Package org.apache.commons.numbers.gamma
package org.apache.commons.numbers.gamma
Γ (Gamma) and Β (Beta) family of functions.
Implementation of
InvGamma1pm1
and LogGamma1p
is based on the
algorithms described in
- Didonato and Morris (1986), Computation of the Incomplete Gamma Function Ratios and their Inverse, TOMS 12(4), 377-393,
- Didonato and Morris (1992), Algorithm 708: Significant Digit Computation of the Incomplete Beta Function Ratios, TOMS 18(3), 360-373,
-
ClassDescriptionImplementation of the regularized beta functions and incomplete beta functions.Implementation of the error function and its inverse.Implementation of the Regularized Gamma functions and Incomplete Gamma functions.53-bit precision implementation of the Lanczos approximation.Math functions used by the Boost functions.Utility tools used by the Boost functions.Scaled complementary error function.Computes the difference between
error function values
.Gamma function \( \Gamma(x) \).Package private exception class with constants for frequently used messages.Ratio of Gamma functions.Lower incomplete Gamma function \( \gamma(a, x) \).Upper incomplete Gamma function \( \Gamma(a, x) \).Inverse of the error function.Inverse of the complementary error function.Function \( \frac{1}{\Gamma(1 + x)} - 1 \).Lanczos approximation to the Gamma function.Computes \( log_e B(p, q) \).Natural logarithm of the absolute value of \( \Gamma(x) \).Function \( \ln \Gamma(1 + x) \).Computes \( \log_e(\Gamma(a+b)) \).Encapsulate the policy for function evaluation.Lower regularized Gamma function \( P(a, x) \).Upper regularized Gamma function \( Q(a, x) \).Special math functions.