- Type Parameters:
A
- the first argument type
B
- the second argument type
C
- the third argument type
D
- the fourth argument type
E
- the result type
- All Implemented Interfaces:
Fn1<Fn4<? super A,? super B,? super C,? super D,? extends E>,Fn1<Product4<A,B,C,D>,E>>
, Fn2<Fn4<? super A,? super B,? super C,? super D,? extends E>,Product4<A,B,C,D>,E>
, Applicative<Fn1<Product4<A,B,C,D>,E>,Fn1<Fn4<? super A,? super B,? super C,? super D,? extends E>,?>>
, Cartesian<Fn4<? super A,? super B,? super C,? super D,? extends E>,Fn1<Product4<A,B,C,D>,E>,Fn1<?,?>>
, Cocartesian<Fn4<? super A,? super B,? super C,? super D,? extends E>,Fn1<Product4<A,B,C,D>,E>,Fn1<?,?>>
, Contravariant<Fn4<? super A,? super B,? super C,? super D,? extends E>,Profunctor<?,Fn1<Product4<A,B,C,D>,E>,Fn1<?,?>>>
, Functor<Fn1<Product4<A,B,C,D>,E>,Fn1<Fn4<? super A,? super B,? super C,? super D,? extends E>,?>>
, Profunctor<Fn4<? super A,? super B,? super C,? super D,? extends E>,Fn1<Product4<A,B,C,D>,E>,Fn1<?,?>>
, Monad<Fn1<Product4<A,B,C,D>,E>,Fn1<Fn4<? super A,? super B,? super C,? super D,? extends E>,?>>
, MonadReader<Fn4<? super A,? super B,? super C,? super D,? extends E>,Fn1<Product4<A,B,C,D>,E>,Fn1<Fn4<? super A,? super B,? super C,? super D,? extends E>,?>>
, MonadRec<Fn1<Product4<A,B,C,D>,E>,Fn1<Fn4<? super A,? super B,? super C,? super D,? extends E>,?>>
, MonadWriter<Fn4<? super A,? super B,? super C,? super D,? extends E>,Fn1<Product4<A,B,C,D>,E>,Fn1<Fn4<? super A,? super B,? super C,? super D,? extends E>,?>>
public final class Into4<A,B,C,D,E>
extends java.lang.Object
implements Fn2<Fn4<? super A,? super B,? super C,? super D,? extends E>,Product4<A,B,C,D>,E>
Given an
Fn4
<A, B, C, D, E>
and a
Product4
<A, B, C, D>
,
destructure the product and apply the slots as arguments to the function, returning the result.