Class ParetoDistribution

    • Field Summary

      Fields 
      Modifier and Type Field Description
      private java.util.function.DoubleUnaryOperator logpdf
      Implementation of log PDF(x).
      private static double MIN_SHAPE_FOR_VARIANCE
      The minimum value for the shape parameter when computing when computing the variance.
      private java.util.function.DoubleUnaryOperator pdf
      Implementation of PDF(x).
      private double scale
      The scale parameter of this distribution.
      private double shape
      The shape parameter of this distribution.
    • Constructor Summary

      Constructors 
      Modifier Constructor Description
      private ParetoDistribution​(double scale, double shape)  
    • Method Summary

      All Methods Static Methods Instance Methods Concrete Methods 
      Modifier and Type Method Description
      ContinuousDistribution.Sampler createSampler​(org.apache.commons.rng.UniformRandomProvider rng)
      Creates a sampler.
      double cumulativeProbability​(double x)
      For a random variable X whose values are distributed according to this distribution, this method returns P(X <= x).
      double density​(double x)
      Returns the probability density function (PDF) of this distribution evaluated at the specified point x.
      double getMean()
      Gets the mean of this distribution.
      double getScale()
      Gets the scale parameter of this distribution.
      double getShape()
      Gets the shape parameter of this distribution.
      double getSupportLowerBound()
      Gets the lower bound of the support.
      double getSupportUpperBound()
      Gets the upper bound of the support.
      double getVariance()
      Gets the variance of this distribution.
      double inverseCumulativeProbability​(double p)
      Computes the quantile function of this distribution.
      double inverseSurvivalProbability​(double p)
      Computes the inverse survival probability function of this distribution.
      double logDensity​(double x)
      Returns the natural logarithm of the probability density function (PDF) of this distribution evaluated at the specified point x.
      static ParetoDistribution of​(double scale, double shape)
      Creates a Pareto distribution.
      double survivalProbability​(double x)
      For a random variable X whose values are distributed according to this distribution, this method returns P(X > x).
      • Methods inherited from class java.lang.Object

        clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
    • Field Detail

      • MIN_SHAPE_FOR_VARIANCE

        private static final double MIN_SHAPE_FOR_VARIANCE
        The minimum value for the shape parameter when computing when computing the variance.
        See Also:
        Constant Field Values
      • scale

        private final double scale
        The scale parameter of this distribution. Also known as k; the minimum possible value for the random variable X.
      • shape

        private final double shape
        The shape parameter of this distribution.
      • pdf

        private final java.util.function.DoubleUnaryOperator pdf
        Implementation of PDF(x). Assumes that x >= scale.
      • logpdf

        private final java.util.function.DoubleUnaryOperator logpdf
        Implementation of log PDF(x). Assumes that x >= scale.
    • Constructor Detail

      • ParetoDistribution

        private ParetoDistribution​(double scale,
                                   double shape)
        Parameters:
        scale - Scale parameter (minimum possible value of X).
        shape - Shape parameter (Pareto index).
    • Method Detail

      • of

        public static ParetoDistribution of​(double scale,
                                            double shape)
        Creates a Pareto distribution.
        Parameters:
        scale - Scale parameter (minimum possible value of X).
        shape - Shape parameter (Pareto index).
        Returns:
        the distribution
        Throws:
        java.lang.IllegalArgumentException - if scale <= 0, scale is infinite, or shape <= 0.
      • getScale

        public double getScale()
        Gets the scale parameter of this distribution. This is the minimum possible value of X.
        Returns:
        the scale parameter.
      • getShape

        public double getShape()
        Gets the shape parameter of this distribution. This is the Pareto index.
        Returns:
        the shape parameter.
      • density

        public double density​(double x)
        Returns the probability density function (PDF) of this distribution evaluated at the specified point x. In general, the PDF is the derivative of the CDF. If the derivative does not exist at x, then an appropriate replacement should be returned, e.g. Double.POSITIVE_INFINITY, Double.NaN, or the limit inferior or limit superior of the difference quotient.

        For scale parameter \( k \) and shape parameter \( \alpha \), the PDF is:

        \[ f(x; k, \alpha) = \begin{cases} 0 & \text{for } x \lt k \\ \frac{\alpha k^\alpha}{x^{\alpha + 1}} & \text{for } x \ge k \end{cases} \]

        Parameters:
        x - Point at which the PDF is evaluated.
        Returns:
        the value of the probability density function at x.
      • logDensity

        public double logDensity​(double x)
        Returns the natural logarithm of the probability density function (PDF) of this distribution evaluated at the specified point x.

        See documentation of density(double) for computation details.

        Parameters:
        x - Point at which the PDF is evaluated.
        Returns:
        the logarithm of the value of the probability density function at x.
      • cumulativeProbability

        public double cumulativeProbability​(double x)
        For a random variable X whose values are distributed according to this distribution, this method returns P(X <= x). In other words, this method represents the (cumulative) distribution function (CDF) for this distribution.

        For scale parameter \( k \) and shape parameter \( \alpha \), the CDF is:

        \[ F(x; k, \alpha) = \begin{cases} 0 & \text{for } x \le k \\ 1 - \left( \frac{k}{x} \right)^\alpha & \text{for } x \gt k \end{cases} \]

        Parameters:
        x - Point at which the CDF is evaluated.
        Returns:
        the probability that a random variable with this distribution takes a value less than or equal to x.
      • survivalProbability

        public double survivalProbability​(double x)
        For a random variable X whose values are distributed according to this distribution, this method returns P(X > x). In other words, this method represents the complementary cumulative distribution function.

        By default, this is defined as 1 - cumulativeProbability(x), but the specific implementation may be more accurate.

        For scale parameter \( k \) and shape parameter \( \alpha \), the survival function is:

        \[ S(x; k, \alpha) = \begin{cases} 1 & \text{for } x \le k \\ \left( \frac{k}{x} \right)^\alpha & \text{for } x \gt k \end{cases} \]

        Parameters:
        x - Point at which the survival function is evaluated.
        Returns:
        the probability that a random variable with this distribution takes a value greater than x.
      • inverseSurvivalProbability

        public double inverseSurvivalProbability​(double p)
        Computes the inverse survival probability function of this distribution. For a random variable X distributed according to this distribution, the returned value is:

        \[ x = \begin{cases} \inf \{ x \in \mathbb R : P(X \gt x) \le p\} & \text{for } 0 \le p \lt 1 \\ \inf \{ x \in \mathbb R : P(X \gt x) \lt 1 \} & \text{for } p = 1 \end{cases} \]

        By default, this is defined as inverseCumulativeProbability(1 - p), but the specific implementation may be more accurate.

        The default implementation returns:

        Specified by:
        inverseSurvivalProbability in interface ContinuousDistribution
        Overrides:
        inverseSurvivalProbability in class AbstractContinuousDistribution
        Parameters:
        p - Survival probability.
        Returns:
        the smallest (1-p)-quantile of this distribution (largest 0-quantile for p = 1).
      • getMean

        public double getMean()
        Gets the mean of this distribution.

        For scale parameter \( k \) and shape parameter \( \alpha \), the mean is:

        \[ \mathbb{E}[X] = \begin{cases} \infty & \text{for } \alpha \le 1 \\ \frac{k \alpha}{(\alpha-1)} & \text{for } \alpha \gt 1 \end{cases} \]

        Returns:
        the mean.
      • getVariance

        public double getVariance()
        Gets the variance of this distribution.

        For scale parameter \( k \) and shape parameter \( \alpha \), the variance is:

        \[ \operatorname{var}[X] = \begin{cases} \infty & \text{for } \alpha \le 2 \\ \frac{k^2 \alpha}{(\alpha-1)^2 (\alpha-2)} & \text{for } \alpha \gt 2 \end{cases} \]

        Returns:
        the variance.
      • getSupportLowerBound

        public double getSupportLowerBound()
        Gets the lower bound of the support. It must return the same value as inverseCumulativeProbability(0), i.e. \( \inf \{ x \in \mathbb R : P(X \le x) \gt 0 \} \).

        The lower bound of the support is equal to the scale parameter k.

        Returns:
        scale.
      • getSupportUpperBound

        public double getSupportUpperBound()
        Gets the upper bound of the support. It must return the same value as inverseCumulativeProbability(1), i.e. \( \inf \{ x \in \mathbb R : P(X \le x) = 1 \} \).

        The upper bound of the support is always positive infinity.

        Returns:
        positive infinity.