Class NormalDistribution

java.lang.Object
org.apache.commons.statistics.distribution.AbstractContinuousDistribution
org.apache.commons.statistics.distribution.NormalDistribution
All Implemented Interfaces:
ContinuousDistribution

public final class NormalDistribution extends AbstractContinuousDistribution
Implementation of the normal (Gaussian) distribution.

The probability density function of \( X \) is:

\[ f(x; \mu, \sigma) = \frac 1 {\sigma\sqrt{2\pi}} e^{-{\frac 1 2}\left( \frac{x-\mu}{\sigma} \right)^2 } \]

for \( \mu \) the mean, \( \sigma > 0 \) the standard deviation, and \( x \in (-\infty, \infty) \).

See Also:
  • Field Details

    • HALF_LOG_TWO_PI

      private static final double HALF_LOG_TWO_PI
      0.5 * ln(2 * pi). Computed to 25-digits precision.
      See Also:
    • mean

      private final double mean
      Mean of this distribution.
    • standardDeviation

      private final double standardDeviation
      Standard deviation of this distribution.
    • logStandardDeviationPlusHalfLog2Pi

      private final double logStandardDeviationPlusHalfLog2Pi
      The value of log(sd) + 0.5*log(2*pi) stored for faster computation.
    • sdSqrt2

      private final double sdSqrt2
      Standard deviation multiplied by sqrt(2). This is used to avoid a double division when computing the value passed to the error function:
        ((x - u) / sd) / sqrt(2) == (x - u) / (sd * sqrt(2)).
        

      Note: Implementations may first normalise x and then divide by sqrt(2) resulting in differences due to rounding error that show increasingly large relative differences as the error function computes close to 0 in the extreme tail.

    • sdSqrt2pi

      private final double sdSqrt2pi
      Standard deviation multiplied by sqrt(2 pi). Computed to high precision.
  • Constructor Details

    • NormalDistribution

      private NormalDistribution(double mean, double sd)
      Parameters:
      mean - Mean for this distribution.
      sd - Standard deviation for this distribution.
  • Method Details

    • of

      public static NormalDistribution of(double mean, double sd)
      Creates a normal distribution.
      Parameters:
      mean - Mean for this distribution.
      sd - Standard deviation for this distribution.
      Returns:
      the distribution
      Throws:
      IllegalArgumentException - if sd <= 0.
    • getStandardDeviation

      public double getStandardDeviation()
      Gets the standard deviation parameter of this distribution.
      Returns:
      the standard deviation.
    • density

      public double density(double x)
      Returns the probability density function (PDF) of this distribution evaluated at the specified point x. In general, the PDF is the derivative of the CDF. If the derivative does not exist at x, then an appropriate replacement should be returned, e.g. Double.POSITIVE_INFINITY, Double.NaN, or the limit inferior or limit superior of the difference quotient.
      Parameters:
      x - Point at which the PDF is evaluated.
      Returns:
      the value of the probability density function at x.
    • probability

      public double probability(double x0, double x1)
      For a random variable X whose values are distributed according to this distribution, this method returns P(x0 < X <= x1). The default implementation uses the identity P(x0 < X <= x1) = P(X <= x1) - P(X <= x0)
      Specified by:
      probability in interface ContinuousDistribution
      Overrides:
      probability in class AbstractContinuousDistribution
      Parameters:
      x0 - Lower bound (exclusive).
      x1 - Upper bound (inclusive).
      Returns:
      the probability that a random variable with this distribution takes a value between x0 and x1, excluding the lower and including the upper endpoint.
    • logDensity

      public double logDensity(double x)
      Returns the natural logarithm of the probability density function (PDF) of this distribution evaluated at the specified point x.
      Parameters:
      x - Point at which the PDF is evaluated.
      Returns:
      the logarithm of the value of the probability density function at x.
    • cumulativeProbability

      public double cumulativeProbability(double x)
      For a random variable X whose values are distributed according to this distribution, this method returns P(X <= x). In other words, this method represents the (cumulative) distribution function (CDF) for this distribution.
      Parameters:
      x - Point at which the CDF is evaluated.
      Returns:
      the probability that a random variable with this distribution takes a value less than or equal to x.
    • survivalProbability

      public double survivalProbability(double x)
      For a random variable X whose values are distributed according to this distribution, this method returns P(X > x). In other words, this method represents the complementary cumulative distribution function.

      By default, this is defined as 1 - cumulativeProbability(x), but the specific implementation may be more accurate.

      Parameters:
      x - Point at which the survival function is evaluated.
      Returns:
      the probability that a random variable with this distribution takes a value greater than x.
    • inverseCumulativeProbability

      public double inverseCumulativeProbability(double p)
      Computes the quantile function of this distribution. For a random variable X distributed according to this distribution, the returned value is:

      \[ x = \begin{cases} \inf \{ x \in \mathbb R : P(X \le x) \ge p\} & \text{for } 0 \lt p \le 1 \\ \inf \{ x \in \mathbb R : P(X \le x) \gt 0 \} & \text{for } p = 0 \end{cases} \]

      The default implementation returns:

      Specified by:
      inverseCumulativeProbability in interface ContinuousDistribution
      Overrides:
      inverseCumulativeProbability in class AbstractContinuousDistribution
      Parameters:
      p - Cumulative probability.
      Returns:
      the smallest p-quantile of this distribution (largest 0-quantile for p = 0).
    • inverseSurvivalProbability

      public double inverseSurvivalProbability(double p)
      Computes the inverse survival probability function of this distribution. For a random variable X distributed according to this distribution, the returned value is:

      \[ x = \begin{cases} \inf \{ x \in \mathbb R : P(X \ge x) \le p\} & \text{for } 0 \le p \lt 1 \\ \inf \{ x \in \mathbb R : P(X \ge x) \lt 1 \} & \text{for } p = 1 \end{cases} \]

      By default, this is defined as inverseCumulativeProbability(1 - p), but the specific implementation may be more accurate.

      The default implementation returns:

      Specified by:
      inverseSurvivalProbability in interface ContinuousDistribution
      Overrides:
      inverseSurvivalProbability in class AbstractContinuousDistribution
      Parameters:
      p - Survival probability.
      Returns:
      the smallest (1-p)-quantile of this distribution (largest 0-quantile for p = 1).
    • getMean

      public double getMean()
      Gets the mean of this distribution.
      Returns:
      the mean.
    • getVariance

      public double getVariance()
      Gets the variance of this distribution.

      For standard deviation parameter \( \sigma \), the variance is \( \sigma^2 \).

      Returns:
      the variance.
    • getSupportLowerBound

      public double getSupportLowerBound()
      Gets the lower bound of the support. It must return the same value as inverseCumulativeProbability(0), i.e. \( \inf \{ x \in \mathbb R : P(X \le x) \gt 0 \} \).

      The lower bound of the support is always negative infinity.

      Returns:
      negative infinity.
    • getSupportUpperBound

      public double getSupportUpperBound()
      Gets the upper bound of the support. It must return the same value as inverseCumulativeProbability(1), i.e. \( \inf \{ x \in \mathbb R : P(X \le x) = 1 \} \).

      The upper bound of the support is always positive infinity.

      Returns:
      positive infinity.
    • createSampler

      public ContinuousDistribution.Sampler createSampler(org.apache.commons.rng.UniformRandomProvider rng)
      Creates a sampler.
      Specified by:
      createSampler in interface ContinuousDistribution
      Overrides:
      createSampler in class AbstractContinuousDistribution
      Parameters:
      rng - Generator of uniformly distributed numbers.
      Returns:
      a sampler that produces random numbers according this distribution.