Class ParetoDistribution
- java.lang.Object
-
- org.apache.commons.statistics.distribution.AbstractContinuousDistribution
-
- org.apache.commons.statistics.distribution.ParetoDistribution
-
- All Implemented Interfaces:
ContinuousDistribution
public final class ParetoDistribution extends AbstractContinuousDistribution
Implementation of the Pareto (Type I) distribution.The probability density function of \( X \) is:
\[ f(x; k, \alpha) = \frac{\alpha k^\alpha}{x^{\alpha + 1}} \]
for \( k > 0 \), \( \alpha > 0 \), and \( x \in [k, \infty) \).
\( k \) is a scale parameter: this is the minimum possible value of \( X \).
\( \alpha \) is a shape parameter: this is the Pareto index.
-
-
Nested Class Summary
-
Nested classes/interfaces inherited from interface org.apache.commons.statistics.distribution.ContinuousDistribution
ContinuousDistribution.Sampler
-
-
Field Summary
Fields Modifier and Type Field Description private java.util.function.DoubleUnaryOperator
logpdf
Implementation of log PDF(x).private static double
MIN_SHAPE_FOR_VARIANCE
The minimum value for the shape parameter when computing when computing the variance.private java.util.function.DoubleUnaryOperator
pdf
Implementation of PDF(x).private double
scale
The scale parameter of this distribution.private double
shape
The shape parameter of this distribution.
-
Constructor Summary
Constructors Modifier Constructor Description private
ParetoDistribution(double scale, double shape)
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description ContinuousDistribution.Sampler
createSampler(org.apache.commons.rng.UniformRandomProvider rng)
Creates a sampler.double
cumulativeProbability(double x)
For a random variableX
whose values are distributed according to this distribution, this method returnsP(X <= x)
.double
density(double x)
Returns the probability density function (PDF) of this distribution evaluated at the specified pointx
.double
getMean()
Gets the mean of this distribution.double
getScale()
Gets the scale parameter of this distribution.double
getShape()
Gets the shape parameter of this distribution.double
getSupportLowerBound()
Gets the lower bound of the support.double
getSupportUpperBound()
Gets the upper bound of the support.double
getVariance()
Gets the variance of this distribution.double
inverseCumulativeProbability(double p)
Computes the quantile function of this distribution.double
inverseSurvivalProbability(double p)
Computes the inverse survival probability function of this distribution.double
logDensity(double x)
Returns the natural logarithm of the probability density function (PDF) of this distribution evaluated at the specified pointx
.static ParetoDistribution
of(double scale, double shape)
Creates a Pareto distribution.double
survivalProbability(double x)
For a random variableX
whose values are distributed according to this distribution, this method returnsP(X > x)
.-
Methods inherited from class org.apache.commons.statistics.distribution.AbstractContinuousDistribution
getMedian, isSupportConnected, probability
-
-
-
-
Field Detail
-
MIN_SHAPE_FOR_VARIANCE
private static final double MIN_SHAPE_FOR_VARIANCE
The minimum value for the shape parameter when computing when computing the variance.- See Also:
- Constant Field Values
-
scale
private final double scale
The scale parameter of this distribution. Also known ask
; the minimum possible value for the random variableX
.
-
shape
private final double shape
The shape parameter of this distribution.
-
pdf
private final java.util.function.DoubleUnaryOperator pdf
Implementation of PDF(x). Assumes thatx >= scale
.
-
logpdf
private final java.util.function.DoubleUnaryOperator logpdf
Implementation of log PDF(x). Assumes thatx >= scale
.
-
-
Method Detail
-
of
public static ParetoDistribution of(double scale, double shape)
Creates a Pareto distribution.- Parameters:
scale
- Scale parameter (minimum possible value of X).shape
- Shape parameter (Pareto index).- Returns:
- the distribution
- Throws:
java.lang.IllegalArgumentException
- ifscale <= 0
,scale
is infinite, orshape <= 0
.
-
getScale
public double getScale()
Gets the scale parameter of this distribution. This is the minimum possible value of X.- Returns:
- the scale parameter.
-
getShape
public double getShape()
Gets the shape parameter of this distribution. This is the Pareto index.- Returns:
- the shape parameter.
-
density
public double density(double x)
Returns the probability density function (PDF) of this distribution evaluated at the specified pointx
. In general, the PDF is the derivative of the CDF. If the derivative does not exist atx
, then an appropriate replacement should be returned, e.g.Double.POSITIVE_INFINITY
,Double.NaN
, or the limit inferior or limit superior of the difference quotient.For scale parameter \( k \) and shape parameter \( \alpha \), the PDF is:
\[ f(x; k, \alpha) = \begin{cases} 0 & \text{for } x \lt k \\ \frac{\alpha k^\alpha}{x^{\alpha + 1}} & \text{for } x \ge k \end{cases} \]
- Parameters:
x
- Point at which the PDF is evaluated.- Returns:
- the value of the probability density function at
x
.
-
logDensity
public double logDensity(double x)
Returns the natural logarithm of the probability density function (PDF) of this distribution evaluated at the specified pointx
.See documentation of
density(double)
for computation details.- Parameters:
x
- Point at which the PDF is evaluated.- Returns:
- the logarithm of the value of the probability density function
at
x
.
-
cumulativeProbability
public double cumulativeProbability(double x)
For a random variableX
whose values are distributed according to this distribution, this method returnsP(X <= x)
. In other words, this method represents the (cumulative) distribution function (CDF) for this distribution.For scale parameter \( k \) and shape parameter \( \alpha \), the CDF is:
\[ F(x; k, \alpha) = \begin{cases} 0 & \text{for } x \le k \\ 1 - \left( \frac{k}{x} \right)^\alpha & \text{for } x \gt k \end{cases} \]
- Parameters:
x
- Point at which the CDF is evaluated.- Returns:
- the probability that a random variable with this
distribution takes a value less than or equal to
x
.
-
survivalProbability
public double survivalProbability(double x)
For a random variableX
whose values are distributed according to this distribution, this method returnsP(X > x)
. In other words, this method represents the complementary cumulative distribution function.By default, this is defined as
1 - cumulativeProbability(x)
, but the specific implementation may be more accurate.For scale parameter \( k \) and shape parameter \( \alpha \), the survival function is:
\[ S(x; k, \alpha) = \begin{cases} 1 & \text{for } x \le k \\ \left( \frac{k}{x} \right)^\alpha & \text{for } x \gt k \end{cases} \]
- Parameters:
x
- Point at which the survival function is evaluated.- Returns:
- the probability that a random variable with this
distribution takes a value greater than
x
.
-
inverseCumulativeProbability
public double inverseCumulativeProbability(double p)
Computes the quantile function of this distribution. For a random variableX
distributed according to this distribution, the returned value is:\[ x = \begin{cases} \inf \{ x \in \mathbb R : P(X \le x) \ge p\} & \text{for } 0 \lt p \le 1 \\ \inf \{ x \in \mathbb R : P(X \le x) \gt 0 \} & \text{for } p = 0 \end{cases} \]
The default implementation returns:
ContinuousDistribution.getSupportLowerBound()
forp = 0
,ContinuousDistribution.getSupportUpperBound()
forp = 1
, or- the result of a search for a root between the lower and upper bound using
cumulativeProbability(x) - p
. The bounds may be bracketed for efficiency.
- Specified by:
inverseCumulativeProbability
in interfaceContinuousDistribution
- Overrides:
inverseCumulativeProbability
in classAbstractContinuousDistribution
- Parameters:
p
- Cumulative probability.- Returns:
- the smallest
p
-quantile of this distribution (largest 0-quantile forp = 0
).
-
inverseSurvivalProbability
public double inverseSurvivalProbability(double p)
Computes the inverse survival probability function of this distribution. For a random variableX
distributed according to this distribution, the returned value is:\[ x = \begin{cases} \inf \{ x \in \mathbb R : P(X \gt x) \le p\} & \text{for } 0 \le p \lt 1 \\ \inf \{ x \in \mathbb R : P(X \gt x) \lt 1 \} & \text{for } p = 1 \end{cases} \]
By default, this is defined as
inverseCumulativeProbability(1 - p)
, but the specific implementation may be more accurate.The default implementation returns:
ContinuousDistribution.getSupportLowerBound()
forp = 1
,ContinuousDistribution.getSupportUpperBound()
forp = 0
, or- the result of a search for a root between the lower and upper bound using
survivalProbability(x) - p
. The bounds may be bracketed for efficiency.
- Specified by:
inverseSurvivalProbability
in interfaceContinuousDistribution
- Overrides:
inverseSurvivalProbability
in classAbstractContinuousDistribution
- Parameters:
p
- Survival probability.- Returns:
- the smallest
(1-p)
-quantile of this distribution (largest 0-quantile forp = 1
).
-
getMean
public double getMean()
Gets the mean of this distribution.For scale parameter \( k \) and shape parameter \( \alpha \), the mean is:
\[ \mathbb{E}[X] = \begin{cases} \infty & \text{for } \alpha \le 1 \\ \frac{k \alpha}{(\alpha-1)} & \text{for } \alpha \gt 1 \end{cases} \]
- Returns:
- the mean.
-
getVariance
public double getVariance()
Gets the variance of this distribution.For scale parameter \( k \) and shape parameter \( \alpha \), the variance is:
\[ \operatorname{var}[X] = \begin{cases} \infty & \text{for } \alpha \le 2 \\ \frac{k^2 \alpha}{(\alpha-1)^2 (\alpha-2)} & \text{for } \alpha \gt 2 \end{cases} \]
- Returns:
- the variance.
-
getSupportLowerBound
public double getSupportLowerBound()
Gets the lower bound of the support. It must return the same value asinverseCumulativeProbability(0)
, i.e. \( \inf \{ x \in \mathbb R : P(X \le x) \gt 0 \} \).The lower bound of the support is equal to the scale parameter
k
.- Returns:
- scale.
-
getSupportUpperBound
public double getSupportUpperBound()
Gets the upper bound of the support. It must return the same value asinverseCumulativeProbability(1)
, i.e. \( \inf \{ x \in \mathbb R : P(X \le x) = 1 \} \).The upper bound of the support is always positive infinity.
- Returns:
- positive infinity.
-
createSampler
public ContinuousDistribution.Sampler createSampler(org.apache.commons.rng.UniformRandomProvider rng)
Creates a sampler.- Specified by:
createSampler
in interfaceContinuousDistribution
- Overrides:
createSampler
in classAbstractContinuousDistribution
- Parameters:
rng
- Generator of uniformly distributed numbers.- Returns:
- a sampler that produces random numbers according this distribution.
-
-