
XMLmind Assembly
Processor Manual

Hussein Shafie

XMLmind Assembly Processor Manual
Hussein Shafie

Publication date September 15, 2023

Abstract

Explains how to install, use and embed XMLmind Assembly Processor.

Table of Contents
1. What is XMLmind Assembly Processor? ... 1
2. Installing XMLmind Assembly Processor .. 2

2.1. System requirements .. 2
2.2. Installation ... 2
2.3. Contents of the installation directory .. 2

3. Getting started .. 4
4. Command-line options .. 7
5. Limitations and implementation specificities ... 9

5.1. Limitations ... 9
5.2. Implementation specificities .. 9

5.2.1. About filtering .. 12
6. Embedding XMLmind Assembly Processor in a Java™ application 14
A. History of changes .. 15
Index ... 19

iii

List of Figures
3.1. This assembly manual.xml opened in XMLmind XML Editor 4

iv

List of Examples
3.1. Converting manual.xml to multi-page HTML ... 5
3.2. Converting manual.xml to PDF ... 6

v

Chapter 1. What is XMLmind
Assembly Processor?

XMLmind Assembly Processor is a Java™ software component and a command-line utility (called
assembly) which processes a DocBook v5.1 assembly and all the referenced topics in order to create
the equivalent “flat”, monolithic, document (e.g. a DocBook v5.1 book). This equivalent document
is called the realized document.

The realized document is then transformed to other formats (PDF, HTML, etc), normally, as if it were
created by hand, using the DocBook XSL stylesheets.

As of v0.9.3, XMLmind Assembly Processor includes XInclude 1.1 and DocBook Transclusion
processors, which allows to create modular DocBook v5.1 documents without facing limitations.

XMLmind Assembly Processor is free, open source, software, which like the DocBook XSL
stylesheets, is licensed under the terms of the MIT License.

1

http://tdg.docbook.org/tdg/5.1/ch06.html
http://docbook.sourceforge.net/
https://www.w3.org/TR/xinclude-11/
http://docbook.org/docs/transclusion/
http://docbook.sourceforge.net/
http://docbook.sourceforge.net/

Chapter 2. Installing XMLmind
Assembly Processor
2.1. System requirements

Make sure that you have a Java™ 8+ runtime installed on your machine. To check this, please open
a command window and type "java -version" followed by Enter. You should get something looking
like this:

C:\> java -version
openjdk version "20.0.2" 2023-07-18
OpenJDK Runtime Environment (build 20.0.2+9-78)
OpenJDK 64-Bit Server VM (build 20.0.2+9-78, mixed mode)

2.2. Installation
Simply unzip assembly-X_Y_Z.zip in any directory.

After that, you can run command-line utility assembly by simply executing assembly_instal-
l_dir/bin/assembly.bat (assembly_install_dir/bin/assembly on the Mac and
on Linux).

C:\> mkdir XMLmind
C:\> cd XMLmind
C:\XMLmind> unzip assembly-1_3_3.zip
C:\XMLmind> dir assembly-1_3_3
... <DIR> bin
... <DIR> doc
... <DIR> docsrc
... <DIR> legal
...
C:\XMLmind> assembly-1_3_3\bin\assembly.bat
assembly: ERROR: too few command-line arguments
Usage: assembly [option]* in_assembly_file out_docbook_file|-
...

See also

• Section 2.1, “System requirements”

2.3. Contents of the installation directory
bin/, bin/assembly, bin/assembly.bat

Contains the assembly command-line utility. Use shell script assembly on Linux and on the
Mac. Use assembly.bat on Windows.

doc/, doc/index.html

Contains the documentation of XMLmind Assembly Processor.

docsrc/, docsrc/manual.xml

Contains the DocBook v5.1 source of the documentation of XMLmind Assembly Processor. File
docsrc/manual.xml contains an assembly. You may want to use this sample DocBook v5.1
assembly to experiment with the assembly command-line utility.

2

Installing XMLmind
Assembly Processor

legal/, legal.txt

Contains legal information about XMLmind Assembly Processor and about third-party compo-
nents used in XMLmind Assembly Processor.

lib/*.jar

All the Java™ class libraries needed to run XMLmind Assembly Processor:

• assembly.jar contain the code of XMLmind Assembly Processor.

• xmlresolver.jar contains XMLResolver, an enhanced XML resolver with XML Catalog
support

This component is needed only if your assembly loads XML documents having a DTD (e.g.
transform DITA topics to DocBook topics).

src/, src/build.xml

Contains the Java™ source code of XMLmind Assembly Processor. src/build.xml is an ant
build file which allows to rebuild lib/assembly.jar.

3

https://xmlresolver.org/
http://ant.apache.org/

Chapter 3. Getting started
What if you just want to quickly experiment with DocBook
assemblies and topics?

The simplest is to download and install XMLmind DocBook Editor (or XMLmind XML
Editor) Personal Edition v7.3+ from http://www.xmlmind.com/xmleditor/download.shtml.

You can then open this document —"XMLmind Assembly Processor Manual", an assembly
found in assembly_install_dir/docsrc/manual.xml— in XMLmind DocBook
Editor (or XMLmind XML Editor) and use menu Assembly → Convert Document to convert
it to any format you want.

Figure 3.1. This assembly manual.xml opened in XMLmind XML
Editor

In order to explain how XMLmind Assembly Processor is used, we'll convert this document —"XML-
mind Assembly Processor Manual", an assembly found in assembly_install_dir/doc-
src/manual.xml— first to multi-page HTML and then to PDF.

You'll find in assembly_install_dir/docsrc/convert_manual.bat (Windows) and in
assembly_install_dir/docsrc/convert_manual.sh (Linux, Mac) a copy of the com-
mands used in this chapter.

Assembly manual.xml contains a structure specifying a book. The content of the chapters
and sections of this book is obtained from topics such as intro.xml, requirements.xml, in-
stall.xml, etc.

<structure renderas="book" xml:id="manual">
 <info>
 <title>XMLmind Assembly Processor Manual</title>
 <author>
 <personname>...</personname>
 ...

4

http://www.xmlmind.com/xmleditor/download.shtml
http://www.xmlmind.com/xmleditor/_distrib/doc/assembly/docbook_convert_menu.html
../../docsrc/manual/manual.xml
../../docsrc/manual/intro.xml

Getting started

 </info>
 <module renderas="chapter" resourceref="intro"/>
 <module renderas="chapter" xml:id="installation">
 <info>
 <title>Installing XMLmind Assembly Processor</title>
 </info>
 <module renderas="section" resourceref="requirements"/>
 <module renderas="section" resourceref="install"/>
 ...
</structure>

Example 3.1. Converting manual.xml to multi-page HTML

First, generate a “flat”, monolithic, book out of assembly manual.xml. This equivalent “flat” doc-
ument is called the realized document.

C:\XMLmind\assembly-1_3_3\docsrc> ..\..\bin\assembly 1¬
 -v 2 -format web 3¬
 manual.xml out\manual_realized_web.xml 4

1 The assembly processor command-line utility is called assembly and is found in assem-
bly_install_dir/bin/.

2 Option -v turns on the verbosity of assembly.
3 Option -format web instructs assembly to target the "web" output format. Because the struc-

ture found in assembly manual.xml ends with:

 ...
 <module renderas="index">
 <filterout outputformat="web"/>
 <info><title>Index</title></info>
 </module>
</structure>

this is used to exclude the index from the generated HTML pages.
4 The realized book is created in out/manual_realized_web.xml. You may want to open

this file in a text or XML editor to see by yourself that it looks very much like a hand-written
DocBook book.

Finally, convert out/manual_realized_web.xml to multi-page HTML using the DocBook
XSL stylesheets.

C:\XMLmind\assembly-1_3_3\docsrc> java -cp C:\...\saxon.jar¬
 com.icl.saxon.StyleSheet¬
 -o ..\..\doc\manual\index.html out\manual_realized_web.xml 1¬
 C:\...\docbook-xsl-ns-1.79.1\html\chunk.xsl 2¬
 base.dir=../../doc/manual/ 3¬
 chunk.section.depth=0¬
 section.autolabel=1¬
 section.label.includes.component.label=1¬
 use.id.as.filename=1

1 out/manual_realized_web.xml is the file to be transformed to multi-page HTML.
2 html/chunk.xsl is the XSLT stylesheet used to generate multi-page HTML.
3 base.dir, chunk.section.depth, etc, are all parameters passed to the XSLT stylesheet.

The HTML files are created in ../../doc/manual/ as specified by base.dir.

What if an assembly contains several structure?

Assembly manual.xml contains only a single structure. However, an assembly may
contain several structure. By default, assembly processes first found structure. Option -

5

http://docbook.sourceforge.net/
http://docbook.sourceforge.net/

Getting started

struct structure_ID allows to specify the xml:id of the structure to be processed.
In the case of the above example, we could have invoked "assembly -struct manual"
because the structure found in assembly manual.xml starts with:

<structure renderas="book" xml:id="manual">
 ...

Example 3.2. Converting manual.xml to PDF

First, generate a “flat”, monolithic, book out of assembly manual.xml. The realized book is created
in out/manual_realized.xml.

C:\XMLmind\assembly-1_3_3\docsrc> ..\..\bin\assembly -v¬
 manual.xml out\manual_realized.xml

Second, transform out/manual_realized.xml to XSL-FO (a standard page description format)
using XSLT stylesheet fo/docbook.xsl.

C:\XMLmind\assembly-1_3_3\docsrc> java -cp C:\...\saxon.jar¬
 com.icl.saxon.StyleSheet¬
 -o out\manual_realized.fo out\manual_realized.xml¬
 C:\...\docbook-xsl-ns-1.79.1\fo\docbook.xsl¬
 paper.type=A4¬
 section.autolabel=1¬
 section.label.includes.component.label=1¬
 variablelist.as.blocks=1¬
 ulink.show=0¬
 shade.verbatim=1

Finally, convert the XSL-FO file to PDF using Apache FOP. The PDF file is created in ../../doc/
manual/manual.pdf.

C:\XMLmind\assembly-1_3_3\docsrc> C:\...\fop-2.7\fop¬
 -fo out\manual_realized.fo¬
 -pdf ..\..\doc\manual\manual.pdf

6

http://www.w3.org/TR/xsl/
https://xmlgraphics.apache.org/fop/

Chapter 4. Command-line options
The assembly command-line utility (found in assembly_install_dir/bin/) is auto-docu-
mented. Suffice to execute:

C:\assembly\bin> assembly

in order to display the following help.

Usage
assembly option* in_assembly_file out_docbook_file|-

Processes a structure found in assembly file in_assembly_file and creates realized DocBook
document in out_docbook_file.

If out_docbook_file is specified as "-", then in_assembly_file is simply checked for er-
rors.

Options are:

-struct structure_id

Specifies the xml:id of the structure to be processed.

By default, it's the first found structure.

-format output_format

Specifies the target output format.

By default, it's the default format of the processed structure if any, and the "implicit format"
otherwise. The "implicit format" matches output, filterin, filterout elements without
any outputformat attribute.

Multiple output formats separated by ";" may be specified. For example, "EPUB;expert"
means output format is "EPUB" or "expert".

-check

Check realized document for cross-reference errors, missing image resources, etc. This option
reports warnings, not errors. Thus this option does not prevent the realized document from being
saved to disk.

Note

If your document requires conditional processing (that is, profiling), then the check step
may report false errors. These false errors are caused by the fact that the conditional
processing step has not been applied to the realized document prior to the check step.

Example: two of the chapters referenced by assembly book.xml have xml:id="in-
stall". First chapter has also os="windows". Second chapter has also os="mac".

If you run assembly -check book.xml -, you'll get a duplicate ID warning
caused by xml:id="install".

On the other hand, if you run assembly -check -profile os win-
dows book.xml -, you'll not have this duplicate ID error. Why that? Because by ap-
plying profile os="windows", second chapter (having os="mac") is excluded from
the realized document prior to checking it.

7

http://www.sagehill.net/docbookxsl/Profiling.html

Command-line options

-profile attribute_name attribute_value

Specifies a profiling attribute. One or more -profile options allows to specify the profile
applied to the realized document prior to checking it. Specifying one or more -profile options
is not useful unless you also use the -check option.

-v, -vv, -vvv

Turn verbosity on. More Vs means more verbose.

-version

Print version number and exit.

Using XML catalogs to resolve entities and URIs

An assembly may reference virtual topics. Let's call virtual topics, topics which are not ex-
pressed in DocBook v5.1 and which need to be converted on the fly to DocBook v5.1 before be-
ing added to the realized document. This facility is implemented by the means of the trans-
form element and the grammar or transform attributes of the output element.

These virtual topics often start with a DOCTYPE. DITA example:

<!DOCTYPE topic PUBLIC "-//OASIS//DTD DITA Topic//EN"
"http://docs.oasis-open.org/dita/v1.2/os/topic.dtd">
<topic id="topic">
 <title>A DITA Topic</title>
 ...

Unless you specify an XML catalog pointing to a local copy of topic.dtd, assembly will
download this DTD from http://docs.oasis-open.org/dita/v1.2/os/top-
ic.dtd, which may take a while or even fail.

XML catalogs are specified by the means of environment variable XML_CATALOG_FILES1.
This variable contains a semicolon-delimited list of catalog files or URIs. Windows example:

C:\>set XML_CATALOG_FILES=..\..\ditac\schema\catalog.xml

1Or equivalent Java™ system property xml.catalog.files.

8

https://xerces.apache.org/xml-commons/components/resolver/resolver-article.html

Chapter 5. Limitations and
implementation specificities
5.1. Limitations

• Attribute type of element structure is ignored.

• Element relationships is supported. However attribute type of elements relationships
and relationship is still ignored.

Related information

• Section 5.2, “Implementation specificities”

5.2. Implementation specificities
Elements filterin and filterout versus profiling using the DocBook XSL stylesheets

• The use of the outputformat attribute and/out filterin and filterout elements in an
assembly and the use of conditional processing (profiling) by the means of the DocBook XSL
stylesheets is orthogonal.

It's certainly possible to have an assembly making use of the outputformat attribute and con-
taining filterin and filterout elements and also to pass the equivalent of XSLT stylesheet
parameters profile.attr_name=attr_value (that is, a profile) to XMLmind Assembly
Processor. However, in this case, XMLmind Assembly Processor will not apply this profile to the
assembly itself prior to processing the assembly.

The -profile command-line option allows to apply a profile to the realized document (and not
to the assembly itself) before checking the realized document for cross-reference errors. This option
is not useful unless the -check option is also used.

Generating links using element relationships

• The instance child elements of a relationships elements are copied to all the relation-
ship child elements of a relationships elements. Example:

<relationships type="seealso sequence">
 <instance linkend="tut1"/>

 <relationship>
 <association></association>
 <instance linkend="tut2"/>
 </relationship>

 <relationship type="path">
 <association>Quick start</association>
 <instance linkend="tut3"/>
 </relationship>
</relationships>

is equivalent to:

<relationships>
 <relationship type="seealso">
 <association></association>

9

https://sourceforge.net/projects/docbook/
https://sourceforge.net/projects/docbook/

Limitations and imple-
mentation specificities

 <instance linkend="tut2"/>
 <instance linkend="tut1"/>
 </relationship>

 <relationship type="path">
 <association>Quick start</association>
 <instance linkend="tut3"/>
 <instance linkend="tut1"/>
 </relationship>
</relationships>

• For now, attribute type of elements relationships and relationship does not contribute
to the realized document. However notice in above example how first token (seealso in above
example) found in relationships/@type is “inherited” by the relationship child ele-
ments not having this attribute (first relationship child in above example). Also note that to-
kens other than the first one (sequence in above example) are not “inherited”.

• Element relationships may have just instance child elements and no relationship
child elements. Example:

<relationships type="seealso">
 <instance linkend="tut1"/>
 <instance linkend="tut2"/>
</relationships>

is equivalent to:

<relationships>
 <relationship type="seealso">
 <association></association>
 <instance linkend="tut1"/>
 <instance linkend="tut2"/>
 </relationship>
</relationships>

• The linking attribute of element instance is supported with the following values:
sourceonly, targetonly, normal, none, with the same semantics as the corresponding
linking attribute of DITA.

• The links are generated at the end of the realized modules in the form of an itemizedlist having
attribute remap="relationships" and starting with a title child element. The text of this
title comes from relationship/association.

• An empty association may be used to specify the default title for a group of links. This default
title is "Related information" (translated to the language —xml:lang— of the realized
module).

• No links are generated at the end of realized modules having attribute contentonly="true".

• The linkend attribute of element instance may contain the xml:id of a resource or the
xml:id of a module. Example:

<relationships>
 <instance linkend="tut1"/>
 <instance linkend="tut2-module"/>
</relationships>

is equivalent to:

<relationships>

10

http://docs.oasis-open.org/dita/dita/v1.3/os/part2-tech-content/langRef/attributes/commonMapAttributes.html#topicref-atts__linking
http://docs.oasis-open.org/dita/dita/v1.3/os/part2-tech-content/langRef/attributes/commonMapAttributes.html#topicref-atts__linking

Limitations and imple-
mentation specificities

 <instance linkend="tut1-module"/>
 <instance linkend="tut2-module"/>
</relationships>

for an assembly containing:

<resource xml:id="tut1" href="tut1.xml"/>
<resource xml:id="tut2" href="tut2.xml"/>
<resource xml:id="tut3" href="tut3.xml"/>
...

<module xml:id="tut1-module" resourceref="tut1">
<module xml:id="tut2-module">
 <info>
 <title>Going further with FooBar</title>
 </info>
 <module resourceref="tut2" contentonly="true"/>
 <module resourceref="tut3" contentonly="true"/>
</module>

Adding/replacing common attributes to the realized document

• All common attributes (annotations, dir, remap, revisionflag, role, version, xm-
l:base, xml:id, xml:lang, xreflabel) found on a module or structure are copied
to the corresponding realized element, possibly replacing the same common attributes already set
on the resource. Example:

<module renderas="section" xml:id="sect01" resourceref="t1">

where resource t1 contains:

<topic version="5.1" xml:id="t1 ...

gives realized section:

<section version="5.1" xml:base="... t1.xml" xml:id="sect01"> ...

Adding/replacing metadata to the realized document

• If a module or structure has both info and merge child elements then both child elements
contribute to the metadata of the corresponding realized element.

• Elements info and merge may used to replace, but also to add, child elements to the info of
the corresponding realized element.

• Element merge may have both a resourceref attribute and child elements.

Controlling chunking

• Module or output attribute chunk=false may be used to add a <?dbhtml stop-chunking>
processing-instruction to the corresponding realized element. The other chunk attribute values
true and auto are not supported.

• Output attribute file=dir/basename may be used to add a <?dbhtml dir="dir" file-
name="basename"> processing-instruction to the corresponding realized element.

Miscellaneous

• The href attribute of a resource element may have a fragment. However a fragment is supported
only if the resource is a native DocBook v5+ document which does not need to be transformed.

11

Limitations and imple-
mentation specificities

• XMLmind Assembly Processor uses a built-in XInclude 1.1 processor rather than the XInclude
1.0 implementation provided by the XML parser (that is, Xerces). Note that for now, this built-in
XInclude 1.1 processor only supports the XPointer element() scheme.

Related information

• Section 5.1, “Limitations”

5.2.1. About filtering
• Element filterin is best explained by an example:

<module resourceref="MyTopic"/>
<filterin os="mac" userlevel="beginner;intermediate"/>

The above example means: exclude from the contents of realized topic MyTopic all the elements
having a os attribute not containing mac and also exclude all the elements having a userlevel
attribute not containing beginner or intermediate.

For those who know the DocBook XSL stylesheets, this is equivalent to passing parameters
profile.os=mac and profile.userlevel=beginner;intermediate to the profil-
ing stylesheets.

For example, if resource MyTopic points to a topic containing:

<para xml:id="p1" os="windows">Paragraph #1.</para>
<para xml:id="p2" os="mac;linux">Paragraph #2.</para>
<para xml:id="p3" userlevel="advanced;expert">Paragraph #3.</para>
<para xml:id="p4" userlevel="intermediate;advanced">Paragraph #4.</para>

then paragraph p1 and p3 are excluded from the realized document while paragraphs p2 and p4
are not.

• Element filterout is best explained by an example:

<module resourceref="MyTopic"/>
<filterout os="mac" userlevel="beginner;intermediate"/>

The above example means: exclude from the contents of realized topic MyTopic all the elements
having a os attribute containing mac and no other value and also exclude all the elements having
a userlevel attribute containing beginner and/or intermediate and no other value.

For example, if resource MyTopic points to a topic containing:

<para xml:id="p1" os="mac">Paragraph #1.</para>
<para xml:id="p2" os="mac;linux">Paragraph #2.</para>
<para xml:id="p3" userlevel="beginner">Paragraph #3.</para>
<para xml:id="p4" userlevel="intermediate;advanced">Paragraph #4.</para>

then paragraph p1 and p3 are excluded from the realized document while paragraphs p2 and p4
are not.

• It's possible to have both filterin and filterout elements for the same effectivity attribute.
Example:

<module resourceref="MyTopic"/>
<filterin os="windows;mac"/>
<filterout os="linux"/>

For example, if resource MyTopic points to a topic containing:

12

https://www.w3.org/TR/xinclude-11/
http://xerces.apache.org/
https://www.w3.org/TR/xptr-element/
http://docbook.sourceforge.net/release/xsl/current/doc/

Limitations and imple-
mentation specificities

<para xml:id="p1" os="linux">Paragraph #1.</para>
<para xml:id="p2" os="mac;linux">Paragraph #2.</para>
<para xml:id="p3" os="android">Paragraph #3.</para>
<para xml:id="p4" os="android;windows">Paragraph #4.</para>
<para xml:id="p5" os="android;linux">Paragraph #5.</para>

then paragraph p1, p3 and p5 are excluded from the realized document while paragraphs p2 and
p4 are not.

• Just like output elements, filterin and filterout elements are considered in order and
relevant filters are combined. A filterin or filterout element is relevant if it does not have
an outputformat attribute or if its outputformat attribute matches the output format passed
as a parameter to the assembly processor.

• The sequence of filterin and filterout elements “inherited” from ancestor structure
and modules and/or directly added to a module is combined to form a single filterin element
and a single filterout element. The resulting single filterin element and single filter-
out element are applied to the module. Example:

<filterin os="windows"/>
<filterout userlevel="beginner;intermediate"/>
<filterin os="mac;linux"/>
<filterout os="linux"/>
<filterin userlevel="intermediate;advanced"/>

The above sequence is equivalent to:

<filterin os="windows;mac" userlevel="intermediate;advanced"/>
<filterout os="linux" userlevel="beginner"/>

13

Chapter 6. Embedding XMLmind
Assembly Processor in a Java™
application

1. Add assembly_install_dir/lib/assembly.jar to your CLASSPATH.

Optionally, if your assembly loads XML documents having a DTD (e.g. transform DITA topics
to DocBook topics), also addassembly_install_dir/lib/xmlresolver.jar to your
CLASSPATH. File xmlresolver.jar contains https://xmlresolver.org/ an enhanced XML
resolver with XML Catalog support.

2. Create an instance of Processor:

Processor processor = new Processor();

Important

Do not share this instance between different threads, as this class is not thread-safe.

If you don't want the error, warning and progress messages to be displayed on System.err
and to System.out, implement interface Console and pass an instance of your implementation
to the constructor.

3. Parameterize the processor by invoking either configure(String[]) or individual configuration
methods such as setProcessedStructId(String), setOutputFormat(String), etc. Example:

int l = -1;
try {
 l = processor.configure(args);
} catch (IllegalArgumentException e) {
 // FATAL ERROR. DO SOMETHING HERE.
}

// PARSE THE REMAINING ARGUMENTS, IF ANY,
// STARTING AT INDEX l.

4. Finally invoke method process(URL, File). Pass this method the input assembly URL and the
output realized document save file.

try {
 if (!processor.process(inURL, outFile)) {
 // FATAL ERROR. DO SOMETHING HERE.
 // ERRORS HAVE BEEN DISPLAYED ON THE Console.
 }
} catch (IOException e)
 // FATAL ERROR. DO SOMETHING HERE.
}

14

https://xmlresolver.org/
../api/com/xmlmind/assembly/Processor.html
../api/com/xmlmind/util/Console.html
../api/com/xmlmind/assembly/Processor.html#configure-java.lang.String:A-
../api/com/xmlmind/assembly/Processor.html#setProcessedStructId-java.lang.String-
../api/com/xmlmind/assembly/Processor.html#setOutputFormat-java.lang.String-
../api/com/xmlmind/assembly/Processor.html#process-java.net.URL-java.io.File-
../api/com/xmlmind/util/Console.html

Appendix A. History of changes
v1.3.3 (September 15, 2023)

• Upgraded XMLResolver to version 5.2.1.

v1.3.2 (July 13, 2023)
• Upgraded XMLResolver to version 5.2.0.

• Modified the language fixup of the XInclude 1.1 implementation in order to support the lang
attribute in lieu of or in addition to the xml:lang attribute. This allows to use this XInclude
1.1 implementation to process DocBook 4 or XHTML documents. (Note that this XInclude 1.1
implementation already supported the id attribute in lieu of the xml:id attribute.)

v1.3.1 (April 20, 2023)
XMLmind Assembly Processor, which passed all non-regression tests, is now officially supported on
Java™ 20 platforms.

v1.3 (March 8, 2023)
• Bug fix: made the language fixup of the XInclude 1.1 implementation more conforming to the

specification.

• Upgraded XMLResolver to version 5.1.1.

v1.2 (December 5, 2022)
• Replaced the Apache Commons Resolver (lib/resolver.jar) by the XMLResolver (lib/
xmlresolver.jar).

• XMLmind Assembly Processor, which passed all non-regression tests, is now officially supported
on Java™ 19 platforms.

v1.1.1 (April 12, 2022)
XMLmind Assembly Processor, which passed all non-regression tests, is now officially supported on
Java™ 18 platforms.

v1.1 (November 15, 2021)
• Some internal changes were needed to make XMLmind Assembly Processor compatible with XML-

mind XML Editor v10+.

• XMLmind Assembly Processor, which passed all non-regression tests, is now officially supported
• on Java™ 17 platforms;
• on macOS Monterey (version 12.0), including on Macs having an Apple M1 (ARM-based)

processor;
• on Windows 11.

v1.0.12 (May 14, 2021)
XMLmind Assembly Processor, which passed all non-regression tests, is now officially supported on
Java™ 16 platforms.

15

https://xmlresolver.org/
https://xmlresolver.org/
https://www.w3.org/TR/xinclude-11/#language
https://xmlresolver.org/
https://xerces.apache.org/xml-commons/
https://xmlresolver.org/

History of changes

v1.0.11 (November 30, 2020)
XMLmind Assembly Processor, which passed all non-regression tests, is now officially supported on
Java™ 15 platforms.

v1.0.10 (July 23, 2020)
• Bug fix: XMLmind Assembly Processor reported "missing child element <info>"

warning for assembly elements like <module renderas="index"/>. (<module ren-
deras="index"/> is realized as a DocBook index element and an index element is not re-
quired to start with an info element or to have a title.)

• XMLmind Assembly Processor, which passed all non-regression tests, is now officially supported
on Java™ 14 platforms.

v1.0.9 (February 26, 2020)
The itemizedlist which is automatically generated to represent relationships between topics has
now attribute spacing="compact".

v1.0.8 (January 16, 2020)
XMLmind Assembly Processor, which passed all non-regression tests, is now officially supported on
Java™ 13 platforms.

v1.0.7_01 (May 17, 2019)
XMLmind Assembly Processor now requires a Java 8+ runtime in order to compile and run.

v1.0.7 (March 25, 2019)
XMLmind Assembly Processor, which passed all non-regression tests, is now officially supported on
Java™ 12 platforms.

v1.0.6 (November 27, 2018)
XMLmind Assembly Processor, which passed all non-regression tests, is now officially supported on
Java™ 11 platforms.

v1.0.5 (August 21, 2018)
Minor internal changes needed to make XMLmind Assembly Processor compatible with XMLmind
XML Editor v8.2.

v1.0.4 (May 22, 2018)
XMLmind Assembly Processor, which passed all non-regression tests, is now officially supported on
Java™ 10 platforms.

v1.0.3 (February 24, 2018)
Minor internal changes needed to make XMLmind Assembly Processor compatible with XMLmind
XML Editor v8.

16

History of changes

v1.0.2_01 (December 11, 2017)
XMLmind Assembly Processor, which passed all non-regression tests, is now officially supported on
Java™ 9 platforms.

v1.0.2 (June 09, 2017)
Changed "Licensor" from "Pixware SARL" to "XMLmind Software" in all licenses.

v1.0.1 (March 06, 2017)
Bug fixes:

• Info elements copied from the assembly to the realized document were not given proper xml:base
and xml:lang attributes.

In practice, due to this bug, it was not possible to successfully convert to other formats an assembly
where some info elements contained imagedata.

v1.0.0 (December 22, 2016)
XMLmind Assembly Processor v1.0 is the first version to fully support processing DocBook 5.1 as-
semblies. This includes XInclude 1.1, DocBook Transclusion and assembly features such as rela-
tionships and transforms.

Enhancements:

• Element relationships is now processed. The linking attribute of element instance is
supported with the following values: sourceonly, targetonly, normal, none, with the
same semantics as the corresponding linking attribute of DITA. Attribute type of elements
relationships and relationship is still ignored.

Bug fixes:

• The revhistory child of the structure element was ignored.

Incompatibilities:

• Attribute omittitles now discards title, titleabbrev, subtitle from the included re-
source. Previously, setting this attribute to true discarded all the metadata just like contenton-
ly="true".

• In structure and in module, info and merge are used in the same way. These elements may
be used to add or replace metadata in the realized structure or module.

• The implementation of filterin and filterout is completely different from what it was in
previous versions. More information in Section 5.2.1, “About filtering”.

v0.9.4 (February 16, 2016)
• XMLmind Assembly Processor can now check the realized document for cross-reference errors,

missing image resources, etc. This is done by passing new -check option to the assembly com-
mand-line.

Note that if your document requires conditional processing (that is, profiling), then this check step
may report false errors. These false errors are caused by the fact that the conditional processing step
has not been applied to the realized document prior to the check step.

17

http://tdg.docbook.org/tdg/5.1/ch06.html
http://tdg.docbook.org/tdg/5.1/ch06.html
https://www.w3.org/TR/xinclude-11/
http://docbook.org/docs/transclusion/
http://tdg.docbook.org/tdg/5.1/relationships.html
http://tdg.docbook.org/tdg/5.1/relationships.html
http://tdg.docbook.org/tdg/5.1/transforms.html
http://docs.oasis-open.org/dita/dita/v1.3/os/part2-tech-content/langRef/attributes/commonMapAttributes.html#topicref-atts__linking
http://www.sagehill.net/docbookxsl/Profiling.html

History of changes

New option -profile allows to specify a profiling attribute. Therefore passing one or more -
profile options to the assembly command-line allows to apply a profile to the realized document
prior to checking it.

Example: two of the chapters referenced by assembly book.xml have xml:id="install".
First chapter has also os="windows". Second chapter has also os="mac".

If you run assembly -check book.xml -, you'll get a duplicate ID warning caused by
xml:id="install".

On the other hand, if you run assembly -check -profile os windows book.xml -,
you'll not have this duplicate ID error. Why that? Because by applying profile os="windows",
second chapter (having os="mac") is excluded from the realized document prior to checking it.

• DocBook 5 Transclusion Processor: removed targetptr from the IDREF-list.

v0.9.3 (February 03, 2016)
• Now uses a built-in XInclude 1.1 processor rather than the XInclude 1.0 implementation provided

by the XML parser (that is, Xerces). Note that for now, this built-in XInclude 1.1 processor only
supports the XPointer element() scheme.

• Now uses a built-in DocBook 5 Transclusion Processor to process trans:idfixup, tran-
s:suffix and trans:linkscope attributes possibly set on xi:include elements.

v0.9.2 (January 22, 2016)
Bug fix: in some cases, a processing-instruction was moved (in the realized document) to the beginning
of the element containing it and this, no matter its actual location within this parent element.

v0.9.1 (September 8, 2015)
Minor internal changes.

v0.9.0 (June 24, 2015)
First release.

18

http://docbook.org/docs/transclusion/
https://www.w3.org/TR/xinclude-11/
http://xerces.apache.org/
https://www.w3.org/TR/xptr-element/
http://docbook.org/docs/transclusion/

Index
F
-format, command-line option, 5, 7

S
-struct, command-line option, 6, 7

V
-check, command-line option, 7
-v, command-line option, 5, 8
-profile, command-line option, 8
-version, command-line option, 8
-vv, command-line option (see -v, command-line op-
tion)
-vvv, command-line option (see -v, command-line op-
tion)

19

