Package org.apache.commons.numbers.gamma
Γ (Gamma) and Β (Beta) family of functions.
Implementation of
InvGamma1pm1
and LogGamma1p
is based on the
algorithms described in
- Didonato and Morris (1986), Computation of the Incomplete Gamma Function Ratios and their Inverse, TOMS 12(4), 377-393,
- Didonato and Morris (1992), Algorithm 708: Significant Digit Computation of the Incomplete Beta Function Ratios, TOMS 18(3), 360-373,
-
Class Summary Class Description Beta BoostBeta Implementation of the regularized beta functions and incomplete beta functions.BoostErf Implementation of the error function and its inverse.BoostGamma Implementation of the Regularized Gamma functions and Incomplete Gamma functions.BoostGamma.Lanczos 53-bit precision implementation of the Lanczos approximation.BoostMath Math functions used by the Boost functions.BoostTools Utility tools used by the Boost functions.Digamma Erf Erfc Erfcx Scaled complementary error function.ErfDifference Computes the difference betweenerror function values
.Gamma Gamma function \( \Gamma(x) \).GammaRatio Ratio of Gamma functions.IncompleteBeta IncompleteGamma IncompleteGamma.Lower Lower incomplete Gamma function \( \gamma(a, x) \).IncompleteGamma.Upper Upper incomplete Gamma function \( \Gamma(a, x) \).InverseErf Inverse of the error function.InverseErfc Inverse of the complementary error function.InvGamma1pm1 Function \( \frac{1}{\Gamma(1 + x)} - 1 \).LanczosApproximation Lanczos approximation to the Gamma function.LogBeta Computes \( log_e B(p, q) \).LogGamma Natural logarithm of the absolute value of \( \Gamma(x) \).LogGamma1p Function \( \ln \Gamma(1 + x) \).LogGammaSum Computes \( \log_e(\Gamma(a+b)) \).Policy Encapsulate the policy for function evaluation.RegularizedBeta RegularizedGamma RegularizedGamma.P Lower regularized Gamma function \( P(a, x) \).RegularizedGamma.Q Upper regularized Gamma function \( Q(a, x) \).SpecialMath Special math functions.Trigamma -
Exception Summary Exception Description GammaException Package private exception class with constants for frequently used messages.