Using the GNU tools
	13.1 Options for the C compiler avr-gcc
	13.1.1 Machine-specific options for the AVR
	13.1.2 Selected general compiler options

	13.2 Options for the assembler avr-as
	13.2.1 Machine-specific assembler options
	13.2.2 Examples for assembler options passed through the C compiler

	13.3 Controlling the linker avr-ld
	13.3.1 Selected linker options
	13.3.2 Passing linker options from the C compiler

	14 Compiler optimization
	14.1 Problems with reordering code

	15 Using the avrdude program
	16 Acknowledgments
	17 Deprecated List
	18 Module Index
	18.1 Modules

	19 Data Structure Index
	19.1 Data Structures

	20 File Index
	20.1 File List

	21 Module Documentation
	21.1 <alloca.h>: Allocate space in the stack
	21.1.1 Detailed Description
	21.1.2 Function Documentation

	21.2 <assert.h>: Diagnostics
	21.2.1 Detailed Description
	21.2.2 Macro Definition Documentation

	21.3 <ctype.h>: Character Operations
	21.3.1 Detailed Description
	21.3.2 Function Documentation

	21.4 <errno.h>: System Errors
	21.4.1 Detailed Description
	21.4.2 Macro Definition Documentation
	21.4.3 Variable Documentation

	21.5 <inttypes.h>: Integer Type conversions
	21.5.1 Detailed Description
	21.5.2 Macro Definition Documentation
	21.5.3 Typedef Documentation

	21.6 <math.h>: Mathematics
	21.6.1 Detailed Description
	21.6.2 Macro Definition Documentation
	21.6.3 Function Documentation

	21.7 <setjmp.h>: Non-local goto
	21.7.1 Detailed Description
	21.7.2 Function Documentation

	21.8 <stdint.h>: Standard Integer Types
	21.8.1 Detailed Description
	21.8.2 Macro Definition Documentation
	21.8.3 Typedef Documentation

	21.9 <stdio.h>: Standard IO facilities
	21.9.1 Detailed Description
	21.9.2 Macro Definition Documentation
	21.9.3 Typedef Documentation
	21.9.4 Function Documentation

	21.10 <stdlib.h>: General utilities
	21.10.1 Detailed Description
	21.10.2 Macro Definition Documentation
	21.10.3 Typedef Documentation
	21.10.4 Function Documentation
	21.10.5 Variable Documentation

	21.11 <string.h>: Strings
	21.11.1 Detailed Description
	21.11.2 Macro Definition Documentation
	21.11.3 Function Documentation

	21.12 <time.h>: Time
	21.12.1 Detailed Description
	21.12.2 Macro Definition Documentation
	21.12.3 Typedef Documentation
	21.12.4 Enumeration Type Documentation
	21.12.5 Function Documentation

	21.13 <avr/boot.h>: Bootloader Support Utilities
	21.13.1 Detailed Description
	21.13.2 Macro Definition Documentation

	21.14 <avr/cpufunc.h>: Special AVR CPU functions
	21.14.1 Detailed Description
	21.14.2 Macro Definition Documentation
	21.14.3 Function Documentation

	21.15 <avr/eeprom.h>: EEPROM handling
	21.15.1 Detailed Description
	21.15.2 Macro Definition Documentation
	21.15.3 Function Documentation

	21.16 <avr/fuse.h>: Fuse Support
	21.17 <avr/interrupt.h>: Interrupts
	21.17.1 Detailed Description
	21.17.2 Macro Definition Documentation

	21.18 <avr/io.h>: AVR device-specific IO definitions
	21.18.1 Detailed Description
	21.18.2 Macro Definition Documentation

	21.19 <avr/lock.h>: Lockbit Support
	21.20 <avr/pgmspace.h>: Program Space Utilities
	21.20.1 Detailed Description
	21.20.2 Macro Definition Documentation
	21.20.3 Function Documentation

	21.21 <avr/power.h>: Power Reduction Management
	21.21.1 Detailed Description
	21.21.2 Macro Definition Documentation
	21.21.3 Function Documentation

	21.22 Additional notes from <avr/sfr_defs.h>
	21.23 <avr/sfr_defs.h>: Special function registers
	21.23.1 Detailed Description
	21.23.2 Macro Definition Documentation

	21.24 <avr/signature.h>: Signature Support
	21.25 <avr/sleep.h>: Power Management and Sleep Modes
	21.25.1 Detailed Description
	21.25.2 Function Documentation

	21.26 <avr/version.h>: avr-libc version macros
	21.26.1 Detailed Description
	21.26.2 Macro Definition Documentation

	21.27 <avr/builtins.h>: avr-gcc builtins documentation
	21.27.1 Detailed Description
	21.27.2 Function Documentation

	21.28 <avr/wdt.h>: Watchdog timer handling
	21.28.1 Detailed Description
	21.28.2 Macro Definition Documentation

	21.29 <util/delay.h>: Convenience functions for busy-wait delay loops
	21.29.1 Detailed Description
	21.29.2 Macro Definition Documentation
	21.29.3 Function Documentation

	21.30 <util/atomic.h> Atomically and Non-Atomically Executed Code Blocks
	21.30.1 Detailed Description
	21.30.2 Macro Definition Documentation

	21.31 <util/crc16.h>: CRC Computations
	21.31.1 Detailed Description
	21.31.2 Function Documentation

	21.32 <util/delay_basic.h>: Basic busy-wait delay loops
	21.32.1 Detailed Description
	21.32.2 Function Documentation

	21.33 <util/eu_dst.h>: Daylight Saving function for the European Union.
	21.33.1 Detailed Description
	21.33.2 Function Documentation

	21.34 <util/parity.h>: Parity bit generation
	21.34.1 Detailed Description
	21.34.2 Function Documentation

	21.35 <util/setbaud.h>: Helper macros for baud rate calculations
	21.35.1 Detailed Description
	21.35.2 Macro Definition Documentation

	21.36 <util/twi.h>: TWI bit mask definitions
	21.36.1 Detailed Description
	21.36.2 Macro Definition Documentation

	21.37 <util/usa_dst.h>: Daylight Saving function for the USA.
	21.37.1 Detailed Description
	21.37.2 Function Documentation

	21.38 <compat/deprecated.h>: Deprecated items
	21.38.1 Detailed Description
	21.38.2 Macro Definition Documentation
	21.38.3 Function Documentation

	21.39 <compat/ina90.h>: Compatibility with IAR EWB 3.x
	21.40 Demo projects
	21.40.1 Detailed Description

	21.41 Combining C and assembly source files
	21.41.1 Hardware setup
	21.41.2 A code walkthrough
	21.41.3 The source code

	21.42 A simple project
	21.42.1 The Project
	21.42.2 The Source Code
	21.42.3 Compiling and Linking
	21.42.4 Examining the Object File
	21.42.5 Linker Map Files
	21.42.6 Generating Intel Hex Files
	21.42.7 Letting Make Build the Project
	21.42.8 Reference to the source code

	21.43 A more sophisticated project
	21.43.1 Hardware setup
	21.43.2 Functional overview
	21.43.3 A code walkthrough
	21.43.4 The source code

	21.44 Using the standard IO facilities
	21.44.1 Hardware setup
	21.44.2 Functional overview
	21.44.3 A code walkthrough
	21.44.4 The source code

	21.45 Example using the two-wire interface (TWI)
	21.45.1 Introduction into TWI
	21.45.2 The TWI example project
	21.45.3 The Source Code

	22 Data Structure Documentation
	22.1 div_t Struct Reference
	22.1.1 Detailed Description
	22.1.2 Field Documentation

	22.2 ldiv_t Struct Reference
	22.2.1 Detailed Description
	22.2.2 Field Documentation

	22.3 tm Struct Reference
	22.3.1 Detailed Description
	22.3.2 Field Documentation

	22.4 week_date Struct Reference
	22.4.1 Detailed Description
	22.4.2 Field Documentation

	23 File Documentation
	23.1 project.h
	23.2 iocompat.h
	23.3 defines.h
	23.4 hd44780.h
	23.5 lcd.h
	23.6 uart.h
	23.7 alloca.h
	23.8 assert.h File Reference
	23.9 assert.h
	23.10 boot.h File Reference
	23.11 boot.h
	23.12 builtins.h File Reference
	23.13 builtins.h
	23.14 cpufunc.h File Reference
	23.15 cpufunc.h
	23.16 eeprom.h
	23.17 fuse.h File Reference
	23.18 fuse.h
	23.19 interrupt.h File Reference
	23.20 interrupt.h
	23.21 io.h File Reference
	23.22 io.h
	23.23 lock.h File Reference
	23.24 lock.h
	23.25 pgmspace.h File Reference
	23.26 pgmspace.h
	23.27 portpins.h
	23.28 power.h File Reference
	23.29 power.h
	23.30 sfr_defs.h
	23.31 signal.h
	23.32 signature.h File Reference
	23.33 signature.h
	23.34 sleep.h File Reference
	23.35 sleep.h
	23.36 version.h
	23.37 wdt.h File Reference
	23.38 wdt.h
	23.39 xmega.h
	23.40 deprecated.h
	23.41 ina90.h
	23.42 ctype.h File Reference
	23.43 ctype.h
	23.44 errno.h File Reference
	23.45 errno.h
	23.46 inttypes.h File Reference
	23.47 inttypes.h
	23.48 math.h File Reference
	23.49 math.h
	23.50 setjmp.h File Reference
	23.51 setjmp.h
	23.52 stdint.h File Reference
	23.53 stdint.h
	23.54 stdio.h File Reference
	23.55 stdio.h
	23.56 stdlib.h File Reference
	23.57 stdlib.h
	23.58 string.h File Reference
	23.59 string.h
	23.60 time.h File Reference
	23.61 time.h
	23.62 atomic.h File Reference
	23.63 atomic.h
	23.64 crc16.h File Reference
	23.65 crc16.h
	23.66 delay.h File Reference
	23.67 delay.h
	23.68 delay_basic.h File Reference
	23.69 delay_basic.h
	23.70 eu_dst.h File Reference
	23.71 eu_dst.h
	23.72 parity.h File Reference
	23.73 parity.h
	23.74 setbaud.h File Reference
	23.75 setbaud.h
	23.76 compat/twi.h
	23.77 twi.h File Reference
	23.78 util/twi.h
	23.79 usa_dst.h File Reference
	23.80 usa_dst.h
	23.81 eedef.h
	23.82 fdevopen.c File Reference
	23.83 stdio_private.h
	23.84 xtoa_fast.h
	23.85 dtoa_conv.h
	23.86 stdlib_private.h
	23.87 ephemera_common.h

	Index

