Interface QR<T>
-
public interface QR<T>
QR Decomposition.For an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n orthogonal matrix Q and an n-by-n upper triangular matrix R so that A = Q*R.
The QR decompostion always exists, even if the matrix does not have full rank, so the constructor will never fail. The primary use of the QR decomposition is in the least squares solution of nonsquare systems of simultaneous linear equations. This will fail if isFullRank() returns false.
-
-
Nested Class Summary
Nested Classes Modifier and Type Interface Description static class
QR.QRMatrix
-
Field Summary
Fields Modifier and Type Field Description static QR<Matrix>
INSTANCE
static QR<Matrix>
MATRIX
static QR<Matrix>
MATRIXLARGEMULTITHREADED
static QR<Matrix>
MATRIXLARGESINGLETHREADED
static QR<Matrix>
MATRIXSMALLMULTITHREADED
static QR<Matrix>
MATRIXSMALLSINGLETHREADED
static int
THRESHOLD
static QR<Matrix>
UJMP
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description T[]
calc(T source)
T
solve(T source, T b)
-
-
-
Field Detail
-
THRESHOLD
static final int THRESHOLD
- See Also:
- Constant Field Values
-
-