Class ChiSquaredDistribution

    • Constructor Detail

      • ChiSquaredDistribution

        private ChiSquaredDistribution​(double degreesOfFreedom)
        Parameters:
        degreesOfFreedom - Degrees of freedom.
    • Method Detail

      • of

        public static ChiSquaredDistribution of​(double degreesOfFreedom)
        Creates a chi-squared distribution.
        Parameters:
        degreesOfFreedom - Degrees of freedom.
        Returns:
        the distribution
        Throws:
        java.lang.IllegalArgumentException - if degreesOfFreedom <= 0.
      • getDegreesOfFreedom

        public double getDegreesOfFreedom()
        Gets the degrees of freedom parameter of this distribution.
        Returns:
        the degrees of freedom.
      • density

        public double density​(double x)
        Returns the probability density function (PDF) of this distribution evaluated at the specified point x. In general, the PDF is the derivative of the CDF. If the derivative does not exist at x, then an appropriate replacement should be returned, e.g. Double.POSITIVE_INFINITY, Double.NaN, or the limit inferior or limit superior of the difference quotient.

        Returns the limit when x = 0:

        • df < 2: Infinity
        • df == 2: 1 / 2
        • df > 2: 0
        Parameters:
        x - Point at which the PDF is evaluated.
        Returns:
        the value of the probability density function at x.
      • logDensity

        public double logDensity​(double x)
        Returns the natural logarithm of the probability density function (PDF) of this distribution evaluated at the specified point x.

        Returns the limit when x = 0:

        • df < 2: Infinity
        • df == 2: log(1 / 2)
        • df > 2: -Infinity
        Parameters:
        x - Point at which the PDF is evaluated.
        Returns:
        the logarithm of the value of the probability density function at x.
      • cumulativeProbability

        public double cumulativeProbability​(double x)
        For a random variable X whose values are distributed according to this distribution, this method returns P(X <= x). In other words, this method represents the (cumulative) distribution function (CDF) for this distribution.
        Parameters:
        x - Point at which the CDF is evaluated.
        Returns:
        the probability that a random variable with this distribution takes a value less than or equal to x.
      • survivalProbability

        public double survivalProbability​(double x)
        For a random variable X whose values are distributed according to this distribution, this method returns P(X > x). In other words, this method represents the complementary cumulative distribution function.

        By default, this is defined as 1 - cumulativeProbability(x), but the specific implementation may be more accurate.

        Parameters:
        x - Point at which the survival function is evaluated.
        Returns:
        the probability that a random variable with this distribution takes a value greater than x.
      • inverseSurvivalProbability

        public double inverseSurvivalProbability​(double p)
        Computes the inverse survival probability function of this distribution. For a random variable X distributed according to this distribution, the returned value is:

        \[ x = \begin{cases} \inf \{ x \in \mathbb R : P(X \gt x) \le p\} & \text{for } 0 \le p \lt 1 \\ \inf \{ x \in \mathbb R : P(X \gt x) \lt 1 \} & \text{for } p = 1 \end{cases} \]

        By default, this is defined as inverseCumulativeProbability(1 - p), but the specific implementation may be more accurate.

        The default implementation returns:

        Specified by:
        inverseSurvivalProbability in interface ContinuousDistribution
        Overrides:
        inverseSurvivalProbability in class AbstractContinuousDistribution
        Parameters:
        p - Survival probability.
        Returns:
        the smallest (1-p)-quantile of this distribution (largest 0-quantile for p = 1).
      • getMean

        public double getMean()
        Gets the mean of this distribution.

        For \( k \) degrees of freedom, the mean is \( k \).

        Returns:
        the mean.
      • getVariance

        public double getVariance()
        Gets the variance of this distribution.

        For \( k \) degrees of freedom, the variance is \( 2k \).

        Returns:
        the variance.
      • getSupportLowerBound

        public double getSupportLowerBound()
        Gets the lower bound of the support. It must return the same value as inverseCumulativeProbability(0), i.e. \( \inf \{ x \in \mathbb R : P(X \le x) \gt 0 \} \).

        The lower bound of the support is always 0.

        Returns:
        0.
      • getSupportUpperBound

        public double getSupportUpperBound()
        Gets the upper bound of the support. It must return the same value as inverseCumulativeProbability(1), i.e. \( \inf \{ x \in \mathbb R : P(X \le x) = 1 \} \).

        The upper bound of the support is always positive infinity.

        Returns:
        positive infinity.