Class QRDecomposition

java.lang.Object
cern.colt.matrix.linalg.QRDecomposition
All Implemented Interfaces:
Serializable

public class QRDecomposition extends Object implements Serializable
For an m x n matrix A with m >= n, the QR decomposition is an m x n orthogonal matrix Q and an n x n upper triangular matrix R so that A = Q*R.

The QR decompostion always exists, even if the matrix does not have full rank, so the constructor will never fail. The primary use of the QR decomposition is in the least squares solution of nonsquare systems of simultaneous linear equations. This will fail if isFullRank() returns false.

See Also:
  • Field Details

    • serialVersionUID

      static final long serialVersionUID
      See Also:
    • QR

      private DoubleMatrix2D QR
      Array for internal storage of decomposition.
    • m

      private int m
      Row and column dimensions.
    • n

      private int n
      Row and column dimensions.
    • Rdiag

      private DoubleMatrix1D Rdiag
      Array for internal storage of diagonal of R.
  • Constructor Details

    • QRDecomposition

      public QRDecomposition(DoubleMatrix2D A)
      Constructs and returns a new QR decomposition object; computed by Householder reflections; The decomposed matrices can be retrieved via instance methods of the returned decomposition object.
      Parameters:
      A - A rectangular matrix.
      Throws:
      IllegalArgumentException - if A.rows() invalid input: '<' A.columns().
  • Method Details

    • getH

      public DoubleMatrix2D getH()
      Returns the Householder vectors H.
      Returns:
      A lower trapezoidal matrix whose columns define the householder reflections.
    • getQ

      public DoubleMatrix2D getQ()
      Generates and returns the (economy-sized) orthogonal factor Q.
      Returns:
      Q
    • getR

      public DoubleMatrix2D getR()
      Returns the upper triangular factor, R.
      Returns:
      R
    • hasFullRank

      public boolean hasFullRank()
      Returns whether the matrix A has full rank.
      Returns:
      true if R, and hence A, has full rank.
    • solve

      public DoubleMatrix2D solve(DoubleMatrix2D B)
      Least squares solution of A*X = B; returns X.
      Parameters:
      B - A matrix with as many rows as A and any number of columns.
      Returns:
      X that minimizes the two norm of Q*R*X - B.
      Throws:
      IllegalArgumentException - if B.rows() != A.rows().
      IllegalArgumentException - if !this.hasFullRank() (A is rank deficient).
    • toString

      public String toString()
      Returns a String with (propertyName, propertyValue) pairs. Useful for debugging or to quickly get the rough picture. For example,
      rank          : 3
      trace         : 0
      
      Overrides:
      toString in class Object