Package org.ojalgo.data.cluster
Class GeneralisedKMeans<T>
- java.lang.Object
-
- org.ojalgo.data.cluster.GeneralisedKMeans<T>
-
- All Implemented Interfaces:
ClusteringAlgorithm<T>
public final class GeneralisedKMeans<T> extends java.lang.Object implements ClusteringAlgorithm<T>
Contains the outline of the k-means algorithm, but designed for customisation.- Works with any type of data
- Allows for custom distance calculations
- Allows for custom centroid initialisation and updating
-
-
Field Summary
Fields Modifier and Type Field Description private static NumberContext
ACCURACY
private java.util.function.Function<java.util.Collection<T>,java.util.List<T>>
myCentroidInitialiser
private java.util.function.Function<java.util.Collection<T>,T>
myCentroidUpdater
private java.util.function.ToDoubleBiFunction<T,T>
myDistanceCalculator
-
Constructor Summary
Constructors Constructor Description GeneralisedKMeans(java.util.function.Function<java.util.Collection<T>,java.util.List<T>> centroidInitialiser, java.util.function.Function<java.util.Collection<T>,T> centroidUpdater, java.util.function.ToDoubleBiFunction<T,T> distanceCalculator)
You have to configure how distances are measured and how centroids are derived.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description java.util.List<java.util.Set<T>>
cluster(java.util.Collection<T> input)
-
-
-
Field Detail
-
ACCURACY
private static final NumberContext ACCURACY
-
myCentroidUpdater
private final java.util.function.Function<java.util.Collection<T>,T> myCentroidUpdater
-
-
Constructor Detail
-
GeneralisedKMeans
public GeneralisedKMeans(java.util.function.Function<java.util.Collection<T>,java.util.List<T>> centroidInitialiser, java.util.function.Function<java.util.Collection<T>,T> centroidUpdater, java.util.function.ToDoubleBiFunction<T,T> distanceCalculator)
You have to configure how distances are measured and how centroids are derived.- Parameters:
centroidInitialiser
- The initialisation function should return a list of k centroids. This function determines 'K'.centroidUpdater
- The update function should return a new centroid based on a collection of points (the set of items in a cluster).distanceCalculator
- A function that calculates the distance between two points.
-
-
Method Detail
-
cluster
public java.util.List<java.util.Set<T>> cluster(java.util.Collection<T> input)
- Specified by:
cluster
in interfaceClusteringAlgorithm<T>
-
-