Interface QR<T>


  • public interface QR<T>
    QR Decomposition.

    For an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n orthogonal matrix Q and an n-by-n upper triangular matrix R so that A = Q*R.

    The QR decompostion always exists, even if the matrix does not have full rank, so the constructor will never fail. The primary use of the QR decomposition is in the least squares solution of nonsquare systems of simultaneous linear equations. This will fail if isFullRank() returns false.

    • Field Detail

      • MATRIX

        static final QR<Matrix> MATRIX
      • MATRIXLARGESINGLETHREADED

        static final QR<Matrix> MATRIXLARGESINGLETHREADED
      • MATRIXLARGEMULTITHREADED

        static final QR<Matrix> MATRIXLARGEMULTITHREADED
      • INSTANCE

        static final QR<Matrix> INSTANCE
      • MATRIXSMALLMULTITHREADED

        static final QR<Matrix> MATRIXSMALLMULTITHREADED
      • MATRIXSMALLSINGLETHREADED

        static final QR<Matrix> MATRIXSMALLSINGLETHREADED
    • Method Detail

      • calc

        T[] calc​(T source)
      • solve

        T solve​(T source,
                T b)