Class RawEigenvalue.Symmetric

    • Constructor Detail

      • Symmetric

        Symmetric()
    • Method Detail

      • btran

        public void btran​(PhysicalStore<java.lang.Double> arg)
        Description copied from interface: InvertibleFactor
        Backwards-transformation

        Solve [x]T[A] = [b]T (equivalent to [A]T[x] = [b]) by transforming [b] into [x] in-place.

        Specified by:
        btran in interface InvertibleFactor<java.lang.Double>
        Parameters:
        arg - [b] transformed into [x]
      • isHermitian

        public boolean isHermitian()
        Description copied from interface: Eigenvalue
        If [A] is hermitian then [V][D][V]-1 becomes [Q][D][Q]H...
        Specified by:
        isHermitian in interface Eigenvalue<java.lang.Double>
      • isOrdered

        public boolean isOrdered()
        Description copied from interface: Eigenvalue
        The eigenvalues in D (and the eigenvectors in V) are not necessarily ordered. This is a property of the algorithm/implementation, not the data.
        Specified by:
        isOrdered in interface Eigenvalue<java.lang.Double>
        Specified by:
        isOrdered in interface MatrixDecomposition.Ordered<java.lang.Double>
        Returns:
        true if they are ordered
      • isSolvable

        public boolean isSolvable()
        Description copied from interface: MatrixDecomposition.Solver
        Please note that producing a pseudoinverse and/or a least squares solution is ok! The return value, of this method, is not an indication of if the decomposed matrix is square, has full rank, is postive definite or whatever. It's that in combination with the specific decomposition algorithm's capabilities.
        Specified by:
        isSolvable in interface MatrixDecomposition.Solver<java.lang.Double>
        Overrides:
        isSolvable in class AbstractDecomposition<java.lang.Double>
        Returns:
        true if this matrix decomposition is in a state to be able to deliver an inverse or an equation system solution (with some degree of numerical stability).
      • doDecompose

        protected boolean doDecompose​(double[][] data,
                                      boolean valuesOnly)
        Specified by:
        doDecompose in class RawEigenvalue