XRoar 1.8.1

Dragon and Tandy 8-bit computer emulator

This manual is for XRoar (version 1.8.1), a Dragon and Tandy 8-bit computer emulator.
Copyright (©) 2025 Ciaran Anscomb.

Table of Contents

1

Introduction 1
1.1 Recent Changesoou it e 1
Getting started 3
2.1 PrereqUiSites . . . oo ottt e 3
2.2 Getting started under Linux/Unix. 3
2.3 Getting started under Windowsot 4
2.4 Getting started under Mac OS X4 ...t 4
2.5 Building from SOUTCe.ot e 5
2.6 The command line. e 6
2.7 Troubleshooting 6
2.7.1 No BASIC ROM e 6
2.7.2 Program lacks COlOUT it 6
2.7.3 Can’t access HD/SD image...... ..o 7
2.7.4 DebUZ MESSAZES vttt ettt ettt e 7
User interface.................. 8
3.1 Selecting a machine i 8
3.2 Selecting a cartrid@eo e 9
3.3 RUNNING PrOGTamIS . . . oottt ittt ettt e e 9
3.4 Cassette tape control o 10
3.5 Drive controlo e 11
3.6 VIdeo OPtIONS . . o oo e 12
3.6.1 TV INDUL . ..o 12
3.6.2 Composite TeNderingttt e 12
3.6.3 TV Controls. . ..o 13
3.7 Keyboard layoutoou i 14
3.8 Printer control. 15
Emulated hardware................. 16
4.1 Machine architectures. e 16
411 Dragon 32 ... 16
4.1.2 Dragomn 64o 16
4.1.3 Dragon Professional............ i 16
4.1.4 Tandy Colour Computer 1/2. e 16
4.1.5 Tandy MOC-10. . ..o e e e 17
4.1.6 Matra & Hachette Alice...... ... i e 17
4.1.7 Tandy Deluxe Colour Computer.ouiuuiiaiii i, 17
4.1.8 Tandy Colour Computer 3ottt 17
4.2 Cartrid@e Gy DS . o ottt 17
4.2.1 DragonDOS ... 17
4.2.2 Delba . oo 18
4.2.3 RS-DOS . 18
4.2.4 Glenside IDE controller 18
4.2.5 NX32 and MOOH cartridgesoviuntiini e e 18
4.2.6 Games Master Cartridgeo.oiiii 18

4.2.7 Orchestra 90-CC sound cartridge.ot 18

4.2.8 Multi-Pak Interfaceo o 19

4.2.9 MC-10 MCX128 mMemory eXPAnSIONvventtenttenteente e, 19

4.3 Keyboard.o e 19
4.4 JOyStiCKS oo 20
4.5 PrInberS « oo 20

5 Storagemedia................... . 22
T R T 1 22
5.1.1 Tape image file formats ... 22

5.1.2 Input and Output tapes.t e 22

5.1.3 Remote motor control.t 22

5.2 Floppy disKs. ..o 22
5.3 Hard disKs. 23

6 Configuring XRoar.............. i 24
6.1 SEArtup OPTIONS .« oottt e e 25
6.2 MacChinesooii i e 25
6.3 Cartrid@es . . . vttt 26
6.4 BeCKer POTt. ... 27
6.5 CaSSt S - o ot 27
6.6 Floppy disKs.o 28
6.7 Hard disks.o 28
6.8 Keyboard. 28
6.9 Joysticks . ..ot 29
6.9.1 Gamepad MaAPPINE . ..ottt ettt et e e 30

6.10 Printers ...t e 30

0. 11 FleS. oottt 31
6.12 Firmware ROM imagest e 31
6.13 User Interface. e 31
6.14 AUAIO ..ot 32
6.15 DebUGZINg. .« oot 33
6.16 Other OPLIONSttt e e e 34

T Files. 35
7.1 ONapShOtS . . 35
7.2 SCTeenShOLS . . . oot 35
7.3 BInary fIles ...t e 35
7.4 Firmware ROM IMagesttt e 35
Appendix A Acknowledgements................................ 37
Appendix B Keyboard shortcuts............................... 38

Appendix C Fileformats....................................... 39

1 Introduction

XRoar emulates the Dragon 32/64; Tandy Colour Computers 1, 2 and 3; the Tandy MC-10;
and some other similar machines or clones. It runs on a wide variety of platforms. Emulated
hardware includes:

e Dragon 32, 64, and 200-E; Tandy CoCo 1, 2, & 3; Tandy MC-10; Matra & Hachette Alice
4K.

e Dragon Professional and Tandy Deluxe Colour Computer prototypes, both including the
AY-3-891x sound chip.

e DragonDOS, Delta and RS-DOS floppy disk controller cartridges.

e Orchestra 90-CC stereo sound cartridge.

o Games Master Cartridge, including the SN76489 sound chip.

e Glenside IDE cartridge, with IDE hard disk image support.

e NX32 and MOOH RAM expansions, with SPI and SD card image support.

Other features include:
e Raw and translated keyboard modes.
e Read and write cassette tape images.
e Read and write floppy disk images.
e Becker port for communication with remote servers.
e Save and load machine snapshots.
e GDB target for remote debugging.
XRoar is easily built from source under Linux, and binary packages are provided for Windows
and Mac OS X+.

XRoar can also be compiled to WebAssembly, and redistributing it in this form may provide
a convenient way for users to run your Dragon software. See XRoar Online (https://www.
6809.o0rg.uk/xroar/online/) for an example.

1.1 Recent changes

Changes in version 1.8 include:
e HD mounting from drive control dialog. See Section 3.5 [Drive control|, page 11.
e New MCXI128 cartridge support for MC-10.
e CoCo 3 GIME behaviour fixes.
e CoCo 3 Monitor detect line asserted when RGB TV input selected.
e Becker port latency fixes.

e More flexible command-line trap options. See Section 6.15 [Debugging options|, page 33.

Previous changes in 1.x include:

Important: Floppy disk write-back is now enabled by default. Writes to images held in
memory will overwrite the on-disk file when ejected (or quitting XRoar). You can get the old
file-preserving default behaviour back with -no-disk-write-back.

Gamepad mapping files can provide more consistent button layouts. See Section 6.9.1
[Gamepad mapping], page 30.

RAM organisation selection with -ram-org, and initialisation pattern selection with -ram-
init.

The -ccr simulated renderer is replaced with more CPU-intensive code that also handles
PAL. The old NTSC-only renderer is still available using -ccr partial.

https://www.6809.org.uk/xroar/online/
https://www.6809.org.uk/xroar/online/

Chapter 1: Introduction 2

Larger or smaller picture area can be selected, and XRoar can stretch 60Hz output to repro-
duce the apparent aspect ratio seen on CRT's in those countries.

Many video options can be changed on the fly in a new TV Controls dialog.
Screenshots in PNG format can be saved if XRoar is built with libpng.

More machines are emulated than in 0.x. A new snapshot format that preserves more state
was required to support these. Old snapshots should still load for now, though this will likely
be removed in time.

Tape emulation now supports manual pause control, required for using the MC-10 & Alice,
as they have no remote tape motor control.

HD/SD images are now specified with ~load-hd0 and -load-hd1. IDE images with a header
should be distinguished from headerless files by giving them a .ide extension.

MPI slot configuration is now per-cart rather than global.

2 Getting started

2.1 Prerequisites

To run XRoar, you will need to make sure you have the firmware ROM images available for
the system you wish to emulate. These images can be transferred from your original machine
(with some effort, outside the scope of this document) or more likely found online on one of the
archive websites. Where XRoar looks to find these images depends on your host OS; the rest of
this chapter will go into detail.

Firmware ROM image files should have a .rom extension, and be headerless (so their file size
will be an exact power of two bytes). For most use cases, youll need the BASIC ROM image(s)
and a disk controller ROM image. Here are the expected filenames and sizes (in bytes) for some
of the most commonly-required images:

Firmware ROM Filename File size
Dragon 32 BASIC d32.rom 16384
Dragon 64 32K BASIC d64_1.rom 16384
Dragon 64 64K BASIC d64_2.rom 16384
DragonDOS ddos10.rom 8192
Tandy Colour BASIC bas13.rom 8192
Tandy Extended BASIC extbasll.rom 8192
Tandy Super ECB (CoCo 3) coco3.rom 32768
Tandy Super ECB (PAL CoCo 3) coco3p.rom 32768
Tandy RS-DOS diskll.rom 8192
Tandy Microcolour BASIC (MC-10) mc10.rom 8192

Other machines (e.g. the less common Dragon 200-E) will need a different set of ROM
images, and supported peripherals may also need their own firmware.

2.2 Getting started under Linux/Unix

If you configure a suitable Apt repository under Debian or Ubuntu, you should simply be able
to apt install xroar (as root, or using sudo). See the XRoar homepage (https://www.6809.
org.uk/xroar/) for links to an Apt repository for Debian, or to Launchpad for Ubuntu.

Otherwise, if you are comfortable building from source, see Section 2.5 [Building from source],
page 5.

In your home directory, create directories ~/.xroar/ and ~/.xroar/roms/:

$ mkdir -p ~/.xroar/roms
Copy your firmware ROM images (Section 2.1 [Prerequisites|, page 3) into ~/.xroar/roms/.

For example, covering the most common machines, you might end up with a directory looking
like this:

$ 1s -1 ~/.xroar/roms/

[...]

-rw-r--r—— 1 user group 8192 Jan 1 1982 basl3.rom
-rw-r——r—— 1 user group 32768 Jul 30 1986 coco3.rom
-rw-r--r—— 1 user group 32768 Jul 30 1986 coco3p.rom
-rw-r--r—— 1 user group 16384 Aug 1 1982 d32.rom

-rw-r--r—— 1 user group 16384 Aug 1 1983 d64_1.rom
-rw-r--r—— 1 user group 16384 Aug 1 1983 d64_2.rom
-rw-r-——-r—— 1 user group 8192 Jun 1 1983 ddos10.rom
-rw-r—-r—— 1 user group 8192 Jan 1 1982 diskll.rom

https://www.6809.org.uk/xroar/
https://www.6809.org.uk/xroar/

Chapter 2: Getting started 4

-rw-r--r—— 1 user group 8192 Jan 1 1982 extbasll.rom
-rw-r--r—— 1 user group 8192 Oct 1 1983 mcl0.rom

Start the emulator by typing xroar at the command line, or by selecting it from Applications
— Games if your environment provides an applications menu.

Running xroar --help will display the supported command line options. Each of
the command line options can also appear in a configuration file, which should be called
~/.xroar/xroar.conf. You can configure many defaults and even extra machines and
cartridges in this file. See Chapter 6 [Configuring XRoar|, page 24, for more details.

2.3 Getting started under Windows

The simplest way to get going under Windows is to unpack the .zip file and copy all your
ROM images into the created subdirectory, alongside the executable. You can also create a
configuration file here called xroar.conf. Double click xroar.exe to run, and XRoar will look
in the same directory that you start it from, and everything should work.

However, if you want a more organised installation where you don’t have to re-copy files
around every time you upgrade, read on.

In your user profile, there should exist a LocalAppData directory. This is something Windows
calls a “Known Folder”. You should be able to browse to it by entering %LOCALAPPDATAY, as a
path in an explorer window.*

Under YLOCALAPPDATAY, create a subdirectory called XRoar. Then within that,
create a further subdirectory named roms. You can then copy your ROM images into
/LOCALAPPDATA%\XRoar\roms\.

Start the emulator by double clicking xroar.exe or, if you installed the .msi, by selecting
XRoar from the start menu.

You can also run XRoar from the command line, and it supports the same options as under
Linux/Unix. By default GUI applications under Windows have no access to a console, so run
XRoar with -C as the very first option and it will first try to attach to the console of the parent
process—that is, send text output to the shell window you have open—and if that fails, it will
create its own console window. This lets you see various notifications that can be useful when
determining why something isn’t working the way you expect.

For example, run xroar.exe -C --help to display a list of the supported command line
options. Each of the command line options can also appear in a configuration file, which should
be called %LOCALAPPDATAY\XRoar\xroar.conf. You can configure many defaults and even extra
machines and cartridges in this file. See Chapter 6 [Configuring XRoar]|, page 24, for more details.

2.4 Getting started under Mac OS X+

Download and unzip the appropriate .zip distribution for your system. Drag the application
icon to /Applications/.

ROM images should be placed in a directory you create named ~/Library/XRoar/roms/
(under your HOME directory, not the system directory, /Library/).

The Mac OS X+ build provides a menu for access to certain features, and often accepts the
more familiar Command+key in place of the CTRL+key shortcuts listed in this manual. It does not
provide control dialog boxes; often, options in these dialogs will instead be found in the menu
hierarchy.

1 The reason for using the local version version of the AppData directory under Windows is that recent versions
of Windows may offload files in other places to the cloud—I'm told this can happen without it ever informing
the user—and we want to keep files local to the machine, as cloud access may require specific application
support.

Chapter 2: Getting started 5

For troubleshooting or testing options, it’s often a good idea to run from the command line,
but application packages don’t make that trivial. A symbolic link to somewhere in your PATH is
all that’s required. e.g.:

$ sudo 1n -s /Applications/XRoar.app/Contents/Mac0S/xroar \
/usr/local/bin/xroar

After this, you can start the emulator by simply typing xroar followed by any command line
options.

For example, run xroar --help to display a list of the supported command line options.
Fach of the command line options can also appear in a configuration file, which should be called
~/Library/XRoar/xroar.conf (under your HOME directory). You can configure many defaults
and even extra machines and cartridges in this file. See Chapter 6 [Configuring XRoar|, page 24,
for more details.

2.5 Building from source

It is straightforward to build XRoar from source on any Unix-like OS so long as you have the
normal build tools installed, and satisfy a few dependencies.

The binary packages for Windows are cross-compiled under Linux using MinGW; it may be
possible to build natively using something like MSYS2 or Cygwin, but this is untested.

XRoar depends on external libraries for most aspects of its user interface:

e GTK+ 3 (https://wuw.gtk.org/) is recommended, and provides video, menus, and di-
alogs. It may be possible to use GTK+ under Mac OS X+, but this is untested. GTK+ 2 is
deprecated, but still usable if you also have GtkGLExt installed.

e SDL 2 (https://1ibsdl.org/) provides a simpler interface, but extra code for Mac OS X+
adds some basic menus and file requester dialogs. For non-Linux systems, it may also be
the easiest way to get support for joysticks and audio.

e PulseAudio or ALSA can also be used for audio support. Older code still exists for OSS
and Jack, but these have not been tested for a while.

e libpng (http://www.libpng.org/pub/png/libpng.html) is recommended, and allows the
saving of screenshots in PNG format.

Under Debian, these dependencies can be satisfied with this simple invocation of Apt:

$ sudo apt install build-essential libgtk-3-dev \
libpulse-dev libpng-dev

XRoar uses the GNU Build System (Autotools), so the compilation process should be very
familiar. The following process compiles XRoar and installs it into /usr/local, like most other
software built this way:

$ gzip -dc xroar-1.8.1.tar.gz | tar xvf -
$ cd xroar-1.8.1

$./configure

$ make

$ sudo make install

If you have cloned the git repository, you will also need GNU Build System packages installed
(‘autoconf’, etc.) Running ./autogen.sh should then generate the configure script, which you
can then run as normal.

The configure script has a lot of options guiding what it tests for, specifying cross-
compilation, changing the install path, etc. List them all with the --help option.

https://www.gtk.org/
https://libsdl.org/
http://www.libpng.org/pub/png/libpng.html

Chapter 2: Getting started 6

2.6 The command line

Any option that can go in the configuration file can also be specified on the command line.
Just be sure to prefix the option’s name with a dash (‘-’). See Chapter 6 [Configuring XRoar],
page 24.

On the command line, it is assumed that your shell will handle argument quoting, so any quote
characters will be included verbatim. Escape sequences are still parsed, except when an option
expects a filename, as shells often use their own escaping mechanisms when autocompleting
filename arguments.

Windows has a bit of an odd relationship with standard 1/O, so in order to see diagnostic
output or help text, you need to tell XRoar to attach to a console. Do this by specifying -C
(capital ’c’) as the very first option.

As a special case, the last machine selected on the command line is used as the default
machine, and the last cartridge specified is attached to that machine. This means you can just
use -m name instead of -default-machine name, and -cart name instead of -machine-cart
name.

2.7 Troubleshooting
2.7.1 No BASIC ROM

The most common issue when first using XRoar. You start the emulator and only see a checker-
board pattern of orange and inverse ‘@ signs (or on the CoCo 3, some other pattern that’s not
the usual copyright messages). This probably indicates that XRoar could not locate any BASIC
ROM images. Acquire some and put them in the directory appropriate to your platform.

2.7.2 Program lacks colour

You remember a program being in colour, but all you see is black and white.

TTEN
LL DUnLeEuy [Ano
HAEEY LAFNEAER

American software is often written to exploit cross-colour artefacts, where alternating pat-
terns of black and white will “trick” the TV into displaying colour. XRoar supports this, and
should enable it by default when you choose an NTSC machine. See Section 3.6.2 [Composite
rendering], page 12.

Chapter 2: Getting started 7

2.7.3 Can’t access HD/SD image

If you’ve been using previous versions of XRoar with the IDE, MOOH, or NX32 cartridges, you
now need to specify the image filename with -load-hd0. (HD image for IDE, SD image for
NX32, MOOH).

2.7.4 Debug messages

XRoar prints diagnostic messages to standard output and standard error, and these may help
narrow down a problem. You can increase their verbosity with various command line options.
See Section 6.15 [Debugging options]|, page 33, for more information.

Windows generally does not show these messages by default, but if you run XRoar with -C
as the very first option, it will attempt to attach to the parent console (if running from a shell),
or create a new console window.

3 User interface

This chapter walks through most of the functionality available through the graphical user inter-
face. Where useful, short configuration examples or command line options will be demonstrated.
For more detailed information on configuring XRoar through the command line or configuration
file, see Chapter 6 [Configuring XRoar|, page 24.

File View Hardware Tool Help

When you run XRoar, it will start emulating the default machine in a window with a menu
bar above it.

From this menu bar, File lists general file options, including saving snapshots; View lists
display-related functions, including opening the TV Controls dialog; Hardware lists options to
modify the currently emulated hardware configuration; and Tool lists various options and control
dialogs. Help contains a simple About dialog.

If you check File — Autosave configuration, some options will be automatically written back
to the config file (in an OS-specific location) on exit. This is work in progress, however, and not
all options are configurable from the UIL. You have the most control by modifying this file. See
Chapter 6 [Configuring XRoar|, page 24.

3.1 Selecting a machine

The Hardware — Machine submenu allows you to select a different machine to emulate. XRoar
will hard reset the new machine.

File View Hardware Tool Help

O Dragon 32
» ® Dragon 64

Cartridge
Keyboard type » O Tano Dragon (NTSC)

Dir kit ienreticle » () Dragon Professional (Alnha)

You can specify a default machine in xroar.conf:
default-machine dragon32

Finally, you can select a machine from the command line, e.g. xroar -m dragon32. Specify
-m help for a list of profiles.

Chapter 3: User interface 9

3.2 Selecting a cartridge

The Hardware — Cartridge submenu lets you select a new cartridge to be attached to the
currently-running machine. XRoar will not hard reset the machine, but it is usually advisable
to do so, either by selecting Hardware — Hard Reset or by pressing CTRL+SHIFT+R.

File View Hardware Tool Help

Machine

Cartridge ¥ @ None
» O DragonDOS

Dir bt iy reticle y () RS-DOS

Keyboard type

You can specify a default cartridge for a machine in xroar.conf:

machine dragon64
machine-cart mydos

And you can specify a cartridge on the command line, e.g. xroar -m dragon64 -cart mydos.
Specifying -no-machine-cart will prevent the usual attempt to automatically find a disk con-
troller cartridge for a machine. Specify -cart help for a list of profiles.

There are no cartridges usable with the MC-10/Alice yet (the 16K expansion is technically
a cartridge, but XRoar currently emulates that specially).

3.3 Running programs

XRoar tries to make quickly running simple programs easy. If you want to plug in a game
cartridge, attach and load from a cassette image, or even run an unadorned DragonDOS or
RS-DOS binary, just select File — Run or press CTRL+SHIFT+L. To attach media without trying
to autorun a program, select File — Load or press CTRL+L. Alternatively, open one of the media
control dialogs; see Section 3.4 [Cassette tape control], page 10, or Section 3.5 [Drive control],
page 11.

File View Hardware Tool Help

Load... Ctri+L

() Cassette tapes

From the command line, you can use -load file or —run file to achieve the same results.
You can even simply specify a filename as the last option to try and run it:

xroar -m cocous daggorath.rom

XRoar will decide how to treat the file you select based on its extension:

.cas, .c10, .wav, .k7
Cassette image. XRoar will attach the image as the input cassette and try and
look for the first file on the tape. Depending on its type, it will automatically type
‘CLOADM’ (machine code) or ‘CLOAD’ followed by ‘RUN’ (BASIC). Some programs with
special load instructions are recognised automatically.

Chapter 3: User interface 10

.bas, .asc ASCII BASIC program. The Dragon (and Tandy Colour Computer) ROM has the
ability to save and load BASIC in an untokenised form. It still requires saving as a
series of short blocks though, so if you load one of these, XRoar will automatically
simulate this format to load with ‘CLOAD’.

.rom, .ccc Cartridge image. XRoar will create and insert a ROM cartridge with this file as its
ROM data. Some cartridges aren’t simple ROM images; XRoar can automatically
recognise some of these and decide whether a Games Master Cartridge should be
used, for example.

-vdk, .dsk, .jvc, .0s9, .dmk
Floppy disk image. XRoar will insert the floppy and type ‘BOOT’ (or ‘DOS’ under
RS-DOS). If the result is ‘?BT ERROR’ (DragonDOS) or a clear screen (RS-DOS) and
nothing else happening, that just means there was no boot track. You’ll have to
follow the load instructions for the software in question, which vary too much for
XRoar to have built-in rules for.

.bin A DragonDOS or RS-DOS binary file. XRoar will determine which type it is from
the header and load it into RAM, then tell the CPU to jump to its start (EXEC)
address.

In the case of floppy disk images in particular, there are many different formats, and some-
times you see files in one format with the file extension of another (e.g. just a generic .dsk, which
XRoar will assume is a simple sector dump). If you have issues, do check your file extensions.

This is not an exhaustive list of the types of file XRoar can make use of, just the ones it
knows how to automatically load programs from.

3.4 Cassette tape control

Input Output

... er (1985)(Microdeal)/Shock Trooper (1985)(Microdeal).cas
-_ 00:16

SHOCK 00:00

(3 Fastloading &4 CAS padding Rewrite

Pause Rewind Eject Insert...

Select File — Cassette tapes or press CTRL+T to open the cassette tape control dialog.

In this dialog you can insert a tape, eject the current tape, and control the cassette motor
with play and pause controls. Note that for machines without motor control (MC-10, Alice),
the tape will default to paused, and you will have to manually press play here after typing the
load command.

In addition, you can rewind the tape or specifically set its position by dragging the scroll bar
beneath the image filename. XRoar will also scan a tape file for Dragon programs, allowing you
to double click a program filename to seek to it directly.

The input and output tapes can be managed separately - click on their tab names to move
between them. While this isn’t a configuration that you’d often have in real life, it does make
some uses of the emulator more convenient.

Chapter 3: User interface 11

In the input tab, you can also see some tick boxes for setting emulator options:

Fast loading
XRoar intercepts ROM calls to speed loading.

CAS padding
XRoar automatically inserts extra leader if a CAS file doesn’t seem to have enough.
This is common with early tape conversions.

Rewrite XRoar intercepts ROM calls to rewrite any data read from the input tape to the
output tape in a sanitised format, with consistent leaders, gaps, and byte-aligned
data. Useful for creating CAS files from WAV input, or even to regenerate a cleaner
WAV file.

Under Mac OS X+, most functionality is found in the File — Cassette menu.

3.5 Drive control

Drive 1 Blockdown (2021)(Teipen Mwnci).dsk

& Write enable & Write back Insert... New... Eject
Drive 2

Write enable Write back Insert... New... Eject
Drive 3

Write enable Write back Insert... New... Eject
Drive 4

Write enable Write back Insert... New... Eject

Dr1Tr20He0
HD 0 Fuzix (CoCo 3).img

Attach... New... Detach
HD 1
Attach... New... Detach

Select File — Floppy/hard disks or press CTRL+D to open the drive control dialog.

In this dialog you can insert existing, create new, or eject floppy disk images from each of four
emulated floppy drives. Note that images are loaded into RAM; writes go to the in-RAM copy.
The image is written back to the file when ejected (or you quit the emulator). The currently
selected drive, track, and head are also displayed.

There are tick boxes per inserted disk to control emulator behaviour:
Write enable

Basically the “write protect label” (or tab) on a floppy disk. Unticking this prevents
the emulated system from writing to the disk.

Write back
Unticking this box means that whatever changes are made to the in-RAM copy will
not be written back to the floppy image file.

Note that RS-DOS for the Tandy Colour Computer numbers its drives from zero instead of
one, so when you perform operations on Drive 1, from the CoCo’s point of view, that will be
Drive 0.

You can also attach, create new or detach up to two hard disk images. How these operate
will depend on what hardware is using the image.

Chapter 3: User interface 12

Under Mac OS X+, floppy and hard disk options can be found under per-drive submenus of
the File menu.

3.6 Video options

The View menu contains various video-related options. Zoom and Full screen are fairly self-
explanatory. Inverse text simulates a common Dragon hardware modification to invert the
colours only in text mode. The rest need a bit more explanation.

3.6.1 TV input

File View Hardware Tool Help

® S-Video

Composite rendering » O Composite (blue-red)
O Composite (red-blue)
O RGB

The TV input menu lets you pick between various video signals from the emulated machine. “S-
Video” is basically a palette-based output, reflecting the way an S-Video cable avoids cross-talk
between the components of a video signal. “RGB” is only currently useful on the CoCo 3, which
emits a completely different set of colours on its RGB port. The two “Composite” options
employ a composite video renderer (see below), with two pixel-to-colour phase relationships;
VDG-based systems tended to come up in one or the other at random, so this lets you pick the
“other” one if a title expects it.

3.6.2 Composite rendering

File View Hardware Tool Help

TV input
Composite rendering
(J TV controls O Simple (2-bit LUT)
O 5-bit LUT
O Partial NTSC
@® Simulated

XRoar has a selection of composite renderers built in that trade off CPU time for accuracy in
different ways to reproduce the artefacts of composite video.

None Disable all composite video effects. Output will be simple colours, the same as
picking the “S-Video” TV input.

Simple (2-bit LUT)
Gives a very course 4-colour rendition of NTSC artefact colours between black &
white pixels only.

5-bit LUT A better set of NTSC artefact colours using a 5-bit LUT, but still only between
black & white pixels.

Partial NTSC
Performs a composite video encode/decode chain with filtering, taking lots of short-
cuts. Pretty decent NTSC output, but doesn’t handle PAL.

Chapter 3: User interface 13

Simulated Performs a more complete composite video encode/decode chain with filtering. This
is the only renderer that will accurately reproduce PAL colour effects. It is also the
most CPU-hungry.

3.6.3 TV controls

Audio
Audio Gain | -3 - +
Video
Brightness 52 - 4+ 2
Composite Video
Contrast 52 - 4+
Rend S5-bit LUT -
Colour 50 - 4+ enderer l
Hue 0 -+ Fs 14.218 MHz -
i . Fsc 4.43361875 MHz -
Picture Area Title (640x480) b
60Hz Scaling System s B
~ v Colour Killer

Select View — TV controls or press CTRL+SHIFT+V to open the TV controls dialog. The dialog
is divided into three sections. The first, Audio, only contains a gain control. The Video section
has the following controls:

Brightness
Or black level. 0-100, where 0 pulls everything to black, and 100 drives everything
up to white, effectively adjusting the contrast of the picture.

Contrast Or gain. 0-100, with 50 meaning no gain. Scales the RGB output, affecting the over-
all brightness. See Charles Poynton on Brightness & Contrast (https://poynton.
ca/notes/brightness_and_contrast/) for more on the labelling issue.

Colour Adjusts the saturation of colour without affecting the luminance. 0-100, where 0
yields a greyscale image.

Hue Adjusts the phase of a composite colour signal. -179-180, with the centre value of
0 being normal. A common control on NTSC displays. Not strictly necessary in an
emulator, but it’s fun to spin it and watch the pretty colours.

Picture Area
The picture area is the portion of the output signal that is rendered into the window,
and this control lets you show more or less border around the active area (picking
from four different crop regions).

60Hz Scaling
When this is enabled, 60Hz output (NTSC, PAL-M) will be scaled vertically, to
better represent the picture shape that would be seen on 60Hz CRTs. This scaling
occurs because in a 60Hz TV system, fewer scanlines fill the same vertical space,
yet the scanline duration is very similar.

Finally, the Composite Video section of the dialog includes more advanced control over the
rendering when a composite signal is being simulated.

Renderer Another place to pick the composite renderer, described above.

https://poynton.ca/notes/brightness_and_contrast/
https://poynton.ca/notes/brightness_and_contrast/

Chapter 3: User interface 14

Fg The video sample rate when using the “Simulated” renderer. The options here
reflect the different crystals used as SAM oscillators in Dragons and CoCos.
Fsc The frequency of the colour subcarrier, either 4.43MHz (PAL-I) or 3.58MHz (NTSC,

PAL-M). Together with Fg, this affects how the “Simulated” renderer tracks colour
modulation and demodulation.

System The TV colour system in use, one of ‘PAL-I’ (e.g. UK), ‘PAL-M’ (e.g. Brazil) or
‘NTSC’ (e.g. USA or Canada). Setting only used by the “Simulated” renderer.

Colour Killer
Television sets vary in how they react to a composite video signal that lacks a
colourburst. The recommended approach is to disable colour processing and show
a greyscale picture (to be backwards-compatible with black & white broadcasts),
but many don’t bother and end up decoding luminance information as colour. This
option lets you choose a behaviour.

3.7 Keyboard layout

XRoar can operate in one of two keyboard modes. By default, it tries to map the key positions
on the host keyboard to what you would expect using the emulated system. This is useful for
games (where the relative physical positions of keys will be important), or to just satisfy muscle
memory (even using an emulated Dragon, my hands expect to type in a certain way).

You can select a particular layout with Tool — Keyboard layout, though at time of writing,
this doesn’t affect very much.

In translated mode (Tool — Keyboard translation, or CTRL+Z to toggle), XRoar instead tries
to map the symbols on your host keyboard to the keystrokes required to produce that symbol on
the emulated machine. For example, a UK PC keyboard typically has an unshifted apostrophe
key, which XRoar can map to pressing SHIFT+7 on an emulated Dragon.

XRoar queries your operating system for information about which symbol is on which key,
but in case it gets it wrong, you can pick from several built-in languages using Tool — Keyboard
language.

rdware Tool Help

Keyboard layout

Keyboard language 3 ® Automatic
Ctri+Z O Belgian

(J Keyboard translation

Shift+F12 | O Brazilian

™ Carman

[+ Rate limit

Chapter 3: User interface 15

3.8 Printer control

No printer
O Print to file
/home/user/printer-output.txt
Attach...
Print to pipe

enscript-B -N r -d myprinter

Characters printed: 3.4k Flush

Select File — Printer control or press CTRL+P to open the printer control dialog.

You can select between no printer, printing to file, or (only in the GTK+ interface under
Linux/Unix), printing through a pipe to an external filter command.

When modifying the pipe configuration, your changes will not take effect until you press
Apply.

The amount of characters printed since the last time the buffer was flushed is shown. Pressing
the Flush button (or pressing CTRL+SHIFT+P) will flush output to file, or close and reopen the
pipe. The act of closing the pipe will cause the running filter to complete, e.g. sending a job to
your network printer.

16

4 Emulated hardware

This chapter gives a brief description of the hardware emulated by XRoar, with configuration
examples where useful. For a more complete view of the user interface, see Chapter 3 [User
interface], page 8. For more detailed information on configuring XRoar through the command
line or configuration file, see Chapter 6 [Configuring XRoar]|, page 24.

4.1 Machine architectures

XRoar supports several underlying machine architectures, and has one or more built-in machine
profile configurations based on each one. See Section 6.2 [Machine options|, page 25, for more
detailed information on modifying or creating profiles. The rest of this section describes the
available architectures.

4.1.1 Dragon 32

Released in 1982, the Dragon 32 closely follows Motorola’s reference design for the MC6809
CPU, MC6883 Synchronous Address Multiplexer and the MC6847 Video Display Generator.
Dragon Data also chose to make it electrically compatible with some of Tandy’s peripherals for
their Colour Computer; notably the joystick and cartridge ports. In addition, it has a parallel
port, making it compatible with the majority of printers on the market at the time.

Architecture ‘dragon32’. Built-in machine profile ‘dragon32’.

4.1.2 Dragon 64

The Dragon 64 was released the next year, in 1983. In upped the on-board RAM to 64K and
provided a second version of Microsoft BASIC assembled to make use of it. It also added a serial
port, though that is not yet emulated by XRoar.

There are a few more changes to the motherboard than just extra RAM, so XRoar treats
this as a separate architecture.

Architecture ‘dragon64’. Built-in machine profiles: ‘dragon64’, ‘tano’ (American NTSC
version of Dragon 64 by Tano), ‘dragon200e’ (localised Spanish Dragon 64 from Eurohard).

4.1.3 Dragon Professional

A prototype machine by Dragon Data that was never actually released. A few versions of the
system in cases at various stages of development exist.

Essentially a souped-up Dragon 64, it adds an AY sound chip and built-in twin 3.5" drives.
An early mention of it appears in the June 1984 issue of Dragon User, and there was a picture
in the next issue.

Support is largely based on information from Phill Harvey-Smith.

Architecture ‘dragonpro’. Built-in machine profile: ‘dragonpro’.

4.1.4 Tandy Colour Computer 1/2

An earlier (1980) Tandy machine made using Motorola’s reference design, primarily marketed
in the USA. Sold at many price points, with 4K (originally), 16K, 32K or 64K of RAM and
either with or without Extended Colour BASIC. Later versions come with a new version of the
VDG, the MC6847T1, which includes true lowercase characters.

Architecture ‘coco’. Built-in machine profiles: ‘coco’, ‘cocous’ (NTSC), ‘coco2b’ (T1),
‘coco2bus’ (NTSC, T1), ‘mx1600’ (Mexican clone by Dynacom).

Chapter 4: Emulated hardware 17

4.1.5 Tandy MC-10

Released in 1983, a little too late to compete with the Sinclair ZX-81, it was discontinued a year
later. A cut-down machine based on the Motorola MC6803, but still using the MC6847 VDG
and containing a version of Microsoft BASIC. Comes with 4K of RAM, but much of the small
amount of software available for it assumes an additional 16K RAM pack.

Architecture ‘mc10’. Built-in machine profile ‘mc10’.

4.1.6 Matra & Hachette Alice

Basically the same machine as an MC-10, but with a French keyboard, 50Hz display, and a nice
bright red case. Unlike the MC-10, the Alice line actually continued, with the Alice 32 and Alice
90, though these are not supported by XRoar, as their architectures differ significantly.

Architecture ‘mc10’. Built-in machine profile ‘alice’.

4.1.7 Tandy Deluxe Colour Computer

In development around 1984, this was never actually released. However, a prototype has been
discovered with a copy of Advanced BASIC and the planned extended hardware.

Broadly similar to a Colour Computer 2, it adds finer-grained RAM banking, an AY sound
chip, and an ACIA, amongst other things.

Support is a work in progress based on what we know so far.

Architecture ‘deluxecoco’. Built-in machine profile: ‘deluxecoco’.

4.1.8 Tandy Colour Computer 3

In 1986, Tandy released the Colour Computer 3. They had developed a custom chip, the
TCC1014 (GIME), with VLSI to replace the SAM and VDG, and it supported extended graphics
modes, more memory (up to 512K directly) and a timer function, along with somewhat better
interrupt handling and the ability to run at twice the clock speed. A major development, it
maintained a high degree of compatibility with its predecessors, losing some lesser-used (in the
USA) graphics modes.

The NTSC version of the CoCo 3 generates different colours depending on whether you use
the composite video or RGB outputs. The PAL version always uses the RGB output from the
GIME.

If you specify 1024K or 2048K RAM, this enables an optional DAT board function that
extends the range of the MMU registers by two bits. For compatibility with early 2M board,
these two bits are write-only.

Architecture ‘coco3’. Built-in machine profiles: ‘coco3’ (NTSC), ‘coco3p’ (PAL).

4.2 Cartridge types

XRoar supports several types of cartridge, and has at least one built-in cartridge profile con-
figurations for each one. See Section 6.3 [Cartridge options|, page 26, for more information on
modifying or creating profiles. The rest of this section describes the available types.

4.2.1 DragonDOS

The official Dragon Data disk system for the Dragon. Supports 80 track, double sided, double-
density floppy disks.

Emulation supports the Becker port mapped to $FF49/$FF4A; if enabled.
Type ‘dragondos’. Built-in cartridge profile ‘dragondos’.

Chapter 4: Emulated hardware 18

4.2.2 Delta
Premier Microsystems’ alternative Dragon disk system. Apparently two versions of this may
have existed; XRoar emulates the double-density version.

Type ‘delta’. Built-in cartridge profile ‘delta’.

4.2.3 RS-DOS
Tandy’s disk interface for the CoCo. Typically supports only 35-track single-sided double-density
disks, though more is accessible using OS-9.

Emulation supports the Becker port.

Type ‘rsdos’. Built-in cartridge profile ‘rsdos’, ‘becker’ (with Becker port enabled, expect-
ing hdbdw3bck.rom).

4.2.4 Glenside IDE controller
Interfaces the Tandy CoCo to up to two IDE hard disks. Its IO is generally memory mapped to
addresses $FF50-$FF58. Also optionally supports the Becker port.

To set the base address to some other value (the original cartridge can jumper IO to be from
$FF70—, but this is incompatible with the MPI), use the -cart-opt ide-addr=addr.

The controller supports up to two drives, and you can specify the image to use in each with
-load-hdO file or -load-hdl file. If file does not exist, a 256 MB empty image is created
when the controller first tries to access it.

Sectors are 512 bytes, and while some software may use all 512, others only access 256 bytes
per sector, padding the other 256 bytes (or simply doubling them up).

Type ‘ide’. Built-in cartridge profile ‘ide’.
4.2.5 NX32 and MOOH cartridges

Two memory expansion cartridges created by Tormod Volden for the Dragon. Both accept an
SD card image.

The earlier NX32 provides simple bank switching, while the MOOH provides MMU-like
functionality very like that in the Tandy CoCo 3.

Types ‘nx32’, ‘mooh’. Built-in cartridge profiles: ‘nx32’, ‘mooh’. Both require fleshing out
with ROM information, and an SD card image specified, e.g.:

cart mooh
cart-rom sdbdos-eprom8-all-vl.rom

load-hd0 ""/sdcard.img"

4.2.6 Games Master Cartridge
The Games Master Cartridge (GMC), created by John Linville, provides the ability to bank
switch up to 64K of cartridge ROM, along with an on-board SN76489 sound chip.

This cartridge type is selected automatically (and configured to autostart) if you autorun a
ROM image larger than 16K.

Type ‘gmc’. Built-in cartridge profile ‘gmc’ is configured with no ROM installed, and to not
auto-start.

4.2.7 Orchestra 90-CC sound cartridge

A simple expansion that provides two 8-bit DACs for stereo sound (but still driven by the CPU).
An on-board ROM for the CoCo provides an interface to composition, but if autorun is disabled,
the hardware itself works fine on the Dragon.

Type ‘orch90’. Built-in cartridge profile ‘orch90’.

Chapter 4: Emulated hardware 19

4.2.8 Multi-Pak Interface

The Multi-Pak Interface (MPI) is a CoCo add-on by Tandy that allows up to four cartridges to
be connected, selectable by software or hardware switch.

The RACE Computer Expansion Cage is a Dragon add-on by RACE similar to the MPI.
Addressing and behaviour differs.

If you attach an MPI, you’ll want to populate one or more of its slots (numbered 0-3).
Use -mpi-load-cart [slot=]name to attach a named cartridge to the specified (or next) slot.
Configure the initially selected slot with —-mpi-slot slot.

It’s not recommended to load more than one DOS cartridge into the MPI. As things stand,
only the last one (in slot order) will have the emulated drives properly connected.

Types ‘mpi’, ‘mpi-race’. Built-in cartridge profiles: ‘mpi’, ‘mpi-race’ (RACE variant).
machine coco
machine-cart mpi

cart mpi
mpi-load-cart O=orch90
mpi-load-cart 3=rsdos
mpi-slot 3

4.2.9 MC-10 MCX128 memory expansion

Designed by Darren Atkinson, provides 128K of bank-switched RAM for the Tandy MC-10. Can
also optionally switch in its own enhanced BASIC ROM.

Type ‘mcx128’. Built-in cartridge profile ‘mcx128’.

4.3 Keyboard

The Dragon keyboard (and those of all the machines XRoar emulates) is a typical crosspoint
matrix with rows and columns connected to an internal interface. BASIC or other programs
detect keypresses by strobing values to one port and seeing whether those values can be seen at
another.

XRoar will simulate the ghosting effects inherent in a simple matrix design, but the accuracy
of this simulation will depend very much on your host keyboard, which vary greatly in the
amount of simultaneous keypresses they support (for more information, search for the terms
“key rollover” or “NKRO”).

By default, XRoar maps host keys to emulated keys based on their position. By enabling
keyboard translation (Tool — Keyboard translation or CTRL+Z to toggle), it will instead press
the emulated keys required to generate the appropriate symbol. Be aware that this only works
in BASIC; OS-9 uses different chords for some characters. Use the ~kbd-translate option to
default to this mode.

Where a PC keyboard doesn’t typically have a good equivalent of an emulated key, some
substitutions are made: Escape maps to the Dragon’s BREAK key, and Home maps to CLEAR.
Cursor keys are mapped directly, although they are in different places on a PC keyboard.

Sometimes software written for the Dragon or Tandy CoCo is run on the other machine
without fully adapting it to the different keyboard matrix layouts. In this case, you can toggle
to the “other” machine’s keyboard layout by pressing CTRL+K or selecting one from Hardware
— Keyboard type.

See Section 6.8 [Keyboard options|, page 28, for more details on configuring keyboard han-
dling, including some options that may help if XRoar was unable to properly identify your host
keyboard.

Chapter 4: Emulated hardware 20

4.4 Joysticks

Analogue joysticks are very common peripherals for the Dragon and Tandy CoCo. Many games
require them, and some productivity applications even use them as a mouse-like input device.
Joysticks are electrically compatible between the Dragon and CoCo 1/2/3, though some CoCo
joysticks use a 6-pin DIN connector instead of 5-pin DIN, and these will not plug into the
Dragon. On the CoCo 3, this extra pin can carry the signal for an extra firebutton.

XRoar can use physical gamepads and joysticks, or simulate them using mouse or keyboard.
Here are the built-in joystick profiles, including several different keyboard layouts for conve-
nience:

Name Description

‘mjoy0’ Mouse based virtual joystick mapped to screen position

‘kjoy0’ Keyboard based virtual joystick using cursor keys, with Left Alt
and Left Super as firebuttons.

‘wasd’ Keyboard based virtual joystick using W, A, S, D, with 0 and P as
firebuttons.

‘ijkl’ Keyboard based virtual joystick using I, J, K, L, with X and Z as
firebuttons.

‘qaop’ Keyboard based virtual joystick using Q, A, 0, P, with Space and

Left Bracket as firebuttons.

In addition, XRoar should automatically detect attached gamepads or joysticks and add them
as named profiles called ‘joy0’, ‘joyl’, etc. If the device is able to provide its own description,
that will be included in the menu text. If a gamepad has two sticks, two more automatic profiles
will be created, e.g. ‘joy0/1’ and ‘joy0/r’ so you can choose between them.

By default, XRoar will map the first physical joystick found (‘joy0’) to the right hand port,
and the second (‘joy1’) to the left hand port. If only one device is present, but has two sticks,
the left stick (‘joy0/1’) is mapped to the right hand port and vice-versa. Slightly confusing,
but this is because people usually assume the left stick to be active, while the right hand port
on a Dragon is the first in hardware, thus usually the “primary” control assumed by software.

A preselected virtual joystick can be quickly cycled through the ports by pressing CTRL+J.
The first press will map it to the right joystick, the second to the left joystick, and pressing
a third time unmaps it. You can change which virtual joystick is cycled in this way with the
-joy-virtual name option, defaulting to ‘kjoy0’ from the table above.

The MC-10 has no built-in joystick ports, but an expansion (that can not be used at the
same time as the 16K RAM expansion!) allows the connection of digital joysticks. These are
not yet supported by XRoar.

See Section 6.9 [Joystick options]|, page 29, for information on configuring your own joystick
profiles.

4.5 Printers

The Dragon machines have parallel printer ports, and XRoar supports these, sending output
either to a file, or through a command pipe. The pipe approach allows you to apply a filter to
the output, and/or send it to a real attached printer using normal Unix commands.

The CoCo and MC-10 machines have serial printer ports. XRoar doesn’t support these
directly yet, but a limited form of print redirection is implemented using a ROM BASIC inter-
cept. This is enough to support BASIC commands like LLIST, but will not cope with programs
implementing their own serial routines.

Use the -1p-file file option to send printer output to a file, or ~1p-pipe command to send
it through a pipe. Pressing CTRL+SHIFT+P will flush the current stream by closing it, so if you

Chapter 4: Emulated hardware 21

are using a pipe, the filter will complete. The stream will be re-opened when any new data is
sent.

Under Unix, the enscript utility is good for processing output and sending it to a con-
figured printer, e.g. -1p-pipe "enscript -B -N r -d printer-name". This will send a job to
your printer, using carriage returns as line feeds (the Dragon default), each time you press
CTRL+SHIFT+P (or exit the emulator).

22

5 Storage media

This chapter documents the types of media image files that XRoar supports, and some of the
options for manipulating them. For a more complete view of the user interface, see Chapter 3
[User interface], page 8. For more detailed information on configuring XRoar through the
command line or configuration file, see Chapter 6 [Configuring XRoar], page 24.

5.1 Cassettes

Cassette tape was the primary method of loading software until floppy disk drives became
available, but has remained popular for games distribution even since, as it serves the largest
market. Data is encoded onto cassette tape as audio, all currently-emulated machines using the
same format, where a single cycle represents one bit of data, and its wavelength determines the
bit’s value.

5.1.1 Tape image file formats

XRoar supports tapes as raw sampled audio in WAV format (.wav), or in the more compact
CAS format (.cas) which represents bits of data directly (files for the MC-10 are typically still
CAS format, but with a .c10 extension; these will also work).

An extension to the CAS format called CUE is also supported. This comprises extra data at
the end of the file that marks up the CAS file to indicate portions of silence, or the wavelength
used for each bit. This enables it to better represent the structure of the original tape, support
certain fast loaders, yet for data within the file to remain readable with a hex editor if it is
correctly aligned.

Some MC-10/Alice software has been seen in K7 format (.k7). XRoar has read-only support
for these files.

XRoar can also attach BASIC ASCII text files (with .bas or .asc file extensions) and
interpret them as cassettes, providing a useful way to edit these in your favourite text editor
before loading into the emulator. Note: this feature is not supported by the MC-10.

5.1.2 Input and Output tapes

The tape used for writing is considered separate to the read tape. This is an emulator-friendly
approach to prevent overwriting your programs, though it would of course be possible in real
life with two cassette decks.

Tape rewriting, enabled with —tape-rewrite is a special mode where the ROM is intercepted,
and anything read from the input tape is rewritten to the output tape. Custom loaders may
defeat it, but otherwise this is a good way of creating a well-formed CAS file, with bytes aligned
and consistent leader lengths.

5.1.3 Remote motor control

The Dragon and Tandy Colour Computers have a built-in cassette relay that can control the
cassette motor remotely. For these platforms, cassette emulation will default to “play” being
pressed, letting the remote control start and stop the tape.

The MC-10 and Alice have no remote connection, and so for these platforms cassette emu-
lation defaults to stopped, and you will have to manually start and stop the tape after entering
load commands.

5.2 Floppy disks

Floppy disk drives provide much faster access to data than cassette tape. Initially costly, prices
did fall somewhat, so these are a fairly common expansion.

Chapter 5: Storage media 23

To use floppy disk images, an emulated disk controller will need to be configured. XRoar
will usually try to do this automatically if it finds the appropriate ROMs for a disk controller
suited to the machine you’ve chosen.

These floppy disk image formats are supported:

Extension Description

.dmk Disk image file in a format defined by David Keil. These images store a
lot of information about the structure of a disk and support both single
and double density data.

Jjve, .089, .dsk Disk image file in a basic sector-by-sector format with optional header
information.

.vdk Another disk image file format, used by PC-Dragon.

5.3 Hard disks

The Glenside IDE controller interfaces hard disks to the Tandy CoCo, and the MOOH and
NX32 memory expansions can each provide access to an SD card.

-load-hdX file Use file as the hard disk image for drive X (0 or 1).
XRoar supports these types of hard disk image:

IDE images with header information should have a .ide extension. This is necessary to
distinguish them from images with no header. These images contain metadata describing an
IDE drive, and are the only ones usable in CHS mode. Starting with 512 bytes of “magic” and

512 bytes of IDENTIFY DEVICE information, sector data follows in LSN order, 512 bytes per
sector.

Raw images with 512 byte sectors should have a .img extension. Previous versions of XRoar
would create IDE images with this file extension, and you should rename them to .ide. Unfor-
tunately this is necessary to support raw images without a header: if you happened to write the
“magic” identifying information to the start of it, any attempt to be clever about file contents
would fail.

Finally, files with the .vhd extension are assumed to be 256 bytes per sector with no header
information.

When no IDE metadata is present, XRoar will fake some up so that raw images can still be
used with the IDE controller emulation. This means VHD images containing RSDOS filesystems
are usable with YA-DOS or HDBDOS.

24

6 Configuring XRoar

XRoar can read a configuration file. The file is ASCII text, with one directive per line. It covers
anything from setting individual options to defining specific named profiles for hardware.

To recap, the expected location for this file varies by platform:

Platform Default path to configuration file
Unix/Linux ~ ~/.xroar/xroar.conf
Windows %LOCALAPPDATAY%\XRoar\xroar.conf

Mac OS X+ “/Library/XRoar/xroar.conf

To print the current configuration to standard output (suitable for redirection to a config
file), run XRoar with the -config-print option. This will include all the built-in machine
and cartridge definitions. For a complete version including default values, use ~config-print-
all. To enable limited configuration auto-save (to the location listed in the table above), use
-config-auto-save.

The Windows build will check the current working directory for xroar.conf first. This
is somewhat at odds with configuration auto-save, but as far as I can tell, the majority of
Windows users prefer to unpack a .zip file and run it from its own directory. Just be aware
that under Windows, if you turn on auto-save, the version in the unpacked directory will still
take precedence.

To bypass the search path and start XRoar using a specific configuration file, pass -c file
as the very first option to XRoar.

Directives are listed in xroar.conf one per line. They contain an option, possibly followed
by whitespace and a value. Trailing whitespace is ignored. Empty lines are skipped, and any line
where the first non-whitespace character is a hash (‘#’) is treated as a comment. The leading
dash (‘-’) is not required in the configuration file, though it is accepted.

If a value contains special characters, or if you want trailing whitespace to be included in
the value, you must escape those characters. Sections contained within pairs of single or double
quotes are escaped, except the backslash (‘\’) which introduces an escape sequence:

Sequence Description

\0’ Null (NUL), ASCII 0. Note that this is only permitted when not followed by
another octal digit, as it may be confused with an octal byte, so it may be
preferable to use ‘\x00’ instead.

‘\a’ Bell (BEL), ASCII 7, no equivalent on the Dragon keyboard.
‘\b’ Backspace (BS), ASCII 8, LEFT.
“\e’ Escape (ESC), ASCII 27, no equivalent on the Dragon keyboard, but either

mapped to BREAK or used to introduce limited ANSI escape sequences in the
-type command, effective for the MC-10.

£’ Form Feed (FF), ASCII 12, CLEAR.

‘\n’ Newline (NL), ASCII 10, DOWN. Not usually used by the Dragon as a line
ending, instead try ‘\r’.

\r’ Carriage Return (CR), ASCII 13, ENTER.

‘\t’ Horizontal Tab (HT), ASCII 9, RIGHT.

v’ Vertical Tab (VT), ASCII 11, no equivalent on the Dragon keyboard.

‘\nnn’ 8-bit byte with value specified as a three-digit octal number, nnn.

‘\xhh’ 8-bit byte with value specified as a two-digit hexadecimal number, hh.

‘\uhhhh’ 16-bit Unicode codepoint specified as a four-digit hexadecimal number, hhhh.

Internally, this will be encoded as UTF-8.

Chapter 6: Configuring XRoar 25

Any other character following a backslash—including another backslash—is included verba-
tim. For example, this will be necessary in the configuration file under Windows when file paths
include the backslash as a directory separator.

6.1 Startup options

These may only be used on the command line, and must be specified before any other option,
as they affect how the rest are treated.

-C Attach to or create new console window (Windows-only).

-c file Specify a different configuration file.

-no-c Don’t read the configuration file.

-no-builtin Disable built-in configuration. Unless you also define a machine

yourself, XRoar will abort.

6.2 Machines

XRoar creates a list of machine profiles from built-in and user-supplied configuration. One
of these profiles is selected at startup, using either the ~-default-machine name option, or by
XRoar testing each profile in turn to see if its configured ROM image files are available.

Each machine profile has a base architecture (specified with the -machine-arch option). See
Section 4.1 [Machine architectures|, page 16, for descriptions of the supported architectures, and

which machine profiles are built-in.

—-default-machine name

-m name,

-machine name
-machine-desc text
-machine-arch arch
-machine-keyboard type
-machine-cpu cpu
-bas rom
—-extbas rom
—altbas rom
-no-bas,

-no-extbas,
-no-altbas
—-ext—-charset rom

—-tv-type type
-tv-input input

-vdg-type type

Default machine profile to select on startup.

Create or modify named machine profile. The remaining op-
tions configure the profile. -machine help lists currently de-
fined profiles.

Description shown in -machine help and menu options.
Base machine architecture. See Section 4.1 [Machine archi-
tectures], page 16, for information. ‘dragon32’, ‘dragon64’,
‘dragonpro’, ‘coco’, ‘deluxecoco’, ‘coco3’ or ‘mc10’.
Override the type of keyboard attached to machine. ‘dragon’,
‘dragon200e’, ‘coco’, ‘coco3’, ‘mc10’ or ‘alice’.

Fitted CPU. One of ‘6809’ or ‘6309’. Not applicable to the
MC-10.

ROM image for Colour BASIC (CoCo) or Microcolour BA-
SIC (MC-10, Alice).

ROM image for Extended BASIC (Super Extended BASIC
on the CoCo 3).

ROM image for 64K-mode Extended BASIC (Dragon 64,
Dragon 200-E).

Indicate the corresponding ROM is not fitted in this machine.

ROM image to use for external character generator.

One of ‘pal’, ‘ntsc’ or ‘pal-m’.

One of ‘cmp’ (composite video, no cross-colour), ‘cmp-br’
(composite video, blue-red cross-colour), ‘cmp-rb’ (compos-
ite video, red-blue cross-colour) or ‘rgb’ (RGB video, CoCo
3 only).

Indicate the VDG variant fitted. One of ‘6847’ or ‘6847t1’.
For CoCo 3, ‘gime1986’ or ‘gime1987’ .

Chapter 6: Configuring XRoar 26

-ram kbytes Amount of RAM fitted in kilobytes. Nearest value valid for
selected machine will actually be used.

-ram-org org Override RAM type, possibly affecting banking behaviour.
One of ‘4kx1’, ‘16kx1’, ‘32kx1’ or ‘64kx1’.

-ram-init pattern Initial RAM state. One of ‘clear’, ‘set’, ‘pattern’ or
‘random’.

-machine-cart name Default cartridge to attach.

-no-machine-cart Indicate that XRoar is not to automatically attempt to at-
tach a DOS cartridge to this machine (the default is to try).

-machine-opt string Set machine arch-specific option.

Here is a configuration example, approximating the prototype that led to the Dragon 32:

machine pippin
machine-desc "Dragon Pippin (prototype)"
machine-arch dragon32
ram 16

‘pippin’ is the short name used to refer to the profile. The argument to machine-desc is
the longer descriptive name that would appear in menus or help text. The rest of the section

configures the new machine to have a base architecture the same as a Dragon 32, but with only
16K of RAM.

6.3 Cartridges

Similarly, XRoar contains a list of cartridge profiles, each with an underlying type.

-cart name Create or modify named cartridge profile. —cart help lists cur-
rently defined profiles. The remaining options configure the
profile.

-cart-desc text Cartridge description shown in —cart help and menu options.
-cart-type arch Cartridge architecture. See Section 4.2 [Cartridge types],
page 17, for a list.

-cart-rom file The ROM image specified will be mapped from $C000.
-cart-rom2 file The ROM image specified will be mapped from $E000.
-cart-becker Enable Becker port where supported.
-cart-autorun Auto-start cartridge using FIRQ.
-cart-opt string Set cartridge type-specific option.

-mpi-slot slot (MPI) Initially select slot (0-3).

-mpi-load-cart (MPI) Insert cartridge into next or numbered slot.

[slot]=name

Built-in cartridge profiles exist with sensible defaults for each of the cartridge types except
‘rom’ (for which a profile is simply created when you try to autorun a ROM image), each with
the same name as the type.

XRoar will automatically attempt to find a disk interface relevant to the current machine
unless a specific default has been configured for the machine with -machine-cart, or automatic
selection is disabled with the -no-machine-cart option.

Selecting a ROM image file with the -1load or -run command line options, or with CTRL+L
or CTRL+SHIFT+L, will attach a ROM cartridge.

Within the emulator, cartridges can be enabled or disabled by pressing CTRL+E. You will
almost certainly want to follow this with a hard reset (CTRL+SHIFT+R).

Here is an example profile, replicating the modified DragonDOS cartridge I used to use:

Chapter 6: Configuring XRoar 27

cart mydos
cart-desc "My SuperDOS E6 Cart"
cart-type dragondos
cart-rom sdose6.rom
cart-rom2 dosdream.rom

‘mydos’ is the short name used to refer to the profile. The argument to cart-desc is the
longer descriptive name that would appear in menus or help text. The rest of the section
defines a cartridge with DragonDOS hardware but with the DOS ROM replaced by sdose6.rom
(SuperDOS E6, a common upgrade). The extra 8K of cartridge address space is used for
dosdream.rom (DOS-Dream, an editor/assembler/debugger package designed to coexist with
DragonDOS).

6.4 Becker port

-becker Prefer becker-enabled DOS cartridge when picked automatically.
-becker-ip address Address or hostname of DriveWire server. Default: ‘127.0.0.1’
—-becker-port port Port of DriveWire server. Default: ‘65504’

Not a cartridge in and of itself, XRoar supports an emulator-only feature that enables it to
connect to a server using a TCP connection and access remote facilities such as disk images and
MIDI devices—the Becker port. This appears as a memory-mapped device, and XRoar supports
it as an optional feature of many cartridge types.

Enable this port when configuring a cartridge with —~cart-becker. The -becker option tells
XRoar to prefer a cartridge with it enabled when automatically selecting one.

The TP and port to connect to can be specified with the -becker-ip and -becker-port
options. These default to ‘127.0.0.1" and ‘65504’ respectively, matching the defaults for py-
DriveWire and DriveWire 4.

6.5 Cassettes

-load-tape file Attach file as tape image for reading.
—-tape-write file Open file for tape writing.
-tape-pan position Pan stereo input. Floating point number from ‘0.0’ (full

left) to ‘1.0’ (full right). The default of ‘0.5’ mixes the
two channels equally.

-tape-hysteresis pc Read hysteresis as percentage of full scale (default is 1%).

-no-tape-fast Disable fast tape loading. The default is enabled, which
uses ROM intercepts to speed up loading.

-no-tape-pad-auto Disable automatic padding of short leaders in CAS files (see
below).

-tape-ao-rate hz Set tape writing frame rate to hz (affects audio file output,
e.g. WAV). Default: ‘9600’'Hz.

-tape-rewrite Enable tape rewriting (see below).
-tape-rewrite-gap-ms ms Gap length in milliseconds to write in rewrite mode (1-
5000ms, default 500ms).

-tape-rewrite-leader n Length of leaders in bytes to write in rewrite mode (1-2048
bytes, default 256).
—-snap-motoroff file Write a snapshot to file each time the cassette motor is

switched off.
Dragon cassettes are typically recorded in mono. If you are having trouble loading from an
audio file recorded in stereo, it may be useful to pan it hard to the left or right with -tape-pan
0.0 or -tape-pan 1.0.

Chapter 6: Configuring XRoar 28

A small amount of hysteresis in the zero crossing detector simulates the same effect in hard-
ware, and helps greatly with loading from some audio files. If you’re having difficulties with a
recording, adjusting this valie with -tape-hysteresis may help.

Tape padding defaults to on: A lot of old CAS tape images were created with their leaders
truncated, and this option tries to account for that automatically. It may be useful to try
turning this option off (from the UI, or with -no-tape-pad-auto) if you are having trouble
loading something.

The -snap-motoroff file option is useful for getting a dump of the machine state at the
moment a program has finished loading, but before it has started executing. If you specify file
with a .ram extension, you can get a simple RAM dump, viewable in a hex editor.

6.6 Floppy disks

-load-fdX file Load disk image file file into drive X (0-3).
-no-disk-write-back Don’t default to enabling write-back for disk images.
-no-disk-auto-os9 Don’t try to detect headerless OS-9 JVC disk images.
-no-disk-auto-sd Don’t assume single density for 10 sector-per-track disks.

Warning: The default of write back being enabled can lead to accidental modification of your
disk images. You can use the option -no-disk-write-back in your configuration file to protect
them by default, though be aware that this also means anything “saved” to disk will be lost if
you forget to re-enable it when required.

The JVC format specifies that the disk images without headers are single-sided, but some
double-sided disk images have been made available without headers. These cannot normally be
distinguished from a single-sided disk that happens to have twice the number of tracks. If an
08S-9 filesystem is present, the identification sector is inspected to determine the correct disk
structure. This step will always be performed for headerless images with the .os9 filename
extension, but may be disabled for the other valid JVC filename extensions with -no-disk-
auto-o0s9.

6.7 Hard disks
-load-hdX file Use file as the hard disk image for drive X (0 or 1).

6.8 Keyboard

-kbd-layout layout Specify host keyboard layout. -kbd-layout help for a
list. Default: ‘auto’
-kbd-lang lang Specify host keyboard language. -kbd-lang help for a

list. Default: ‘auto’
-kbd-bind hkey=[pre:]ekey Bind host key hkey to emulated key ekey.
-kbd-translate Start up in translated keyboard mode.
-type string Intercept ROM calls to type string into BASIC on startup.

Specifying a keyboard layout (-kbd-layout) doesn’t achieve much yet. In future, it may
map certain extra keys from the Unix or JIS layouts to similarly positioned emulated keys.

The -kbd-translate option can be used to default to translated mode, where XRoar trans-
lates keypresses to reproduce the correct symbol in the emulated machine (only under BASIC;
OS-9 uses different chords for some characters).

Specifying a keyboard language (-kbd-1lang) overrides any key symbol mapping gleaned from
the OS with a built-in table. If translated mode isn’t working well for you, this option may help.
-kbd-lang help for a list.

Chapter 6: Configuring XRoar 29

When binding keys with -kbd-bind, if the emulated key ekey is prefixed with ‘preempt:’ or
‘pre:’, this binding preempts translation; useful for modifier keys. To get hkey names, run with
-debug-ui 1 to enable keypress debugging and see what it reports as you type.

Special values for ekey are: ‘colon’, ‘semicolon’, ‘comma’, ‘minus’, ‘fullstop’, ‘period’,

‘dot’, ‘slash’, ‘at’, ‘up’, ‘down’, ‘left’, ‘right’, ‘space’, ‘enter’, ‘clear’, ‘break’, ‘escape’

)) M)) b)))])]]]
‘shift’, ‘alt’, ‘ctrl’, ‘control’, ‘f1°, ‘f2’.

6.9 Joysticks

-joy-db-file file Load gamepad mappings from file.
-joy name Create or modify named joystick profile. -joy help
lists currently defined profiles.
-joy-desc text Joysticks description shown in -joy help.

-joy-axis axis=input:[args] Configure joystick axis. —joy-axis help to list phys-
ical joysticks.

-joy-button btn=input: [args] Configure joystick button. -joy-button help to list
physical joysticks.

-joy-right name Map right joystick.
-joy-left name Map left joystick.
-joy-virtual name Specify the virtual joystick to cycle. Default: ‘kjoy0’

The axis and button mapping options used while configuring a profile need some explaining.

Configure axes with -joy-axis axis=input: [args]. The axis is either ‘X’ or ‘Y’ (or num-

bered 0-1).

Configure buttons with -joy-button button=input: [args]. The button is either 0 (first
button), or 1 (second button—only useful on the CoCo 3).

In both cases, the input selects a source for the input from the list below, and the args specify
which one to use.

Input Axis args Button args
‘physical’ joystick-index,[-|axis-index Jjoystick-index,button-index
‘keyboard’ key-name0,key-namel key-name
‘mouse’ screen-offset(,screen-offset1 button-number
The ‘-’ before the axis index when configuring a physical joystick will invert that axis.

The default screen offsets for the mouse module are ‘X=2,254" and ‘Y=1.5,190.5" which gives
reasonable behaviour for some games and utilities. Those screen offsets are relative to a 256x192
active area (the dimensions were chosen when that was the only output), but will be scaled to
the currently displayed active area.

Joystick configuration is complex, but flexible. For example, you can combine input sources
by specifying different modules for each axis. This configuration example creates a profile called
‘mixed’ that uses the mouse for the X-axis and firebutton, but the keys A and Z on the keyboard
for the Y-axis. It then ensures this profile is the one used when you press CTRL+J.

joy mixed
joy-axis X=mouse:
joy-axis Y=keyboard:a,z
joy-button mouse:

joy-virtual mixed

Chapter 6: Configuring XRoar 30

6.9.1 Gamepad mapping

Although there is an approximation of consensus on what sort of controls go where on modern
gamepads, they still tend to report their inputs in different orders. SDL supports user-provided
mappings of reported axes, buttons and hat inputs to a set of named controls, and XRoar can
process a file containing these mappings one per line, even when not built using SDL (e.g. when
using evdev under Linux). Point XRoar to such a file with the -joy-db-file option. At time
of writing, SDL_GameControllerDB (https://github.com/mdqinc/SDL_GameControllerDB)
contains a comprehensive list of mappings.

This diagram shows the controls that can be mapped:

The short codes in this diagram correspond to these control names, used in SDL mapping
database lines:

Input Short SDL Input Short SDL

Axis 0 LX leftx Button 0 A a

Axis 1 LY lefty Button 1 B b

Axis 2 RX rightx Button 2 X X

Axis 3 RY righty Button 3 Y y

Axis 4 LT lefttrigger Button 4 BACK back

Axis 5 RT righttrigger Button 5 GUIDE guide
Button 6 START start

D-pad Left DL dpleft Button 7 LB leftstick

D-pad Right DR dpright Button 8 RB rightstick

D-pad Up DU dpup Button 9 LS leftshoulder

D-pad Down DD dpdown Button 10 RS rightshoulder

Using the evdev support under Linux, for gamepads, whatever is mapped to the D-pad acts
as an alternative to axes 0 & 1. For joysticks, it provides an extra pair of axis controls.

6.10 Printers

-1lp-file file Append printer output to file.
-1p-pipe command Pipe printer output to command.

https://github.com/mdqinc/SDL_GameControllerDB

Chapter 6: Configuring XRoar 31

6.11 Files

Many of these are mentioned in their appropriate section, but are collected here for reference.

-load file Load or attach file. XRoar will try to do the right thing based on the
file type (usually determined by file extension).

-run file As -1oad, but try to autorun the file after attaching.

-load-tape file Attach file as tape image for reading. See Section 5.1 [Cassettes],
page 22.

-tape-write file Open file for tape writing. See Section 5.1 [Cassettes]|, page 22.

-load-fdX file Load disk image file file into drive X (0-3). See Section 5.2 [Floppy
disks], page 22.

-load-hdX file Use file as the hard disk image for drive X (0 or 1). See Section 5.3
[Hard disks|, page 23.

-lp-file file Append printer output to file. See Section 4.5 [Printers]|, page 20.

6.12 Firmware ROM images

-rompath path Set ROM search path. A colon-separated list of directories.
-romlist name=1list Define a ROM list.

-romlist-print Print defined ROM lists and exit.

-crclist name=list Define a CRC list.

-crclist-print Print defined CRC lists and exit.

-force-crc-match Force per-architecture CRC matching.

6.13 User interface

-ui module Select user-interface module. -ui help to list compiled-in
modules.

-fs Start full-screen. Toggle full-screen with CTRL+F or F11.

-fskip frames Specify frameskip. Default is ‘0’. May be helpful on slower
machines.

-vo-pixel-fmt format Pixel format to use. -vo-pixel-fmt help for a list.
-gl-filter filter Filtering method to use when scaling the screen. One of ‘linear’,
‘nearest’ or ‘auto’ (the default). OpenGL output modules only.

-vo-picture picture Initial picture area. -vo-picture help for a list.
-no-vo-scale-60hz Disable vertical scaling for 60Hz video (enabled by default).
-invert-text Start up with inverted text mode.

-ccr renderer Composite video cross-colour renderer. One of ‘none’; ‘simple’,

‘6bit’, ‘partial’ or ‘simulated’. Default is ‘5bit’.
-vo-brightness value Set initial brightness (0-100). Default is 50.

-vo-contrast value Set initial contrast (0-100). Default is 50.
-vo-colour value Set initial colour saturation (0-100). Default is 50.
-vo-hue value Set initial hue (-179 to +180). Default is 0.
-vo-colour-killer Enable colour killer (disabled by default).

The pixel format, specified with -vo-pixel-fmt, defaults to RGBA with 8 bits per channel,
but you may find other pixel layouts or lower bit depths render faster on your machine.

The default picture area is 640x480 (emulated) pixels, equivalent to -vo-picture title,
which is enough to show normal VDG output with a reasonable border. You can change this to
one of a set of defined areas: -vo-picture action and -vo-picture underscan show more of
the picture, and may be more suitable when emulating a CoCo 3 which has some larger video
modes. -vo-picture zoomed crops to 512x384; enough to show standard VDG output with

Chapter 6: Configuring XRoar 32

no borders at all. CTRL+comma and CTRL+fullstop zoom the picture area out and in where
supported.

By default, 60Hz video is scaled vertically to give a 1:1.2 pixel aspect ratio. This more closely
approximates the look of a real CRT (fewer scanlines mean each scanline appears taller within
the same aspect ratio overall display). This can be disabled with -no-vo-scale-60hz to return
to more square pixels. 50Hz displays tend to yield near-enough-square pixels anyway.

Various levels of composite video rendering precision can be selected with -ccr, trading off
CPU with accuracy. —ccr simulated is the only option that tackles PAL video. -ccr partial
does pretty well for NTSC. -ccr 5bit and -ccr simple both use LUTSs to convert sequences of
black & white into NTSC cross-colour.

When the VDG is configured to generate black & white (resolution) graphics, it stops emitting
a colourburst signal. Colour displays may (but not always) recognise the lack of burst and stop
trying to decode colour, giving a crisper display. You can enable this behaviour with -vo-
colour-killer. NTSC machines add circuitry to reintroduce a (modified) burst to enable
cross-colour in high resolution black & white, so enabling the colour killer would not prevent
colour in these modes.

A quirk of the VDG is that it can operate in-phase or 180 ° out of phase with its clock signal,
and how it starts up is essentially random. This clock signal is also used in NTSC machines
to generate the colour subcarrier, which leads to machines generating the blue and red artefact
colours randomly (but consistently, once running) swapped. Games often prompt the user to
“Press Enter if the screen is red”, for example. You can press CTRL+4, to cycle through three
modes: Off, Blue-red and Red-blue. On the CoCo 3, a fourth mode is included that switches
to the RGB output. In PAL machines, "Blue-red" and "Red-blue" also select the alternate
line phase switch, allowing for correct colour in games such as Tetris by Ola Eldgy or Donut
Dilemma by Nick Marentes.

Inverted text mode may be toggled by pressing CTRL+SHIFT+I.

In the GTK+ and Windows interfaces, View — TV Controls opens a control window allowing
you to dynamically modify various display options. Pressing CTRL+SHIFT+V will also open this
window.

6.14 Audio

-ao module Select audio output module. -ao help for a list.

-ao-device device Module-specific device specifier. e.g. /dev/dsp for OSS.
-ao-format format Specify audio sample format. —ao-format help for a list.
-ao-rate hz Specify audio frame rate, where supported. The default is

taken from the operating system if possible, otherwise it will
usually be ‘48000’.

-ao-channels n Specify number of channels (1 or 2). Default is usually ‘2’.

-ao-fragments n Specify number of audio fragments.

-ao-fragment-ms ms Specify audio fragment size in milliseconds.

-ao-fragment-frames n Specify audio buffer size in frames.

—ao-buffer-ms ms Specify total audio buffer size in milliseconds.

—ao-buffer-frames n Specify total audio buffer size in frames.

-ao-gain db Specify audio gain in dB relative to 0 dBFS. Only negative
values really make sense here. Default: ‘-=3.0’

-ao-volume volume Older way to specify volume. Simple linear scaling, using values
0-100.

Audio latency is a concern for emulators, so XRoar allows the buffering characteristics to
be configured with the fragment and buffer options above. Not all audio modules support all

Chapter 6: Configuring XRoar 33

options, but setting the total audio buffer size will usually have an effect. Bear in mind that
any figures reported by XRoar reflect what it was able to request, and won’t include any extra
buffering introduced by the underlying sound system.

When the Orchestra 90-CC cartridge is attached, its stereo output needs to be mixed with
the Dragon’s normal audio. To allow a small amount of headroom for this, the default gain
is set to ‘=3.0’ (dB relative to full scale), but be aware that it would still be possible for this
to clip depending on what’s happening on the internal sound bus. A setting of ~ao-gain -9.0
would give plenty of headroom (at the expense of a quieter overall sound).

6.15 Debugging

-gdb Enable GDB target.

-gdb-ip address Address of interface for GDB target. Default: ‘127.0.0.1’
-gdb-port port Port for GDB target to listen on. Default: ‘65520’

-trace Start with trace mode on. CTRL+V toggles.

Various per-subsystem debugging flags. The special value ‘-1’
enables all flags for the subsystem.

—-debug-fdc flags
—-debug-file flags
—-debug-gdb flags
—-debug-ui flags
-v level

-verbose level

General debug verbosity (0-3). Default: ‘1’

-q Equivalent to -verbose 0.

-quiet

Configure a trap to fire on condition.

Perform trap’s actions only on mth-nth trigger.
Write snapshot at trap.

Quit emulator n seconds after trap.

Start trace mode at trap.

Stop trace mode at trap.

-trap condition
-trap-range m[-n]
—trap-snap file
—trap-timeout n
-trap-trace
-trap-no-trace

-timeout n
—-timeout-motoroff n

-snap-motoroff file

Floppy controller debugging can be enabled with -debug-fdc value, where the value is a

Exit emulator after running for n seconds.

Exit emulator n seconds after cassette motor switches off, or end
of tape reached.

Write a snapshot to file each time the cassette motor switches
off, or end of tape reached.

bitwise ORing of the following:

0x0001 Show FDC commands.

0x0002 Show all FDC states.

0x0004 Hex dump of read/write sector data.
0x0008 Hex dump of Becker port conversation data.
0x0010 General FDC event debugging.

The GDB stub can also emit debug information about its own operation with -debug-gdb

value, where value is a bitwise ORing of:

0x0001 Connection open and close.
0x0002 Show packet data.

0x0004 Checksum reporting.
0x0008 Report on general queries.

Chapter 6: Configuring XRoar 34

The special value argument of -1 parses as all bits set, and so enables all corresponding debug
options.

XRoar prints various other informational messages to standard output by default, including
when the state of certain toggles is modified. Verbosity can be changed with the -verbose
level option. -quiet is equivalent to -verbose 0. Levels are:

0 Quiet. Only warnings and errors printed.

1 Print startup diagnostics and emulator state changes (default).
2 Report some emulated machine state changes.

3 Miscellaneous internal debugging.

To see debug output from the pre-built Windows binary, run with -C as the first option to
attach to the parent console or create a new console window.

Traps are a somewhat flexible way of triggering emulator actions on particular events. Con-
ditions can be:

Condition Description

immediate (or -) Trigger immediately.

pc=addr Trigger at CPU Program Counter value.

read=a[-b] Trigger on read from address range.

write=al-b] Trigger on write to address range.

access=al-b| Trigger on either read from or write to address range.
tape-motor-off Trigger when tape motor switches off.

A trap will usually only trigger once. To make one persistent, specify ~trap-range 1-.
Some older options are now implemented in terms of traps:

XRoar can be told to exit after a number of (emulated) seconds with the -timeout seconds
option. Equivalent to —trap immediate, —~trap-timeout seconds.

XRoar can quit a number of seconds after the cassette motor is switched off with the
—-timeout-motoroff seconds option. This is useful in the case of automatic tape rewriting. A
value of 1 is usually sufficient to account for the brief motor click that occurs after header blocks
and during gapped loading. Equivalent to -trap tape-motor-off, ~trap-timeout seconds.

Similarly, a snapshot can be automatically written after loading with the -snap-motoroff
file option. The file is overwritten each time the motor transitions to off. This can be used
to help analyse the machine state immediately after loading, before any autorun code has taken
effect (specifying a .ram snapshot may be particularly useful here for analysis). Equivalent to
—trap tape-motor-off, -trap-range 1-, —trap-snap file.

6.16 Other options

Help options

-config-print Print configuration to standard out.
-config-print-all Print configuration to standard out, including defaults.
-config-auto-save Write configuration to known location on exit.

-h, —-help Print help text and exit.

-V, —-version Print version information and exit.

In addition, various other options accept ‘help’ as an argument to print a list of values they
accept.

35

7 Files

If you “Load” a file, XRoar will determine its type using the filename extension and try to attach
it in a way that makes sense for that file type. Load a file using File — Load, -load file on
the command line, or by pressing CTRL+L.

If you “Run” a file, the file will be attached in the same way, but XRoar will also attempt
to intelligently autorun any program. Run a file using File — Run, -run file on the command
line, or by pressing CTRL+SHIFT+L.

Cassettes, Floppy disks, and Hard disks are each discussed in Chapter 5 [Storage media],
page 22. The other kinds of file recognised by XRoar are discussed here.

7.1 Snapshots

XRoar can save a snapshot of the emulated machine state and read it back in later. To save
a snapshot, press CTRL+S. When using CTRL+L to load a file, anything ending in .sna will be
recognised as a snapshot.

Most internal state should be dumped to the snapshot. External data like ROM images or
disk image files will be referenced by name, so when you read the snapshot back in, they need
to exist in the same place they were before.

State that is explicitly not included in snapshots includes Becker port DriveWire connections
and GDB listen parameters. These will use your local settings, which default to interacting with
the local host only.

7.2 Screenshots

XRoar can save a screenshot in PNG format. Press CTRL+SHIFT+S or select File — Screenshot
to PNG.

7.3 Binary files
File types containing raw binary data to be loaded into RAM:

Extension Description

.bin, .dgn, .cco Binary file (DragonDOS or CoCo). XRoar can load these directly into
memory and optionally autorun them. Read-only

hex Intel hex record. An ASCII format that encodes binary data and where in
memory to load it. Read-only

7.4 Firmware ROM images

Firmware ROM image files are configured as part of a machine or a cartridge. They have a
filename extension of .rom, and can be specified as:
e Complete path to a file.
e Base filename of an image, to be discovered within a search path.
e Base filename of an image, omitting the extension. XRoar will append .rom.
e An ‘@ character followed by the name of a ROM list.
A ROM list is a comma-separated list of images, each following the rules above. ROM lists

may refer to other ROM lists. Define a ROM list with -romlist name=imagel[, image]
View the defined ROM lists with -romlist-print.

Chapter 7: Files

36

To make life easier, the default image for each type of machine or cartridge usually refers to a
ROM list which contains all the corresponding filenames seen in the wild, the primary examples

being:

Firmware ROM

Dragon 32 BASIC

Dragon 64 32K BASIC
Dragon 64 64K BASIC
Dragon 200-E 32K BASIC
Dragon 200-E 64K BASIC
Dragon 200-E Charset
Dragon Professional Boot
Dragon Professional BASIC
Tandy Colour BASIC

Tandy Extended BASIC

Tandy Super ECB (CoCo 3)
Tandy Super ECB (PAL CoCo 3)
Tandy Microcolour BASIC

Alice Microcolour BASIC

Tandy Advanced Colour BASIC
DragonDOS

Delta System

RS-DOS

RS-DOS with Becker port
Orchestra 90-CC

ROM list

‘@dragon32’
‘@dragon64’
‘@dragon64_alt’
‘@dragon200e’
‘@dragon200e_alt’
‘@dragon200e_charset
‘@dragonpro_boot’
‘@dragonpro_basic’
‘@coco’

9

‘@coco_ext’

‘@cocold’

‘Qcoco3p’

‘@mc10’

‘alice’
‘@deluxecoco’
‘@dragondos_compat’

‘@delta’
‘@rsdos’
‘@rsdos_becker’
‘orch90.rom’

Canonical image names
d32.rom

d64_1.rom

d64_2.rom

d200e_1.rom
d200e_2.rom
d200e_26.rom
alpha-boot-v1.0.rom
alpha-basic.rom
bas13.rom, basl2.rom,
basll.rom, basi10.rom
extbasll.rom, extbas10.rom
coco3.rom

coco3p.rom

mcl0.rom

alice.rom

deluxe.rom
dplus49b.rom, sdose6.rom,
ddos10.rom

delta2.rom, delta.rom
disk1ll.rom, disk10.rom
hdbdw3bck.rom

The default search path for images specified only as a base filename varies by platform, and
is detailed in Chapter 2 [Getting started], page 3. This path can can be overridden with the
option -rompath path, where path is a colon-separated list of directories to search.

A CRC32 value is calculated and reported for each ROM image loaded. XRoar uses these

CRCs to determine whether certain breakpoints can be used (e.g. for fast tape loading). The
lists of CRCs matched can be defined in a similar way to ROM lists using the -crclist
list=crc[,crc]... option. Each crc is a 8-digit hex number preceded by ‘0x’, or the name of
a nested list preceded by ‘@’. Use this if you have a modified version of a BASIC ROM that
maintains compatible entry points with an original. View the current lists with ~crclist-print.

Sometimes it may be useful to force CRC matching so that breakpoints apply (e.g. you are
modifying a ROM image and don’t wish to have to add its CRC to the match list each time you
modify it). The -force-crc-match option forces the CRCs to be as if an original ROM image
were loaded.

37

Appendix A Acknowledgements

Darren Atkinson’s Motorola 6809 and Hitachi 6309 Programmers Reference has been very useful
for 6309 support and fleshing out some of the illegal instructions on the 6809.

David Banks has published a lot of information on undocumented 6809 and 6309 behaviour
learned as a result of hardware fuzzing.

Alan Cox contributed the IDE code.

Greg Dionne and Ron Klein have been very helpful with information and testing of MC-10
related behaviour.

Phill Harvey-Smith is the primary source of information about the Dragon Professional,
and as well as his comments about it for MAME, has traced various other connections on his
prototype board.

John Kowalski’s GIME register reference was invaluable in getting early CoCo 3 support.
The ability to see his composite video demos using XRoar’s simulation code was also a big
nudge towards even starting to add that support.

Tim Lindner has made many of his test cases public, helping with CoCo 3, 6309, and font
accuracy.

Stewart Orchard has offered up much sage wisdom over the years. In particular, he figured
out what was likely going on with SAM VDG address glitching.

Tormod Volden contributed support for his NX32 and MOOH devices (including general SPI
and SD image support).

Various other people have also provided feedback or test cases that have helped nail down
bugs; read the Changelog for details.

And thanks to all the people on the Dragon Archive Forums (https://archive.
worldofdragon.org/phpBB3/), IRC and CoCo Discord that have provided helpful feedback
and insight.

Various BBC R&D White Papers (https://www.bbc.co.uk/rd/publications) and Video
Dempystified by Keith Jack were good references while working on composite video simulation.

And finally, a nod to young me, who did some research into the illegal behaviours of TFR

and EXG, and into how the SAM and VDG interact. Old me has spent more time with an
oscilloscope, but also keeps introducing bugs into the code.

https://archive.worldofdragon.org/phpBB3/
https://archive.worldofdragon.org/phpBB3/
https://www.bbc.co.uk/rd/publications

38

Appendix B Keyboard shortcuts

A summary of commonly available keyboard shortcuts.

CTRL+[1-4]

CTRL+SHIFT+[1-4]

CTRL+ [5-8]

CTRL+SHIFT+[5-8]

CTRL+A
CTRL+D
CTRL+SHIFT+D
CTRL+E
CTRL+F

or F11
CTRL+SHIFT+H

or PAUSE
CTRL+SHIFT+I
CTRL+J
CTRL+SHIFT+J
CTRL+K
CTRL+L
CTRL+SHIFT+L
CTRL+M
CTRL+SHIFT+P
CTRL+Q
CTRL+R
CTRL+SHIFT+R
CTRL+S
CTRL+SHIFT+S
CTRL+T
CTRL+V
CTRL+SHIFT+V
CTRL+W
CTRL+Z
CTRL+-
CTRL++
CTRL+<
CTRL+>
F12
SHIFT+F12

Insert disk into drive 1-4.

Create new disk in drive 1-4.

Toggle write enable on disk in drive 1-4.

Toggle write back on disk in drive 1-4.

Cycle through cross-colour modes (and RGB on CoCo 3).
Open disk control tool (GTK+ & Windows only).

Flush disk images.

Toggle cartridge on/off - reset to take effect.

Toggle full screen mode.

Halt the CPU (not on the MC-10).

Toggle text mode inverse video.

Cycle through joystick emulation modes (None, Right, Left).
Swap left and right joysticks.

Toggle Dragon/CoCo keyboard layout (not on the MC-10).
Load a file.

Load and attempt to autorun a file.

Toggle menubar.

Flush printer output.

Quit emulator.

Soft reset emulated machine.

Hard reset emulated machine.

Save a snapshot.

Write screenshot as PNG.

Open the tape control tool (GTK+ & Windows only).
Toggle trace mode.

Open TV controls window (GTK+ & Windows only).
Attach a virtual cassette file for writing.

Enable keyboard translation mode.

Zoom out (smaller emulated display).

Zoom in (larger emulated display).

Zoom out picture (see more border).

Zoom in picture area (see less border).

Run at maximum speed while held.

Maximum speed toggle.

Appendix C File formats

XRoar recognises most file types by their file extension.

Extension
.cas, .cl0
.wav

k7
.bas, .asc

.dmk

.jve, .dsk
.0s9
.vdk
.sna

.ram

.bin, .dgn, .cco

.hex

.rom, .ccc

.ide

.img
.vhd

Description

Compact cassette image. CUE data can optionally mark up silence
and the wavelength to use for each bit.

Standard audio data file can be used as a cassette image.

Another less popular compact cassette image format. Read-only.
ASCII BASIC files. XRoar will wrap the ASCII text in the appropri-
ate file structure to present to the emulated machine as saved ASCII
BASIC. On the MC-10, these will be “quick-typed” instead, as these
machines do not support ASCIT BASIC files on tape. Read-only.

Disk image file in a format defined by David Keil. These images store
a lot of information about the structure of a disk and support both
single and double density data.

Disk image file in a basic sector-by-sector format with optional header
information.

Like .dsk, but XRoar knows it can inspect the OS-9 filesystem for
geometry information.

Another disk image file format, used by PC-Dragon.

XRoar-specific snapshots preserve machine state. Old v1 snapshots
can still be read, but writing a snapshot uses the new v2 format.

When a .ram extension is given while writing a snapshot, a simple
RAM dump is generated instead. Write-only.

Binary file in DragonDOS or RS-DOS format (autodetected). Read-
only.

Intel hex record. An ASCII format that encodes binary data and
where in memory to load it. Read-only.

ROM image file. Simple binary dump of a ROM IC. Machine firmware
images and ROM cartridge images are in this format. Read-only.

HD image file assumed to be 512 bytes per sector with IDE “magic”
and IDENTIFY DEVICE metadata in the first 1024 bytes.

HD image file assumed to be 512 bytes per sector with no header.
HD image file assumed to be 256 bytes per sector with no header.

39

	1 Introduction
	Recent changes

	2 Getting started
	Prerequisites
	Getting started under Linux/Unix
	Getting started under Windows
	Getting started under Mac OS X+
	Building from source
	The command line
	Troubleshooting
	No BASIC ROM
	Program lacks colour
	Can't access HD/SD image
	Debug messages

	3 User interface
	Selecting a machine
	Selecting a cartridge
	Running programs
	Cassette tape control
	Drive control
	Video options
	TV input
	Composite rendering
	TV controls

	Keyboard layout
	Printer control

	4 Emulated hardware
	Machine architectures
	Dragon 32
	Dragon 64
	Dragon Professional
	Tandy Colour Computer 1/2
	Tandy MC-10
	Matra & Hachette Alice
	Tandy Deluxe Colour Computer
	Tandy Colour Computer 3

	Cartridge types
	DragonDOS
	Delta
	RS-DOS
	Glenside IDE controller
	NX32 and MOOH cartridges
	Games Master Cartridge
	Orchestra 90-CC sound cartridge
	Multi-Pak Interface
	MC-10 MCX128 memory expansion

	Keyboard
	Joysticks
	Printers

	5 Storage media
	Cassettes
	Tape image file formats
	Input and Output tapes
	Remote motor control

	Floppy disks
	Hard disks

	6 Configuring XRoar
	Startup options
	Machines
	Cartridges
	Becker port
	Cassettes
	Floppy disks
	Hard disks
	Keyboard
	Joysticks
	Gamepad mapping

	Printers
	Files
	Firmware ROM images
	User interface
	Audio
	Debugging
	Other options

	7 Files
	Snapshots
	Screenshots
	Binary files
	Firmware ROM images

	A Acknowledgements
	B Keyboard shortcuts
	C File formats

