Uses of Class
edu.jas.gb.GroebnerBaseAbstract
-
Packages that use GroebnerBaseAbstract Package Description edu.jas.application Groebner base application package.edu.jas.gb Groebner bases package.edu.jas.gbmod Module Groebner base package.edu.jas.gbufd Groebner bases using unique factorization package.edu.jas.integrate Elementary Integration package. -
-
Uses of GroebnerBaseAbstract in edu.jas.application
Fields in edu.jas.application declared as GroebnerBaseAbstract Modifier and Type Field Description private GroebnerBaseAbstract<C>
GBAlgorithmBuilder. algo
The current GB algorithm implementation.protected GroebnerBaseAbstract<C>
Ideal. bb
Groebner base engine.Methods in edu.jas.application that return GroebnerBaseAbstract Modifier and Type Method Description GroebnerBaseAbstract<C>
GBAlgorithmBuilder. build()
Build the GB algorithm implementation.(package private) static GroebnerBaseAbstract
RunGB. getGBalgo(java.lang.String[] args, java.lang.String bstr, GenPolynomialRing ring)
Methods in edu.jas.application with parameters of type GroebnerBaseAbstract Modifier and Type Method Description (package private) static void
RunGB. runGB(PolynomialList S, GroebnerBaseAbstract bb)
Constructors in edu.jas.application with parameters of type GroebnerBaseAbstract Constructor Description GBAlgorithmBuilder(GenPolynomialRing<C> ring, GroebnerBaseAbstract<C> algo)
Constructor.GBAlgorithmBuilder(GenPolynomialRing<C> ring, GroebnerBaseAbstract<C> algo, PairList<C> strategy)
Constructor.Ideal(PolynomialList<C> list, boolean gb, boolean topt, GroebnerBaseAbstract<C> bb)
Constructor.Ideal(PolynomialList<C> list, boolean gb, boolean topt, GroebnerBaseAbstract<C> bb, Reduction<C> red)
Constructor.Ideal(PolynomialList<C> list, boolean gb, GroebnerBaseAbstract<C> bb)
Constructor.Ideal(PolynomialList<C> list, boolean gb, GroebnerBaseAbstract<C> bb, Reduction<C> red)
Constructor.Ideal(PolynomialList<C> list, GroebnerBaseAbstract<C> bb, Reduction<C> red)
Constructor. -
Uses of GroebnerBaseAbstract in edu.jas.gb
Subclasses of GroebnerBaseAbstract in edu.jas.gb Modifier and Type Class Description class
DGroebnerBaseSeq<C extends RingElem<C>>
D-Groebner Base sequential algorithm.class
EGroebnerBaseSeq<C extends RingElem<C>>
E-Groebner Base sequential algorithm.class
GBOptimized<C extends GcdRingElem<C>>
Groebner bases via optimized variable and term order.class
GBProxy<C extends GcdRingElem<C>>
Groebner bases parallel proxy.class
GroebnerBaseArriSigSeqIter<C extends RingElem<C>>
Groebner Base Arri signature based sequential iterative algorithm.class
GroebnerBaseDistributedEC<C extends RingElem<C>>
Groebner Base distributed algorithm.class
GroebnerBaseDistributedHybridEC<C extends RingElem<C>>
Groebner Base distributed hybrid algorithm.class
GroebnerBaseF5zSigSeqIter<C extends RingElem<C>>
Groebner Base F5z signature based sequential iterative algorithm.class
GroebnerBaseGGVSigSeqIter<C extends RingElem<C>>
Groebner Base GGV signature based sequential iterative algorithm.class
GroebnerBaseParallel<C extends RingElem<C>>
Groebner Base parallel algorithm.class
GroebnerBaseParIter<C extends RingElem<C>>
Groebner Base parallel iterative algorithm.class
GroebnerBaseSeq<C extends RingElem<C>>
Groebner Base sequential algorithm.class
GroebnerBaseSeqIter<C extends RingElem<C>>
Groebner Base sequential iterative algorithm.class
GroebnerBaseSeqPairDistributed<C extends RingElem<C>>
Deprecated.no direct alternativeclass
GroebnerBaseSeqPairParallel<C extends RingElem<C>>
Groebner Base parallel algorithm.class
GroebnerBaseSeqPairSeq<C extends RingElem<C>>
Groebner Base sequential algorithm.class
GroebnerBaseSigSeqIter<C extends RingElem<C>>
Groebner Base signature based sequential iterative algorithm.Fields in edu.jas.gb declared as GroebnerBaseAbstract Modifier and Type Field Description GroebnerBaseAbstract<C>
SolvableGroebnerBaseAbstract. cbb
Commutative Groebner bases engine.GroebnerBaseAbstract<C>
GBOptimized. e1
GB engine.GroebnerBaseAbstract<C>
GBProxy. e1
GB engines.GroebnerBaseAbstract<C>
GBProxy. e2
Constructors in edu.jas.gb with parameters of type GroebnerBaseAbstract Constructor Description GBOptimized(GroebnerBaseAbstract<C> e1)
GBOptimized constructor.GBOptimized(GroebnerBaseAbstract<C> e1, boolean rP)
GBOptimized constructor.GBProxy(GroebnerBaseAbstract<C> e1, GroebnerBaseAbstract<C> e2)
Proxy constructor. -
Uses of GroebnerBaseAbstract in edu.jas.gbmod
Fields in edu.jas.gbmod declared as GroebnerBaseAbstract Modifier and Type Field Description protected GroebnerBaseAbstract<C>
ModGroebnerBaseSeq. bb
Deprecated.Used Groebner base algorithm.Constructors in edu.jas.gbmod with parameters of type GroebnerBaseAbstract Constructor Description ModGroebnerBasePar(GroebnerBaseAbstract<C> bb)
Deprecated.Constructor.ModGroebnerBaseSeq(GroebnerBaseAbstract<C> bb)
Deprecated.Constructor. -
Uses of GroebnerBaseAbstract in edu.jas.gbufd
Subclasses of GroebnerBaseAbstract in edu.jas.gbufd Modifier and Type Class Description class
GroebnerBaseFGLM<C extends GcdRingElem<C>>
Groebner Base sequential FGLM algorithm.class
GroebnerBasePartial<C extends GcdRingElem<C>>
Partial Groebner Bases for subsets of variables.class
GroebnerBasePseudoParallel<C extends GcdRingElem<C>>
Groebner Base with pseudo reduction multi-threaded parallel algorithm.class
GroebnerBasePseudoRecParallel<C extends GcdRingElem<C>>
Groebner Base with recursive pseudo reduction multi-threaded parallel algorithm.class
GroebnerBasePseudoRecSeq<C extends GcdRingElem<C>>
Groebner Base with pseudo reduction sequential algorithm for integral function coefficients.class
GroebnerBasePseudoSeq<C extends GcdRingElem<C>>
Groebner Base with pseudo reduction sequential algorithm.class
GroebnerBaseQuotient<C extends GcdRingElem<C>>
Groebner Base sequential algorithm for rational function coefficients, fraction free computation.class
GroebnerBaseRational<C extends BigRational>
Groebner Base sequential algorithm for rational coefficients, fraction free computation.class
GroebnerBaseWalk<C extends GcdRingElem<C>>
Groebner Base sequential Groebner Walk algorithm.class
RGroebnerBasePseudoSeq<C extends RegularRingElem<C>>
Regular ring Groebner Base with pseudo reduction sequential algorithm.class
RGroebnerBaseSeq<C extends RegularRingElem<C>>
Regular ring Groebner Base sequential algorithm.Fields in edu.jas.gbufd declared as GroebnerBaseAbstract Modifier and Type Field Description protected GroebnerBaseAbstract<C>
GroebnerBasePartial. bb
Backing Groebner base engine.protected GroebnerBaseAbstract<C>
SyzygySeq. bb
Groebner base engine.GroebnerBaseAbstract<GenPolynomial<C>>
GroebnerBaseQuotient. bba
GroebnerBaseAbstract<BigInteger>
GroebnerBaseRational. bba
protected GroebnerBaseAbstract<GenPolynomial<C>>
GroebnerBasePartial. rbb
Backing recursive Groebner base engine.private GroebnerBaseAbstract<C>
GroebnerBaseFGLM. sgb
The backing GB algorithm implementation.protected GroebnerBaseAbstract<C>
GroebnerBaseWalk. sgb
The backing GB algorithm implementation.Methods in edu.jas.gbufd that return GroebnerBaseAbstract Modifier and Type Method Description static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<C>GBFactory. getImplementation()
Determine suitable implementation of GB algorithms, no factory case.static GroebnerBaseAbstract<BigInteger>
GBFactory. getImplementation(BigInteger fac)
Determine suitable implementation of GB algorithms, case BigInteger.static GroebnerBaseAbstract<BigInteger>
GBFactory. getImplementation(BigInteger fac, PairList<BigInteger> pl)
Determine suitable implementation of GB algorithms, case BigInteger.static GroebnerBaseAbstract<BigInteger>
GBFactory. getImplementation(BigInteger fac, GBFactory.Algo a)
Determine suitable implementation of GB algorithms, case BigInteger.static GroebnerBaseAbstract<BigInteger>
GBFactory. getImplementation(BigInteger fac, GBFactory.Algo a, PairList<BigInteger> pl)
Determine suitable implementation of GB algorithms, case BigInteger.static GroebnerBaseAbstract<BigRational>
GBFactory. getImplementation(BigRational fac)
Determine suitable implementation of GB algorithms, case BigRational.static GroebnerBaseAbstract<BigRational>
GBFactory. getImplementation(BigRational fac, PairList<BigRational> pl)
Determine suitable implementation of GB algorithms, case BigRational.static GroebnerBaseAbstract<BigRational>
GBFactory. getImplementation(BigRational fac, GBFactory.Algo a)
Determine suitable implementation of GB algorithms, case BigRational.static GroebnerBaseAbstract<BigRational>
GBFactory. getImplementation(BigRational fac, GBFactory.Algo a, PairList<BigRational> pl)
Determine suitable implementation of GB algorithms, case BigRational.static GroebnerBaseAbstract<ModInteger>
GBFactory. getImplementation(ModIntegerRing fac)
Determine suitable implementation of GB algorithms, case ModInteger.static GroebnerBaseAbstract<ModInteger>
GBFactory. getImplementation(ModIntegerRing fac, PairList<ModInteger> pl)
Determine suitable implementation of GB algorithms, case ModInteger.static GroebnerBaseAbstract<ModInt>
GBFactory. getImplementation(ModIntRing fac)
Determine suitable implementation of GB algorithms, case ModInt.static GroebnerBaseAbstract<ModInt>
GBFactory. getImplementation(ModIntRing fac, PairList<ModInt> pl)
Determine suitable implementation of GB algorithms, case ModInt.static GroebnerBaseAbstract<ModLong>
GBFactory. getImplementation(ModLongRing fac)
Determine suitable implementation of GB algorithms, case ModLong.static GroebnerBaseAbstract<ModLong>
GBFactory. getImplementation(ModLongRing fac, PairList<ModLong> pl)
Determine suitable implementation of GB algorithms, case ModLong.static <C extends RingElem<C>>
GroebnerBaseAbstract<Product<C>>GBFactory. getImplementation(ProductRing<C> fac)
Determine suitable implementation of GB algorithms, case regular rings.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<GenPolynomial<C>>GBFactory. getImplementation(GenPolynomialRing<C> fac)
Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<GenPolynomial<C>>GBFactory. getImplementation(GenPolynomialRing<C> fac, PairList<GenPolynomial<C>> pl)
Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<GenPolynomial<C>>GBFactory. getImplementation(GenPolynomialRing<C> fac, GBFactory.Algo a)
Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<GenPolynomial<C>>GBFactory. getImplementation(GenPolynomialRing<C> fac, GBFactory.Algo a, PairList<GenPolynomial<C>> pl)
Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<C>GBFactory. getImplementation(RingFactory<C> fac)
Determine suitable implementation of GB algorithms, other cases.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<C>GBFactory. getImplementation(RingFactory<C> fac, PairList<C> pl)
Determine suitable implementation of GB algorithms, other cases.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<Quotient<C>>GBFactory. getImplementation(QuotientRing<C> fac)
Determine suitable implementation of GB algorithms, case Quotient coefficients.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<Quotient<C>>GBFactory. getImplementation(QuotientRing<C> fac, PairList<Quotient<C>> pl)
Determine suitable implementation of GB algorithms, case Quotient coefficients.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<Quotient<C>>GBFactory. getImplementation(QuotientRing<C> fac, GBFactory.Algo a)
Determine suitable implementation of GB algorithms, case Quotient coefficients.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<Quotient<C>>GBFactory. getImplementation(QuotientRing<C> fac, GBFactory.Algo a, PairList<Quotient<C>> pl)
Determine suitable implementation of GB algorithms, case Quotient coefficients.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<GenPolynomial<C>>GBFactory. getProxy(GenPolynomialRing<C> fac)
Determine suitable parallel/concurrent implementation of GB algorithms if possible.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<C>GBFactory. getProxy(RingFactory<C> fac)
Determine suitable parallel/concurrent implementation of GB algorithms if possible.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<C>GBFactory. getProxy(RingFactory<C> fac, PairList<C> pl)
Determine suitable parallel/concurrent implementation of GB algorithms if possible.Constructors in edu.jas.gbufd with parameters of type GroebnerBaseAbstract Constructor Description GroebnerBaseFGLM(GroebnerBaseAbstract<C> gb)
Constructor.GroebnerBaseFGLM(Reduction<C> red, PairList<C> pl, GroebnerBaseAbstract<C> gb)
Constructor.GroebnerBasePartial(GroebnerBaseAbstract<C> bb, GroebnerBaseAbstract<GenPolynomial<C>> rbb)
Constructor.GroebnerBaseQuotient(GroebnerBaseAbstract<GenPolynomial<C>> bba)
Constructor.GroebnerBaseRational(GroebnerBaseAbstract<BigInteger> bba)
Constructor.GroebnerBaseWalk(GroebnerBaseAbstract<C> gb)
Constructor.GroebnerBaseWalk(GroebnerBaseAbstract<C> gb, TermOrder t1)
Constructor. -
Uses of GroebnerBaseAbstract in edu.jas.integrate
Fields in edu.jas.integrate declared as GroebnerBaseAbstract Modifier and Type Field Description GroebnerBaseAbstract<C>
ElementaryIntegrationCzichowski. red
Engine for Groebner basis.
-