Class UniformContinuousDistribution

java.lang.Object
org.apache.commons.statistics.distribution.AbstractContinuousDistribution
org.apache.commons.statistics.distribution.UniformContinuousDistribution
All Implemented Interfaces:
ContinuousDistribution

public final class UniformContinuousDistribution extends AbstractContinuousDistribution
Implementation of the uniform distribution.

The probability density function of \( X \) is:

\[ f(x; a, b) = \frac{1}{b-a} \]

for \( -\infty \lt a \lt b \lt \infty \) and \( x \in [a, b] \).

See Also:
  • Nested Class Summary

    Nested classes/interfaces inherited from interface org.apache.commons.statistics.distribution.ContinuousDistribution

    ContinuousDistribution.Sampler
  • Field Summary

    Fields
    Modifier and Type
    Field
    Description
    private final double
    Cache of the log density.
    private final double
    Lower bound of this distribution (inclusive).
    private final double
    Cache of the density.
    private final double
    Upper bound of this distribution (exclusive).
    private final double
    Range between the upper and lower bound of this distribution (cached for computations).
  • Constructor Summary

    Constructors
    Modifier
    Constructor
    Description
    private
    UniformContinuousDistribution(double lower, double upper)
     
  • Method Summary

    Modifier and Type
    Method
    Description
    createSampler(org.apache.commons.rng.UniformRandomProvider rng)
    Creates a sampler.
    double
    For a random variable X whose values are distributed according to this distribution, this method returns P(X <= x).
    double
    density(double x)
    Returns the probability density function (PDF) of this distribution evaluated at the specified point x.
    double
    Gets the mean of this distribution.
    double
    Gets the lower bound of the support.
    double
    Gets the upper bound of the support.
    double
    Gets the variance of this distribution.
    double
    Computes the quantile function of this distribution.
    double
    Computes the inverse survival probability function of this distribution.
    double
    logDensity(double x)
    Returns the natural logarithm of the probability density function (PDF) of this distribution evaluated at the specified point x.
    of(double lower, double upper)
    Creates a uniform continuous distribution.
    double
    probability(double x0, double x1)
    For a random variable X whose values are distributed according to this distribution, this method returns P(x0 < X <= x1).
    double
    For a random variable X whose values are distributed according to this distribution, this method returns P(X > x).

    Methods inherited from class org.apache.commons.statistics.distribution.AbstractContinuousDistribution

    getMedian, isSupportConnected

    Methods inherited from class java.lang.Object

    clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
  • Field Details

    • lower

      private final double lower
      Lower bound of this distribution (inclusive).
    • upper

      private final double upper
      Upper bound of this distribution (exclusive).
    • upperMinusLower

      private final double upperMinusLower
      Range between the upper and lower bound of this distribution (cached for computations).
    • pdf

      private final double pdf
      Cache of the density.
    • logPdf

      private final double logPdf
      Cache of the log density.
  • Constructor Details

    • UniformContinuousDistribution

      private UniformContinuousDistribution(double lower, double upper)
      Parameters:
      lower - Lower bound of this distribution (inclusive).
      upper - Upper bound of this distribution (inclusive).
  • Method Details

    • of

      public static UniformContinuousDistribution of(double lower, double upper)
      Creates a uniform continuous distribution.
      Parameters:
      lower - Lower bound of this distribution (inclusive).
      upper - Upper bound of this distribution (inclusive).
      Returns:
      the distribution
      Throws:
      IllegalArgumentException - if lower >= upper or the range between the bounds is not finite
    • density

      public double density(double x)
      Returns the probability density function (PDF) of this distribution evaluated at the specified point x. In general, the PDF is the derivative of the CDF. If the derivative does not exist at x, then an appropriate replacement should be returned, e.g. Double.POSITIVE_INFINITY, Double.NaN, or the limit inferior or limit superior of the difference quotient.
      Parameters:
      x - Point at which the PDF is evaluated.
      Returns:
      the value of the probability density function at x.
    • probability

      public double probability(double x0, double x1)
      For a random variable X whose values are distributed according to this distribution, this method returns P(x0 < X <= x1). The default implementation uses the identity P(x0 < X <= x1) = P(X <= x1) - P(X <= x0)
      Specified by:
      probability in interface ContinuousDistribution
      Overrides:
      probability in class AbstractContinuousDistribution
      Parameters:
      x0 - Lower bound (exclusive).
      x1 - Upper bound (inclusive).
      Returns:
      the probability that a random variable with this distribution takes a value between x0 and x1, excluding the lower and including the upper endpoint.
    • logDensity

      public double logDensity(double x)
      Returns the natural logarithm of the probability density function (PDF) of this distribution evaluated at the specified point x.
      Parameters:
      x - Point at which the PDF is evaluated.
      Returns:
      the logarithm of the value of the probability density function at x.
    • cumulativeProbability

      public double cumulativeProbability(double x)
      For a random variable X whose values are distributed according to this distribution, this method returns P(X <= x). In other words, this method represents the (cumulative) distribution function (CDF) for this distribution.
      Parameters:
      x - Point at which the CDF is evaluated.
      Returns:
      the probability that a random variable with this distribution takes a value less than or equal to x.
    • survivalProbability

      public double survivalProbability(double x)
      For a random variable X whose values are distributed according to this distribution, this method returns P(X > x). In other words, this method represents the complementary cumulative distribution function.

      By default, this is defined as 1 - cumulativeProbability(x), but the specific implementation may be more accurate.

      Parameters:
      x - Point at which the survival function is evaluated.
      Returns:
      the probability that a random variable with this distribution takes a value greater than x.
    • inverseCumulativeProbability

      public double inverseCumulativeProbability(double p)
      Computes the quantile function of this distribution. For a random variable X distributed according to this distribution, the returned value is:

      \[ x = \begin{cases} \inf \{ x \in \mathbb R : P(X \le x) \ge p\} & \text{for } 0 \lt p \le 1 \\ \inf \{ x \in \mathbb R : P(X \le x) \gt 0 \} & \text{for } p = 0 \end{cases} \]

      The default implementation returns:

      Specified by:
      inverseCumulativeProbability in interface ContinuousDistribution
      Overrides:
      inverseCumulativeProbability in class AbstractContinuousDistribution
      Parameters:
      p - Cumulative probability.
      Returns:
      the smallest p-quantile of this distribution (largest 0-quantile for p = 0).
    • inverseSurvivalProbability

      public double inverseSurvivalProbability(double p)
      Computes the inverse survival probability function of this distribution. For a random variable X distributed according to this distribution, the returned value is:

      \[ x = \begin{cases} \inf \{ x \in \mathbb R : P(X \ge x) \le p\} & \text{for } 0 \le p \lt 1 \\ \inf \{ x \in \mathbb R : P(X \ge x) \lt 1 \} & \text{for } p = 1 \end{cases} \]

      By default, this is defined as inverseCumulativeProbability(1 - p), but the specific implementation may be more accurate.

      The default implementation returns:

      Specified by:
      inverseSurvivalProbability in interface ContinuousDistribution
      Overrides:
      inverseSurvivalProbability in class AbstractContinuousDistribution
      Parameters:
      p - Survival probability.
      Returns:
      the smallest (1-p)-quantile of this distribution (largest 0-quantile for p = 1).
    • getMean

      public double getMean()
      Gets the mean of this distribution.

      For lower bound \( a \) and upper bound \( b \), the mean is \( \frac{1}{2} (a + b) \).

      Returns:
      the mean.
    • getVariance

      public double getVariance()
      Gets the variance of this distribution.

      For lower bound \( a \) and upper bound \( b \), the variance is \( \frac{1}{12} (b - a)^2 \).

      Returns:
      the variance.
    • getSupportLowerBound

      public double getSupportLowerBound()
      Gets the lower bound of the support. It must return the same value as inverseCumulativeProbability(0), i.e. \( \inf \{ x \in \mathbb R : P(X \le x) \gt 0 \} \).

      The lower bound of the support is equal to the lower bound parameter of the distribution.

      Returns:
      the lower bound of the support.
    • getSupportUpperBound

      public double getSupportUpperBound()
      Gets the upper bound of the support. It must return the same value as inverseCumulativeProbability(1), i.e. \( \inf \{ x \in \mathbb R : P(X \le x) = 1 \} \).

      The upper bound of the support is equal to the upper bound parameter of the distribution.

      Returns:
      the upper bound of the support.
    • createSampler

      public ContinuousDistribution.Sampler createSampler(org.apache.commons.rng.UniformRandomProvider rng)
      Creates a sampler.
      Specified by:
      createSampler in interface ContinuousDistribution
      Overrides:
      createSampler in class AbstractContinuousDistribution
      Parameters:
      rng - Generator of uniformly distributed numbers.
      Returns:
      a sampler that produces random numbers according this distribution.