Uses of Class
edu.jas.poly.AlgebraicNumberRing
-
Packages that use AlgebraicNumberRing Package Description edu.jas.application Groebner base application package.edu.jas.poly Generic coefficients polynomial package.edu.jas.root Real and Complex Root Computation package.edu.jas.ufd Unique factorization domain package. -
-
Uses of AlgebraicNumberRing in edu.jas.application
Fields in edu.jas.application declared as AlgebraicNumberRing Modifier and Type Field Description protected AlgebraicNumberRing<C>
CoeffConvertAlg. afac
protected AlgebraicNumberRing<C>
CoeffRecConvertAlg. afac
AlgebraicNumberRing<C>
PrimitiveElement. Aring
The first original algebraic ring.AlgebraicNumberRing<C>
PrimitiveElement. Bring
The second original algebraic ring.AlgebraicNumberRing<C>
PrimitiveElement. primitiveElem
The primitive element.Methods in edu.jas.application with parameters of type AlgebraicNumberRing Modifier and Type Method Description static <C extends GcdRingElem<C>>
AlgebraicNumber<C>PolyUtilApp. convertToPrimitiveElem(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, AlgebraicNumber<C> a)
Convert to primitive element ring.static <C extends GcdRingElem<C>>
AlgebraicNumber<C>PolyUtilApp. convertToPrimitiveElem(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, AlgebraicNumber<C> B, AlgebraicNumber<AlgebraicNumber<C>> a)
Convert to primitive element ring.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>>PolyUtilApp. convertToPrimitiveElem(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, AlgebraicNumber<C> B, GenPolynomial<AlgebraicNumber<AlgebraicNumber<C>>> a)
Convert to primitive element ring.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>>PolyUtilApp. convertToPrimitiveElem(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, GenPolynomial<AlgebraicNumber<C>> a)
Convert coefficients to primitive element ring.static <C extends GcdRingElem<C>>
FactorAbstract<AlgebraicNumber<C>>FactorFactory. getImplementation(AlgebraicNumberRing<C> fac)
Determine suitable implementation of factorization algorithms, case AlgebraicNumber<C>.static <C extends GcdRingElem<C>>
PrimitiveElement<C>PolyUtilApp. primitiveElement(AlgebraicNumberRing<C> a, AlgebraicNumberRing<C> b)
Construct primitive element for double field extension.static <C extends GcdRingElem<C>>
PrimitiveElement<C>PolyUtilApp. primitiveElement(AlgebraicNumberRing<AlgebraicNumber<C>> b)
Construct primitive element for double field extension.static <C extends GcdRingElem<C> & Rational>
AlgebraicRootsPrimElem<C>RootFactoryApp. rootReduce(AlgebraicNumberRing<C> a, AlgebraicNumberRing<C> b)
Root reduce of real and complex algebraic numbers.Constructors in edu.jas.application with parameters of type AlgebraicNumberRing Constructor Description CoeffConvertAlg(AlgebraicNumberRing<C> fac, AlgebraicNumber<C> a)
CoeffRecConvertAlg(AlgebraicNumberRing<C> fac, AlgebraicNumber<C> a, AlgebraicNumber<C> b)
FactorAlgebraicPrim(AlgebraicNumberRing<C> fac)
Constructor.FactorAlgebraicPrim(AlgebraicNumberRing<C> fac, FactorAbstract<C> factorCoeff)
Constructor.PrimitiveElement(AlgebraicNumberRing<C> pe, AlgebraicNumber<C> A, AlgebraicNumber<C> B)
Constructor.PrimitiveElement(AlgebraicNumberRing<C> pe, AlgebraicNumber<C> A, AlgebraicNumber<C> B, AlgebraicNumberRing<C> ar, AlgebraicNumberRing<C> br)
Constructor. -
Uses of AlgebraicNumberRing in edu.jas.poly
Fields in edu.jas.poly declared as AlgebraicNumberRing Modifier and Type Field Description protected AlgebraicNumberRing<C>
CoeffToAlg. afac
protected AlgebraicNumberRing<C>
ComplToAlgeb. afac
protected AlgebraicNumberRing<C>
PolyToAlg. afac
(package private) AlgebraicNumberRing<C>
AlgebraicNumberIterator. aring
AlgebraicNumberRing<C>
AlgebraicNumber. ring
Ring part of the data structure.Fields in edu.jas.poly with type parameters of type AlgebraicNumberRing Modifier and Type Field Description protected java.util.List<AlgebraicNumberRing<C>>
CoeffToRecAlg. lfac
Methods in edu.jas.poly that return AlgebraicNumberRing Modifier and Type Method Description AlgebraicNumberRing<C>
ComplexRing. algebraicRing()
Corresponding algebraic number ring.AlgebraicNumberRing<C>
AlgebraicNumber. factory()
Get the corresponding element factory.Constructors in edu.jas.poly with parameters of type AlgebraicNumberRing Constructor Description AlgebraicNumber(AlgebraicNumberRing<C> r)
The constructor creates a AlgebraicNumber object from a GenPolynomial object module.AlgebraicNumber(AlgebraicNumberRing<C> r, GenPolynomial<C> a)
The constructor creates a AlgebraicNumber object from AlgebraicNumberRing modul and a GenPolynomial value.AlgebraicNumberIterator(AlgebraicNumberRing<C> aring)
CartesianProduct iterator constructor.CoeffToAlg(AlgebraicNumberRing<C> fac)
CoeffToRecAlg(int depth, AlgebraicNumberRing<C> fac)
ComplToAlgeb(AlgebraicNumberRing<C> fac)
PolyToAlg(AlgebraicNumberRing<C> fac)
-
Uses of AlgebraicNumberRing in edu.jas.root
Fields in edu.jas.root declared as AlgebraicNumberRing Modifier and Type Field Description protected AlgebraicNumberRing<C>
AlgFromRealCoeff. afac
AlgebraicNumberRing<Complex<C>>
ComplexAlgebraicRing. algebraic
Representing AlgebraicNumberRing.AlgebraicNumberRing<C>
RealAlgebraicRing. algebraic
Representing AlgebraicNumberRing.Methods in edu.jas.root that return AlgebraicNumberRing Modifier and Type Method Description AlgebraicNumberRing<C>
AlgebraicRoots. getAlgebraicRing()
Algebraic number ring.Constructors in edu.jas.root with parameters of type AlgebraicNumberRing Constructor Description AlgFromRealCoeff(AlgebraicNumberRing<C> fac)
-
Uses of AlgebraicNumberRing in edu.jas.ufd
Fields in edu.jas.ufd declared as AlgebraicNumberRing Modifier and Type Field Description protected AlgebraicNumberRing<C>
SquarefreeFieldCharP. aCoFac
Factory for a algebraic extension of a finite field of characteristic p coefficients.AlgebraicNumberRing<C>
FactorComplex. afac
Complex algebraic factory.AlgebraicNumberRing<C>
Factors. afac
Algebraic field extension over C.Methods in edu.jas.ufd that return AlgebraicNumberRing Modifier and Type Method Description static <C extends GcdRingElem<C>>
AlgebraicNumberRing<C>PolyUfdUtil. algebraicNumberField(GenPolynomialRing<C> ring, int degree)
Construct an algebraic number field of degree d.static <C extends GcdRingElem<C>>
AlgebraicNumberRing<C>PolyUfdUtil. algebraicNumberField(RingFactory<C> cfac, int degree)
Construct an algebraic number field of degree d.AlgebraicNumberRing<C>
Factors. findExtensionField()
Find largest extension field.AlgebraicNumberRing<C>
FactorsList. findExtensionField()
Find largest extension field.AlgebraicNumberRing<C>
FactorsMap. findExtensionField()
Find largest extension field.Methods in edu.jas.ufd with parameters of type AlgebraicNumberRing Modifier and Type Method Description static <C extends GcdRingElem<C>>
voidPolyUfdUtil. ensureFieldProperty(AlgebraicNumberRing<C> afac)
Ensure that the field property is determined.static <C extends GcdRingElem<C>>
FactorAbstract<AlgebraicNumber<C>>FactorFactory. getImplementation(AlgebraicNumberRing<C> fac)
Determine suitable implementation of factorization algorithms, case AlgebraicNumber<C>.static <C extends GcdRingElem<C>>
SquarefreeAbstract<AlgebraicNumber<C>>SquarefreeFactory. getImplementation(AlgebraicNumberRing<C> fac)
Determine suitable implementation of squarefree factorization algorithms, case AlgebraicNumber<C>.Constructors in edu.jas.ufd with parameters of type AlgebraicNumberRing Constructor Description FactorAlgebraic(AlgebraicNumberRing<C> fac)
Constructor.FactorAlgebraic(AlgebraicNumberRing<C> fac, FactorAbstract<C> factorCoeff)
Constructor.Factors(GenPolynomial<C> p, AlgebraicNumberRing<C> af, GenPolynomial<AlgebraicNumber<C>> ap, java.util.List<GenPolynomial<AlgebraicNumber<C>>> afact)
Constructor.Factors(GenPolynomial<C> p, AlgebraicNumberRing<C> af, GenPolynomial<AlgebraicNumber<C>> ap, java.util.List<GenPolynomial<AlgebraicNumber<C>>> afact, java.util.List<Factors<AlgebraicNumber<C>>> arfact)
Constructor.
-