Class Eig.EigMatrix
- java.lang.Object
-
- org.ujmp.core.doublematrix.calculation.general.decomposition.Eig.EigMatrix
-
-
Field Summary
Fields Modifier and Type Field Description private double
cdivi
private double
cdivr
private double[]
d
Arrays for internal storage of eigenvalues.private double[]
e
Arrays for internal storage of eigenvalues.private static double
EPSILON
private double[][]
H
Array for internal storage of nonsymmetric Hessenberg form.private boolean
issymmetric
Symmetry flag.private int
n
Row and column dimension (square matrix).private double[]
ort
Working storage for nonsymmetric algorithm.static long
serialVersionUID
private double[][]
V
Array for internal storage of eigenvectors.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description private void
cdiv(double xr, double xi, double yr, double yi)
DenseDoubleMatrix2D
getD()
Return the block diagonal eigenvalue matrixdouble[]
getImagEigenvalues()
Return the imaginary parts of the eigenvaluesdouble[]
getRealEigenvalues()
Return the real parts of the eigenvaluesDenseDoubleMatrix2D
getV()
Return the eigenvector matrixprivate void
hqr2()
private void
orthes()
private void
tql2()
private void
tred2()
-
-
-
Field Detail
-
serialVersionUID
public static final long serialVersionUID
- See Also:
- Constant Field Values
-
EPSILON
private static final double EPSILON
-
n
private final int n
Row and column dimension (square matrix).
-
issymmetric
private boolean issymmetric
Symmetry flag.
-
d
private final double[] d
Arrays for internal storage of eigenvalues.
-
e
private final double[] e
Arrays for internal storage of eigenvalues.
-
V
private final double[][] V
Array for internal storage of eigenvectors.
-
H
private final double[][] H
Array for internal storage of nonsymmetric Hessenberg form.
-
ort
private final double[] ort
Working storage for nonsymmetric algorithm.
-
cdivr
private transient double cdivr
-
cdivi
private transient double cdivi
-
-
Constructor Detail
-
EigMatrix
public EigMatrix(Matrix Arg)
Check for symmetry, then construct the eigenvalue decomposition- Parameters:
A
- Square matrix
-
-
Method Detail
-
tred2
private final void tred2()
-
tql2
private final void tql2()
-
orthes
private final void orthes()
-
cdiv
private final void cdiv(double xr, double xi, double yr, double yi)
-
hqr2
private final void hqr2()
-
getV
public final DenseDoubleMatrix2D getV()
Return the eigenvector matrix- Returns:
- V
-
getRealEigenvalues
public final double[] getRealEigenvalues()
Return the real parts of the eigenvalues- Returns:
- real(diag(D))
-
getImagEigenvalues
public final double[] getImagEigenvalues()
Return the imaginary parts of the eigenvalues- Returns:
- imag(diag(D))
-
getD
public final DenseDoubleMatrix2D getD()
Return the block diagonal eigenvalue matrix- Returns:
- D
-
-