Package biz.k11i.xgboost.gbm
Class GBTree
- java.lang.Object
-
- biz.k11i.xgboost.gbm.GBBase
-
- biz.k11i.xgboost.gbm.GBTree
-
- All Implemented Interfaces:
GradBooster
,java.io.Serializable
- Direct Known Subclasses:
Dart
public class GBTree extends GBBase
Gradient boosted tree implementation.- See Also:
- Serialized Form
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description (package private) static class
GBTree.ModelParam
-
Nested classes/interfaces inherited from interface biz.k11i.xgboost.gbm.GradBooster
GradBooster.Factory
-
-
Field Summary
Fields Modifier and Type Field Description (package private) RegTree[][]
_groupTrees
(package private) GBTree.ModelParam
mparam
private int[]
tree_info
private RegTree[]
trees
-
Constructor Summary
Constructors Constructor Description GBTree()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description void
loadModel(ModelReader reader, boolean with_pbuffer)
Loads model from stream.(package private) float
pred(FVec feat, int bst_group, int root_index, int ntree_limit)
float[]
predict(FVec feat, int ntree_limit)
Generates predictions for given feature vector.int[]
predictLeaf(FVec feat, int ntree_limit)
Predicts the leaf index of each tree.float
predictSingle(FVec feat, int ntree_limit)
Generates a prediction for given feature vector.(package private) int[]
predPath(FVec feat, int root_index, int ntree_limit)
-
Methods inherited from class biz.k11i.xgboost.gbm.GBBase
setNumClass
-
-
-
-
Field Detail
-
mparam
GBTree.ModelParam mparam
-
trees
private RegTree[] trees
-
tree_info
private int[] tree_info
-
_groupTrees
RegTree[][] _groupTrees
-
-
Method Detail
-
loadModel
public void loadModel(ModelReader reader, boolean with_pbuffer) throws java.io.IOException
Description copied from interface:GradBooster
Loads model from stream.- Parameters:
reader
- input streamwith_pbuffer
- whether the incoming data contains pbuffer- Throws:
java.io.IOException
- If an I/O error occurs
-
predict
public float[] predict(FVec feat, int ntree_limit)
Description copied from interface:GradBooster
Generates predictions for given feature vector.- Parameters:
feat
- feature vectorntree_limit
- limit the number of trees used in prediction- Returns:
- prediction result
-
predictSingle
public float predictSingle(FVec feat, int ntree_limit)
Description copied from interface:GradBooster
Generates a prediction for given feature vector.This method only works when the model outputs single value.
- Parameters:
feat
- feature vectorntree_limit
- limit the number of trees used in prediction- Returns:
- prediction result
-
pred
float pred(FVec feat, int bst_group, int root_index, int ntree_limit)
-
predictLeaf
public int[] predictLeaf(FVec feat, int ntree_limit)
Description copied from interface:GradBooster
Predicts the leaf index of each tree. This is only valid in gbtree predictor.- Parameters:
feat
- feature vectorntree_limit
- limit the number of trees used in prediction- Returns:
- predicted leaf indexes
-
predPath
int[] predPath(FVec feat, int root_index, int ntree_limit)
-
-