
Latest WildFly Documentation

JBoss Community Documentation Page of 1 2293

Documentation

Exported from at 2018-03-05 04:05:10 ESTJBoss Community Documentation Editor

Copyright 2018 JBoss Community contributors.

https://docs.jboss.org/author/display/WFLY

Latest WildFly Documentation

JBoss Community Documentation Page of 2 2293

Table of Contents

1 Administrator Guides __ 21

2 Developer Guides __ 22

3 Quickstarts ___ 23

4 More Resources ___ 24

5 Admin Guide __ 25

5.1 Target audience ___ 36

5.1.1 Prerequisites __ 36

5.1.2 Examples in this guide ___ 36

5.2 Management clients __ 36

5.2.1 Web Management Interface ___ 36

5.2.2 Command Line Interface ___ 40

5.2.3 Configuration Files __ 40

5.3 Core management concepts __ 42

5.3.1 Operating modes ___ 42

5.3.2 General configuration concepts __ 46

5.3.3 Management resources __ 50

5.4 Configuring interfaces and ports ___ 62

5.4.1 Interface declarations __ 62

5.4.2 Socket Binding Groups __ 64

5.4.3 IPv4 versus IPv6 ___ 64

5.5 Administrative security __ 66

5.5.1 Security realms __ 66

5.5.2 Authorizing management actions with Role Based Access Control ___________________ 99

5.6 Application deployment ___ 126

5.6.1 Managed Domain __ 126

5.6.2 Standalone Server ___ 133

5.6.3 Managed and Unmanaged Deployments ______________________________________ 138

5.6.4 Deployment overlays ___ 141

5.7 Subsystem configuration __ 141

5.7.1 EE Subsystem Configuration ___ 141

5.7.2 Naming __ 152

5.7.3 Data sources ___ 158

5.7.4 Logging ___ 162

5.7.5 Web (Undertow) ___ 171

5.7.6 Messaging ___ 177

5.7.7 Security ___ 189

5.7.8 Web services ___ 199

5.7.9 Resource adapters ___ 205

5.7.10 Batch ___ 207

5.7.11 JSF ___ 213

5.7.12 JMX __ 216

5.7.13 Deployment Scanner ___ 220

Latest WildFly Documentation

JBoss Community Documentation Page of 3 2293

5.7.14 Core Management ___ 223

5.7.15 Simple configuration subsystems __ 226

5.8 Domain setup __ 226

5.8.1 Domain Controller Configuration __ 226

5.8.2 Host Controller Configuration ___ 228

5.8.3 Server groups ___ 232

5.8.4 Servers __ 233

5.9 Other management tasks ___ 235

5.9.1 Controlling operation via command line parameters _____________________________ 235

5.9.2 Suspend, resume and graceful shutdown _____________________________________ 244

5.9.3 Starting & stopping Servers in a Managed Domain ______________________________ 248

5.9.4 Controlling JVM settings __ 250

5.9.5 Administrative audit logging __ 251

5.9.6 Canceling management operations __ 260

5.9.7 Configuration file history ___ 266

5.10 Management API reference ___ 269

5.10.1 Global operations __ 269

5.10.2 Detyped management and the jboss-dmr library ________________________________ 275

5.10.3 Description of the Management Model _______________________________________ 287

5.10.4 The native management API ___ 297

5.11 CLI Recipes __ 318

5.11.1 Properties __ 319

5.11.2 Configuration ___ 321

5.11.3 Runtime ___ 326

5.11.4 Scripting ___ 326

5.11.5 Statistics ___ 326

5.11.6 Deployment __ 326

5.11.7 Downloading files with the CLI __ 329

5.12 All WildFly documentation ___ 329

5.13 CLI Recipes __ 329

5.13.1 Properties __ 330

5.13.2 Configuration ___ 332

5.13.3 Runtime ___ 337

5.13.4 Scripting ___ 337

5.13.5 Statistics ___ 337

5.13.6 Deployment __ 337

5.13.7 Downloading files with the CLI __ 340

5.14 Core management concepts ___ 340

5.14.1 Operating modes __ 340

5.14.2 General configuration concepts ___ 345

5.14.3 Management resources ___ 349

5.14.4 General configuration concepts ___ 361

5.14.5 Management resources ___ 364

5.14.6 Operating modes __ 376

5.15 Domain Setup __ 380

5.15.1 Domain Controller Configuration __ 381

Latest WildFly Documentation

JBoss Community Documentation Page of 4 2293

5.15.2 Host Controller Configuration ___ 382

5.15.3 Server groups ___ 386

5.15.4 Servers __ 387

5.16 Interfaces and ports __ 389

5.16.1 Interface declarations ___ 389

5.16.2 Socket Binding Groups ___ 392

5.16.3 IPv4 versus IPv6 __ 392

5.17 Management API reference ___ 394

5.17.1 Global operations __ 394

5.17.2 Detyped management and the jboss-dmr library ________________________________ 400

5.17.3 Description of the Management Model _______________________________________ 412

5.17.4 The native management API ___ 422

5.17.5 Description of the Management Model _______________________________________ 443

5.17.6 Detyped management and the jboss-dmr library ________________________________ 453

5.17.7 Global operations __ 465

5.17.8 The HTTP management API ___ 471

5.17.9 The native management API ___ 477

5.18 Management Clients ___ 498

5.18.1 Web Management Interface __ 499

5.18.2 Command Line Interface __ 502

5.18.3 Configuration Files ___ 502

5.18.4 Command Line Interface __ 504

5.18.5 Default HTTP Interface Security __ 512

5.18.6 Default Native Interface Security __ 515

5.19 Management tasks __ 515

5.19.1 Controlling operation via command line parameters _____________________________ 515

5.19.2 Suspend, resume and graceful shutdown _____________________________________ 523

5.19.3 Starting & stopping Servers in a Managed Domain ______________________________ 527

5.19.4 Controlling JVM settings __ 529

5.19.5 Administrative audit logging __ 530

5.19.6 Canceling management operations __ 539

5.19.7 Configuration file history ___ 545

5.19.8 Application deployment ___ 548

5.19.9 Audit logging ___ 562

5.19.10Canceling Management Operations ___ 571

5.19.11Command line parameters __ 577

5.19.12Configuration file history __ 585

5.19.13Deployment Overlays __ 589

5.19.14JVM settings ___ 589

5.19.15Starting & stopping Servers in a Managed Domain _____________________________ 591

5.19.16Suspend, Resume and Graceful shutdown ____________________________________ 592

5.20 Authorizing management actions with Role Based Access Control _______________________ 596

5.20.1 Access Control Providers __ 597

5.20.2 RBAC provider overview __ 597

5.20.3 Switching to the "rbac" provider ___ 599

5.20.4 Mapping users and groups to roles __ 600

Latest WildFly Documentation

JBoss Community Documentation Page of 5 2293

5.20.5 Adding custom roles in a managed domain ____________________________________ 606

5.20.6 Configuring constraints ___ 609

5.20.7 RBAC effect on administrator user experience _________________________________ 616

5.20.8 Learning about your own role mappings ______________________________________ 620

5.20.9 "Run-as" capability for SuperUsers __ 620

5.21 Security Realms __ 623

5.21.1 General Structure __ 624

5.21.2 Using a Realm __ 624

5.21.3 Authentication __ 626

5.21.4 Authorization ___ 628

5.21.5 Out Of The Box Configuration __ 628

5.21.6 add-user.sh __ 632

5.21.7 JMX Security ___ 639

5.21.8 Detailed Configuration __ 639

5.21.9 Plug Ins ___ 647

5.21.10Example Configurations __ 654

5.21.11add-user utility __ 657

5.21.12Detailed Configuration __ 663

5.21.13Examples __ 671

5.21.14Plug Ins ___ 674

5.22 Subsystem configuration __ 681

5.22.1 EE Subsystem Configuration ___ 682

5.22.2 Naming __ 692

5.22.3 Data sources ___ 698

5.22.4 Logging ___ 702

5.22.5 Web (Undertow) ___ 711

5.22.6 Messaging ___ 717

5.22.7 Security ___ 729

5.22.8 Web services ___ 739

5.22.9 Resource adapters ___ 745

5.22.10Batch ___ 747

5.22.11JSF __ 753

5.22.12JMX __ 756

5.22.13Deployment Scanner ___ 760

5.22.14Core Management ___ 763

5.22.15Simple configuration subsystems ___ 766

5.22.16Batch (JSR-352) Subsystem Configuration ____________________________________ 766

5.22.17Core Management Subsystem Configuration __________________________________ 772

5.22.18DataSource configuration ___ 774

5.22.19Deployment Scanner configuration __ 778

5.22.20EE Subsystem Configuration __ 781

5.22.21JMX subsystem configuration __ 800

5.22.22JSF Configuration ___ 804

5.22.23Logging Configuration __ 807

5.22.24Messaging configuration __ 827

5.22.25Naming Subsystem Configuration ___ 846

Latest WildFly Documentation

JBoss Community Documentation Page of 6 2293

Naming Subsystem Configuration __ 846

5.22.26Resource adapters __ 856

5.22.27Security subsystem configuration ___ 858

5.22.28Simple configuration subsystems ___ 871

5.22.29Undertow subsystem configuration __ 871

5.22.30Web services configuration __ 881

5.23 Target Audience __ 888

5.23.1 Prerequisites ___ 888

5.23.2 Examples in this guide __ 888

6 Developer Guide __ 889

6.1 WildFly Developer Guide __ 892

6.1.1 Target Audience ___ 892

6.1.2 Prerequisites ___ 892

6.2 Class loading in WildFly __ 892

6.2.1 Deployment Module Names __ 892

6.2.2 Automatic Dependencies __ 893

6.2.3 Class Loading Precedence __ 893

6.2.4 WAR Class Loading __ 893

6.2.5 EAR Class Loading __ 893

6.2.6 Global Modules ___ 897

6.2.7 JBoss Deployment Structure File __ 897

6.2.8 Accessing JDK classes ___ 899

6.2.9 The "jboss.api" property and application use of modules shipped with WildFly _________ 899

6.3 Implicit module dependencies for deployments ______________________________________ 900

6.3.1 What's an implicit module dependency? ______________________________________ 901

6.3.2 How and when is an implicit module dependency added? ________________________ 901

6.3.3 Which are the implicit module dependencies? __________________________________ 901

6.4 How do I migrate my application from JBoss AS 5 or AS 6 to WildFly? ____________________ 904

6.5 EJB invocations from a remote standalone client using JNDI ____________________________ 904

6.5.1 Deploying your EJBs on the server side: ______________________________________ 904

6.5.2 Writing a remote client application for accessing and invoking the EJBs deployed on the

server __ 906

6.5.3 Setting up EJB client context properties ______________________________________ 912

6.5.4 Summary __ 917

6.6 EJB invocations from a remote server ___ 917

6.6.1 Application packaging __ 917

6.6.2 Beans ___ 918

6.6.3 Security ___ 918

6.6.4 Configuring a user on the "Destination Server" _________________________________ 919

6.6.5 Start the "Destination Server" __ 920

6.6.6 Deploying the application __ 920

6.6.7 Configuring the "Client Server" to point to the EJB remoting connector on the "Destination

Server" __ 920

6.6.8 Start the "Client Server" ___ 921

6.6.9 Create a security realm on the client server ____________________________________ 921

6.6.10 Create a outbound-socket-binding on the "Client Server" _________________________ 923

Latest WildFly Documentation

JBoss Community Documentation Page of 7 2293

6.6.11 Create a "remote-outbound-connection" which uses this newly created

"outbound-socket-binding" __ 923

6.6.12 Packaging the client application on the "Client Server" ___________________________ 925

6.6.13 Contents on jboss-ejb-client.xml __ 926

6.6.14 Deploy the client application ___ 926

6.6.15 Client code invoking the bean __ 927

6.7 Remote EJB invocations via JNDI - Which approach to use? ____________________________ 927

6.8 JBoss EJB 3 reference guide __ 927

6.8.1 Resource Adapter for Message Driven Beans __________________________________ 928

6.8.2 Run-as Principal ___ 928

6.8.3 Security Domain ___ 929

6.8.4 Transaction Timeout ___ 929

6.8.5 Timer service ___ 930

6.9 JPA reference guide ___ 932

6.9.1 Introduction __ 934

6.9.2 Update your Persistence.xml for Hibernate 5.1 _________________________________ 934

6.9.3 Entity manager __ 934

6.9.4 Container-managed entity manager __ 935

6.9.5 Application-managed entity manager ___ 935

6.9.6 Persistence Context __ 935

6.9.7 Transaction-scoped Persistence Context _____________________________________ 936

6.9.8 Extended Persistence Context __ 936

6.9.9 Entities __ 938

6.9.10 Deployment __ 939

6.9.11 Troubleshooting ___ 939

6.9.12 Using the Infinispan second level cache ______________________________________ 941

6.9.13 Replacing the current Hibernate 5.x jars with a newer version _____________________ 944

6.9.14 Using Hibernate Search ___ 944

6.9.15 Packaging the Hibernate JPA persistence provider with your application _____________ 945

6.9.16 Migrating from OpenJPA __ 946

6.9.17 Migrating from EclipseLink ___ 946

6.9.18 Migrating from DataNucleus __ 948

6.9.19 Native Hibernate use ___ 948

6.9.20 Injection of Hibernate Session and SessionFactoryInjection of Hibernate Session and

SessionFactory ___ 948

6.9.21 Hibernate properties __ 948

6.9.22 Persistence unit properties ___ 950

6.9.23 Determine the persistence provider module ___________________________________ 952

6.9.24 Binding EntityManagerFactory/EntityManager to JNDI ___________________________ 953

6.9.25 Community ___ 954

6.10 OSGi developer guide __ 954

6.11 JNDI reference guide __ 954

6.11.1 Overview __ 955

6.11.2 Local JNDI ___ 955

6.11.3 Remote JNDI ___ 960

6.12 Spring applications development and migration guide _________________________________ 961

Latest WildFly Documentation

JBoss Community Documentation Page of 8 2293

6.12.1 Dependencies and Modularity __ 961

6.12.2 Persistence usage guide __ 962

6.12.3 Native Spring/Hibernate applications ___ 962

6.12.4 JPA-based applications ___ 962

6.13 All WildFly documentation ___ 965

6.14 Application Client Reference ___ 965

6.14.1 Getting Started __ 965

6.14.2 Connecting to more than one host ___ 965

6.14.3 Example ___ 966

6.15 CDI Reference __ 966

6.15.1 Using CDI Beans from outside the deployment _________________________________ 967

6.15.2 Suppressing implicit bean archives __ 968

6.15.3 Development mode __ 969

6.15.4 Non-portable mode __ 970

6.16 Class Loading in WildFly __ 970

6.16.1 Deployment Module Names __ 971

6.16.2 Automatic Dependencies __ 971

6.16.3 Class Loading Precedence __ 971

6.16.4 WAR Class Loading __ 971

6.16.5 EAR Class Loading __ 971

6.16.6 Global Modules ___ 975

6.16.7 JBoss Deployment Structure File __ 975

6.16.8 Accessing JDK classes ___ 977

6.16.9 The "jboss.api" property and application use of modules shipped with WildFly _________ 977

6.17 Deployment Descriptors used In WildFly ___ 978

6.18 Development Guidelines and Recommended Practices ________________________________ 982

6.19 EE Concurrency Utilities __ 982

6.19.1 Overview __ 982

6.19.2 Context Service ___ 983

6.19.3 Managed Thread Factory __ 983

6.19.4 Managed Executor Service __ 985

6.19.5 Managed Scheduled Executor Service _______________________________________ 985

6.20 EJB 3 Reference Guide ___ 987

6.20.1 Resource Adapter for Message Driven Beans __________________________________ 987

6.20.2 Run-as Principal ___ 988

6.20.3 Security Domain ___ 988

6.20.4 Transaction Timeout ___ 988

6.20.5 Timer service ___ 990

6.20.6 Container interceptors __ 992

6.20.7 EJB3 Clustered Database Timers ___ 996

6.20.8 EJB3 subsystem configuration guide ___ 999

6.20.9 EJB IIOP Guide __ 1005

6.20.10EJB over HTTP __ 1006

6.20.11jboss-ejb3.xml Reference __ 1006

6.20.12Message Driven Beans Controlled Delivery __________________________________ 1008

6.20.13Securing EJBs ___ 1015

Latest WildFly Documentation

JBoss Community Documentation Page of 9 2293

Securing EJBs __ 1015

6.21 EJB invocations from a remote client using JNDI ____________________________________ 1019

6.21.1 Deploying your EJBs on the server side: _____________________________________ 1020

6.21.2 Writing a remote client application for accessing and invoking the EJBs deployed on the

server ___ 1022

6.21.3 Setting up EJB client context properties _____________________________________ 1028

6.21.4 Summary ___ 1032

6.22 EJB invocations from a remote server instance _____________________________________ 1032

6.22.1 Application packaging ___ 1032

6.22.2 Beans __ 1033

6.22.3 Security __ 1033

6.22.4 Configuring a user on the "Destination Server" ________________________________ 1034

6.22.5 Start the "Destination Server" ___ 1035

6.22.6 Deploying the application ___ 1035

6.22.7 Configuring the "Client Server" to point to the EJB remoting connector on the "Destination

Server" ___ 1035

6.22.8 Start the "Client Server" __ 1036

6.22.9 Create a security realm on the client server ___________________________________ 1036

6.22.10Create a outbound-socket-binding on the "Client Server" ________________________ 1038

6.22.11Create a "remote-outbound-connection" which uses this newly created

"outbound-socket-binding" ___ 1038

6.22.12Packaging the client application on the "Client Server" __________________________ 1040

6.22.13Contents on jboss-ejb-client.xml ___ 1041

6.22.14Deploy the client application __ 1041

6.22.15Client code invoking the bean ___ 1042

6.23 Example Applications - Migrated to WildFly __ 1042

6.23.1 Example Applications Migrated from Previous Releases _________________________ 1043

6.23.2 Example Applications Based on EE6 __ 1044

6.23.3 Porting the Order Application from EAP 5.1 to WildFly 8 _________________________ 1044

6.23.4 Seam 2 Booking Application - Migration of Binaries from EAP5.1 to WildFly _________ 1049

6.24 How do I migrate my application from AS7 to WildFly ________________________________ 1068

6.24.1 About this Document __ 1071

6.24.2 Overview of WildFly ___ 1072

6.24.3 Server Migration __ 1072

6.24.4 Application Migration __ 1085

6.25 How do I migrate my application to WildFly from other application servers ________________ 1094

6.25.1 Choose from the list below: ___ 1094

6.25.2 How do I migrate my application from WebLogic to WildFly ______________________ 1095

6.25.3 How do I migrate my application from WebSphere to WildFly _____________________ 1095

6.26 Implicit module dependencies for deployments _____________________________________ 1095

6.26.1 What's an implicit module dependency? _____________________________________ 1096

6.26.2 How and when is an implicit module dependency added? _______________________ 1097

6.26.3 Which are the implicit module dependencies? _________________________________ 1097

6.27 JAX-RS Reference Guide __ 1099

6.27.1 Subclassing javax.ws.rs.core.Application and using @ApplicationPath _____________ 1100

6.27.2 Subclassing javax.ws.rs.core.Application and using web.xml _____________________ 1100

6.27.3 Using web.xml ___ 1101

Latest WildFly Documentation

JBoss Community Documentation Page of 10 2293

6.28 JNDI Reference __ 1101

6.28.1 Overview ___ 1102

6.28.2 Local JNDI __ 1102

6.28.3 Remote JNDI __ 1107

6.28.4 Local JNDI __ 1108

6.28.5 Remote JNDI Reference ___ 1113

6.29 JPA Reference Guide ___ 1116

6.29.1 Introduction ___ 1118

6.29.2 Update your Persistence.xml for Hibernate 5.1 ________________________________ 1118

6.29.3 Entity manager ___ 1118

6.29.4 Container-managed entity manager ___ 1119

6.29.5 Application-managed entity manager __ 1119

6.29.6 Persistence Context ___ 1119

6.29.7 Transaction-scoped Persistence Context ____________________________________ 1120

6.29.8 Extended Persistence Context ___ 1120

6.29.9 Entities ___ 1122

6.29.10Deployment ___ 1123

6.29.11Troubleshooting __ 1123

6.29.12Using the Infinispan second level cache _____________________________________ 1125

6.29.13Replacing the current Hibernate 5.x jars with a newer version ____________________ 1128

6.29.14Using Hibernate Search ___ 1128

6.29.15Packaging the Hibernate JPA persistence provider with your application ___________ 1129

6.29.16Migrating from OpenJPA ___ 1130

6.29.17Migrating from EclipseLink ___ 1130

6.29.18Migrating from DataNucleus __ 1132

6.29.19Native Hibernate use __ 1132

6.29.20Injection of Hibernate Session and SessionFactoryInjection of Hibernate Session and

SessionFactory __ 1132

6.29.21Hibernate properties __ 1132

6.29.22Persistence unit properties ___ 1134

6.29.23Determine the persistence provider module __________________________________ 1136

6.29.24Binding EntityManagerFactory/EntityManager to JNDI __________________________ 1137

6.29.25Community ___ 1138

6.30 OSGi __ 1138

6.31 Remote EJB invocations via JNDI - EJB client API or remote-naming project ______________ 1138

6.31.1 Purpose __ 1138

6.31.2 History ___ 1139

6.31.3 Overview ___ 1139

6.31.4 Summary ___ 1144

6.31.5 Remote EJB invocations backed by the remote-naming project ___________________ 1144

6.31.6 Why use the EJB client API approach then? __________________________________ 1147

6.32 Scoped EJB client contexts ___ 1150

6.32.1 Overview ___ 1150

6.32.2 Potential shortcomings of a single EJB client context ___________________________ 1150

6.32.3 Scoped EJB client contexts ___ 1152

6.32.4 Lifecycle management of scoped EJB client contexts ___________________________ 1153

Latest WildFly Documentation

JBoss Community Documentation Page of 11 2293

6.33 Spring applications development and migration guide ________________________________ 1158

6.33.1 Dependencies and Modularity ___ 1159

6.33.2 Persistence usage guide ___ 1159

6.33.3 Native Spring/Hibernate applications __ 1159

6.33.4 JPA-based applications __ 1159

6.34 Sharing sessions between wars in an ear __ 1162

6.35 Webservices reference guide ___ 1162

6.35.1 JAX-WS User Guide __ 1163

6.35.2 JAX-WS Tools ___ 1178

6.35.3 Advanced User Guide ___ 1198

6.35.4 JBoss Modules and WS applications __ 1383

7 High Availability Guide __ 1387

7.1 Introduction to High Availability Services __ 1388

7.1.1 What are High Availability services? __ 1388

7.1.2 High Availability through fail-over ___ 1389

7.1.3 High Availability through load balancing _____________________________________ 1389

7.1.4 Aims of the guide ___ 1389

7.1.5 Organization of the guide ___ 1390

7.2 HTTP Services __ 1390

7.2.1 Subsystem Support ___ 1390

7.2.2 Clustered Web Sessions ___ 1407

7.2.3 Clustered SSO ___ 1407

7.2.4 Load Balancing __ 1407

7.2.5 Load balancing with Apache + mod_jk ______________________________________ 1407

7.2.6 Load balancing with Apache + mod_cluster __________________________________ 1407

7.3 Configuration __ 1407

7.3.1 Instance ID or JVMRoute ___ 1408

7.3.2 Proxies ___ 1409

7.4 Runtime Operations __ 1409

7.4.1 operations displaying httpd informations _____________________________________ 1410

7.4.2 ___ 1413

7.4.3 Context related operations __ 1414

7.4.4 Node related operations __ 1414

7.4.5 Configuration __ 1414

7.5 EJB Services __ 1416

7.5.1 EJB Subsystem __ 1416

7.6 EJB Timer __ 1416

7.6.1 Marking an EJB as clustered __ 1417

7.6.2 Deploying clustered EJBs __ 1418

7.6.3 Failover for clustered EJBs ___ 1418

7.7 Hibernate ___ 1421

7.8 HA Singleton Features __ 1421

7.8.1 Singleton subsystem __ 1422

7.8.2 Singleton deployments ___ 1424

7.8.3 Singleton MSC services __ 1424

7.9 Related Issues ___ 1426

Latest WildFly Documentation

JBoss Community Documentation Page of 12 2293

7.10 Changes From Previous Versions __ 1426

7.10.1 Key changes __ 1426

7.10.2 Migration to Wildfly __ 1426

7.11 WildFly 8 Cluster Howto ___ 1427

7.12 References ___ 1427

7.13 All WildFly 8 documentation __ 1427

7.14 Introduction To High Availability Services __ 1427

7.14.1 What are High Availability services? __ 1427

7.14.2 High Availability through fail-over ___ 1428

7.14.3 High Availability through load balancing _____________________________________ 1428

7.14.4 Aims of the guide ___ 1428

7.14.5 Organization of the guide ___ 1429

7.15 Subsystem Support ___ 1429

7.15.1 JGroups Subsystem ___ 1429

7.15.2 Purpose __ 1429

7.15.3 Configuration example ___ 1429

7.15.4 Use Cases __ 1434

7.15.5 Purpose __ 1435

7.15.6 Configuration Example ___ 1435

7.15.7 Use Cases __ 1446

7.15.8 JGroups Subsystem ___ 1446

7.15.9 Infinispan Subsystem __ 1451

7.15.10mod_cluster Subsystem ___ 1462

7.16 HTTP Services __ 1473

7.16.1 Subsystem Support ___ 1473

7.16.2 Clustered Web Sessions ___ 1490

7.16.3 Clustered SSO ___ 1490

7.16.4 Load Balancing __ 1490

7.16.5 Load balancing with Apache + mod_jk ______________________________________ 1490

7.16.6 Load balancing with Apache + mod_cluster __________________________________ 1490

7.16.7 Configuration __ 1490

7.16.8 Runtime Operations ___ 1492

7.16.9 Clustered Web Sessions ___ 1499

7.16.10Clustered SSO __ 1499

7.16.11Load Balancing __ 1499

7.17 EJB Services __ 1508

7.17.1 EJB Subsystem __ 1509

7.17.2 EJB Timer __ 1509

7.17.3 EJB Timer __ 1513

7.18 HA Singleton Features __ 1513

7.18.1 Singleton subsystem __ 1514

7.18.2 Singleton deployments ___ 1516

7.18.3 Singleton MSC services __ 1516

7.18.4 Singleton subsystem __ 1518

7.18.5 Singleton deployments ___ 1521

7.18.6 Singleton MSC services __ 1521

Latest WildFly Documentation

JBoss Community Documentation Page of 13 2293

7.19 Hibernate ___ 1523

7.20 Clustering and Domain Setup Walkthrough __ 1523

7.20.1 Preparation & Scenario __ 1523

7.20.2 Download WildFly 9 ___ 1526

7.20.3 Domain Configuration ___ 1526

7.20.4 Deployment ___ 1531

7.20.5 Cluster Configuration __ 1537

7.20.6 Testing ___ 1540

7.20.7 Special Thanks ___ 1542

7.21 Changes From Previous Versions __ 1542

7.21.1 Key changes __ 1542

7.21.2 Migration to Wildfly __ 1542

7.22 Related Topics __ 1542

7.22.1 Modularity And Class Loading ___ 1542

7.22.2 Monitoring __ 1542

8 Getting Started Developing Applications Guide ___ 1543

8.1 Introduction ___ 1543

8.2 Getting started with WildFly ___ 1543

8.3 Helloworld quickstart __ 1543

8.3.1 Deploying the Helloworld example using Eclipse _______________________________ 1543

8.3.2 The helloworld example in depth ___ 1546

8.4 Numberguess quickstart ___ 1546

8.4.1 Deploying the Numberguess example using Eclipse ____________________________ 1546

8.4.2 The numberguess example in depth __ 1546

8.5 Greeter quickstart __ 1546

8.5.1 Deploying the Login example using Eclipse ___________________________________ 1546

8.5.2 The login example in depth ___ 1546

8.6 Kitchensink quickstart ___ 1547

8.6.1 Deploying the Kitchensink example using Eclipse ______________________________ 1547

8.6.2 The kitchensink example in depth __ 1547

8.7 Creating your own application ___ 1547

8.7.1 Creating your own application using Eclipse __________________________________ 1547

8.8 More Resources ___ 1547

8.8.1 Developing JSF Project Using JBoss AS7, Maven and IntelliJ ____________________ 1547

8.8.2 Getting Started Developing Applications Presentation & Demo ___________________ 1576

9 Getting Started Guide ___ 1591

9.1 Getting Started with WildFly 10 __ 1591

9.1.1 Download ___ 1593

9.1.2 Requirements __ 1593

9.1.3 Installation __ 1593

9.1.4 WildFly - A Quick Tour ___ 1593

9.2 JavaEE 6 Tutorial __ 1603

9.2.1 Standard JavaEE 6 Technologies __ 1603

9.2.2 JBoss AS7 Extension Technologies __ 1604

9.2.3 Standard JavaEE 6 Technologies __ 1604

9.2.4 JBoss AS7 Extension Technologies __ 1640

Latest WildFly Documentation

JBoss Community Documentation Page of 14 2293

10 Glossary ___ 1641

10.1 Module ___ 1641

10.2 Module ___ 1641

11 Extending WildFly __ 1642

11.1 Target Audience ___ 1646

11.1.1 Prerequisites __ 1646

11.1.2 Examples in this guide ___ 1646

11.2 Overview ___ 1646

11.3 Example subsystem __ 1646

11.3.1 Create the skeleton project ___ 1646

11.3.2 Create the schema __ 1649

11.3.3 Design and define the model structure ______________________________________ 1649

11.3.4 Parsing and marshalling of the subsystem xml ________________________________ 1661

11.3.5 Add the deployers __ 1672

11.3.6 Integrate with WildFly __ 1675

11.3.7 Expressions ___ 1680

11.4 Working with WildFly Capabilities __ 1683

11.4.1 Capabilities __ 1683

11.4.2 Capability Contract __ 1687

11.4.3 Capability Registry __ 1687

11.4.4 Using Capabilities __ 1687

11.5 Domain mode subsystem transformers __ 1697

11.5.1 Abstract __ 1699

11.5.2 Background ___ 1699

11.5.3 Versions and backward compatibility __ 1702

11.5.4 The role of transformers __ 1704

11.5.5 How do I know what needs to be transformed? ________________________________ 1711

11.5.6 How do I write a transformer? ___ 1714

11.5.7 Evolving transformers with subsystem ModelVersions __________________________ 1733

11.5.8 Testing transformers __ 1738

11.5.9 Common transformation use-cases ___ 1742

11.6 Key Interfaces and Classes Relevant to Extension Developers _________________________ 1749

11.6.1 Extension Interface ___ 1751

11.6.2 WildFly Managed Resources __ 1752

11.6.3 ManagementResourceRegistration Interface __________________________________ 1752

11.6.4 ResourceDefinition Interface __ 1753

11.6.5 AttributeDefinition Class __ 1755

11.6.6 OperationDefinition and OperationStepHandler Interfaces _______________________ 1761

11.6.7 Operation Execution and the OperationContext _______________________________ 1762

11.6.8 Resource Interface __ 1769

11.6.9 DeploymentUnitProcessor Interface __ 1771

11.6.10Useful classes for implementing OperationStepHandler _________________________ 1771

11.7 CLI Extensibility for Layered Products __ 1774

11.8 All WildFly documentation __ 1776

11.9 CLI extensibility for layered products ___ 1776

11.10Domain Mode Subsystem Transformers __ 1778

Latest WildFly Documentation

JBoss Community Documentation Page of 15 2293

Domain Mode Subsystem Transformers ___ 1778

11.10.1Abstract __ 1780

11.10.2Background ___ 1780

11.10.3Versions and backward compatibility _______________________________________ 1783

11.10.4The role of transformers ___ 1785

11.10.5How do I know what needs to be transformed? _______________________________ 1792

11.10.6How do I write a transformer? ___ 1795

11.10.7Evolving transformers with subsystem ModelVersions __________________________ 1814

11.10.8Testing transformers __ 1819

11.10.9Common transformation use-cases __ 1823

11.11Example subsystem __ 1830

11.11.1Create the skeleton project ___ 1830

11.11.2Create the schema ___ 1833

11.11.3Design and define the model structure ______________________________________ 1833

11.11.4Parsing and marshalling of the subsystem xml ________________________________ 1845

11.11.5Add the deployers __ 1856

11.11.6Integrate with WildFly ___ 1859

11.11.7Expressions ___ 1864

11.11.8Add the deployers __ 1867

11.11.9Create the schema ___ 1870

11.11.10Create the skeleton project __ 1870

11.11.11Design and define the model structure _____________________________________ 1872

11.11.12Expressions __ 1884

11.11.13Integrate with WildFly __ 1887

11.11.14Parsing and marshalling of the subsystem xml _______________________________ 1892

11.12Key Interfaces and Classes Relevant to Extension Developers ________________________ 1902

11.12.1Extension Interface ___ 1904

11.12.2WildFly Managed Resources ___ 1905

11.12.3ManagementResourceRegistration Interface _________________________________ 1905

11.12.4ResourceDefinition Interface __ 1906

11.12.5AttributeDefinition Class ___ 1908

11.12.6OperationDefinition and OperationStepHandler Interfaces _______________________ 1914

11.12.7Operation Execution and the OperationContext _______________________________ 1915

11.12.8Resource Interface ___ 1922

11.12.9DeploymentUnitProcessor Interface __ 1924

11.12.10Useful classes for implementing OperationStepHandler ________________________ 1924

11.13WildFly 9 JNDI Implementation ___ 1927

11.13.1Introduction ___ 1927

11.13.2Architecture ___ 1928

11.13.3Binding APIs __ 1928

11.13.4Resource Ref Processing __ 1934

11.14Working with WildFly Capabilities ___ 1934

11.14.1Capabilities ___ 1934

11.14.2Capability Contract ___ 1938

11.14.3Capability Registry ___ 1938

11.14.4Using Capabilities __ 1938

12 Common ___ 1949

Latest WildFly Documentation

JBoss Community Documentation Page of 16 2293

12.1 All WildFly documentation __ 1949

13 Testsuite ___ 1950

13.1 JBoss AS 7 Testsuite ___ 1950

13.2 WildFly Testsuite Overview ___ 1950

13.2.1 Test Suite Organization __ 1951

13.2.2 Profiles ___ 1952

13.2.3 Integration tests __ 1953

13.3 WildFly Integration Testsuite User Guide __ 1953

13.3.1 Running the testsuite __ 1953

13.3.2 Examples ___ 1955

13.3.3 Troubleshooting Common Issues __ 1965

13.4 WildFly Testsuite Harness Developer Guide __ 1965

13.4.1 Testsuite requirements ___ 1965

13.4.2 Adding a new maven plugin ___ 1965

13.4.3 Shortened Maven run overview __ 1965

13.4.4 How the AS instance is built ___ 1966

13.4.5 Properties and their propagation ___ 1967

13.4.6 Debug parameters propagation __ 1968

13.4.7 How the JBoss AS instance is built and configured for testsuite modules. ___________ 1968

13.4.8 Plugin executions matrix ___ 1969

13.4.9 Shortened Maven Run Overview ___ 1971

13.5 WildFly Testsuite Test Developer Guide ___ 1978

13.5.1 Pre-requisites __ 1979

13.5.2 Arquillian container configuration ___ 1979

13.5.3 ManagementClient and ModelNode usage example ____________________________ 1979

13.5.4 Arquillian features available in tests ___ 1979

13.5.5 Properties available in tests ___ 1981

13.5.6 Negative tests ___ 1982

13.5.7 Clustering tests (WFLY-616) __ 1982

13.5.8 How to get the tests to master ___ 1983

13.5.9 How to Add a Test Case ___ 1984

13.5.10Before you add a test ___ 1984

13.5.11Shared Test Classes and Resources _______________________________________ 1988

14 Quickstarts ___ 1989

14.1 Getting Started __ 1989

14.2 Contributing ___ 1989

14.3 Contributing a Quickstart ___ 1989

14.3.1 Maven POM Versions Checklist __ 1990

14.3.2 Writing a quickstart __ 1990

15 WildFly Elytron Security __ 1991

15.1 About __ 1993

15.1.1 Authentication ___ 1993

15.1.2 Authorization __ 1994

15.1.3 SSL / TLS ___ 1994

15.1.4 Secure Credential Storage __ 1994

15.2 General Elytron Architecture __ 1994

Latest WildFly Documentation

JBoss Community Documentation Page of 17 2293

15.2.1 Security Domains ___

15.2.2 SASL Authentication __ 1997

15.2.3 HTTP Authentication __ 1998

15.2.4 SSL / TLS ___ 1999

15.3 Elytron Subsystem ___ 1999

15.3.1 Get Started using the Elytron Subsystem ____________________________________ 2000

15.3.2 Provided components ___ 2000

15.3.3 Out of the Box Configuration __ 2005

15.3.4 Default Application Authentication Configuration _______________________________ 2011

15.3.5 Default Management Authentication Configuration _____________________________ 2013

15.3.6 Comparing Legacy Approaches to Elytron Approaches _________________________ 2019

15.4 Using the Elytron Subsystem ___ 2019

15.4.1 Set Up and Configure Authentication for Applications ___________________________ 2020

15.4.2 Set up and Configure Authentication for the Management Interfaces _______________ 2034

15.4.3 Configure SSL/TLS ___ 2037

15.4.4 Configuring the Elytron and Security Subsystems ______________________________ 2047

15.4.5 Creating Elytron Subsystem Components ____________________________________ 2048

15.5 Using Elytron within WildFly __ 2050

15.5.1 Using the Out of the Box Elytron Components ________________________________ 2051

15.5.2 Undertow Subsystem __ 2052

15.5.3 EJB Subsystem __ 2053

15.5.4 WebServices Subsystem ___ 2053

15.5.5 Legacy Security Subsystem ___ 2053

15.6 Client Authentication with Elytron Client ___ 2053

15.6.1 The Configuration File Approach ___ 2054

15.6.2 The Programmatic Approach __ 2056

15.6.3 The Default Configuration Approach __ 2060

15.6.4 Using Elytron Client with Clients Deployed to WildFly ___________________________ 2061

15.6.5 Client configuration using wildfly-config.xml ___________________________________ 2061

15.7 Client Authentication with Elytron Client ___ 2063

15.7.1 Client Authentication with Elytron Client _____________________________________ 2063

15.7.2 Client configuration using wildfly-config.xml ___________________________________ 2073

15.8 Elytron and Java Authorization Contract for Containers (JACC) _________________________ 2075

15.8.1 Overview ___ 2076

15.8.2 Disabling JACC in Legacy Security Subsystem (PicketBox) ______________________ 2076

15.8.3 Defining a JACC Policy Provider ___ 2076

15.8.4 Enabling JACC to a Web Deployment _______________________________________ 2077

15.8.5 Enabling JACC to a EJB Deployment _______________________________________ 2077

15.9 Elytron Subsystem ___ 2077

15.9.1 Get Started using the Elytron Subsystem ____________________________________ 2078

15.9.2 Provided components ___ 2078

15.9.3 Out of the Box Configuration __ 2083

15.9.4 Default Application Authentication Configuration _______________________________ 2089

15.9.5 Default Management Authentication Configuration _____________________________ 2091

15.9.6 Comparing Legacy Approaches to Elytron Approaches _________________________ 2097

15.10General Elytron Architecture ___ 2097

Latest WildFly Documentation

JBoss Community Documentation Page of 18 2293

General Elytron Architecture __ 2097

15.10.1Security Domains __

15.10.2SASL Authentication __ 2101

15.10.3HTTP Authentication __ 2102

15.10.4SSL / TLS __ 2103

15.11Migrate Legacy Security to Elytron Security __ 2103

15.11.1Authentication Configuration __ 2105

15.11.2Clients ___ 2135

15.11.3General Utilities __ 2141

15.11.4SSL Migration ___ 2145

15.11.5Documentation Still Needed __ 2159

15.11.6Application Client Migration ___ 2159

15.11.7Caching Migration __ 2164

15.11.8Composite Stores Migration __ 2167

15.11.9Database Authentication ___ 2172

15.11.10Kerberos Authentication Migration __ 2177

15.11.11LDAP Authentication Migration ___ 2183

15.11.12Properties Based Authentication / Authorization ______________________________ 2187

15.11.13Security Properties __ 2194

15.11.14Security Vault Migration __ 2194

15.11.15Simple SSL Migration __ 2198

15.11.16SSL with Client Cert Migration ___ 2202

15.12OpenSSL __ 2211

15.13Protecting Wildfly Adminstration Console With Keycloak ______________________________ 2211

15.13.1Overview ___ 2212

15.13.2System Requirements ___ 2212

15.13.3Installing Keycloak Wildfly Elytron Adapters __________________________________ 2213

15.13.4Creating a Keycloak Realm for Wildfly Management Services ____________________ 2213

15.13.5Protecting Wildfly Console and Management API ______________________________ 2215

15.13.6Accessing Wildfly Administration Console ___________________________________ 2215

15.14Using the Elytron Subsystem ___ 2215

15.14.1Set Up and Configure Authentication for Applications __________________________ 2216

15.14.2Set up and Configure Authentication for the Management Interfaces ______________ 2230

15.14.3Configure SSL/TLS ___ 2233

15.14.4Configuring the Elytron and Security Subsystems _____________________________ 2243

15.14.5Creating Elytron Subsystem Components ___________________________________ 2244

15.15Using Elytron within WildFly __ 2246

15.15.1Using the Out of the Box Elytron Components ________________________________ 2247

15.15.2Undertow Subsystem ___ 2248

15.15.3EJB Subsystem __ 2249

15.15.4WebServices Subsystem __ 2249

15.15.5Legacy Security Subsystem __ 2249

15.16Web Single Sign-On __ 2249

15.16.1Overview ___ 2250

15.16.2Create a Server Configuration Template ____________________________________ 2250

15.16.3Create Two Server Instances ___ 2252

15.16.4Deploy an Application ___ 2252

Latest WildFly Documentation

JBoss Community Documentation Page of 19 2293

Deploy an Application __ 2252

16 WildFly Client Configuration __ 2255

16.1 Introduction ___ 2256

16.1.1 wildfly-config.xml Discovery ___ 2256

16.2 Configuration Sections __ 2256

16.2.1 <authentication-client /> - WildFly Elytron ____________________________________ 2256

16.2.2 <jboss-ejb-client /> - EJB Client __ 2268

16.2.3 <endpoint /> - Remoting Client __ 2269

16.2.4 <worker /> - XNIO Client ___ 2271

16.3 <authentication-client /> - WildFly Elytron __ 2274

16.3.1 <credential-stores /> __ 2275

16.3.2 <key-stores /> ___ 2277

16.3.3 <authentication-rules /> and <ssl-context-rules /> ______________________________ 2278

16.3.4 <authentication-configurations /> ___ 2280

16.3.5 <net-authenticator /> __ 2283

16.3.6 <ssl-contexts /> __ 2283

16.3.7 <providers /> __ 2284

16.4 <jboss-ejb-client /> - EJB Client ___ 2286

16.4.1 <invocation-timeout /> ___ 2286

16.4.2 <global-interceptors /> ___ 2287

16.4.3 <interceptor /> ___ 2287

16.4.4 <connections /> __ 2287

16.4.5 <connection /> ___ 2287

16.4.6 <interceptors /> __ 2287

16.5 <endpoint /> - Remoting Client __ 2287

16.5.1 <providers /> __ 2289

16.5.2 <connections /> __ 2290

16.5.3 Example Remoting Client Configuration in the wildfly-config.xml File _______________ 2290

16.6 <worker /> - XNIO Client ___ 2290

16.6.1 <daemon-threads /> ___ 2291

16.6.2 <worker-name /> ___ 2292

16.6.3 <pool-size /> ___ 2292

16.6.4 <task-keepalive /> __ 2292

16.6.5 <io-threads /> __ 2292

16.6.6 <stack-size /> __ 2293

16.6.7 <outbound-bind-addresses /> ___ 2293

Latest WildFly Documentation

JBoss Community Documentation Page of 20 2293

Welcome to the WildFly Documentation. The documentation for WildFly is split into two categories:

 for those wanting to understand how to install and configure the serverAdministrator Guides

 for those wanting to understand how to develop applications for the serverDeveloper Guides

There is also the that provides information about all subsystem configurationWildFly Model Reference

options generated directly from the management model.

http://wildscribe.github.io/

Latest WildFly Documentation

JBoss Community Documentation Page of 21 2293

1 Administrator Guides

The shows you how to install and start the server, how to configure logging,Getting Started Guide

how to deploy an application, how to deploy a datasource, and how to get started using the command

line interface and web management interface

The provides detailed information on using the CLI and Web Management interface,Admin Guide

how to use the domain configuration, and shows you how to configure key subsystems

The shows you how to create a cluster, how configure the web container andHigh Availability Guide

EJB container for clustering, and shows you how to configure load balancing and failover

Latest WildFly Documentation

JBoss Community Documentation Page of 22 2293

2 Developer Guides

The shows you how to build Java EE applications andGetting Started Developing Applications Guide

deploy them to WildFly. The guide starts by showing you the simplest application using justhelloworld

Servlet and CDI, and then adds in JSF, persistence and transactions, EJB, Bean Validation, RESTful

web services and more. You'll also discover how to deploy an OSGi bundle to WildFly. Finally, you'll

get the opportunity to create your own skeleton project. Each tutorial is accompanied by a quickstart,

which contains the source code, deployment descriptors and a Maven based build.

The () takes you through every deployment descriptor and everyDeveloper Guide in progress

annotation offered by WildFly.

The () builds on what you learnt in the JavaEE 6 Tutorial in progress Getting Started Developing

, and shows you how to build a complex application using Java EE and portableApplications Guide

extensions.

The guide walks you through creating a new WildFly subsystem extension, in orderExtending WildFly

to add more functionality to WildFly, and shows how to test it before plugging it into WildFly.

Latest WildFly Documentation

JBoss Community Documentation Page of 23 2293

3 Quickstarts
WildFly comes with a number of quickstarts, examples which introduce to a particular technology or feature

of the application server. The section of the documentation details the availableContributing a Quickstart

quickstarts

Latest WildFly Documentation

JBoss Community Documentation Page of 24 2293

4 More Resources

Glossary

WildFly project page

WildFly issue tracker

WildFly user forum

WildFly wiki

WildFly source

http://www.wildfly.org
https://issues.jboss.org/browse/WFLY
https://community.jboss.org/en/wildfly
https://community.jboss.org/en/wildfly/dev
https://github.com/wildfly/wildfly/

Latest WildFly Documentation

JBoss Community Documentation Page of 25 2293

5 Admin Guide

Target audience

Prerequisites

Examples in this guide

Management clients

Web Management Interface

HTTP Management Endpoint

Accessing the web console

Default HTTP Management Interface Security

Command Line Interface

Configuration Files

Standalone Server Configuration File

Managed Domain Configuration Files

Host Specific Configuration - host.xml

Domain Wide Configuration - domain.xml

Core management concepts

Operating modes

Standalone Server

Managed Domain

Host

Host Controller

Domain Controller

Server Group

Server

Deciding between running standalone servers or a managed domain

General configuration concepts

Extensions

Profiles and Subsystems

Paths

Interfaces

Socket Bindings and Socket Binding Groups

System Properties

Management resources

Address

Operations

Attributes

Children

Descriptions

Comparison to JMX MBeans

Basic structure of the management resource trees

Standalone server

Managed domain

Latest WildFly Documentation

JBoss Community Documentation Page of 26 2293

Configuring interfaces and ports

Interface declarations

The -b command line argument

Socket Binding Groups

IPv4 versus IPv6

Stack and address preference

IP address literals

Administrative security

Security realms

General Structure

Using a Realm

Inbound Connections

Management Interfaces

Remoting Subsystem

Outbound Connections

Remoting Subsystem

Slave Host Controller

Authentication

Authorization

Out Of The Box Configuration

Management Realm

Application Realm

Authentication

Authorization

other security domain

add-user.sh

Adding a User

A Management User

Interactive Mode

Non-Interactive Mode

An Application User

Interactive Mode

Non-Interactive Mode

Updating a User

A Management User

Interactive Mode

Non-Interactive Mode

An Application User

Interactive Mode

Non-Interactive Mode

Community Contributions

JMX Security

Latest WildFly Documentation

JBoss Community Documentation Page of 27 2293

Detailed Configuration

<server-identities />

<ssl />

<secret />

<authentication />

<truststore />

<local />

<jaas />

<ldap />

<username-filter />

<advanced-filter />

<properties />

<users />

<authorization />

<properties />

<outbound-connection />

<ldap />

Plug Ins

AuthenticationPlugIn

PasswordCredential

DigestCredential

ValidatePasswordCredential

AuthorizationPlugIn

PlugInConfigurationSupport

Installing and Configuring a Plug-In

PlugInProvider

Package as a Module

The AuthenticationPlugIn

The AuthorizationPlugIn

Forcing Plain Text Authentication

Example Configurations

LDAP Authentication

Enable SSL

Add Client-Cert to SSL

Latest WildFly Documentation

JBoss Community Documentation Page of 28 2293

Authorizing management actions with Role Based Access Control

Access Control Providers

RBAC provider overview

RBAC roles

Access control constraints

Addressing a resource

Switching to the "rbac" provider

Mapping users and groups to roles

Mapping individual users

User groups

Mapping groups to roles

Including all authenticated users in a role

Excluding users and groups

Users who map to multiple roles

Adding custom roles in a managed domain

Server group scoped roles

Host scoped roles

Using the admin console to create scoped roles

Configuring constraints

Configuring sensitivity

Sensitive resources, attributes and operations

Classifications with broad use

Values with security vault expressions

Configuring "Deployer" role access

Application classifications shipped with WildFly

RBAC effect on administrator user experience

Admin console

CLI

Description of access control constraints in the management model metadata

Learning about your own role mappings

"Run-as" capability for SuperUsers

CLI run-as

Admin console run-as

Using run-as roles with the "simple" access control provider

Latest WildFly Documentation

JBoss Community Documentation Page of 29 2293

Application deployment

Managed Domain

Deployment Commands

Exploded managed deployments

XML Configuration File

Standalone Server

Deployment Commands

Deploying Using the Deployment Scanner

Deployment Scanner Modes

Marker Files

Managed and Unmanaged Deployments

Content Repository

Unmanaged Deployments

Deployment overlays

Creating a deployment overlay

Subsystem configuration

EE Subsystem Configuration

Overview

Java EE Application Deployment

Global Modules

EAR Subdeployments Isolation

Property Replacement

Spec Descriptor Property Replacement

JBoss Descriptor Property Replacement

Annotation Property Replacement

EE Concurrency Utilities

Context Services

Managed Thread Factories

Managed Executor Services

Managed Scheduled Executor Services

Default EE Bindings

Naming

Overview

Global Bindings Configuration

Simple Bindings

Object Factories

External Context Federation

Remote JNDI Configuration

Data sources

JDBC Driver Installation

Datasource Definitions

Using security domains

Component Reference

Latest WildFly Documentation

JBoss Community Documentation Page of 30 2293

Logging

Overview

Attributes

add-logging-api-dependencies

use-deployment-logging-config

Per-deployment Logging

Logging Profiles

Default Log File Locations

Managed Domain

Standalone Server

Filter Expressions

List Log Files and Reading Log Files

List Log Files

Read Log File

FAQ

Why is there a file?logging.properties

Web (Undertow)

Buffer cache configuration

Server configuration

Connector configuration

Common settings

HTTP Connector

HTTPS listener

AJP listener

Host configuration

Servlet container configuration

JSP configuration

Session Cookie Configuration

Persistent Session Configuration

Messaging

Required Extension

Connectors

JMS Connection Factories

JMS Queues and Topics

Dead Letter & Redelivery

Security Settings for Artemis addresses and JMS destinations

Security Domain for Users

Using the Elytron Subsystem

Cluster Authentication

Deployment of -jms.xml files

JMS Bridge

Modules for other messaging brokers

Configuration

Management commands

Component Reference

Latest WildFly Documentation

JBoss Community Documentation Page of 31 2293

Security

Structure of the Security Subsystem

Authentication Manager

Authorization Manager

Audit Manager

Mapping Manager

Security Subsystem Configuration

security-management

subject-factory

security-domains

authentication

authentication-jaspi

authorization

mapping

audit

jsse

security-properties

Web services

Structure of the webservices subsystem

Published endpoint address

Predefined endpoint configurations

Endpoint configs

Handler chains

Handlers

Runtime information

Component Reference

Resource adapters

Resource Adapter Definitions

Using security domains

Automatic activation of resource adapter archives

Component Reference

Batch

Overview

Default Subsystem Configuration

Security

Deployment Descriptors

Deployment Resources

Latest WildFly Documentation

JBoss Community Documentation Page of 32 2293

JSF

Overview

Installing a new JSF implementation manually

Add a module slot for the new JSF implementation JAR

Add a module slot for the new JSF API JAR

Add a module slot for the JSF injection JAR

For MyFaces only - add a module for the commons-digester JAR

Start the server

Changing the default JSF implementation

Configuring a JSF app to use a non-default JSF implementation

JMX

Audit logging

JSON Formatter

Deployment Scanner

Core Management

Overview

Lifecycle listener

Configuration changes

Simple configuration subsystems

Domain setup

Domain Controller Configuration

Host Controller Configuration

Server groups

Servers

JVM

Latest WildFly Documentation

JBoss Community Documentation Page of 33 2293

Other management tasks

Controlling operation via command line parameters

System properties

Controlling filesystem locations with system properties

Standalone

Managed Domain

Other command line parameters

Standalone

Managed Domain

Common parameters

Controlling the Bind Address with -b

Controlling the Default Multicast Address with -u

Suspend, resume and graceful shutdown

Core Concepts

Starting Suspended

The Request Controller Subsystem

Subsystem Integrations

Standalone Mode

Domain Mode

Starting & stopping Servers in a Managed Domain

Controlling JVM settings

Managed Domain

Standalone Server

Administrative audit logging

JSON Formatter

Handlers

File handler

Syslog handler

UDP

TCP

TLS

TLS with Client certificate authentication.

Logger configuration

Domain Mode (host specific configuration)

Canceling management operations

The operationcancel-non-progressing-operation

The operationfind-non-progressing-operation

Examining the status of an active operation

Canceling a specific operation

Controlling operation blocking time

Configuration file history

Snapshots

Subsequent Starts

Management API reference

Latest WildFly Documentation

JBoss Community Documentation Page of 34 2293

Global operations

The operationread-resource

The operationread-attribute

The operationwrite-attribute

The operationundefine-attribute

The operationlist-add

The operationlist-remove

The operationlist-get

The operationlist-clear

The operationmap-put

The operationmap-remove

The operationmap-get

The operationmap-clear

The operationread-resource-description

The operationread-operation-names

The operationread-operation-description

The operationread-children-types

The operationread-children-names

The operationread-children-resources

The operationread-attribute-group

The operationread-attribute-group-names

Standard Operations

The operationadd

The operationremove

Detyped management and the jboss-dmr library

ModelNode and ModelType

Basic manipulationModelNode

Lists

Properties

ModelType.OBJECT

ModelType.EXPRESSION

ModelType.TYPE

Full list of typesModelNode

Text representation of a ModelNode

JSON representation of a ModelNode

Description of the Management Model

Description of the WildFly Managed Resources

Description of an Attribute

Description of an Operation

Description of an Operation Parameter or Return Value

Arbitrary Descriptors

Description of Parent/Child Relationships

Applying Updates to Runtime Services

Latest WildFly Documentation

JBoss Community Documentation Page of 35 2293

The native management API

Native Management Client Dependencies

Working with a ModelControllerClient

Creating the ModelControllerClient

Creating an operation request object

Execute the operation and manipulate the result:

Close the ModelControllerClient

Format of a Detyped Operation Request

Simple Operations

Operation Headers

Composite Operations

Operations with a Rollout Plan

Default Rollout Plan

Creating and reusing a Rollout Plan

Format of a Detyped Operation Response

Simple Responses

Response Headers

Basic Composite Operation Responses

Multi-Server Responses

CLI Recipes

Properties

Adding, reading and removing system property using CLI

Overview of all system properties

Configuration

List Subsystems

List description of available attributes and childs

View configuration as XML for domain model or host model

Take a snapshot of what the current domain is

Take the latest snapshot of the host.xml for a particular host

How to get interface address

Runtime

Get all configuration and runtime details from CLI

Scripting

Windows and "Press any key to continue ..." issue

Statistics

Read statistics of active datasources

Deployment

Undeploying and redeploying multiple deployments

Incremental deployment with the CLI

Notes for server side operation Handler implementors

Downloading files with the CLI

All WildFly documentation

Latest WildFly Documentation

JBoss Community Documentation Page of 36 2293

5.1 Target audience

This document is a guide to the setup, administration, and configuration of WildFly.

5.1.1 Prerequisites

Before continuing, you should know how to download, install and run WildFly. For more information on these

steps, refer here: .Getting Started Guide

5.1.2 Examples in this guide

The examples in this guide are largely expressed as XML configuration file excerpts, or by using a

representation of the de-typed management model.

5.2 Management clients

WildFly offers three different approaches to configure and manage servers: a web interface, a command line

client and a set of XML configuration files. Regardless of the approach you choose, the configuration is

always synchronized across the different views and finally persisted to the XML files.

5.2.1 Web Management Interface

The web interface is a GWT application that uses the HTTP management API to configure a management

domain or standalone server.

Latest WildFly Documentation

JBoss Community Documentation Page of 37 2293

HTTP Management Endpoint
The HTTP API endpoint is the entry point for management clients that rely on the HTTP protocol to integrate

with the management layer. It uses a JSON encoded protocol and a de-typed, RPC style API to describe

and execute management operations against a managed domain or standalone server. It's used by the web

console, but offers integration capabilities for a wide range of other clients too.

The HTTP API endpoint is co-located with either the domain controller or a standalone server. By default, it

runs on port 9990:

<management-interfaces>

 [...]

 <http-interface security-realm="ManagementRealm">

 <socket-binding http="management-http"/>

 </http-interface>

<management-interfaces>

(See standalone/configuration/standalone.xml or domain/configuration/host.xml)

The HTTP API Endpoint serves two different contexts. One for executing management operations and

another one that allows you to access the web interface:

Domain API: http://<host>:9990/management

Web Console: http://<host>:9990/console

Accessing the web console
The web console is served through the same port as the HTTP management API. It can be accessed by

pointing your browser to:

http://<host>:9990/console

Default URL

By default the web interface can be accessed here: .http://localhost:9990/console

Default HTTP Management Interface Security
WildFly is distributed secured by default. The default security mechanism is username / password based

making use of HTTP Digest for the authentication process.

The reason for securing the server by default is so that if the management interfaces are accidentally

exposed on a public IP address authentication is required to connect - for this reason there is no default user

in the distribution.

If you attempt to connect to the admin console before you have added a user to the server you will be

presented with the following screen.

http://localhost:9990/console

Latest WildFly Documentation

JBoss Community Documentation Page of 38 2293

The user are stored in a properties file called mgmt-users.properties under standalone/configuration and

domain/configuration depending on the running mode of the server, these files contain the users username

along with a pre-prepared hash of the username along with the name of the realm and the users password.

Although the properties files do not contain the plain text passwords they should still be guarded as

the pre-prepared hashes could be used to gain access to any server with the same realm if the

same user has used the same password.

Latest WildFly Documentation

JBoss Community Documentation Page of 39 2293

To manipulate the files and add users we provide a utility add-user.sh and add-user.bat to add the users and

generate the hashes, to add a user you should execute the script and follow the guided process.

The full details of the add-user utility are described later but for the purpose of accessing the management

interface you need to enter the following values: -

Type of user - This will be a 'Management User' to selection option a.

Realm - This MUST match the realm name used in the configuration so unless you have changed the

configuration to use a different realm name leave this set as 'ManagementRealm'.

Username - The username of the user you are adding.

Password - The users password.

Provided the validation passes you will then be asked to confirm you want to add the user and the properties

files will be updated.

For the final question, as this is a user that is going to be accessing the admin console just answer 'n' - this

option will be described later for adding slave host controllers that authenticate against a master domain

controller but that is a later topic.

Updates to the properties file are picked up in real time so either click 'Try Again' on the error page that was

displayed in the browser or navigate to the console again and you should then be prompted to enter the

username and password to connect to the server.

Latest WildFly Documentation

JBoss Community Documentation Page of 40 2293

5.2.2 Command Line Interface

The Command Line Interface (CLI) is a management tool for a managed domain or standalone server. It

allows a user to connect to the domain controller or a standalone server and execute management

operations available through the de-typed management model.

Details on how to use the CLI can be found in the .Command Line Interface page

5.2.3 Configuration Files

WildFly stores its configuration in centralized XML configuration files, one per server for standalone servers

and, for managed domains, one per host with an additional domain wide policy controlled by the master

host. These files are meant to be human-readable and human editable.

The XML configuration files act as a central, authoritative source of configuration. Any configuration

changes made via the web interface or the CLI are persisted back to the XML configuration files. If

a domain or standalone server is offline, the XML configuration files can be hand edited as well,

and any changes will be picked up when the domain or standalone server is next started. However,

users are encouraged to use the web interface or the CLI in preference to making offline edits to

the configuration files. External changes made to the configuration files while processes are

running will not be detected, and may be overwritten.

Standalone Server Configuration File
The XML configuration for a standalone server can be found in the standalone/configuration

directory. The default configuration file is .standalone/configuration/standalone.xml

The directory includes a number of other standard configuration files, e.g. standalone/configuration

, and each of which isstandalone-full.xml standalone-ha.xml standalone-full-ha.xml

similar to the default file but includes additional subsystems not present in the defaultstandalone.xml

configuration. If you prefer to use one of these files as your server configuration, you can specify it with the c

or command line argument:-server-config

bin/standalone.sh -c=standalone-full.xml

bin/standalone.sh --server-config=standalone-ha.xml

Managed Domain Configuration Files
In a managed domain, the XML files are found in the directory. There are twodomain/configuration

types of configuration files – one per host, and then a single domain-wide file managed by the master host,

aka the Domain Controller. (For more on the types of processes in a managed domain, see Operating

.)modes

Latest WildFly Documentation

JBoss Community Documentation Page of 41 2293

Host Specific Configuration – host.xml
When you start a managed domain process, a Host Controller instance is launched, and it parses its own

configuration file to determine its own configuration, how it should integrate with the rest of the domain, any

host-specific values for settings in the domain wide configuration (e.g. IP addresses) and what servers it

should launch. This information is contained in the host-specific configuration file, the default version of

which is .domain/configuration/host.xml

Each host will have its own variant , with settings appropriate for its role in the domain. WildFlyhost.xml

ships with three standard variants:

host-master.xml A configuration that specifies the Host Controller should become the master, aka the

Domain Controller. No servers will be started by this Host Controller, which is a

recommended setup for a production master.

host-slave.xml A configuration that specifies the Host Controller should not become master and instead

should register with a remote master and be controlled by it. This configuration launches

servers, although a user will likely wish to modify how many servers are launched and

what server groups they belong to.

host.xml The default host configuration, tailored for an easy out of the box experience

experimenting with a managed domain. This configuration specifies the Host Controller

should become the master, aka the Domain Controller, but it also launches a couple of

servers.

Which host-specific configuration should be used can be controlled via the _ _ command line--host-config

argument:

$ bin/domain.sh --host-config=host-master.xml

Latest WildFly Documentation

JBoss Community Documentation Page of 42 2293

Domain Wide Configuration – domain.xml
Once a Host Controller has processed its host-specific configuration, it knows whether it is configured to act

as the master Domain Controller. If it is, it must parse the domain wide configuration file, by default located

at . This file contains the bulk of the settings that should be applieddomain/configuration/domain.xml

to the servers in the domain when they are launched – among other things, what subsystems they should

run with what settings, what sockets should be used, and what deployments should be deployed.

Which domain-wide configuration should be used can be controlled via the _ _ command line--domain-config

argument:

$ bin/domain.sh --domain-config=domain-production.xml

That argument is only relevant for hosts configured to act as the master.

A slave Host Controller does not usually parse the domain wide configuration file. A slave gets the domain

wide configuration from the remote master Domain Controller when it registers with it. A slave also will not

persist changes to a file if one is present on the filesystem. For that reason it is recommendeddomain.xml

that no be kept on the filesystem of hosts that will only run as slaves.domain.xml

A slave can be configured to keep a locally persisted copy of the domain wide configuration and then use it

on boot (in case the master is not available.) See under --backup and --cached-dc Command line

. parameters

5.3 Core management concepts

5.3.1 Operating modes

WildFly can be booted in two different modes. A allows you to run and manage amanaged domain

multi-server topology. Alternatively, you can run a instance.standalone server

Standalone Server
For many use cases, the centralized management capability available via a managed domain is not

necessary. For these use cases, a WildFly instance can be run as a "standalone server". A standalone

server instance is an independent process, much like an JBoss Application Server 3, 4, 5, or 6 instance is.

Standalone instances can be launched via the or launch scripts.standalone.sh standalone.bat

If more than one standalone instance is launched and multi-server management is desired, it is the user's

responsibility to coordinate management across the servers. For example, to deploy an application across all

of the standalone servers, the user would need to individually deploy the application on each server.

It is perfectly possible to launch multiple standalone server instances and have them form an HA cluster, just

like it was possible with JBoss Application Server 3, 4, 5 and 6.

Latest WildFly Documentation

JBoss Community Documentation Page of 43 2293

Managed Domain
One of the primary new features of WildFly is the ability to manage multiple WildFly instances from a single

control point. A collection of such servers is referred to as the members of a "domain" with a single Domain

Controller process acting as the central management control point. All of the WildFly instances in the domain

share a common management policy, with the Domain Controller acting to ensure that each server is

configured according to that policy. Domains can span multiple physical (or virtual) machines, with all

WildFly instances on a given host under the control of a special Host Controller process. One Host Controller

instance is configured to act as the central Domain Controller. The Host Controller on each host interacts

with the Domain Controller to control the lifecycle of the application server instances running on its host and

to assist the Domain Controller in managing them.

When you launch a WildFly managed domain on a host (via the or launch scripts)domain.sh domain.bat

your intent is to launch a Host Controller and usually at least one WildFly instance. On one of the hosts the

Host Controller should be configured to act as the Domain Controller. See for details.Domain Setup

The following is an example managed domain topology:

Host
Each "Host" box in the above diagram represents a physical or virtual host. A physical host can contain zero,

one or more server instances.

Latest WildFly Documentation

JBoss Community Documentation Page of 44 2293

Host Controller
When the domain.sh or domain.bat script is run on a host, a process known as a Host Controller is

launched. The Host Controller is solely concerned with server management; it does not itself handle

application server workloads. The Host Controller is responsible for starting and stopping the individual

application server processes that run on its host, and interacts with the Domain Controller to help manage

them.

Each Host Controller by default reads its configuration from the filedomain/configuration/host.xml

located in the unzipped WildFly installation on its host's filesystem. The file contains configurationhost.xml

information that is specific to the particular host. Primarily:

the listing of the names of the actual WildFly instances that are meant to run off of this installation.

configuration of how the Host Controller is to contact the Domain Controller to register itself and

access the domain configuration. This may either be configuration of how to find and contact a remote

Domain Controller, or a configuration telling the Host Controller to itself act as the Domain Controller.

configuration of items that are specific to the local physical installation. For example, named interface

definitions declared in (see below) can be mapped to an actual machine-specific IPdomain.xml

address in . Abstract path names in can be mapped to actual filesystemhost.xml domain.xml

paths in .host.xml

Domain Controller
One Host Controller instance is configured to act as the central management point for the entire domain, i.e.

to be the Domain Controller. The primary responsibility of the Domain Controller is to maintain the domain's

central management policy, to ensure all Host Controllers are aware of its current contents, and to assist the

Host Controllers in ensuring any running application server instances are configured in accordance with this

policy. This central management policy is stored by default in the domain/configuration/domain.xml

file in the unzipped WildFly installation on Domain Controller's host's filesystem.

A file must be located in the directory of an installation that'sdomain.xml domain/configuration

meant to run the Domain Controller. It does not need to be present in installations that are not meant to run a

Domain Controller; i.e. those whose Host Controller is configured to contact a remote Domain Controller.

The presence of a file on such a server does no harm.domain.xml

The file includes, among other things, the configuration of the various "profiles" that WildFlydomain.xml

instances in the domain can be configured to run. A profile configuration includes the detailed configuration

of the various subsystems that comprise that profile (e.g. an embedded JBoss Web instance is a subsystem;

a JBoss TS transaction manager is a subsystem, etc). The domain configuration also includes the definition

of groups of sockets that those subsystems may open. The domain configuration also includes the definition

of "server groups":

Latest WildFly Documentation

JBoss Community Documentation Page of 45 2293

Server Group
A server group is set of server instances that will be managed and configured as one. In a managed domain

each application server instance is a member of a server group. (Even if the group only has a single server,

the server is still a member of a group.) It is the responsibility of the Domain Controller and the Host

Controllers to ensure that all servers in a server group have a consistent configuration. They should all be

configured with the same profile and they should have the same deployment content deployed.

The domain can have multiple server groups. The above diagram shows two server groups, "ServerGroupA"

and "ServerGroupB". Different server groups can be configured with different profiles and deployments; for

example in a domain with different tiers of servers providing different services. Different server groups can

also run the same profile and have the same deployments; for example to support rolling application

upgrade scenarios where a complete service outage is avoided by first upgrading the application on one

server group and then upgrading a second server group.

An example server group definition is as follows:

<server-group name="main-server-group" profile="default">

 <socket-binding-group ref="standard-sockets"/>

 <deployments>

 <deployment name="foo.war_v1" runtime-name="foo.war" />

 <deployment name="bar.ear" runtime-name="bar.ear" />

 </deployments>

</server-group>

A server-group configuration includes the following required attributes:

name -- the name of the server group

profile -- the name of the profile the servers in the group should run

In addition, the following optional elements are available:

socket-binding-group -- specifies the name of the default socket binding group to use on servers in

the group. Can be overridden on a per-server basis in . If not provided in the host.xml

 element, it must be provided for each server in .server-group host.xml

deployments -- the deployment content that should be deployed on the servers in the group.

deployment-overlays -- the overlays and their associated deployments.

system-properties -- system properties that should be set on all servers in the group

jvm -- default jvm settings for all servers in the group. The Host Controller will merge these settings

with any provided in to derive the settings to use to launch the server's JVM. See host.xml JVM

 for further details.settings

Latest WildFly Documentation

JBoss Community Documentation Page of 46 2293

Server
Each "Server" in the above diagram represents an actual application server instance. The server runs in a

separate JVM process from the Host Controller. The Host Controller is responsible for launching that

process. (In a managed domain the end user cannot directly launch a server process from the command

line.)

The Host Controller synthesizes the server's configuration by combining elements from the domain wide

configuration (from domain.xml) and the host-specific configuration (from host.xml).

Deciding between running standalone servers or a managed domain
Which use cases are appropriate for managed domain and which are appropriate for standalone servers? A

managed domain is all about coordinated multi-server management -- with it WildFly provides a central point

through which users can manage multiple servers, with rich capabilities to keep those servers' configurations

consistent and the ability to roll out configuration changes (including deployments) to the servers in a

coordinated fashion.

It's important to understand that the choice between a managed domain and standalone servers is all about

how your servers are managed, not what capabilities they have to service end user requests. This distinction

is particularly important when it comes to high availability clusters. It's important to understand that HA

functionality is orthogonal to running standalone servers or a managed domain. That is, a group of

standalone servers can be configured to form an HA cluster. The domain and standalone modes determine

how the servers are managed, not what capabilities they provide.

So, given all that:

A single server installation gains nothing from running in a managed domain, so running a standalone

server is a better choice.

For multi-server production environments, the choice of running a managed domain versus

standalone servers comes down to whether the user wants to use the centralized management

capabilities a managed domain provides. Some enterprises have developed their own sophisticated

multi-server management capabilities and are comfortable coordinating changes across a number of

independent WildFly instances. For these enterprises, a multi-server architecture comprised of

individual standalone servers is a good option.

Running a standalone server is better suited for most development scenarios. Any individual server

configuration that can be achieved in a managed domain can also be achieved in a standalone

server, so even if the application being developed will eventually run in production on a managed

domain installation, much (probably most) development can be done using a standalone server.

Running a managed domain mode can be helpful in some advanced development scenarios; i.e.

those involving interaction between multiple WildFly instances. Developers may find that setting up

various servers as members of a domain is an efficient way to launch a multi-server cluster.

5.3.2 General configuration concepts

For both a managed domain or a standalone server, a number of common configuration concepts apply:

Latest WildFly Documentation

JBoss Community Documentation Page of 47 2293

Extensions
An extension is a module that extends the core capabilities of the server. The WildFly core is very simple

and lightweight; most of the capabilities people associate with an application server are provided via

extensions. An extension is packaged as a module in the folder. The user indicates that they wantmodules

a particular extension to be available by including an element naming its module in the <extension/>

 or file.domain.xml standalone.xml

<extensions>

 [...]

 <extension module="org.jboss.as.transactions"/>

 <extension module="org.jboss.as.webservices" />

 <extension module="org.jboss.as.weld" />

 [...]

 <extension module="org.wildfly.extension.undertow"/>

</extensions>

Profiles and Subsystems
The most significant part of the configuration in and is the configuration ofdomain.xml standalone.xml

one (in) or more (in) "profiles". A profile is a named set of subsystemstandalone.xml domain.xml

configurations. A subsystem is an added set of capabilities added to the core server by an extension (see

"Extensions" above). A subsystem provides servlet handling capabilities; a subsystem provides an EJB

container; a subsystem provides JTA, etc. A profile is a named list of subsystems, along with the details of

each subsystem's configuration. A profile with a large number of subsystems results in a server with a large

set of capabilities. A profile with a small, focused set of subsystems will have fewer capabilities but a smaller

footprint.

The content of an individual profile configuration looks largely the same in and domain.xml

. The only difference is is only allowed to have a single profile elementstandalone.xml standalone.xml

(the profile the server will run), while can have many profiles, each of which can be mapped todomain.xml

one or more groups of servers.

The contents of individual subsystem configurations look exactly the same between and domain.xml

.standalone.xml

Paths
A logical name for a filesystem path. The , and configurationsdomain.xml host.xml standalone.xml

all include a section where paths can be declared. Other sections of the configuration can then reference

those paths by their logical name, rather than having to include the full details of the path (which may vary on

different machines). For example, the logging subsystem configuration includes a reference to the "

" path that points to the server's " " directory.jboss.server.log.dir log

Latest WildFly Documentation

JBoss Community Documentation Page of 48 2293

<file relative-to="jboss.server.log.dir" path="server.log"/>

WildFly automatically provides a number of standard paths without any need for the user to configure them

in a configuration file:

.dir - the root directory of the WildFly distributionjboss.home

 - user's home directoryuser.home

 - user's current working directoryuser.dir

 - java installation directoryjava.home

 - root directory for an individual server instancejboss.server.base.dir

 - directory the server will use for configuration file storagejboss.server.config.dir

 - directory the server will use for persistent data file storagejboss.server.data.dir

 - directory the server will use for log file storagejboss.server.log.dir

 - directory the server will use for temporary file storagejboss.server.temp.dir

 - directory the server will use for temporary file storagejboss.controller.temp.dir

 - directory under which a host controller will create the working areajboss.domain.servers.dir

for individual server instances (managed domain mode only)

Users can add their own paths or override all except the first 5 of the above by adding a element<path/>

to their configuration file.

<path name="example" path="example" relative-to="jboss.server.data.dir"/>

 The attributes are:

 -- the name of the path.name

 -- the actual filesystem path. Treated as an absolute path, unless the 'relative-to' attribute ispath

specified, in which case the value is treated as relative to that path.

 -- (optional) the name of another previously named path, or of one of the standardrelative-to

paths provided by the system.

A element in a need not include anything more than the attribute; i.e. it need<path/> domain.xml name

not include any information indicating what the actual filesystem path is:

<path name="x"/>

Such a configuration simply says, "There is a path named 'x' that other parts of the domain.xml

configuration can reference. The actual filesystem location pointed to by 'x' is host-specific and will be

specified in each machine's file." If this approach is used, there must be a path element in eachhost.xml

machine's that specifies what the actual filesystem path is:host.xml

<path name="x" path="/var/x" />

Latest WildFly Documentation

JBoss Community Documentation Page of 49 2293

A element in a must include the specification of the actual filesystem path.<path/> standalone.xml

Interfaces
A logical name for a network interface/IP address/host name to which sockets can be bound. The

, and configurations all include a section where interfaces candomain.xml host.xml standalone.xml

be declared. Other sections of the configuration can then reference those interfaces by their logical name,

rather than having to include the full details of the interface (which may vary on different machines). An

interface configuration includes the logical name of the interface as well as information specifying the criteria

to use for resolving the actual physical address to use. See for further details.Interfaces and ports

An element in a need not include anything more than the attribute; i.e. it<interface/> domain.xml name

need not include any information indicating what the actual IP address associated with the name is:

<interface name="internal"/>

Such a configuration simply says, "There is an interface named 'internal' that other parts of the domain.xml

configuration can reference. The actual IP address pointed to by 'internal' is host-specific and will be

specified in each machine's host.xml file." If this approach is used, there must be an interface element in

each machine's that specifies the criteria for determining the IP address:host.xml

<interface name="internal">

 <nic name="eth1"/>

</interface>

An element in a must include the criteria for determining the IP address.<interface/> standalone.xml

Socket Bindings and Socket Binding Groups
A socket binding is a named configuration for a socket.

The and configurations both include a section where named socketdomain.xml standalone.xml

configurations can be declared. Other sections of the configuration can then reference those sockets by their

logical name, rather than having to include the full details of the socket configuration (which may vary on

different machines). See for full details.Interfaces and ports

Latest WildFly Documentation

JBoss Community Documentation Page of 50 2293

System Properties
System property values can be set in a number of places in , and domain.xml host.xml

. The values in are set as part of the server boot process. Values in standalone.xml standalone.xml

 and are applied to servers when they are launched.domain.xml host.xml

When a system property is configured in or , the servers it ends up being applied todomain.xml host.xml

depends on where it is set. Setting a system property in a child element directly under the rootdomain.xml

results in the property being set on all servers. Setting it in a element inside a <system-property/>

 element in domain.xml results in the property being set on all servers in the group.<server-group/>

Setting it in a child element directly under the root results in the property being set on all servershost.xml

controlled by that host's Host Controller. Finally, setting it in a element inside a <system-property/>

 element in result in the property being set on that server. The same property can be<server/> host.xml

configured in multiple locations, with a value in a element taking precedence over a value<server/>

specified directly under the root element, the value in a taking precedence overhost.xml host.xml

anything from , and a value in a element taking precedence over a valuedomain.xml <server-group/>

specified directly under the root element.domain.xml

5.3.3 Management resources

When WildFly parses your configuration files at boot, or when you use one of the AS's Management Clients

you are adding, removing or modifying in the AS's internal management model. Amanagement resources

WildFly management resource has the following characteristics:

Latest WildFly Documentation

JBoss Community Documentation Page of 51 2293

Address
All WildFly management resources are organized in a tree. The path to the node in the tree for a particular

resource is its . Each segment in a resource's address is a key/value pair:address

The key is the resource's , in the context of its parent. So, for example, the root resource for atype

standalone server has children of type , , , etc. Thesubsystem interface socket-binding

resource for the subsystem that provides the AS's webserver capability has children of type

 and . The resource for the subsystem that provides the AS'sconnector virtual-server

messaging server capability has, among others, children of type and .jms-queue jms-topic

The value is the name of a particular resource of the given type, e.g or forweb messaging

subsystems or or for web subsystem connectors.http https

The full address for a resource is the ordered list of key/value pairs that lead from the root of the tree to the

resource. Typical notation is to separate the elements in the address with a '/' and to separate the key and

the value with an '=':

/subsystem=undertow/server=default-server/http-listener=default

/subsystem=messaging/jms-queue=testQueue

/interface=public

When using the HTTP API, a '/' is used to separate the key and the value instead of an '=':

http://localhost:9990/management/subsystem/undertow/server/default-server/http-listener/default

http://localhost:9990/management/subsystem/messaging/jms-queue/testQueue

http://localhost:9990/management/interface/public

Operations
Querying or modifying the state of a resource is done via an operation. An operation has the following

characteristics:

A string name

Zero or more named parameters. Each parameter has a string name, and a value of type

 (or, when invoked via the CLI, the text representation of a org.jboss.dmr.ModelNode

; when invoked via the HTTP API, the JSON representation of a .)ModelNode ModelNode

Parameters may be optional.

A return value, which will be of type (or, when invoked via the CLI, theorg.jboss.dmr.ModelNode

text representation of a ; when invoked via the HTTP API, the JSON representation of a ModelNode

.)ModelNode

Every resource except the root resource will have an operation and should have a operationadd remove

("should" because in WildFly 8 many do not). The parameters for the operation vary depending on theadd

resource. The operation has no parameters.remove

Latest WildFly Documentation

JBoss Community Documentation Page of 52 2293

There are also a number of "global" operations that apply to all resources. See for fullGlobal operations

details.

The operations a resource supports can themselves be determined by invoking an operation: the

 operation. Once the name of an operation is known, details about its parametersread-operation-names

and return value can be determined by invoking the operation. Forread-operation-description

example, to learn the names of the operations exposed by the root resource for a standalone server, and

then learn the full details of one of them, via the CLI one would:

Latest WildFly Documentation

JBoss Community Documentation Page of 53 2293

[standalone@localhost:9990 /] :read-operation-names

{

 "outcome" => "success",

 "result" => [

 "add-namespace",

 "add-schema-location",

 "delete-snapshot",

 "full-replace-deployment",

 "list-snapshots",

 "read-attribute",

 "read-children-names",

 "read-children-resources",

 "read-children-types",

 "read-config-as-xml",

 "read-operation-description",

 "read-operation-names",

 "read-resource",

 "read-resource-description",

 "reload",

 "remove-namespace",

 "remove-schema-location",

 "replace-deployment",

 "shutdown",

 "take-snapshot",

 "upload-deployment-bytes",

 "upload-deployment-stream",

 "upload-deployment-url",

 "validate-address",

 "write-attribute"

]

}

[standalone@localhost:9990 /] :read-operation-description(name=upload-deployment-url)

{

 "outcome" => "success",

 "result" => {

 "operation-name" => "upload-deployment-url",

 "description" => "Indicates that the deployment content available at the included URL

should be added to the deployment content repository. Note that this operation does not indicate

the content should be deployed into the runtime.",

 "request-properties" => {"url" => {

 "type" => STRING,

 "description" => "The URL at which the deployment content is available for upload to

the domain's or standalone server's deployment content repository.. Note that the URL must be

accessible from the target of the operation (i.e. the Domain Controller or standalone server).",

 "required" => true,

 "min-length" => 1,

 "nillable" => false

 }},

 "reply-properties" => {

 "type" => BYTES,

 "description" => "The hash of managed deployment content that has been uploaded to

the domain's or standalone server's deployment content repository.",

 "min-length" => 20,

 "max-length" => 20,

 "nillable" => false

 }

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 54 2293

See below for more on how to learn about the operations a resource exposes.Descriptions

Attributes
Management resources expose information about their state as attributes. Attributes have string name, and

a value of type (or: for the CLI, the text representation of a ; fororg.jboss.dmr.ModelNode ModelNode

HTTP API, the JSON representation of a .)ModelNode

Attributes can either be read-only or read-write. Reading and writing attribute values is done via the global

 and operations.read-attribute write-attribute

The operation takes a single parameter "name" whose value is a the name of theread-attribute

attribute. For example, to read the "port" attribute of a socket-binding resource via the CLI:

[standalone@localhost:9990 /]

/socket-binding-group=standard-sockets/socket-binding=https:read-attribute(name=port)

{

 "outcome" => "success",

 "result" => 8443

}

If an attribute is writable, the operation is used to mutate its state. The operation takeswrite-attribute

two parameters:

 – the name of the attributename

 – the value of the attributevalue

For example, to read the "port" attribute of a socket-binding resource via the CLI:

[standalone@localhost:9990 /]

/socket-binding-group=standard-sockets/socket-binding=https:write-attribute(name=port,value=8444)
{"outcome"

=> "success"}

Attributes can have one of two possible :storage types

 – means the value of the attribute is stored in the persistent configuration; i.e. inCONFIGURATION

the , or file from which the resource's configuration wasdomain.xml host.xml standalone.xml

read.

 – the attribute value is only available from a running server; the value is not stored in theRUNTIME

persistent configuration. A metric (e.g. number of requests serviced) is a typical example of a

RUNTIME attribute.

The values of all of the attributes a resource exposes can be obtained via the operation,read-resource

with the "include-runtime" parameter set to "true". For example, from the CLI:

Latest WildFly Documentation

JBoss Community Documentation Page of 55 2293

[standalone@localhost:9990 /]

/subsystem=undertow/server=default-server/http-listener=default:read-resource(include-runtime=true)
{

"outcome" => "success",

 "result" => {

 "allow-encoded-slash" => false,

 "allow-equals-in-cookie-value" => false,

 "always-set-keep-alive" => true,

 "buffer-pipelined-data" => true,

 "buffer-pool" => "default",

 "bytes-received" => 0L,

 "bytes-sent" => 0L,

 "certificate-forwarding" => false,

 "decode-url" => true,

 "disallowed-methods" => ["TRACE"],

 "enable-http2" => false,

 "enabled" => true,

 "error-count" => 0L,

 "max-buffered-request-size" => 16384,

 "max-connections" => undefined,

 "max-cookies" => 200,

 "max-header-size" => 1048576,

 "max-headers" => 200,

 "max-parameters" => 1000,

 "max-post-size" => 10485760L,

 "max-processing-time" => 0L,

 "no-request-timeout" => undefined,

 "processing-time" => 0L,

 "proxy-address-forwarding" => false,

 "read-timeout" => undefined,

 "receive-buffer" => undefined,

 "record-request-start-time" => false,

 "redirect-socket" => "https",

 "request-count" => 0L,

 "request-parse-timeout" => undefined,

 "resolve-peer-address" => false,

 "send-buffer" => undefined,

 "socket-binding" => "http",

 "tcp-backlog" => undefined,

 "tcp-keep-alive" => undefined,

 "url-charset" => "UTF-8",

 "worker" => "default",

 "write-timeout" => undefined

 }

}

Omit the "include-runtime" parameter (or set it to "false") to limit output to those attributes whose values are

stored in the persistent configuration:

Latest WildFly Documentation

JBoss Community Documentation Page of 56 2293

[standalone@localhost:9990 /]

/subsystem=undertow/server=default-server/http-listener=default:read-resource(include-runtime=false
{

"outcome" => "success",

 "result" => {

 "allow-encoded-slash" => false,

 "allow-equals-in-cookie-value" => false,

 "always-set-keep-alive" => true,

 "buffer-pipelined-data" => true,

 "buffer-pool" => "default",

 "certificate-forwarding" => false,

 "decode-url" => true,

 "disallowed-methods" => ["TRACE"],

 "enable-http2" => false,

 "enabled" => true,

 "max-buffered-request-size" => 16384,

 "max-connections" => undefined,

 "max-cookies" => 200,

 "max-header-size" => 1048576,

 "max-headers" => 200,

 "max-parameters" => 1000,

 "max-post-size" => 10485760L,

 "no-request-timeout" => undefined,

 "proxy-address-forwarding" => false,

 "read-timeout" => undefined,

 "receive-buffer" => undefined,

 "record-request-start-time" => false,

 "redirect-socket" => "https",

 "request-parse-timeout" => undefined,

 "resolve-peer-address" => false,

 "send-buffer" => undefined,

 "socket-binding" => "http",

 "tcp-backlog" => undefined,

 "tcp-keep-alive" => undefined,

 "url-charset" => "UTF-8",

 "worker" => "default",

 "write-timeout" => undefined

 }

}

See below for how to learn more about the attributes a particular resource exposes.Descriptions

Latest WildFly Documentation

JBoss Community Documentation Page of 57 2293

Children
Management resources may support child resources. The a resource supports (e.g. of childrentypes

 for the web subsystem resource) can be obtained by querying the resource's description (see connector

 below) or by invoking the operation. Once you know the legal childDescriptions read-children-types

types, you can query the names of all children of a given type by using the global read-children-types

operation. The operation takes a single parameter "child-type" whose value is the type. For example, a

resource representing a socket binding group has children. To find the type of those children and the names

of resources of that type via the CLI one could:

[standalone@localhost:9990 /] /socket-binding-group=standard-sockets:read-children-types

{

 "outcome" => "success",

 "result" => ["socket-binding"]

}

[standalone@localhost:9990 /]

/socket-binding-group=standard-sockets:read-children-names(child-type=socket-binding)

{

 "outcome" => "success",

 "result" => [

 "http",

 "https",

 "jmx-connector-registry",

 "jmx-connector-server",

 "jndi",

 "osgi-http",

 "remoting",

 "txn-recovery-environment",

 "txn-status-manager"

]

}

Descriptions
All resources expose metadata that describes their attributes, operations and child types. This metadata is

itself obtained by invoking one or more of the each resource supports. We showedglobal operations

examples of the , , read-operation-names read-operation-description read-children-types

and operations above.read-children-names

The operation can be used to find the details of the attributes and childread-resource-description

types associated with a resource. For example, using the CLI:

Latest WildFly Documentation

JBoss Community Documentation Page of 58 2293

[standalone@localhost:9990 /] /socket-binding-group=standard-sockets:read-resource-description

{

 "outcome" => "success",

 "result" => {

 "description" => "Contains a list of socket configurations.",

 "head-comment-allowed" => true,

 "tail-comment-allowed" => false,

 "attributes" => {

 "name" => {

 "type" => STRING,

 "description" => "The name of the socket binding group.",

 "required" => true,

 "head-comment-allowed" => false,

 "tail-comment-allowed" => false,

 "access-type" => "read-only",

 "storage" => "configuration"

 },

 "default-interface" => {

 "type" => STRING,

 "description" => "Name of an interface that should be used as the interface for

any sockets that do not explicitly declare one.",

 "required" => true,

 "head-comment-allowed" => false,

 "tail-comment-allowed" => false,

 "access-type" => "read-write",

 "storage" => "configuration"

 },

 "port-offset" => {

 "type" => INT,

 "description" => "Increment to apply to the base port values defined in the

socket bindings to derive the runtime values to use on this server.",

 "required" => false,

 "head-comment-allowed" => true,

 "tail-comment-allowed" => false,

 "access-type" => "read-write",

 "storage" => "configuration"

 }

 },

 "operations" => {},

 "children" => {"socket-binding" => {

 "description" => "The individual socket configurtions.",

 "min-occurs" => 0,

 "model-description" => undefined

 }}

 }

}

Note the "operations" => }} in the output above. If the command had included the

 parameter (i.e. {{operations

/socket-binding-group=standard-sockets:read-resource-description(operations=true)

) the output would have included the description of each operation supported by the resource.

Latest WildFly Documentation

JBoss Community Documentation Page of 59 2293

See the section for details on other parameters supported by the Global operations

 operation and all the other globally available operations.read-resource-description

Comparison to JMX MBeans
WildFly management resources are conceptually quite similar to Open MBeans. They have the following

primary differences:

WildFly management resources are organized in a tree structure. The order of the key value pairs in a

resource's address is significant, as it defines the resource's position in the tree. The order of the key

properties in a JMX is not significant.ObjectName

In an Open MBean attribute values, operation parameter values and operation return values must

either be one of the simple JDK types (String, Boolean, Integer, etc) or implement either the

 interface or the javax.management.openmbean.CompositeData

 interface. WildFly management resource attributejavax.management.openmbean.TabularData

values, operation parameter values and operation return values are all of type

.org.jboss.dmr.ModelNode

Basic structure of the management resource trees
As noted above, management resources are organized in a tree structure. The structure of the tree depends

on whether you are running a standalone server or a managed domain.

Standalone server
The structure of the managed resource tree is quite close to the structure of the standalone.xml

configuration file.

The root resource

 – extensions installed in the serverextension

 – paths available on the serverpath

 – system properties set as part of the configuration (i.e. not on thesystem-property

command line)

 – the server's core management servicescore-service=management

 – resource for the JBoss MSC core-service=service-container ServiceContainer

that's at the heart of the AS

 – the subsystems installed on the server. The bulk of the management model willsubsystem

be children of type subsystem

 – interface configurationsinterface

 – the central resource for the server's socket bindingssocket-binding-group

 – individual socket binding configurationssocket-binding

 – available deployments on the serverdeployment

Latest WildFly Documentation

JBoss Community Documentation Page of 60 2293

Managed domain
In a managed domain, the structure of the managed resource tree spans the entire domain, covering both

the domain wide configuration (e.g. what's in , the host specific configuration for each host (e.g.domain.xml

what's in , and the resources exposed by each running application server. The Host Controllerhost.xml

processes in a managed domain provide access to all or part of the overall resource tree. How much is

available depends on whether the management client is interacting with the Host Controller that is acting as

the master Domain Controller. If the Host Controller is the master Domain Controller, then the section of the

tree for each host is available. If the Host Controller is a slave to a remote Domain Controller, then only the

portion of the tree associated with that host is available.

The root resource for the entire domain. The persistent configuration associated with this resource

and its children, except for those of type , is persisted in the file on the Domainhost domain.xml

Controller.

Latest WildFly Documentation

JBoss Community Documentation Page of 61 2293

 – extensions available in the domainextension

 – paths available on across the domainpath

 – system properties set as part of the configuration (i.e. not on thesystem-property

command line) and available across the domain

 – sets of subsystem configurations that can be assigned to server groupsprofile

 – configuration of subsystems that are part of the profilesubsystem

 – interface configurationsinterface

 – sets of socket bindings configurations that can be applied tosocket-binding-group

server groups

 – individual socket binding configurationssocket-binding

 – deployments available for assignment to server groupsdeployment

deployment-overlay -- deployment-overlays content available to overlay deployments in server

groups

 – server group configurationsserver-group

host – the individual Host Controllers. Each child of this type represents the root resource for a

particular host. The persistent configuration associated with one of these resources or its

children is persisted in the host's file.host.xml

 – paths available on each server on the hostpath

 – system properties to set on each server on the hostsystem-property

 – the Host Controller's core management servicescore-service=management

 – interface configurations that apply to the Host Controller or servers on theinterface

host

 – JVM configurations that can be applied when launching serversjvm

 – configuration describing how the Host Controller should launch aserver-config

server; what server group configuration to use, and any server-specific overrides of

items specified in other resources

 – the root resource for a running server. Resources from here and below areserver

not directly persisted; the domain-wide and host level resources contain the persistent

configuration that drives a server

 – extensions installed in the serverextension

 – paths available on the serverpath

 – system properties set as part of the configuration (i.e. notsystem-property

on the command line)

 – the server's core management servicescore-service=management

 – resource for the JBoss MSC core-service=service-container

 that's at the heart of the ASServiceContainer

 – the subsystems installed on the server. The bulk of thesubsystem

management model will be children of type subsystem

 – interface configurationsinterface

 – the central resource for the server's socket bindingssocket-binding-group

 – individual socket binding configurationssocket-binding

 – available deployments on the serverdeployment

deployment-overlay -- available overlays on the server

Latest WildFly Documentation

JBoss Community Documentation Page of 62 2293

5.4 Configuring interfaces and ports

5.4.1 Interface declarations

WildFly uses named interface references throughout the configuration. A network interface is declared by

specifying a logical name and a selection criteria for the physical interface:

[standalone@localhost:9990 /] :read-children-names(child-type=interface)

{

 "outcome" => "success",

 "result" => [

 "management",

 "public"

]

}

This means the server in question declares two interfaces: One is referred to as " "; the othermanagement

one " ". The " " interface is used for all components and services that are required by thepublic management

management layer (i.e. the HTTP Management Endpoint). The " " interface binding is used for anypublic

application related network communication (i.e. Web, Messaging, etc). There is nothing special about these

names; interfaces can be declared with any name. Other sections of the configuration can then reference

those interfaces by their logical name, rather than having to include the full details of the interface (which, on

servers in a management domain, may vary on different machines).

The , and configuration files all include a section wheredomain.xml host.xml standalone.xml

interfaces can be declared. If we take a look at the XML declaration it reveals the selection criteria. The

criteria is one of two types: either a single element indicating that the interface should be bound to a wildcard

address, or a set of one or more characteristics that an interface or address must have in order to be a valid

match. The selection criteria in this example are specific IP addresses for each interface:

<interfaces>

 <interface name="management">

 <inet-address value="127.0.0.1"/>

 </interface>

 <interface name="public">

 <inet-address value="127.0.0.1"/>

 </interface>

</interfaces>

Some other examples:

Latest WildFly Documentation

JBoss Community Documentation Page of 63 2293

<interface name="global">

 <!-- Use the wildcard address -->

 <any-address/>

</interface>

<interface name="external">

 <nic name="eth0"/>

</interface>

<interface name="default">

 <!-- Match any interface/address on the right subnet if it's

 up, supports multicast and isn't point-to-point -->

 <subnet-match value="192.168.0.0/16"/>

 <up/>

 <multicast/>

 <not>

 <point-to-point/>

 </not>

</interface>

The -b command line argument
WildFly supports using the command line argument to specify the address to assign to interfaces. See -b

 for further details.Controlling the Bind Address with -b

Latest WildFly Documentation

JBoss Community Documentation Page of 64 2293

5.4.2 Socket Binding Groups

The socket configuration in WildFly works similarly to the interfaces declarations. Sockets are declared using

a logical name, by which they will be referenced throughout the configuration. Socket declarations are

grouped under a certain name. This allows you to easily reference a particular socket binding group when

configuring server groups in a managed domain. Socket binding groups reference an interface by its logical

name:

<socket-binding-group name="standard-sockets" default-interface="public">

 <socket-binding name="management-http" interface="management"

port="${jboss.management.http.port:9990}"/>

 <socket-binding name="management-https" interface="management"

port="${jboss.management.https.port:9993}"/>

 <socket-binding name="ajp" port="${jboss.ajp.port:8009}"/>

 <socket-binding name="http" port="${jboss.http.port:8080}"/>

 <socket-binding name="https" port="${jboss.https.port:8443}"/>

 <socket-binding name="txn-recovery-environment" port="4712"/>

 <socket-binding name="txn-status-manager" port="4713"/>

</socket-binding-group>

A socket binding includes the following information:

name -- logical name of the socket configuration that should be used elsewhere in the configuration

port -- base port to which a socket based on this configuration should be bound. (Note that servers

can be configured to override this base value by applying an increment or decrement to all port

values.)

interface (optional) -- logical name (see "Interfaces declarations" above) of the interface to which a

socket based on this configuration should be bound. If not defined, the value of the "default-interface"

attribute from the enclosing socket binding group will be used.

multicast-address (optional) -- if the socket will be used for multicast, the multicast address to use

multicast-port (optional) -- if the socket will be used for multicast, the multicast port to use

fixed-port (optional, defaults to false) -- if true, declares that the value of port should always be used

for the socket and should not be overridden by applying an increment or decrement

5.4.3 IPv4 versus IPv6

WildFly supports the use of both IPv4 and IPv6 addresses. By default, WildFly is configured for use in an

IPv4 network and so if you are running in an IPv4 network, no changes are required. If you need to run in an

IPv6 network, the changes required are minimal and involve changing the JVM stack and address

preferences, and adjusting any interface IP address values specified in the configuration (standalone.xml or

domain.xml).

Latest WildFly Documentation

JBoss Community Documentation Page of 65 2293

Stack and address preference
The system properties java.net.preferIPv4Stack and java.net.preferIPv6Addresses are used to configure the

JVM for use with IPv4 or IPv6 addresses. With WildFly, in order to run using IPv4 addresses, you need to

specify java.net.preferIPv4Stack=true; in order to run with IPv6 addresses, you need to specify

java.net.preferIPv4Stack=false (the JVM default) and java.net.preferIPv6Addresses=true. The latter ensures

that any hostname to IP address conversions always return IPv6 address variants.

These system properties are conveniently set by the JAVA_OPTS environment variable, defined in the

standalone.conf (or domain.conf) file. For example, to change the IP stack preference from its default of IPv4

to IPv6, edit the standalone.conf (or domain.conf) file and change its default IPv4 setting:

if ["x$JAVA_OPTS" = "x"]; then

 JAVA_OPTS=" ... -Djava.net.preferIPv4Stack=true ..."

...

to an IPv6 suitable setting:

if ["x$JAVA_OPTS" = "x"]; then

 JAVA_OPTS=" ... -Djava.net.preferIPv4Stack=false -Djava.net.preferIPv6Addresses=true ..."

...

Latest WildFly Documentation

JBoss Community Documentation Page of 66 2293

IP address literals
To change the IP address literals referenced in standalone.xml (or domain.xml), first visit the interface

declarations and ensure that valid IPv6 addresses are being used as interface values. For example, to

change the default configuration in which the loopback interface is used as the primary interface, change

from the IPv4 loopback address:

<interfaces>

 <interface name="management">

 <inet-address value="${jboss.bind.address.management:127.0.0.1}"/>

 </interface>

 <interface name="public">

 <inet-address value="${jboss.bind.address:127.0.0.1}"/>

 </interface>

</interfaces>

to the IPv6 loopback address:

<interfaces>

 <interface name="management">

 <inet-address value="${jboss.bind.address.management:[::1]}"/>

 </interface>

 <interface name="public">

 <inet-address value="${jboss.bind.address:[::1]}"/>

 </interface>

</interfaces>

Note that when embedding IPv6 address literals in the substitution expression, square brackets surrounding

the IP address literal are used to avoid ambiguity. This follows the convention for the use of IPv6 literals in

URLs.

Over and above making such changes for the interface definitions, you should also check the rest of your

configuration file and adjust IP address literals from IPv4 to IPv6 as required.

5.5 Administrative security

5.5.1 Security realms

Within WildFly we make use of security realms to secure access to the management interfaces, these same

realms are used to secure inbound access as exposed by JBoss Remoting such as remote JNDI and EJB

access, the realms are also used to define an identity for the server - this identity can be used for both

inbound connections to the server and outbound connections being established by the server.

Latest WildFly Documentation

JBoss Community Documentation Page of 67 2293

General Structure
The general structure of a management realm definition is: -

<security-realm name="ManagementRealm">

 <plug-ins></plug-ins>

 <server-identities></server-identities>

 <authentication></authentication>

 <authorization></authorization>

</security-realm>

 - This is an optional element that is used to define modules what will be searched forplug-ins

security realm PlugInProviders to extend the capabilities of the security realms.

 - An optional element to define the identity of the server as visible to theserver-identities

outside world, this applies to both inbound connection to a resource secured by the realm and to

outbound connections also associated with the realm.

One example is the SSL identity of the server, for inbound connections this will control the identity of the

server as the SSL connection is established, for outbound connections this same identity can be used where

CLIENT-CERT style authentication is being performed.

A second example is where the server is establishing an outbound connection that requires username /

password authentication - this element can be used to define that password.

 - This is probably the most important element that will be used within a securityauthentication

realm definition and mostly applies to inbound connections to the server, this element defines which

backing stores will be used to provide the verification of the inbound connection.

This element is optional as there are some scenarios where it will not be required such as if a realm is being

defined for an outbound connection using a username and password.

 - This is the final optional element and is used to define how roles are loaded for anauthorization

authenticated identity. At the moment this is more applicable for realms used for access to EE

deployments such as web applications or EJBs but this will also become relevant as we add role

based authorization checks to the management model.

Using a Realm
After a realm has been defined it needs to be associated with an inbound or outbound connection for it to be

used, the following are some examples where these associations are used within the WildFly

8 configuration.

Latest WildFly Documentation

JBoss Community Documentation Page of 68 2293

Inbound Connections

Management Interfaces
Either within the or configurations the security realms can be associated withstandalone.xml host.xml

the management interface as follows:

<http-interface security-realm="ManagementRealm">...</http-interface>

If the attribute is omitted or removed from the interface definition it means that access tosecurity-realm

that interface will be unsecured.

By default we do bind these interfaces to the loopback address so that the interfaces are not

accessible remotely out of the box, however do be aware that if these interfaces are then

unsecured any other local user will be able to control and administer the WildFly installation.

Remoting Subsystem
The Remoting subsystem exposes a connector to allow for inbound comunications with JNDI and the EJB

subsystem by default we associate the with this connection.ApplicationRealm

<subsystem xmlns="urn:jboss:domain:remoting:3.0">

 <endpoint worker="default"/>

 <http-connector name="http-remoting-connector" connector-ref="default"

security-realm="ApplicationRealm"/>

</subsystem>

Latest WildFly Documentation

JBoss Community Documentation Page of 69 2293

Outbound Connections

Remoting Subsystem
Outbound connections can also be defined within the Remoting subsystem, these are typically used for

remote EJB invocations from one AS server to another, in this scenario the security realm is used to obtain

the server identity either it's password for X.509 certificate and possibly a trust store to verify the certificate of

the remote host.

Even if the referenced realm contains username and password authentication configuration the

client side of the connection will NOT use this to verify the remote server.

<remote-outbound-connection name="remote-ejb-connection"

 outbound-socket-binding-ref="binding-remote-ejb-connection"

 username="user1"

 security-realm="PasswordRealm">

The security realm is only used to obtain the password for this example, as you can see here the

username is specified separately.

Slave Host Controller
When running in domain mode slave host controllers need to establish a connection to the native interface of

the master domain controller so these also need a realm for the identity of the slave.

<domain-controller>

 <remote host="${jboss.domain.master.address}" port="${jboss.domain.master.port:9999}"

security-realm="ManagementRealm"/>

</domain-controller>

By default when a slave host controller authenticates against the master domain controller it uses

its configured name as its username. If you want to override the username used for authentication

a attribute can be added to the element.username <remote />

Latest WildFly Documentation

JBoss Community Documentation Page of 70 2293

Authentication
One of the primary functions of the security realms is to define the user stores that will be used to verify the

identity of inbound connections, the actual approach taken at the transport level is based on the capabilities

of these backing store definitions. The security realms are used to secure inbound connections for both the

http management interface and for inbound remoting connections for both the native management interface

and to access other services exposed over remoting - because of this there are some small differences

between how the realm is used for each of these.

At the transport level we support the following authentication mechanisms.

HTTP Remoting (SASL)

None Anonymous

N/A JBoss Local User

Digest Digest

Basic Plain

Client Cert Client Cert

The most notable are the first two in this list as they need some additional explanation - the final 3 are fairly

standard mechanisms.

If either the http interface, the native interface or a remoting connection are difined a security realmwithout

reference then they are effectively unsecured, in the case of the http interface this means that no

authentication will be performed on the incoming connection - for the remoting connections however we

make use of SASL so require at least one authentication mechanism so make use of the anonymous

mechanism to allow a user in without requiring a validated authentication process.

The next mechanism 'JBoss Local User' is specific to the remoting connections - as we ship WildFly secured

by default we wanted a way to allow users to connect to their own AS installation after it is started without

mandating that they define a user with a password - to accomplish this we have added the 'JBoss Local

User' mechanism. This mechanism makes the use of tokens exchanged on the filesystem to prove that the

client is local to the AS installation and has the appropriate file permissions to read a token written by the AS

to file. As this mechanism is dependent on both server and client implementation details it is only supported

for the remoting connections and not the http connections - at some point we may review if we can add

support for this to the http interface but we would need to explore the options available with the commony

used web browsers that are used to communicate with the http interface.

The Digest mechanism is simply the HTTP Digest / SASL Digest mechanism that authenticates the user by

making use of md5 hashed including nonces to avoid sending passwords in plain text over the network - this

is the preferred mechanism for username / password authentication.

The HTTP Basic / SASL Plain mechanism is made available for times that Digest can not be used but

effectively this means that the users password will be sent over the network in the clear unless SSL is

enabled.

Latest WildFly Documentation

JBoss Community Documentation Page of 71 2293

The final mechanism Client-Cert allows X.509 certificates to be used to verify the identity of the remote

client.

One point bearing in mind is that it is possible that an association with a realm can mean that a

single incoming connection has the ability to choose between one or more authentication

mechanisms. As an example it is possible that an incoming remoting connection could choose

between 'Client Cert', A username password mechanism or 'JBoss Local User' for authentication -

this would allow say a local user to use the local mechanism, a remote user to supply their

username and password whilst a remote script could make a call and authenticate using a

certificate.

Authorization
The actual security realms are not involved in any authorization decisions. However, they can be configured

to load a user's roles, which will subsequently be used to make authorization decisions - when references to

authorization are seen in the context of security realms, it is this loading of roles that is being referred to.

For the loading of roles, the process is split out to occur after the authentication step so after a user has

been authenticated, a second step will occur to load the roles based on the username they used to

authenticate with.

Out Of The Box Configuration
Before describing the complete set of configuration options available within the realms, we will look at the

default configuration, as for most users, that is going to be the starting point before customising further.

The examples here are taken from the standalone configuration. However, the descriptions are

equally applicable to domain mode. One point worth noting is that all security realms defined in the

 are available to be referenced within the domain configuration for the servers runninghost.xml

on that host controller.

Latest WildFly Documentation

JBoss Community Documentation Page of 72 2293

Management Realm

<security-realm name="ManagementRealm">

 <authentication>

 <local default-user="$local"/>

 <properties path="mgmt-users.properties" relative-to="jboss.server.config.dir"/>

 </authentication>

</security-realm>

The realm is the simplest realm within the default configuration. This realm simplyManagementRealm

enables two authentication mechanisms, the local mechanism and username/password authentication which

will be using Digest authentication.

local

When using the local mechanism, it is optional for remote clients to send a username to the server. This

configuration specifies that where clients do not send a username, it will be assumed that the clients

username is - the element can also be configured to allow other usernames to be$local <local />

specified by remote clients. However, for the default configuration, this is not enabled so is not supported.

properties

For username / password authentication the users details will be loaded from the file

 which is located in { or {mgmt-users.properties jboss.home}/standalone/configuration

 depending on the running mode of the server.jboss.home}/domain/configuration

Each user is represented on their own line and the format of each line is where is ausername=HASH HASH

pre-prepared hash of the users password along with their username and the name of the realm which in this

case is .ManagementRealm

You do not need to worry about generating the entries within the properties file as we provide a

utility or to add the users, this utility is described in more detailadd-user.sh add-user.bat

below.

By pre-hashing the passwords in the properties file it does mean that if the user has used the same

password on different realms then the contents of the file falling into the wrong hands does not

nescesarily mean all accounts are compromised. the contents of the files do still needHOWEVER

to be protected as they can be used to access any server where the realm name is the same and

the user has the same username and password pair.

Latest WildFly Documentation

JBoss Community Documentation Page of 73 2293

Application Realm

<security-realm name="ApplicationRealm">

 <authentication>

 <local default-user="$local" allowed-users="*"/>

 <properties path="application-users.properties" relative-to="jboss.server.config.dir"/>

 </authentication>

 <authorization>

 <properties path="application-roles.properties" relative-to="jboss.server.config.dir"/>

 </authorization>

</security-realm>

The realm is a slightly more complex realm as this is used for bothApplicationRealm

Authentication
The authentication configuration is very similar to the in that it enabled both the localManagementRealm

mechanism and a username/password based Digest mechanism.

local

The local configuration is similar to the in that where the remote user does not supply aManagementRealm

username it will be assumed that the username is , however in addition to this there is now an $local

 attribute with a value of - this means that the remote user can specify any usernameallowed-users '*'

and it will be accepted over the local mechanism provided that the local verification is a success.

To restrict the usernames that can be specified by the remote user a comma separated list of

usernames can be specified instead within the attribute.allowed-users

properties

The properties definition works in exactly the same way as the definition for except nowManagementRealm

the properties file is called .application-users.properties

Latest WildFly Documentation

JBoss Community Documentation Page of 74 2293

Authorization
The contents of the element are specific to the , in this case aAuthorization ApplicationRealm

properties file is used to load a users roles.

The properties file is called and is located in {application-roles.properties

 or { dependingjboss.home}/standalone/configuration jboss.home}/domain/configuration

on the running mode of the server. The format of this file is where is a commausername=ROLES ROLES

separated list of the users roles.

As the loading of a users roles is a second step this is where it may be desirable to restrict which

users can use the local mechanism so that some users still require username and password

authentication for their roles to be loaded.

Latest WildFly Documentation

JBoss Community Documentation Page of 75 2293

other security domain

<security-domain name="other" cache-type="default">

 <authentication>

 <login-module code="Remoting" flag="optional">

 <module-option name="password-stacking" value="useFirstPass"/>

 </login-module>

 <login-module code="RealmDirect" flag="required">

 <module-option name="password-stacking" value="useFirstPass"/>

 </login-module>

 </authentication>

</security-domain>

When applications are deployed to the application server they are associated with a security domain within

the security subsystem, the security domain is provided to work with the , thisother ApplicationRealm

domain is defined with a pair of login modules Remoting and RealmDirect.

Remoting

The login module is used to check if the request currently being authenticated is a requestRemoting

received over a Remoting connection, if so the identity that was created during the authentication process is

used and associated with the current request.

If the request did not arrive over a Remoting connection this module does nothing and allows the JAAS

based login to continue to the next module.

RealmDirect

The login module makes use of a security realm to authenticate the current request if that didRealmDirect

not occur in the login module and then use the realm to load the users roles, by default this loginRemoting

module assumes the realm to use is called although other names can be overriddenApplicationRealm

using the "realm" module-option.

The advantage of this approach is that all of the backing store configuration can be left within the realm with

the security domain just delegating to the realm.

user.sh
For use with the default configuration we supply a utility which can be used to manage theadd-user

properties files for the default realms used to store the users and their roles.

The add-user utility can be used to manage both the users in the and the users in the ManagementRealm

, changes made apply to the properties file used both for domain mode and standaloneApplicationRealm

mode.

Latest WildFly Documentation

JBoss Community Documentation Page of 76 2293

After you have installed your application server and decided if you are going to run in standalone

mode or domain mode you can delete the parent folder for the mode you are not using, the

add-user utility will then only be managing the properties file for the mode in use.

The add-user utility is a command line utility however it can be run in both interactive and non-interactive

mode. Depending on your platform the script to run the add-user utility is either or add-user.sh

 which can be found in { .add-user.bat jboss.home}/bin

This guide now contains a couple of examples of this utility in use to accomplish the most common tasks.

Adding a User
Adding users to the properties files is the primary purpose of this utility. Usernames can only contain the

following characters in any number and in any order:

Alphanumeric characters (a-z, A-Z, 0-9)

Dashes (-), periods (.), commas (,), at (@)

Escaped backslash (\\)

Escaped equals (\=)

The server caches the contents of the properties files in memory, however the server does check

the modified time of the properties files on each authentication request and re-load if the time has

been updated - this means all changes made by this utility are immediately applied to any running

server.

A Management User

The default name of the realm for management users is , when the utilityManagementRealm

prompts for the realm name just accept the default unless you have switched to a different realm.

Latest WildFly Documentation

JBoss Community Documentation Page of 77 2293

Interactive Mode

Here we have added a new Management User called , as you can see some of the questionsadminUser

offer default responses so you can just press enter without repeating the default value.

For now just answer or to the final question, adding users to be used by processes is described in moren no

detail in the domain management chapter.

Interactive Mode

To add a user in non-interactive mode the command } can be./add-user.sh {username} {password

used.

If you add users using this approach there is a risk that any other user that can view the list of

running process may see the arguments including the password of the user being added, there is

also the risk that the username / password combination will be cached in the history file of the shell

you are currently using.

Latest WildFly Documentation

JBoss Community Documentation Page of 78 2293

An Application User
When adding application users in addition to adding the user with their pre-hashed password it is also now

possible to define the roles of the user.

Interactive Mode

Here a new user called has been added, in this case a comma separated list of roles has alsoappUser

been specified.

As with adding a management user just answer or to the final question until you know you are adding an no

user that will be establishing a connection from one server to another.

Latest WildFly Documentation

JBoss Community Documentation Page of 79 2293

Interactive Mode

To add an application user non-interactively use the command ./add-user.sh -a {username}

}.{password

Non-interactive mode does not support defining a list of users, to associate a user with a set of

roles you will need to manually edit the file by hand.application-roles.properties

Updating a User
Within the add-user utility it is also possible to update existing users, in interactive mode you will be

prompted to confirm if this is your intention.

A Management User
Interactive Mode

Interactive Mode

In non-interactive mode if a user already exists the update is automatic with no confirmation prompt.

Latest WildFly Documentation

JBoss Community Documentation Page of 80 2293

An Application User
Interactive Mode

On updating a user with roles you will need to re-enter the list of roles assigned to the user.

Interactive Mode

In non-interactive mode if a user already exists the update is automatic with no confirmation prompt.

Community Contributions
There are still a few features to add to the add-user utility such as removing users or adding application

users with roles in non-interactive mode, if you are interested in contributing to WildFly development the

add-user utility is a good place to start as it is a stand alone utility, however it is a part of the AS build so you

can become familiar with the AS development processes without needing to delve straight into the internals

of the application server.

Latest WildFly Documentation

JBoss Community Documentation Page of 81 2293

JMX Security
When configuring the security realms remote access to the server's MBeanServer needs a special mention.

When running in standalone mode the following is the default configuration:

<subsystem xmlns="urn:jboss:domain:jmx:1.3">

 ...

 <remoting-connector/>

</subsystem>

With this configuration remote access to JMX is provided over the http management interface, this is

secured using the realm , this means that any user that can connect to the nativeManagementRealm

interface can also use this interface to access the MBeanServer - to disable this just remove the

 element.<remoting-connector />

In domain mode it is slightly more complicates as the native interface is exposed by the host controller

process however each application server is running in it's own process so by default remote access to JMX

is disabled.

<subsystem xmlns="urn:jboss:domain:remoting:3.0">

 <http-connector name="http-remoting-connector" connector-ref="default"

security-realm="ApplicationRealm"/>

</subsystem>

<subsystem xmlns="urn:jboss:domain:jmx:1.3">

 ...

 <!--<remoting-connector use-management-endpoint="false"/>-->

</subsystem>

To enable remote access to JMX uncomment the element however be aware<remoting-connector />

that this will make the MBeanServer accessible over the same Remoting connector used for remote JNDI

and EJB access - this means that any user that can authenticate against the realm willApplicationRealm

be able to access the MBeanServer.

The following Jira issue is currently outstanding to allow access to the individual MBeanServers by

proxying through the host controllers native interface , if this is a feature you would useAS7-4009

please add your vote to the issue.

Detailed Configuration
This section of the documentation describes the various configuration options when defining realms, plug-ins

are a slightly special case so the configuration options for plug-ins is within it's own section.

https://issues.jboss.org/browse/AS7-4009

Latest WildFly Documentation

JBoss Community Documentation Page of 82 2293

Within a security realm definition there are four optional elements , <plug-ins /> <server-identities

, , and , as mentioned above plug-ins is defined within it's/> <authentication /> <authorization />

own section below so we will begin by looking at the element.<server-identities />

<server-identities />
The server identities section of a realm definition is used to define how a server appears to the outside

world, currently this element can be used to configure a password to be used when establishing a remote

outbound connection and also how to load a X.509 key which can be used for both inbound and outbound

SSL connections.

<ssl />

<server-identities>

 <ssl protocol="...">

 <keystore path="..." relative-to="..." keystore-password="..." alias="..."

key-password="..." />

 </ssl>

</server-identities>

 - By default this is set to TLS and in general does not need to be set.protocol

The SSL element then contains the nested element, this is used to define how to load the<keystore />

key from the file based (JKS) keystore.

 (mandatory) - This is the path to the keystore, this can be an absolute path or relative to the nextpath

attribute.

 (optional) - The name of a service representing a path the keystore is relative to.relative-to

 (mandatory) - The password required to open the keystore.keystore-password

 (optional) - The alias of the entry to use from the keystore - for a keystore with multiple entries inalias

practice the first usable entry is used but this should not be relied on and the alias should be set to

guarantee which entry is used.

 (optional) - The password to load the key entry, if omitted the keystore-password willkey-password

be used instead.

If you see the error the most likelyUnrecoverableKeyException: Cannot recover key

cause that you need to specify a and possible even an as well to ensurekey-password alias

only one key is loaded.

Latest WildFly Documentation

JBoss Community Documentation Page of 83 2293

<secret />

<server-identities>

 <secret value="..." />

</server-identities>

 (mandatory) - The password to use for outbound connections encoded as Base64, this fieldvalue

also supports a vault expression should stronger protection be required.

The username for the outbound connection is specified at the point the outbound connection is

defined.

<authentication />
The authentication element is predominantly used to configure the authentication that is performed on an

inbound connection, however there is one exception and that is if a trust store is defined - on negotiating an

outbound SSL connection the trust store will be used to verify the remote server.

<authentication>

 <truststore />

 <local />

 <jaas />

 <ldap />

 <properties />

 <users />

 <plug-in />

</authentication>

An authentication definition can have zero or one , it can also have zero or one <truststore /> <local

 and it can also have one of , , , , and /> <jaas /> <ldap /> <properties /> <users /> <plug-in />

i.e. the local mechanism and a truststore for certificate verification can be independent switched on and off

and a single username / password store can be defined.

Latest WildFly Documentation

JBoss Community Documentation Page of 84 2293

<truststore />

<authentication>

 <truststore path="..." relative-to="..." keystore-password="..."/>

</authentication>

This element is used to define how to load a key store file that can be used as the trust store within the

SSLContext we create internally, the store is then used to verify the certificates of the remote side of the

connection be that inbound or outbound.

 (mandatory) - This is the path to the keystore, this can be an absolute path or relative to the nextpath

attribute.

 (optional) - The name of a service representing a path the keystore is relative to.relative-to

 (mandatory) - The password required to open the keystore.keystore-password

Although this is a definition of a trust store the attribute for the password is ,keystore-password

this is because the underlying file being opened is still a key store.

<local />

<authentication>

 <local default-user="..." allowed-users="..." />

</authentication>

This element switches on the local authentication mechanism that allows clients to the server to verify that

they are local to the server, at the protocol level it is optional for the remote client to send a user name in the

authentication response.

 (optional) - If the client does not pass in a username this is the assumed username, thisdefault-user

value is also automatically added to the list of allowed-users.

 (optional) - This attribute is used to specify a comma separated list of users allowed toallowed-users

authenticate using the local mechanism, alternatively ' ' can be specified to allow any username to be*

specified.

Latest WildFly Documentation

JBoss Community Documentation Page of 85 2293

<jaas />

<authentication>

 <jaas name="..." />

</authentication>

The jaas element is used to enable username and password based authentication where the supplied

username and password are verified by making use of a configured jaas domain.

 (mandatory) - The name of the jaas domain to use to verify the supplied username andname

password.

As JAAS authentication works by taking a username and password and verifying these the use of

this element means that at the transport level authentication will be forced to send the password in

plain text, any interception of the messages exchanged between the client and server without SSL

enabled will reveal the users password.

Latest WildFly Documentation

JBoss Community Documentation Page of 86 2293

<ldap />

<authentication>

 <ldap connection="..." base-dn="..." recursive="..." user-dn="...">

 <username-filter attribute="..." />

 <advanced-filter filter="..." />

 </ldap>

</authentication>

The ldap element is used to define how LDAP searches will be used to authenticate a user, this works by

first connecting to LDAP and performing a search using the supplied user name to identity the distinguished

name of the user and then a subsequent connection is made to the server using the password supplied by

the user - if this second connection is a success then authentication succeeds.

Due to the verification approach used this configuration causes the authentication mechanisms

selected for the protocol to cause the password to be sent from the client in plain text, the following

Jira issue is to investigating proxying a Digest authentication with the LDAP server so no plain text

password is needed .AS7-4195

 (mandatory) - The name of the connection to use to connect to LDAP.connection

 (mandatory) - The distinguished name of the context to use to begin the search from.base-dn

 (optional) - Should the filter be executed recursively? Defaults to false.recursive

 (optional) - After the user has been found specifies which attribute to read for the usersuser-dn

distinguished name, defaults to ' '.dn

Within the ldap element only one of or can be specified.<username-filter /> <advanced-filter />

<username-filter />

This element is used for a simple filter to match the username specified by the remote user against a single

attribute, as an example with Active Directory the match is most likely to be against the ' 'sAMAccountName

attribute.

 (mandatory) - The name of the field to match the users supplied username against.attribute

<advanced-filter />

This element is used where a more advanced filter is required, one example use of this filter is to exclude

certain matches by specifying some additional criteria for the filter.

 (mandatory) - The filter to execute to locate the user, this filter should contain '{ }' as a placefilter 0

holder for the username supplied by the user authenticating.

https://issues.jboss.org/browse/AS7-4195

Latest WildFly Documentation

JBoss Community Documentation Page of 87 2293

<properties />

<authentication>

 <properties path="..." relative-to="..." plain-text="..." />

</authentication>

The properties element is used to reference a properties file to load to read a users password or

pre-prepared digest for the authentication process.

 (mandatory) - The path to the properties file, either absolute or relative to the path referenced bypath

the relative-to attribute.

 (optional) - The name of a path service that the defined path will be relative to.relative-to

 (optional) - Setting to specify if the passwords are stored as plain text within the propertiesplain-text

file, defaults to false.

By default the properties files are expected to store a pre-prepared hash of the users password in

the form HEX(MD5(username ':' realm ':' password))

<users />

<authentication>

 <users>

 <user username="...">

 <password>...</password>

 </user>

 </users>

</authentication>

This is a very simple store of a username and password that stores both of these within the domain model,

this is only really provided for the provision of simple examples.

 (mandatory) - A users username.username

The element is then used to define the password for the user.<password/>

Latest WildFly Documentation

JBoss Community Documentation Page of 88 2293

<authorization />
The authorization element is used to define how a users roles can be loaded after the authentication process

completes, these roles may then be used for subsequent authorization decisions based on the service being

accessed. At the moment only a properties file approach or a custom plug-in are supported - support for

loading roles from LDAP or from a database are planned for a subsequent release.

<authorization>

 <properties />

 <plug-in />

</authorization>

<properties />

<authorization>

 <properties path="..." relative-to="..." />

</authorization>

The format of the properties file is } where { } is a comma separated list of theusername={ROLES ROLES

users roles.

 (mandatory) - The path to the properties file, either absolute or relative to the path referenced bypath

the relative-to attribute.

 (optional) - The name of a path service that the defined path will be relative to.relative-to

Latest WildFly Documentation

JBoss Community Documentation Page of 89 2293

<outbound-connection />
Strictly speaking these are not a part of the security realm definition, however at the moment they are only

used by security realms so the definition of outbound connection is described here.

<management>

 <security-realms />

 <outbound-connections>

 <ldap />

 </outbound-connections>

</management>

<ldap />
At the moment we only support outbound connections to ldap servers for the authentication process - this

will later be expanded when we add support for database based authentication.

<outbound-connections>

 <ldap name="..." url="..." search-dn="..." search-credential="..."

initial-context-factory="..." />

</outbound-connections>

The outbound connections are defined in this section and then referenced by name from the configuration

that makes use of them.

 (mandatory) - The unique name used to reference this connection.name

 (mandatory) - The URL use to establish the LDAP connection.url

 (mandatory) - The distinguished name of the user to authenticate as to perform thesearch-dn

searches.

 (mandatory) - The password required to connect to LDAP as the search-dn.search-credential

 (optional) - Allows overriding the initial context factory, defaults to 'initial-context-factory

'com.sun.jndi.ldap.LdapCtxFactory

Plug Ins
Within WildFly 8 for communication with the management interfaces and for other services exposed using

Remoting where username / password authentication is used the use of Digest authentication is preferred

over the use of HTTP Basic or SASL Plain so that we can avoid the sending of password in the clear over

the network. For validation of the digests to work on the server we either need to be able to retrieve a users

plain text password or we need to be able to obtain a ready prepared hash of their password along with the

username and realm.

Latest WildFly Documentation

JBoss Community Documentation Page of 90 2293

Previously to allow the addition of custom user stores we have added an option to the realms to call out to a

JAAS domain to validate a users username and password, the problem with this approach is that to call

JAAS we need the remote user to send in their plain text username and password so that a JAAS

LoginModule can perform the validation, this forces us down to use either the HTTP Basic authentication

mechanism or the SASL Plain mechanism depending on the transport used which is undesirable as we can

not longer use Digest.

To overcome this we now support plugging in custom user stores to support loading a users password, hash

and roles from a custom store to allow different stores to be implemented without forcing the authentication

back to plain text variant, this article describes the requirements for a plug in and shows a simple example

plug-in for use with WildFly 8.

When implementing a plug in there are two steps to the authentication process, the first step is to load the

users identity and credential from the relevant store - this is then used to verify the user attempting to

connect is valid. After the remote user is validated we then load the users roles in a second step. For this

reason the support for plug-ins is split into the two stages, when providing a plug-in either of these two steps

can be implemented but there is no requirement to implement the other side.

When implementing a plug-in the following interfaces are the bare minimum that need to be implemented so

depending on if a plug-in to load a users identity or a plug-in to load a users roles is being implemented you

will be implementing one of these interfaces.

 Note - All classes and interfaces of the SPI to be implemented are in the

'org.jboss.as.domain.management.plugin' package which is a part of the 'org.jboss.as.domain-management'

module but for simplicity for the rest of this section only the short names will be shown.

AuthenticationPlugIn
To implement an the following interface needs to be implemened: -AuthenticationPlugIn

public interface AuthenticationPlugIn<T extends Credential> {

 Identity<T> loadIdentity(final String userName, final String realm) throws IOException;

}

During the authentication process this method will be called with the user name supplied by the remote user

and the name of the realm they are authenticating against, this method call represents that an authentication

attempt is occurring but it is the Identity instance that is returned that will be used for the actual

authentication to verify the remote user.

The Identity interface is also an interface you will implement: -

public interface Identity<T extends Credential> {

 String getUserName();

 T getCredential();

}

Latest WildFly Documentation

JBoss Community Documentation Page of 91 2293

Additional information can be contained within the Identity implementation although it will not currently be

used, the key piece of information here is the Credential that will be returned - this needs to be one of the

following: -

PasswordCredential

public final class PasswordCredential implements Credential {

 public PasswordCredential(final char[] password);

 public char[] getPassword();

 void clear();

}

The is already implemented so use this class if you have the plain text password ofPasswordCredential

the remote user, by using this the secured interfaces will be able to continue using the Digest mechanism for

authentication.

DigestCredential

public final class DigestCredential implements Credential {

 public DigestCredential(final String hash);

 public String getHash();

}

This class is also already implemented and should be returned if instead of the plain text password you

already have a pre-prepared hash of the username, realm and password.

ValidatePasswordCredential

public interface ValidatePasswordCredential extends Credential {

 boolean validatePassword(final char[] password);

}

This is a special Credential type to use when it is not possible to obtain either a plain text representation of

the password or a pre-prepared hash - this is an interface as you will need to provide an implementation to

verify a supplied password. The down side of using this type of Credential is that the authentication

mechanism used at the transport level will need to drop down from Digest to either HTTP Basic or SASL

Plain which will now mean that the remote client is sending their credential across the network in the clear.

If you use this type of credential be sure to force the mechanism choice to Plain as described in the

configuration section below.

Latest WildFly Documentation

JBoss Community Documentation Page of 92 2293

AuthorizationPlugIn
If you are implementing a custom mechanism to load a users roles you need to implement the

AuthorizationPlugIn

public interface AuthorizationPlugIn {

 String[] loadRoles(final String userName, final String realm) throws IOException;

}

As with the this has a single method that takes a users userName and realm -AuthenticationPlugIn

the return type is an array of Strings with each entry representing a role the user is a member of.

PlugInConfigurationSupport
In addition to the specific interfaces above there is an additional interface that a plug-in can implement to

receive configuration information before the plug-in is used and also to receive a Map instance that can be

used to share state between the plug-in instance used for the authentication step of the call and the plug-in

instance used for the authorization step.

public interface PlugInConfigurationSupport {

 void init(final Map<String, String> configuration, final Map<String, Object> sharedState)

throws IOException;

}

Installing and Configuring a Plug-In
The next step of this article describes the steps to implement a plug-in provider and how to make it available

within WildFly 8 and how to configure it. Example configuration and an example implementation are shown

to illustrate this.

The following is an example security realm definition which will be used to illustrate this: -

<security-realm name="PlugInRealm">

 <plug-ins>

 <plug-in module="org.jboss.as.sample.plugin"/>

 </plug-ins>

 <authentication>

 <plug-in name="Sample">

 <properties>

 <property name="darranl.password" value="dpd"/>

 <property name="darranl.roles" value="Admin,Banker,User"/>

 </properties>

 </plug-in>

 </authentication>

 <authorization>

 <plug-in name="Delegate" />

 </authorization>

</security-realm>

Latest WildFly Documentation

JBoss Community Documentation Page of 93 2293

Before looking closely at the packaging and configuration there is one more interface to implement and that

is the interface, that interface is responsible for making PlugIn instances available atPlugInProvider

runtime to handle the requests.

PlugInProvider

public interface PlugInProvider {

 AuthenticationPlugIn<Credential> loadAuthenticationPlugIn(final String name);

 AuthorizationPlugIn loadAuthorizationPlugIn(final String name);

}

These methods are called with the name that is supplied in the plug-in elements that are contained within the

authentication and authorization elements of the configuration, based on the sample configuration above the

loadAuthenticationPlugIn method will be called with a parameter of 'Sample' and the loadAuthorizationPlugIn

method will be called with a parameter of 'Delegate'.

Multiple plug-in providers may be available to the application server so if a PlugInProvider

implementation does not recognise a name then it should just return null and the server will continue

searching the other providers. If a does recognise a name but fails to instantiate thePlugInProvider

PlugIn then a can be thrown to indicate the failure.RuntimeException

As a server could have many providers registered it is recommended that a naming convention including

some form of hierarchy is used e.g. use package style names to avoid conflicts.

For the example the implementation is as follows: -

public class SamplePluginProvider implements PlugInProvider {

 public AuthenticationPlugIn<Credential> loadAuthenticationPlugIn(String name) {

 if ("Sample".equals(name)) {

 return new SampleAuthenticationPlugIn();

 }

 return null;

 }

 public AuthorizationPlugIn loadAuthorizationPlugIn(String name) {

 if ("Sample".equals(name)) {

 return new SampleAuthenticationPlugIn();

 } else if ("Delegate".equals(name)) {

 return new DelegateAuthorizationPlugIn();

 }

 return null;

 }

}

The load methods are called for each authentication attempt but it will be an implementation detail of the

provider if it decides to return a new instance of the provider each time - in this scenario as we also use

configuration and shared state then new instances of the implementations make sense.

Latest WildFly Documentation

JBoss Community Documentation Page of 94 2293

To load the provider use a ServiceLoader so within the META-INF/services folder of the jar this project adds

a file called ' ' - this contains a singleorg.jboss.as.domain.management.plugin.PlugInProvider

entry which is the fully qualified class name of the PlugInProvider implementation class.

org.jboss.as.sample.SamplePluginProvider

Package as a Module
To make the available to the application it is bundled as a module and added to thePlugInProvider

modules already shipped with WildFly 8.

To add as a module we first need a : -module.xml

<?xml version="1.0" encoding="UTF-8"?>

<module xmlns="urn:jboss:module:1.1" name="org.jboss.as.sample.plugin">

 <properties>

 </properties>

 <resources>

 <resource-root path="SamplePlugIn.jar"/>

 </resources>

 <dependencies>

 <module name="org.jboss.as.domain-management" />

 </dependencies>

</module>

The interfaces being implemented are in the ' ' module so aorg.jboss.as.domain-management

dependency on that module is defined, this is then placed in the '{module.xml

'.jboss.home}/modules/org/jboss/as/sample/plugin/main

The compiled classed and as described above are assembled into a jar called META-INF/services

 and also placed into this folder.SamplePlugIn.jar

Looking back at the sample configuration at the top of the realm definition the following element was added:

-

<plug-ins>

 <plug-in module="org.jboss.as.sample.plugin"/>

 </plug-ins>

This element is used to list the modules that should be searched for plug-ins. As plug-ins are loaded during

the server start up this search is a lazy search so don't expect a definition to a non existant module or to a

module that does not contain a plug-in to report an error.

The AuthenticationPlugIn
The example is implemented as: -AuthenticationPlugIn

Latest WildFly Documentation

JBoss Community Documentation Page of 95 2293

public class SampleAuthenticationPlugIn extends AbstractPlugIn {

 private static final String PASSWORD_SUFFIX = ".password";

 private static final String ROLES_SUFFIX = ".roles";

 private Map<String, String> configuration;

 public void init(Map<String, String> configuration, Map<String, Object> sharedState) throws

IOException {

 this.configuration = configuration;

 // This will allow an AuthorizationPlugIn to delegate back to this instance.

 sharedState.put(AuthorizationPlugIn.class.getName(), this);

 }

 public Identity loadIdentity(String userName, String realm) throws IOException {

 String passwordKey = userName + PASSWORD_SUFFIX;

 if (configuration.containsKey(passwordKey)) {

 return new SampleIdentity(userName, configuration.get(passwordKey));

 }

 throw new IOException("Identity not found.");

 }

 public String[] loadRoles(String userName, String realm) throws IOException {

 String rolesKey = userName + ROLES_SUFFIX;

 if (configuration.containsKey(rolesKey)) {

 String roles = configuration.get(rolesKey);

 return roles.split(",");

 } else {

 return new String[0];

 }

 }

 private static class SampleIdentity implements Identity {

 private final String userName;

 private final Credential credential;

 private SampleIdentity(final String userName, final String password) {

 this.userName = userName;

 this.credential = new PasswordCredential(password.toCharArray());

 }

 public String getUserName() {

 return userName;

 }

 public Credential getCredential() {

 return credential;

 }

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 96 2293

As you can see from this implementation there is also an additional class being extended AbstractPlugIn

- that is simply an abstract class that implements the , ,AuthenticationPlugIn AuthorizationPlugIn

and interfaces already. The properties that were defined in thePlugInConfigurationSupport

configuration are passed in as a Map and importantly for this sample the plug-in adds itself to the shared

state map.

The AuthorizationPlugIn
The example implementation of the authentication plug in is as follows: -

public class DelegateAuthorizationPlugIn extends AbstractPlugIn {

 private AuthorizationPlugIn authorizationPlugIn;

 public void init(Map<String, String> configuration, Map<String, Object> sharedState) throws

IOException {

 authorizationPlugIn = (AuthorizationPlugIn)

sharedState.get(AuthorizationPlugIn.class.getName());

 }

 public String[] loadRoles(String userName, String realm) throws IOException {

 return authorizationPlugIn.loadRoles(userName, realm);

 }

}

This plug-in illustrates how two plug-ins can work together, by the placing itself inAuthenticationPlugIn

the shared state map it is possible for the authorization plug-in to make use of it for the loadRoles

implementation.

Another option to consider to achieve similar behaviour could be to provide an Identity implementation that

also contains the roles and place this in the shared state map - the can retrieveAuthorizationPlugIn

this and return the roles.

Forcing Plain Text Authentication
As mentioned earlier in this article if the is going to be used then theValidatePasswordCredential

authentication used at the transport level needs to be forced from Digest authentication to plain text

authentication, this can be achieved by adding a mechanism attribute to the plug-in definition within the

authentication element i.e.

<authentication>

 <plug-in name="Sample" mechanism="PLAIN">

Latest WildFly Documentation

JBoss Community Documentation Page of 97 2293

Example Configurations
This section of the document contains a couple of examples for the most common scenarios likely to be

used with the security realms, please feel free to raise Jira issues requesting additional scenarios or if you

have configured something not covered here please feel free to add your own examples - this document is

editable after all

At the moment these examples are making use of the ' ' however the same can apply toManagementRealm

the ' ' or any custom realm you create for yourselves.ApplicationRealm

LDAP Authentication
The following example demonstrates an example configuration making use of Active Directory to verify the

users username and password.

<management>

 <security-realms>

 <security-realm name="ManagementRealm">

 <authentication>

 <ldap connection="EC2" base-dn="CN=Users,DC=darranl,DC=jboss,DC=org">

 <username-filter attribute="sAMAccountName" />

 </ldap>

 </authentication>

 </security-realm>

 </security-realms>

 <outbound-connections>

 <ldap name="EC2" url="ldap://127.0.0.1:9797"

search-dn="CN=wf8,CN=Users,DC=darranl,DC=jboss,DC=org" search-credential="password"/>

 </outbound-connections>

 ...

</management>

For simplicity the configuration has been removed from this example, however there it<local/>

is fine to leave that in place for local authentication to remain possible.

Latest WildFly Documentation

JBoss Community Documentation Page of 98 2293

Enable SSL
The first step is the creation of the key, by default this is going to be used for both the native management

interface and the http management interface - to create the key we can use the , the followingkeyTool

example will create a key valid for one year.

Open a terminal window in the folder { and enter thejboss.home}/standalone/configuration

following command: -

keytool -genkey -alias server -keyalg RSA -keystore server.keystore -validity

365

Enter keystore password:

Re-enter new password:

In this example I choose ' '.keystore_password

What is your first and last name?

 [Unknown]: localhost

Of all of the questions asked this is the most important and should match the host name that will be

entered into the web browser to connect to the admin console.

Answer the remaining questions as you see fit and at the end for the purpose of this example I set the key

password to ' '.key_password

The following example shows how this newly created keystore will be referenced to enable SSL.

<security-realm name="ManagementRealm">

 <server-identities>

 <ssl>

 <keystore path="server.keystore" relative-to="jboss.server.config.dir"

keystore-password="keystore_password" alias="server" key-password="key_password" />

 </ssl>

 </server-identities>

 <authentication>

 ...

 </authentication>

</security-realm>

The contents of the have not been changed in this example so authentication still<authentication />

occurs using either the local mechanism or username/password authentication using Digest.

Latest WildFly Documentation

JBoss Community Documentation Page of 99 2293

Add Client-Cert to SSL
To enable Client-Cert style authentication we just now need to add a element to the <truststore />

 element referencing a trust store that has had the certificates or trusted clients<authentication />

imported.

<security-realm name="ManagementRealm">

 <server-identities>

 <ssl>

 <keystore path="server.keystore" relative-to="jboss.server.config.dir"

keystore-password="keystore_password" alias="server" key-password="key_password" />

 </ssl>

 </server-identities>

 <authentication>

 <truststore path="server.truststore" relative-to="jboss.server.config.dir"

keystore-password="truststore_password" />

 <local default-user="$local"/>

 <properties path="mgmt-users.properties" relative-to="jboss.server.config.dir"/>

 </authentication>

</security-realm>

In this scenario if Client-Cert authentication does not occur clients can fall back to use either the local

mechanism or username/password authentication. To make Client-Cert based authentication mandatory just

remove the and elements.<local /> <properties />

5.5.2 Authorizing management actions with Role Based Access

Control

WildFly introduces a Role Based Access Control scheme that allows different administrative users to have

different sets of permissions to read and update parts of the management tree. This replaces the simple

permission scheme used in JBoss AS 7, where anyone who could successfully authenticate to the

management security realm would have all permissions.

Latest WildFly Documentation

JBoss Community Documentation Page of 100 2293

Access Control Providers
WildFly ships with two access control "providers", the "simple" provider, and the "rbac" provider. The

"simple" provider is the default, and provides a permission scheme equivalent to the JBoss AS 7 behavior

where any authenticated administrator has all permissions. The "rbac" provider gives the finer grained

permission scheme that is the focus of this section.

The access control configuration is included in the management section of a standalone server's

standalone.xml, or in a new "management" section in a managed domain's domain.xml. The access control

policy is centrally configured in a managed domain.

<management>

 . . .

 <access-control provider="simple">

 <role-mapping>

 <role name="SuperUser">

 <include>

 <user name="$local"/>

 </include>

 </role>

 </role-mapping>

 </access-control>

</management>

As you can see, the provider is set to "simple" by default. With the "simple" provider, the nested

"role-mapping" section is not actually relevant. It's there to help ensure that if the provider attribute is

switched to "rbac" there will be at least one user mapped to a role that can continue to administer the

system. This default mapping assigns the "$local" user name to the RBAC role that provides all permissions,

the "SuperUser" role. The "$local" user name is the name an administrator will be assigned if he or she uses

the CLI on the same system as the WildFly instance and the is enabled."local" authentication scheme

RBAC provider overview
The access control scheme implemented by the "rbac" provider is based on seven standard roles. A role is a

named set of permissions to perform one of the actions: addressing (i.e. looking up) a management

resource, reading it, or modifying it. The different roles have constraints applied to their permissions that are

used to determine whether the permission is granted.

Latest WildFly Documentation

JBoss Community Documentation Page of 101 2293

RBAC roles
The seven standard roles are divided into two broad categories, based on whether the role can deal with

items that are considered to be "security sensitive". Resources, attributes and operations that may affect

administrative security (e.g. security realm resources and attributes that contain passwords) are "security

sensitive".

Four roles are not given permissions for "security sensitive" items:

Monitor – a read-only role. Cannot modify any resource.

Operator – Monitor permissions, plus can modify runtime state, but cannot modify anything that ends

up in the persistent configuration. Could, for example, restart a server.

Maintainer – Operator permissions, plus can modify the persistent configuration.

Deployer – like a Maintainer, but with permission to modify persistent configuration constrained to

resources that are considered to be "application resources". A deployment is an application resource.

The messaging server is not. Items like datasources and JMS destinations are not considered to be

application resources by default, but this is .configurable

Three roles are granted permissions for security sensitive items:

SuperUser – has all permissions. Equivalent to a JBoss AS 7 administrator.

Administrator – has all permissions except cannot read or write resources related to the administrative

audit logging system.

Auditor – can read anything. Can only modify the resources related to the administrative audit logging

system.

The Auditor and Administrator roles are meant for organizations that want a separation of responsibilities

between those who audit normal administrative actions and those who perform them, with those who

perform most actions (Administrator role) not being able to read or alter the auditing configuration.

Access control constraints
The following factors are used to determine whether a given role is granted a permission:

What the requested action is (address, read, write)

Whether the resource, attribute or operation affects the persistent configuration

Whether the resource, attribute or operation is related to the administrative audit logging function

Whether the resource, attribute or operation is configured as security sensitive

Whether an attribute or operation parameter value has a security vault expression

Whether a resource is considered to be associated with applications, as opposed to being part of a

general container configuration

The first three of these factors are non-configurable; the latter three allow some customization. See "

" for details.Configuring constraints

Latest WildFly Documentation

JBoss Community Documentation Page of 102 2293

Addressing a resource
As mentioned above, permissions are granted to perform one of three actions, addressing a resource,

reading it, and modifying. The latter two actions are fairly self-explanatory. But what is meant by

"addressing" a resource?

"Addressing" a resource refers to taking an action that allows the user to determine whether a resource at a

given address actually exists. For example, the "read-children-names" operation lets a user determine valid

addresses. Trying to read a resource and getting a "Permission denied" error also gives the user a clue that

there actually is a resource at the requested address.

Some resources may include sensitive information as part of their address. For example, security realm

resources include the realm name as the last element in the address. That realm name is potentially security

sensitive; for example it is part of the data used when creating a hash of a user password. Because some

addresses may contain security sensitive data, a user needs permission to even "address" a resource. If a

user attempts to address a resource and does not have permission, they will not receive a "permission

denied" type error. Rather, the system will respond as if the resource does not even exist, e.g. excluding the

resource from the result of the "read-children-names" operation or responding with a "No such resource"

error instead of "Permission denied" if the user is attempting to read or write the resource.

Another term for "addressing" a resource is "looking up" the resource.

Switching to the "rbac" provider
Use the CLI to switch the access-control provider.

Before changing the provider to "rbac", be sure your configuration has a user who will be mapped

to one of the RBAC roles, preferably with at least one in the Administrator or SuperUser role.

Otherwise your installation will not be manageable except by shutting it down and editing the xml

configuration. If you have started with one of the standard xml configurations shipped with WildFly,

the "$local" user will be mapped to the "SuperUser" role and the will"local" authentication scheme

be enabled. This will allow a user running the CLI on the same system as the WildFly process to

have full administrative permissions. Remote CLI users and web-based admin console users will

have no permissions.

We recommend besides "$local" before switching the provider to "rbac".mapping at least one user

You can do all of the configuration associated with the "rbac" provider even when the provider is

set to "simple"

The management resources related to access control are located in the

 portion of the management resource tree.core-service=management/access=authorization

Update the attribute to change between the "simple" and "rbac" providers. Any update requires aprovider

reload or restart to take effect.

Latest WildFly Documentation

JBoss Community Documentation Page of 103 2293

[standalone@localhost:9990 /] cd core-service=management/access=authorization

[standalone@localhost:9990 access=authorization] :write-attribute(name=provider,value=rbac)

{

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-reload" => true,

 "process-state" => "reload-required"

 }

}

[standalone@localhost:9990 access=authorization] reload

In a managed domain, the access control configuration is part of the domain wide configuration, so the

resource address is the same as above, but the CLI is connected to the master Domain Controller:

[domain@localhost:9990 /] cd core-service=management/access=authorization

[domain@localhost:9990 access=authorization] :write-attribute(name=provider,value=rbac)

{

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-reload" => true,

 "process-state" => "reload-required"

 },

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {"master" => {

 "server-one" => {"response" => {

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-reload" => true,

 "process-state" => "reload-required"

 }

 }},

 "server-two" => {"response" => {

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-reload" => true,

 "process-state" => "reload-required"

 }

 }}

 }}}}

}

[domain@localhost:9990 access=authorization] reload --host=master

As with a standalone server, a reload or restart is required for the change to take effect. In this case, all

hosts and servers in the domain will need to be reloaded or restarted, starting with the master Domain

Controller, so be sure to plan well before making this change.

Mapping users and groups to roles
Once the "rbac" access control provider is enabled, only users who are mapped to one of the available roles

will have any administrative permissions at all. So, to make RBAC useful, a mapping between individual

users or groups of users and the available roles must be performed.

Latest WildFly Documentation

JBoss Community Documentation Page of 104 2293

Mapping individual users
The easiest way to map individual users to roles is to use the web-based admin console.

Navigate to the "Administration" tab and the "Users" subtab. From there individual user mappings can be

added, removed, or edited.

The CLI can also be used to map individuals users to roles.

First, if one does not exist, create the parent resource for all mappings for a role. Here we create the

resource for the role.Administrator

[domain@localhost:9990 /]

/core-service=management/access=authorization/role-mapping=Administrator:add

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {"master" => {

 "server-one" => {"response" => {"outcome" => "success"}},

 "server-two" => {"response" => {"outcome" => "success"}}

 }}}}

}

Once this is done, map a user to the role:

Latest WildFly Documentation

JBoss Community Documentation Page of 105 2293

[domain@localhost:9990 /]

/core-service=management/access=authorization/role-mapping=Administrator/include=user-jsmith:add(name=jsmith,type=USER)
{

"outcome" => "success",

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {"master" => {

 "server-one" => {"response" => {"outcome" => "success"}},

 "server-two" => {"response" => {"outcome" => "success"}}

 }}}}

}

Now if user authenticates to any security realm associated with the management interface they arejsmith

using, he will be mapped to the role.Administrator

To restrict the mapping to a particular security realm, change the attribute to the realm name. Thisrealm

might be useful if different realms are associated with different management interfaces, and the goal is to

limit a user to a particular interface.

[domain@localhost:9990 /]

/core-service=management/access=authorization/role-mapping=Administrator/include=user-mjones:add(name=mjones,type=USER,realm=ManagementRealm)
{

"outcome" => "success",

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {"master" => {

 "server-one" => {"response" => {"outcome" => "success"}},

 "server-two" => {"response" => {"outcome" => "success"}}

 }}}}

}

User groups
A "group" is an arbitrary collection of users that may exist in the end user environment. They can be named

whatever the end user organization wants and can contain whatever users the end user organization wants.

Some of the authentication store types supported by WildFly security realms include the ability to access

information about what groups a user is a member of and associate this information with the Subject

produced when the user is authenticated. This is currently supported for the following authentication store

types:

properties file (via the file)<realm_name>-groups.properties

LDAP (via directory-server-specific configuration)

Groups are convenient when it comes to associating a user with a role, since entire groups can be

associated with a role in a single mapping.

Mapping groups to roles
The easiest way to map groups to roles is to use the web-based admin console.

Navigate to the "Administration" tab and the "Groups" subtab. From there group mappings can be added,

removed, or edited.

Latest WildFly Documentation

JBoss Community Documentation Page of 106 2293

The CLI can also be used to map groups to roles. The only difference to individual user mapping is the value

of the attribute should be instead of .type GROUP USER

[domain@localhost:9990 /]

/core-service=management/access=authorization/role-mapping=Administrator/include=group-SeniorAdmins:add(name=SeniorAdmins,type=GROUP)
{

"outcome" => "success",

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {"master" => {

 "server-one" => {"response" => {"outcome" => "success"}},

 "server-two" => {"response" => {"outcome" => "success"}}

 }}}}

}

As with individual user mappings, the mapping can be restricted to users authenticating via a particular

security realm:

[domain@localhost:9990 /]

/core-service=management/access=authorization/role-mapping=Administrator/include=group-PowerAdmins:add(name=PowerAdmins,type=GROUP,realm=ManagementRealm)
{

"outcome" => "success",

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {"master" => {

 "server-one" => {"response" => {"outcome" => "success"}},

 "server-two" => {"response" => {"outcome" => "success"}}

 }}}}

}

Latest WildFly Documentation

JBoss Community Documentation Page of 107 2293

Including all authenticated users in a role
It's possible to specify that all authenticated users should be mapped to a particular role. This could be used,

for example, to ensure that anyone who can authenticate can at least have privileges.Monitor

A user who can authenticate to the management security realm but who does not map to a role will

not be able to perform any administrative functions, not even reads.

In the web based admin console, navigate to the "Administration" tab, "Roles" subtab, highlight the relevant

role, click the "Edit" button and click on the "Include All" checkbox:

The same change can be made using the CLI:

[domain@localhost:9990 /]

/core-service=management/access=authorization/role-mapping=Monitor:write-attribute(name=include-all,value=true)
{

"outcome" => "success",

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {"master" => {

 "server-one" => {"response" => {"outcome" => "success"}},

 "server-two" => {"response" => {"outcome" => "success"}}

 }}}}

}

Latest WildFly Documentation

JBoss Community Documentation Page of 108 2293

Excluding users and groups
It is also possible to explicitly exclude certain users and groups from a role. Exclusions take precedence over

inclusions, including cases where the attribute is set to true for a role.include-all

In the admin console, excludes are done in the same screens as includes. In the add dialog, simply change

the "Type" pulldown to "Exclude".

In the CLI, excludes are identical to includes, except the resource address has instead of exclude

 as the key for the last address element:include

[domain@localhost:9990 /]

/core-service=management/access=authorization/role-mapping=Monitor/exclude=group-Temps:add(name=Temps,type=GROUP)
{

"outcome" => "success",

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {"master" => {

 "server-one" => {"response" => {"outcome" => "success"}},

 "server-two" => {"response" => {"outcome" => "success"}}

 }}}}

}

Latest WildFly Documentation

JBoss Community Documentation Page of 109 2293

Users who map to multiple roles
It is possible that a given user will be mapped to more than one role. When this occurs, by default the user

will be granted the union of the permissions of the two roles. This behavior can be changed on a global

 to instead respond to the user request with an error if this situation is detected:basis

[standalone@localhost:9990 /] cd core-service=management/access=authorization

[standalone@localhost:9990 access=authorization]

:write-attribute(name=permission-combination-policy,value=rejecting)

{"outcome" => "success"}

Note that no reload is required; the change takes immediate effect.

To restore the default behavior, set the value to "permissive":

[standalone@localhost:9990 /] cd core-service=management/access=authorization

[standalone@localhost:9990 access=authorization]

:write-attribute(name=permission-combination-policy,value=permissive)

{"outcome" => "success"}

Adding custom roles in a managed domain
A managed domain may involve a variety of servers running different configurations and hosting different

applications. In such an environment, it is likely that there will be different teams of administrators

responsible for different parts of the domain. To allow organizations to grant permissions to only parts of a

domain, WildFly's RBAC scheme allows for the creation of custom "scoped roles". Scoped roles are based

on the seven standard roles, but with permissions limited to a portion of the domain – either to a set of server

groups or to a set of hosts.

Latest WildFly Documentation

JBoss Community Documentation Page of 110 2293

Server group scoped roles
The privileges for a server-group scoped role are constrained to resources associated with one or more

server groups. Server groups are often associated with a particular application or set of applications;

organizations that have separate teams responsible for different applications may find server-group scoped

roles useful.

A server-group scoped role is equivalent to the default role upon which it is based, but with privileges

constrained to target resources in the resource trees rooted in the server group resources. The server-group

scoped role can be configured to include privileges for the following resources trees logically related to the

server group:

Profile

Socket Binding Group

Deployment

Deployment override

Server group

Server config

Server

Resources in the profile, socket binding group, server config and server portions of the tree that are not

logically related to a server group associated with the server-group scoped role will not be addressable by a

user in that role. So, in a domain with server groups “a” and “b”, a user in a server-group scoped role that

grants access to “a” will not be able to address /server-group=b. The system will treat that resource as

non-existent for that user.

In addition to these privileges, users in a server-group scoped role will have non-sensitive read privileges

(equivalent to the Monitor role) for resources other than those listed above.

The easiest way to create a server-group scoped role is to . But you can also use theuse the admin console

CLI to create a server-group scoped role.

[domain@localhost:9990 /]

/core-service=management/access=authorization/server-group-scoped-role=MainGroupAdmins:add(base-role=Administrator,server-groups=[main-server-group])
{

"outcome" => "success",

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {"master" => {

 "server-one" => {"response" => {"outcome" => "success"}},

 "server-two" => {"response" => {"outcome" => "success"}}

 }}}}

}

Once the role is created, users or groups can be mapped to it the same as with the seven standard roles.

Latest WildFly Documentation

JBoss Community Documentation Page of 111 2293

Host scoped roles
The privileges for a host-scoped role are constrained to resources associated with one or more hosts. A user

with a host-scoped role cannot modify the domain wide configuration. Organizations may use host-scoped

roles to give administrators relatively broad administrative rights for a host without granting such rights

across the managed domain.

A host-scoped role is equivalent to the default role upon which it is based, but with privileges constrained to

target resources in the resource trees rooted in the host resources for one or more specified hosts.

In addition to these privileges, users in a host-scoped role will have non-sensitive read privileges (equivalent

to the Monitor role) for domain wide resources (i.e. those not in the /host=* section of the tree.)

Resources in the /host=* portion of the tree that are unrelated to the hosts specified for the Host Scoped

Role will not be visible to users in that host-scoped role. So, in a domain with hosts “a” and “b”, a user in a

host-scoped role that grants access to “a” will not be able to address /host=b. The system will treat that

resource as non-existent for that user.

The easiest way to create a host-scoped role is to . But you can also use the CLI touse the admin console

create a host scoped role.

[domain@localhost:9990 /]

/core-service=management/access=authorization/host-scoped-role=MasterOperators:add(base-role=Operator,hosts=[master]}
{

"outcome" => "success",

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {"master" => {

 "server-one" => {"response" => {"outcome" => "success"}},

 "server-two" => {"response" => {"outcome" => "success"}}

 }}}}

}

Once the role is created, users or groups can be mapped to it the same as with the seven standard roles.

Latest WildFly Documentation

JBoss Community Documentation Page of 112 2293

Using the admin console to create scoped roles
Both server-group and host scoped roles can be added, removed or edited via the admin console. Select

"Scoped Roles" from the "Administration" tab, "Roles" subtab:

When adding a new scoped role, use the dialogue's "Type" pull down to choose between a host scoped role

and a server-group scoped role. Then place the names of the relevant hosts or server groups in the "Scope"

text are.

Latest WildFly Documentation

JBoss Community Documentation Page of 113 2293

Configuring constraints
The following factors are used to determine whether a given role is granted a permission:

What the requested action is (address, read, write)

Whether the resource, attribute or operation affects the persistent configuration

Whether the resource, attribute or operation is related to the administrative audit logging function

Whether the resource, attribute or operation is configured as security sensitive

Whether an attribute or operation parameter value has a security vault expression

Whether a resource is considered to be associated with applications, as opposed to being part of a

general container configuration

The first three of these factors are non-configurable; the latter three allow some customization.

Configuring sensitivity
"Sensitivity" constraints are about restricting access to security-sensitive data. Different organizations may

have different opinions about what is security sensitive, so WildFly provides configuration options to allow

users to tailor these constraints.

Sensitive resources, attributes and operations
The developers of the WildFly core and of any subsystem may annotate resources, attributes or operations

with a "sensitivity classification". Classifications are either provided by the core and may be applicable

anywhere in the management model, or they are scoped to a particular subsystem. For each classification,

there will be a setting declaring whether by default the addressing, read and write actions are considered to

be sensitive. If an action is sensitive, only users in the roles able to deal with sensitive data (Administrator,

Auditor, SuperUser) will have permissions.

Using the CLI, administrators can see the settings for a classification. For example, there is a core

classification called "socket-config" that is applied to elements throughout the model that relate to configuring

sockets:

[domain@localhost:9990 /] cd

core-service=management/access=authorization/constraint=sensitivity-classification/type=core/classification=socket-config
[domain@localhost:9990

classification=socket-config] ls -l

ATTRIBUTE VALUE TYPE

configured-requires-addressable undefined BOOLEAN

configured-requires-read undefined BOOLEAN

configured-requires-write undefined BOOLEAN

default-requires-addressable false BOOLEAN

default-requires-read false BOOLEAN

default-requires-write true BOOLEAN

CHILD MIN-OCCURS MAX-OCCURS

applies-to n/a n/a

Latest WildFly Documentation

JBoss Community Documentation Page of 114 2293

The various attributes indicate whether a user must be in a role that allowsdefault-requires-...

security sensitive actions in order to perform the action. In the example above, socket-config

 is true, while the others are false. So, by default modifying a setting involvingdefault-requires-write

socket configuration is considered sensitive, while addressing those resources or doing reads is not

sensitive.

The attributes are read-only. The attributesdefault-requires-... configured-requires-...

however can be modified to override the default settings with ones appropriate for your organization. For

example, if your organization doesn't regard modifying socket configuration settings to be security sensitive,

you can change that setting:

[domain@localhost:9990 classification=socket-config]

:write-attribute(name=configured-requires-write,value=false)

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {"master" => {

 "server-one" => {"response" => {"outcome" => "success"}},

 "server-two" => {"response" => {"outcome" => "success"}}

 }}}}

}

Administrators can also read the management model to see to which resources, attributes and operations a

particular sensitivity classification applies:

[domain@localhost:9990 classification=socket-config]

:read-children-resources(child-type=applies-to)

{

 "outcome" => "success",

 "result" => {

 "/host=master" => {

 "address" => "/host=master",

 "attributes" => [],

 "entire-resource" => false,

 "operations" => ["resolve-internet-address"]

 },

 "/host=master/core-service=host-environment" => {

 "address" => "/host=master/core-service=host-environment",

 "attributes" => [

 "host-controller-port",

 "host-controller-address",

 "process-controller-port",

 "process-controller-address"

],

 "entire-resource" => false,

 "operations" => []

 },

 "/host=master/core-service=management/management-interface=http-interface" => {

 "address" =>

"/host=master/core-service=management/management-interface=http-interface",

 "attributes" => [

 "port",

 "secure-interface",

Latest WildFly Documentation

JBoss Community Documentation Page of 115 2293

 "secure-port",

 "interface"

],

 "entire-resource" => false,

 "operations" => []

 },

 "/host=master/core-service=management/management-interface=native-interface" => {

 "address" =>

"/host=master/core-service=management/management-interface=native-interface",

 "attributes" => [

 "port",

 "interface"

],

 "entire-resource" => false,

 "operations" => []

 },

 "/host=master/interface=*" => {

 "address" => "/host=master/interface=*",

 "attributes" => [],

 "entire-resource" => true,

 "operations" => ["resolve-internet-address"]

 },

 "/host=master/server-config=*/interface=*" => {

 "address" => "/host=master/server-config=*/interface=*",

 "attributes" => [],

 "entire-resource" => true,

 "operations" => []

 },

 "/interface=*" => {

 "address" => "/interface=*",

 "attributes" => [],

 "entire-resource" => true,

 "operations" => []

 },

 "/profile=*/subsystem=messaging/hornetq-server=*/broadcast-group=*" => {

 "address" => "/profile=*/subsystem=messaging/hornetq-server=*/broadcast-group=*",

 "attributes" => [

 "group-address",

 "group-port",

 "local-bind-address",

 "local-bind-port"

],

 "entire-resource" => false,

 "operations" => []

 },

 "/profile=*/subsystem=messaging/hornetq-server=*/discovery-group=*" => {

 "address" => "/profile=*/subsystem=messaging/hornetq-server=*/discovery-group=*",

 "attributes" => [

 "group-address",

 "group-port",

 "local-bind-address"

],

 "entire-resource" => false,

 "operations" => []

 },

 "/profile=*/subsystem=transactions" => {

 "address" => "/profile=*/subsystem=transactions",

 "attributes" => ["process-id-socket-max-ports"],

Latest WildFly Documentation

JBoss Community Documentation Page of 116 2293

 "entire-resource" => false,

 "operations" => []

 },

 "/server-group=*" => {

 "address" => "/server-group=*",

 "attributes" => ["socket-binding-port-offset"],

 "entire-resource" => false,

 "operations" => []

 },

 "/socket-binding-group=*" => {

 "address" => "/socket-binding-group=*",

 "attributes" => [],

 "entire-resource" => true,

 "operations" => []

 }

 }

}

There will be a separate child for each address to which the classification applies. The entire-resource

attribute will be true if the classification applies to the entire resource. Otherwise, the and attributes

 attributes will include the names of attributes or operations to which the classification applies.operations

Classifications with broad use

Several of the core sensitivity classifications are commonly used across the management model and

deserve special mention.

Name Description

credential An attribute whose value is some sort of credential, e.g. a password or a username.

By default sensitive for both reads and writes

security-domain-ref An attribute whose value is the name of a security domain. By default sensitive for

both reads and writes

security-realm-ref An attribute whose value is the name of a security realm. By default sensitive for both

reads and writes

socket-binding-ref An attribute whose value is the name of a socket binding. By default not sensitive for

any action

socket-config A resource, attribute or operation that somehow relates to configuring a socket. By

default sensitive for writes

Values with security vault expressions
By default any attribute or operation parameter whose value includes a security vault expression will be

treated as sensitive, even if no sensitivity classification applies or the classification does not treat the action

as sensitive.

This setting can be changed via the CLI. There is a resource for this configuration:globally

Latest WildFly Documentation

JBoss Community Documentation Page of 117 2293

[domain@localhost:9990 /] cd

core-service=management/access=authorization/constraint=vault-expression

[domain@localhost:9990 constraint=vault-expression] ls -l

ATTRIBUTE VALUE TYPE

configured-requires-read undefined BOOLEAN

configured-requires-write undefined BOOLEAN

default-requires-read true BOOLEAN

default-requires-write true BOOLEAN

The various attributes indicate whether a user must be in a role that allowsdefault-requires-...

security sensitive actions in order to perform the action. So, by default both reading and writing attributes

whose values include vault expressions requires a user to be in one of the roles with sensitive data

permissions.

The attributes are read-only. The attributesdefault-requires-... configured-requires-...

however can be modified to override the default settings with settings appropriate for your organization. For

example, if your organization doesn't regard reading vault expressions to be security sensitive, you can

change that setting:

[domain@localhost:9990 constraint=vault-expression]

:write-attribute(name=configured-requires-read,value=false)

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {"master" => {

 "server-one" => {"response" => {"outcome" => "success"}},

 "server-two" => {"response" => {"outcome" => "success"}}

 }}}}

}

This vault-expression constraint overlaps somewhat with the core "credential" sensitivity

 in that the most typical uses of a vault expression are in attributes that contain a userclassification

name or password, and those will typically be annotated with the "credential" sensitivity

classification. So, if you change the settings for the "credential" sensitivity classification you may

also need to make a corresponding change to the vault-expression constraint settings, or your

change will not have full effect.

Be aware though, that vault expressions can be used in any attribute that supports expressions,

not just in credential-type attributes. So it is important to be familiar with where and how your

organization uses vault expressions before changing these settings.

Latest WildFly Documentation

JBoss Community Documentation Page of 118 2293

Configuring "Deployer" role access
The standard has its write permissions limited to resources that are considered to beDeployer role

"application resources"; i.e. conceptually part of an application and not part of the general server

configuration. By default, only deployment resources are considered to be application resources. However,

different organizations may have different opinions on what qualifies as an application resource, so for

resource types that subsystems authors consider to be application resources, WildFly provides apotentially

configuration option to declare them as such. Such resources will be annotated with an "application

classification".

For example, the mail subsystem provides such a classification:

[domain@localhost:9990 /] cd

/core-service=management/access=authorization/constraint=application-classification/type=mail/classification=mail-session
[domain@localhost:9990

classification=mail-session] ls -l

ATTRIBUTE VALUE TYPE

configured-application undefined BOOLEAN

default-application false BOOLEAN

CHILD MIN-OCCURS MAX-OCCURS

applies-to n/a n/a

Use or to see what resources have this classificationread-resource read-children-resources

applied:

[domain@localhost:9990 classification=mail-session]

:read-children-resources(child-type=applies-to)

{

 "outcome" => "success",

 "result" => {"/profile=*/subsystem=mail/mail-session=*" => {

 "address" => "/profile=*/subsystem=mail/mail-session=*",

 "attributes" => [],

 "entire-resource" => true,

 "operations" => []

 }}

}

This indicates that this classification, intuitively enough, only applies to mail subsystem mail-session

resources.

To make resources with this classification writeable by users in the Deployer role, set the

 attribute to true.configured-application

Latest WildFly Documentation

JBoss Community Documentation Page of 119 2293

[domain@localhost:9990 classification=mail-session]

:write-attribute(name=configured-application,value=true)

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {"master" => {

 "server-one" => {"response" => {"outcome" => "success"}},

 "server-two" => {"response" => {"outcome" => "success"}}

 }}}}

}

Application classifications shipped with WildFly
The subsystems shipped with the full WildFly distribution include the following application classifications:

Subsystem Classification

datasources data-source

datasources jdbc-driver

datasources xa-data-source

logging logger

logging logging-profile

mail mail-session

messaging jms-queue

messaging jms-topic

messaging queue

messaging security-setting

naming binding

resource-adapters resource-adapter

security security-domain

In each case the classification applies to the resources you would expect, given its name.

RBAC effect on administrator user experience
The RBAC scheme will result in reduced permissions for administrators who do not map to the SuperUser

role, so this will of course have some impact on their experience when using administrative tools like the

admin console and the CLI.

Latest WildFly Documentation

JBoss Community Documentation Page of 120 2293

Admin console
The admin console takes great pains to provide a good user experience even when the user has reduced

permissions. Resources the user is not permitted to see will simply not be shown, or if appropriate will be

replaced in the UI with an indication that the user is not authorized. Interaction units like "Add" and "Remove"

buttons and "Edit" links will be suppressed if the user has no write permissions.

CLI
The CLI is a much more unconstrained tool than the admin console is, allowing users to try to execute

whatever operations they wish, so it's more likely that users who attempt to do things for which they lack

necessary permissions will receive failure messages. For example, a user in the Monitor role cannot read

passwords:

[domain@localhost:9990 /]

/profile=default/subsystem=datasources/data-source=ExampleDS:read-attribute(name=password)

{

 "outcome" => "failed",

 "result" => undefined,

 "failure-description" => "WFLYCTL0313: Unauthorized to execute operation 'read-attribute'

for resource '[

 (\"profile\" => \"default\"),

 (\"subsystem\" => \"datasources\"),

 (\"data-source\" => \"ExampleDS\")

]' -- \"WFLYCTL0332: Permission denied\"",

 "rolled-back" => true

}

If the user isn't even allowed to then the response would be as if the resource doesn'taddress the resource

exist, even though it actually does:

[domain@localhost:9990 /]

/profile=default/subsystem=security/security-domain=other:read-resource

{

 "outcome" => "failed",

 "failure-description" => "WFLYCTL0216: Management resource '[

 (\"profile\" => \"default\"),

 (\"subsystem\" => \"security\"),

 (\"security-domain\" => \"other\")

]' not found",

 "rolled-back" => true

}

This prevents unauthorized users fishing for sensitive data in resource addresses by checking for

"Permission denied" type failures.

Users who use the operation may ask for data, some of which they are allowed to see andread-resource

some of which they are not. If this happens, the request will not fail, but inaccessible data will be elided and

a response header will be included advising on what was not included. Here we show the effect of a Monitor

trying to recursively read the security subsystem configuration:

Latest WildFly Documentation

JBoss Community Documentation Page of 121 2293

[domain@localhost:9990 /] /profile=default/subsystem=security:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {

 "deep-copy-subject-mode" => undefined,

 "security-domain" => undefined,

 "vault" => undefined

 },

 "response-headers" => {"access-control" => [{

 "absolute-address" => [

 ("profile" => "default"),

 ("subsystem" => "security")

],

 "relative-address" => [],

 "filtered-attributes" => ["deep-copy-subject-mode"],

 "filtered-children-types" => ["security-domain"]

 }]}

}

The section includes access control data in a list with one element per relevantresponse-headers

resource. (In this case there's just one.) The absolute and relative address of the resource is shown, along

with the fact that the value of the attribute has been filtered (i.e. undefined isdeep-copy-subject-mode

shown as the value, which may not be the real value) as well as the fact that child resources of type

 have been filtered.security-domain

Description of access control constraints in the management model metadata
The management model descriptive metadata returned from operations like

 and can be configured to includeread-resource-description read-operation-description

information describing the access control constraints relevant to the resource, This is done by using the

 parameter. The output will be tailored to the caller's permissions. For example, a useraccess-control

who maps to the Monitor role could ask for information about a resource in the mail subsystem:

Latest WildFly Documentation

JBoss Community Documentation Page of 122 2293

[domain@localhost:9990 /] cd /profile=default/subsystem=mail/mail-session=default/server=smtp

[domain@localhost:9990 server=smtp] :read-resource-description(access-control=trim-descriptions)

{

 "outcome" => "success",

 "result" => {

 "description" => undefined,

 "access-constraints" => {"application" => {"mail-session" => {"type" => "mail"}}},

 "attributes" => undefined,

 "operations" => undefined,

 "children" => {},

 "access-control" => {

 "default" => {

 "read" => true,

 "write" => false,

 "attributes" => {

 "outbound-socket-binding-ref" => {

 "read" => true,

 "write" => false

 },

 "username" => {

 "read" => false,

 "write" => false

 },

 "tls" => {

 "read" => true,

 "write" => false

 },

 "ssl" => {

 "read" => true,

 "write" => false

 },

 "password" => {

 "read" => false,

 "write" => false

 }

 }

 },

 "exceptions" => {}

 }

 }

}

Because was used as the value for the parameter, the typicaltrim-descriptions access-control

"description", "attributes", "operations" and "children" data is largely suppressed. (For more on this, see

.) The field indicates that this resource is annotated with an below access-constraints [application

. The field includes information about the permissions the current caller has forconstraint] access-control

this resource. The section shows the default settings for resources of this type. The and default read

 fields directly under show that the caller can, in general, read this resource but cannot writewrite default

it. The section shows the individual attribute settings. Note that Monitor cannot read the attributes

 and attributes.username password

Latest WildFly Documentation

JBoss Community Documentation Page of 123 2293

There are three valid values for the parameter to and access-control read-resource-description

:read-operation-description

 – do not include access control information in the response. This is the default behavior if nonone

parameter is included.

 – remove the normal description details, as shown in the example abovetrim-descriptions

 – include both the normal output and the access control datacombined-descriptions

Learning about your own role mappings
Users can learn in which roles they are operating. In the admin console, click on your name in the top right

corner; the roles you are in will be shown.

CLI users should use the operation with the attribute set:whoami verbose

[domain@localhost:9990 /] :whoami(verbose=true)

{

 "outcome" => "success",

 "result" => {

 "identity" => {

 "username" => "aadams",

 "realm" => "ManagementRealm"

 },

 "mapped-roles" => [

 "Maintainer"

]

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 124 2293

"Run-as" capability for SuperUsers
If a user maps to the SuperUser role, WildFly also supports letting that user request that they instead map to

one or more other roles. This can be useful when doing demos, or when the SuperUser is changing the

RBAC configuration and wants to see what effect the changes have from the perspective of a user in

another role. This capability is only available to the SuperUser role, so it can only be used to narrow a user's

permissions, not to potentially increase them.

CLI run-as
With the CLI, run-as capability is on a per-request basis. It is done by using the "roles" operation header, the

value of which can be the name of a single role or a bracket-enclosed, comma-delimited list of role names.

Example with a low level operation:

[standalone@localhost:9990 /] :whoami(verbose=true){roles=[Operator,Auditor]}

{

 "outcome" => "success",

 "result" => {

 "identity" => {

 "username" => "$local",

 "realm" => "ManagementRealm"

 },

 "mapped-roles" => [

 "Auditor",

 "Operator"

]

 }

}

Example with a CLI command:

[standalone@localhost:9990 /] deploy /tmp/helloworld.war --headers={roles=Monitor}

{"WFLYCTL0062: Composite operation failed and was rolled back. Steps that failed:" =>

{"Operation step-1" => "WFLYCTL0313: Unauthorized to execute operation 'add' for resource

'[(\"deployment\" => \"helloworld.war\")]' -- \"WFLYCTL0332: Permission denied\""}}

[standalone@localhost:9990 /] deploy /tmp/helloworld.war --headers={roles=Maintainer}

Here we show the effect of switching to a role that isn't granted the necessary permission.

Latest WildFly Documentation

JBoss Community Documentation Page of 125 2293

Admin console run-as
Admin console users can change the role in which they operate by clicking on their name in the top right

corner and clicking on the "Run as..." link.

Then select the role in which you wish to operate:

The console will need to be restarted in order for the change to take effect.

Latest WildFly Documentation

JBoss Community Documentation Page of 126 2293

Using run-as roles with the "simple" access control provider
This "run-as" capability is available even if the "simple" access control provider is used. When the "simple"

provider is used, any authenticated administrator is treated the same as if they would map to SuperUser

when the "rbac" provider is used.

However, the "simple" provider actually understands all of the "rbac" provider configuration settings

described above, but only makes use of them if the "run-as" capability is used for a request. Otherwise, the

SuperUser role has all permissions, so detailed configuration is irrelevant.

Using the run-as capability with the "simple" provider may be useful if an administrator is setting up an rbac

provider configuration before switching the provider to rbac to make that configuration take effect. The

administrator can then run-as different roles to see the effect of the planned settings.

5.6 Application deployment

5.6.1 Managed Domain

In a managed domain, deployments are associated with a (see server-group Core management

). Any server within the server group will then be provided with that deployment.concepts

The domain and host controller components manage the distribution of binaries across network boundaries.

Deployment Commands
Distributing deployment binaries involves two steps: uploading the deployment to the repository the domain

controller will use to distribute its contents, and then assigning the deployment to one or more server groups.

You can do this in one sweep with the CLI:

[domain@localhost:9990 /] deploy ~/Desktop/test-application.war

Either --all-server-groups or --server-groups must be specified.

[domain@localhost:9990 /] deploy ~/Desktop/test-application.war --all-server-groups

'test-application.war' deployed successfully.

The deployment will be available to the domain controller, assigned to a server group, and deployed on all

running servers in that group:

Latest WildFly Documentation

JBoss Community Documentation Page of 127 2293

[domain@localhost:9990 /] :read-children-names(child-type=deployment)

{

 "outcome" => "success",

 "result" => [

 "mysql-connector-java-5.1.15.jar",

 "test-application.war"

]

}

[domain@localhost:9990 /]

/server-group=main-server-group/deployment=test-application.war:read-resource(include-runtime)

{

 "outcome" => "success",

 "result" => {

 "enabled" => true,

 "name" => "test-application.war",

 "managed" => true,

 "runtime-name" => "test-application.war"

 }

}

If you only want the deployment deployed on servers in some server groups, but not all, use the

 parameter instead of :--server-groups -all-server-groups

[domain@localhost:9990 /] deploy ~/Desktop/test-application.war

--server-groups=main-server-group,another-group

'test-application.war' deployed successfully.

If you have a new version of the deployment that you want to deploy replacing an existing one, use the

 parameter:--force

[domain@localhost:9990 /] deploy ~/Desktop/test-application.war --all-server-groups --force

'test-application.war' deployed successfully.

You can remove binaries from server groups with the command:undeploy

[domain@localhost:9990 /] undeploy test-application.war --all-relevant-server-groups

Successfully undeployed test-application.war.

[domain@localhost:9990 /]

/server-group=main-server-group:read-children-names(child-type=deployment)

{

 "outcome" => "success",

 "result" => []

}

If you only want to undeploy from some server groups but not others, use the parameter-server-groups

instead of .-all-relevant-server-groups

Latest WildFly Documentation

JBoss Community Documentation Page of 128 2293

The CLI command supports a number of other parameters that can control behavior. Use the deploy

 parameter to learn more:--help

[domain@localhost:9990 /] deploy --help

[...]

Managing deployments through the web interface provides an alternate, sometimes simpler

approach.

Exploded managed deployments
Managed and unmanaged deployments can be 'exploded', i.e. on the filesystem in the form of a directory

structure whose structure corresponds to an unzipped version of the archive. An exploded deployment can

be convenient to administer if your administrative processes involve inserting or replacing files from a base

version in order to create a version tailored for a particular use (for example, copy in a base deployment and

then copy in a jboss-web.xml file to tailor a deployment for use in WildFly.) Exploded deployments are also

nice in some development scenarios, as you can replace static content (e.g. .html, .css) files in the

deployment and have the new content visible immediately without requiring a redeploy.

Since unmanaged deployment content is directly in your charge, the following operations only make sense

for a managed deployment.

[domain@localhost:9990 /] /deployment=exploded.war:add(content=[{empty=true}])

This will create an empty exploded deployment to which you'll be able to add content. The contentempty

parameter is required to check that you really intend to create an empty deployment and not just forget to

define the content.

[domain@localhost:9990 /] /deployment=kitchensink.ear:explode()

This will 'explode' an existing archive deployment to its exploded format. This operation is not recursive so

you need to explode the sub-deployment if you want to be able to manipulate the sub-deployment content.

You can do this by specifying the sub-deployment archive as a parameter to the explode operation.path

[domain@localhost:9990 /]

/deployment=kitchensink.ear:explode(path=wildfly-kitchensink-ear-web.war)

Now you can add or remove content to your exploded deployment. Note that per-default this will overwrite

existing contents, you can specify the overwrite parameter to make the operation fail if the content already

exists.

Latest WildFly Documentation

JBoss Community Documentation Page of 129 2293

[domain@localhost:9990 /]

/deployment=exploded.war:add-content(content=[{target-path=WEB-INF/classes/org/jboss/as/test/deployment/trivial/ServiceActivatorDeployment.class,

input-stream-index=/home/demo/org/jboss/as/test/deployment/trivial/ServiceActivatorDeployment.class},

{target-path=META-INF/MANIFEST.MF, input-stream-index=/home/demo/META-INF/MANIFEST.MF},

{target-path=META-INF/services/org.jboss.msc.service.ServiceActivator,

input-stream-index=/home/demo/META-INF/services/org.jboss.msc.service.ServiceActivator}])

Each content specifies a source content and the target path to which it will be copied relative to the

deployment root. With WildFly 11 you can use (which was a convenient way to pass ainput-stream-index

stream of content) from the CLI by pointing it to a local file.

[domain@localhost:9990 /]

/deployment=exploded.war:remove-content(paths=[WEB-INF/classes/org/jboss/as/test/deployment/trivial/ServiceActivatorDeployment.class,

META-INF/MANIFEST.MF, META-INF/services/org.jboss.msc.service.ServiceActivator])

Now you can list the content of an exploded deployment, or just some part of it.

[domain@localhost:9990 /] /deployment=kitchensink.ear:browse-content(archive=false,

path=wildfly-kitchensink-ear-web.war)

{

 "outcome" => "success",

 "result" => [

 {

 "path" => "META-INF/",

 "directory" => true

 },

 {

 "path" => "META-INF/MANIFEST.MF",

 "directory" => false,

 "file-size" => 128L

 },

 {

 "path" => "WEB-INF/",

 "directory" => true

 },

 {

 "path" => "WEB-INF/templates/",

 "directory" => true

 },

 {

 "path" => "WEB-INF/classes/",

 "directory" => true

 },

 {

 "path" => "WEB-INF/classes/org/",

 "directory" => true

 },

 {

 "path" => "WEB-INF/classes/org/jboss/",

 "directory" => true

 },

 {

Latest WildFly Documentation

JBoss Community Documentation Page of 130 2293

 "path" => "WEB-INF/classes/org/jboss/as/",

 "directory" => true

 },

 {

 "path" => "WEB-INF/classes/org/jboss/as/quickstarts/",

 "directory" => true

 },

 {

 "path" => "WEB-INF/classes/org/jboss/as/quickstarts/kitchensink_ear/",

 "directory" => true

 },

 {

 "path" => "WEB-INF/classes/org/jboss/as/quickstarts/kitchensink_ear/controller/",

 "directory" => true

 },

 {

 "path" => "WEB-INF/classes/org/jboss/as/quickstarts/kitchensink_ear/rest/",

 "directory" => true

 },

 {

 "path" => "WEB-INF/classes/org/jboss/as/quickstarts/kitchensink_ear/util/",

 "directory" => true

 },

 {

 "path" => "resources/",

 "directory" => true

 },

 {

 "path" => "resources/css/",

 "directory" => true

 },

 {

 "path" => "resources/gfx/",

 "directory" => true

 },

 {

 "path" => "WEB-INF/templates/default.xhtml",

 "directory" => false,

 "file-size" => 2113L

 },

 {

 "path" => "WEB-INF/faces-config.xml",

 "directory" => false,

 "file-size" => 1365L

 },

 {

 "path" =>

"WEB-INF/classes/org/jboss/as/quickstarts/kitchensink_ear/controller/MemberController.class",

 "directory" => false,

 "file-size" => 2750L

 },

 {

 "path" =>

"WEB-INF/classes/org/jboss/as/quickstarts/kitchensink_ear/rest/MemberResourceRESTService.class",

 "directory" => false,

 "file-size" => 6363L

 },

 {

Latest WildFly Documentation

JBoss Community Documentation Page of 131 2293

 "path" =>

"WEB-INF/classes/org/jboss/as/quickstarts/kitchensink_ear/rest/JaxRsActivator.class",

 "directory" => false,

 "file-size" => 464L

 },

 {

 "path" =>

"WEB-INF/classes/org/jboss/as/quickstarts/kitchensink_ear/util/WebResources.class",

 "directory" => false,

 "file-size" => 667L

 },

 {

 "path" => "WEB-INF/beans.xml",

 "directory" => false,

 "file-size" => 1262L

 },

 {

 "path" => "index.xhtml",

 "directory" => false,

 "file-size" => 3603L

 },

 {

 "path" => "index.html",

 "directory" => false,

 "file-size" => 949L

 },

 {

 "path" => "resources/css/screen.css",

 "directory" => false,

 "file-size" => 4025L

 },

 {

 "path" => "resources/gfx/headerbkg.png",

 "directory" => false,

 "file-size" => 1147L

 },

 {

 "path" => "resources/gfx/asidebkg.png",

 "directory" => false,

 "file-size" => 1374L

 },

 {

 "path" => "resources/gfx/banner.png",

 "directory" => false,

 "file-size" => 41473L

 },

 {

 "path" => "resources/gfx/bkg-blkheader.png",

 "directory" => false,

 "file-size" => 116L

 },

 {

 "path" => "resources/gfx/rhjb_eap_logo.png",

 "directory" => false,

 "file-size" => 2637L

 },

 {

 "path" => "META-INF/maven/",

Latest WildFly Documentation

JBoss Community Documentation Page of 132 2293

 "directory" => true

 },

 {

 "path" => "META-INF/maven/org.wildfly.quickstarts/",

 "directory" => true

 },

 {

 "path" => "META-INF/maven/org.wildfly.quickstarts/wildfly-kitchensink-ear-web/",

 "directory" => true

 },

 {

 "path" =>

"META-INF/maven/org.wildfly.quickstarts/wildfly-kitchensink-ear-web/pom.xml",

 "directory" => false,

 "file-size" => 4128L

 },

 {

 "path" =>

"META-INF/maven/org.wildfly.quickstarts/wildfly-kitchensink-ear-web/pom.properties",

 "directory" => false,

 "file-size" => 146L

 }

]

}

You also have a operation but since it returns a binary stream, this is not displayable from theread-content

CLI.

[domain@localhost:9990 /] /deployment=kitchensink.ear:read-content(path=META-INF/MANIFEST.MF)

{

 "outcome" => "success",

 "result" => {"uuid" => "b373d587-72ee-4b1e-a02a-71fbb0c85d32"},

 "response-headers" => {"attached-streams" => [{

 "uuid" => "b373d587-72ee-4b1e-a02a-71fbb0c85d32",

 "mime-type" => "text/plain"

 }]}

}

The management CLI however provides high level commands to display or save binary stream attachments:

[domain@localhost:9990 /] attachment display

--operation=/deployment=kitchensink.ear:read-content(path=META-INF/MANIFEST.MF)

ATTACHMENT d052340a-abb7-4a66-aa24-4eeeb6b256be:

Manifest-Version: 1.0

Archiver-Version: Plexus Archiver

Built-By: mjurc

Created-By: Apache Maven 3.3.9

Build-Jdk: 1.8.0_91

[domain@localhost:9990 /] attachment save

--operation=/deployment=kitchensink.ear:read-content(path=META-INF/MANIFEST.MF) --file=example

File saved to /home/mjurc/wildfly/build/target/wildfly-11.0.0.Alpha1-SNAPSHOT/example

Latest WildFly Documentation

JBoss Community Documentation Page of 133 2293

XML Configuration File
When you deploy content, the domain controller adds two types of entries to the configurationdomain.xml

file, one showing global information about the deployment, and another for each relevant server group

showing how it is used by that server group:

[...]

<deployments>

 <deployment name="test-application.war"

 runtime-name="test-application.war">

 <content sha1="dda9881fa7811b22f1424b4c5acccb13c71202bd"/>

 </deployment>

</deployments>

[...]

<server-groups>

 <server-group name="main-server-group" profile="default">

 [...]

 <deployments>

 <deployment name="test-application.war" runtime-name="test-application.war"/>

 </deployments>

 </server-group>

</server-groups>

[...]

(See domain/configuration/domain.xml)

5.6.2 Standalone Server

Deployments on a standalone server work in a similar way to those on managed domains. The main

difference is that there are no server group associations.

Deployment Commands
The same CLI commands used for managed domains work for standalone servers when deploying and

removing an application:

[standalone@localhost:9990 /] deploy ~/Desktop/test-application.war

'test-application.war' deployed successfully.

[standalone@localhost:9990 /] undeploy test-application.war

Successfully undeployed test-application.war.

Latest WildFly Documentation

JBoss Community Documentation Page of 134 2293

Deploying Using the Deployment Scanner
Deployment content (for example, war, ear, jar, and sar files) can be placed in the standalone/deployments

directory of the WildFly distribution, in order to be automatically deployed into the server runtime. For this to

work the subsystem must be present. The scanner periodically checks the contentsdeployment-scanner

of the deployments directory and reacts to changes by updating the server.

Users are encouraged to use the WildFly management APIs to upload and deploy deployment

content instead of relying on the deployment scanner that periodically scans the directory,

particularly if running production systems.

Deployment Scanner Modes
The WildFly filesystem deployment scanner operates in one of two different modes, depending on whether it

will directly monitor the deployment content in order to decide to deploy or redeploy it.

:Auto-deploy mode

The scanner will directly monitor the deployment content, automatically deploying new content and

redeploying content whose timestamp has changed. This is similiar to the behavior of previous AS releases,

although there are differences:

A change in any file in an exploded deployment triggers redeploy. Because EE 6+ applications do not

require deployment descriptors,

there is no attempt to monitor deployment descriptors and only redeploy when a deployment

descriptor changes.

The scanner will place marker files in this directory as an indication of the status of its attempts to

deploy or undeploy content. These are detailed below.

:Manual deploy mode

The scanner will not attempt to directly monitor the deployment content and decide if or when the end user

wishes the content to be deployed. Instead, the scanner relies on a system of marker files, with the user's

addition or removal of a marker file serving as a sort of command telling the scanner to deploy, undeploy or

redeploy content.

Auto-deploy mode and manual deploy mode can be independently configured for zipped deployment content

and exploded deployment content. This is done via the "auto-deploy" attribute on the deployment-scanner

element in the standalone.xml configuration file:

<deployment-scanner scan-interval="5000" relative-to="jboss.server.base.dir"

 path="deployments" auto-deploy-zipped="true" auto-deploy-exploded="false"/>

By default, auto-deploy of zipped content is enabled, and auto-deploy of exploded content is disabled.

Manual deploy mode is strongly recommended for exploded content, as exploded content is inherently

vulnerable to the scanner trying to auto-deploy partially copied content.

Latest WildFly Documentation

JBoss Community Documentation Page of 135 2293

Marker Files
The marker files always have the same name as the deployment content to which they relate, but with an

additional file suffix appended. For example, the marker file to indicate the example.war file should be

deployed is named example.war.dodeploy. Different marker file suffixes have different meanings.

The relevant marker file types are:

Latest WildFly Documentation

JBoss Community Documentation Page of 136 2293

File Purpose

.dodeploy Placed by the user to indicate that the given content should

be deployed into the runtime (or redeployed if already

deployed in the runtime.)

.skipdeploy Disables auto-deploy of the content for as long as the file

is present. Most useful for allowing updates to exploded

content without having the scanner initiate redeploy in the

middle of the update. Can be used with zipped content as

well, although the scanner will detect in-progress changes

to zipped content and wait until changes are complete.

.isdeploying Placed by the deployment scanner service to indicate that it

has noticed a .dodeploy file or new or updated auto-deploy

mode content and is in the process of deploying the content.

This marker file will be deleted when the deployment process

completes.

.deployed Placed by the deployment scanner service to indicate that the

given content has been deployed into the runtime. If an end

user deletes this file, the content will be undeployed.

.failed Placed by the deployment scanner service to indicate that the

given content failed to deploy into the runtime. The content

of the file will include some information about the cause of

the failure. Note that with auto-deploy mode, removing this

file will make the deployment eligible for deployment again.

.isundeploying Placed by the deployment scanner service to indicate that it

has noticed a .deployed file has been deleted and the

content is being undeployed. This marker file will be deleted

when the undeployment process completes.

.undeployed Placed by the deployment scanner service to indicate that the

given content has been undeployed from the runtime. If an end

user deletes this file, it has no impact.

.pending Placed by the deployment scanner service to indicate that it

has noticed the need to deploy content but has not yet

instructed the server to deploy it. This file is created if

the scanner detects that some auto-deploy content is still in

the process of being copied or if there is some problem that

prevents auto-deployment. The scanner will not instruct the

server to deploy or undeploy any content (not just the

directly affected content) as long as this condition holds.

Basic workflows:

All examples assume variable $JBOSS_HOME points to the root of the WildFly distribution.

Latest WildFly Documentation

JBoss Community Documentation Page of 137 2293

1.

2.

1.

2.

1.

1.

1.

2.

1.

2.

3.

4.

1.

2.

3.

1.

1.

2.

1.

A) Add new zipped content and deploy it:

cp target/example.war/ $JBOSS_HOME/standalone/deployments

(Manual mode only) touch $JBOSS_HOME/standalone/deployments/example.war.dodeploy

B) Add new unzipped content and deploy it:

cp -r target/example.war/ $JBOSS_HOME/standalone/deployments

(Manual mode only) touch $JBOSS_HOME/standalone/deployments/example.war.dodeploy

C) Undeploy currently deployed content:

rm $JBOSS_HOME/standalone/deployments/example.war.deployed

D) Auto-deploy mode only: Undeploy currently deployed content:

rm $JBOSS_HOME/standalone/deployments/example.war

E) Replace currently deployed zipped content with a new version and deploy it:

cp target/example.war/ $JBOSS_HOME/standalone/deployments

(Manual mode only) touch $JBOSS_HOME/standalone/deployments/example.war.dodeploy

F) Manual mode only: Replace currently deployed unzipped content with a new version and deploy it:

rm $JBOSS_HOME/standalone/deployments/example.war.deployed

wait for $JBOSS_HOME/standalone/deployments/example.war.undeployed file to appear

cp -r target/example.war/ $JBOSS_HOME/standalone/deployments

touch $JBOSS_HOME/standalone/deployments/example.war.dodeploy

G) Auto-deploy mode only: Replace currently deployed unzipped content with a new version and deploy it:

touch $JBOSS_HOME/standalone/deployments/example.war.skipdeploy

cp -r target/example.war/ $JBOSS_HOME/standalone/deployments

rm $JBOSS_HOME/standalone/deployments/example.war.skipdeploy

H) Manual mode only: Live replace portions of currently deployed unzipped content without redeploying:

cp -r target/example.war/foo.html $JBOSS_HOME/standalone/deployments/example.war

I) Auto-deploy mode only: Live replace portions of currently deployed unzipped content without redeploying:

touch $JBOSS_HOME/standalone/deployments/example.war.skipdeploy

cp -r target/example.war/foo.html $JBOSS_HOME/standalone/deployments/example.war

J) Manual or auto-deploy mode: Redeploy currently deployed content (i.e. bounce it with no content change):

touch $JBOSS_HOME/standalone/deployments/example.war.dodeploy

K) Auto-deploy mode only: Redeploy currently deployed content (i.e. bounce it with no content change):

Latest WildFly Documentation

JBoss Community Documentation Page of 138 2293

1. touch $JBOSS_HOME/standalone/deployments/example.war

The above examples use Unix shell commands. Windows equivalents are:

cp src dest --> xcopy /y src dest

cp -r src dest --> xcopy /e /s /y src dest

rm afile --> del afile

touch afile --> echo>> afile

Note that the behavior of 'touch' and 'echo' are different but the differences are not relevant to the

usages in the examples above.

5.6.3 Managed and Unmanaged Deployments

WildFly supports two mechanisms for dealing with deployment content – managed and unmanaged

deployments.

With a managed deployment the server takes the deployment content and copies it into an internal content

repository and thereafter uses that copy of the content, not the original user-provided content. The server is

thereafter responsible for the content it uses.

With an unmanaged deployment the user provides the local filesystem path of deployment content, and the

server directly uses that content. However the user is responsible for ensuring that content, e.g. for making

sure that no changes are made to it that will negatively impact the functioning of the deployed application.

To help you differentiate managed from unmanaged deployments the deployment model has a runtime

boolean attribute 'managed'.

Managed deployments have a number of benefits over unmanaged:

They can be manipulated by remote management clients, not requiring access to the server

filesystem.

In a managed domain, WildFly/EAP will take responsibility for replicating a copy of the deployment to

all hosts/servers in the domain where it is needed. With an unmanaged deployment, it is the user's

responsibility to have the deployment available on the local filesystem on all relevant hosts, at a

consistent path.

The deployment content actually used is stored on the filesystem in the internal content repository,

which should help shelter it from unintended changes.

All of the previous examples above illustrate using managed deployments, except for any discussion of

deployment scanner handling of exploded deployments. In WildFly 10 and earlier exploded deployments are

always unmanaged, this is no longer the case since WildFly 11.

Latest WildFly Documentation

JBoss Community Documentation Page of 139 2293

Content Repository
For a managed deployment, the actual file the server uses when creating runtime services is not the file

provided to the CLI command or to the web console. It is a copy of that file stored in an internaldeploy

content repository. The repository is located in the directory for a manageddomain/data/content

domain, or in for a standalone server. Actual binaries are stored in astandalone/data/content

subdirectory:

ls domain/data/content/

 |---/47

 |-----95cc29338b5049e238941231b36b3946952991

 |---/dd

 |-----a9881fa7811b22f1424b4c5acccb13c71202bd

The location of the content repository and its internal structure is subject to change at any time and

should not be relied upon by end users.

The description of a managed deployment in the domain or standalone configuration file includes an attribute

recording the SHA1 hash of the deployment content:

<deployments>

 <deployment name="test-application.war"

 runtime-name="test-application.war">

 <content sha1="dda9881fa7811b22f1424b4c5acccb13c71202bd"/>

 </deployment>

</deployments>

The WildFly process calculates and records that hash when the user invokes a management operation (e.g.

CLI command or using the console) providing deployment content. The user is not expected todeploy

calculate the hash.

The sha1 attribute in the content element tells the WildFly process where to find the deployment content in

its internal content repository.

In a domain each host will have a copy of the content needed by its servers in its own local content

repository. The WildFly domain controller and slave host controller processes take responsibility for ensuring

each host has the needed content.

Latest WildFly Documentation

JBoss Community Documentation Page of 140 2293

Unmanaged Deployments
An unmanaged deployment is one where the server directly deploys the content at a path you specify

instead of making an internal copy and then deploying the copy.

Initially deploying an unmanaged deployment is much like deploying a managed one, except you tell WildFly

that you do not want the deployment to be managed:

[standalone@localhost:9990 /] deploy ~/Desktop/test-application.war --unmanaged

'test-application.war' deployed successfully.

When you do this, instead of the server making a copy of the content at

, calculating the hash of the content, storing the hash in the/Desktop/test-application.war

configuration file and then installing the copy into the runtime, instead it will convert

 to an absolute path, store the path in the configuration file, and then/Desktop/test-application.war

install the original content in the runtime.

You can also use unmanaged deployments in a domain:

[domain@localhost:9990 /] deploy /home/example/Desktop/test-application.war

--server-group=main-server-group --unmanaged

'test-application.war' deployed successfully.

However, before you run this command you must ensure that a copy of the content is present on all

machines that have servers in the target server groups, all at the same filesystem path. The domain will not

copy the file for you.

Undeploy is no different from a managed undeploy:

[standalone@localhost:9990 /] undeploy test-application.war

Successfully undeployed test-application.war.

Doing a replacement of the deployment with a new version is a bit different, the server is using the file you

want to replace. You should undeploy the deployment, replace the content, and then deploy again. Or you

can stop the server, replace the deployment and deploy again.

Latest WildFly Documentation

JBoss Community Documentation Page of 141 2293

5.6.4 Deployment overlays

Deployment overlays are our way of 'overlaying' content into an existing deployment, without physically

modifying the contents of the deployment archive. Possible use cases include swapping out deployment

descriptors, modifying static web resources to change the branding of an application, or even replacing jar

libraries with different versions.

Deployment overlays have a different lifecycle to a deployment. In order to use a deployment overlay, you

first create the overlay, using the CLI or the management API. You then add files to the overlay, specifying

the deployment paths you want them to overlay. Once you have created the overlay you then have to link it

to a deployment name (which is done slightly differently depending on if you are in standalone or domain

mode). Once you have created the link any deployment that matches the specified deployment name will

have the overlay applied.

When you modify or create an overlay it will not affect existing deployments, they must be redeployed in

order to take effect

Creating a deployment overlay
To create a deployment overlay the CLI provides a high level command to do all the steps specified above in

one go. An example command is given below for both standalone and domain mode:

deployment-overlay add --name=myOverlay

--content=/WEB-INF/web.xml=/myFiles/myWeb.xml,/WEB-INF/ejb-jar.xml=/myFiles/myEjbJar.xml

--deployments=test.war,*-admin.war --redeploy-affected

deployment-overlay add --name=myOverlay

--content=/WEB-INF/web.xml=/myFiles/myWeb.xml,/WEB-INF/ejb-jar.xml=/myFiles/myEjbJar.xml

--deployments=test.war,*-admin.war --server-groups=main-server-group --redeploy-affected

5.7 Subsystem configuration

The following chapters will focus on the high level management use cases that are available through the CLI

and the web interface. For a detailed description of each subsystem configuration property, please consult

the respective component reference.

Schema Location

The configuration schemas can found in .$JBOSS_HOME/docs/schema

Latest WildFly Documentation

JBoss Community Documentation Page of 142 2293

5.7.1 EE Subsystem Configuration

Overview
The EE subsystem provides common functionality in the Java EE platform, such as the EE Concurrency

Utilities (JSR 236) and injection. The subsystem is also responsible for managing the lifecycle@Resource

of Java EE application's deployments, that is, files..ear

The EE subsystem configuration may be used to:

customise the deployment of Java EE applications

create EE Concurrency Utilities instances

define the default bindings

The subsystem name is ee and this document covers EE subsystem version , which XML namespace2.0

within WildFly XML configurations is . The path for the subsystem's XMLurn:jboss:domain:ee:2.0

schema, within WildFly's distribution, is .docs/schema/jboss-as-ee_2_0.xsd

Subsystem XML configuration example with all elements and attributes specified:

<subsystem xmlns="urn:jboss:domain:ee:2.0" >

 <global-modules>

 <module name="org.jboss.logging"

 slot="main"/>

 <module name="org.apache.log4j"

 annotations="true"

 meta-inf="true"

 services="false" />

 </global-modules>

 <ear-subdeployments-isolated>true</ear-subdeployments-isolated>

 <spec-descriptor-property-replacement>false</spec-descriptor-property-replacement>

 <jboss-descriptor-property-replacement>false</jboss-descriptor-property-replacement>

 <annotation-property-replacement>false</annotation-property-replacement>

 <concurrent>

 <context-services>

 <context-service

 name="default"

 jndi-name="java:jboss/ee/concurrency/context/default"

 use-transaction-setup-provider="true" />

 </context-services>

 <managed-thread-factories>

 <managed-thread-factory

 name="default"

 jndi-name="java:jboss/ee/concurrency/factory/default"

 context-service="default"

 priority="1" />

 </managed-thread-factories>

 <managed-executor-services>

 <managed-executor-service

 name="default"

 jndi-name="java:jboss/ee/concurrency/executor/default"

Latest WildFly Documentation

JBoss Community Documentation Page of 143 2293

 context-service="default"

 thread-factory="default"

 hung-task-threshold="60000"

 core-threads="5"

 max-threads="25"

 keepalive-time="5000"

 queue-length="1000000"

 reject-policy="RETRY_ABORT" />

 </managed-executor-services>

 <managed-scheduled-executor-services>

 <managed-scheduled-executor-service

 name="default"

 jndi-name="java:jboss/ee/concurrency/scheduler/default"

 context-service="default"

 thread-factory="default"

 hung-task-threshold="60000"

 core-threads="5"

 keepalive-time="5000"

 reject-policy="RETRY_ABORT" />

 </managed-scheduled-executor-services>

 </concurrent>

 <default-bindings

 context-service="java:jboss/ee/concurrency/context/default"

 datasource="java:jboss/datasources/ExampleDS"

 jms-connection-factory="java:jboss/DefaultJMSConnectionFactory"

 managed-executor-service="java:jboss/ee/concurrency/executor/default"

 managed-scheduled-executor-service="java:jboss/ee/concurrency/scheduler/default"

 managed-thread-factory="java:jboss/ee/concurrency/factory/default" />

</subsystem>

Java EE Application Deployment
The EE subsystem configuration allows the customisation of the deployment behaviour for Java EE

Applications.

Latest WildFly Documentation

JBoss Community Documentation Page of 144 2293

Global Modules
Global modules is a set of JBoss Modules that will be added as dependencies to the JBoss Module of every

Java EE deployment. Such dependencies allows Java EE deployments to see the classes exported by the

global modules.

Each global module is defined through the resource, an example of its XML configuration:module

<global-modules>

 <module name="org.jboss.logging" slot="main"/>

 <module name="org.apache.log4j" annotations="true" meta-inf="true" services="false" />

 </global-modules>

The only mandatory attribute is the JBoss Module , the attribute defaults to , and bothname slot main

define the JBoss Module ID to reference.

The optional attribute, which defaults to , indicates if a pre-computed annotation indexannotations false

should be imported from META-INF/jandex.idx

The optional attribute indicates if any services exposed in META-INF/services should be madeservices

available to the deployments class loader, and defaults to .false

The optional attribute, which defaults to , indicates if the Module's path shouldmeta-inf true META-INF

be available to the deployment's class loader.

Latest WildFly Documentation

JBoss Community Documentation Page of 145 2293

EAR Subdeployments Isolation
A flag indicating whether each of the subdeployments within a can access classes belonging to.ear

another subdeployment within the same . The default value is , which allows the.ear false

subdeployments to see classes belonging to other subdeployments within the ..ear

<ear-subdeployments-isolated>true</ear-subdeployments-isolated>

For example:

myapp.ear

|

|--- web.war

|

|--- ejb1.jar

|

|--- ejb2.jar

If the is set to false, then the classes in can access classesear-subdeployments-isolated web.war

belonging to and . Similarly, classes from can access classes from ejb1.jar ejb2.jar ejb1.jar

 (and vice-versa).ejb2.jar

This flag has no effect on the isolated classloader of the file(s), i.e. irrespective of whether.war

this flag is set to or , the within a will have a isolated classloader, andtrue false .war .ear

other subdeployments within that will not be able to access classes from that . This is.ear .war

as per spec.

Latest WildFly Documentation

JBoss Community Documentation Page of 146 2293

Property Replacement
The EE subsystem configuration includes flags to configure whether system property replacement will be

done on XML descriptors and Java Annotations included in Java EE deployments.

System properties etc are resolved in the security context of the application server itself, not the

deployment that contains the file. This means that if you are running with a security manager and

enable this property, a deployment can potentially access system properties or environment entries

that the security manager would have otherwise prevented.

Spec Descriptor Property Replacement
Flag indicating whether system property replacement will be performed on standard Java EE XML

descriptors. If not configured this defaults to , however it is set to in the standard configurationtrue false

files shipped with WildFly.

<spec-descriptor-property-replacement>false</spec-descriptor-property-replacement>

JBoss Descriptor Property Replacement
Flag indicating whether system property replacement will be performed on WildFly proprietary XML

descriptors, such as . This defaults to .jboss-app.xml true

<jboss-descriptor-property-replacement>false</jboss-descriptor-property-replacement>

Annotation Property Replacement
Flag indicating whether system property replacement will be performed on Java annotations. The default

value is .false

<annotation-property-replacement>false</annotation-property-replacement>

EE Concurrency Utilities
EE Concurrency Utilities (JSR 236) were introduced with Java EE 7, to ease the task of writing multithreaded

Java EE applications. Instances of these utilities are managed by WildFly, and the related configuration

provided by the EE subsystem.

Latest WildFly Documentation

JBoss Community Documentation Page of 147 2293

Context Services
The Context Service is a concurrency utility which creates contextual proxies from existent objects. WildFly

Context Services are also used to propagate the context from a Java EE application invocation thread, to the

threads internally used by the other EE Concurrency Utilities. Context Service instances may be created

using the subsystem XML configuration:

<context-services>

 <context-service

 name="default"

 jndi-name="java:jboss/ee/concurrency/context/default"

 use-transaction-setup-provider="true" />

 </context-services>

The attribute is mandatory, and it's value should be a unique name within all Context Services.name

The attribute is also mandatory, and defines where in the JNDI the Context Service should bejndi-name

placed.

The optional attribute indicates if the contextual proxies built by theuse-trasaction-setup-provider

Context Service should suspend transactions in context, when invoking the proxy objects, and its value

defaults to true.

Management clients, such as the WildFly CLI, may also be used to configure Context Service instances. An

example to and one named :add remove other

/subsystem=ee/context-service=other:add(jndi-name=java\:jboss\/ee\/concurrency\/other)

/subsystem=ee/context-service=other:remove

Latest WildFly Documentation

JBoss Community Documentation Page of 148 2293

Managed Thread Factories
The Managed Thread Factory allows Java EE applications to create new threads. WildFly Managed Thread

Factory instances may also, optionally, use a Context Service instance to propagate the Java EE application

thread’s context to the new threads. Instance creation is done through the EE subsystem, by editing the

subsystem XML configuration:

<managed-thread-factories>

 <managed-thread-factory

 name="default"

 jndi-name="java:jboss/ee/concurrency/factory/default"

 context-service="default"

 priority="1" />

 </managed-thread-factories>

The attribute is mandatory, and it's value should be a unique name within all Managed Threadname

Factories.

The attribute is also mandatory, and defines where in the JNDI the Managed Thread Factoryjndi-name

should be placed.

The optional references an existent Context Service by its . If specified thencontext-service name

thread created by the factory will propagate the invocation context, present when creating the thread.

The optional indicates the priority for new threads created by the factory, and defaults to .priority 5

Management clients, such as the WildFly CLI, may also be used to configure Managed Thread Factory

instances. An example to and one named :add remove other

/subsystem=ee/managed-thread-factory=other:add(jndi-name=java\:jboss\/ee\/factory\/other)

/subsystem=ee/managed-thread-factory=other:remove

Managed Executor Services
The Managed Executor Service is the Java EE adaptation of Java SE Executor Service, providing to Java

EE applications the functionality of asynchronous task execution. WildFly is responsible to manage the

lifecycle of Managed Executor Service instances, which are specified through the EE subsystem XML

configuration:

Latest WildFly Documentation

JBoss Community Documentation Page of 149 2293

<managed-executor-services>

 <managed-executor-service

 name="default"

 jndi-name="java:jboss/ee/concurrency/executor/default"

 context-service="default"

 thread-factory="default"

 hung-task-threshold="60000"

 core-threads="5"

 max-threads="25"

 keepalive-time="5000"

 queue-length="1000000"

 reject-policy="RETRY_ABORT" />

 </managed-executor-services>

The attribute is mandatory, and it's value should be a unique name within all Managed Executorname

Services.

The attribute is also mandatory, and defines where in the JNDI the Managed Executor Servicejndi-name

should be placed.

The optional references an existent Context Service by its . If specified then thecontext-service name

referenced Context Service will capture the invocation context present when submitting a task to the

executor, which will then be used when executing the task.

The optional references an existent Managed Thread Factory by its , to handle thethread-factory name

creation of internal threads. If not specified then a Managed Thread Factory with default configuration will be

created and used internally.

The mandatory provides the number of threads to keep in the executor's pool, even if theycore-threads

are idle. A value of means there is no limit.0

The optional indicates the number of tasks that can be stored in the input queue. Thequeue-length

default value is , which means the queue capacity is unlimited.0

The executor’s task queue is based on the values of the attributes and :core-threads queue-length

If is , or is and queue-length 0 queue-length Integer.MAX_VALUE (2147483647)

 is , direct handoff queuing strategy will be used and a synchronous queue will becore-threads 0

created.

If is but is not , an unbounded queue willqueue-length Integer.MAX_VALUE core-threads 0

be used.

For any other valid value for , a bounded queue wil be created.queue-length

The optional defines a threshold value, in milliseconds, to hung a possibly blockedhung-task-threshold

task. A value of will never hung a task, and is the default.0

The optional is a hint to optimize the execution of long running tasks, and defaultslong-running-tasks

to .false

Latest WildFly Documentation

JBoss Community Documentation Page of 150 2293

The optional defines the the maximum number of threads used by the executor, whichmax-threads

defaults to Integer.MAX_VALUE (2147483647).

The optional defines the time, in milliseconds, that an internal thread may be idle. Thekeepalive-time

attribute default value is .60000

The optional reject-policy defines the policy to use when a task is rejected by the executor. The attribute

value may be the default , which means an exception should be thrown, or , whichABORT RETRY_ABORT

means the executor will try to submit it once more, before throwing an exception.

Management clients, such as the WildFly CLI, may also be used to configure Managed Executor Service

instances. An example to and one named :add remove other

/subsystem=ee/managed-executor-service=other:add(jndi-name=java\:jboss\/ee\/executor\/other,

core-threads=2)

/subsystem=ee/managed-executor-service=other:remove

Managed Scheduled Executor Services
The Managed Scheduled Executor Service is the Java EE adaptation of Java SE Scheduled Executor

Service, providing to Java EE applications the functionality of scheduling task execution. WildFly is

responsible to manage the lifecycle of Managed Scheduled Executor Service instances, which are specified

through the EE subsystem XML configuration:

<managed-scheduled-executor-services>

 <managed-scheduled-executor-service

 name="default"

 jndi-name="java:jboss/ee/concurrency/scheduler/default"

 context-service="default"

 thread-factory="default"

 hung-task-threshold="60000"

 core-threads="5"

 keepalive-time="5000"

 reject-policy="RETRY_ABORT" />

 </managed-scheduled-executor-services>

The attribute is mandatory, and it's value should be a unique name within all Managed Scheduledname

Executor Services.

The attribute is also mandatory, and defines where in the JNDI the Managed Scheduledjndi-name

Executor Service should be placed.

The optional references an existent Context Service by its . If specified then thecontext-service name

referenced Context Service will capture the invocation context present when submitting a task to the

executor, which will then be used when executing the task.

The optional references an existent Managed Thread Factory by its , to handle thethread-factory name

creation of internal threads. If not specified then a Managed Thread Factory with default configuration will be

created and used internally.

Latest WildFly Documentation

JBoss Community Documentation Page of 151 2293

The mandatory provides the number of threads to keep in the executor's pool, even if theycore-threads

are idle. A value of means there is no limit.0

The optional defines a threshold value, in milliseconds, to hung a possibly blockedhung-task-threshold

task. A value of will never hung a task, and is the default.0

The optional is a hint to optimize the execution of long running tasks, and defaultslong-running-tasks

to .false

The optional defines the time, in milliseconds, that an internal thread may be idle. Thekeepalive-time

attribute default value is .60000

The optional reject-policy defines the policy to use when a task is rejected by the executor. The attribute

value may be the default , which means an exception should be thrown, or , whichABORT RETRY_ABORT

means the executor will try to submit it once more, before throwing an exception.

Management clients, such as the WildFly CLI, may also be used to configure Managed Scheduled Executor

Service instances. An example to and one named :add remove other

/subsystem=ee/managed-scheduled-executor-service=other:add(jndi-name=java\:jboss\/ee\/scheduler\/other,

core-threads=2)

/subsystem=ee/managed-scheduled-executor-service=other:remove

Latest WildFly Documentation

JBoss Community Documentation Page of 152 2293

Default EE Bindings
The Java EE Specification mandates the existence of a default instance for each of the following resources:

Context Service

Datasource

JMS Connection Factory

Managed Executor Service

Managed Scheduled Executor Service

Managed Thread Factory

The EE subsystem looks up the default instances from JNDI, using the names in the default bindings

configuration, before placing those in the standard JNDI names, such as

:java:comp/DefaultManagedExecutorService

<default-bindings

 context-service="java:jboss/ee/concurrency/context/default"

 datasource="java:jboss/datasources/ExampleDS"

 jms-connection-factory="java:jboss/DefaultJMSConnectionFactory"

 managed-executor-service="java:jboss/ee/concurrency/executor/default"

 managed-scheduled-executor-service="java:jboss/ee/concurrency/scheduler/default"

 managed-thread-factory="java:jboss/ee/concurrency/factory/default" />

The default bindings are optional, if the jndi name for a default binding is not configured then the

related resource will not be available to Java EE applications.

Latest WildFly Documentation

JBoss Community Documentation Page of 153 2293

5.7.2 Naming

Overview
The Naming subsystem provides the JNDI implementation on WildFly, and its configuration allows to:

bind entries in global JNDI namespaces

turn off/on the remote JNDI interface

The subsystem name is naming and this document covers Naming subsystem version , which XML2.0

namespace within WildFly XML configurations is . The path for theurn:jboss:domain:naming:2.0

subsystem's XML schema, within WildFly's distribution, is .docs/schema/jboss-as-naming_2_0.xsd

Subsystem XML configuration example with all elements and attributes specified:

<subsystem xmlns="urn:jboss:domain:naming:2.0">

 <bindings>

 <simple name="java:global/a" value="100" type="int" />

 <simple name="java:global/jboss.org/docs/url" value="https://docs.jboss.org"

type="java.net.URL" />

 <object-factory name="java:global/foo/bar/factory" module="org.foo.bar"

class="org.foo.bar.ObjectFactory" />

 <external-context name="java:global/federation/ldap/example"

class="javax.naming.directory.InitialDirContext" cache="true">

 <environment>

 <property name="java.naming.factory.initial"

value="com.sun.jndi.ldap.LdapCtxFactory" />

 <property name="java.naming.provider.url" value="ldap://ldap.example.com:389" />

 <property name="java.naming.security.authentication" value="simple" />

 <property name="java.naming.security.principal" value="uid=admin,ou=system" />

 <property name="java.naming.security.credentials" value="secret" />

 </environment>

 </external-context>

 <lookup name="java:global/c" lookup="java:global/b" />

 </bindings>

 <remote-naming/>

</subsystem>

Global Bindings Configuration
The Naming subsystem configuration allows binding entries into the following global JNDI namespaces:

java:global

java:jboss

java:

Latest WildFly Documentation

JBoss Community Documentation Page of 154 2293

If WildFly is to be used as a Java EE application server, then it's recommended to opt for

, since it is a standard (i.e. portable) namespace.java:global

Four different types of bindings are supported:

Simple

Object Factory

External Context

Lookup

In the subsystem's XML configuration, global bindings are configured through the XML<bindings />

element, as an example:

<bindings>

 <simple name="java:global/a" value="100" type="int" />

 <object-factory name="java:global/foo/bar/factory" module="org.foo.bar"

class="org.foo.bar.ObjectFactory" />

 <external-context name="java:global/federation/ldap/example"

class="javax.naming.directory.InitialDirContext" cache="true">

 <environment>

 <property name="java.naming.factory.initial"

value="com.sun.jndi.ldap.LdapCtxFactory" />

 <property name="java.naming.provider.url" value="ldap://ldap.example.com:389" />

 <property name="java.naming.security.authentication" value="simple" />

 <property name="java.naming.security.principal" value="uid=admin,ou=system" />

 <property name="java.naming.security.credentials" value="secret" />

 </environment>

 </external-context>

 <lookup name="java:global/c" lookup="java:global/b" />

</bindings>

Latest WildFly Documentation

JBoss Community Documentation Page of 155 2293

Simple Bindings
A simple binding is a primitive or java.net.URL entry, and it is defined through the XML element. Ansimple

example of its XML configuration:

<simple name="java:global/a" value="100" type="int" />

The attribute is mandatory and specifies the target JNDI name for the entry.name

The attribute is mandatory and defines the entry's value.value

The optional attribute, which defaults to , specifies the type of the entry's value.type java.lang.String

Besides java.lang.String, allowed types are all the primitive types and their corresponding object wrapper

classes, such as int or java.lang.Integer, and java.net.URL.

Management clients, such as the WildFly CLI, may be used to configure simple bindings. An example to add

and the one in the XML example above:remove

/subsystem=naming/binding=java\:global\/a:add(binding-type=simple, type=int, value=100)

/subsystem=naming/binding=java\:global\/a:remove

Latest WildFly Documentation

JBoss Community Documentation Page of 156 2293

Object Factories
The Naming subsystem configuration allows the binding of entries,javax.naming.spi.ObjectFactory

through the XML element, for instance:object-factory

<object-factory name="java:global/foo/bar/factory" module="org.foo.bar"

class="org.foo.bar.ObjectFactory">

 <environment>

 <property name="p1" value="v1" />

 <property name="p2" value="v2" />

 </environment>

</object-factory>

The attribute is mandatory and specifies the target JNDI name for the entry.name

The attribute is mandatory and defines the object factory's Java type.class

The attribute is mandatory and specifies the JBoss Module ID where the object factory Java classmodule

may be loaded from.

The optional child element may be used to provide a custom environment to the objectenvironment

factory.

Management clients, such as the WildFly CLI, may be used to configure object factory bindings. An example

to and the one in the XML example above:add remove

/subsystem=naming/binding=java\:global\/foo\/bar\/factory:add(binding-type=object-factory,

module=org.foo.bar, class=org.foo.bar.ObjectFactory, environment=[p1=v1, p2=v2])

/subsystem=naming/binding=java\:global\/foo\/bar\/factory:remove

External Context Federation
Federation of external JNDI contexts, such as a LDAP context, are achieved by adding External Context

bindings to the global bindings configuration, through the XML element. An example ofexternal-context

its XML configuration:

<external-context name="java:global/federation/ldap/example"

class="javax.naming.directory.InitialDirContext" cache="true">

 <environment>

 <property name="java.naming.factory.initial" value="com.sun.jndi.ldap.LdapCtxFactory" />

 <property name="java.naming.provider.url" value="ldap://ldap.example.com:389" />

 <property name="java.naming.security.authentication" value="simple" />

 <property name="java.naming.security.principal" value="uid=admin,ou=system" />

 <property name="java.naming.security.credentials" value="secret" />

 </environment>

</external-context>

The attribute is mandatory and specifies the target JNDI name for the entry.name

Latest WildFly Documentation

JBoss Community Documentation Page of 157 2293

The attribute is mandatory and indicates the Java initial naming context type used to create theclass

federated context. Note that such type must have a constructor with a single environment map argument.

The optional attribute specifies the JBoss Module ID where any classes required by the externalmodule

JNDI context may be loaded from.

The optional attribute, which value defaults to , indicates if the external context instancecache false

should be cached.

The optional child element may be used to provide the custom environment needed toenvironment

lookup the external context.

Management clients, such as the WildFly CLI, may be used to configure external context bindings. An

example to and the one in the XML example above:add remove

/subsystem=naming/binding=java\:global\/federation\/ldap\/example:add(binding-type=external-context,

cache=true, class=javax.naming.directory.InitialDirContext,

environment=[java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory,

java.naming.provider.url=ldap\:\/\/ldap.example.com\:389,

java.naming.security.authentication=simple,

java.naming.security.principal=uid\=admin\,ou\=system, java.naming.security.credentials=

secret])

/subsystem=naming/binding=java\:global\/federation\/ldap\/example:remove

Some JNDI providers may fail when their resources are looked up if they do not implement properly the

lookup(Name) method. Their errors would look like:

11:31:49,047 ERROR org.jboss.resource.adapter.jms.inflow.JmsActivation (default-threads

-1) javax.naming.InvalidNameException: Only support CompoundName names

 at com.tibco.tibjms.naming.TibjmsContext.lookup(TibjmsContext.java:504)

 at javax.naming.InitialContext.lookup(InitialContext.java:421)

To work around their shortcomings, the property can beorg.jboss.as.naming.lookup.by.string

specified in the external-context's environment to use instead the lookup(String) method (with a performance

degradation):

<property name="org.jboss.as.naming.lookup.by.string" value="true"/>

Binding Aliases

The Naming subsystem configuration allows the binding of existent entries into additional names, i.e.

aliases. Binding aliases are specified through the XML element. An example of its XMLlookup

configuration:

<lookup name="java:global/c" lookup="java:global/b" />

Latest WildFly Documentation

JBoss Community Documentation Page of 158 2293

The attribute is mandatory and specifies the target JNDI name for the entry.name

The attribute is mandatory and indicates the source JNDI name. It can chain lookups on externallookup

contexts. For example, having an external context bounded to ,java:global/federation/ldap/example

searching can be done there by setting attribute to .lookup java:global/federation/ldap/example/subfolder

Management clients, such as the WildFly CLI, may be used to configure binding aliases. An example to add

and the one in the XML example above:remove

/subsystem=naming/binding=java\:global\/c:add(binding-type=lookup, lookup=java\:global\/b)

/subsystem=naming/binding=java\:global\/c:remove

Remote JNDI Configuration
The Naming subsystem configuration may be used to (de)activate the remote JNDI interface, which allows

clients to lookup entries present in a remote WildFly instance.

Only entries within the context are accessible over remote JNDI.java:jboss/exported

In the subsystem's XML configuration, remote JNDI access bindings are configured through the

 XML element:<remote-naming />

<remote-naming />

Management clients, such as the WildFly CLI, may be used to add/remove the remote JNDI interface. An

example to and the one in the XML example above:add remove

/subsystem=naming/service=remote-naming:add

/subsystem=naming/service=remote-naming:remove

5.7.3 Data sources

Datasources are configured through the subsystem. Declaring a new datasource consists of twodatasource

separate steps: You would need to provide a JDBC driver and define a datasource that references the driver

you installed.

Latest WildFly Documentation

JBoss Community Documentation Page of 159 2293

1.

2.

3.

4.

5.

JDBC Driver Installation
The recommended way to install a JDBC driver into WildFly 8 is to deploy it as a regular JAR deployment.

The reason for this is that when you run WildFly in domain mode, deployments are automatically propagated

to all servers to which the deployment applies; thus distribution of the driver JAR is one less thing for you to

worry about!

Any JDBC 4-compliant driver will automatically be recognized and installed into the system by name and

version. A JDBC JAR is identified using the Java service provider mechanism. Such JARs will contain a text

a file named , which contains the name of the class(es) of theMETA-INF/services/java.sql.Driver

Drivers which exist in that JAR. If your JDBC driver JAR is not JDBC 4-compliant, it can be made deployable

in one of a few ways.

Modify the JAR

The most straightforward solution is to simply modify the JAR and add the missing file. You can do this from

your command shell by:

Change to, or create, an empty temporary directory.

Create a subdirectory.META-INF

Create a subdirectory.META-INF/services

Create a file which contains one line - the fully-qualifiedMETA-INF/services/java.sql.Driver

class name of the JDBC driver.

Use the command-line tool to update the JAR like this:jar

jar \-uf jdbc-driver.jar META-INF/services/java.sql.Driver

For a detailed explanation how to deploy JDBC 4 compliant driver jar, please refer to the chapter "

".Application Deployment

Datasource Definitions
The datasource itself is defined within the subsystem :datasources

https://docs.jboss.org/author/display/WFLY10/Application+deployment

Latest WildFly Documentation

JBoss Community Documentation Page of 160 2293

<subsystem xmlns="urn:jboss:domain:datasources:4.0">

 <datasources>

 <datasource jndi-name="java:jboss/datasources/ExampleDS" pool-name="ExampleDS">

 <connection-url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-1</connection-url>

 <driver>h2</driver>

 <pool>

 <min-pool-size>10</min-pool-size>

 <max-pool-size>20</max-pool-size>

 <prefill>true</prefill>

 </pool>

 <security>

 <user-name>sa</user-name>

 <password>sa</password>

 </security>

 </datasource>

 <xa-datasource jndi-name="java:jboss/datasources/ExampleXADS" pool-name="ExampleXADS">

 <driver>h2</driver>

 <xa-datasource-property name="URL">jdbc:h2:mem:test</xa-datasource-property>

 <xa-pool>

 <min-pool-size>10</min-pool-size>

 <max-pool-size>20</max-pool-size>

 <prefill>true</prefill>

 </xa-pool>

 <security>

 <user-name>sa</user-name>

 <password>sa</password>

 </security>

 </xa-datasource>

 <drivers>

 <driver name="h2" module="com.h2database.h2">

 <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-datasource-class>

 </driver>

 </drivers>

 </datasources>

</subsystem>

 (See standalone/configuration/standalone.xml)

As you can see the datasource references a driver by it's logical name.

You can easily query the same information through the CLI:

Latest WildFly Documentation

JBoss Community Documentation Page of 161 2293

[standalone@localhost:9990 /] /subsystem=datasources:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {

 "data-source" => {"H2DS" => {

 "connection-url" => "jdbc:h2:mem:test;DB_CLOSE_DELAY=-1",

 "jndi-name" => "java:/H2DS",

 "driver-name" => "h2",

 "pool-name" => "H2DS",

 "use-java-context" => true,

 "enabled" => true,

 "jta" => true,

 "pool-prefill" => true,

 "pool-use-strict-min" => false,

 "user-name" => "sa",

 "password" => "sa",

 "flush-strategy" => "FailingConnectionOnly",

 "background-validation" => false,

 "use-fast-fail" => false,

 "validate-on-match" => false,

 "use-ccm" => true

 }},

 "xa-data-source" => undefined,

 "jdbc-driver" => {"h2" => {

 "driver-name" => "h2",

 "driver-module-name" => "com.h2database.h2",

 "driver-xa-datasource-class-name" => "org.h2.jdbcx.JdbcDataSource"

 }}

 }

}

[standalone@localhost:9990 /] /subsystem=datasources:installed-drivers-list

{

 "outcome" => "success",

 "result" => [{

 "driver-name" => "h2",

 "deployment-name" => undefined,

 "driver-module-name" => "com.h2database.h2",

 "module-slot" => "main",

 "driver-xa-datasource-class-name" => "org.h2.jdbcx.JdbcDataSource",

 "driver-class-name" => "org.h2.Driver",

 "driver-major-version" => 1,

 "driver-minor-version" => 3,

 "jdbc-compliant" => true

 }]

}

Using the web console or the CLI greatly simplifies the deployment of JDBC drivers and the

creation of datasources.

The CLI offers a set of commands to create and modify datasources:

Latest WildFly Documentation

JBoss Community Documentation Page of 162 2293

[standalone@localhost:9990 /] data-source --help

SYNOPSIS

 data-source --help [--properties | --commands] |

 (--name=<resource_id> (--<property>=<value>)*) |

 (<command> --name=<resource_id> (--<parameter>=<value>)*)

 [--headers={<operation_header> (;<operation_header>)*}]

DESCRIPTION

 The command is used to manage resources of type /subsystem=datasources/data-source.

[...]

[standalone@localhost:9990 /] xa-data-source --help

SYNOPSIS

 xa-data-source --help [--properties | --commands] |

 (--name=<resource_id> (--<property>=<value>)*) |

 (<command> --name=<resource_id> (--<parameter>=<value>)*)

 [--headers={<operation_header> (;<operation_header>)*}]

DESCRIPTION

 The command is used to manage resources of type /subsystem=datasources/xa-data-source.

RESOURCE DESCRIPTION

 A JDBC XA data-source configuration

[...]

Using security domains
Information can be found at https://community.jboss.org/wiki/JBossAS7SecurityDomainModel

Component Reference
The datasource subsystem is provided by the project. For a detailed description of the availableIronJacamar

configuration properties, please consult the project documentation.

IronJacamar homepage: http://ironjacamar.org/

Project Documentation: http://ironjacamar.org/documentation.html

Schema description:

http://www.ironjacamar.org/doc/userguide/1.1/en-US/html_single/index.html#deployingds_descriptor

https://community.jboss.org/wiki/JBossAS7SecurityDomainModel
http://www.jboss.org/ironjacamar
http://ironjacamar.org/
http://ironjacamar.org/documentation.html
http://www.ironjacamar.org/doc/userguide/1.1/en-US/html_single/index.html#deployingds_descriptor

Latest WildFly Documentation

JBoss Community Documentation Page of 163 2293

5.7.4 Logging

Overview

Attributes

add-logging-api-dependencies

use-deployment-logging-config

Per-deployment Logging

Logging Profiles

Default Log File Locations

Managed Domain

Standalone Server

Filter Expressions

List Log Files and Reading Log Files

List Log Files

Read Log File

FAQ

Why is there a file?logging.properties

Latest WildFly Documentation

JBoss Community Documentation Page of 164 2293

Overview
The overall server logging configuration is represented by the logging subsystem. It consists of four notable

parts: configurations, , the declarations (aka log categories) and logginghandler logger root logger

profiles. Each logger does reference a handler (or set of handlers). Each handler declares the log format and

output:

<subsystem xmlns="urn:jboss:domain:logging:3.0">

 <console-handler name="CONSOLE" autoflush="true">

 <level name="DEBUG"/>

 <formatter>

 <named-formatter name="COLOR-PATTERN"/>

 </formatter>

 </console-handler>

 <periodic-rotating-file-handler name="FILE" autoflush="true">

 <formatter>

 <named-formatter name="PATTERN"/>

 </formatter>

 <file relative-to="jboss.server.log.dir" path="server.log"/>

 <suffix value=".yyyy-MM-dd"/>

 </periodic-rotating-file-handler>

 <logger category="com.arjuna">

 <level name="WARN"/>

 </logger>

 [...]

 <root-logger>

 <level name="DEBUG"/>

 <handlers>

 <handler name="CONSOLE"/>

 <handler name="FILE"/>

 </handlers>

 </root-logger>

 <formatter name="PATTERN">

 <pattern-formatter pattern="%d{yyyy-MM-dd HH:mm:ss,SSS} %-5p [%c] (%t) %s%e%n"/>

 </formatter>

 <formatter name="COLOR-PATTERN">

 <pattern-formatter pattern="%K{level}%d{HH:mm:ss,SSS} %-5p [%c] (%t) %s%e%n"/>

 </formatter>

</subsystem>

Latest WildFly Documentation

JBoss Community Documentation Page of 165 2293

Attributes
The root resource contains two notable attributes and add-logging-api-dependencies

.use-deployment-logging-config

logging-api-dependencies
The controls whether or not the container adds logging APIadd-logging-api-dependencies implicit

dependencies to your deployments. If set to , the default, all the implicit logging API dependencies aretrue

added. If set to the dependencies are not added to your deployments.false

deployment-logging-config
The controls whether or not your deployment is scanned for use-deployment-logging-config

. If set to , the default, is enabled. Set to toper-deployment logging true per-deployment logging false

disable this feature.

deployment Logging
Per-deployment logging allows you to add a logging configuration file to your deployment and have the

logging for that deployment configured according to the configuration file. In an EAR the configuration should

be in the directory. In a WAR or JAR deployment the configuration file can be in either the META-INF

 or directories.META-INF WEB-INF/classes

The following configuration files are allowed:

logging.properties

jboss-logging.properties

log4j.properties

log4j.xml

jboss-log4j.xml

You can also disable this functionality by changing the attribute to use-deployment-logging-config

.false

Latest WildFly Documentation

JBoss Community Documentation Page of 166 2293

Logging Profiles
Logging profiles are like additional logging subsystems. Each logging profile constists of three of the four

notable parts listed above: configurations, and the declarations.handler logger root logger

You can assign a logging profile to a deployment via the deployments manifest. Add a Logging-Profile

entry to the file with a value of the logging profile id. For example a logging profile defined on MANIFEST.MF

 the MANIFEST.MF would look like:/subsystem=logging/logging-profile=ejbs

Manifest-Version: 1.0

Logging-Profile: ejbs

A logging profile can be assigned to any number of deployments. Using a logging profile also allows for

runtime changes to the configuration. This is an advantage over the per-deployment logging configuration as

the redeploy is not required for logging changes to take affect.

Default Log File Locations

Managed Domain
In a managed domain two types of log files do exist: Controller and server logs. The controller components

govern the domain as whole. It's their responsibility to start/stop server instances and execute managed

operations throughout the domain. Server logs contain the logging information for a particular server

instance. They are co-located with the host the server is running on.

For the sake of simplicity we look at the default setup for managed domain. In this case, both the domain

controller components and the servers are located on the same host:

Process Log File

Host Controller ./domain/log/host-controller.log

Process Controller ./domain/log/process-controller.log

"Server One" ./domain/servers/server-one/log/server.log

"Server Two" ./domain/servers/server-two/log/server.log

"Server Three" ./domain/servers/server-three/log/server.log

Standalone Server
The default log files for a standalone server can be found in the log subdirectory of the distribution:

Process Log File

Server ./standalone/log/server.log

Latest WildFly Documentation

JBoss Community Documentation Page of 167 2293

Filter Expressions

Filter Type Expression Description Parameter(s) Examples

accept accept Accepts all log

messages.

None accept

deny deny enies all log

messages.

None deny

not not(filterExpression) Accepts a filter as

an argument and

inverts the

returned value.

The expression

takes a single

filter for it's

argument.

not(match("JBAS"))

all all(filterExpressions) A filter consisting

of several filters in

a chain. If any

filter find the log

message to be

unloggable, the

message will not

be logged and

subsequent filters

will not be

checked.

The expression

takes a comma

delimited list of

filters for it's

argument.

all(match("JBAS"),

match("WELD"))

any any(filterExpressions) A filter consisting

of several filters in

a chain. If any

filter fins the log

message to be

loggable, the

message will be

logged and the

subsequent filters

will not be

checked.

The expression

takes a comma

delimited list of

filters for it's

argument.

any(match("JBAS"),

match("WELD"))

levelChange levelChange(level) A filter which

modifies the log

record with a new

level.

The expression

takes a single

string based level

for it's argument.

levelChange(WARN)

Latest WildFly Documentation

JBoss Community Documentation Page of 168 2293

levels levels(levels) A filter which

includes log

messages with a

level that is listed

in the list of levels.

The expression

takes a comma

delimited list of

string based

levels for it's

argument.

levels(DEBUG, INFO,

WARN, ERROR)

levelRange levelRange([minLevel,maxLevel]) A filter which logs

records that are

within the level

range.

The filter

expression uses

a "[" to indicate a

minimum

inclusive level

and a "]" to

indicate a

maximum

inclusive level.

Otherwise use "("

or ")" respectively

indicate

exclusive. The

first argument for

the expression is

the minimum

level allowed, the

second argument

is the maximum

level allowed.

minimum level must

be less than

ERROR and the

maximum level must

be greater than

DEBUG

levelRange(ERROR,

DEBUG)

minimum level must

be less than or

equal to ERROR

and the maximum

level must be

greater than

DEBUG

levelRange[ERROR,

DEBUG)

minimum level must

be less than or

equal to ERROR

and the maximum

level must be

greater or equal to

INFO

levelRange[ERROR,

INFO]

match match("pattern") A

regular-expression

based filter. The

raw unformatted

message is used

against the

pattern.

The expression

takes a regular

expression for it's

argument.

match("JBAS\d+")

Latest WildFly Documentation

JBoss Community Documentation Page of 169 2293

substitute substitute("pattern",

"replacement value")

A filter which

replaces the first

match to the

pattern with the

replacement

value.

The first

argument for the

expression is the

pattern the

second argument

is the

replacement text.

substitute("JBAS", "EAP")

substituteAll substituteAll("pattern",

"replacement value")

A filter which

replaces all

matches of the

pattern with the

replacement

value.

The first

argument for the

expression is the

pattern the

second argument

is the

replacement text.

substituteAll("JBAS",

"EAP")

List Log Files and Reading Log Files
Log files can be listed and viewed via management operations. The log files allowed to be viewed are

intentionally limited to files that exist in the and are associated with a known filejboss.server.log.dir

handler. Known file handler types include , and file-handler periodic-rotating-file-handler

. The operations are valid in both standalone and domain modes.size-rotating-file-handler

List Log Files
The logging subsystem has a resource off the subsystem root resource and off each log-file

 resource to list each log file.logging-profile

CLI command and output

[standalone@localhost:9990 /] /subsystem=logging:read-children-names(child-type=log-file)

{

 "outcome" => "success",

 "result" => [

 "server.log",

 "server.log.2014-02-12",

 "server.log.2014-02-13"

]

}

Latest WildFly Documentation

JBoss Community Documentation Page of 170 2293

Read Log File
The operation is available on each resource. This operation has 4 optionalread-log-file log-file

parameters.

Name Description

encoding the encoding the file should be read in

lines the number of lines from the file. A value of -1 indicates all lines should be read.

skip the number of lines to skip before reading.

tail true to read from the end of the file up or false to read top down.

CLI command and output

[standalone@localhost:9990 /] /subsystem=logging/log-file=server.log:read-log-file

{

 "outcome" => "success",

 "result" => [

 "2014-02-14 14:16:48,781 INFO [org.jboss.as.server.deployment.scanner] (MSC service

thread 1-11) JBAS015012: Started FileSystemDeploymentService for directory

/home/jperkins/servers/wildfly-8.0.0.Final/standalone/deployments",

 "2014-02-14 14:16:48,782 INFO [org.jboss.as.connector.subsystems.datasources] (MSC

service thread 1-8) JBAS010400: Bound data source [java:jboss/myDs]",

 "2014-02-14 14:16:48,782 INFO [org.jboss.as.connector.subsystems.datasources] (MSC

service thread 1-15) JBAS010400: Bound data source [java:jboss/datasources/ExampleDS]",

 "2014-02-14 14:16:48,786 INFO [org.jboss.as.server.deployment] (MSC service thread 1-9)

JBAS015876: Starting deployment of \"simple-servlet.war\" (runtime-name:

\"simple-servlet.war\")",

 "2014-02-14 14:16:48,978 INFO [org.jboss.ws.common.management] (MSC service thread

1-10) JBWS022052: Starting JBoss Web Services - Stack CXF Server 4.2.3.Final",

 "2014-02-14 14:16:49,160 INFO [org.wildfly.extension.undertow] (MSC service thread

1-16) JBAS017534: Registered web context: /simple-servlet",

 "2014-02-14 14:16:49,189 INFO [org.jboss.as.server] (Controller Boot Thread)

JBAS018559: Deployed \"simple-servlet.war\" (runtime-name : \"simple-servlet.war\")",

 "2014-02-14 14:16:49,224 INFO [org.jboss.as] (Controller Boot Thread) JBAS015961: Http

management interface listening on http://127.0.0.1:9990/management",

 "2014-02-14 14:16:49,224 INFO [org.jboss.as] (Controller Boot Thread) JBAS015951: Admin

console listening on http://127.0.0.1:9990",

 "2014-02-14 14:16:49,225 INFO [org.jboss.as] (Controller Boot Thread) JBAS015874:

WildFly 8.0.0.Final \"WildFly\" started in 1906ms - Started 258 of 312 services (90 services are

lazy, passive or on-demand)"

]

}

Latest WildFly Documentation

JBoss Community Documentation Page of 171 2293

FAQ

Why is there a logging.properties file?
You may have noticed that there is a file in the configuration directory. This islogging.properties

logging configuration is used when the server boots up until the logging subsystem kicks in. If the logging

subsystem is not included in your configuration, then this would act as the logging configuration for the entire

server.

The file is overwritten at boot and with each change to the logginglogging.properties

subsystem. Any changes made to the file are not persisted. Any changes made to the XML

configuration or via management operations will be persisted to the filelogging.properties

and used on the next boot.

5.7.5 Web (Undertow)

Web subsystem was replaced in WildFly 8 with Undertow.

There are two main parts to the undertow subsystem, which are server and Servlet container configuration,

as well as some ancillary items. Advanced topics like load balancing and failover are covered on the "High

Availability Guide". The default configuration does is suitable for most use cases and provides reasonable

performance settings.

Required extension:

<extension module="org.wildfly.extension.undertow" />

Basic subsystem configuration example:

Latest WildFly Documentation

JBoss Community Documentation Page of 172 2293

<subsystem xmlns="urn:jboss:domain:undertow:1.0">

 <buffer-caches>

 <buffer-cache name="default" buffer-size="1024" buffers-per-region="1024"

max-regions="10"/>

 </buffer-caches>

 <server name="default-server">

 <http-listener name="default" socket-binding="http" />

 <host name="default-host" alias="localhost">

 <location name="/" handler="welcome-content" />

 </host>

 </server>

 <servlet-container name="default" default-buffer-cache="default"

stack-trace-on-error="local-only" >

 <jsp-config/>

 <persistent-sessions/>

 </servlet-container>

 <handlers>

 <file name="welcome-content" path="${jboss.home.dir}/welcome-content"

directory-listing="true"/>

 </handlers>

 </subsystem>

Dependencies on other subsystems:

IO Subsystem

Buffer cache configuration
The buffer cache is used for caching content, such as static files. Multiple buffer caches can be configured,

which allows for separate servers to use different sized caches.

Buffers are allocated in regions, and are of a fixed size. If you are caching many small files then using a

smaller buffer size will be better.

The total amount of space used can be calculated by multiplying the buffer size by the number of buffers per

region by the maximum number of regions.

<buffer-caches>

 <buffer-cache name="default" buffer-size="1024" buffers-per-region="1024" max-regions="10"/>

 </buffer-caches>

Attribute Description

buffer-size The size of the buffers. Smaller buffers allow space to be utilised more effectively

buffers-per-region The numbers of buffers per region

max-regions The maximum number of regions. This controls the maximum amount of memory that

can be used for caching

Latest WildFly Documentation

JBoss Community Documentation Page of 173 2293

Server configuration
A server represents an instance of Undertow. Basically this consists of a set of connectors and some

configured handlers.

<server name="default-server" default-host="default-host" servlet-container="default" >

Attribute Description

default-host the virtual host that will be used if an incoming request as no Host: header

servlet-container the servlet container that will be used by this server, unless is is explicitly overriden by

the deployment

Connector configuration
Undertow provides HTTP, HTTPS and AJP connectors, which are configured per server.

Latest WildFly Documentation

JBoss Community Documentation Page of 174 2293

Common settings
The following settings are common to all connectors:

Attribute Description

socket-binding The socket binding to use. This determines the address and port the listener listens

on.

worker A reference to an XNIO worker, as defined in the IO subsystem. The worker that is

in use controls the IO and blocking thread pool.

buffer-pool A reference to a buffer pool as defined in the IO subsystem. These buffers are

used internally to read and write requests. In general these should be at least 8k,

unless you are in a memory constrained environment.

enabled If the connector is enabled.

max-post-size The maximum size of incoming post requests that is allowed.

buffer-pipelined-data If responses to HTTP pipelined requests should be buffered, and send out in a

single write. This can improve performance if HTTP pipe lining is in use and

responses are small.

max-header-size The maximum size of a HTTP header block that is allowed. Responses with to

much data in their header block will have the request terminated and a bad request

response send.

max-parameters The maximum number of query or path parameters that are allowed. This limit

exists to prevent hash collision based DOS attacks.

max-headers The maximum number of headers that are allowed. This limit exists to prevent

hash collision based DOS attacks.

max-cookies The maximum number of cookies that are allowed. This limit exists to prevent hash

collision based DOS attacks.

allow-encoded-slash Set this to true if you want the server to decode percent encoded slash characters.

This is probably a bad idea, as it can have security implications, due to different

servers interpreting the slash differently. Only enable this if you have a legacy

application that requires it.

decode-url If the URL should be decoded. If this is not set to true then percent encoded

characters in the URL will be left as is.

url-charset The charset to decode the URL to.

always-set-keep-alive If the 'Connection: keep-alive' header should be added to all responses, even if not

required by spec.

disallowed-methods A comma separated list of HTTP methods that are not allowed. HTTP TRACE is

disabled by default.

Latest WildFly Documentation

JBoss Community Documentation Page of 175 2293

HTTP Connector

<http-listener name="default" socket-binding="http" />

Attribute Description

certificate-forwarding If this is set to true then the HTTP listener will read a client certificate from the

SSL_CLIENT_CERT header. This allows client cert authentication to be used,

even if the server does not have a direct SSL connection to the end user. This

should only be enabled for servers behind a proxy that has been configured to

always set these headers.

redirect-socket The socket binding to redirect requests that require security too.

proxy-address-forwarding If this is enabled then the X-Forwarded-For and X-Forwarded-Proto headers

will be used to determine the peer address. This allows applications that are

behind a proxy to see the real address of the client, rather than the address of

the proxy.

HTTPS listener
Https listener provides secure access to the server. The most important configuration option is security realm

which defines SSL secure context.

<https-listener name="default" socket-binding="https" security-realm="ssl-realm" />

Attribute Description

security-realm The security realm to use for the SSL configuration. See Security realm examples

for how to configure it: Examples

verify-client One of either NOT_REQUESTED, REQUESTED or REQUIRED. If client cert auth

is in use this should be either REQUESTED or REQUIRED.

enabled-cipher-suites A list of cypher suit names that are allowed.

AJP listener

<ajp-listener name="default" socket-binding="ajp" />

https://docs.jboss.org/author/display/WFLY10/Examples

Latest WildFly Documentation

JBoss Community Documentation Page of 176 2293

Host configuration
The host element corresponds to a virtual host.

Attribute Description

name The virtual host name

alias A whitespace separated list of additional host names that should be matched

default-web-module The name of a deployment that should be used to serve up requests that do not

match anything.

Servlet container configuration
The servlet-container element corresponds to an instance of an Undertow Servlet container. Most servers

will only need a single servlet container, however there may be cases where it makes sense to define

multiple containers (in particular if you want applications to be isolated, so they cannot dispatch to each

other using the RequestDispatcher. You can also use multiple Servlet containers to serve different

applications from the same context path on different virtual hosts).

Attribute Description

allow-non-standard-wrappers The Servlet specification requires applications to only wrap the

request/response using wrapper classes that extend from the

ServletRequestWrapper and ServletResponseWrapper classes. If this is set

to true then this restriction is relaxed.

default-buffer-cache The buffer cache that is used to cache static resources in the default

Servlet.

stack-trace-on-error Can be either all, none, or local-only. When set to none Undertow will never

display stack traces. When set to All Undertow will always display them (not

recommended for production use). When set to local-only Undertow will

only display them for requests from local addresses, where there are no

headers to indicate that the request has been proxied. Note that this feature

means that the Undertow error page will be displayed instead of the default

error page specified in web.xml.

default-encoding The default encoding to use for requests and responses.

use-listener-encoding If this is true then the default encoding will be the same as that used by the

listener that received the request.

JSP configuration

Latest WildFly Documentation

JBoss Community Documentation Page of 177 2293

Session Cookie Configuration
This allows you to change the attributes of the session cookie.

Attribute Description

name The cookie name

domain The cookie domain

comment The cookie comment

http-only If the cookie is HTTP only

secure If the cookie is marked secure

max-age The max age of the cookie

Persistent Session Configuration
Persistent sessions allow session data to be saved across redeploys and restarts. This feature is enabled by

adding the persistent-sessions element to the server config. This is mostly intended to be a development

time feature.

If the path is not specified then session data is stored in memory, and will only be persistent across

redeploys, rather than restarts.

Attribute Description

path The path to the persistent sessions data

relative-to The location that the path is relevant to

5.7.6 Messaging

The JMS server configuration is done through the subsystem. In this chapter we aremessaging-activemq

going outline the frequently used configuration options. For a more detailed explanation please consult the

Artemis user guide (See "Component Reference").

Latest WildFly Documentation

JBoss Community Documentation Page of 178 2293

Required Extension
The configuration options discussed in this section assume that the the

 extension is present in your configuration. Thisorg.wildfly.extension.messaging-activemq

extension is not included in the standard and configurationsstandalone.xml standalone-ha.xml

included in the WildFly distribution. It is, however, included with the and standalone-full.xml

 configurations.standalone-full-ha.xml

You can add the extension to a configuration without it either by adding an <extension

 element to the xml or by using themodule="org.wildfly.extension.messaging-activemq"/>

following CLI operation:

[standalone@localhost:9990 /]/extension=org.wildfly.extension.messaging-activemq:add

Connectors
There are three kind of connectors that can be used to connect to WildFly JMS Server

 can be used by a local client (i.e. one running in the same JVM as the server)in-vm-connector

 can be used by a remote client (and uses Netty over TCP for theremote-connector

communication)

 can be used by a remote client (and uses Undertow Web Server to upgrade fromhttp-connector

a HTTP connection)

JMS Connection Factories
There are three kinds of JMS that depends on the type of connectors that isbasic connection-factory

used.

There is also a which is special in that it is essentially a configurationpooled-connection-factory

facade for the inbound and outbound connectors of the the Artemis JCA Resource Adapter. An MDBboth

can be configured to use a (e.g. using). In thispooled-connection-factory @ResourceAdapter

context, the MDB leverages the of the Artemis JCA RA. Other kinds of clients can lookinbound connector

up the pooled-connection-factory in JNDI (or inject it) and use it to send messages. In this context, such a

client would leverage the of the Artemis JCA RA. A outbound connector pooled-connection-factory

 is also special because:

Latest WildFly Documentation

JBoss Community Documentation Page of 179 2293

It is only available to local clients, although it can be configured to point to a remote server.

As the name suggests, it is pooled and therefore provides superior performance to the clients which

are able to use it. The pool size can be configured via the and max-pool-size min-pool-size

attributes.

It should only be used to (i.e. produce) messages when looked up in JNDI or injected.send

It can be configured to use specific security credentials via the and attributes. Thisuser password

is useful if the remote server to which it is pointing is secured.

Resources acquired from it will be automatically enlisted any on-going JTA transaction. If you want to

send a message from an EJB using CMT then this is likely the connection factory you want to use so

the send operation will be atomically committed along with the rest of the EJB's transaction

operations.

To be clear, the of the Artemis JCA RA (which is for consuming messages) is only usedinbound connector

by MDBs and other JCA-based components. It is not available to traditional clients.

Both a and a reference a connection-factory pooled-connection-factory connector

declaration.

A is associated with a which tells the client using the remote-connector socket-binding

 where to connect.connection-factory

A referencing a is suitable to be used by a connection-factory remote-connector remote

client to send messages to or receive messages from the server (assuming the connection-factory

has an appropriately exported). entry

A looked up in JNDI or injected which is referencing a pooled-connection-factory

 is suitable to be used by a client to send messages to a remote serverremote-connector local

granted the references an pointing to the remotesocket-binding outbound-socket-binding

server in question.

A used by an MDB which is referencing a ispooled-connection-factory remote-connector

suitable to consume messages from a remote server granted the references an socket-binding

 pointing to the remote server in question.outbound-socket-binding

An is associated with a which tells the client using the in-vm-connector server-id

 where to connect (since multiple Artemis servers can run in a single JVM).connection-factory

A referencing an is suitable to be used by a clientconnection-factory in-vm-connector local

to either send messages to or receive messages from a local server.

A looked up in JNDI or injected which is referencing an pooled-connection-factory

 is suitable to be used by a client only to send messages to a local server.in-vm-connector local

A used by an MDB which is referencing an ispooled-connection-factory in-vm-connector

suitable only to consume messages from a local server.

A is associated with the that represents the HTTP socket (by default,http-connector socket-binding

named).http

Latest WildFly Documentation

JBoss Community Documentation Page of 180 2293

A referencing a is suitable to be used by a remote clientconnection-factory http-connector

to send messages to or receive messages from the server by connecting to its HTTP port before

upgrading to the messaging protocol.

A referencing a is suitable to be used by a localpooled-connection-factory http-connector

client to send messages to a remote server granted the references an socket-binding

 pointing to the remote server in question.outbound-socket-binding

A used by an MDB which is referencing a ispooled-connection-factory http-connector

suitable only to consume messages from a remote server granted the referencessocket-binding

an pointing to the remote server in question.outbound-socket-binding

The declaration of a or a specifies theentry connection-factory pooled-connection-factory

JNDI name under which the factory will be exposed. Only JNDI names bound in the

 namespace are available to remote clients. If a has"java:jboss/exported" connection-factory

an entry bound in the namespace a remote client would look-up the "java:jboss/exported"

 using the text . For example, the "connection-factory after "java:jboss/exported"

" is bound by default to RemoteConnectionFactory

 which means a remote client would"java:jboss/exported/jms/RemoteConnectionFactory"

look-up this using " ". A connection-factory jms/RemoteConnectionFactory

 should have any bound in the " "pooled-connection-factory not entry java:jboss/exported

namespace because a is not suitable for remote clients.pooled-connection-factory

Since JMS 2.0, a default JMS connection factory is accessible to EE application under the JNDI name

 WildFly messaging subsystem defines a java:comp/DefaultJMSConnectionFactory.

 that is used to provide this default connection factory. Any parameterpooled-connection-factory

change on this will be take into account by any EE application looking thepooled-connection-factory

default JMS provider under the JNDI name java:comp/DefaultJMSConnectionFactory.

Latest WildFly Documentation

JBoss Community Documentation Page of 181 2293

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">

 <server name="default">

 [...]

 <http-connector name="http-connector"

 socket-binding="http"

 endpoint="http-acceptor" />

 <http-connector name="http-connector-throughput"

 socket-binding="http"

 endpoint="http-acceptor-throughput">

 <param name="batch-delay"

 value="50"/>

 </http-connector>

 <in-vm-connector name="in-vm"

 server-id="0"/>

 [...]

 <connection-factory name="InVmConnectionFactory"

 connectors="in-vm"

 entries="java:/ConnectionFactory" />

 <pooled-connection-factory name="activemq-ra"

 transaction="xa"

 connectors="in-vm"

 entries="java:/JmsXA java:jboss/DefaultJMSConnectionFactory"/>

 [...]

 </server>

</subsystem>

(See standalone/configuration/standalone-full.xml)

JMS Queues and Topics
JMS queues and topics are sub resources of the messaging-actively subsystem. One can define either a

 or . Each destination be given a and contain at least one entry in its jms-queue jms-topic must name

 element (separated by whitespace).entries

Each entry refers to a JNDI name of the queue or topic. Keep in mind that any or jms-queue jms-topic

which needs to be accessed by a remote client needs to have an entry in the "java:jboss/exported"

namespace. As with connection factories, if a or or has an entry bound in thejms-queue jms-topic

"java:jboss/exported" namespace a remote client would look it up using the text after

". For example, the following "testQueue" is bound to"java:jboss/exported jms-queue

"java:jboss/exported/jms/queue/test" which means a remote client would look-up this {{kms-queue} using

"jms/queue/test". A local client could look it up using "java:jboss/exported/jms/queue/test",

"java:jms/queue/test", or more simply "jms/queue/test":

Latest WildFly Documentation

JBoss Community Documentation Page of 182 2293

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">

 <server name="default">

 [...]

 <jms-queue name="testQueue"

 entries="jms/queue/test java:jboss/exported/jms/queue/test" />

 <jms-topic name="testTopic"

 entries="jms/topic/test java:jboss/exported/jms/topic/test" />

</subsystem>

(See standalone/configuration/standalone-full.xml)

JMS endpoints can easily be created through the CLI:

[standalone@localhost:9990 /] jms-queue add --queue-address=myQueue --entries=queues/myQueue

[standalone@localhost:9990 /]

/subsystem=messaging-activemq/server=default/jms-queue=myQueue:read-resource

{

 "outcome" => "success",

 "result" => {

 "durable" => true,

 "entries" => ["queues/myQueue"],

 "selector" => undefined

 }

}

A number of additional commands to maintain the JMS subsystem are available as well:

[standalone@localhost:9990 /] jms-queue --help --commands

add

...

remove

To read the description of a specific command execute 'jms-queue command_name --help'.

Latest WildFly Documentation

JBoss Community Documentation Page of 183 2293

Dead Letter & Redelivery
Some of the settings are applied against an address wild card instead of a specific messaging destination.

The dead letter queue and redelivery settings belong into this group:

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">

 <server name="default">

 [...]

 <address-setting name="#"

 dead-letter-address="jms.queue.DLQ"

 expiry-address="jms.queue.ExpiryQueue"

 [...] />

(See standalone/configuration/standalone-full.xml)

Security Settings for Artemis addresses and JMS destinations
Security constraints are matched against an address wildcard, similar to the DLQ and redelivery settings.

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">

 <server name="default">

 [...]

 <security-setting name="#">

 <role name="guest"

 send="true"

 consume="true"

 create-non-durable-queue="true"

 delete-non-durable-queue="true"/>

(See standalone/configuration/standalone-full.xml)

Security Domain for Users
By default, Artemis will use the " " JAAS security domain. This domain is used to authenticate usersother

making connections to Artemis and then they are authorized to perform specific functions based on their

role(s) and the described above. This domain can be changed by using the security-settings

, e.g.:security-domain

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">

 <server name="default">

 <security domain="mySecurityDomain" />

 [...]

Latest WildFly Documentation

JBoss Community Documentation Page of 184 2293

1.

2.

Using the Elytron Subsystem
You can also use the elytron subsystem to secure the messaging-activemq subsystem.

To use an Elytron security domain:

Undefine the legacy security domain.

/subsystem=messaging-activemq/server=default:undefine-attribute(name=security-domain)

Set an Elytron security domain.

/subsystem=messaging-activemq/server=default:write-attribute(name=elytron-domain,

value=myElytronSecurityDomain)

You can only define either or , but you cannot have bothsecurity-domain elytron-domain

defined at the same time. If neither is defined, WildFly will use the defaultsecurity-domain

value of , which maps to the legacy security domain.other other

Cluster Authentication
If the Artemis server is configured to be clustered, it will use the cluster 's user and password attributes

to connect to other Artemis nodes in the cluster.

If you do not change the default value of <cluster-password>, Artemis will fail to authenticate with the error:

HQ224018: Failed to create session: HornetQExceptionerrorType=CLUSTER_SECURITY_EXCEPTION

message=HQ119099: Unable to authenticate cluster user: HORNETQ.CLUSTER.ADMIN.USER

To prevent this error, you must specify a value for . It is possible to encrypt this<cluster-password>

value by following .this guide

Alternatively, you can use the system property jboss.messaging.cluster.password to specify the cluster

password from the command line.

https://access.redhat.com/site/documentation/en-US/JBoss_Enterprise_Application_Platform/6.1/html/Security_Guide/sect-Password_Vaults_for_Sensitive_Strings.html

Latest WildFly Documentation

JBoss Community Documentation Page of 185 2293

Deployment of -jms.xml files
Starting with WildFly 8, you have the ability to deploy a -jms.xml file defining JMS destinations, e.g.:

<?xml version="1.0" encoding="UTF-8"?>

<messaging-deployment xmlns="urn:jboss:messaging-activemq-deployment:1.0">

 <server name="default">

 <jms-destinations>

 <jms-queue name="sample">

 <entry name="jms/queue/sample"/>

 <entry name="java:jboss/exported/jms/queue/sample"/>

 </jms-queue>

 </jms-destinations>

 </server>

</messaging-deployment>

This feature as destinations deployed this way can not beis primarily intended for development

managed with any of the provided management tools (e.g. console, CLI, etc).

JMS Bridge
The function of a JMS bridge is to consume messages from a source JMS destination, and send them to a

target JMS destination. Typically either the source or the target destinations are on different servers.

The bridge can also be used to bridge messages from other non Artemis JMS servers, as long as they are

JMS 1.1 compliant.

The JMS Bridge is provided by the Artemis project. For a detailed description of the available configuration

properties, please consult the project documentation.

Modules for other messaging brokers
Source and target JMS resources (destination and connection factories) are looked up using JNDI.

If either the source or the target resources are managed by another messaging server than WildFly, the

required client classes must be bundled in a module. The name of the module must then be declared when

the JMS Bridge is configured.

The use of a JMS bridges with any messaging provider will require to create a module containing the jar of

this provider.

Let's suppose we want to use an hypothetical messaging provider named AcmeMQ. We want to bridge

messages coming from a source AcmeMQ destination to a target destination on the local WildFly messaging

server. To lookup AcmeMQ resources from JNDI, 2 jars are required, acmemq-1.2.3.jar, mylogapi-0.0.1.jar

(please note these jars do not exist, this is just for the example purpose). We must include a JMS jarnot

since it will be provided by a WildFly module directly.

To use these resources in a JMS bridge, we must bundle them in a WildFly module:

in JBOSS_HOME/modules, we create the layout:

Latest WildFly Documentation

JBoss Community Documentation Page of 186 2293

modules/

`-- org

 `-- acmemq

 `-- main

 |-- acmemq-1.2.3.jar

 |-- mylogapi-0.0.1.jar

 `-- module.xml

We define the module in :module.xml

<?xml version="1.0" encoding="UTF-8"?>

<module xmlns="urn:jboss:module:1.1" name="org.acmemq">

 <properties>

 <property name="jboss.api" value="private"/>

 </properties>

 <resources>

 <!-- insert resources required to connect to the source or target -->

 <!-- messaging brokers if it not another WildFly instance -->

 <resource-root path="acmemq-1.2.3.jar" />

 <resource-root path="mylogapi-0.0.1.jar" />

 </resources>

 <dependencies>

 <!-- add the dependencies required by JMS Bridge code -->

 <module name="javax.api" />

 <module name="javax.jms.api" />

 <module name="javax.transaction.api"/>

 <module name="org.jboss.remote-naming"/>

 <!-- we depend on org.apache.activemq.artemis module since we will send messages to -->

 <!-- the Artemis server embedded in the local WildFly instance -->

 <module name="org.apache.activemq.artemis" />

 </dependencies>

</module>

Latest WildFly Documentation

JBoss Community Documentation Page of 187 2293

Configuration
A JMS bridge is defined inside a section of the `messaging-activemq` subsystem in the XMLjms-bridge

configuration files.

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">

 <jms-bridge name="myBridge" module="org.acmemq">

 <source connection-factory="ConnectionFactory"

 destination="sourceQ"

 user="user1"

 password="pwd1"

 quality-of-service="AT_MOST_ONCE"

 failure-retry-interval="500"

 max-retries="1"

 max-batch-size="500"

 max-batch-time="500"

 add-messageID-in-header="true">

 <source-context>

 <property name="java.naming.factory.initial"

 value="org.acmemq.jndi.AcmeMQInitialContextFactory"/>

 <property name="java.naming.provider.url"

 value="tcp://127.0.0.1:9292"/>

 </source-context>

 </source>

 <target connection-factory"/jms/invmTargetCF"

 destination="/jms/targetQ" />

 </target>

 </jms-bridge>

</subsystem>

The and sections contain the name of the JMS resource (and source target connection-factory

) that will be looked up in JNDI.destination

It optionally defines the and credentials. If they are set, they will be passed as argumentsuser password

when creating the JMS connection from the looked up ConnectionFactory.

It is also possible to define JNDI context properties in the and source-context target-context

sections. If these sections are absent, the JMS resources will be looked up in the local WildFly instance (as it

is the case in the section in the example above).target

Latest WildFly Documentation

JBoss Community Documentation Page of 188 2293

Management commands
A JMS Bridge can also be managed using the WildFly command line interface:

[standalone@localhost:9990 /] /subsystem=messaging/jms-bridge=myBridge/:add(module="org.acmemq",

\

 source-destination="sourceQ",

\

 source-connection-factory="ConnectionFactory",

\

 source-user="user1",

\

 source-password="pwd1",

\

 source-context={"java.naming.factory.initial" =>

"org.acmemq.jndi.AcmeMQInitialContextFactory", \

 "java.naming.provider.url" => "tcp://127.0.0.1:9292"},

\

 target-destination="/jms/targetQ",

\

 target-connection-factory="/jms/invmTargetCF",

\

 quality-of-service=AT_MOST_ONCE,

\

 failure-retry-interval=500,

\

 max-retries=1,

\

 max-batch-size=500,

\

 max-batch-time=500,

\

 add-messageID-in-header=true)

{"outcome" => "success"}

You can also see the complete JMS Bridge resource description from the CLI:

[standalone@localhost:9990 /] /subsystem=messaging/jms-bridge=*/:read-resource-description

{

 "outcome" => "success",

 "result" => [{

 "address" => [

 ("subsystem" => "messaging"),

 ("jms-bridge" => "*")

],

 "outcome" => "success",

 "result" => {

 "description" => "A JMS bridge instance.",

 "attributes" => {

 ...

 }

 }]

}

Latest WildFly Documentation

JBoss Community Documentation Page of 189 2293

Component Reference
The messaging-activemq subsystem is provided by the Artemis project. For a detailed description of the

available configuration properties, please consult the project documentation.

Artemis Homepage: http://activemq.apache.org/artemis/

Artemis User Documentation: http://activemq.apache.org/artemis/docs.html

5.7.7 Security

The security subsystem is the subsystem that brings the security services provided by to thePicketBox

WildFly 8 server instances.

If you are looking to secure the management interfaces for the management of the domain then you should

read the chapter as the management interfaces themselves are notSecuring the Management Interfaces

run within a WildFly process so use a custom configuration.

http://activemq.apache.org/artemis/
http://activemq.apache.org/artemis/docs.html
http://www.jboss.org/picketbox
https://docs.jboss.org/author/display/AS7/Securing+the+Management+Interfaces

Latest WildFly Documentation

JBoss Community Documentation Page of 190 2293

Structure of the Security Subsystem
When deploying applications to WildFly most of the time it is likely that you would be deploying a web

application or EJBs and just require a security domain to be defined with login modules to verify the users

identity, this chapter aims to provide additional detail regarding the architecture and capability of the security

subsystem however if you are just looking to define a security domain and leave the rest to the container

please jump to the section.security-domains

The security subsystem operates by using a security context associated with the current request, this

security context then makes available to the relevant container a number of capabilities from the configured

security domain, the capabilities exposed are an authentication manager, an authorization manager, an audit

manager and a mapping manager.

Authentication Manager
The authentication manager is the component that performs the actual authentication taking the declared

users identity and their credential so that the login context for the security domain can be used to 'login' the

user using the configured login module or modules.

Authorization Manager
The authorization manager is a component which can be obtained by the container from the current security

context to either obtain information about a users roles or to perform an authorization check against a

resource for the currently authenticated user.

Audit Manager
The audit manager from the security context is the component that can be used to log audit events in

relation to the security domain.

Mapping Manager
The mapping manager can be used to assign additional principals, credentials, roles or attributes to the

authenticated subject.

Security Subsystem Configuration
By default a lot of defaults have already been selected for the security subsystem and unless there is a

specific implementation detail you need to change, these defaults should not require modification. This

chapter describes all of the possible configuration attributes for completeness but do keep in mind that not all

will need to be changed.

The security subsystem is enabled by default by the addition of the following extension: -

<extension module="org.jboss.as.security"/>

The namespace used for the configuration of the security subsystem is urn:jboss:domain:security:1.0, the

configuration is defined within the <subsystem> element from this namespace.

The <subsystem> element can optionally contain the following child elements.

Latest WildFly Documentation

JBoss Community Documentation Page of 191 2293

security-management

subject-factory

security-domains

security-properties

security-management
This element is used to override some of the high level implementation details of the PicketBox

implementation if you have a need to change some of this behaviour.

The element can have any or the following attributes set, all of which are optional.

authentication-manager-class-name Specifies the AuthenticationManager implementation class name to

use.

deep-copy-subject-mode Sets the copy mode of subjects done by the security managers to be

deep copies that makes copies of the subject principals and

credentials if they are cloneable. It should be set to true if subject

include mutable content that can be corrupted when multiple threads

have the same identity and cache flushes/logout clearing the subject

in one thread results in subject references affecting other threads.

Default value is "false".

default-callback-handler-class-name Specifies a global class name for the CallbackHandler

implementation to be used with login modules.

authorization-manager-class-name Attribute specifies the AuthorizationManager implementation class

name to use.

audit-manager-class-name Specifies the AuditManager implementation class name to use.

identity-trust-manager-class-name Specifies the IdentityTrustManager implementation class name to

use.

mapping-manager-class-name Specifies the MappingManager implementation class name to use.

subject-factory
The subject factory is responsible for creating subject instances, this also makes use of the authentication

manager to actually verify the caller. It is used mainly by JCA components to establish a subject. It is not

likely this would need to be overridden but if it is required the "subject-factory-class-name" attribute can be

specified on the subject-factory element.

security-domains

This portion of the configuration is where the bulk of the security subsystem configuration will actually take

place for most administrators, the security domains contain the configuration which is specific to a

deployment.

Latest WildFly Documentation

JBoss Community Documentation Page of 192 2293

The security-domains element can contain numerous <security-domain> definitions, a security-domain can

have the following attributes set:

name The unique name of this security domain.

extends Although version 1.0 of the security subsystem schema contained an 'extends' attribute,

security domain inheritance is not supported and this attribute should not be used.

cache-type The type of authentication cache to use with this domain. If this attribute is removed no cache

will be used. Allowed values are "default" or "infinispan"

The following elements can then be set within the security-domain to configure the domain behaviour.

authentication

The authentication element is used to hold the list of login modules that will be used for authentication when

this domain is used, the structure of the login-module element is:

<login-module code="..." flag="..." module="...">

 <module-option name="..." value="..."/>

</login-module>

The code attribute is used to specify the implementing class of the login module which can either be the full

class name or one of the abbreviated names from the following list:

Latest WildFly Documentation

JBoss Community Documentation Page of 193 2293

Code Classname

Client org.jboss.security.ClientLoginModule

Certificate org.jboss.security.auth.spi.BaseCertLoginModule

CertificateUsers org.jboss.security.auth.spi.BaseCertLoginModule

CertificateRoles org.jboss.security.auth.spi.CertRolesLoginModule

Database org.jboss.security.auth.spi.DatabaseServerLoginModule

DatabaseCertificate org.jboss.security.auth.spi.DatabaseCertLoginModule

DatabaseUsers org.jboss.security.auth.spi.DatabaseServerLoginModule

Identity org.jboss.security.auth.spi.IdentityLoginModule

Ldap org.jboss.security.auth.spi.LdapLoginModule

LdapExtended org.jboss.security.auth.spi.LdapExtLoginModule

RoleMapping org.jboss.security.auth.spi.RoleMappingLoginModule

RunAs org.jboss.security.auth.spi.RunAsLoginModule

Simple org.jboss.security.auth.spi.SimpleServerLoginModule

ConfiguredIdentity org.picketbox.datasource.security.ConfiguredIdentityLoginModule

SecureIdentity org.picketbox.datasource.security.SecureIdentityLoginModule

PropertiesUsers org.jboss.security.auth.spi.PropertiesUsersLoginModule

SimpleUsers org.jboss.security.auth.spi.SimpleUsersLoginModule

LdapUsers org.jboss.security.auth.spi.LdapUsersLoginModule

Kerberos com.sun.security.auth.module.Krb5LoginModule

SPNEGOUsers org.jboss.security.negotiation.spnego.SPNEGOLoginModule

AdvancedLdap org.jboss.security.negotiation.AdvancedLdapLoginModule

AdvancedADLdap org.jboss.security.negotiation.AdvancedADLoginModule

UsersRoles org.jboss.security.auth.spi.UsersRolesLoginModule

The module attribute specifies the name of the JBoss Modules module from which the class specified by the

code attribute should be loaded. Specifying it is not necessary if one of the abbreviated names in the above

list is used.

The flag attribute is used to specify the JAAS flag for this module and should be one of required, requisite,

sufficient, or optional.

Latest WildFly Documentation

JBoss Community Documentation Page of 194 2293

The module-option element can be repeated zero or more times to specify the module options as required

for the login module being configured. It requires the name and value attributes.

See for further details on the various modules listed above.Authentication Modules

authentication-jaspi
The authentication-jaspi is used to configure a Java Authentication SPI (JASPI) provider as the

authentication mechanism. A security domain can have either a <authentication> or a <authentication-jaspi>

element, but not both. We set up JASPI by configuring one or more login modules inside the

login-module-stack element and setting up an authentication module. Here is the structure of the

authentication-jaspi element:

<login-module-stack name="...">

 <login-module code="..." flag="..." module="...">

 <module-option name="..." value="..."/>

 </login-module>

</login-module-stack>

<auth-module code="..." login-module-stack-ref="...">

 <module-option name="..." value="..."/>

</auth-module>

The login-module-stack-ref attribute value must be the name of the login-module-stack element to be used.

The sub-element login-module is configured just like in the partauthentication

Latest WildFly Documentation

JBoss Community Documentation Page of 195 2293

authorization
Authorization in the AS container is normally done with RBAC (role based access control) but there are

situations where a more fine grained authorization policy is required. The authorization element allows

definition of different authorization modules to used, such that authorization can be checked with JACC

(Java Authorization Contract for Containers) or XACML (eXtensible Access Control Markup Language). The

structure of the authorization element is:

<policy-module code="..." flag="..." module="...">

 <module-option name="..." value="..."/>

</policy-module>

The code attribute is used to specify the implementing class of the policy module which can either be the full

class name or one of the abbreviated names from the following list:

Code Classname

DenyAll org.jboss.security.authorization.modules.AllDenyAuthorizationModule

PermitAll org.jboss.security.authorization.modules.AllPermitAuthorizationModule

Delegating org.jboss.security.authorization.modules.DelegatingAuthorizationModule

Web org.jboss.security.authorization.modules.WebAuthorizationModule

JACC org.jboss.security.authorization.modules.JACCAuthorizationModule

XACML org.jboss.security.authorization.modules.XACMLAuthorizationModule

The module attribute specifies the name of the JBoss Modules module from which the class specified by the

code attribute should be loaded. Specifying it is not necessary if one of the abbreviated names in the above

list is used.

The flag attribute is used to specify the JAAS flag for this module and should be one of required, requisite,

sufficient, or optional.

The module-option element can be repeated zero or more times to specify the module options as required

for the login module being configured. It requires the name and value attributes.

Latest WildFly Documentation

JBoss Community Documentation Page of 196 2293

mapping
The mapping element defines additional mapping of principals, credentials, roles and attributes for the

subject. The structure of the mapping element is:

<mapping-module type="..."code="..." module="...">

 <module-option name="..." value="..."/>

</mapping-module>

The type attribute reflects the type of mapping of the provider and should be one of principal, credential, role

or attribute. By default "role" is the type used if the attribute is not set.

The code attribute is used to specify the implementing class of the login module which can either be the full

class name or one of the abbreviated names from the following list:

Code Classname

PropertiesRoles org.jboss.security.mapping.providers.role.PropertiesRolesMappingProvider

SimpleRoles org.jboss.security.mapping.providers.role.SimpleRolesMappingProvider

DeploymentRoles org.jboss.security.mapping.providers.DeploymentRolesMappingProvider

DatabaseRoles org.jboss.security.mapping.providers.role.DatabaseRolesMappingProvider

LdapRoles org.jboss.security.mapping.providers.role.LdapRolesMappingProvider

The module attribute specifies the name of the JBoss Modules module from which the class specified by the

code attribute should be loaded. Specifying it is not necessary if one of the abbreviated names in the above

list is used.

The module-option element can be repeated zero or more times to specify the module options as required

for the login module being configured. It requires the name and value attributes.

audit
The audit element can be used to define a custom audit provider. The default implementation used is

. The structure of the audit element is:org.jboss.security.audit.providers.LogAuditProvider

<provider-module code="..." module="...">

 <module-option name="..." value="..."/>

</provider-module>

The code attribute is used to specify the implementing class of the provider module.

The module attribute specifies the name of the JBoss Modules module from which the class specified by the

code attribute should be loaded.

The module-option element can be repeated zero or more times to specify the module options as required

for the login module being configured. It requires the name and value attributes.

Latest WildFly Documentation

JBoss Community Documentation Page of 197 2293

jsse
The jsse element defines configuration for keystores and truststores that can be used for SSL context

configuration or for certificate storing/retrieving.

The set of attributes (all of them optional) of this element are:

Latest WildFly Documentation

JBoss Community Documentation Page of 198 2293

keystore-password Password of the keystore

keystore-type Type of the keystore. By default it's "JKS"

keystore-url where the keystore file can be foundURL

keystore-provider of the keystore. The default JDK provider for the keystoreProvider

type is used if this attribute is null

keystore-provider-argument String that can be passed as the argument of the keystore Provider

constructor

key-manager-factory-algorithm Algorithm of the . The default JDK algorithm of theKeyManagerFactory

key manager factory is used if this attribute is null

key-manager-factory-provider of the . The default JDK provider forProvider KeyManagerFactory

the key manager factory algorithm is used if this attribute is null

truststore-password Password of the truststore

truststore-type Type of the truststore. By deafult it's "JKS"

truststore-url where the truststore file can be foundURL

truststore-provider of the truststore. The default JDK provider for the truststoreProvider

type is used if this attribute is null

truststore-provider-argument String that can be passed as the argument of the truststore Provider

constructor

trust-manager-factory-algorithm Algorithm of the . The default JDK algorithm ofTrustManagerFactory

the trust manager factory is used if this attribute is null

trust-manager-factory-provider of the . The default JDK provider forProvider TrustManagerFactory

the trust manager factory algorithm is used if this attribute is null

client-alias Alias of the keystore to be used when creating client side SSL sockets

server-alias Alias of the keystore to be used when creating server side SSL sockets

service-auth-token Validation token to enable third party services to retrieve a keystore .Key

This is typically used to retrieve a private key for signing purposes

client-auth Flag to indicate if the server side SSL socket should require client

authentication. Default is "false"

cipher-suites Comma separated list of cipher suites to be used by a SSLContext

protocols Comma separated list of SSL protocols to be used by a SSLContext

The optional additional-properties element can be used to include other options. The structure of the jsse

element is:

Latest WildFly Documentation

JBoss Community Documentation Page of 199 2293

<jsse keystore-url="..." keystore-password="..." keystore-type="..." keystore-provider="..."

keystore-provider-argument="..." key-manager-factory-algorithm="..."

key-manager-factory-provider="..." truststore-url="..." truststore-password="..."

truststore-type="..." truststore-provider="..." truststore-provider-argument="..."

trust-manager-factory-algorithm="..." trust-manager-factory-provider="..." client-alias="..."

server-alias="..." service-auth-token="..." client-auth="..." cipher-suites="..."

protocols="...">

 <additional-properties>x=y

 a=b

 </additional-properties>

</jsse>

security-properties
This element is used to specify additional properties as required by the security subsystem, properties are

specified in the following format:

<security-properties>

 <property name="..." value="..."/>

</security-properties>

The property element can be repeated as required for as many properties need to be defined.

Each property specified is set on the class.java.security.Security

5.7.8 Web services

JBossWS components are provided to the application server through the webservices subsystem.

JBossWS components handle the processing of WS endpoints. The subsystem supports the configuration

of published endpoint addresses, and endpoint handler chains. A default webservice subsystem is provided

in the server's domain and standalone configuration files.

Structure of the webservices subsystem

Published endpoint address
JBossWS supports the rewriting of the element of endpoints published in WSDL<soap:address>

contracts. This feature is useful for controlling the server address that is advertised to clients for each

endpoint.

The following elements are available and can be modified (all are optional):

Name Type Description

Latest WildFly Documentation

JBoss Community Documentation Page of 200 2293

modify-wsdl-address boolean This boolean enables and disables the address rewrite functionality.

When modify-wsdl-address is set to true and the content of

<soap:address> is a valid URL, JBossWS will rewrite the URL using the

values of wsdl-host and wsdl-port or wsdl-secure-port.

When modify-wsdl-address is set to false and the content of

<soap:address> is a valid URL, JBossWS will not rewrite the URL. The

<soap:address> URL will be used.

When the content of <soap:address> is not a valid URL, JBossWS will

rewrite it no matter what the setting of modify-wsdl-address.

If modify-wsdl-address is set to true and wsdl-host is not defined or

explicitly set to the content of'jbossws.undefined.host'

<soap:address> URL is use. JBossWS uses the requester's host when

rewriting the <soap:address>

When modify-wsdl-address is not defined JBossWS uses a default value

of true.

wsdl-host string The hostname / IP address to be used for rewriting .<soap:address>

If is set to , JBossWS uses thewsdl-host jbossws.undefined.host

requester's host when rewriting the <soap:address>

When wsdl-host is not defined JBossWS uses a default value of '

'.jbossws.undefined.host

wsdl-port int Set this property to explicitly define the HTTP port that will be used for

rewriting the SOAP address.

Otherwise the HTTP port will be identified by querying the list of installed

HTTP connectors.

wsdl-secure-port int Set this property to explicitly define the HTTPS port that will be used for

rewriting the SOAP address.

Otherwise the HTTPS port will be identified by querying the list of

installed HTTPS connectors.

wsdl-uri-scheme string This property explicitly sets the URI scheme to use for rewriting

 . Valid values are and . This<soap:address> http https

configuration overrides scheme computed by processing the endpoint

(even if a transport guarantee

is specified). The provided values for and wsdl-port

 (or their default values) are used depending onwsdl-secure-port

specified scheme.

Latest WildFly Documentation

JBoss Community Documentation Page of 201 2293

wsdl-path-rewrite-rule string This string defines a SED substitution command (e.g.,

's/regexp/replacement/g') that JBossWS executes against the path

component of each <soap:address> URL published from the server.

When wsdl-path-rewrite-rule is not defined, JBossWS retains the original

path component of each <soap:address> URL.

When 'modify-wsdl-address' is set to "false" this element is ignored.

Predefined endpoint configurations
JBossWS enables extra setup configuration data to be predefined and associated with an endpoint

implementation. Predefined endpoint configurations can be used for JAX-WS client and JAX-WS endpoint

setup. Endpoint configurations can include JAX-WS handlers and key/value properties declarations. This

feature provides a convenient way to add handlers to WS endpoints and to set key/value properties that

control JBossWS and Apache CXF internals ().see Apache CXF configuration

The webservices subsystem provides to support the definition of named sets of endpointschema

configuration data. Annotation, is provided to map the namedorg.jboss.ws.api.annotation.EndpointConfig

configuration to the endpoint implementation.

There is no limit to the number of endpoint configurations that can be defined within the webservices

subsystem. Each endpoint configuration must have a name that is unique within the webservices

subsystem. Endpoint configurations defined in the webservices subsystem are available for reference by

name through the annotation to any endpoint in a deployed application.

WildFly ships with two predefined endpoint configurations. Standard-Endpoint-Config is the default

configuration. Recording-Endpoint-Config is an example of custom endpoint configuration and includes a

recording handler.

[standalone@localhost:9999 /] /subsystem=webservices:read-resource

{

 "outcome" => "success",

 "result" => {

 "endpoint" => {},

 "modify-wsdl-address" => true,

 "wsdl-host" => expression "${jboss.bind.address:127.0.0.1}",

 "endpoint-config" => {

 "Standard-Endpoint-Config" => undefined,

 "Recording-Endpoint-Config" => undefined

 }

 }

}

The is a special endpoint configuration. It is used for anyStandard-Endpoint-Config

endpoint that does not have an explicitly assigned endpoint configuration.

https://docs.jboss.org/author/display/JBWS/Apache+CXF+integration#ApacheCXFintegration-Deploymentdescriptorproperties
http://www.jboss.org/schema/jbossas/jboss-as-webservices_1_2.xsd

Latest WildFly Documentation

JBoss Community Documentation Page of 202 2293

Endpoint configs
Endpoint configs are defined using element. Each endpoint configuration maythe endpoint-config

include properties and handlers set to the endpoints associated to the configuration.

[standalone@localhost:9999 /]

/subsystem=webservices/endpoint-config=Recording-Endpoint-Config:read-resource

{

 "outcome" => "success",

 "result" => {

 "post-handler-chain" => undefined,

 "property" => undefined,

 "pre-handler-chain" => {"recording-handlers" => undefined}

 }

}

A new endpoint configuration can be added as follows:

[standalone@localhost:9999 /] /subsystem=webservices/endpoint-config=My-Endpoint-Config:add

{

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-restart" => true,

 "process-state" => "restart-required"

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 203 2293

Handler chains
Each endpoint configuration may be associated with zero or more PRE and POST handler chains. Each

handler chain may include JAXWS handlers. For outbound messages the PRE handler chains are executed

before any handler that is attached to the endpoint using the standard means, such as with annotation

@HandlerChain, and POST handler chains are executed after those objects have executed. For inbound

messages the POST handler chains are executed before any handler that is attached to the endpoint using

the standard means and the PRE handler chains are executed after those objects have executed.

* Server inbound messages

Client --> ... --> POST HANDLER --> ENDPOINT HANDLERS --> PRE HANDLERS --> Endpoint

* Server outbound messages

Endpoint --> PRE HANDLER --> ENDPOINT HANDLERS --> POST HANDLERS --> ... --> Client

The protocol-binding attribute must be used to set the protocols for which the chain will be triggered.

[standalone@localhost:9999 /]

/subsystem=webservices/endpoint-config=Recording-Endpoint-Config/pre-handler-chain=recording-handlers:read-resource
{

"outcome" => "success",

 "result" => {

 "protocol-bindings" => "##SOAP11_HTTP ##SOAP11_HTTP_MTOM ##SOAP12_HTTP

##SOAP12_HTTP_MTOM",

 "handler" => {"RecordingHandler" => undefined}

 },

 "response-headers" => {"process-state" => "restart-required"}

}

A new handler chain can be added as follows:

[standalone@localhost:9999 /]

/subsystem=webservices/endpoint-config=My-Endpoint-Config/post-handler-chain=my-handlers:add(protocol-bindings="##SOAP11_HTTP")
{

"outcome" => "success",

 "response-headers" => {

 "operation-requires-restart" => true,

 "process-state" => "restart-required"

 }

}

[standalone@localhost:9999 /]

/subsystem=webservices/endpoint-config=My-Endpoint-Config/post-handler-chain=my-handlers:read-resource
{

"outcome" => "success",

 "result" => {

 "handler" => undefined,

 "protocol-bindings" => "##SOAP11_HTTP"

 },

 "response-headers" => {"process-state" => "restart-required"}

}

Latest WildFly Documentation

JBoss Community Documentation Page of 204 2293

Handlers
JAXWS handler can be added in handler chains:

[standalone@localhost:9999 /]

/subsystem=webservices/endpoint-config=Recording-Endpoint-Config/pre-handler-chain=recording-handlers/handler=RecordingHandler:read-resource
{

"outcome" => "success",

 "result" => {"class" => "org.jboss.ws.common.invocation.RecordingServerHandler"},

 "response-headers" => {"process-state" => "restart-required"}

}

[standalone@localhost:9999 /]

/subsystem=webservices/endpoint-config=My-Endpoint-Config/post-handler-chain=my-handlers/handler=foo-handler:add(class="org.jboss.ws.common.invocation.RecordingServerHandler")
{

"outcome" => "success",

 "response-headers" => {

 "operation-requires-restart" => true,

 "process-state" => "restart-required"

 }

}

Endpoint-config handler classloading

The attribute is used to provide the fully qualified class name of the handler. At deploy time,class

an instance of the class is created for each referencing deployment. For class creation to succeed,

the deployment classloader must to be able to load the handler class.

Latest WildFly Documentation

JBoss Community Documentation Page of 205 2293

Runtime information
Each web service endpoint is exposed through the deployment that provides the endpoint implementation.

Each endpoint can be queried as a deployment resource. For further information please consult the chapter

"Application Deployment". Each web service endpoint specifies a web context and a WSDL Url:

[standalone@localhost:9999 /] /deployment="*"/subsystem=webservices/endpoint="*":read-resource

{

 "outcome" => "success",

 "result" => [{

 "address" => [

 ("deployment" => "jaxws-samples-handlerchain.war"),

 ("subsystem" => "webservices"),

 ("endpoint" => "jaxws-samples-handlerchain:TestService")

],

 "outcome" => "success",

 "result" => {

 "class" => "org.jboss.test.ws.jaxws.samples.handlerchain.EndpointImpl",

 "context" => "jaxws-samples-handlerchain",

 "name" => "TestService",

 "type" => "JAXWS_JSE",

 "wsdl-url" => "http://localhost:8080/jaxws-samples-handlerchain?wsdl"

 }

 }]

}

Component Reference
The web service subsystem is provided by the JBossWS project. For a detailed description of the available

configuration properties, please consult the project documentation.

JBossWS homepage: http://www.jboss.org/jbossws

Project Documentation: https://docs.jboss.org/author/display/JBWS

5.7.9 Resource adapters

Resource adapters are configured through the subsystem. Declaring a new resourceresource-adapters

adapter consists of two separate steps: You would need to deploy the .rar archive and define a resource

adapter entry in the subsystem.

http://www.jboss.org/jbossws
https://docs.jboss.org/author/display/JBWS

Latest WildFly Documentation

JBoss Community Documentation Page of 206 2293

Resource Adapter Definitions
The resource adapter itself is defined within the subsystem :resource-adapters

<subsystem xmlns="urn:jboss:domain:resource-adapters:1.0">

 <resource-adapters>

 <resource-adapter>

 <archive>eis.rar</archive>

 <!-- Resource adapter level config-property -->

 <config-property name="Server">localhost</config-property>

 <config-property name="Port">19000</config-property>

 <transaction-support>XATransaction</transaction-support>

 <connection-definitions>

 <connection-definition class-name="com.acme.eis.ra.EISManagedConnectionFactory"

 jndi-name="java:/eis/AcmeConnectionFactory"

 pool-name="AcmeConnectionFactory">

 <!-- Managed connection factory level config-property -->

 <config-property name="Name">Acme Inc</config-property>

 <pool>

 <min-pool-size>10</min-pool-size>

 <max-pool-size>100</max-pool-size>

 </pool>

 <security>

 <application/>

 </security>

 </connection-definition>

 </connection-definitions>

 <admin-objects>

 <admin-object class-name="com.acme.eis.ra.EISAdminObjectImpl"

 jndi-name="java:/eis/AcmeAdminObject">

 <config-property name="Threshold">10</config-property>

 </admin-object>

 </admin-objects>

 </resource-adapter>

 </resource-adapters>

</subsystem>

Note, that only JNDI bindings under java:/ or java:jboss/ are supported.

 (See standalone/configuration/standalone.xml)

Using security domains
Information about using security domains can be found at

https://community.jboss.org/wiki/JBossAS7SecurityDomainModel

Automatic activation of resource adapter archives
A resource adapter archive can be automatically activated with a configuration by including an

META-INF/ironjacamar.xml in the archive.

The schema can be found at http://docs.jboss.org/ironjacamar/schema/ironjacamar_1_0.xsd

https://community.jboss.org/wiki/JBossAS7SecurityDomainModel
http://docs.jboss.org/ironjacamar/schema/ironjacamar_1_0.xsd

Latest WildFly Documentation

JBoss Community Documentation Page of 207 2293

Component Reference
The resource adapter subsystem is provided by the project. For a detailed description of theIronJacamar

available configuration properties, please consult the project documentation.

IronJacamar homepage: http://www.jboss.org/ironjacamar

Project Documentation: http://www.jboss.org/ironjacamar/docs

Schema description:

http://docs.jboss.org/ironjacamar/userguide/1.0/en-US/html/deployment.html#deployingra_descriptor

5.7.10 Batch

Overview

Default Subsystem Configuration

Security

Deployment Descriptors

Deployment Resources

Overview
The batch subsystem is used to configure an environment for running batch applications. uses WildFly

 for it's batch implementation. Specific information about JBeret can be found in the . TheJBeret user guide

resource path, in , for the subsystem is .CLI notation subsystem=batch-jberet

Default Subsystem Configuration
For up to date information about subsystem configuration options see .http://wildscribe.github.io/

http://www.jboss.org/ironjacamar
http://www.jboss.org/ironjacamar
http://www.jboss.org/ironjacamar/docs
http://docs.jboss.org/ironjacamar/userguide/1.0/en-US/html/deployment.html#deployingra_descriptor
http://wildfly.org
https://github.com/jberet/jsr352
http://jberet.gitbooks.io/jberet-user-guide/content/
http://wildscribe.github.io/

Latest WildFly Documentation

JBoss Community Documentation Page of 208 2293

Security
A new attribute was added to the subsystem to allow batch jobs to besecurity-domain batch-jberet

executed under that security domain. Jobs that are stopped as part of a operation will be restartedsuspend

on execution of a with the original user that started job.resume

There was a added toorg.wildfly.extension.batch.jberet.deployment.BatchPermission

allow a security restraint to various batch functions. The following functions can be controlled with this

permission.

start

stop

restart

abandon

read

The read function allows users to use the getter methods from the

 or read the deployment resource, forjavax.batch.operations.JobOperator batch-jberet

example ./deployment=my.war/subsystem=batch-jberet:read-resource

Latest WildFly Documentation

JBoss Community Documentation Page of 209 2293

Deployment Descriptors
There are no deployment descriptors for configuring a batch environment defined by the JSR-352

. In you can use a deployment descriptor to define aspects of thespecification WildFly jboss-all.xml

batch environment for your deployment.

In the deployment descriptor you can define a named job repository, a new job repositoryjboss-all.xml

and/or a named thread pool. A named job repository and named thread pool are resources defined on the

batch subsystem. Only a named thread pool is allowed to be defined in the deployment descriptor.

Example Named Job Repository and Thread Pool

<jboss umlns="urn:jboss:1.0">

 <batch xmlns="urn:jboss:batch-jberet:1.0">

 <job-repository>

 <named name="batch-ds"/>

 </job-repository>

 <thread-pool name="deployment-thread-pool"/>

 </batch>

</jboss>

Example new Job Repository

<jboss umlns="urn:jboss:1.0">

 <batch xmlns="urn:jboss:batch-jberet:1.0">

 <job-repository>

 <jdbc jndi-name="java:jboss/datasources/ExampleDS"/>

 </job-repository>

 </batch>

</jboss>

Deployment Resources
Some subsystems in register runtime resources for deployments. The batch subsystem registersWildFly

jobs and executions. The jobs are registered using the job name, this is the job XML name. Executionsnot

are registered using the execution id.

https://www.jcp.org/en/jsr/detail?id=352
https://www.jcp.org/en/jsr/detail?id=352
http://wildfly.org
http://wildfly.org

Latest WildFly Documentation

JBoss Community Documentation Page of 210 2293

Batch application in a standalone server

[standalone@localhost:9990 /]

/deployment=batch-jdbc-chunk.war/subsystem=batch-jberet:read-resource(recursive=true,include-runtime=true)
{

"outcome" => "success",

 "result" => {"job" => {

 "reader-3" => {

 "instance-count" => 1,

 "running-executions" => 0,

 "execution" => {"1" => {

 "batch-status" => "COMPLETED",

 "create-time" => "2015-08-07T15:37:06.416-0700",

 "end-time" => "2015-08-07T15:37:06.519-0700",

 "exit-status" => "COMPLETED",

 "instance-id" => 1L,

 "last-updated-time" => "2015-08-07T15:37:06.519-0700",

 "start-time" => "2015-08-07T15:37:06.425-0700"

 }}

 },

 "reader-5" => {

 "instance-count" => 0,

 "running-executions" => 0,

 "execution" => undefined

 }

 }}

}

The batch subsystem resource on a deployment also has 3 operations to interact with batch jobs on the

selected deployment. There is a , and operation. The start-job stop-job restart-job execution

resource also has a and operation.stop-job restart-job

Example start-job

[standalone@localhost:9990 /]

/deployment=batch-chunk.war/subsystem=batch-jberet:start-job(job-xml-name=simple,

properties={writer.sleep=5000})

{

 "outcome" => "success",

 "result" => 1L

}

Example stop-job

[standalone@localhost:9990 /]

/deployment=batch-chunk.war/subsystem=batch-jberet:stop-job(execution-id=2)

Latest WildFly Documentation

JBoss Community Documentation Page of 211 2293

Example restart-job

[standalone@localhost:9990 /]

/deployment=batch-chunk.war/subsystem=batch-jberet:restart-job(execution-id=2)

{

 "outcome" => "success",

 "result" => 3L

}

Result of resource after the 3 executions

[standalone@localhost:9990 /]

/deployment=batch-chunk.war/subsystem=batch-jberet:read-resource(recursive=true,

include-runtime=true)

{

 "outcome" => "success",

 "result" => {"job" => {"chunkPartition" => {

 "instance-count" => 2,

 "running-executions" => 0,

 "execution" => {

 "1" => {

 "batch-status" => "COMPLETED",

 "create-time" => "2015-08-07T15:41:55.504-0700",

 "end-time" => "2015-08-07T15:42:15.513-0700",

 "exit-status" => "COMPLETED",

 "instance-id" => 1L,

 "last-updated-time" => "2015-08-07T15:42:15.513-0700",

 "start-time" => "2015-08-07T15:41:55.504-0700"

 },

 "2" => {

 "batch-status" => "STOPPED",

 "create-time" => "2015-08-07T15:44:39.879-0700",

 "end-time" => "2015-08-07T15:44:54.882-0700",

 "exit-status" => "STOPPED",

 "instance-id" => 2L,

 "last-updated-time" => "2015-08-07T15:44:54.882-0700",

 "start-time" => "2015-08-07T15:44:39.879-0700"

 },

 "3" => {

 "batch-status" => "COMPLETED",

 "create-time" => "2015-08-07T15:45:48.162-0700",

 "end-time" => "2015-08-07T15:45:53.165-0700",

 "exit-status" => "COMPLETED",

 "instance-id" => 2L,

 "last-updated-time" => "2015-08-07T15:45:53.165-0700",

 "start-time" => "2015-08-07T15:45:48.163-0700"

 }

 }

 }}}

}

Latest WildFly Documentation

JBoss Community Documentation Page of 212 2293

Pro Tip

You can filter jobs by an attribute on the execution resource with the operation.query

View all stopped jobs

/deployment=batch-chunk.war/subsystem=batch-jberet/job=*/execution=*:query(where=["batch-status",

"STOPPED"])

As with all operations you can see details about the operation using the :read-operation-description

operation.

Tab completion

Don't forget that CLI has tab completion which will complete operations and attributes (arguments)

on operations.

Latest WildFly Documentation

JBoss Community Documentation Page of 213 2293

Example start-job operation description

[standalone@localhost:9990 /]

/deployment=batch-chunk.war/subsystem=batch-jberet:read-operation-description(name=start-job)

{

 "outcome" => "success",

 "result" => {

 "operation-name" => "start-job",

 "description" => "Starts a batch job.",

 "request-properties" => {

 "job-xml-name" => {

 "type" => STRING,

 "description" => "The name of the job XML file to use when starting the job.",

 "expressions-allowed" => false,

 "required" => true,

 "nillable" => false,

 "min-length" => 1L,

 "max-length" => 2147483647L

 },

 "properties" => {

 "type" => OBJECT,

 "description" => "Optional properties to use when starting the batch job.",

 "expressions-allowed" => false,

 "required" => false,

 "nillable" => true,

 "value-type" => STRING

 }

 },

 "reply-properties" => {"type" => LONG},

 "read-only" => false,

 "runtime-only" => true

 }

}

5.7.11 JSF

Overview

Installing a new JSF implementation manually

Add a module slot for the new JSF implementation JAR

Add a module slot for the new JSF API JAR

Add a module slot for the JSF injection JAR

For MyFaces only - add a module for the commons-digester JAR

Start the server

Changing the default JSF implementation

Configuring a JSF app to use a non-default JSF implementation

Latest WildFly Documentation

JBoss Community Documentation Page of 214 2293

Overview
JSF configuration is handled by the JSF subsystem. The JSF subsystem allows multiple JSF

implementations to be installed on the same WildFly server. In particular, any version of Mojarra or MyFaces

that implements spec level 2.1 or higher can be installed. For each JSF implementation, a new slot needs to

be created under , , and .com.sun.jsf-impl javax.faces.api org.jboss.as.jsf-injection

When the JSF subsystem starts up, it scans the module path to find all of the JSF implementations that have

been installed. The default JSF implementation that WildFly should use is defined by the

 attribute.default-jsf-impl-slot

Installing a new JSF implementation manually
A new JSF implementation can be manually installed as follows:

Add a module slot for the new JSF implementation JAR

Create the following directory structure under the WILDFLY_HOME/modules directory:

WILDFLY_HOME/modules/com/sun/jsf-impl/<JSF_IMPL_NAME>-<JSF_VERSION>

For example, for Mojarra 2.2.11, the above path would resolve to:

WILDFLY_HOME/modules/com/sun/jsf-impl/mojarra-2.2.11

Place the JSF implementation JAR in the <JSF_IMPL_NAME>-<JSF_VERSION> subdirectory. In the

same subdirectory, add a file similar to the or template examples.module.xml Mojarra MyFaces

Change the to the name of your JSF implementation JAR and fill inresource-root-path

appropriate values for ${ } and ${ }.jsf-impl-name jsf-version

Add a module slot for the new JSF API JAR

Create the following directory structure under the WILDFLY_HOME/modules directory:

WILDFLY_HOME/modules/javax/faces/api/<JSF_IMPL_NAME>-<JSF_VERSION>

Place the JSF API JAR in the <JSF_IMPL_NAME>-<JSF_VERSION> subdirectory. In the same

subdirectory, add a file similar to the or template examples. Changemodule.xml Mojarra MyFaces

the to the name of your JSF API JAR and fill in appropriate values for ${resource-root-path

} and ${ }.jsf-impl-name jsf-version

https://github.com/wildfly/wildfly/blob/master/jsf/multi-jsf-installer/src/main/resources/mojarra-impl-module.xml
https://github.com/wildfly/wildfly/blob/master/jsf/multi-jsf-installer/src/main/resources/myfaces-impl-module.xml
https://github.com/wildfly/wildfly/blob/master/jsf/multi-jsf-installer/src/main/resources/mojarra-api-module.xml
https://github.com/wildfly/wildfly/blob/master/jsf/multi-jsf-installer/src/main/resources/myfaces-api-module.xml

Latest WildFly Documentation

JBoss Community Documentation Page of 215 2293

Add a module slot for the JSF injection JAR

Create the following directory structure under the WILDFLY_HOME/modules directory:

WILDFLY_HOME/modules/org/jboss/as/jsf-injection/<JSF_IMPL_NAME>-<JSF_VERSION>

Copy the wildfly-jsf-injection JAR and the weld-core-jsf JAR from

WILDFLY_HOME/modules/system/layers/base/org/jboss/as/jsf-injection/main to the

<JSF_IMPL_NAME>-<JSF_VERSION> subdirectory.

In the <JSF_IMPL_NAME>-<JSF_VERSION> subdirectory, add a file similar to the module.xml

 or template examples and fill in appropriate values for ${ }, ${Mojarra MyFaces jsf-impl-name

}, ${ }, and ${ }. (These last twojsf-version version.jboss.as version.weld.core

placeholders depend on the versions of the wildfly-jsf-injection and weld-core-jsf JARs that were

copied over in the previous step.)

For MyFaces only - add a module for the commons-digester JAR

Create the following directory structure under the WILDFLY_HOME/modules directory:

WILDFLY_HOME/modules/org/apache/commons/digester/main

Place the JAR in WILDFLY_HOME/modules/org/apache/commons/digester/main.commons-digester

In the subdirectory, add a file similar to this . Fill in the appropriate valuemain module.xml template

for ${ }.version.commons-digester

Start the server
After starting the server, the following CLI command can be used to verify that your new JSF implementation

has been installed successfully. The new JSF implementation should appear in the output of this command.

[standalone@localhost:9990 /] /subsystem=jsf:list-active-jsf-impls()

Changing the default JSF implementation
The following CLI command can be used to make a newly installed JSF implementation the default JSF

implementation used by WildFly:

/subsystem=jsf:write-attribute(name=default-jsf-impl-slot,value=<JSF_IMPL_NAME>-<JSF_VERSION>)

A server restart will be required for this change to take effect.

https://gist.github.com/fjuma/30160f0e95ade328253118c706339604
https://gist.github.com/fjuma/f73b05c3864255e7b10b49f989f0b75e
http://search.maven.org/remotecontent?filepath=commons-digester/commons-digester/1.8/commons-digester-1.8.jar
https://github.com/wildfly/wildfly/blob/master/jsf/multi-jsf-installer/src/main/resources/myfaces-digester-module.xml

Latest WildFly Documentation

JBoss Community Documentation Page of 216 2293

Configuring a JSF app to use a non-default JSF implementation
A JSF app can be configured to use an installed JSF implementation that's not the default implementation by

adding a context parameter to its file. Fororg.jboss.jbossfaces.JSF_CONFIG_NAME web.xml

example, to indicate that a JSF app should use MyFaces 2.2.12 (assuming MyFaces 2.2.12 has been

installed on the server), the following context parameter would need to be added:

<context-param>

 <param-name>org.jboss.jbossfaces.JSF_CONFIG_NAME</param-name>

 <param-value>myfaces-2.2.12</param-value>

</context-param>

If a JSF app does not specify this context parameter, the default JSF implementation will be used for that

app.

5.7.12 JMX

The JMX subsystem registers a service with the Remoting endpoint so that remote access to JMX can be

obtained over the exposed Remoting connector.

This is switched on by default in standalone mode and accessible over port 9990 but in domain mode is

switched off so needs to be enabled - in domain mode the port will be the port of the Remoting connector for

the WildFly instance to be monitored.

To use the connector you can access it in the standard way using a URL:service:jmx

Latest WildFly Documentation

JBoss Community Documentation Page of 217 2293

import javax.management.MBeanServerConnection;

import javax.management.remote.JMXConnector;

import javax.management.remote.JMXConnectorFactory;

import javax.management.remote.JMXServiceURL;

public class JMXExample {

 public static void main(String[] args) throws Exception {

 //Get a connection to the WildFly MBean server on localhost

 String host = "localhost";

 int port = 9990; // management-web port

 String urlString =

 System.getProperty("jmx.service.url","service:jmx:remote+http://" + host + ":" +

port);

 JMXServiceURL serviceURL = new JMXServiceURL(urlString);

 JMXConnector jmxConnector = JMXConnectorFactory.connect(serviceURL, null);

 MBeanServerConnection connection = jmxConnector.getMBeanServerConnection();

 //Invoke on the WildFly MBean server

 int count = connection.getMBeanCount();

 System.out.println(count);

 jmxConnector.close();

 }

}

You also need to set your classpath when running the above example. The following script covers Linux. If

your environment is much different, paste your script when you have it working.

!/bin/bash

specify your WildFly folder

export YOUR_JBOSS_HOME=~/WildFly

java -classpath $YOUR_JBOSS_HOME/bin/client/jboss-client.jar:./ JMXExample

You can also connect using jconsole.

If using jconsole use the and scripts included in the /bin directoryjconsole.sh jconsole.bat

of the WildFly distribution as these set the classpath as required to connect over Remoting.

In addition to the standard JVM MBeans, the WildFly MBean server contains the following MBeans:

Latest WildFly Documentation

JBoss Community Documentation Page of 218 2293

JMX ObjectName Description

jboss.msc:type=container,name=jboss-as Exposes management operations on the JBoss

Modular Service Container, which is the dependency

injection framework at the heart of WildFly. It is

useful for debugging dependency problems, for

example if you are integrating your own subsystems,

as it exposes operations to dump all services and

their current states

jboss.naming:type=JNDIView Shows what is bound in JNDI

jboss.modules:type=ModuleLoader,name=* This collection of MBeans exposes management

operations on JBoss Modules classloading layer. It is

useful for debugging dependency problems arising

from missing module dependencies

Audit logging
Audit logging for the JMX MBean server managed by the JMX subsystem. The resource is at

 and its attributes are similar to the ones mentioned for /subsystem=jmx/configuration=audit-log

 in ./core-service=management/access=audit/logger=audit-log Audit logging

Attribute Description

enabled to enable logging of the JMX operationstrue

log-boot to log the JMX operations when booting the server, otherwisetrue false

log-read-only If all operations will be audit logged, if only operations that change thetrue false

model will be logged

Then which handlers are used to log the management operations are configured as children ofhandler=*

the logger. These handlers and their formatters are defined in the global

 section mentioned in ./core-service=management/access=audit Audit logging

JSON Formatter
The same JSON Formatter is used as described in . However the records for MBean ServerAudit logging

invocations have slightly different fields from those logged for the core management layer.

Latest WildFly Documentation

JBoss Community Documentation Page of 219 2293

2013-08-29 18:26:29 - {

 "type" : "jmx",

 "r/o" : false,

 "booting" : false,

 "version" : "10.0.0.Final",

 "user" : "$local",

 "domainUUID" : null,

 "access" : "JMX",

 "remote-address" : "127.0.0.1/127.0.0.1",

 "method" : "invoke",

 "sig" : [

 "javax.management.ObjectName",

 "java.lang.String",

 "[Ljava.lang.Object;",

 "[Ljava.lang.String;"

],

 "params" : [

 "java.lang:type=Threading",

 "getThreadInfo",

 "[Ljava.lang.Object;@5e6c33c",

 "[Ljava.lang.String;@4b681c69"

]

}

It includes an optional timestamp and then the following information in the json record

Latest WildFly Documentation

JBoss Community Documentation Page of 220 2293

Field name Description

type This will have the value meaning it comes from the jmx subsystemjmx

r/o if the operation has read only impact on the MBean(s)true

booting if the operation was executed during the bootup process, if it wastrue false

executed once the server is up and running

version The version number of the WildFly instance

user The username of the authenticated user.

domainUUID This is not currently populated for JMX operations

access This can have one of the following values:

* - The operation came in through the native management interface, forNATIVE

example the CLI

* - The operation came in through the domain HTTP interface, for example theHTTP

admin console

* - The operation came in through the JMX subsystem. See for how toJMX JMX

configure audit logging for JMX.

remote-address The address of the client executing this operation

method The name of the called MBeanServer method

sig The signature of the called called MBeanServer method

params The actual parameters passed in to the MBeanServer method, a simple

 is called on each parameter.Object.toString()

error If calling the MBeanServer method resulted in an error, this field will be populated with

Throwable.getMessage()

5.7.13 Deployment Scanner

The deployment scanner is only used in standalone mode. Its job is to monitor a directory for new files and

to deploy those files. It can be found in :standalone.xml

<subsystem xmlns="urn:jboss:domain:deployment-scanner:2.0">

 <deployment-scanner scan-interval="5000"

 relative-to="jboss.server.base.dir" path="deployments" />

</subsystem>

Latest WildFly Documentation

JBoss Community Documentation Page of 221 2293

You can define more entries to scan for deployments from more locations. Thedeployment-scanner

configuration showed will scan the directory every fiveJBOSS_HOME/standalone/deployments

seconds. The runtime model is shown below, and uses default values for attributes not specified in the xml:

[standalone@localhost:9999 /] /subsystem=deployment-scanner:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {"scanner" => {"default" => {

 "auto-deploy-exploded" => false,

 "auto-deploy-zipped" => true,

 "deployment-timeout" => 60L,

 "name" => "default",

 "path" => "deployments",

 "relative-to" => "jboss.server.base.dir",

 "scan-enabled" => true,

 "scan-interval" => 5000

 }}}

}

The attributes are

Latest WildFly Documentation

JBoss Community Documentation Page of 222 2293

Name Type Description

name STRING The name of the scanner. is used if not specifieddefault

path STRING The actual filesystem path to be scanned. Treated as an

absolute path, unless the 'relative-to' attribute is specified, in

which case the value is treated as relative to that path.

relative-to STRING Reference to a filesystem path defined in the "paths" section of

the server configuration, or one of the system properties

specified on startup. In the example above

 resolves to jboss.server.base.dir

JBOSS_HOME/standalone

scan-enabled BOOLEAN If true scanning is enabled

scan-interval INT Periodic interval, in milliseconds, at which the repository should

be scanned for changes. A value of less than 1 indicates the

repository should only be scanned at initial startup.

auto-deploy-zipped BOOLEAN Controls whether zipped deployment content should be

automatically deployed by the scanner without requiring the user

to add a .dodeploy marker file.

auto-deploy-exploded BOOLEAN Controls whether exploded deployment content should be

automatically deployed by the scanner without requiring the user

to add a .dodeploy marker file. Setting this to 'true' is not

recommended for anything but basic development scenarios, as

there is no way to ensure that deployment will not occur in the

middle of changes to the content.

auto-deploy-xml BOOLEAN Controls whether XML content should be automatically deployed

by the scanner without requiring a .dodeploy marker file.

deployment-timeout LONG Timeout, in seconds, a deployment is allows to execute before

being canceled. The default is 60 seconds.

Deployment scanners can be added by modifying before starting up the server or theystandalone.xml

can be added and removed at runtime using the CLI

[standalone@localhost:9990 /]

/subsystem=deployment-scanner/scanner=new:add(scan-interval=10000,relative-to="jboss.server.base.dir",path="other-deployments")
{"outcome"

=> "success"}

[standalone@localhost:9990 /] /subsystem=deployment-scanner/scanner=new:remove

{"outcome" => "success"}

You can also change the attributes at runtime, so for example to turn off scanning you can do

Latest WildFly Documentation

JBoss Community Documentation Page of 223 2293

[standalone@localhost:9990 /]

/subsystem=deployment-scanner/scanner=default:write-attribute(name="scan-enabled",value=false)

{"outcome" => "success"}

[standalone@localhost:9990 /] /subsystem=deployment-scanner:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {"scanner" => {"default" => {

 "auto-deploy-exploded" => false,

 "auto-deploy-zipped" => true,

 "deployment-timeout" => 60L,

 "name" => "default",

 "path" => "deployments",

 "relative-to" => "jboss.server.base.dir",

 "scan-enabled" => false,

 "scan-interval" => 5000

 }}}

}

5.7.14 Core Management

Overview
The core management subsystem is composed services used to manage the server or monitor its status.

The core management subsystem configuration may be used to:

register a listener for a server lifecycle events.

list the last configuration changes on a server.

Lifecycle listener
You can create an implementation of org.wildfly.extension.core.management.client.ProcessStateListener

which will be notified on running and runtime configuration state changes thus enabling the developer to

react to those changes.

In order to use this feature you need to create your own module then configure and deploy it using the core

management subsystem.

For example let's create a simple listener :

Latest WildFly Documentation

JBoss Community Documentation Page of 224 2293

public class SimpleListener implements ProcessStateListener {

 private File file;

 private FileWriter fileWriter;

 private ProcessStateListenerInitParameters parameters;

 @Override

 public void init(ProcessStateListenerInitParameters parameters) {

 this.parameters = parameters;

 this.file = new File(parameters.getInitProperties().get("file"));

 try {

 fileWriter = new FileWriter(file, true);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void cleanup() {

 try {

 fileWriter.close();

 } catch (IOException e) {

 e.printStackTrace();

 } finally {

 fileWriter = null;

 }

 }

 @Override

 public void runtimeConfigurationStateChanged(RuntimeConfigurationStateChangeEvent evt) {

 try {

 fileWriter.write(String.format("%s %s %s %s\n", parameters.getProcessType(),

parameters.getRunningMode(), evt.getOldState(), evt.getNewState()));

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void runningStateChanged(RunningStateChangeEvent evt) {

 try {

 fileWriter.write(String.format("%s %s %s %s\n", parameters.getProcessType(),

parameters.getRunningMode(), evt.getOldState(), evt.getNewState()));

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

To compile it you need to depend on the maven module.org.wildfly.core:wildfly-core-management-client

Now let's add the module to the wildfly modules :

Latest WildFly Documentation

JBoss Community Documentation Page of 225 2293

module add --name=org.simple.lifecycle.events.listener

--dependencies=org.wildfly.extension.core-management-client

--resources=/home/ehsavoie/dev/demo/simple-listener/target/simple-process-state-listener.jar

Now we can register or listener :

/subsystem=core-management/process-state-listener=simple-listener:add(class=org.simple.lifecycle.events.listener.SimpleListener,

module=org.simple.lifecycle.events.listener, properties={file=/home/wildfly/tmp/events.txt})

Configuration changes
You can use the core management subsystem to enable and configure an history of the lastin-memory

configuration changes.

For example to track the last 5 configuration changes let's active this :

/subsystem=core-management/service=configuration-changes:add(max-history=5)

Now we can list the last configuration changes :

/subsystem=core-management/service=configuration-changes:list-changes()

{

 "outcome" => "success",

 "result" => [{

 "operation-date" => "2016-12-05T11:05:12.867Z",

 "access-mechanism" => "NATIVE",

 "remote-address" => "/127.0.0.1",

 "outcome" => "success",

 "operations" => [{

 "address" => [

 ("subsystem" => "core-management"),

 ("service" => "configuration-changes")

],

 "operation" => "add",

 "max-history" => 5,

 "operation-headers" => {

 "caller-type" => "user",

 "access-mechanism" => "NATIVE"

 }

 }]

 }]

}

Latest WildFly Documentation

JBoss Community Documentation Page of 226 2293

5.7.15 Simple configuration subsystems

The following subsystems currently have no configuration beyond its root element in the configuration

<subsystem xmlns="urn:jboss:domain:jaxrs:1.0"/>

<subsystem xmlns="urn:jboss:domain:jdr:1.0"/>

<subsystem xmlns="urn:jboss:domain:pojo:1.0"/>

<subsystem xmlns="urn:jboss:domain:sar:1.0"/>

The presence of each of these turns on a piece of functionality:

Name Description

jaxrs Enables the deployment and functionality of JAX-RS applications

jdr Enables the gathering of diagnostic data for use in remote analysis of error conditions. Although

the data is in a simple format and could be useful to anyone, primarily useful for JBoss EAP

subscribers who would provide the data to Red Hat when requesting support

pojo Enables the deployment of applications containing JBoss Microcontainer services, as supported

by previous versions of JBoss Application Server

sar Enables the deployment of .SAR archives containing MBean services, as supported by previous

versions of JBoss Application Server

5.8 Domain setup

To run a group of servers as a managed domain you need to configure both the domain controller and each

host that joins the domain. This sections focuses on the network configuration for the domain and host

controller components. For background information users are encouraged to review the Operating modes

and sections.Configuration Files

5.8.1 Domain Controller Configuration

The domain controller is the central government for a managed domain. A domain controller configuration

requires two steps:

A host needs to be configured to act as the Domain Controller for the whole domain

The host must expose an addressable management interface binding for the managed hosts to

communicate with it

Latest WildFly Documentation

JBoss Community Documentation Page of 227 2293

Example IP Addresses

In this example the domain controller uses 192.168.0.101 and the host controller 192.168.0.10

Configuring a host to act as the Domain Controller is done through the declaration in domain-controller

. If it includes the element, then this host will become the domain controller:host.xml <local/>

<domain-controller>

 <local/>

</domain-controller>

(See domain/configuration/host.xml)

A host acting as the Domain Controller expose a management interface on an address accessible tomust

the other hosts in the domain. Exposing an HTTP(S) management interface is not required, but is

recommended as it allows the Administration Console to work:

<management-interfaces>

 <native-interface security-realm="ManagementRealm">

 <socket interface="management" port="${jboss.management.native.port:9999}"/>

 </native-interface>

 <http-interface security-realm="ManagementRealm">

 <socket interface="management" port="${jboss.management.http.port:9990}"/>

 </http-interface>

</management-interfaces>

The interface attributes above refer to a named interface declaration later in the host.xml file. This interface

declaration will be used to resolve a corresponding network interface.

<interfaces>

 <interface name="management">

 <inet-address value="192.168.0.101"/>

 </interface>

</interfaces>

(See domain/configuration/host.xml)

Please consult the chapter "Interface Configuration" for a more detailed explanation on how to configure

network interfaces.

Next by default the master domain controller is configured to require authentication so a user needs to be

added that can be used by the slave domain controller to connect.

Make use of the utility to add a new user, for this example I am adding a new user called slave.add-user

Latest WildFly Documentation

JBoss Community Documentation Page of 228 2293

 MUST be run on the master domain controller and NOT the slave.add-user

When you reach the final question of the interactive flow answer or to indicate that the new user willy yes

be used for a process e.g.

Is this new user going to be used for one AS process to connect to another AS process e.g. slave

domain controller?

yes/no? y

To represent the user add the following to the server-identities definition <secret

value="cE3EBEkE=" />

Make a note of the XML Element output as that is going to be required within the slave configuration.

5.8.2 Host Controller Configuration

Once the domain controller is configured correctly you can proceed with any host that should join the

domain. The host controller configuration requires three steps:

The logical host name (within the domain) needs to be distinct

The host controller needs to know the domain controller IP address

Provide a distinct, logical name for the host. In the following example we simply name it "slave":

<host xmlns="urn:jboss:domain:3.0"

 name="slave">

[...]

</host>

(See domain/configuration/host.xml)

If the attribute is not set, the default name for the host will be the value of the name jboss.host.name

system property. If that is not set, the value of the or environment variable willHOSTNAME COMPUTERNAME

be used, one of which will be set on most operating systems. If neither is set the name will be the value of

.InetAddress.getLocalHost().getHostName()

A security realm needs to be defined to hold the identity of the slave. Since it is performing a specific

purpose I would suggest a new realm is defined although it is possible to combine this with an existing

realm.

<security-realm name="SlaveRealm">

 <server-identities>

 <secret value="cE3EBEkE=" />

 </server-identities>

</security-realm>

Latest WildFly Documentation

JBoss Community Documentation Page of 229 2293

The element here is the one output from previously. To create the <secret /> add-user <secret />

element yourself the needs to be the password encoded using Base64.value

Tell it how to find the domain controller so it can register itself with the domain:

<domain-controller>

 <remote protocol="remote" host="192.168.0.101" port="9999" username="slave"

security-realm="SlaveRealm"/>

</domain-controller>

Since we have also exposed the HTTP management interface we could also use :

<domain-controller>

 <remote protocol="http-remoting" host="192.168.0.101" port="9990" username="slave"

security-realm="SlaveRealm"/>

</domain-controller>

(See domain/configuration/host.xml)

The username attribute here is optional, if it is omitted then the name of the host will be used instead, in this

example that was already set to name.

The name of each host needs to be unique when registering with the domain controller, however

the username does not - using the username attribute allows the same account to be used by

multiple hosts if this makes sense in your environment.

The element is also associated with the security realm , this is how it picks up<remote /> SlaveRealm

the password from the element.<secret />

Ignoring domain wide resources

WildFly 10 and later make it easy for slave host controllers to "ignore" parts of the domain wide

configuration. What does the mean and why is it useful?

One of the responsibilities of the Domain Controller is ensuring that all running Host Controllers have a

consistent local copy of the domain wide configuration (i.e. those resources whose address does not begin

with , i.e. those that are persisted in . Having that local copy allows a user to do the/host=* domain.xml

following things:

Ask the slave to launch its already configured servers, even if the Domain Controller is not running.

Configured new servers, using different server groups from those current running, and ask the slave

to launch them, even if the Domain Controller is not running.

Reconfigure the slave to act as the Domain Controller, allowing it to take over as the master if the

previous master has failed or been shut down.

Latest WildFly Documentation

JBoss Community Documentation Page of 230 2293

However, of these three things only the latter two require that the slave maintain a copy of thecomplete

domain wide configuration. The first only requires the slave to have the of the domain wideportion

configuration that is relevant to its current servers. And the first use case is the most common one. A slave

that is only meant to support the first use case can safely "ignore" portions of the domain wide configuration.

And there are benefits to ignoring some resources:

If a server group is ignored, and the deployments mapped to that server group aren't mapped to other

non-ignored groups, then the slave does not need to pull down a copy of the deployment content from

the master. That can save disk space on the slave, improve the speed of starting new hosts and

reduce network traffic.

WildFly supports "mixed domains" where a later version Domain Controller can manage slaves

running previous versions. But those "legacy" slaves cannot understand configuration resources,

attributes and operations introduced in newer versions. So any attempt to use newer things in the

domain wide configuration will fail unless the legacy slaves are ignoring the relevant resources. But

ignoring resources will allow the legacy slaves to work fine managing servers using profiles without

new concepts, while other hosts can run servers with profiles that take advantage of the latest

features.

Prior to WildFly 10, a slave could be configured to ignore some resources, but the mechanism was not

particularly user friendly:

The resources to be ignored had to be listed in a fair amount of detail in each host's configuration.

If a new resource is added and needs to be ignored, then host that needs to ignore that must beeach

updated to record that.

Starting with WildFly 10, this kind of detailed configuration is no longer required. Instead, with the standard

versions of , the slave will behave as follows:host.xml

If the slave was started with the command line parameter, the behavior will be the same--backup

as releases prior to 10; i.e. only resources specifically configured to be ignored will be ignored.

Otherwise, the slave will "ignore unused resources".

What does "ignoring unused resources" mean?

Latest WildFly Documentation

JBoss Community Documentation Page of 231 2293

Any server-group that is not referenced by one of the host's server-config resources is ignored.

Any profile that is not referenced by a non-ignored server-group, either directly or indirectly via the

profile resource's 'include' attribute, is ignored

Any socket-binding-group that is not directly referenced by one of the host's server-config resources,

or referenced by a non-ignored server-group, is ignored

Extension resources will not be automatically ignored, even if no non-ignored profile uses the

extension. Ignoring an extension requires explicit configuration. Perhaps in a future release

extensions will be explicitly ignored.

If a change is made to the slave host's configuration or to the domain wide configuration that reduces

the set of ignored resources, then as part of handling that change the slave will contact the master to

pull down the missing pieces of configuration and will integrate those pieces in its local copy of the

management model. Examples of such changes include adding a new server-config that references a

previously ignored server-group or socket-binding-group, changing the server-group or

socket-binding-group assigned to a server-config, changing the profile or socket-binding-group

assigned to a non-ignored server-group, or adding a profile or socket-binding-group to the set of those

included directly or indirectly by a non-ignored profile or socket-binding-group.

The default behavior can be changed, either to always ignore unused resources, even if is used,--backup

or to not ignore unused resources, by updating the domain-controller element in the file andhost-xml

setting the attribute:ignore-unused-configuration

<domain-controller>

 <remote security-realm="ManagementRealm" ignore-unused-configuration="false">

 <discovery-options>

 <static-discovery name="primary"

protocol="${jboss.domain.master.protocol:remote}" host="${jboss.domain.master.address}"

port="${jboss.domain.master.port:9999}"/>

 </discovery-options>

 </remote>

 </domain-controller>

The "ignore unused resources" behavior can be used in combination with the pre-WildFly 10 detailed

specification of what to ignore. If that is done both the unused resources and the explicitly declared

resources will be ignored. Here's an example of such a configuration, one where the slave cannot use the

"org.example.foo" extension that has been installed on the Domain Controller and on some slaves, but not

this one:

Latest WildFly Documentation

JBoss Community Documentation Page of 232 2293

<domain-controller>

 <remote security-realm="ManagementRealm" ignore-unused-configuration="true">

 <ignored-resources type="extension">

 <instance name="org.example.foo"/>

 </ignored-resources>

 <discovery-options>

 <static-discovery name="primary"

protocol="${jboss.domain.master.protocol:remote}" host="${jboss.domain.master.address}"

port="${jboss.domain.master.port:9999}"/>

 </discovery-options>

 </remote>

 </domain-controller>

5.8.3 Server groups

The domain controller defines one or more server groups and associates each of these with a profile and a

socket binding group, and also :

<server-groups>

 <server-group name="main-server-group" profile="default">

 <jvm name="default">

 <heap size="64m" max-size="512m"/>

 <permgen size="128m" max-size="128m"/>

 </jvm>

 <socket-binding-group ref="standard-sockets"/>

 </server-group>

 <server-group name="other-server-group" profile="bigger">

 <jvm name="default">

 <heap size="64m" max-size="512m"/>

 </jvm>

 <socket-binding-group ref="bigger-sockets"/>

 </server-group>

</server-groups>

(See domain/configuration/domain.xml)

The domain controller also defines the socket binding groups and the profiles. The socket binding groups

define the default socket bindings that are used:

Latest WildFly Documentation

JBoss Community Documentation Page of 233 2293

<socket-binding-groups>

 <socket-binding-group name="standard-sockets" default-interface="public">

 <socket-binding name="http" port="8080"/>

 [...]

 </socket-binding-group>

 <socket-binding-group name="bigger-sockets" include="standard-sockets"

default-interface="public">

 <socket-binding name="unique-to-bigger" port="8123"/>

 </socket-binding-group>

</socket-binding-groups>

(See domain/configuration/domain.xml)

In this example the group includes all the socket bindings defined in the bigger-sockets

 groups and then defines an extra socket binding of its own.standard-sockets

A profile is a collection of subsystems, and these subsystems are what implement the functionality people

expect of an application server.

<profiles>

 <profile name="default">

 <subsystem xmlns="urn:jboss:domain:web:1.0">

 <connector name="http" scheme="http" protocol="HTTP/1.1" socket-binding="http"/>

 [...]

 </subsystem>

 <\!-\- The rest of the subsystems here \-->

 [...]

 </profile>

 <profile name="bigger">

 <subsystem xmlns="urn:jboss:domain:web:1.0">

 <connector name="http" scheme="http" protocol="HTTP/1.1" socket-binding="http"/>

 [...]

 </subsystem>

 <\!-\- The same subsystems as defined by 'default' here \-->

 [...]

 <subsystem xmlns="urn:jboss:domain:fictional-example:1.0">

 <socket-to-use name="unique-to-bigger"/>

 </subsystem>

 </profile>

</profiles>

(See domain/configuration/domain.xml)

Here we have two profiles. The profile contains all the same subsystems as the profilebigger default

(athough the parameters for the various subsystems could be different in each profile), and adds the

 subsystem which references the socket binding.fictional-example unique-to-bigger

5.8.4 Servers

The host controller defines one or more servers:

Latest WildFly Documentation

JBoss Community Documentation Page of 234 2293

<servers>

 <server name="server-one" group="main-server-group">

 <\!-\- server-one inherits the default socket-group declared in the server-group \-->

 <jvm name="default"/>

 </server>

 <server name="server-two" group="main-server-group" auto-start="true">

 <socket-binding-group ref="standard-sockets" port-offset="150"/>

 <jvm name="default">

 <heap size="64m" max-size="256m"/>

 </jvm>

 </server>

 <server name="server-three" group="other-server-group" auto-start="false">

 <socket-binding-group ref="bigger-sockets" port-offset="250"/>

 </server>

</servers>

(See domain/configuration/host.xml)

 and both are associated with so that means they bothserver-one server-two main-server-group

run the subsystems defined by the profile, and have the socket bindings defined by the default

 socket binding group. Since all the servers defined by a host will be run on the samestandard-sockets

physical host we would get port conflicts unless we used <socket-binding-group

 for . This means that ref="standard-sockets" port-offset="150"/> server-two server-two

will use the socket bindings defined by but it will add to each port number defined,standard-sockets 150

so the value used for will be for .http 8230 server-two

 will not be started due to its . The default value if no server-three auto-start="false" auto-start

is given is so both and will be started when the host controller is started. true server-one server-two

 belongs to , so if its were changed to it wouldserver-three other-server-group auto-start true

start up using the subsystems from the profile, and it would use the socketbigger bigger-sockets

binding group.

Latest WildFly Documentation

JBoss Community Documentation Page of 235 2293

JVM
The host controller contains the main definitions with arguments:jvm

<jvms>

 <jvm name="default">

 <heap size="64m" max-size="128m"/>

 </jvm>

</jvms>

(See domain/configuration/host.xml)

From the preceeding examples we can see that we also had a reference at server group level in thejvm

domain controller. The jvm's name match one of the definitions in the host controller. The valuesmust

supplied at domain controller and host controller level are combined, with the host controller taking

precedence if the same parameter is given in both places.

Finally, as seen, we can also override the at server level. Again, the jvm's name match one of thejvm must

definitions in the host controller. The values are combined with the ones coming in from domain controller

and host controller level, this time the server definition takes precedence if the same parameter is given in all

places.

Following these rules the jvm parameters to start each server would be

Server JVM parameters

server-one -Xms64m -Xmx128m

server-two -Xms64m -Xmx256m

server-three -Xms64m -Xmx128m

5.9 Other management tasks

5.9.1 Controlling operation via command line parameters

To start up a WildFly managed domain, execute the script. To start up a$JBOSS_HOME/bin/domain.sh

standalone server, execute the . With no arguments, the default$JBOSS_HOME/bin/standalone.sh

configuration is used. You can override the default configuration by providing arguments on the command

line, or in your calling script.

System properties
To set a system property, pass its new value using the standard jvm options:-Dkey=value

Latest WildFly Documentation

JBoss Community Documentation Page of 236 2293

$JBOSS_HOME/bin/standalone.sh -Djboss.home.dir=some/location/wildFly \

 -Djboss.server.config.dir=some/location/wildFly/custom-standalone

This command starts up a standalone server instance using a non-standard AS home directory and a

custom configuration directory. For specific information about system properties, refer to the definitions

below.

Instead of passing the parameters directly, you can put them into a properties file, and pass the properties

file to the script, as in the two examples below.

$JBOSS_HOME/bin/domain.sh --properties=/some/location/jboss.properties

$JBOSS_HOME/bin/domain.sh -P=/some/location/jboss.properties

Note however, that properties set this way are not processed as part of JVM launch. They are processed

early in the boot process, but this mechanism should not be used for setting properties that control JVM

behavior (e.g. java.net.perferIPv4Stack) or the behavior of the JBoss Modules classloading system.

The syntax for passing in parameters and properties files is the same regardless of whether you are running

the , , or the Microsoft Windows scripts or .domain.sh standalone.sh domain.bat standalone.bat

The properties file is a standard Java property file containing pairs:key=value

jboss.home.dir=/some/location/wildFly

jboss.domain.config.dir=/some/location/wildFly/custom-domain

System properties can also be set via the xml configuration files. Note however that for a standalone server

properties set this way will not be set until the xml configuration is parsed and the commands created by the

parser have been executed. So this mechanism should not be used for setting properties whose value needs

to be set before this point.

Controlling filesystem locations with system properties
The standalone and the managed domain modes each use a default configuration which expects various

files and writable directories to exist in standard locations. Each of these standard locations is associated

with a system property, which has a default value. To override a system property, pass its new value using

the one of the mechanisms above. The locations which can be controlled via system property are:

Latest WildFly Documentation

JBoss Community Documentation Page of 237 2293

Standalone

Property name Usage Default value

java.ext.dirs The JDK extension directory paths null

jboss.home.dir The root directory of the WildFly

installation.

Set by to standalone.sh

$JBOSS_HOME

jboss.server.base.dir The base directory for server content. /standalonejboss.home.dir

jboss.server.config.dir The base configuration directory. jboss.server.base.dir

/configuration

jboss.server.data.dir The directory used for persistent data

file storage.

jboss.server.base.dir

/data

jboss.server.log.dir The directory containing the

 file.server.log

/logjboss.server.base.dir

jboss.server.temp.dir The directory used for temporary file

storage.

/tmpjboss.server.base.dir

jboss.server.deploy.dir The directory used to store deployed

content

jboss.server.data.dir

/content

Latest WildFly Documentation

JBoss Community Documentation Page of 238 2293

Managed Domain

Property name Usage Default value

jboss.home.dir The root directory of the WildFly

installation.

Set by to domain.sh

$JBOSS_HOME

jboss.domain.base.dir The base directory for domain

content.

/domainjboss.home.dir

jboss.domain.config.dir The base configuration directory jboss.domain.base.dir

/configuration

jboss.domain.data.dir The directory used for persistent data

file storage.

jboss.domain.base.dir

/data

jboss.domain.log.dir The directory containing the

 and host-controller.log

 filesprocess-controller.log

jboss.domain.base.dir

/log

jboss.domain.temp.dir The directory used for temporary file

storage

jboss.domain.base.dir

/tmp

jboss.domain.deployment.dir The directory used to store deployed

content

jboss.domain.base.dir

/content

jboss.domain.servers.dir The directory containing the output

for the managed server instances

jboss.domain.base.dir

/servers

Other command line parameters
The first acceptable format for command line arguments to the WildFly launch scripts is

--name=value

For example:

$JBOSS_HOME/bin/standalone.sh --server-config=standalone-ha.xml

If the parameter name is a single character, it is prefixed by a single '-' instead of two. Some parameters

have both a long and short option.

-x=value

For example:

Latest WildFly Documentation

JBoss Community Documentation Page of 239 2293

$JBOSS_HOME/bin/standalone.sh -P=/some/location/jboss.properties

For some command line arguments frequently used in previous major releases of WildFly, replacing the "="

in the above examples with a space is supported, for compatibility.

-b 192.168.100.10

If possible, use the syntax. New parameters will always support this syntax.-x=value

The sections below describe the command line parameter names that are available in standalone and

domain mode.

Standalone

Name Default if

absent

Value

--admin-only - Set the server's running type to ADMIN_ONLY

causing it to open administrative interfaces and

accept management requests but not start other

runtime services or

accept end user requests.

--server-config

-c

standalone.xml A relative path which is interpreted to be relative to

. The name of thejboss.server.config.dir

configuration file to use.

--read-only-server-config - A relative path which is interpreted to be relative to

. This is similar to jboss.server.config.dir

 but if this alternative is specified--server-config

the server will

not overwrite the file when the management model is

changed. However a full versioned history is

maintained of the file.

Latest WildFly Documentation

JBoss Community Documentation Page of 240 2293

Managed Domain

Name Default if

absent

Value

--admin-only - Set the server's running type to ADMIN_ONLY causing it

to open administrative interfaces and accept

management requests but not start servers or, if this host

controller

is the master for the domain, accept incoming

connections from slave host controllers.

--domain-config

-c

domain.xml A relative path which is interpreted to be relative to

. The name of the domainjboss.domain.config.dir

wide configuration file to use.

--read-only-domain-config - A relative path which is interpreted to be relative to

. This is similar to jboss.domain.config.dir

 but if this alternative is specified the--domain-config

host controller

will not overwrite the file when the management model is

changed. However a full versioned history is maintained

of the file.

--host-config host.xml A relative path which is interpreted to be relative to

. The name of thejboss.domain.config.dir

host-specific configuration file to use.

--read-only-host-config - A relative path which is interpreted to be relative to

. This is similar to jboss.domain.config.dir

 but if this alternative is specified the--host-config

host controller will

not overwrite the file when the management model is

changed. However a full versioned history is maintained

of the file.

The following parameters take no value and are only usable on slave host controllers (i.e. hosts configured

to connect to a domain controller.)remote

Latest WildFly Documentation

JBoss Community Documentation Page of 241 2293

Name Function

--backup Causes the slave host controller to create and maintain a local copy

(domain.cached-remote.xml) of the domain configuration. If ignore-unused-configuration

is unset in host.xml,

a complete copy of the domain configuration will be stored locally, otherwise the

configured value of in host.xml will be used. (See ignore-unused-configuration

 for more details.)ignore-unused-configuration

--cached-dc If the slave host controller is unable to contact the master domain controller to get its

configuration at boot, this option will allow the slave host controller to boot and become

operational using a previously cached copy of the domain configuration

(domain.cached-remote.xml.) If the cached configuration is not present, this boot will fail.

This file is created using using one of

the following methods:

 - A previously successful connection to the master domain controller using --backup or

--cached-dc.

 - Copying the domain configuration from an alternative host to

domain/configuration/domain.cached-remote.xml.

The unavailable master domain controller will be polled periodically for availability, and

once becoming available, the slave host controller will reconnect to the master host

controller and synchronize the domain

configuration. During the interval the master domain controller is unavailable, the slave

host controller will not be able make any modifications to the domain configuration, but it

may launch servers and handle

requests to deployed applications etc.

Latest WildFly Documentation

JBoss Community Documentation Page of 242 2293

Common parameters
These parameters apply in both standalone or managed domain mode:

Name Function

-b=<value> Sets system property to <value>. See jboss.bind.address Controlling the Bind

 for further details.Address with -b

-b<name>=<value> Sets system property to <value> where jboss.bind.address.<name> name

can vary. See for further details.Controlling the Bind Address with -b

-u=<value> Sets system property to <value>. See jboss.default.multicast.address

 for further details.Controlling the Default Multicast Address with -u

--version

-v

-V

Prints the version of WildFly to standard output and exits the JVM.

--help

-h

Prints a help message explaining the options and exits the JVM.

Controlling the Bind Address with -b
WildFly binds sockets to the IP addresses and interfaces contained in the elements in <interfaces>

, and . (See and for furtherstandalone.xml domain.xml host.xml Interfaces Socket Bindings

information on these elements.) The standard configurations that ship with WildFly includes two interface

configurations:

<interfaces>

 <interface name="management">

 <inet-address value="${jboss.bind.address.management:127.0.0.1}"/>

 </interface>

 <interface name="public">

 <inet-address value="${jboss.bind.address:127.0.0.1}"/>

 </interface>

</interfaces>

Those configurations use the values of system properties and jboss.bind.address.management

 if they are set. If they are not set, 127.0.0.1 is used for each value.jboss.bind.address

As noted in , the AS supports the and command line switches. The onlyCommon Parameters -b -b<name>

function of these switches is to set system properties and jboss.bind.address

 respectively. However, because of the way the standard WildFlyjboss.bind.address.<name>

configuration files are set up, using the switches can indirectly control how the AS binds sockets.-b

, using this as your launch command causes allIf your interface configurations match those shown above

sockets associated with interface named "public" to be bound to .192.168.100.10

Latest WildFly Documentation

JBoss Community Documentation Page of 243 2293

$JBOSS_HOME/bin/standalone.sh -b=192.168.100.10

In the standard config files, public interfaces are those not associated with server management. Public

interfaces handle normal end-user requests.

Interface names

The interface named "public" is not inherently special. It is provided as a convenience. You can

name your interfaces to suit your environment.

To bind the public interfaces to all IPv4 addresses (the IPv4 wildcard address), use the following syntax:

$JBOSS_HOME/bin/standalone.sh -b=0.0.0.0

You can also bind the management interfaces, as follows:

$JBOSS_HOME/bin/standalone.sh -bmanagement=192.168.100.10

In the standard config files, management interfaces are those sockets associated with server management,

such as the socket used by the CLI, the HTTP socket used by the admin console, and the JMX connector

socket.

Be Careful

The switch only controls the interface bindings because the standard config files that ship with-b

WildFly sets things up that way. If you change the section in your configuration to<interfaces>

no longer use the system properties controlled by , then setting in your launch command will-b -b

have no effect.

For example, this perfectly valid setting for the "public" interface causes to have no effect on-b

the "public" interface:

<interface name="public">

 <nic name="eth0"/>

</interface>

The key point is the contents of the configuration files determine the configuration. Settings

 They only provide a shorter syntax forlike -b are not overrides of the configuration files.

setting a system properties that may or may not be referenced in the configuration files. They are

provided as a convenience, and you can choose to modify your configuration to ignore them.

Latest WildFly Documentation

JBoss Community Documentation Page of 244 2293

Controlling the Default Multicast Address with -u
WildFly may use multicast communication for some services, particularly those involving high availability

clustering. The multicast addresses and ports used are configured using the elements in socket-binding

 and . (See for further information on these elements.) Thestandalone.xml domain.xml Socket Bindings

standard HA configurations that ship with WildFly include two socket binding configurations that use a

default multicast address:

<socket-binding name="jgroups-mping" port="0"

multicast-address="${jboss.default.multicast.address:230.0.0.4}" multicast-port="45700"/>

<socket-binding name="jgroups-udp" port="55200"

multicast-address="${jboss.default.multicast.address:230.0.0.4}" multicast-port="45688"/>

Those configurations use the values of system property if it is set.jboss.default.multicast.address

If it is not set, 230.0.0.4 is used for each value. (The configuration may include other socket bindings for

multicast-based services that are not meant to use the default multicast address; e.g. a binding the

mod-cluster services use to communicate on a separate address/port with Apache httpd servers.)

As noted in , the AS supports the command line switch. The only function of thisCommon Parameters -u

switch is to set system property . However, because of the wayjboss.default.multicast.address

the standard AS configuration files are set up, using the switches can indirectly control how the AS uses-u

multicast.

, using this as your launch command causesIf your socket binding configurations match those shown above

the service using those sockets configurations to be communicate over multicast address .230.0.1.2

$JBOSS_HOME/bin/standalone.sh -u=230.0.1.2

Be Careful

As with the switch, the switch only controls the multicast address used because the standard-b -u

config files that ship with WildFly sets things up that way. If you change the <socket-binding>

sections in your configuration to no longer use the system properties controlled by , then setting -u

 in your launch command will have no effect.-u

Latest WildFly Documentation

JBoss Community Documentation Page of 245 2293

5.9.2 Suspend, resume and graceful shutdown

Core Concepts
Wildfly introduces the ability to suspend and resume servers. This can be combined with shutdown to enable

the server to gracefully finish processing all active requests and then shut down. When a server is

suspended it will immediately stop accepting new requests, but wait for existing request to complete. A

suspended server can be resumed at any point, and will begin processing requests immediately.

Suspending and resuming has no effect on deployment state (e.g. if a server is suspended singleton EJB's

will not be destroyed). As of Wildfly 11 it is also possible to start a server in suspended mode which means it

will not accept requests until it has been resumed, servers will also be suspended during the boot process,

so no requests will be accepted until the startup process is 100% complete.

Suspend/Resume has no effect on management operations, management operations can still be performed

while a server is suspended. If you wish to perform a management operation that will affect the operation of

the server (e.g. changing a datasource) you can suspend the server, perform the operation, then resume the

server. This allows all requests to finish, and makes sure that no requests are running while the

management changes are taking place.

When a server is suspending it goes through four different phases:

 - The normal state, the server is accepting requests and running normallyRUNNING

 - In PRE_SUSPEND the server will notify external parties that it is about to suspend,PRE_SUSPEND

for example mod_cluster will notify the load balancer that the deployment is suspending. Requests

are still accepted in this phase.

 - All new requests are rejected, and the server is waiting for all active requests toSUSPENDING

finish. If there are no active requests at suspend time this phase will be skipped.

 - All requests have completed, and the server is suspended.SUSPENDED

Starting Suspended
In order to start into suspended mode when using a standalone server you need to add

 to the command line. It is also possible to specify the start-mode in the --start-mode=suspend reload

operation to cause the server to reload into suspended mode (other possible values for start-mode are

 and).normal admin-only

In domain mode servers can be started in suspended mode by passing the parameter to anysuspend=true

command that causes a server to start, restart or reload (e.g. :start-servers(suspend=true)).

Latest WildFly Documentation

JBoss Community Documentation Page of 246 2293

The Request Controller Subsystem
Wildfly introduces a new subsystem called the Request Controller Subsystem. This optional subsystem

tracks all requests at their entry point, which how the graceful shutdown mechanism know when all requests

are done (it also allows you to provide a global limit on the total number of running requests).

If this subsystem is not present suspend/resume will be limited, in general things that happen in the

PRE_SUSPEND phase will work as normal (stopping message delivery, notifying the load balancer),

however the server will not wait for all requests to complete and instead move straight to SUSPENDED

mode.

There is a small performance penalty associated with the request controller subsystem (about on par with

enabling statistics), so if you do not require the suspend/resume functionality this subsystem can be

removed to get a small performance boost.

Latest WildFly Documentation

JBoss Community Documentation Page of 247 2293

Subsystem Integrations
Suspend/Resume is a service provided by the Wildfly platform that any subsystem may choose to integrate

with. Some subsystems integrate directly with the suspend controller, while others integrate through the

request controller subsystem.

The following subsystems support graceful shutdown. Note that only subsystems that provide an external

entry point to the server need graceful shutdown support, for example the JAX-RS subsystem does not

require suspend/resume support as all access to JAX-RS is through the web connector.

 - Undertow will wait for all requests to finishUndertow

 - The mod_cluster subsystem will notify the load balancer that the server is suspendingmod_cluster

in the PRE_SUSPEND phase.

 - EJB will wait for all remote EJB requests and MDB message deliveries to finish. Delivery toEJB

MDB's is stopped in the PRE_SUSPEND phase. EJB timers are suspended, and missed timers will

be activated when the server is resumed.

 - Batch jobs will be stopped at a checkpoint while the server is suspending. They will beBatch

restarted from that checkpoint when the server returns to running mode.

 - The server will wait for all active jobs to finish. All jobs that have already beenEE Concurrency

queued will be skipped.

 - transaction subsystem waits for all running transactions to finish while server isTransactions

suspending. During that time server refuses to start any new transaction. But any in-flight transaction

will be serviced - e.g. it means that server accepts any incoming remote call which carries context of

the transaction already started at the suspending server.

When you work with EJBs you have to enable the graceful shutdown functionality by setting attribute

 to .enable-graceful-txn-shutdown true

(at the xml, for example):ejb3 subsystem

<enable-graceful-txn-shutdown value="false"/>

By graceful shutdown it's for ejb subsystem.default disabled

The reason is that the behavior might be unwelcome in cluster environments, as the server notifies

remote clients that the node is no longer available for remote calls only after the transactions are

finished. During that brief window of time, the client of a cluster may send a new request to a node

that is shutting down and will refuse the request because it is not related to an existing transaction.

If this attribute is set to , we disable the gracefulenable-graceful-txn-shutdown false

behavior and EJB clients will not attempt to invoke the node when it suspends, regardless of active

transactions.

Latest WildFly Documentation

JBoss Community Documentation Page of 248 2293

Standalone Mode
Suspend/Resume can be controlled via the following CLI operations in standalone mode:

:suspend(timeout=z)

Suspends the server. If the timeout is specified it will wait up to the specified number of seconds for all

requests to finish. If there is no timeout specified or the value is less than zero it will wait indefinitely.

:resume

Resumes a previously suspended server. The server should be able to begin serving requests immediately.

:read-attribute(name=suspend-state)

Returns the current suspend state of the server.

:shutdown(timeout=x)

If a timeout parameter is passed to the shutdown command then a graceful shutdown will be performed. The

server will be suspended, and will wait up to the specified number of seconds for all requests to finish before

shutting down. A timeout value of less than zero means it will wait indefinitely.

Domain Mode
Domain mode has similar commands as standalone mode, however they can be applied at both the global

and server group levels:

Whole Domain

:suspend-servers(timeout=x)

:resume-servers

:stop-servers(timeout=x)

Server Group

/server-group=main-server-group:suspend-servers(timeout=x)

/server-group=main-server-group:resume-servers

/server-group=main-server-group:stop-servers(timeout=x)

 Server

/host=master/server-config=server-one:suspend(timeout=x)

/host=master/server-config=server-one:resume

/host=master/server-config=server-one:stop(timeout=x)

Latest WildFly Documentation

JBoss Community Documentation Page of 249 2293

5.9.3 Starting & stopping Servers in a Managed Domain

Starting a standalone server is done through the script. However in a managedbin/standalone.sh

domain server instances are managed by the domain controller and need to be started through the

management layer:

First of all, get to know which are configured on a particular :servers host

[domain@localhost:9990 /] :read-children-names(child-type=host)

{

 "outcome" => "success",

 "result" => ["local"]

}

[domain@localhost:9990 /] /host=local:read-children-names(child-type=server-config)

{

 "outcome" => "success",

 "result" => [

 "my-server",

 "server-one",

 "server-three"

]

}

Now that we know, that there are two configured on " ", we can go ahead and checkservers host local

their status:

[domain@localhost:9990 /]

/host=local/server-config=server-one:read-resource(include-runtime=true)

{

 "outcome" => "success",

 "result" => {

 "auto-start" => true,

 "group" => "main-server-group",

 "interface" => undefined,

 "name" => "server-one",

 "path" => undefined,

 "socket-binding-group" => undefined,

 "socket-binding-port-offset" => undefined,

 "status" => "STARTED",

 "system-property" => undefined,

 "jvm" => {"default" => undefined}

 }

}

You can change the server state through the " " and " " operationsstart stop

Latest WildFly Documentation

JBoss Community Documentation Page of 250 2293

[domain@localhost:9990 /] /host=local/server-config=server-one:stop

{

 "outcome" => "success",

 "result" => "STOPPING"

}

Navigating through the domain topology is much more simple when you use the web interface.

5.9.4 Controlling JVM settings

Configuration of the JVM settings is different for a managed domain and a standalone server. In a managed

domain, the domain controller components are responsible for starting and stoping server processes and

hence determine the JVM settings. For a standalone server, it's the responsibility of the process that started

the server (e.g. passing them as command line arguments).

Managed Domain
In a managed domain the JVM settings can be declared at different scopes: For a specific server group, for

a host or for a particular server. If not declared, the settings are inherited from the parent scope. This allows

you to customize or extend the JVM settings within every layer.

Let's take a look at the JVM declaration for a server group:

<server-groups>

 <server-group name="main-server-group" profile="default">

 <jvm name="default">

 <heap size="64m" max-size="512m"/>

 </jvm>

 <socket-binding-group ref="standard-sockets"/>

 </server-group>

 <server-group name="other-server-group" profile="default">

 <jvm name="default">

 <heap size="64m" max-size="512m"/>

 </jvm>

 <socket-binding-group ref="standard-sockets"/>

 </server-group>

</server-groups>

 (See domain/configuration/domain.xml)

In this example the server group "main-server-group" declares a heap size of and a maximum heap size64m

of . Any server that belongs to this group will inherit these settings. You can change these settings for512m

the group as a whole, or a specific server or host:

Latest WildFly Documentation

JBoss Community Documentation Page of 251 2293

<servers>

 <server name="server-one" group="main-server-group" auto-start="true">

 <jvm name="default"/>

 </server>

 <server name="server-two" group="main-server-group" auto-start="true">

 <jvm name="default">

 <heap size="64m" max-size="256m"/>

 </jvm>

 <socket-binding-group ref="standard-sockets" port-offset="150"/>

 </server>

 <server name="server-three" group="other-server-group" auto-start="false">

 <socket-binding-group ref="standard-sockets" port-offset="250"/>

 </server>

</servers>

(See domain/configuration/host.xml)

In this case, , belongs to the and inherits the JVM settings named , butserver-two main-server-group default

declares a lower maximum heap size.

[domain@localhost:9999 /] /host=local/server-config=server-two/jvm=default:read-resource

{

 "outcome" => "success",

 "result" => {

 "heap-size" => "64m",

 "max-heap-size" => "256m",

 }

}

Standalone Server
For a standalone sever you have to pass in the JVM settings either as command line arguments when

executing the script, or by declaring them in $JBOSS_HOME/bin/standalone.sh

. (For Windows users, the script to execute is $JBOSS_HOME/bin/standalone.conf

 while the JVM settings can be declared in %JBOSS_HOME%/bin/standalone.bat

%JBOSS_HOME%/bin/standalone.conf.bat.)

5.9.5 Administrative audit logging

WildFly comes with audit logging built in for management operations affecting the management model. By

default it is turned off. The information is output as JSON records.

The default configuration of audit logging in standalone.xml looks as follows:

Latest WildFly Documentation

JBoss Community Documentation Page of 252 2293

<management>

 <security-realms>

...

 </security-realms>

 <audit-log>

 <formatters>

 <json-formatter name="json-formatter"/>

 </formatters>

 <handlers>

 <file-handler name="file" formatter="json-formatter" path="audit-log.log"

relative-to="jboss.server.data.dir"/>

 </handlers>

 <logger log-boot="true" log-read-only="true" enabled="false">

 <handlers>

 <handler name="file"/>

 </handlers>

 </logger>

 </audit-log>

...

Looking at this via the CLI it looks like

[standalone@localhost:9990 /]

/core-service=management/access=audit:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {

 "file-handler" => {"file" => {

 "formatter" => "json-formatter",

 "max-failure-count" => 10,

 "path" => "audit-log.log",

 "relative-to" => "jboss.server.data.dir"

 }},

 "json-formatter" => {"json-formatter" => {

 "compact" => false,

 "date-format" => "yyyy-MM-dd HH:mm:ss",

 "date-separator" => " - ",

 "escape-control-characters" => false,

 "escape-new-line" => false,

 "include-date" => true

 }},

 "logger" => {"audit-log" => {

 "enabled" => false,

 "log-boot" => true,

 "log-read-only" => false,

 "handler" => {"file" => {}}

 }},

 "syslog-handler" => undefined

 }

}

To enable it via CLI you need just

Latest WildFly Documentation

JBoss Community Documentation Page of 253 2293

[standalone@localhost:9990 /]

/core-service=management/access=audit/logger=audit-log:write-attribute(name=enabled,value=true)

{"outcome" => "success"}

Audit data are stored in standalone/data/audit-log.log.

The audit logging subsystem has a lot of internal dependencies, and it logs operations changing,

enabling and disabling its components. When configuring or changing things at runtime it is a good

idea to make these changes as part of a CLI batch. For example if you are adding a syslog handler

you need to add the handler and its information as one step. Similarly if you are using a file

handler, and want to change its and attributes, that needs to happen as onepath relative-to

step.

JSON Formatter
The first thing that needs configuring is the formatter, we currently support outputting log records as JSON.

You can define several formatters, for use with different handlers. A log record has the following format, and

it is the formatter's job to format the data presented:

2013-08-12 11:01:12 - {

 "type" : "core",

 "r/o" : false,

 "booting" : false,

 "version" : "8.0.0.Alpha4",

 "user" : "$local",

 "domainUUID" : null,

 "access" : "NATIVE",

 "remote-address" : "127.0.0.1/127.0.0.1",

 "success" : true,

 "ops" : [JMX|WFLY8:JMX subsystem configuration],

 "operation" : "write-attribute",

 "name" : "enabled",

 "value" : true,

 "operation-headers" : {"caller-type" : "user"}

 }]

}

It includes an optional timestamp and then the following information in the json record

Latest WildFly Documentation

JBoss Community Documentation Page of 254 2293

Field name Description

type This can have the values , meaning it is a management operation, or core jmx

meaning it comes from the jmx subsystem (see the jmx subsystem for configuration of

the jmx subsystem's audit logging)

r/o if the operation does not change the management model, otherwisetrue false

booting if the operation was executed during the bootup process, if it wastrue false

executed once the server is up and running

version The version number of the WildFly instance

user The username of the authenticated user. In this case the operation has been logged

via the CLI on the same machine as the running server, so the special user$local

is used

domainUUID An ID to link together all operations as they are propagated from the Doman

Controller to it servers, slave Host Controllers, and slave Host Controller servers

access This can have one of the following values:

* - The operation came in through the native management interface, forNATIVE

example the CLI

* - The operation came in through the domain HTTP interface, for example theHTTP

admin console

* - The operation came in through the JMX subsystem. See for how toJMX JMX

configure audit logging for JMX.

remote-address The address of the client executing this operation

success if the operation succeeded, if it was rolled backtrue false

ops The operations being executed. This is a list of the operations serialized to JSON. At

boot this will be all the operations resulting from parsing the xml. Once booted the list

will typically just contain a single entry

The json formatter resource has the following attributes:

Latest WildFly Documentation

JBoss Community Documentation Page of 255 2293

Attribute Description

include-date Boolan toggling whether or not to include the timestamp in the

formatted log records

date-separator A string containing characters to separate the date and the rest of the

formatted log message. Will be ignored if include-date=false

date-format The date format to use for the timestamp as understood by

. Will be ignored if java.text.SimpleDateFormat

include-date=false

compact If true will format the JSON on one line. There may still be values

containing new lines, so if having the whole record on one line is

important, set escape-new-line or escape-control-characters to true

escape-control-characters If it will escape all control characters (ascii entries with a decimaltrue

value < 32) with the ascii code in octal, e.g. a new line becomes '#012'.

If this is , it will override true escape-new-line=false

escape-new-line If it will escape all new lines with the ascii code in octal, e.g.true

"#012".

Handlers
A handler is responsible for taking the formatted data and logging it to a location. There are currently two

types of handlers, File and Syslog. You can configure several of each type of handler and use them to log

information.

Latest WildFly Documentation

JBoss Community Documentation Page of 256 2293

File handler
The file handlers log the audit log records to a file on the server. The attributes for the file handler are

Attribute Description Read

Only

formatter The name of a JSON formatter to use to format the log records false

path The path of the audit log file false

relative-to The name of another previously named path, or of one of the

standard paths provided by the system. If isrelative-to

provided, the value of the attribute is treated as relative topath

the path specified by this attribute

false

failure-count The number of logging failures since the handler was initialized true

max-failure-count The maximum number of logging failures before disabling this

handler

false

disabled-due-to-failure if this handler was disabled due to logging failurestrue true

In our standard configuration and ,path=audit-log.log relative-to=jboss.server.data.dir

typically this will be $JBOSS_HOME/standalone/data/audit-log.log

Syslog handler
The default configuration does not have syslog audit logging set up. Syslog is a better choice for audit

logging since you can log to a remote syslog server, and secure the authentication to happen over TLS with

client certificate authentication. Syslog servers vary a lot in their capabilities so not all settings in this section

apply to all syslog servers. We have tested with .rsyslog

The address for the syslog handler is

 and just like file handlers you can/core-service=management/access=audit/syslog-handler=*

add as many syslog entries as you like. The syslog handler resources reference the main RFC's for syslog a

fair bit, for reference they can be found at:

*http://www.ietf.org/rfc/rfc3164.txt

*http://www.ietf.org/rfc/rfc5424.txt

*http://www.ietf.org/rfc/rfc6587.txt

The syslog handler resource has the following attributes:

http://www.rsyslog.com
http://www.ietf.org/rfc/rfc3164.txt
http://www.ietf.org/rfc/rfc5424.txt
http://www.ietf.org/rfc/rfc6587.txt

Latest WildFly Documentation

JBoss Community Documentation Page of 257 2293

formatter The name of a JSON formatter to use to format the log records false

failure-count The number of logging failures since the handler was initialized true

max-failure-count The maximum number of logging failures before disabling this

handler

false

disabled-due-to-failure if this handler was disabled due to logging failurestrue true

syslog-format Whether to set the syslog format to the one specified in

RFC-5424 or RFC-3164

false

max-length The maximum length in bytes a log message, including the

header, is allowed to be. If undefined, it will default to 1024 bytes

if the syslog-format is RFC3164, or 2048 bytes if the

syslog-format is RFC5424.

false

truncate Whether or not a message, including the header, should truncate

the message if the length in bytes is greater than the maximum

length. If set to false messages will be split and sent with the

same header values

false

When adding a syslog handler you also need to add the protocol it will use to communicate with the syslog

server. The valid choices for protocol are , and . The protocol must be added at the same timeUDP TCP TLS

as you add the syslog handler, or it will fail. Also, you can only add one protocol for the handler.

UDP
Configures the handler to use UDP to communicate with the syslog server. The address of the resourceUDP

is . The attributes/core-service=management/access=audit/syslog-handler=*/protocol=udp

of the resource are:UDP

Attribute Description

host The host of the syslog server for the udp requests

port The port of the syslog server listening for the udp requests

Latest WildFly Documentation

JBoss Community Documentation Page of 258 2293

TCP
Configures the handler to use TCP to communicate with the syslog server. The address of the resourceTCP

is . The attributes/core-service=management/access=audit/syslog-handler=*/protocol=tcp

of the resource are:TCP

Attribute Description

host The host of the syslog server for the tcp requests

port The port of the syslog server listening for the tcp requests

message-transfer The message transfer setting as described in section 3.4 of RFC-6587. This can

either be OCTET_COUNTING as described in section 3.4.1 of RFC-6587, or

NON_TRANSPARENT_FRAMING as described in section 3.4.1 of RFC-6587

TLS
Configures the handler to use TLC to communicate securely with the syslog server. The address of the TLS

resource is . The/core-service=management/access=audit/syslog-handler=*/protocol=tls

attributes of the resource are the same as for :TLS TCP

Attribute Description

host The host of the syslog server for the tls requests

port The port of the syslog server listening for the tls requests

message-transfer The message transfer setting as described in section 3.4 of RFC-6587. This can

either be OCTET_COUNTING as described in section 3.4.1 of RFC-6587, or

NON_TRANSPARENT_FRAMING as described in section 3.4.1 of RFC-6587

If the syslog server's TLS certificate is not signed by a certificate signing authority, you will need to set up a

truststore to trust the certificate. The resource for the trust store is a child of the resource, and the fullTLS

address is

/core-service=management/access=audit/syslog-handler=*/protocol=tls/authentication=truststore

. The attributes of the truststore resource are:

Attribute Description

keystore-password The password for the truststore

keystore-path The path of the truststore

keystore-relative-to The name of another previously named path, or of one of the standard paths

provided by the system. If is provided, the valuekeystore-relative-to

of the attribute is treated as relative to the path specified bykeystore-path

this attribute

Latest WildFly Documentation

JBoss Community Documentation Page of 259 2293

TLS with Client certificate authentication.

If you have set up the syslog server to require client certificate authentication, when creating your handler

you will also need to set up a client certificate store containing the certificate to be presented to the syslog

server. The address of the client certificate store resource is

/core-service=management/access=audit/syslog-handler=*/protocol=tls/authentication=client-certificate-store

and its attributes are:

Attribute Description

keystore-password The password for the keystore

key-password The password for the keystore key

keystore-path The path of the keystore

keystore-relative-to The name of another previously named path, or of one of the standard paths

provided by the system. If is provided, the valuekeystore-relative-to

of the attribute is treated as relative to the path specified bykeystore-path

this attribute

Logger configuration
The final part that needs configuring is the logger for the management operations. This references one or

more handlers and is configured at /core-service=management/access=audit/logger=audit-log

. The attributes for this resource are:

Attribute Description

enabled to enable logging of the management operationstrue

log-boot to log the management operations when booting the server, otherwisetrue false

log-read-only If all operations will be audit logged, if only operations that change thetrue false

model will be logged

Then which handlers are used to log the management operations are configured as children ofhandler=*

the logger.

Domain Mode (host specific configuration)
In domain mode audit logging is configured for each host in its file. This means that whenhost.xml

connecting to the DC, the configuration of the audit logging is under the host's entry, e.g. here is the default

configuration:

Latest WildFly Documentation

JBoss Community Documentation Page of 260 2293

[domain@localhost:9990 /]

/host=master/core-service=management/access=audit:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {

 "file-handler" => {

 "host-file" => {

 "formatter" => "json-formatter",

 "max-failure-count" => 10,

 "path" => "audit-log.log",

 "relative-to" => "jboss.domain.data.dir"

 },

 "server-file" => {

 "formatter" => "json-formatter",

 "max-failure-count" => 10,

 "path" => "audit-log.log",

 "relative-to" => "jboss.server.data.dir"

 }

 },

 "json-formatter" => {"json-formatter" => {

 "compact" => false,

 "date-format" => "yyyy-MM-dd HH:mm:ss",

 "date-separator" => " - ",

 "escape-control-characters" => false,

 "escape-new-line" => false,

 "include-date" => true

 }},

 "logger" => {"audit-log" => {

 "enabled" => false,

 "log-boot" => true,

 "log-read-only" => false,

 "handler" => {"host-file" => {}}

 }},

 "server-logger" => {"audit-log" => {

 "enabled" => false,

 "log-boot" => true,

 "log-read-only" => false,

 "handler" => {"server-file" => {}}

 }},

 "syslog-handler" => undefined

 }

}

We now have two file handlers, one called used to configure the file to log managementhost-file

operations on the host, and one called used to log management operations executed on theserver-file

servers. Then is used to configure the logger for the host controller, referencing the logger=audit-log

 handler. is used to configure the logger for the managedhost-file server-logger=audit-log

servers, referencing the handler. The attributes for are theserver-file server-logger=audit-log

same as for in the previous section. Having the host controller and serverserver-logger=audit-log

loggers configured independently means we can control audit logging for managed servers and the host

controller independently.

Latest WildFly Documentation

JBoss Community Documentation Page of 261 2293

5.9.6 Canceling management operations

WildFly includes the ability to use the CLI to cancel management requests that are not proceeding normally.

Latest WildFly Documentation

JBoss Community Documentation Page of 262 2293

The cancel-non-progressing-operation operation
The operation instructs the target process to find any operationcancel-non-progressing-operation

that isn't proceeding normally and cancel it.

On a standalone server:

[standalone@localhost:9990 /]

/core-service=management/service=management-operations:cancel-non-progressing-operation

{

 "outcome" => "success",

 "result" => "-1155777943"

}

The result value is an internal identification number for the operation that was cancelled.

On a managed domain host controller, the equivalent resource is in the host=<hostname> portion of the

management resource tree:

[domain@localhost:9990 /]

/host=host-a/core-service=management/service=management-operations:cancel-non-progressing-operation
{

"outcome" => "success",

 "result" => "2156877946"

}

An operation can be cancelled on an individual managed domain server as well:

[domain@localhost:9990 /]

/host=host-a/server=server-one/core-service=management/service=management-operations:cancel-non-progressing-operation
{

"outcome" => "success",

 "result" => "6497786512"

}

An operation is considered to be not proceeding normally if it has been executing with the exclusive

operation lock held for longer than 15 seconds. Read-only operations do not acquire the exclusive operation

lock, so this operation will not cancel read-only operations. Operations blocking waiting for another operation

to release the exclusive lock will also not be cancelled.

If there isn't any operation that is failing to proceed normally, there will be a failure response:

[standalone@localhost:9990 /]

/core-service=management/service=management-operations:cancel-non-progressing-operation

{

 "outcome" => "failed",

 "failure-description" => "WFLYDM0089: No operation was found that has been holding the

operation execution write lock for long than [15] seconds",

 "rolled-back" => true

}

Latest WildFly Documentation

JBoss Community Documentation Page of 263 2293

The find-non-progressing-operation operation
To simply learn the id of an operation that isn't proceeding normally, but not cancel it, use the

 operation:find-non-progressing-operation

[standalone@localhost:9990 /]

/core-service=management/service=management-operations:find-non-progressing-operation

{

 "outcome" => "success",

 "result" => "-1155777943"

}

If there is no non-progressing operation, the outcome will still be but the result will be .success undefined

Once the id of the operation is known, the management resource for the operation can be examined to learn

more about its status.

Examining the status of an active operation
There is a management resource for any currently executing operation that can be queried:

[standalone@localhost:9990 /]

/core-service=management/service=management-operations/active-operation=-1155777943:read-resource(include-runtime=true)
{

"outcome" => "success",

 "result" => {

 "access-mechanism" => "undefined",

 "address" => [

 ("deployment" => "example")

],

 "caller-thread" => "management-handler-thread - 24",

 "cancelled" => false,

 "exclusive-running-time" => 101918273645L,

 "execution-status" => "awaiting-stability",

 "operation" => "deploy",

 "running-time" => 101918279999L

 }

}

The response includes the following attributes:

Latest WildFly Documentation

JBoss Community Documentation Page of 264 2293

Field Meaning

access-mechanism The mechanism used to submit a request to the server. NATIVE, JMX, HTTP

address The address of the resource targeted by the operation. The value in the final

element of the address will be '<hidden>' if the caller is not authorized to address

the operation's target resource.

caller-thread The name of the thread that is executing the operation.

cancelled Whether the operation has been cancelled.

exclusive-running-time Amount of time in nanoseconds the operation has been executing with the

exclusive operation execution lock held, or -1 if the operation does not hold the

exclusive execution lock.

execution-status The current activity of the operation. See below for details.

operation The name of the operation, or '<hidden>' if the caller is not authorized to address

the operation's target resource.

running-time Amount of time the operation has been executing, in nanoseconds.

The following are the values for the attribute:execution-status

Value Meaning

executing The caller thread is actively executing

awaiting-other-operation The caller thread is blocking waiting for another operation to release the

exclusive execution lock

awaiting-stability The caller thread has made changes to the service container and is waiting for

the service container to stabilize

completing The operation is committed and is completing execution

rolling-back The operation is rolling back

All currently executing operations can be viewed in one request using the read-children-resources

operation:

Latest WildFly Documentation

JBoss Community Documentation Page of 265 2293

[standalone@localhost:9990 /]

/core-service=management/service=management-operations:read-children-resources(child-type=active-operation)
{

"outcome" => "success",

 "result" => {"-1155777943" => {

 "access-mechanism" => "undefined",

 "address" => [

 ("deployment" => "example")

],

 "caller-thread" => "management-handler-thread - 24",

 "cancelled" => false,

 "exclusive-running-time" => 101918273645L,

 "execution-status" => "awaiting-stability",

 "operation" => "deploy",

 "running-time" => 101918279999L

 },

 {"-1246693202" => {

 "access-mechanism" => "undefined",

 "address" => [

 ("core-service" => "management"),

 ("service" => "management-operations")

],

 "caller-thread" => "management-handler-thread - 30",

 "cancelled" => false,

 "exclusive-running-time" => -1L,

 "execution-status" => "executing",

 "operation" => "read-children-resources",

 "running-time" => 3356000L

 }}

}

Canceling a specific operation
The operation is a convenience operation for identifying andcancel-non-progressing-operation

canceling an operation. However, an administrator can examine the active-operation resources to identify

any operation, and then directly cancel it by invoking the operation on the resource for the desiredcancel

operation.

[standalone@localhost:9990 /]

/core-service=management/service=management-operations/active-operation=-1155777943:cancel

{

 "outcome" => "success",

 "result" => undefined

}

Latest WildFly Documentation

JBoss Community Documentation Page of 266 2293

Controlling operation blocking time
As an operation executes, the execution thread may block at various points, particularly while waiting for the

service container to stabilize following any changes. Since an operation may be holding the exclusive

execution lock while blocking, in WildFly execution behavior was changed to ensure that blocking will

eventually time out, resulting in roll back of the operation.

The default blocking timeout is 300 seconds. This is intentionally long, as the idea is to only trigger a timeout

when something has definitely gone wrong with the operation, without any false positives.

An administrator can control the blocking timeout for an individual operation by using the

 operation header. For example, if a particular deployment is known to take anblocking-timeout

extremely long time to deploy, the default 300 second timeout could be increased:

[standalone@localhost:9990 /] deploy /tmp/mega.war --headers={blocking-timeout=450}

Note the blocking timeout is a guaranteed maximum execution time for an operation. If it only a timeoutnot

that will be enforced at various points during operation execution.

5.9.7 Configuration file history

The management operations may modify the model. When this occurs the xml backing the model is written

out again reflecting the latest changes. In addition a full history of the file is maintained. The history of the file

goes in a separate directory under the configuration directory.

As mentioned in the default configuration file can be selected usingCommand line parameters#parameters

a command-line parameter. For a standalone server instance the history of the active isstandalone.xml

kept in /standalone_xml_history (See jboss.server.config.dir Command line

 for more details). For a domain the active and parameters#standalone_system_properties domain.xml

 histories are kept in /domain_xml_history and host.xml jboss.domain.config.dir

/host_xml_history.jboss.domain.config.dir

The rest of this section will only discuss the history for . The concepts are exactly thestandalone.xml

same for and .domain.xml host.xml

Within itself following a successful first time boot we end up with three newstandalone_xml_history

files:

https://docs.jboss.org/author/display/WFLY10/Command+line+parameters#Commandlineparameters-parameters
https://docs.jboss.org/author/display/WFLY10/Command+line+parameters#Commandlineparameters-standalonesystemproperties
https://docs.jboss.org/author/display/WFLY10/Command+line+parameters#Commandlineparameters-standalonesystemproperties

Latest WildFly Documentation

JBoss Community Documentation Page of 267 2293

 - This contains the original configuration that was used the first time westandalone.initial.xml

successfully booted. This file will never be overwritten. You may of course delete the history directory

and any files in it at any stage.

 - This contains the original configuration that was used for the laststandalone.boot.xml

successful boot of the server. This gets overwritten every time we boot the server successfully.

 - At this stage the contents will be identical to .standalone.last.xml standalone.boot.xml

This file gets overwritten each time the server successfully writes the configuration, if there was an

unexpected failure writing the configuration this file is the last known successful write.

 contains a directory called which should be empty. Now if westandalone_xml_history current

execute a management operation that modifies the model, for example adding a new system property using

the CLI:

[standalone@localhost:9990 /] /system-property=test:add(value="test123")

{"outcome" => "success"}

What happens is:

The original configuration file is backed up to

. The next change to the modelstandalone_xml_history/current/standalone.v1.xml

would result in a file called etc. The 100 most recent of these files are kept.standalone.v2.xml

The change is applied to the original configuration file

The changed original configuration file is copied to standalone.last.xml

When restarting the server, any existing directory is moved to astandalone_xml_history/current

new timestamped folder within the , and a new folder is created.standalone_xml_history current

These timestamped folders are kept for 30 days.

Snapshots
In addition to the backups taken by the server as described above you can manually take take snapshots

which will be stored in the folder under the folder, the automatic backupssnapshot _xml_history

described above are subject to automatic house keeping so will eventually be automatically removed, the

snapshots on the other hand can be entirely managed by the administrator.

You may also take your own snapshots using the CLI:

[standalone@localhost:9990 /] :take-snapshot

{

 "outcome" => "success",

 "result" => {"name" =>

"/Users/kabir/wildfly/standalone/configuration/standalone_xml_history/snapshot/20110630-172258657standalone.xml"}
}

You can also use the CLI to list all the snapshots

Latest WildFly Documentation

JBoss Community Documentation Page of 268 2293

[standalone@localhost:9990 /] :list-snapshots

{

 "outcome" => "success",

 "result" => {

 "directory" =>

"/Users/kabir/wildfly/standalone/configuration/standalone_xml_history/snapshot",

 "names" => [

 "20110630-165714239standalone.xml",

 "20110630-165821795standalone.xml",

 "20110630-170113581standalone.xml",

 "20110630-171411463standalone.xml",

 "20110630-171908397standalone.xml",

 "20110630-172258657standalone.xml"

]

 }

}

 To delete a particular snapshot:

[standalone@localhost:9990 /] :delete-snapshot(name="20110630-165714239standalone.xml")

{"outcome" => "success"}

and to delete all snapshots:

[standalone@localhost:9990 /] :delete-snapshot(name="all")

{"outcome" => "success"}

In domain mode executing the snapshot operations against the root node will work against the domain

model. To do this for a host model you need to navigate to the host in question:

[domain@localhost:9990 /] /host=master:list-snapshots

{

 "outcome" => "success",

 "result" => {

 "domain-results" => {"step-1" => {

 "directory" =>

"/Users/kabir/wildfly/domain/configuration/host_xml_history/snapshot",

 "names" => [

 "20110630-141129571host.xml",

 "20110630-172522225host.xml"

]

 }},

 "server-operations" => undefined

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 269 2293

Subsequent Starts
For subsequent server starts it may be desirable to take the state of the server back to one of the previously

known states, for a number of items an abbreviated reverence to the file can be used:

Abreviation Parameter Description

initial --server-config=initial This will start the server using the initial configuration first

used to start the server.

boot --server-config=boot This will use the configuration from the last successful boot

of the server.

last --server-config=last This will start the server using the configuration backed up

from the last successful save.

v? --server-config=v? This will server the _xml_history/current folder for the

configuration where ? is the number of the backup to use.

-? --server-config=-? The server will be started after searching the snapshot

folder for the configuration which matches this prefix.

In addition to this the parameter can always be used to specify a configuration relative--server-config

to the and finally if no matching configuration is found an attempt to locatejboss.server.config.dir

the configuration as an absolute path will be made.

5.10 Management API reference

This section is an in depth reference to the WildFly management API. Readers are encouraged to read the

 and sections for fundamental background information, asManagement Clients Core management concepts

well as the and sections for key task oriented information. This section isManagement tasks Domain Setup

meant as an in depth reference to delve into some of the key details.

5.10.1 Global operations

The WildFly management API includes a number of operations that apply to every resource.

Latest WildFly Documentation

JBoss Community Documentation Page of 270 2293

The read-resource operation
Reads a management resource's attribute values along with either basic or complete information about any

child resources. Supports the

following parameters, none of which are required:

 – (boolean, default is) – whether to include complete information about childrecursive false

resources, recursively.

 – (int) – The depth to which information about child resources should be includedrecursive-depth

if is . If not set, the depth will be unlimited; i.e. all descendant resources will berecursive true

included.

 – (boolean, default is) – whether to include remote resources in a recursive queryproxies false

(i.e. host level resources from slave Host Controllers in a query of the Domain Controller; running

server resources in a query of a host).

 – (boolean, default is) – whether to include runtime attributes (i.e. thoseinclude-runtime false

whose value does not come from the persistent configuration) in the response.

 – (boolean, default is) – whether to include in the result default values notinclude-defaults true

set by users. Many attributes have a default value that will be used in the runtime if the users have not

provided an explicit value. If this parameter is the value for such attributes in the result will be false

. If the result will include the default value for such parameters.undefined true

The read-attribute operation
Reads the value of an individual attribute. Takes a single, required, parameter:

 – (string) – the name of the attribute to read.name

 – (boolean, default is) – whether to include in the result default values notinclude-defaults true

set by users. Many attributes have a default value that will be used in the runtime if the users have not

provided an explicit value. If this parameter is the value for such attributes in the result will be false

. If the result will include the default value for such parameters.undefined true

The write-attribute operation
Writes the value of an individual attribute. Takes two required parameters:

 – (string) – the name of the attribute to write.name

 – (type depends on the attribute being written) – the new value.value

The undefine-attribute operation
Sets the value of an individual attribute to the value, if such a value is allowed for the attribute.undefined

The operation will fail if the value is not allowed. Takes a single required parameter:undefined

 – (string) – the name of the attribute to write.name

Latest WildFly Documentation

JBoss Community Documentation Page of 271 2293

The list-add operation
Adds an element to the value of a list attribute, adding the element to the end of the list unless the optional

attribute is passed:index

 – (string) – the name of the list attribute to add new value to.name

 – (type depends on the element being written) – the new element to be added to the attributevalue

value.

 – (int, optional) – index where in the list to add the new element. By default it is index undefined

meaning add at the end. Index is zero based.

This operation will fail if the specified attribute is not a list.

The list-remove operation
Removes an element from the value of a list attribute, either the element at a specified , or the firstindex

element whose value matches a specified :value

 – (string) – the name of the list attribute to add new value to.name

 – (type depends on the element being written, optional) – the element to be removed. Optionalvalue

and ignored if is specified.index

 – (int, optional) – index in the list whose element should be removed. By default it is index

, meaning should be specified.undefined value

This operation will fail if the specified attribute is not a list.

The list-get operation
Gets one element from a list attribute by its index

 – (string) – the name of the list attributename

 – (int, required) – index of element to get from listindex

This operation will fail if the specified attribute is not a list.

The list-clear operation
Empties the list attribute. It is different from as it results in attribute of type list with:undefine-attribute

0 elements, whereas results in an value for the attribute:undefine-attribute undefined

 – (string) – the name of the list attributename

This operation will fail if the specified attribute is not a list.

Latest WildFly Documentation

JBoss Community Documentation Page of 272 2293

The map-put operation
Adds an key/value pair entry to the value of a map attribute:

 – (string) – the name of the map attribute to add the new entry to.name

 – (string) – the key of the new entry to be added.key

 – (type depends on the entry being written) – the value of the new entry to be added to thevalue

attribute value.

This operation will fail if the specified attribute is not a map.

The map-remove operation
Removes an entry from the value of a map attribute:

 – (string) – the name of the map attribute to remove the new entry from.name

 – (string) – the key of the entry to be removed.key

This operation will fail if the specified attribute is not a map.

The map-get operation
Gets the value of one entry from a map attribute

 – (string) – the name of the map attributename

 – (string) – the key of the entry.key

This operation will fail if the specified attribute is not a map.

The map-clear operation
Empties the map attribute. It is different from as it results in attribute of type map:undefine-attribute

with 0 entries, whereas results in an value for the attribute:undefine-attribute undefined

 – (string) – the name of the map attributename

This operation will fail if the specified attribute is not a map.

Latest WildFly Documentation

JBoss Community Documentation Page of 273 2293

The read-resource-description operation
Returns the description of a resource's attributes, types of children and, optionally, operations. Supports the

following parameters, none of which are required:

 – (boolean, default is) – whether to include information about child resources,recursive false

recursively.

 – (boolean, default is) – whether to include remote resources in a recursive queryproxies false

(i.e. host level resources from slave Host Controllers in a query of the Domain Controller; running

server resources in a query of a host)

 – (boolean, default is) – whether to include descriptions of the resource'soperations false

operations

 – (boolean, default is) – if is , whether to include descriptions ofinherited true operations true

operations inherited from higher level resources. The global operations described in this section are

themselves inherited from the root resource, so the primary effect of setting to isinherited false

to exclude the descriptions of the global operations from the output.

See for details on the result of this operation.Description of the Management Model

The read-operation-names operation
Returns a list of the names of all the operations the resource supports. Takes no parameters.

The read-operation-description operation
Returns the description of an operation, along with details of its parameter types and its return value. Takes

a single, required, parameter:

 – (string) – the name of the operationname

See for details on the result of this operation.Description of the Management Model

The read-children-types operation
Returns a list of the the resource supports. Takes two optional parameters:types of child resources

 – (boolean, default is) – whether to include alias children (i.e. those whichinclude-aliases false

are aliases of other sub-resources) in the response.

 – (boolean, default is) – whether to include singleton children (i.e.include-singletons false

those are children that acts as resource aggregate and are registered with a wildcard name) in the

response .wildfly-dev discussion around this topic

The read-children-names operation
Returns a list of the names of all child resources of a given . Takes a single, required, parameter:type

 – (string) – the name of the typechild-type

http://lists.jboss.org/pipermail/wildfly-dev/2014-August/002701.html

Latest WildFly Documentation

JBoss Community Documentation Page of 274 2293

The read-children-resources operation
Returns information about all of a resource's children that are of a given . For each child resource, thetype

returned information is equivalent to executing the operation on that resource. Takes theread-resource

following parameters, of which only {{child-type} is required:

 – (string) – the name of the type of child resourcechild-type

 – (boolean, default is) – whether to include complete information about childrecursive false

resources, recursively.

 – (int) – The depth to which information about child resources should be includedrecursive-depth

if is {{true}. If not set, the depth will be unlimited; i.e. all descendant resources will berecursive

included.

 – (boolean, default is) – whether to include remote resources in a recursive queryproxies false

(i.e. host level resources from slave Host Controllers in a query of the Domain Controller; running

server resources in a query of a host)

 – (boolean, default is) – whether to include runtime attributes (i.e. thoseinclude-runtime false

whose value does not come from the persistent configuration) in the response.

 – (boolean, default is) – whether to include in the result default values notinclude-defaults true

set by users. Many attributes have a default value that will be used in the runtime if the users have not

provided an explicit value. If this parameter is the value for such attributes in the result will be false

. If the result will include the default value for such parameters.undefined true

The read-attribute-group operation
Returns a list of attributes of a for a given attribute group name. For each attribute the returnedtype

information is equivalent to executing the operation of that resource. Takes the followingread-attribute

parameters, of which only {{name} is required:

 – (string) – the name of the attribute group to read.name

 – (boolean, default is) – whether to include in the result default values notinclude-defaults true

set by users. Many attributes have a default value that will be used in the runtime if the users have not

provided an explicit value. If this parameter is the value for such attributes in the result will be false

. If the result will include the default value for such parameters.undefined true

 – (boolean, default is) – whether to include runtime attributes (i.e. thoseinclude-runtime false

whose value does not come from the persistent configuration) in the response.

 – (boolean, default is) – whether to include alias attributes (i.e. thoseinclude-aliases false

which are alias of other attributes) in the response.

The read-attribute-group-names operation
Returns a list of attribute groups names for a given . Takes no parameters.type

Latest WildFly Documentation

JBoss Community Documentation Page of 275 2293

Standard Operations
Besides the global operations described above, by convention nearly every resource should expose an add

operation and a operation. Exceptions to this convention are the root resource, and resources thatremove

do not store persistent configuration and are created dynamically at runtime (e.g. resources representing the

JVM's platform mbeans or resources representing aspects of the running state of a deployment.)

The add operation
The operation that creates a new resource must be named . The operation may take zero or moreadd

parameters; what those parameters are depends on the resource being created.

The remove operation
The operation that removes an existing resource must be named . The operation should take noremove

parameters.

5.10.2 Detyped management and the jboss-dmr library

The management model exposed by WildFly is very large and complex. There are dozens, probably

hundreds of logical concepts involved – hosts, server groups, servers, subsystems, datasources, web

connectors, and on and on – each of which in a classic objected oriented API design could be represented

by a Java (i.e. a Java class or interface.) However, a primary goal in the development of WildFly'stype

native management API was to ensure that clients built to use the API had as few compile-time and run-time

dependencies on JBoss-provided classes as possible, and that the API exposed by those libraries be

powerful but also simple and stable. A management client running with the management libraries created for

an earlier version of WildFly should still work if used to manage a later version domain. The management

client libraries needed to be .forward compatible

It is highly unlikely that an API that consists of hundreds of Java types could be kept forward compatible.

Instead, the WildFly management API is a API. A detyped API is like decaffeinated coffee – it stilldetyped

has a little bit of caffeine, but not enough to keep you awake at night. WildFly's management API still has a

few Java types in it (it's impossible for a Java library to have no types!) but not enough to keep you (or us)

up at night worrying that your management clients won't be forward compatible.

A detyped API works by making it possible to build up arbitrarily complex data structures using a small

number of Java types. All of the parameter values and return values in the API are expressed using those

few types. Ideally, most of the types are basic JDK types, like , ,java.lang.String java.lang.Integer

etc. In addition to the basic JDK types, WildFly's detyped management API uses a small library called

. The purpose of this section is to provide a basic overview of the jboss-dmr library.jboss-dmr

Even if you don't use jboss-dmr directly (probably the case for all but a few users), some of the information in

this section may be useful. When you invoke operations using the application server's Command Line

Interface, the return values are just the text representation of of a jboss-dmr . If your CLIModelNode

commands require complex parameter values, you may yourself end up writing the text representation of a

. And if you use the HTTP management API, all response bodies as well as the request body forModelNode

any POST will be a JSON representation of a .ModelNode

Latest WildFly Documentation

JBoss Community Documentation Page of 276 2293

The source code for jboss-dmr is available on . The maven coordinates for a jboss-dmr release are Github

.org.jboss.jboss-dmr:jboss-dmr

ModelNode and ModelType
The public API exposed by jboss-dmr is very simple: just three classes, one of which is an enum!

The primary class is . A is essentially just a wrapper aroundorg.jboss.dmr.ModelNode ModelNode

some ; the value is typically some basic JDK type. A exposes a method. Thisvalue ModelNode getType()

method returns a value of type , which is an enum of all the valid types oforg.jboss.dmr.ModelType

values. And that's 95% of the public API; a class and an enum. (We'll get to the third class, ,Property

below.)

Basic ModelNode manipulation
To illustrate how to work with s, we'll use the scripting library. We won't get into manyModelNode Beanshell

details of beanshell here; it's a simple and intuitive tool and hopefully the following examples are as well.

We'll start by launching a beanshell interpreter, with the jboss-dmr library available on the classpath. Then

we'll tell beanshell to import all the jboss-dmr classes so they are available for use:

$ java -cp bsh-2.0b4.jar:jboss-dmr-1.0.0.Final.jar bsh.Interpreter

BeanShell 2.0b4 - by Pat Niemeyer (pat@pat.net)

bsh % import org.jboss.dmr.*;

bsh %

Next, create a and use the beanshell function to output what type it is:ModelNode print

bsh % ModelNode node = new ModelNode();

bsh % print(node.getType());

UNDEFINED

A new has no value stored, so its type is .ModelNode ModelType.UNDEFINED

Use one of the overloaded method variants to assign a node's value:set

bsh % node.set(1);

bsh % print(node.getType());

INT

bsh % node.set(true);

bsh % print(node.getType());

BOOLEAN

bsh % node.set("Hello, world");

bsh % print(node.getType());

STRING

Use one of the methods to retrieve the value:asXXX()

https://github.com/jbossas/jboss-dmr
http://www.beanshell.org

Latest WildFly Documentation

JBoss Community Documentation Page of 277 2293

bsh % node.set(2);

bsh % print(node.asInt());

2

bsh % node.set("A string");

bsh % print(node.asString());

A string

 will attempt to perform type conversions when you invoke the methods:ModelNode asXXX

bsh % node.set(1);

bsh % print(node.asString());

1

bsh % print(node.asBoolean());

true

bsh % node.set(0);

bsh % print(node.asBoolean());

false

bsh % node.set("true");

bsh % print(node.asBoolean());

true

Not all type conversions are possible:

bsh % node.set("A string");

bsh % print(node.asInt());

// Error: // Uncaught Exception: Method Invocation node.asInt : at Line: 20 : in file: <unknown

file> : node .asInt ()

Target exception: java.lang.NumberFormatException: For input string: "A string"

java.lang.NumberFormatException: For input string: "A string"

 at java.lang.NumberFormatException.forInputString(NumberFormatException.java:48)

 at java.lang.Integer.parseInt(Integer.java:449)

 at java.lang.Integer.parseInt(Integer.java:499)

 at org.jboss.dmr.StringModelValue.asInt(StringModelValue.java:61)

 at org.jboss.dmr.ModelNode.asInt(ModelNode.java:117)

The method can be used to ensure a node has an expected value type beforeModelNode.getType()

attempting a type conversion.

One variant takes another as its argument. The value of the passed in node is copied, soset ModelNode

there is no shared state between the two model nodes:

Latest WildFly Documentation

JBoss Community Documentation Page of 278 2293

bsh % node.set("A string");

bsh % ModelNode another = new ModelNode();

bsh % another.set(node);

bsh % print(another.asString());

A string

bsh % node.set("changed");

bsh % print(node.asString());

changed

bsh % print(another.asString());

A string

A can be cloned. Again, there is no shared state between the original node and its clone:ModelNode

bsh % ModelNode clone = another.clone();

bsh % print(clone.asString());

A string

bsh % another.set(42);

bsh % print(another.asString());

42

bsh % print(clone.asString());

A string

Use the method to make a immutable:protect() ModelNode

bsh % clone.protect();

bsh % clone.set("A different string");

// Error: // Uncaught Exception: Method Invocation clone.set : at Line: 15 : in file: <unknown

file> : clone .set ("A different string")

Target exception: java.lang.UnsupportedOperationException

java.lang.UnsupportedOperationException

 at org.jboss.dmr.ModelNode.checkProtect(ModelNode.java:1441)

 at org.jboss.dmr.ModelNode.set(ModelNode.java:351)

Lists
The above examples aren't particularly interesting; if all we can do with a is wrap a simple JavaModelNode

primitive, what use is that? However, a 's value can be more complex than a simple primitive,ModelNode

and using these more complex types we can build complex data structures. The first more complex type is

.ModelType.LIST

Use the methods to initialize a node's value as a list and add to the list:add

Latest WildFly Documentation

JBoss Community Documentation Page of 279 2293

bsh % ModelNode list = new ModelNode();

bsh % list.add(5);

bsh % list.add(10);

bsh % print(list.getType());

LIST

Use to find the size of the list:asInt()

bsh % print(list.asInt());

2

Use the overloaded method variant that takes an int param to retrieve an item. The item is returned as aget

:ModelNode

bsh % ModelNode child = list.get(1);

bsh % print(child.asInt());

10

Elements in a list need not all be of the same type:

bsh % list.add("A string");

bsh % print(list.get(1).getType());

INT

bsh % print(list.get(2).getType());

STRING

 Here's one of the trickiest things about jboss-dmr: The get methods actually mutate state; they are not

. For example, calling with an index that does not exist yet in the list will actually create a"read-only" get

child of type at that index (and will create UNDEFINED children for anyModelType.UNDEFINED

intervening indices.)

bsh % ModelNode four = list.get(4);

bsh % print(four.getType());

UNDEFINED

bsh % print(list.asInt());

6

Since the call always returns a and never it is safe to manipulate the return value:get ModelNode null

bsh % list.get(5).set(30);

bsh % print(list.get(5).asInt());

30

That's not so interesting in the above example, but later on with node of type we'll seeModelType.OBJECT

how that kind of method chaining can let you build up fairly complex data structures with a minimum of code.

Latest WildFly Documentation

JBoss Community Documentation Page of 280 2293

Use the method to get a of the children:asList() List<ModelNode>

bsh % for (ModelNode element : list.asList()) {

print(element.getType());

}

INT

INT

STRING

UNDEFINED

UNDEFINED

INT

The and methods provide slightly differently formatted text representations of a asString() toString()

 node:ModelType.LIST

bsh % print(list.asString());

[5,10,"A string",undefined,undefined,30]

bsh % print(list.toString());

[

 5,

 10,

 "A string",

 undefined,

 undefined,

 30

]

Finally, if you've previously used to assign a node's value to some non-list type, you cannot use the set add

method:

bsh % node.add(5);

// Error: // Uncaught Exception: Method Invocation node.add : at Line: 18 : in file: <unknown

file> : node .add (5)

Target exception: java.lang.IllegalArgumentException

java.lang.IllegalArgumentException

 at org.jboss.dmr.ModelValue.addChild(ModelValue.java:120)

 at org.jboss.dmr.ModelNode.add(ModelNode.java:1007)

 at org.jboss.dmr.ModelNode.add(ModelNode.java:761)

 ...

You can, however, use the method to change the node's type, and then use :setEmptyList() add

bsh % node.setEmptyList();

bsh % node.add(5);

bsh % print(node.toString());

[5]

Latest WildFly Documentation

JBoss Community Documentation Page of 281 2293

Properties
The third public class in the jboss-dmr library is . A is a org.jboss.dmr.Property Property String =>

 tuple.ModelNode

bsh % Property prop = new Property("stuff", list);

bsh % print(prop.toString());

org.jboss.dmr.Property@79a5f739

bsh % print(prop.getName());

stuff

bsh % print(prop.getValue());

[

 5,

 10,

 "A string",

 undefined,

 undefined,

 30

]

The property can be passed to :ModelNode.set

bsh % node.set(prop);

bsh % print(node.getType());

PROPERTY

The text format for a node of is:ModelType.PROPERTY

bsh % print(node.toString());

("stuff" => [

 5,

 10,

 "A string",

 undefined,

 undefined,

 30

])

Directly instantiating a via its constructor is not common. More typically one of the two argument Property

 or variants is used. The first argument is the property name:ModelNode.add ModelNode.set

Latest WildFly Documentation

JBoss Community Documentation Page of 282 2293

bsh % ModelNode simpleProp = new ModelNode();

bsh % simpleProp.set("enabled", true);

bsh % print(simpleProp.toString());

("enabled" => true)

bsh % print(simpleProp.getType());

PROPERTY

bsh % ModelNode propList = new ModelNode();

bsh % propList.add("min", 1);

bsh % propList.add("max", 10);

bsh % print(propList.toString());

[

 ("min" => 1),

 ("max" => 10)

]

bsh % print(propList.getType());

LIST

bsh % print(propList.get(0).getType());

PROPERTY

The method provides easy access to a :asPropertyList() List<Property>

bsh % for (Property prop : propList.asPropertyList()) {

print(prop.getName() + " = " + prop.getValue());

}

min = 1

max = 10

ModelType.OBJECT
The most powerful and most commonly used complex value type in jboss-dmr is . A ModelType.OBJECT

 whose value is internally maintains a .ModelNode ModelType.OBJECT Map<String, ModelNode

Use the method variant that takes a string argument to add an entry to the map. If no entry exists underget

the given name, a new entry is added with a the value being a node. The node isModelType.UNDEFINED

returned:

bsh % ModelNode range = new ModelNode();

bsh % ModelNode min = range.get("min");

bsh % print(range.toString());

{"min" => undefined}

bsh % min.set(2);

bsh % print(range.toString());

{"min" => 2}

Again it is important to remember that the get operation may mutate the state of a model node by

 adding a new entry. It is not a read-only operation.

Since will never return , a common pattern is to use method chaining to create the key/value pair:get null

Latest WildFly Documentation

JBoss Community Documentation Page of 283 2293

bsh % range.get("max").set(10);

bsh % print(range.toString());

{

 "min" => 2,

 "max" => 10

}

A call to passing an already existing key will of course return the same model node as was returned theget

first time was called with that key:get

bsh % print(min == range.get("min"));

true

Multiple parameters can be passed to . This is a simple way to traverse a tree made up of get

 nodes. Again, may mutate the node on which it is invoked; e.g. it will actuallyModelType.OBJECT get

create the tree if nodes do not exist. This next example uses a workaround to get beanshell to handle the

overloaded method that takes a variable number of arguments:get

bsh % String[] varargs = { "US", "Missouri", "St. Louis" };

bsh % salesTerritories.get(varargs).set("Brian");

bsh % print(salesTerritories.toString());

{"US" => {"Missouri" => {"St. Louis" => "Brian"}}}

The normal syntax would be:

salesTerritories.get("US", "Missouri", "St. Louis").set("Brian");

The key/value pairs in the map can be accessed as a :List<Property

bsh % for (Property prop : range.asPropertyList()) {

print(prop.getName() + " = " + prop.getValue());

}

min = 2

The semantics of the backing map in a node of are those of a . TheModelType.OBJECT LinkedHashMap

map remembers the order in which key/value pairs are added. This is relevant when iterating over the pairs

after calling and for controlling the order in which key/value pairs appear in the outputasPropertyList()

from .toString()

Since the method will actually mutate the state of a node if the given key does not exist, get ModelNode

provides a couple methods to let you check whether the entry is there. The method simply does that:has

Latest WildFly Documentation

JBoss Community Documentation Page of 284 2293

bsh % print(range.has("unit"));

false

bsh % print(range.has("min"));

true

Very often, the need is to not only know whether the key/value pair exists, but whether the value is defined

(i.e. not . This kind of check is analogous to checking whether a field in a JavaModelType.UNDEFINED

class has a null value. The lets you do this:hasDefined

bsh % print(range.hasDefined("unit"));

false

bsh % // Establish an undefined child 'unit';

bsh % range.get("unit");

bsh % print(range.toString());

{

 "min" => 2,

 "max" => 10,

 "unit" => undefined

}

bsh % print(range.hasDefined("unit"));

false

bsh % range.get("unit").set("meters");

bsh % print(range.hasDefined("unit"));

true

ModelType.EXPRESSION
A value of type is stored as a string, but can later be to different value.ModelType.EXPRESSION resolved

The string has a special syntax that should be familiar to those who have used the system property

substitution feature in previous JBoss AS releases.

[<prefix>][${<system-property-name>[:<default-value>]}][<suffix>]*

For example:

${queue.length}

http://${host}

http://${host:localhost}:${port:8080}/index.html

Use the method to set a node's value to type expression:setExpression

bsh % ModelNode expression = new ModelNode();

bsh % expression.setExpression("${queue.length}");

bsh % print(expression.getType());

EXPRESSION

Calling returns the same string that was input:asString()

Latest WildFly Documentation

JBoss Community Documentation Page of 285 2293

bsh % print(expression.asString());

${queue.length}

However, calling tells you that this node's value is not of :toString() ModelType.STRING

bsh % print(expression.toString());

expression "${queue.length}"

When the operation is called, the string is parsed and any embedded system properties areresolve

resolved against the JVM's current system property values. A new is returned whose value isModelNode

the resolved string:

bsh % System.setProperty("queue.length", "10");

bsh % ModelNode resolved = expression.resolve();

bsh % print(resolved.asInt());

10

Note that the type of the returned by is :ModelNode resolve() ModelType.STRING

bsh % print(resolved.getType());

STRING

The call in the previous example only worked because the string "10" happens to beresolved.asInt()

convertible into the int 10.

Calling has no effect on the value of the node on which the method is invoked:resolve()

bsh % resolved = expression.resolve();

bsh % print(resolved.toString());

"10"

bsh % print(expression.toString());

expression "${queue.length}"

If an expression cannot be resolved, just uses the original string. The string can include more thanresolve

one system property substitution:

bsh % expression.setExpression("http://${host}:${port}/index.html");

bsh % resolved = expression.resolve();

bsh % print(resolved.asString());

http://${host}:${port}/index.html

The expression can optionally include a default value, separated from the name of the system property by a

colon:

Latest WildFly Documentation

JBoss Community Documentation Page of 286 2293

bsh % expression.setExpression("http://${host:localhost}:${port:8080}/index.html");

bsh % resolved = expression.resolve();

bsh % print(resolved.asString());

http://localhost:8080/index.html

Actually including a system property substitution in the expression is not required:

bsh % expression.setExpression("no system property");

bsh % resolved = expression.resolve();

bsh % print(resolved.asString());

no system property

bsh % print(expression.toString());

expression "no system property"

The method works on nodes of other types as well; it returns a copy without attempting any realresolve

resolution:

bsh % ModelNode basic = new ModelNode();

bsh % basic.set(10);

bsh % resolved = basic.resolve();

bsh % print(resolved.getType());

INT

bsh % resolved.set(5);

bsh % print(resolved.asInt());

5

bsh % print(basic.asInt());

10

ModelType.TYPE
You can also pass one of the values of the enum to :ModelType set

bsh % ModelNode type = new ModelNode();

bsh % type.set(ModelType.LIST);

bsh % print(type.getType());

TYPE

bsh % print(type.toString());

LIST

This is useful when using a data structure to describe another data structure.ModelNode ModelNode

Latest WildFly Documentation

JBoss Community Documentation Page of 287 2293

Full list of ModelNode types
BIG_DECIMAL

BIG_INTEGER

BOOLEAN

BYTES

DOUBLE

EXPRESSION

INT

LIST

LONG

OBJECT

PROPERTY

STRING

TYPE

UNDEFINED

Text representation of a ModelNode
TODO – document the grammar

JSON representation of a ModelNode
TODO – document the grammar

5.10.3 Description of the Management Model

A detailed description of the resources, attributes and operations that make up the management model

provided by an individual WildFly instance or by any Domain Controller or slave Host Controller process can

be queried using the , , read-resource-description read-operation-names

 and operations described in the read-operation-description read-child-types Global operations

section. In this section we provide details on what's included in those descriptions.

Description of the WildFly Managed Resources
All portions of the management model exposed by WildFly are addressable via an ordered list of key/value

pairs. For each addressable , the following descriptive information will be available:Management Resource

Latest WildFly Documentation

JBoss Community Documentation Page of 288 2293

 – String – text description of this portion of the modeldescription

 – int, either 0 or 1 – Minimum number of resources of this type that must exist in a validmin-occurs

model. If not present, the default value is 0.

 – int – Maximum number of resources of this type that may exist in a valid model. If notmax-occurs

present, the default value depends upon the value of the final key/value pair in the address of the

described resource. If this value is '*', the default value is Integer.MAX_VALUE, i.e. there is no limit. If

this value is some other string, the default value is 1.

 – Map of String (the attribute name) to complex structure – the configuration attributesattributes

available in this portion of the model. See for the representation of each attribute.below

 – Map of String (the operation name) to complex structure – the operations that can beoperations

targetted at this address. See for the representation of each operation.below

 – Map of String (the type of child) to complex structure – the relationship of this portion ofchildren

the model to other addressable portions of the model. See for the representation of each childbelow

relationship.

 – boolean – indicates whether this portion of the model can store an XMLhead-comment-allowed

comment that would be written in the persistent form of the model (e.g. domain.xml) before the start of

the XML element that represents this portion of the model. This item is optional, and if not present

defaults to true. (Note: storing XML comments in the in-memory model is not currently supported. This

description key is for future use.)

 – boolean – similar to , but indicates whether atail-comment-allowed head-comment-allowed

comment just before the close of the XML element is supported. A tail comment can only be

supported if the element has child elements, in which case a comment can be inserted between the

final child element and the element's closing tag. This item is optional, and if not present defaults to

true. (Note: storing XML comments in the in-memory model is not currently supported. This

description key is for future use.)

For example:

{

 "description => "A manageable resource",

 "tail-comment-allowed" => false,

 "attributes" => {

 "foo" => {

 details of attribute foo

 }

 },

 "operations" => {

 "start" => {

 details of the start operation

 }

 },

 "children" => {

 "bar" => {

 details of the relationship with children of type "bar"

 }

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 289 2293

Description of an Attribute
An attribute is a portion of the management model that is not directly addressable. Instead, it is conceptually

a property of an addressable . For each attribute in the model, the followingmanagement resource

descriptive information will be available:

 – String – text description of the attributedescription

 – – the type of the attribute value. One of the enum valuestype org.jboss.dmr.ModelType

BIG_DECIMAL, BIG_INTEGER, BOOLEAN, BYTES, DOUBLE, INT, LIST, LONG, OBJECT,

PROPERTY, STRING. Most of these are self-explanatory. An OBJECT will be represented in the

detyped model as a map of string keys to values of some other legal type, conceptually similar to a

. A PROPERTY is a single key/value pair,javax.management.openmbean.CompositeData

where the key is a string, and the value is of some other legal type.

 – ModelType or complex structure – Only present if type is LIST or OBJECT. If allvalue-type

elements in the LIST or all the values of the OBJECT type are of the same type, this will be one of the

ModelType enums BIG_DECIMAL, BIG_INTEGER, BOOLEAN, BYTES, DOUBLE, INT, LONG,

STRING. Otherwise, will detail the structure of the attribute value, enumerating thevalue-type

value's fields and the type of their value. So, an attribute with a of LIST and a type value-type

value of is analogous to a Java , while one with a ModelType.STRING List<String> value-type

value of is analogous to a Java . An attribute with a ofModelType.INT List<Integer> type

OBJECT and a value of is analogous to a Java value-type ModelType.STRING Map<String,

. An attribute with a of OBJECT and a whose value is not of type String> type value-type

 represents a fully-defined complex object, with the object's legal fields and their valuesModelType

described.

 – boolean – indicates whether the value of the attribute may be of type expressions-allowed

, instead of its standard type (see and above forModelType.EXPRESSION type value-type

discussion of an attribute's standard type.) A value of ModelType.EXPRESSION contains a

system-property substitution expression that the server will resolve against the server-side system

property map before using the value. For example, an attribute named max-threads may have an

expression value of } instead of just 10. Default value if not${example.pool.max-threads:10

present is false.

 – boolean – true if the attribute must have a defined value in a representation of its portionrequired

of the model unless another attribute included in a list of is defined; false if it may bealternatives

undefined (implying a null value) even in the absence of alternatives. If not present, true is the default.

 – boolean – true if the attribute might not have a defined value in a representation of itsnillable

portion of the model. A nillable attribute may

be undefined either because it is not or because it is required but has andrequired alternatives

one of the alternatives is defined.

 – String – Either "configuration" or "runtime". If "configuration", the attribute's value is storedstorage

as part of the persistent configuration (e.g. in domain.xml, host.xml or standalone.xml.) If "runtime" the

attribute's value is not stored in the persistent configuration; the value only exists as long as the

resource is running.

Latest WildFly Documentation

JBoss Community Documentation Page of 290 2293

 – String – One of "read-only", "read-write" or "metric". Whether an attribute value canaccess-type

be written, or can only read. A "metric" is a read-only attribute whose value is not stored in the

persistent configuration, and whose value may change due to activity on the server. If an attribute is

"read-write", the resource will expose an operation named "write-attribute" whose "name" parameter

will accept this attribute's name and whose "value" parameter will accept a valid value for this

attribute. That operation will be the standard means of updating this attribute's value.

 – String – One of "no-services", "all-services", "resource-services" or "jvm".restart-required

Only relevant to attributes whose access-type is read-write. Indicates whether execution of a

write-attribute operation whose name parameter specifies this attribute requires a restart of services

(or an entire JVM) in order for the change to take effect in the runtime . See discussion of "Applying

" below. Default value is "no-services".Updates to Runtime Services

 – the default value for the attribute that will be used in runtime services if the attribute is notdefault

explicitly defined and no other attributes listed as are defined.alternatives

 – List of string – Indicates an exclusive relationship between attributes. If thisalternatives

attribute is defined, the other attributes listed in this descriptor's value should be undefined, even if

their descriptor says true; i.e. the presence of this attribute satisfies the requirement. Noterequired

that an attribute that is not explicitly configured but has a value is still regarded as not beingdefault

defined for purposes of checking whether the exclusive relationship has been violated. Default is

undefined; i.e. this does not apply to most attributes.

 – List of string – Indicates that if this attribute has a value (other than undefined), the otherrequires

attributes listed in this descriptor's value must also have a value, even if their required descriptor says

false. This would typically be used in conjunction with alternatives. For example, attributes "a" and "b"

are required, but are alternatives to each other; "c" and "d" are optional. But "b" requires "c" and "d",

so if "b" is used, "c" and "d" must also be defined. Default is undefined; i.e. this does not apply to most

attributes.

 – string – if defined indicates that this attribute's value specifies thecapability-reference

dynamic portion of the name of the specified capability provided by another resource. This indicates

the attribute is a reference to another area of the management model. (Note that at present some

attributes that reference other areas of the model may not provide this information.)

 – boolean – indicates whether the model can store an XML comment thathead-comment-allowed

would be written in the persistent form of the model (e.g. domain.xml) before the start of the XML

element that represents this attribute. This item is optional, and if not present defaults to false. (This is

a different default from what is used for an entire management resource, since model attributes often

map to XML attributes, which don't allow comments.) (Note: storing XML comments in the in-memory

model is not currently supported. This description key is for future use.)

 – boolean – similar to head-comment-allowed, but indicates whether atail-comment-allowed

comment just before the close of the XML element is supported. A tail comment can only be

supported if the element has child elements, in which case a comment can be inserted between the

final child element and the element's closing tag. This item is optional, and if not present defaults to

false. (This is a different default from what is used for an entire management resource, since model

attributes often map to XML attributes, which don't allow comments.) (Note: storing XML comments in

the in-memory model is not currently supported. This description key is for future use.)

arbitrary key/value pairs that further describe the attribute value, e.g. "max" => 2. See "Arbitrary

" below.Descriptors

Some examples:

Latest WildFly Documentation

JBoss Community Documentation Page of 291 2293

"foo" => {

 "description" => "The foo",

 "type" => INT,

 "max" => 2

}

"bar" => {

 "description" => "The bar",

 "type" => OBJECT,

 "value-type" => {

 "size" => INT,

 "color" => STRING

 }

}

Description of an Operation
A management resource may have operations associated with it. The description of an operation will include

the following information:

 – String – the name of the operationoperation-name

 – String – text description of the operationdescription

 – Map of String to complex structure – description of the parameters of therequest-properties

operation. Keys are the names of the parameters, values are descriptions of the parameter value

types. See for details on the description of parameter value types.below

 – complex structure, or empty – description of the return value of the operation,reply-properties

with an empty node meaning void. See for details on the description of operation return valuebelow

types.

 – String – One of "no-services", "all-services", "resource-services" or "jvm".restart-required

Indicates whether the operation makes a configuration change that requires a restart of services (or

an entire JVM) in order for the change to take effect in the runtime. See discussion of "Applying

" below. Default value is "no-services".Updates to Runtime Services

Description of an Operation Parameter or Return Value

 – String – text description of the parameter or return valuedescription

 – – the type of the parameter or return value. One of the enumtype org.jboss.dmr.ModelType

values BIG_DECIMAL, BIG_INTEGER, BOOLEAN, BYTES, DOUBLE, INT, LIST, LONG, OBJECT,

PROPERTY, STRING.

Latest WildFly Documentation

JBoss Community Documentation Page of 292 2293

 – or complex structure – Only present if type is LIST or OBJECT. If allvalue-type ModelType

elements in the LIST or all the values of the OBJECT type are of the same type, this will be one of the

ModelType enums BIG_DECIMAL, BIG_INTEGER, BOOLEAN, BYTES, DOUBLE, INT, LIST, LONG,

PROPERTY, STRING. Otherwise, value-type will detail the structure of the attribute value,

enumerating the value's fields and the type of their value.So, a parameter with a of LIST and a type

 value of is analogous to a Java , while one with avalue-type ModelType.STRING List<String>

 value of is analogous to a Java . A parameter withvalue-type ModelType.INT List<Integer>

a of OBJECT and a value of is analogous to a Java type value-type ModelType.STRING

. A parameter with a of OBJECT and a whose value isMap<String, String> type value-type

not of type represents a fully-defined complex object, with the object's legal fields andModelType

their values described.

 – boolean – indicates whether the value of the the parameter or returnexpressions-allowed

value may be of type , instead its standard type (see type and value-typeModelType.EXPRESSION

above for discussion of the standard type.) A value of ModelType.EXPRESSION contains a

system-property substitution expression that the server will resolve against the server-side system

property map before using the value. For example, a parameter named max-threads may have an

expression value of } instead of just 10. Default value if not${example.pool.max-threads:10

present is false.

 – boolean – true if the parameter or return value must have a defined value in therequired

operation or response unless another item included in a list of is defined; false if italternatives

may be undefined (implying a null value) even in the absence of alternatives. If not present, true is the

default.

 – boolean – true if the parameter or return value might not have a defined value in anillable

representation of its portion of the model. A nillable parameter or return value may be undefined either

because it is not or because it is required but has and one of therequired alternatives

alternatives is defined.

 – the default value for the parameter that will be used in runtime services if the parameter isdefault

not explicitly defined and no other parameters listed as are defined.alternatives

 – String – One of "no-services", "all-services", "resource-services" or "jvm".restart-required

Only relevant to attributes whose access-type is read-write. Indicates whether execution of a

write-attribute operation whose name parameter specifies this attribute requires a restart of services

(or an entire JVM) in order for the change to take effect in the runtime . See discussion of "Applying

" below. Default value is "no-services".Updates to Runtime Services

 – List of string – Indicates an exclusive relationship between parameters. If thisalternatives

attribute is defined, the other parameters listed in this descriptor's value should be undefined, even if

their required descriptor says true; i.e. the presence of this parameter satisfies the requirement. Note

that an parameer that is not explicitly configured but has a value is still regarded as notdefault

being defined for purposes of checking whether the exclusive relationship has been violated. Default

is undefined; i.e. this does not apply to most parameters.

 – List of string – Indicates that if this parameter has a value (other than undefined), therequires

other parameters listed in this descriptor's value must also have a value, even if their required

descriptor says false. This would typically be used in conjunction with alternatives. For example,

parameters "a" and "b" are required, but are alternatives to each other; "c" and "d" are optional. But

"b" requires "c" and "d", so if "b" is used, "c" and "d" must also be defined. Default is undefined; i.e.

this does not apply to most parameters.

Latest WildFly Documentation

JBoss Community Documentation Page of 293 2293

arbitrary key/value pairs that further describe the attribute value, e.g. "max" =>2. See "Arbitrary

" below.Descriptors

Latest WildFly Documentation

JBoss Community Documentation Page of 294 2293

Arbitrary Descriptors
The description of an attribute, operation parameter or operation return value type can include arbitrary

key/value pairs that provide extra information. Whether a particular key/value pair is present depends on the

context, e.g. a pair with key "max" would probably only occur as part of the description of some numeric

type.

Following are standard keys and their expected value type. If descriptor authors want to add an arbitrary

key/value pair to some descriptor and the semantic matches the meaning of one of the following items, the

standard key/value type must be used.

 – int – the minimum value of some numeric type. The absence of this item implies there is nomin

minimum value.

 – int – the maximum value of some numeric type. The absence of this item implies there is nomax

maximum value.

 – int – the minimum length of some string, list or byte[] type. The absence of this itemmin-length

implies a minimum length of zero.

 – int – the maximum length of some string, list or byte[]. The absence of this itemmax-length

implies there is no maximum value.

 – List – a list of legal values. The type of the elements in the list should match the type ofallowed

the attribute.

 - The unit of the value, if one is applicable - e.g. ns, ms, s, m, h, KB, MB, TB. See the unit

 in theorg.jboss.as.controller.client.helpers.MeasurementUnit

org.jboss.as:jboss-as-controller-client artifact for a listing of legal measurement units..

Some examples:

{

 "operation-name" => "incrementFoo",

 "description" => "Increase the value of the 'foo' attribute by the given amount",

 "request-properties" => {

 "increment" => {

 "type" => INT,

 "description" => "The amount to increment",

 "required" => true

 }},

 "reply-properties" => {

 "type" => INT,

 "description" => "The new value",

 }

}

{

 "operation-name" => "start",

 "description" => "Starts the thing",

 "request-properties" => {},

 "reply-properties" => {}

}

Latest WildFly Documentation

JBoss Community Documentation Page of 295 2293

Description of Parent/Child Relationships
The address used to target an addressable portion of the model must be an ordered list of key value pairs.

The effect of this requirement is the addressable portions of the model naturally form a tree structure, with

parent nodes in the tree defining what the valid keys are and the children defining what the valid values are.

The parent node also defines the cardinality of the relationship. The description of the parent node includes

a children element that describes these relationships:

{

 "children" => {

 "connector" => {

 description of the relationship with children of type "connector"

 },

 "virtual-host" => {

 description of the relationship with children of type "virtual-host"

 }

}

The description of each relationship will include the following elements:

 – String – text description of the relationshipdescription

 – either "undefined" or a complex structure – This is a node ofmodel-description

ModelType.OBJECT, the keys of which are legal values for the value portion of the address of a

resource of this type, with the special character '*' indicating the value portion can have an arbitrary

value. The values in the node are the full description of the particular child resource (its text

description, attributes, operations, children) as detailed above. This may alsomodel-description

be "undefined", i.e. a null value, if the query that asked for the parent node's description did not

include the "recursive" param set to true.

Example with if the recursive flag was set to true:

{

 "description" => "The connectors used to handle client connections",

 "model-description" => {

 "*" => {

 "description" => "Handles client connections",

 "min-occurs" => 1,

 "attributes => {

 ... details of children as documented above

 },

 "operations" => {

 details of operations as documented above

 },

 "children" => {

 details of the children's children

 }

 }

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 296 2293

If the recursive flag was false:

{

 "description" => "The connectors used to handle client connections",

 "model-description" => undefined

}

Applying Updates to Runtime Services
An attribute or operation description may include a " " descriptor; this section is anrestart-required

explanation of the meaning of that descriptor.

An operation that changes a management resource's persistent configuration usually can also also affect a

runtime service associated with the resource. For example, there is a runtime service associated with any

host.xml or standalone.xml element; other services in the runtime depend on that service to<interface>

provide the associated with the interface. In many cases, an update to a resource'sInetAddress

persistent configuration can be immediately applied to the associated runtime service. The runtime service's

state is updated to reflect the new value(s).

However, in many cases the runtime service's state cannot be updated without restarting the service.

Restarting a service can have broad effects. A restart of a service A will trigger a restart of other services B,

C and D that depend A, triggering a restart of services that depend on B, C and D, etc. Those service

restarts may very well disrupt handling of end-user requests.

Because restarting a service can be disruptive to end-user request handling, the handlers for management

operations will not restart any service without some form of explicit instruction from the end user indicating a

service restart is desired. In a few cases, simply executing the operation is an indication the user wants

services to restart (e.g. a operation in a/host=master/server-config=server-one:restart

managed domain, or a operation on a standalone server.) For all other cases, if an operation (or/:reload

attribute write) cannot be performed without restarting a service, the metadata describing the operation or

attribute will include a " " descriptor whose value indicates what is necessary for therestart-required

operation to affect the runtime:

Latest WildFly Documentation

JBoss Community Documentation Page of 297 2293

 – Applying the operation to the runtime does not require the restart of any services.no-services

This value is the default if the restart-required descriptor is not present.

 – The operation can only immediately update the persistent configuration; applyingall-services

the operation to the runtime will require a subsequent restart of all services in the affected VM.

Executing the operation will put the server into a " " state. Until a restart of allreload-required

services is performed the response to this operation and to any subsequent operation will include a

response header " ". For a standalone server, a restartprocess-state" => "reload-required

of all services can be accomplished by executing the CLI command. For a server in a/:reload

managed domain, restarting all services currently requires a full restart of the affected server VM (e.g.

)./host=master/server-config=server-one:restart

 --The operation can only immediately update the persistent configuration; applying the operationjvm

to the runtime will require a full process restart (i.e. stop the JVM and launch a new JVM). Executing

the operation will put the server into a " " state. Until a restart is performed therestart-required

response to this operation and to any subsequent operation will include a response header "

". For a standalone server, a full process restartprocess-state" => "restart-required

requires first stopping the server via OS-level operations (Ctrl-C, kill) or via the CLI/:shutdown

command, and then starting the server again from the command line. For a server in a managed

domain, restarting a server requires executing the

 operation./host=<host>/server-config=<server>:restart

 – The operation can only immediately update the persistent configuration;resource-services

applying the operation to the runtime will require a subsequent restart of some services associated

with the resource. If the operation includes the request header

, the handler for the operation will go ahead"allow-resource-service-restart" => true

and restart the runtime service. Otherwise executing the operation will put the server into a "

" state. (See the discussion of " " above for more on the "reload-required all-services

" state.)reload-required

5.10.4 The native management API

A standalone WildFly process, or a managed domain Domain Controller or slave Host Controller process

can be configured to listen for remote management requests using its "native management interface":

<native-interface interface="management" port="9999" security-realm="ManagementRealm"/>

(See standalone/configuration/standalone.xml or domain/configuration/host.xml)

The CLI tool that comes with the application server uses this interface, and user can develop custom clients

that use it as well. In this section we'll cover the basics on how to develop such a client. We'll also cover

details on the format of low-level management operation requests and responses – information that should

prove useful for users of the CLI tool as well.

Latest WildFly Documentation

JBoss Community Documentation Page of 298 2293

Native Management Client Dependencies
The native management interface uses an open protocol based on the JBoss Remoting library. JBoss

Remoting is used to establish a communication channel from the client to the process being managed. Once

the communication channel is established the primary traffic over the channel is management requests

initiated by the client and asynchronous responses from the target process.

A custom Java-based client should have the maven artifact

 and its dependencies on the classpath. The otherorg.jboss.as:jboss-as-controller-client

dependencies are:

Maven Artifact Purpose

org.jboss.remoting:jboss-remoting Remote communication

org.jboss:jboss-dmr Detyped representation of the management model

org.jboss.as:jboss-as-protocol Wire protocol for remote WildFly management

org.jboss.sasl:jboss-sasl SASL authentication

org.jboss.xnio:xnio-api Non-blocking IO

org.jboss.xnio:xnio-nio Non-blocking IO

org.jboss.logging:jboss-logging Logging

org.jboss.threads:jboss-threads Thread management

org.jboss.marshalling:jboss-marshalling Marshalling and unmarshalling data to/from streams

The client API is entirely within the artifact; the otherorg.jboss.as:jboss-as-controller-client

dependencies are part of the internal implementation of

 and are not compile-time dependencies of any customorg.jboss.as:jboss-as-controller-client

client based on it.

The management protocol is an open protocol, so a completely custom client could be developed without

using these libraries (e.g. using Python or some other language.)

Working with a ModelControllerClient
The class is the main class a customorg.jboss.as.controller.client.ModelControllerClient

client would use to manage a WildFly server instance or a Domain Controller or slave Host Controller.

The custom client must have maven artifact and itsorg.jboss.as:jboss-as-controller-client

dependencies on the classpath.

Latest WildFly Documentation

JBoss Community Documentation Page of 299 2293

Creating the ModelControllerClient
To create a management client that can connect to your target process's native management socket, simply:

ModelControllerClient client =

ModelControllerClient.Factory.create(InetAddress.getByName("localhost"), 9999);

The address and port are what is configured in the target process'

 element.<management><management-interfaces><native-interface.../>

Typically, however, the native management interface will be secured, requiring clients to authenticate. On

the client side, the custom client will need to provide the user's authentication credentials, obtained in

whatever manner is appropriate for the client (e.g. from a dialog box in a GUI-based client.) Access to these

credentials is provided by passing in an implementation of the

 interface. For example:javax.security.auth.callback.CallbackHandler

static ModelControllerClient createClient(final InetAddress host, final int port,

 final String username, final char[] password, final String securityRealmName)

{

 final CallbackHandler callbackHandler = new CallbackHandler() {

 public void handle(Callback[] callbacks) throws IOException,

UnsupportedCallbackException {

 for (Callback current : callbacks) {

 if (current instanceof NameCallback) {

 NameCallback ncb = (NameCallback) current;

 ncb.setName(username);

 } else if (current instanceof PasswordCallback) {

 PasswordCallback pcb = (PasswordCallback) current;

 pcb.setPassword(password.toCharArray());

 } else if (current instanceof RealmCallback) {

 RealmCallback rcb = (RealmCallback) current;

 rcb.setText(rcb.getDefaultText());

 } else {

 throw new UnsupportedCallbackException(current);

 }

 }

 }

 };

 return ModelControllerClient.Factory.create(host, port, callbackHandler);

}

Latest WildFly Documentation

JBoss Community Documentation Page of 300 2293

Creating an operation request object
Management requests are formulated using the class from the org.jboss.dmr.ModelNode jboss-dmr

library. The library allows the complete WildFly management model to be expressed using ajboss-dmr

very small number of Java types. See for full details onDetyped management and the jboss-dmr library

using this library.

Let's show an example of creating an operation request object that can be used to read the resource

 for the web subsystem's HTTP connector:description

ModelNode op = new ModelNode();

op.get("operation").set("read-resource-description");

ModelNode address = op.get("address");

address.add("subsystem", "web");

address.add("connector", "http");

op.get("recursive").set(true);

op.get("operations").set(true);

What we've done here is created a ModelNode of type with the following fields:ModelType.OBJECT

 – the name of the operation to invoke. All operation requests include this field andoperation must

its value must be a String.

 – the address of the resource to invoke the operation against. This field's must be of address

 with each element in the list being a . If this field isModelType.LIST ModelType.PROPERTY

omitted the operation will target the root resource. The operation can be targeted at any address in

the management model; here we are targeting it at the resource for the web subsystem's http

connector.

In this case, the request includes two optional parameters:

 – true means you want the description of child resources under this resource. Default isrecursive

false

 – true means you want the description of operations exposed by the resource to beoperations

included. Default is false.

Different operations take different parameters, and some take no parameters at all.

See for full details on the structure of a ModelNode that willFormat of a Detyped Operation Request

represent an operation request.

The example above produces an operation request ModelNode equivalent to what the CLI produces

internally when it parses and executes the following low-level CLI command:

[localhost:9999 /]

/subsystem=web/connector=http:read-resource-description(recursive=true,operations=true)

Latest WildFly Documentation

JBoss Community Documentation Page of 301 2293

Execute the operation and manipulate the result:
The method sends the operation request ModelNode to the process being managed and returns aexecute

ModelNode the contains the process' response:

ModelNode returnVal = client.execute(op);

System.out.println(returnVal.get("result").toString());

See for general details on the structure of the "returnVal"Format of a Detyped Operation Response

ModelNode.

The operation shown above will block the calling thread until the response is received from theexecute

process being managed. also exposes and API allowing asynchronousModelControllerClient

invocation:

Future<ModelNode> future = client.executeAsync(op);

. . . // do other stuff

ModelNode returnVal = future.get();

System.out.println(returnVal.get("result").toString());

Close the ModelControllerClient
A can be reused for multiple requests. Creating a new ModelControllerClient

 for each request is an anti-pattern. However, when the ModelControllerClient

 is no longer needed, it should always be explicitly closed, allowing it to closeModelControllerClient

down any connections to the process it was managing and release other resources:

client.close();

Format of a Detyped Operation Request
The basic method a user of the WildFly 8 programmatic management API would use is very simple:

ModelNode execute(ModelNode operation) throws IOException;

where the return value is the detyped representation of the response, and is the detypedoperation

representation of the operation being invoked.

The purpose of this section is to document the structure of .operation

See for a discussion of the format of the response.Format of a Detyped Operation Response

Latest WildFly Documentation

JBoss Community Documentation Page of 302 2293

Simple Operations
A text representation of simple operation would look like this:

{

 "operation" => "write-attribute",

 "address" => [

 ("profile" => "production"),

 ("subsystem" => "threads"),

 ("bounded-queue-thread-pool" => "pool1")

],

 "name" => "count",

 "value" => 20

}

Java code to produce that output would be:

ModelNode op = new ModelNode();

op.get("operation").set("write-attribute");

ModelNode addr = op.get("address");

addr.add("profile", "production");

addr.add("subsystem", "threads");

addr.add("bounded-queue-thread-pool", "pool1");

op.get("name").set("count");

op.get("value").set(20);

System.out.println(op);

The order in which the outermost elements appear in the request is not relevant. The required elements are:

 – String – The name of the operation being invoked.operation

 – the address of the managed resource against which the request should be executed. Ifaddress

not set, the address is the root resource. The address is an ordered list of key-value pairs describing

where the resource resides in the overall management resource tree. Management resources are

organized in a tree, so the order in which elements in the address occur is important.

The other key/value pairs are parameter names and their values. The names and values should match what

is specified in the .operation's description

Parameters may have any name, except for the reserved words , and operation address

.operation-headers

Operation Headers
Besides the special operation and address values discussed above, operation requests can also include

special "header" values that help control how the operation executes. These headers are created under the

special reserved word :operation-headers

Latest WildFly Documentation

JBoss Community Documentation Page of 303 2293

ModelNode op = new ModelNode();

op.get("operation").set("write-attribute");

ModelNode addr = op.get("address");

addr.add("base", "domain");

addr.add("profile", "production");

addr.add("subsystem", "threads");

addr.add("bounded-queue-thread-pool", "pool1");

op.get("name").set("count");

op.get("value").set(20);

op.get("operation-headers", "rollback-on-runtime-failure").set(false);

System.out.println(op);

This produces:

{

 "operation" => "write-attribute",

 "address" => [

 ("profile" => "production"),

 ("subsystem" => "threads"),

 ("bounded-queue-thread-pool" => "pool1")

],

 "name" => "count",

 "value" => 20,

 "operation-headers" => {

 "rollback-on-runtime-failure => false

 }

}

The following operation headers are supported:

Latest WildFly Documentation

JBoss Community Documentation Page of 304 2293

 – boolean, optional, defaults to true. Whether an operation thatrollback-on-runtime-failure

successfully updates the persistent configuration model should be reverted if it fails to apply to the

runtime. Operations that affect the persistent configuration are applied in two stages – first to the

configuration model and then to the actual running services. If there is an error applying to the

configuration model the operation will be aborted with no configuration change and no change to

running services will be attempted. However, operations are allowed to change the configuration

model even if there is a failure to apply the change to the running services – if and only if this

 header is set to . So, this header only deals with whatrollback-on-runtime-failure false

happens if there is a problem applying an operation to the running state of a server (e.g. actually

increasing the size of a runtime thread pool.)

 – only relevant to requests made to a Domain Controller or Host Controller. See "rollout-plan

" for details.Operations with a Rollout Plan

 – boolean, optional, defaults to false. Whether an operationallow-resource-service-restart

that requires restarting some runtime services in order to take effect should do so. See discussion of

 in the resource-services "Applying Updates to Runtime Services" section of the Description of

 for further details.the Management Model section

 – String or list of strings. Name(s) of RBAC role(s) the permissions for which should be usedroles

when making access control decisions instead of those from the roles normally associated with the

user invoking the operation. Only respected if the user is normally associated with a role with all

permissions (i.e. SuperUser), meaning this can only be used to reduce permissions for a caller, not to

increase permissions.

 – int, optional, defaults to 300. Maximum time, in seconds, that the operationblocking-timeout

should block at various points waiting for completion. If this period is exceeded, the operation will roll

back. Does not represent an overall maximum execution time for an operation; rather it is meant to

serve as a sort of fail-safe measure to prevent problematic operations indefinitely tying up resources.

Latest WildFly Documentation

JBoss Community Documentation Page of 305 2293

Composite Operations
The root resource for a Domain or Host Controller or an individual server will expose an operation named "

". This operation executes a list of other operations as an atomic unit (although the atomicitycomposite

requirement can be . The structure of the request for the " " operation has the samerelaxed composite

fundamental structure as a simple operation (i.e. operation name, address, params as key value pairs).

{

 "operation" => "composite",

 "address" => [],

 "steps" => [

 {

 "operation" => "write-attribute",

 "address" => [

 ("profile" => "production"),

 ("subsystem" => "threads"),

 ("bounded-queue-thread-pool" => "pool1")

],

 "count" => "count",

 "value" => 20

 },

 {

 "operation" => "write-attribute",

 "address" => [

 ("profile" => "production"),

 ("subsystem" => "threads"),

 ("bounded-queue-thread-pool" => "pool2")

],

 "name" => "count",

 "value" => 10

 }

],

 "operation-headers" => {

 "rollback-on-runtime-failure => false

 }

}

The "composite" operation takes a single parameter:

 – a list, where each item in the list has the same structure as a simple operation request. Insteps

the example above each of the two steps is modifying the thread pool configuration for a different

pool. There need not be any particular relationship between the steps. Note that the

 and operation headers are not supported forrollback-on-runtime-failure rollout-plan

the individual steps in a composite operation.

The operation header discussed above has a particular meaning whenrollback-on-runtime-failure

applied to a composite operation, controlling whether steps that successfully execute should be reverted if

other steps fail at runtime. Note that if any steps modify the persistent configuration, and any of those steps

fail, all steps will be reverted. Partial/incomplete changes to the persistent configuration are not allowed.

Latest WildFly Documentation

JBoss Community Documentation Page of 306 2293

Operations with a Rollout Plan
Operations targeted at domain or host level resources can potentially impact multiple servers. Such

operations can include a "rollout plan" detailing the sequence in which the operation should be applied to

servers as well as policies for detailing whether the operation should be reverted if it fails to execute

successfully on some servers.

If the operation includes a rollout plan, the structure is as follows:

{

 "operation" => "write-attribute",

 "address" => [

 ("profile" => "production"),

 ("subsystem" => "threads"),

 ("bounded-queue-thread-pool" => "pool1")

],

 "name" => "count",

 "value" => 20,

 "operation-headers" => {

 "rollout-plan" => {

 "in-series" => [

 {

 "concurrent-groups" => {

 "groupA" => {

 "rolling-to-servers" => true,

 "max-failure-percentage" => 20

 },

 "groupB" => undefined

 }

 },

 {

 "server-group" => {

 "groupC" => {

 "rolling-to-servers" => false,

 "max-failed-servers" => 1

 }

 }

 },

 {

 "concurrent-groups" => {

 "groupD" => {

 "rolling-to-servers" => true,

 "max-failure-percentage" => 20

 },

 "groupE" => undefined

 }

 }

],

 "rollback-across-groups" => true

 }

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 307 2293

As you can see, the rollout plan is another structure in the operation-headers section. The root node of the

structure allows two children:

 – a list – A list of activities that are to be performed in series, with each activity reachingin-series

completion before the next step is executed. Each activity involves the application of the operation to

the servers in one or more server groups. See below for details on each element in the list.

 – boolean – indicates whether the need to rollback the operation on allrollback-across-groups

the servers in one server group should trigger a rollback across all the server groups. This is an

optional setting, and defaults to .false

Each element in the list under the node must have one or the other of the following structures:in-series

 – a map of server group names to policies controlling how the operationconcurrent-groups

should be applied to that server group. For each server group in the map, the operation may be

applied concurrently. See below for details on the per-server-group policy configuration.

 – a single key/value mapping of a server group name to a policy controlling how theserver-group

operation should be applied to that server group. See below for details on the policy configuration.

(Note: there is no difference in plan execution between this and a " " map with aconcurrent-groups

single entry.)

The policy controlling how the operation is applied to the servers within a server group has the following

elements, each of which is optional:

 – boolean – If true, the operation will be applied to each server in the grouprolling-to-servers

in series. If false or not specified, the operation will be applied to the servers in the group

concurrently.

 – int – Maximum number of servers in the group that can fail to apply themax-failed-servers

operation before it should be reverted on all servers in the group. The default value if not specified is

zero; i.e. failure on any server triggers rollback across the group.

 – int between 0 and 100 – Maximum percentage of the total number ofmax-failure-percentage

servers in the group that can fail to apply the operation before it should be reverted on all servers in

the group. The default value if not specified is zero; i.e. failure on any server triggers rollback across

the group.

If both and are set, max-failed-servers max-failure-percentage max-failure-percentage

takes precedence.

Looking at the (contrived) example above, application of the operation to the servers in the domain would be

done in 3 phases. If the policy for any server group triggers a rollback of the operation across the server

group, all other server groups will be rolled back as well. The 3 phases are:

Latest WildFly Documentation

JBoss Community Documentation Page of 308 2293

1.

2.

3.

Server groups groupA and groupB will have the operation applied concurrently. The operation will be

applied to the servers in groupA in series, while all servers in groupB will handle the operation

concurrently. If more than 20% of the servers in groupA fail to apply the operation, it will be rolled

back across that group. If any servers in groupB fail to apply the operation it will be rolled back across

that group.

Once all servers in groupA and groupB are complete, the operation will be applied to the servers in

groupC. Those servers will handle the operation concurrently. If more than one server in groupC fails

to apply the operation it will be rolled back across that group.

Once all servers in groupC are complete, server groups groupD and groupE will have the operation

applied concurrently. The operation will be applied to the servers in groupD in series, while all servers

in groupE will handle the operation concurrently. If more than 20% of the servers in groupD fail to

apply the operation, it will be rolled back across that group. If any servers in groupE fail to apply the

operation it will be rolled back across that group.

Default Rollout Plan
All operations that impact multiple servers will be executed with a rollout plan. However, actually specifying

the rollout plan in the operation request is not required. If no operation header is specified,rollout-plan

a default plan will be generated. The plan will have the following characteristics:

There will only be a single high level phase. All server groups affected by the operation will have the

operation applied concurrently.

Within each server group, the operation will be applied to all servers concurrently.

Failure on any server in a server group will cause rollback across the group.

Failure of any server group will result in rollback of all other server groups.

Latest WildFly Documentation

JBoss Community Documentation Page of 309 2293

Creating and reusing a Rollout Plan
Since a rollout plan may be quite complex, having to pass it as a header every time can become quickly

painful. So instead we can store it in the model and then reference it when we want to use it.

To create a rollout plan you can use the operation like this :rollout-plan add

rollout-plan add --name=simple --content={"rollout-plan" => {"in-series" => [{"server-group" =>

{"main-server-group" => {"rolling-to-servers" => false,"max-failed-servers" => 1}}},

{"server-group" => {"other-server-group" => {"rolling-to-servers" =>

true,"max-failure-percentage" => 20}}}],"rollback-across-groups" => true}}

This will create a rollout plan called in the content repository.simple

[domain@192.168.1.20:9999 /]

/management-client-content=rollout-plans/rollout-plan=simple:read-resource

{

 "outcome" => "success",

 "result" => {

 "content" => {"rollout-plan" => {

 "in-series" => [

 {"server-group" => {"main-server-group" => {

 "rolling-to-servers" => false,

 "max-failed-servers" => 1

 }}},

 {"server-group" => {"other-server-group" => {

 "rolling-to-servers" => true,

 "max-failure-percentage" => 20

 }}}

],

 "rollback-across-groups" => true

 }},

 "hash" => bytes {

 0x13, 0x12, 0x76, 0x65, 0x8a, 0x28, 0xb8, 0xbc,

 0x34, 0x3c, 0xe9, 0xe6, 0x9f, 0x24, 0x05, 0xd2,

 0x30, 0xff, 0xa4, 0x34

 }

 }

}

Now you may reference the roolout plan in your command by adding a header just like this :

deploy /quickstart/ejb-in-war/target/wildfly-ejb-in-war.war --all-server-groups

--headers={rollout name=simple}

Format of a Detyped Operation Response
As noted previously, the basic method a user of the WildFly 8 programmatic management API would use is

very simple:

Latest WildFly Documentation

JBoss Community Documentation Page of 310 2293

ModelNode execute(ModelNode operation) throws IOException;

where the return value is the detyped representation of the response, and is the detypedoperation

representation of the operating being invoked.

The purpose of this section is to document the structure of the return value.

For the format of the request, see .Format of a Detyped Operation Request

Simple Responses
Simple responses are provided by the following types of operations:

Non-composite operations that target a single server. (See below for more on composite operations).

Non-composite operations that target a Domain Controller or slave Host Controller and don't require

the responder to apply the operation on multiple servers and aggregate their results (e.g. a simple

read of a domain configuration property.)

The response will always include a simple boolean outcome field, with one of three possible values:

 – the operation executed successfullysuccess

 – the operation failedfailed

 – the execution of the operation was cancelled. (This would be an unusual outcome for acancelled

simple operation which would generally very rapidly reach a point in its execution where it couldn't be

cancelled.)

The other fields in the response will depend on whether the operation was successful.

The response for a failed operation:

{

 "outcome" => "failed",

 "failure-description" => "[JBAS-12345] Some failure message"

}

A response for a successful operation will include an additional field:

 – the return value, or for void operations or those that return nullresult undefined

A non-void result:

{

 "outcome" => "success",

 "result" => {

 "name" => "Brian",

 "age" => 22

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 311 2293

A void result:

{

 "outcome" => "success",

 "result" => undefined

}

The response for a cancelled operation has no other fields:

{

 "outcome" => "cancelled"

}

Latest WildFly Documentation

JBoss Community Documentation Page of 312 2293

Response Headers
Besides the standard , and fields described above, theoutcome result failure-description

response may also include various headers that provide more information about the affect of the operation or

about the overall state of the server. The headers will be child element under a field named

. For example:response-headers

{

 "outcome" => "success",

 "result" => undefined,

 "response-headers" => {

 "operation-requires-reload" => true,

 "process-state" => "reload-required"

 }

}

A response header is typically related to whether an operation could be applied to the targeted runtime

without requiring a restart of some or all services, or even of the target process itself. Please see the

 for a"Applying Updates to Runtime Services" section of the Description of the Management Model section

discussion of the basic concepts related to what happens if an operation requires a service restart to be

applied.

The current possible response headers are:

 – boolean – indicates that the specific operation that has generatedoperation-requires-reload

this response requires a restart of all services in the process in order to take effect in the runtime. This

would typically only have a value of 'true'; the absence of the header is the same as a value of 'false.'

 – boolean – indicates that the specific operation that hasoperation-requires-restart

generated this response requires a full process restart in order to take effect in the runtime. This

would typically only have a value of 'true'; the absence of the header is the same as a value of 'false.'

 – enumeration – Provides information about the overall state of the target process.process-state

One of the following values:

 – the process is startingstarting

 – the process is in a normal running state. The header wouldrunning process-state

typically not be seen with this value; the absence of the header is the same as a value of

'running'.

 – some operation (not necessarily this one) has executed that requires areload-required

restart of all services in order for a configuration change to take effect in the runtime.

 – some operation (not necessarily this one) has executed that requires arestart-required

full process restart in order for a configuration change to take effect in the runtime.

 – the process is stoppingstopping

Basic Composite Operation Responses
A composite operation is one that incorporates more than one simple operation in a list and executes them

atomically. See the for more information."Composite Operations" section

Basic composite responses are provided by the following types of operations:

Latest WildFly Documentation

JBoss Community Documentation Page of 313 2293

Composite operations that target a single server.

Composite operations that target a Domain Controller or a slave Host Controller and don't require the

responder to apply the operation on multiple servers and aggregate their results (e.g. a list of simple

reads of domain configuration properties.)

The high level format of a basic composite operation response is largely the same as that of a simple

operation response, although there is an important semantic difference. For a composite operation, the

meaning of the outcome flag is controlled by the value of the operation request's

 header field. If that field was (default is true), the outcome flagrollback-on-runtime-failure false

will be success if all steps were successfully applied to the persistent configuration even if of thenone

composite operation's steps was successfully applied to the runtime.

What's distinctive about a composite operation response is the field. First, even if the operation wasresult

not successful, the field will usually be present. (It won't be present if there was some sort ofresult

immediate failure that prevented the responder from even attempting to execute the individual operations.)

Second, the content of the field will be a map. Each entry in the map will record the result of anresult

element in the parameter of the composite operation request. The key for each item in the map willsteps

be the string " " where "X" is the 1-based index of the step's position in the request's list. Sostep-X steps

each individual operation in the composite operation will have its result recorded.

The individual operation results will have the same basic format as the simple operation results described

above. However, there are some differences from the simple operation case when the individual operation's

 flag is . These relate to the fact that in a composite operation, individual operations can beoutcome failed

rolled back or not even attempted.

If an individual operation was not even attempted (because the overall operation was cancelled or, more

likely, a prior operation failed):

{

 "outcome" => "cancelled"

}

An individual operation that failed and was rolled back:

{

 "outcome" => "failed",

 "failure-description" => "[JBAS-12345] Some failure message",

 "rolled-back" => true

}

An individual operation that itself succeeded but was rolled back due to failure of another operation:

Latest WildFly Documentation

JBoss Community Documentation Page of 314 2293

{

 "outcome" => "failed",

 "result" => {

 "name" => "Brian",

 "age" => 22

 },

 "rolled-back" => true

}

An operation that failed and was rolled back:

{

 "outcome" => "failed",

 "failure-description" => "[JBAS-12345] Some failure message",

 "rolled-back" => true

}

Here's an example of the response for a successful 2 step composite operation:

{

 "outcome" => "success",

 "result" => [

 {

 "outcome" => "success",

 "result" => {

 "name" => "Brian",

 "age" => 22

 }

 },

 {

 "outcome" => "success",

 "result" => undefined

 }

]

}

And for a failed 3 step composite operation, where the first step succeeded and the second failed, triggering

cancellation of the 3rd and rollback of the others:

Latest WildFly Documentation

JBoss Community Documentation Page of 315 2293

{

 "outcome" => "failed",

 "failure-description" => "[JBAS-99999] Composite operation failed; see individual operation

results for details",

 "result" => [

 {

 "outcome" => "failed",

 "result" => {

 "name" => "Brian",

 "age" => 22

 },

 "rolled-back" => true

 },

 {

 "outcome" => "failed",

 "failure-description" => "[JBAS-12345] Some failure message",

 "rolled-back" => true

 },

 {

 "outcome" => "cancelled"

 }

]

}

Multi-Server Responses
Multi-server responses are provided by operations that target a Domain Controller or slave Host Controller

and require the responder to apply the operation on multiple servers and aggregate their results (e.g. nearly

all domain or host configuration updates.)

Multi-server operations are executed in several stages.

First, the operation may need to be applied against the authoritative configuration model maintained by the

Domain Controller (for confgurations) or a Host Controller (for a configuration). Ifdomain.xml host.xml

there is a failure at this stage, the operation is automatically rolled back, with a response like this:

{

 "outcome" => "failed",

 "failure-description" => {

 "domain-failure-description" => "[JBAS-33333] Failed to apply X to the domain model"

 }

}

If the operation was addressed to the domain model, in the next stage the Domain Controller will ask each

slave Host Controller to apply it to its local copy of the domain model. If any Host Controller fails to do so, the

Domain Controller will tell all Host Controllers to revert the change, and it will revert the change locally as

well. The response to the client will look like this:

Latest WildFly Documentation

JBoss Community Documentation Page of 316 2293

{

 "outcome" => "failed",

 "failure-description" => {

 "host-failure-descriptions" => {

 "hostA" => "[DOM-3333] Failed to apply to the domain model",

 "hostB" => "[DOM-3333] Failed to apply to the domain model"

 }

 }

}

If the preceding stages succeed, the operation will be pushed to all affected servers. If the operation is

successful on all servers, the response will look like this (this example operation has a void response, hence

the result for each server is undefined):

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => {

 "groupA" => {

 "serverA-1" => {

 "host" => "host1",

 "response" => {

 "outcome" => "success",

 "result" => undefined

 }

 },

 "serverA-2" => {

 "host" => "host2",

 "response" => {

 "outcome" => "success",

 "result" => undefined

 }

 }

 },

 "groupB" => {

 "serverB-1" => {

 "host" => "host1",

 "response" => {

 "outcome" => "success",

 "result" => undefined

 }

 },

 "serverB-2" => {

 "host" => "host2",

 "response" => {

 "outcome" => "success",

 "result" => undefined

 }

 }

 }

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 317 2293

The operation need not succeed on all servers in order to get an result. All"outcome" => "success"

that is required is that it succeed on at least one server without the rollback policies in the rollout plan

triggering a rollback on that server. An example response in such a situation would look like this:

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => {

 "groupA" => {

 "serverA-1" => {

 "host" => "host1",

 "response" => {

 "outcome" => "success",

 "result" => undefined

 }

 },

 "serverA-2" => {

 "host" => "host2",

 "response" => {

 "outcome" => "success",

 "result" => undefined

 }

 }

 },

 "groupB" => {

 "serverB-1" => {

 "host" => "host1",

 "response" => {

 "outcome" => "success",

 "result" => undefined,

 "rolled-back" => true

 }

 },

 "serverB-2" => {

 "host" => "host2",

 "response" => {

 "outcome" => "success",

 "result" => undefined,

 "rolled-back" => true

 }

 },

 "serverB-3" => {

 "host" => "host3",

 "response" => {

 "outcome" => "failed",

 "failure-description" => "[DOM-4556] Something didn't work right",

 "rolled-back" => true

 }

 }

 }

 }

}

Finally, if the operation fails or is rolled back on all servers, an example response would look like this:

Latest WildFly Documentation

JBoss Community Documentation Page of 318 2293

{

 "outcome" => "failed",

 "server-groups" => {

 "groupA" => {

 "serverA-1" => {

 "host" => "host1",

 "response" => {

 "outcome" => "success",

 "result" => undefined

 }

 },

 "serverA-2" => {

 "host" => "host2",

 "response" => {

 "outcome" => "success",

 "result" => undefined

 }

 }

 },

 "groupB" => {

 "serverB-1" => {

 "host" => "host1",

 "response" => {

 "outcome" => "failed",

 "result" => undefined,

 "rolled-back" => true

 }

 },

 "serverB-2" => {

 "host" => "host2",

 "response" => {

 "outcome" => "failed",

 "result" => undefined,

 "rolled-back" => true

 }

 },

 "serverB-3" => {

 "host" => "host3",

 "response" => {

 "outcome" => "failed",

 "failure-description" => "[DOM-4556] Something didn't work right",

 "rolled-back" => true

 }

 }

 }

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 319 2293

5.11 CLI Recipes

Properties

Adding, reading and removing system property using CLI

Overview of all system properties

Configuration

List Subsystems

List description of available attributes and childs

View configuration as XML for domain model or host model

Take a snapshot of what the current domain is

Take the latest snapshot of the host.xml for a particular host

How to get interface address

Runtime

Get all configuration and runtime details from CLI

Scripting

Windows and "Press any key to continue ..." issue

Statistics

Read statistics of active datasources

Deployment

Undeploying and redeploying multiple deployments

Incremental deployment with the CLI

Notes for server side operation Handler implementors

Downloading files with the CLI

Latest WildFly Documentation

JBoss Community Documentation Page of 320 2293

5.11.1 Properties

Adding, reading and removing system property using CLI
For standalone mode:

$./bin/jboss-cli.sh --connect controller=IP_ADDRESS

[standalone@IP_ADDRESS:9990 /] /system-property=foo:add(value=bar)

[standalone@IP_ADDRESS:9990 /] /system-property=foo:read-resource

{

 "outcome" => "success",

 "result" => {"value" => "bar"}

}

[standalone@IP_ADDRESS:9990 /] /system-property=foo:remove

{"outcome" => "success"}

For domain mode the same commands are used, you can add/read/remove system properties for:

All hosts and server instances in domain

[domain@IP_ADDRESS:9990 /] /system-property=foo:add(value=bar)

[domain@IP_ADDRESS:9990 /] /system-property=foo:read-resource

[domain@IP_ADDRESS:9990 /] /system-property=foo:remove

Host and its server instances

[domain@IP_ADDRESS:9990 /] /host=master/system-property=foo:add(value=bar)

[domain@IP_ADDRESS:9990 /] /host=master/system-property=foo:read-resource

[domain@IP_ADDRESS:9990 /] /host=master/system-property=foo:remove

Just one server instance

[domain@IP_ADDRESS:9990 /]

/host=master/server-config=server-one/system-property=foo:add(value=bar)

[domain@IP_ADDRESS:9990 /]

/host=master/server-config=server-one/system-property=foo:read-resource

[domain@IP_ADDRESS:9990 /] /host=master/server-config=server-one/system-property=foo:remove

Latest WildFly Documentation

JBoss Community Documentation Page of 321 2293

Overview of all system properties
Overview of all system properties in WildFly including OS system properties and properties specified on

command line using -D, -P or --properties arguments.

Standalone

[standalone@IP_ADDRESS:9990 /]

/core-service=platform-mbean/type=runtime:read-attribute(name=system-properties)

Domain

[domain@IP_ADDRESS:9990 /]

/host=master/core-service=platform-mbean/type=runtime:read-attribute(name=system-properties)

[domain@IP_ADDRESS:9990 /]

/host=master/server=server-one/core-service=platform-mbean/type=runtime:read-attribute(name=system-properties)

Latest WildFly Documentation

JBoss Community Documentation Page of 322 2293

5.11.2 Configuration

List Subsystems

[standalone@localhost:9990 /] /:read-children-names(child-type=subsystem)

{

 "outcome" => "success",

 "result" => [

 "batch",

 "datasources",

 "deployment-scanner",

 "ee",

 "ejb3",

 "infinispan",

 "io",

 "jaxrs",

 "jca",

 "jdr",

 "jmx",

 "jpa",

 "jsf",

 "logging",

 "mail",

 "naming",

 "pojo",

 "remoting",

 "resource-adapters",

 "sar",

 "security",

 "threads",

 "transactions",

 "undertow",

 "webservices",

 "weld"

]

}

List description of available attributes and childs
Descriptions, possible attribute type and values, permission and whether expressions () are allowed${ ... }

from the underlying model are shown by the read-resource-description command.

Latest WildFly Documentation

JBoss Community Documentation Page of 323 2293

/subsystem=datasources/data-source=ExampleDS:read-resource-description

{

 "outcome" => "success",

 "result" => {

 "description" => "A JDBC data-source configuration",

 "head-comment-allowed" => true,

 "tail-comment-allowed" => true,

 "attributes" => {

 "connection-url" => {

 "type" => STRING,

 "description" => "The JDBC driver connection URL",

 "expressions-allowed" => true,

 "nillable" => false,

 "min-length" => 1L,

 "max-length" => 2147483647L,

 "access-type" => "read-write",

 "storage" => "configuration",

 "restart-required" => "no-services"

 },

 "driver-class" => {

 "type" => STRING,

 "description" => "The fully qualified name of the JDBC driver class",

 "expressions-allowed" => true,

 "nillable" => true,

 "min-length" => 1L,

 "max-length" => 2147483647L,

 "access-type" => "read-write",

 "storage" => "configuration",

 "restart-required" => "no-services"

 },

 "datasource-class" => {

 "type" => STRING,

 "description" => "The fully qualified name of the JDBC datasource class",

 "expressions-allowed" => true,

 "nillable" => true,

 "min-length" => 1L,

 "max-length" => 2147483647L,

 "access-type" => "read-write",

 "storage" => "configuration",

 "restart-required" => "no-services"

 },

 "jndi-name" => {

 "type" => STRING,

 "description" => "Specifies the JNDI name for the datasource",

 "expressions-allowed" => true,

 "nillable" => false,

 "access-type" => "read-write",

 "storage" => "configuration",

 "restart-required" => "no-services"

 },

 ...

Latest WildFly Documentation

JBoss Community Documentation Page of 324 2293

View configuration as XML for domain model or host model
Assume you have a host that is called master

[domain@localhost:9990 /] /host=master:read-config-as-xml

Just for the domain or standalone

[domain@localhost:9990 /] :read-config-as-xml

Take a snapshot of what the current domain is

[domain@localhost:9990 /] :take-snapshot()

{

 "outcome" => "success",

 "result" => {

 "domain-results" => {"step-1" => {"name" =>

"JBOSS_HOME/domain/configuration/domain_xml_history/snapshot/20110908-165222603domain.xml"}},

 "server-operations" => undefined

 }

}

Take the latest snapshot of the host.xml for a particular host
Assume you have a host that is called master

[domain@localhost:9990 /] /host=master:take-snapshot

{

 "outcome" => "success",

 "result" => {

 "domain-results" => {"step-1" => {"name" =>

"JBOSS_HOME/domain/configuration/host_xml_history/snapshot/20110908-165640215host.xml"}},

 "server-operations" => undefined

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 325 2293

How to get interface address
The attribute for interface is named "resolved-address". It's a runtime attribute so it does not show up in

:read-resource by default. You have to add the "include-runtime" parameter.

./jboss-cli.sh --connect

Connected to standalone controller at localhost:9990

[standalone@localhost:9990 /] cd interface=public

[standalone@localhost:9990 interface=public] :read-resource(include-runtime=true)

{

 "outcome" => "success",

 "result" => {

 "any" => undefined,

 "any-address" => undefined,

 "any-ipv4-address" => undefined,

 "any-ipv6-address" => undefined,

 "criteria" => [("inet-address" => expression "${jboss.bind.address:127.0.0.1}")],

 "inet-address" => expression "${jboss.bind.address:127.0.0.1}",

 "link-local-address" => undefined,

 "loopback" => undefined,

 "loopback-address" => undefined,

 "multicast" => undefined,

 "name" => "public",

 "nic" => undefined,

 "nic-match" => undefined,

 "not" => undefined,

 "point-to-point" => undefined,

 "public-address" => undefined,

 "resolved-address" => "127.0.0.1",

 "site-local-address" => undefined,

 "subnet-match" => undefined,

 "up" => undefined,

 "virtual" => undefined

 }

}

[standalone@localhost:9990 interface=public] :read-attribute(name=resolved-address)

{

 "outcome" => "success",

 "result" => "127.0.0.1"

}

It's similar for domain, just specify path to server instance:

[domain@localhost:9990 /]

/host=master/server=server-one/interface=public:read-attribute(name=resolved-address)

{

 "outcome" => "success",

 "result" => "127.0.0.1"

}

Latest WildFly Documentation

JBoss Community Documentation Page of 326 2293

5.11.3 Runtime

Get all configuration and runtime details from CLI

./bin/jboss-cli.sh -c command=":read-resource(include-runtime=true, recursive=true,

recursive-depth=10)"

5.11.4 Scripting

Windows and "Press any key to continue ..." issue
WildFly scripts for Windows end with "Press any key to continue ...". This behavior is useful when script is

executed by double clicking the script but not when you need to invoke several commands from custom

script (e.g. 'bin/jboss-admin.bat --connect command=:shutdown').

To avoid "Press any key to continue ..." message you need to specify NOPAUSE variable. Call 'set

NOPAUSE=true' in command line before running any WildFly 8 .bat script or include it in your custom script

before invoking scripts from WildFly.

5.11.5 Statistics

Read statistics of active datasources

/subsystem=datasources/data-source=ExampleDS/statistics=pool:read-resource(include-runtime=true)

/subsystem=datasources/data-source=ExampleDS/statistics=jdbc:read-resource(include-runtime=true)

or

/subsystem=datasources/data-source=ExampleDS:read-resource(include-runtime=true,recursive=true)

5.11.6 Deployment

Undeploying and redeploying multiple deployments
CLI offers a way to efficiently undeploy or redeploy deployments in one simple command.

To disable all enabled deployments: undeploy --keep-content *

To redeploy all disabled deployments: deploy --name=*

Latest WildFly Documentation

JBoss Community Documentation Page of 327 2293

1.

2.

3.

4.

5.

6.

Incremental deployment with the CLI
It can be desirable to incrementally create and(or) update a WildFly deployment. This chapter details how

this can be achieved using the WildFly CLI tool.

Steps to create an empty deployment and add an index html file.

Create an empty deployment named my app:

[standalone@localhost:9990 /] /deployment=myapp:add(content=[{empty=true}])

Add an index.html to my app:

[standalone@localhost:9990 /]

/deployment=myapp:add-content(content=[{input-stream-index=<press TAB>

Then use completion to navigate to your index.html file.

Provide a target name for index.html inside the deployment and execute the operation:

[standalone@localhost:9990 /]

/deployment=myapp:add-content(content=[{input-stream-index=./index.html,

target-path=index.xhtml}]

Your content has been added, you can browse the content of a deployment using the browse-content

operation:

[standalone@localhost:9990 /] /deployment=myapp:browse-content(path=./)

You can display (or save) the content of a deployed file using the command:attachement

attachment display --operation=/deployment=myapp:read-content(path=index.xhtml)

You can remove content from a deployment:

/deployment=myapp:remove-content(paths=[./index.xhtml])

Latest WildFly Documentation

JBoss Community Documentation Page of 328 2293

1.

2.

Tips

 operation allows you to add more than one file (argument is a list ofadd-content content

complex types).

CLI offers completion for t's and 's argument.browse-conten path remove-content paths

You can safely use operations that are using attached streams in batch operations. In the

case of batch operations, streams are attached to the composite operation.

On Windows, path separator '\' needs to be escaped, this is a limitation of CLI handling complex

types. The file path completion is automatically escaping the paths it is proposing.

Notes for server side operation Handler implementors
In order to benefit from CLI support for attached file streams and file system completion, you need to

properly structure your operation arguments. Steps to create an operation that receives a list of file streams

attached to the operation:

Define your operation argument as a of (The must be of type).LIST INT LIST value-type INT

In the description of your argument, add the 2 following boolean descriptors: and filesystem-path

attached-streams

When your operation is called from the CLI, file system completion will be automatically proposed for your

argument. At execution time, the file system paths will be automatically converted onto the index of the

attached streams.

Latest WildFly Documentation

JBoss Community Documentation Page of 329 2293

5.11.7 Downloading files with the CLI

Some management resources are exposing the content of files in the matter of . Streams returnedstreams

by a management operation are attached to the headers of the management response. The CLI command

 (see CLI help for a detailed description of this command) allows to display or save the content ofattachment

the attached streams.

Displaying the content of server.log file:

attachment display

--operation=/subsystem=logging/log-file=server.log:read-resource(include-runtime)

Saving locally the server.log file:

attachment save

--operation=/subsystem=logging/log-file=server.log:read-resource(include-runtime)

--file=./server.log

Displaying the content of a deployed file:

attachment display --operation=/deployment=myapp:read-content(path=index.xhtml)

By default existing files will be preserved. Use the option to overwrite existing file.--overwrite

 can be used in batch mode.attachment

5.12 All WildFly documentation

There are several guides in the WildFly documentation series. This list gives an overview of each of the

guides:

* - Explains how to download and start WildFly.Getting Started Guide

* - Talks you through developing your first applications onGetting Started Developing Applications Guide

WildFly, and introduces you to JBoss Tools and how to deploy your applications.

* - A Java EE 6 Tutorial.JavaEE 6 Tutorial

* - Tells you how to configure and manage your WildFly instances.Admin Guide

* - Contains concepts that you need to be aware of when developing applications forDeveloper Guide

WildFly. Classloading is explained in depth.

* - Reference guide for how to set up clustered WildFly instances.High Availability Guide

* - A guide to adding new functionality to WildFly.Extending WildFly

Latest WildFly Documentation

JBoss Community Documentation Page of 330 2293

5.13 CLI Recipes

Properties

Adding, reading and removing system property using CLI

Overview of all system properties

Configuration

List Subsystems

List description of available attributes and childs

View configuration as XML for domain model or host model

Take a snapshot of what the current domain is

Take the latest snapshot of the host.xml for a particular host

How to get interface address

Runtime

Get all configuration and runtime details from CLI

Scripting

Windows and "Press any key to continue ..." issue

Statistics

Read statistics of active datasources

Deployment

Undeploying and redeploying multiple deployments

Incremental deployment with the CLI

Notes for server side operation Handler implementors

Downloading files with the CLI

Latest WildFly Documentation

JBoss Community Documentation Page of 331 2293

5.13.1 Properties

Adding, reading and removing system property using CLI
For standalone mode:

$./bin/jboss-cli.sh --connect controller=IP_ADDRESS

[standalone@IP_ADDRESS:9990 /] /system-property=foo:add(value=bar)

[standalone@IP_ADDRESS:9990 /] /system-property=foo:read-resource

{

 "outcome" => "success",

 "result" => {"value" => "bar"}

}

[standalone@IP_ADDRESS:9990 /] /system-property=foo:remove

{"outcome" => "success"}

For domain mode the same commands are used, you can add/read/remove system properties for:

All hosts and server instances in domain

[domain@IP_ADDRESS:9990 /] /system-property=foo:add(value=bar)

[domain@IP_ADDRESS:9990 /] /system-property=foo:read-resource

[domain@IP_ADDRESS:9990 /] /system-property=foo:remove

Host and its server instances

[domain@IP_ADDRESS:9990 /] /host=master/system-property=foo:add(value=bar)

[domain@IP_ADDRESS:9990 /] /host=master/system-property=foo:read-resource

[domain@IP_ADDRESS:9990 /] /host=master/system-property=foo:remove

Just one server instance

[domain@IP_ADDRESS:9990 /]

/host=master/server-config=server-one/system-property=foo:add(value=bar)

[domain@IP_ADDRESS:9990 /]

/host=master/server-config=server-one/system-property=foo:read-resource

[domain@IP_ADDRESS:9990 /] /host=master/server-config=server-one/system-property=foo:remove

Latest WildFly Documentation

JBoss Community Documentation Page of 332 2293

Overview of all system properties
Overview of all system properties in WildFly including OS system properties and properties specified on

command line using -D, -P or --properties arguments.

Standalone

[standalone@IP_ADDRESS:9990 /]

/core-service=platform-mbean/type=runtime:read-attribute(name=system-properties)

Domain

[domain@IP_ADDRESS:9990 /]

/host=master/core-service=platform-mbean/type=runtime:read-attribute(name=system-properties)

[domain@IP_ADDRESS:9990 /]

/host=master/server=server-one/core-service=platform-mbean/type=runtime:read-attribute(name=system-properties)

Latest WildFly Documentation

JBoss Community Documentation Page of 333 2293

5.13.2 Configuration

List Subsystems

[standalone@localhost:9990 /] /:read-children-names(child-type=subsystem)

{

 "outcome" => "success",

 "result" => [

 "batch",

 "datasources",

 "deployment-scanner",

 "ee",

 "ejb3",

 "infinispan",

 "io",

 "jaxrs",

 "jca",

 "jdr",

 "jmx",

 "jpa",

 "jsf",

 "logging",

 "mail",

 "naming",

 "pojo",

 "remoting",

 "resource-adapters",

 "sar",

 "security",

 "threads",

 "transactions",

 "undertow",

 "webservices",

 "weld"

]

}

List description of available attributes and childs
Descriptions, possible attribute type and values, permission and whether expressions () are allowed${ ... }

from the underlying model are shown by the read-resource-description command.

Latest WildFly Documentation

JBoss Community Documentation Page of 334 2293

/subsystem=datasources/data-source=ExampleDS:read-resource-description

{

 "outcome" => "success",

 "result" => {

 "description" => "A JDBC data-source configuration",

 "head-comment-allowed" => true,

 "tail-comment-allowed" => true,

 "attributes" => {

 "connection-url" => {

 "type" => STRING,

 "description" => "The JDBC driver connection URL",

 "expressions-allowed" => true,

 "nillable" => false,

 "min-length" => 1L,

 "max-length" => 2147483647L,

 "access-type" => "read-write",

 "storage" => "configuration",

 "restart-required" => "no-services"

 },

 "driver-class" => {

 "type" => STRING,

 "description" => "The fully qualified name of the JDBC driver class",

 "expressions-allowed" => true,

 "nillable" => true,

 "min-length" => 1L,

 "max-length" => 2147483647L,

 "access-type" => "read-write",

 "storage" => "configuration",

 "restart-required" => "no-services"

 },

 "datasource-class" => {

 "type" => STRING,

 "description" => "The fully qualified name of the JDBC datasource class",

 "expressions-allowed" => true,

 "nillable" => true,

 "min-length" => 1L,

 "max-length" => 2147483647L,

 "access-type" => "read-write",

 "storage" => "configuration",

 "restart-required" => "no-services"

 },

 "jndi-name" => {

 "type" => STRING,

 "description" => "Specifies the JNDI name for the datasource",

 "expressions-allowed" => true,

 "nillable" => false,

 "access-type" => "read-write",

 "storage" => "configuration",

 "restart-required" => "no-services"

 },

 ...

Latest WildFly Documentation

JBoss Community Documentation Page of 335 2293

View configuration as XML for domain model or host model
Assume you have a host that is called master

[domain@localhost:9990 /] /host=master:read-config-as-xml

Just for the domain or standalone

[domain@localhost:9990 /] :read-config-as-xml

Take a snapshot of what the current domain is

[domain@localhost:9990 /] :take-snapshot()

{

 "outcome" => "success",

 "result" => {

 "domain-results" => {"step-1" => {"name" =>

"JBOSS_HOME/domain/configuration/domain_xml_history/snapshot/20110908-165222603domain.xml"}},

 "server-operations" => undefined

 }

}

Take the latest snapshot of the host.xml for a particular host
Assume you have a host that is called master

[domain@localhost:9990 /] /host=master:take-snapshot

{

 "outcome" => "success",

 "result" => {

 "domain-results" => {"step-1" => {"name" =>

"JBOSS_HOME/domain/configuration/host_xml_history/snapshot/20110908-165640215host.xml"}},

 "server-operations" => undefined

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 336 2293

How to get interface address
The attribute for interface is named "resolved-address". It's a runtime attribute so it does not show up in

:read-resource by default. You have to add the "include-runtime" parameter.

./jboss-cli.sh --connect

Connected to standalone controller at localhost:9990

[standalone@localhost:9990 /] cd interface=public

[standalone@localhost:9990 interface=public] :read-resource(include-runtime=true)

{

 "outcome" => "success",

 "result" => {

 "any" => undefined,

 "any-address" => undefined,

 "any-ipv4-address" => undefined,

 "any-ipv6-address" => undefined,

 "criteria" => [("inet-address" => expression "${jboss.bind.address:127.0.0.1}")],

 "inet-address" => expression "${jboss.bind.address:127.0.0.1}",

 "link-local-address" => undefined,

 "loopback" => undefined,

 "loopback-address" => undefined,

 "multicast" => undefined,

 "name" => "public",

 "nic" => undefined,

 "nic-match" => undefined,

 "not" => undefined,

 "point-to-point" => undefined,

 "public-address" => undefined,

 "resolved-address" => "127.0.0.1",

 "site-local-address" => undefined,

 "subnet-match" => undefined,

 "up" => undefined,

 "virtual" => undefined

 }

}

[standalone@localhost:9990 interface=public] :read-attribute(name=resolved-address)

{

 "outcome" => "success",

 "result" => "127.0.0.1"

}

It's similar for domain, just specify path to server instance:

[domain@localhost:9990 /]

/host=master/server=server-one/interface=public:read-attribute(name=resolved-address)

{

 "outcome" => "success",

 "result" => "127.0.0.1"

}

Latest WildFly Documentation

JBoss Community Documentation Page of 337 2293

5.13.3 Runtime

Get all configuration and runtime details from CLI

./bin/jboss-cli.sh -c command=":read-resource(include-runtime=true, recursive=true,

recursive-depth=10)"

5.13.4 Scripting

Windows and "Press any key to continue ..." issue
WildFly scripts for Windows end with "Press any key to continue ...". This behavior is useful when script is

executed by double clicking the script but not when you need to invoke several commands from custom

script (e.g. 'bin/jboss-admin.bat --connect command=:shutdown').

To avoid "Press any key to continue ..." message you need to specify NOPAUSE variable. Call 'set

NOPAUSE=true' in command line before running any WildFly 8 .bat script or include it in your custom script

before invoking scripts from WildFly.

5.13.5 Statistics

Read statistics of active datasources

/subsystem=datasources/data-source=ExampleDS/statistics=pool:read-resource(include-runtime=true)

/subsystem=datasources/data-source=ExampleDS/statistics=jdbc:read-resource(include-runtime=true)

or

/subsystem=datasources/data-source=ExampleDS:read-resource(include-runtime=true,recursive=true)

5.13.6 Deployment

Undeploying and redeploying multiple deployments
CLI offers a way to efficiently undeploy or redeploy deployments in one simple command.

To disable all enabled deployments: undeploy --keep-content *

To redeploy all disabled deployments: deploy --name=*

Latest WildFly Documentation

JBoss Community Documentation Page of 338 2293

1.

2.

3.

4.

5.

6.

Incremental deployment with the CLI
It can be desirable to incrementally create and(or) update a WildFly deployment. This chapter details how

this can be achieved using the WildFly CLI tool.

Steps to create an empty deployment and add an index html file.

Create an empty deployment named my app:

[standalone@localhost:9990 /] /deployment=myapp:add(content=[{empty=true}])

Add an index.html to my app:

[standalone@localhost:9990 /]

/deployment=myapp:add-content(content=[{input-stream-index=<press TAB>

Then use completion to navigate to your index.html file.

Provide a target name for index.html inside the deployment and execute the operation:

[standalone@localhost:9990 /]

/deployment=myapp:add-content(content=[{input-stream-index=./index.html,

target-path=index.xhtml}]

Your content has been added, you can browse the content of a deployment using the browse-content

operation:

[standalone@localhost:9990 /] /deployment=myapp:browse-content(path=./)

You can display (or save) the content of a deployed file using the command:attachement

attachment display --operation=/deployment=myapp:read-content(path=index.xhtml)

You can remove content from a deployment:

/deployment=myapp:remove-content(paths=[./index.xhtml])

Latest WildFly Documentation

JBoss Community Documentation Page of 339 2293

1.

2.

Tips

 operation allows you to add more than one file (argument is a list ofadd-content content

complex types).

CLI offers completion for t's and 's argument.browse-conten path remove-content paths

You can safely use operations that are using attached streams in batch operations. In the

case of batch operations, streams are attached to the composite operation.

On Windows, path separator '\' needs to be escaped, this is a limitation of CLI handling complex

types. The file path completion is automatically escaping the paths it is proposing.

Notes for server side operation Handler implementors
In order to benefit from CLI support for attached file streams and file system completion, you need to

properly structure your operation arguments. Steps to create an operation that receives a list of file streams

attached to the operation:

Define your operation argument as a of (The must be of type).LIST INT LIST value-type INT

In the description of your argument, add the 2 following boolean descriptors: and filesystem-path

attached-streams

When your operation is called from the CLI, file system completion will be automatically proposed for your

argument. At execution time, the file system paths will be automatically converted onto the index of the

attached streams.

Latest WildFly Documentation

JBoss Community Documentation Page of 340 2293

5.13.7 Downloading files with the CLI

Some management resources are exposing the content of files in the matter of . Streams returnedstreams

by a management operation are attached to the headers of the management response. The CLI command

 (see CLI help for a detailed description of this command) allows to display or save the content ofattachment

the attached streams.

Displaying the content of server.log file:

attachment display

--operation=/subsystem=logging/log-file=server.log:read-resource(include-runtime)

Saving locally the server.log file:

attachment save

--operation=/subsystem=logging/log-file=server.log:read-resource(include-runtime)

--file=./server.log

Displaying the content of a deployed file:

attachment display --operation=/deployment=myapp:read-content(path=index.xhtml)

By default existing files will be preserved. Use the option to overwrite existing file.--overwrite

 can be used in batch mode.attachment

5.14 Core management concepts

5.14.1 Operating modes

WildFly can be booted in two different modes. A allows you to run and manage amanaged domain

multi-server topology. Alternatively, you can run a instance.standalone server

Latest WildFly Documentation

JBoss Community Documentation Page of 341 2293

Standalone Server
For many use cases, the centralized management capability available via a managed domain is not

necessary. For these use cases, a WildFly instance can be run as a "standalone server". A standalone

server instance is an independent process, much like an JBoss Application Server 3, 4, 5, or 6 instance is.

Standalone instances can be launched via the or launch scripts.standalone.sh standalone.bat

If more than one standalone instance is launched and multi-server management is desired, it is the user's

responsibility to coordinate management across the servers. For example, to deploy an application across all

of the standalone servers, the user would need to individually deploy the application on each server.

It is perfectly possible to launch multiple standalone server instances and have them form an HA cluster, just

like it was possible with JBoss Application Server 3, 4, 5 and 6.

Managed Domain
One of the primary new features of WildFly is the ability to manage multiple WildFly instances from a single

control point. A collection of such servers is referred to as the members of a "domain" with a single Domain

Controller process acting as the central management control point. All of the WildFly instances in the domain

share a common management policy, with the Domain Controller acting to ensure that each server is

configured according to that policy. Domains can span multiple physical (or virtual) machines, with all

WildFly instances on a given host under the control of a special Host Controller process. One Host Controller

instance is configured to act as the central Domain Controller. The Host Controller on each host interacts

with the Domain Controller to control the lifecycle of the application server instances running on its host and

to assist the Domain Controller in managing them.

When you launch a WildFly managed domain on a host (via the or launch scripts)domain.sh domain.bat

your intent is to launch a Host Controller and usually at least one WildFly instance. On one of the hosts the

Host Controller should be configured to act as the Domain Controller. See for details.Domain Setup

The following is an example managed domain topology:

Latest WildFly Documentation

JBoss Community Documentation Page of 342 2293

Host
Each "Host" box in the above diagram represents a physical or virtual host. A physical host can contain zero,

one or more server instances.

Latest WildFly Documentation

JBoss Community Documentation Page of 343 2293

Host Controller
When the domain.sh or domain.bat script is run on a host, a process known as a Host Controller is

launched. The Host Controller is solely concerned with server management; it does not itself handle

application server workloads. The Host Controller is responsible for starting and stopping the individual

application server processes that run on its host, and interacts with the Domain Controller to help manage

them.

Each Host Controller by default reads its configuration from the filedomain/configuration/host.xml

located in the unzipped WildFly installation on its host's filesystem. The file contains configurationhost.xml

information that is specific to the particular host. Primarily:

the listing of the names of the actual WildFly instances that are meant to run off of this installation.

configuration of how the Host Controller is to contact the Domain Controller to register itself and

access the domain configuration. This may either be configuration of how to find and contact a remote

Domain Controller, or a configuration telling the Host Controller to itself act as the Domain Controller.

configuration of items that are specific to the local physical installation. For example, named interface

definitions declared in (see below) can be mapped to an actual machine-specific IPdomain.xml

address in . Abstract path names in can be mapped to actual filesystemhost.xml domain.xml

paths in .host.xml

Domain Controller
One Host Controller instance is configured to act as the central management point for the entire domain, i.e.

to be the Domain Controller. The primary responsibility of the Domain Controller is to maintain the domain's

central management policy, to ensure all Host Controllers are aware of its current contents, and to assist the

Host Controllers in ensuring any running application server instances are configured in accordance with this

policy. This central management policy is stored by default in the domain/configuration/domain.xml

file in the unzipped WildFly installation on Domain Controller's host's filesystem.

A file must be located in the directory of an installation that'sdomain.xml domain/configuration

meant to run the Domain Controller. It does not need to be present in installations that are not meant to run a

Domain Controller; i.e. those whose Host Controller is configured to contact a remote Domain Controller.

The presence of a file on such a server does no harm.domain.xml

The file includes, among other things, the configuration of the various "profiles" that WildFlydomain.xml

instances in the domain can be configured to run. A profile configuration includes the detailed configuration

of the various subsystems that comprise that profile (e.g. an embedded JBoss Web instance is a subsystem;

a JBoss TS transaction manager is a subsystem, etc). The domain configuration also includes the definition

of groups of sockets that those subsystems may open. The domain configuration also includes the definition

of "server groups":

Latest WildFly Documentation

JBoss Community Documentation Page of 344 2293

Server Group
A server group is set of server instances that will be managed and configured as one. In a managed domain

each application server instance is a member of a server group. (Even if the group only has a single server,

the server is still a member of a group.) It is the responsibility of the Domain Controller and the Host

Controllers to ensure that all servers in a server group have a consistent configuration. They should all be

configured with the same profile and they should have the same deployment content deployed.

The domain can have multiple server groups. The above diagram shows two server groups, "ServerGroupA"

and "ServerGroupB". Different server groups can be configured with different profiles and deployments; for

example in a domain with different tiers of servers providing different services. Different server groups can

also run the same profile and have the same deployments; for example to support rolling application

upgrade scenarios where a complete service outage is avoided by first upgrading the application on one

server group and then upgrading a second server group.

An example server group definition is as follows:

<server-group name="main-server-group" profile="default">

 <socket-binding-group ref="standard-sockets"/>

 <deployments>

 <deployment name="foo.war_v1" runtime-name="foo.war" />

 <deployment name="bar.ear" runtime-name="bar.ear" />

 </deployments>

</server-group>

A server-group configuration includes the following required attributes:

name -- the name of the server group

profile -- the name of the profile the servers in the group should run

In addition, the following optional elements are available:

socket-binding-group -- specifies the name of the default socket binding group to use on servers in

the group. Can be overridden on a per-server basis in . If not provided in the host.xml

 element, it must be provided for each server in .server-group host.xml

deployments -- the deployment content that should be deployed on the servers in the group.

deployment-overlays -- the overlays and their associated deployments.

system-properties -- system properties that should be set on all servers in the group

jvm -- default jvm settings for all servers in the group. The Host Controller will merge these settings

with any provided in to derive the settings to use to launch the server's JVM. See host.xml JVM

 for further details.settings

Latest WildFly Documentation

JBoss Community Documentation Page of 345 2293

Server
Each "Server" in the above diagram represents an actual application server instance. The server runs in a

separate JVM process from the Host Controller. The Host Controller is responsible for launching that

process. (In a managed domain the end user cannot directly launch a server process from the command

line.)

The Host Controller synthesizes the server's configuration by combining elements from the domain wide

configuration (from domain.xml) and the host-specific configuration (from host.xml).

Deciding between running standalone servers or a managed domain
Which use cases are appropriate for managed domain and which are appropriate for standalone servers? A

managed domain is all about coordinated multi-server management -- with it WildFly provides a central point

through which users can manage multiple servers, with rich capabilities to keep those servers' configurations

consistent and the ability to roll out configuration changes (including deployments) to the servers in a

coordinated fashion.

It's important to understand that the choice between a managed domain and standalone servers is all about

how your servers are managed, not what capabilities they have to service end user requests. This distinction

is particularly important when it comes to high availability clusters. It's important to understand that HA

functionality is orthogonal to running standalone servers or a managed domain. That is, a group of

standalone servers can be configured to form an HA cluster. The domain and standalone modes determine

how the servers are managed, not what capabilities they provide.

So, given all that:

A single server installation gains nothing from running in a managed domain, so running a standalone

server is a better choice.

For multi-server production environments, the choice of running a managed domain versus

standalone servers comes down to whether the user wants to use the centralized management

capabilities a managed domain provides. Some enterprises have developed their own sophisticated

multi-server management capabilities and are comfortable coordinating changes across a number of

independent WildFly instances. For these enterprises, a multi-server architecture comprised of

individual standalone servers is a good option.

Running a standalone server is better suited for most development scenarios. Any individual server

configuration that can be achieved in a managed domain can also be achieved in a standalone

server, so even if the application being developed will eventually run in production on a managed

domain installation, much (probably most) development can be done using a standalone server.

Running a managed domain mode can be helpful in some advanced development scenarios; i.e.

those involving interaction between multiple WildFly instances. Developers may find that setting up

various servers as members of a domain is an efficient way to launch a multi-server cluster.

5.14.2 General configuration concepts

For both a managed domain or a standalone server, a number of common configuration concepts apply:

Latest WildFly Documentation

JBoss Community Documentation Page of 346 2293

Extensions
An extension is a module that extends the core capabilities of the server. The WildFly core is very simple

and lightweight; most of the capabilities people associate with an application server are provided via

extensions. An extension is packaged as a module in the folder. The user indicates that they wantmodules

a particular extension to be available by including an element naming its module in the <extension/>

 or file.domain.xml standalone.xml

<extensions>

 [...]

 <extension module="org.jboss.as.transactions"/>

 <extension module="org.jboss.as.webservices" />

 <extension module="org.jboss.as.weld" />

 [...]

 <extension module="org.wildfly.extension.undertow"/>

</extensions>

Profiles and Subsystems
The most significant part of the configuration in and is the configuration ofdomain.xml standalone.xml

one (in) or more (in) "profiles". A profile is a named set of subsystemstandalone.xml domain.xml

configurations. A subsystem is an added set of capabilities added to the core server by an extension (see

"Extensions" above). A subsystem provides servlet handling capabilities; a subsystem provides an EJB

container; a subsystem provides JTA, etc. A profile is a named list of subsystems, along with the details of

each subsystem's configuration. A profile with a large number of subsystems results in a server with a large

set of capabilities. A profile with a small, focused set of subsystems will have fewer capabilities but a smaller

footprint.

The content of an individual profile configuration looks largely the same in and domain.xml

. The only difference is is only allowed to have a single profile elementstandalone.xml standalone.xml

(the profile the server will run), while can have many profiles, each of which can be mapped todomain.xml

one or more groups of servers.

The contents of individual subsystem configurations look exactly the same between and domain.xml

.standalone.xml

Paths
A logical name for a filesystem path. The , and configurationsdomain.xml host.xml standalone.xml

all include a section where paths can be declared. Other sections of the configuration can then reference

those paths by their logical name, rather than having to include the full details of the path (which may vary on

different machines). For example, the logging subsystem configuration includes a reference to the "

" path that points to the server's " " directory.jboss.server.log.dir log

Latest WildFly Documentation

JBoss Community Documentation Page of 347 2293

<file relative-to="jboss.server.log.dir" path="server.log"/>

WildFly automatically provides a number of standard paths without any need for the user to configure them

in a configuration file:

.dir - the root directory of the WildFly distributionjboss.home

 - user's home directoryuser.home

 - user's current working directoryuser.dir

 - java installation directoryjava.home

 - root directory for an individual server instancejboss.server.base.dir

 - directory the server will use for configuration file storagejboss.server.config.dir

 - directory the server will use for persistent data file storagejboss.server.data.dir

 - directory the server will use for log file storagejboss.server.log.dir

 - directory the server will use for temporary file storagejboss.server.temp.dir

 - directory the server will use for temporary file storagejboss.controller.temp.dir

 - directory under which a host controller will create the working areajboss.domain.servers.dir

for individual server instances (managed domain mode only)

Users can add their own paths or override all except the first 5 of the above by adding a element<path/>

to their configuration file.

<path name="example" path="example" relative-to="jboss.server.data.dir"/>

 The attributes are:

 -- the name of the path.name

 -- the actual filesystem path. Treated as an absolute path, unless the 'relative-to' attribute ispath

specified, in which case the value is treated as relative to that path.

 -- (optional) the name of another previously named path, or of one of the standardrelative-to

paths provided by the system.

A element in a need not include anything more than the attribute; i.e. it need<path/> domain.xml name

not include any information indicating what the actual filesystem path is:

<path name="x"/>

Such a configuration simply says, "There is a path named 'x' that other parts of the domain.xml

configuration can reference. The actual filesystem location pointed to by 'x' is host-specific and will be

specified in each machine's file." If this approach is used, there must be a path element in eachhost.xml

machine's that specifies what the actual filesystem path is:host.xml

<path name="x" path="/var/x" />

Latest WildFly Documentation

JBoss Community Documentation Page of 348 2293

A element in a must include the specification of the actual filesystem path.<path/> standalone.xml

Interfaces
A logical name for a network interface/IP address/host name to which sockets can be bound. The

, and configurations all include a section where interfaces candomain.xml host.xml standalone.xml

be declared. Other sections of the configuration can then reference those interfaces by their logical name,

rather than having to include the full details of the interface (which may vary on different machines). An

interface configuration includes the logical name of the interface as well as information specifying the criteria

to use for resolving the actual physical address to use. See for further details.Interfaces and ports

An element in a need not include anything more than the attribute; i.e. it<interface/> domain.xml name

need not include any information indicating what the actual IP address associated with the name is:

<interface name="internal"/>

Such a configuration simply says, "There is an interface named 'internal' that other parts of the domain.xml

configuration can reference. The actual IP address pointed to by 'internal' is host-specific and will be

specified in each machine's host.xml file." If this approach is used, there must be an interface element in

each machine's that specifies the criteria for determining the IP address:host.xml

<interface name="internal">

 <nic name="eth1"/>

</interface>

An element in a must include the criteria for determining the IP address.<interface/> standalone.xml

Socket Bindings and Socket Binding Groups
A socket binding is a named configuration for a socket.

The and configurations both include a section where named socketdomain.xml standalone.xml

configurations can be declared. Other sections of the configuration can then reference those sockets by their

logical name, rather than having to include the full details of the socket configuration (which may vary on

different machines). See for full details.Interfaces and ports

Latest WildFly Documentation

JBoss Community Documentation Page of 349 2293

System Properties
System property values can be set in a number of places in , and domain.xml host.xml

. The values in are set as part of the server boot process. Values in standalone.xml standalone.xml

 and are applied to servers when they are launched.domain.xml host.xml

When a system property is configured in or , the servers it ends up being applied todomain.xml host.xml

depends on where it is set. Setting a system property in a child element directly under the rootdomain.xml

results in the property being set on all servers. Setting it in a element inside a <system-property/>

 element in domain.xml results in the property being set on all servers in the group.<server-group/>

Setting it in a child element directly under the root results in the property being set on all servershost.xml

controlled by that host's Host Controller. Finally, setting it in a element inside a <system-property/>

 element in result in the property being set on that server. The same property can be<server/> host.xml

configured in multiple locations, with a value in a element taking precedence over a value<server/>

specified directly under the root element, the value in a taking precedence overhost.xml host.xml

anything from , and a value in a element taking precedence over a valuedomain.xml <server-group/>

specified directly under the root element.domain.xml

5.14.3 Management resources

When WildFly parses your configuration files at boot, or when you use one of the AS's Management Clients

you are adding, removing or modifying in the AS's internal management model. Amanagement resources

WildFly management resource has the following characteristics:

Latest WildFly Documentation

JBoss Community Documentation Page of 350 2293

Address
All WildFly management resources are organized in a tree. The path to the node in the tree for a particular

resource is its . Each segment in a resource's address is a key/value pair:address

The key is the resource's , in the context of its parent. So, for example, the root resource for atype

standalone server has children of type , , , etc. Thesubsystem interface socket-binding

resource for the subsystem that provides the AS's webserver capability has children of type

 and . The resource for the subsystem that provides the AS'sconnector virtual-server

messaging server capability has, among others, children of type and .jms-queue jms-topic

The value is the name of a particular resource of the given type, e.g or forweb messaging

subsystems or or for web subsystem connectors.http https

The full address for a resource is the ordered list of key/value pairs that lead from the root of the tree to the

resource. Typical notation is to separate the elements in the address with a '/' and to separate the key and

the value with an '=':

/subsystem=undertow/server=default-server/http-listener=default

/subsystem=messaging/jms-queue=testQueue

/interface=public

When using the HTTP API, a '/' is used to separate the key and the value instead of an '=':

http://localhost:9990/management/subsystem/undertow/server/default-server/http-listener/default

http://localhost:9990/management/subsystem/messaging/jms-queue/testQueue

http://localhost:9990/management/interface/public

Operations
Querying or modifying the state of a resource is done via an operation. An operation has the following

characteristics:

A string name

Zero or more named parameters. Each parameter has a string name, and a value of type

 (or, when invoked via the CLI, the text representation of a org.jboss.dmr.ModelNode

; when invoked via the HTTP API, the JSON representation of a .)ModelNode ModelNode

Parameters may be optional.

A return value, which will be of type (or, when invoked via the CLI, theorg.jboss.dmr.ModelNode

text representation of a ; when invoked via the HTTP API, the JSON representation of a ModelNode

.)ModelNode

Every resource except the root resource will have an operation and should have a operationadd remove

("should" because in WildFly 8 many do not). The parameters for the operation vary depending on theadd

resource. The operation has no parameters.remove

Latest WildFly Documentation

JBoss Community Documentation Page of 351 2293

There are also a number of "global" operations that apply to all resources. See for fullGlobal operations

details.

The operations a resource supports can themselves be determined by invoking an operation: the

 operation. Once the name of an operation is known, details about its parametersread-operation-names

and return value can be determined by invoking the operation. Forread-operation-description

example, to learn the names of the operations exposed by the root resource for a standalone server, and

then learn the full details of one of them, via the CLI one would:

Latest WildFly Documentation

JBoss Community Documentation Page of 352 2293

[standalone@localhost:9990 /] :read-operation-names

{

 "outcome" => "success",

 "result" => [

 "add-namespace",

 "add-schema-location",

 "delete-snapshot",

 "full-replace-deployment",

 "list-snapshots",

 "read-attribute",

 "read-children-names",

 "read-children-resources",

 "read-children-types",

 "read-config-as-xml",

 "read-operation-description",

 "read-operation-names",

 "read-resource",

 "read-resource-description",

 "reload",

 "remove-namespace",

 "remove-schema-location",

 "replace-deployment",

 "shutdown",

 "take-snapshot",

 "upload-deployment-bytes",

 "upload-deployment-stream",

 "upload-deployment-url",

 "validate-address",

 "write-attribute"

]

}

[standalone@localhost:9990 /] :read-operation-description(name=upload-deployment-url)

{

 "outcome" => "success",

 "result" => {

 "operation-name" => "upload-deployment-url",

 "description" => "Indicates that the deployment content available at the included URL

should be added to the deployment content repository. Note that this operation does not indicate

the content should be deployed into the runtime.",

 "request-properties" => {"url" => {

 "type" => STRING,

 "description" => "The URL at which the deployment content is available for upload to

the domain's or standalone server's deployment content repository.. Note that the URL must be

accessible from the target of the operation (i.e. the Domain Controller or standalone server).",

 "required" => true,

 "min-length" => 1,

 "nillable" => false

 }},

 "reply-properties" => {

 "type" => BYTES,

 "description" => "The hash of managed deployment content that has been uploaded to

the domain's or standalone server's deployment content repository.",

 "min-length" => 20,

 "max-length" => 20,

 "nillable" => false

 }

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 353 2293

See below for more on how to learn about the operations a resource exposes.Descriptions

Attributes
Management resources expose information about their state as attributes. Attributes have string name, and

a value of type (or: for the CLI, the text representation of a ; fororg.jboss.dmr.ModelNode ModelNode

HTTP API, the JSON representation of a .)ModelNode

Attributes can either be read-only or read-write. Reading and writing attribute values is done via the global

 and operations.read-attribute write-attribute

The operation takes a single parameter "name" whose value is a the name of theread-attribute

attribute. For example, to read the "port" attribute of a socket-binding resource via the CLI:

[standalone@localhost:9990 /]

/socket-binding-group=standard-sockets/socket-binding=https:read-attribute(name=port)

{

 "outcome" => "success",

 "result" => 8443

}

If an attribute is writable, the operation is used to mutate its state. The operation takeswrite-attribute

two parameters:

 – the name of the attributename

 – the value of the attributevalue

For example, to read the "port" attribute of a socket-binding resource via the CLI:

[standalone@localhost:9990 /]

/socket-binding-group=standard-sockets/socket-binding=https:write-attribute(name=port,value=8444)
{"outcome"

=> "success"}

Attributes can have one of two possible :storage types

 – means the value of the attribute is stored in the persistent configuration; i.e. inCONFIGURATION

the , or file from which the resource's configuration wasdomain.xml host.xml standalone.xml

read.

 – the attribute value is only available from a running server; the value is not stored in theRUNTIME

persistent configuration. A metric (e.g. number of requests serviced) is a typical example of a

RUNTIME attribute.

The values of all of the attributes a resource exposes can be obtained via the operation,read-resource

with the "include-runtime" parameter set to "true". For example, from the CLI:

Latest WildFly Documentation

JBoss Community Documentation Page of 354 2293

[standalone@localhost:9990 /]

/subsystem=undertow/server=default-server/http-listener=default:read-resource(include-runtime=true)
{

"outcome" => "success",

 "result" => {

 "allow-encoded-slash" => false,

 "allow-equals-in-cookie-value" => false,

 "always-set-keep-alive" => true,

 "buffer-pipelined-data" => true,

 "buffer-pool" => "default",

 "bytes-received" => 0L,

 "bytes-sent" => 0L,

 "certificate-forwarding" => false,

 "decode-url" => true,

 "disallowed-methods" => ["TRACE"],

 "enable-http2" => false,

 "enabled" => true,

 "error-count" => 0L,

 "max-buffered-request-size" => 16384,

 "max-connections" => undefined,

 "max-cookies" => 200,

 "max-header-size" => 1048576,

 "max-headers" => 200,

 "max-parameters" => 1000,

 "max-post-size" => 10485760L,

 "max-processing-time" => 0L,

 "no-request-timeout" => undefined,

 "processing-time" => 0L,

 "proxy-address-forwarding" => false,

 "read-timeout" => undefined,

 "receive-buffer" => undefined,

 "record-request-start-time" => false,

 "redirect-socket" => "https",

 "request-count" => 0L,

 "request-parse-timeout" => undefined,

 "resolve-peer-address" => false,

 "send-buffer" => undefined,

 "socket-binding" => "http",

 "tcp-backlog" => undefined,

 "tcp-keep-alive" => undefined,

 "url-charset" => "UTF-8",

 "worker" => "default",

 "write-timeout" => undefined

 }

}

Omit the "include-runtime" parameter (or set it to "false") to limit output to those attributes whose values are

stored in the persistent configuration:

Latest WildFly Documentation

JBoss Community Documentation Page of 355 2293

[standalone@localhost:9990 /]

/subsystem=undertow/server=default-server/http-listener=default:read-resource(include-runtime=false
{

"outcome" => "success",

 "result" => {

 "allow-encoded-slash" => false,

 "allow-equals-in-cookie-value" => false,

 "always-set-keep-alive" => true,

 "buffer-pipelined-data" => true,

 "buffer-pool" => "default",

 "certificate-forwarding" => false,

 "decode-url" => true,

 "disallowed-methods" => ["TRACE"],

 "enable-http2" => false,

 "enabled" => true,

 "max-buffered-request-size" => 16384,

 "max-connections" => undefined,

 "max-cookies" => 200,

 "max-header-size" => 1048576,

 "max-headers" => 200,

 "max-parameters" => 1000,

 "max-post-size" => 10485760L,

 "no-request-timeout" => undefined,

 "proxy-address-forwarding" => false,

 "read-timeout" => undefined,

 "receive-buffer" => undefined,

 "record-request-start-time" => false,

 "redirect-socket" => "https",

 "request-parse-timeout" => undefined,

 "resolve-peer-address" => false,

 "send-buffer" => undefined,

 "socket-binding" => "http",

 "tcp-backlog" => undefined,

 "tcp-keep-alive" => undefined,

 "url-charset" => "UTF-8",

 "worker" => "default",

 "write-timeout" => undefined

 }

}

See below for how to learn more about the attributes a particular resource exposes.Descriptions

Latest WildFly Documentation

JBoss Community Documentation Page of 356 2293

Children
Management resources may support child resources. The a resource supports (e.g. of childrentypes

 for the web subsystem resource) can be obtained by querying the resource's description (see connector

 below) or by invoking the operation. Once you know the legal childDescriptions read-children-types

types, you can query the names of all children of a given type by using the global read-children-types

operation. The operation takes a single parameter "child-type" whose value is the type. For example, a

resource representing a socket binding group has children. To find the type of those children and the names

of resources of that type via the CLI one could:

[standalone@localhost:9990 /] /socket-binding-group=standard-sockets:read-children-types

{

 "outcome" => "success",

 "result" => ["socket-binding"]

}

[standalone@localhost:9990 /]

/socket-binding-group=standard-sockets:read-children-names(child-type=socket-binding)

{

 "outcome" => "success",

 "result" => [

 "http",

 "https",

 "jmx-connector-registry",

 "jmx-connector-server",

 "jndi",

 "osgi-http",

 "remoting",

 "txn-recovery-environment",

 "txn-status-manager"

]

}

Descriptions
All resources expose metadata that describes their attributes, operations and child types. This metadata is

itself obtained by invoking one or more of the each resource supports. We showedglobal operations

examples of the , , read-operation-names read-operation-description read-children-types

and operations above.read-children-names

The operation can be used to find the details of the attributes and childread-resource-description

types associated with a resource. For example, using the CLI:

Latest WildFly Documentation

JBoss Community Documentation Page of 357 2293

[standalone@localhost:9990 /] /socket-binding-group=standard-sockets:read-resource-description

{

 "outcome" => "success",

 "result" => {

 "description" => "Contains a list of socket configurations.",

 "head-comment-allowed" => true,

 "tail-comment-allowed" => false,

 "attributes" => {

 "name" => {

 "type" => STRING,

 "description" => "The name of the socket binding group.",

 "required" => true,

 "head-comment-allowed" => false,

 "tail-comment-allowed" => false,

 "access-type" => "read-only",

 "storage" => "configuration"

 },

 "default-interface" => {

 "type" => STRING,

 "description" => "Name of an interface that should be used as the interface for

any sockets that do not explicitly declare one.",

 "required" => true,

 "head-comment-allowed" => false,

 "tail-comment-allowed" => false,

 "access-type" => "read-write",

 "storage" => "configuration"

 },

 "port-offset" => {

 "type" => INT,

 "description" => "Increment to apply to the base port values defined in the

socket bindings to derive the runtime values to use on this server.",

 "required" => false,

 "head-comment-allowed" => true,

 "tail-comment-allowed" => false,

 "access-type" => "read-write",

 "storage" => "configuration"

 }

 },

 "operations" => {},

 "children" => {"socket-binding" => {

 "description" => "The individual socket configurtions.",

 "min-occurs" => 0,

 "model-description" => undefined

 }}

 }

}

Note the "operations" => }} in the output above. If the command had included the

 parameter (i.e. {{operations

/socket-binding-group=standard-sockets:read-resource-description(operations=true)

) the output would have included the description of each operation supported by the resource.

Latest WildFly Documentation

JBoss Community Documentation Page of 358 2293

See the section for details on other parameters supported by the Global operations

 operation and all the other globally available operations.read-resource-description

Comparison to JMX MBeans
WildFly management resources are conceptually quite similar to Open MBeans. They have the following

primary differences:

WildFly management resources are organized in a tree structure. The order of the key value pairs in a

resource's address is significant, as it defines the resource's position in the tree. The order of the key

properties in a JMX is not significant.ObjectName

In an Open MBean attribute values, operation parameter values and operation return values must

either be one of the simple JDK types (String, Boolean, Integer, etc) or implement either the

 interface or the javax.management.openmbean.CompositeData

 interface. WildFly management resource attributejavax.management.openmbean.TabularData

values, operation parameter values and operation return values are all of type

.org.jboss.dmr.ModelNode

Basic structure of the management resource trees
As noted above, management resources are organized in a tree structure. The structure of the tree depends

on whether you are running a standalone server or a managed domain.

Standalone server
The structure of the managed resource tree is quite close to the structure of the standalone.xml

configuration file.

The root resource

 – extensions installed in the serverextension

 – paths available on the serverpath

 – system properties set as part of the configuration (i.e. not on thesystem-property

command line)

 – the server's core management servicescore-service=management

 – resource for the JBoss MSC core-service=service-container ServiceContainer

that's at the heart of the AS

 – the subsystems installed on the server. The bulk of the management model willsubsystem

be children of type subsystem

 – interface configurationsinterface

 – the central resource for the server's socket bindingssocket-binding-group

 – individual socket binding configurationssocket-binding

 – available deployments on the serverdeployment

Latest WildFly Documentation

JBoss Community Documentation Page of 359 2293

Managed domain
In a managed domain, the structure of the managed resource tree spans the entire domain, covering both

the domain wide configuration (e.g. what's in , the host specific configuration for each host (e.g.domain.xml

what's in , and the resources exposed by each running application server. The Host Controllerhost.xml

processes in a managed domain provide access to all or part of the overall resource tree. How much is

available depends on whether the management client is interacting with the Host Controller that is acting as

the master Domain Controller. If the Host Controller is the master Domain Controller, then the section of the

tree for each host is available. If the Host Controller is a slave to a remote Domain Controller, then only the

portion of the tree associated with that host is available.

The root resource for the entire domain. The persistent configuration associated with this resource

and its children, except for those of type , is persisted in the file on the Domainhost domain.xml

Controller.

Latest WildFly Documentation

JBoss Community Documentation Page of 360 2293

 – extensions available in the domainextension

 – paths available on across the domainpath

 – system properties set as part of the configuration (i.e. not on thesystem-property

command line) and available across the domain

 – sets of subsystem configurations that can be assigned to server groupsprofile

 – configuration of subsystems that are part of the profilesubsystem

 – interface configurationsinterface

 – sets of socket bindings configurations that can be applied tosocket-binding-group

server groups

 – individual socket binding configurationssocket-binding

 – deployments available for assignment to server groupsdeployment

deployment-overlay -- deployment-overlays content available to overlay deployments in server

groups

 – server group configurationsserver-group

host – the individual Host Controllers. Each child of this type represents the root resource for a

particular host. The persistent configuration associated with one of these resources or its

children is persisted in the host's file.host.xml

 – paths available on each server on the hostpath

 – system properties to set on each server on the hostsystem-property

 – the Host Controller's core management servicescore-service=management

 – interface configurations that apply to the Host Controller or servers on theinterface

host

 – JVM configurations that can be applied when launching serversjvm

 – configuration describing how the Host Controller should launch aserver-config

server; what server group configuration to use, and any server-specific overrides of

items specified in other resources

 – the root resource for a running server. Resources from here and below areserver

not directly persisted; the domain-wide and host level resources contain the persistent

configuration that drives a server

 – extensions installed in the serverextension

 – paths available on the serverpath

 – system properties set as part of the configuration (i.e. notsystem-property

on the command line)

 – the server's core management servicescore-service=management

 – resource for the JBoss MSC core-service=service-container

 that's at the heart of the ASServiceContainer

 – the subsystems installed on the server. The bulk of thesubsystem

management model will be children of type subsystem

 – interface configurationsinterface

 – the central resource for the server's socket bindingssocket-binding-group

 – individual socket binding configurationssocket-binding

 – available deployments on the serverdeployment

deployment-overlay -- available overlays on the server

Latest WildFly Documentation

JBoss Community Documentation Page of 361 2293

5.14.4 General configuration concepts

For both a managed domain or a standalone server, a number of common configuration concepts apply:

Extensions
An extension is a module that extends the core capabilities of the server. The WildFly core is very simple

and lightweight; most of the capabilities people associate with an application server are provided via

extensions. An extension is packaged as a module in the folder. The user indicates that they wantmodules

a particular extension to be available by including an element naming its module in the <extension/>

 or file.domain.xml standalone.xml

<extensions>

 [...]

 <extension module="org.jboss.as.transactions"/>

 <extension module="org.jboss.as.webservices" />

 <extension module="org.jboss.as.weld" />

 [...]

 <extension module="org.wildfly.extension.undertow"/>

</extensions>

Profiles and Subsystems
The most significant part of the configuration in and is the configuration ofdomain.xml standalone.xml

one (in) or more (in) "profiles". A profile is a named set of subsystemstandalone.xml domain.xml

configurations. A subsystem is an added set of capabilities added to the core server by an extension (see

"Extensions" above). A subsystem provides servlet handling capabilities; a subsystem provides an EJB

container; a subsystem provides JTA, etc. A profile is a named list of subsystems, along with the details of

each subsystem's configuration. A profile with a large number of subsystems results in a server with a large

set of capabilities. A profile with a small, focused set of subsystems will have fewer capabilities but a smaller

footprint.

The content of an individual profile configuration looks largely the same in and domain.xml

. The only difference is is only allowed to have a single profile elementstandalone.xml standalone.xml

(the profile the server will run), while can have many profiles, each of which can be mapped todomain.xml

one or more groups of servers.

The contents of individual subsystem configurations look exactly the same between and domain.xml

.standalone.xml

Latest WildFly Documentation

JBoss Community Documentation Page of 362 2293

Paths
A logical name for a filesystem path. The , and configurationsdomain.xml host.xml standalone.xml

all include a section where paths can be declared. Other sections of the configuration can then reference

those paths by their logical name, rather than having to include the full details of the path (which may vary on

different machines). For example, the logging subsystem configuration includes a reference to the "

" path that points to the server's " " directory.jboss.server.log.dir log

<file relative-to="jboss.server.log.dir" path="server.log"/>

WildFly automatically provides a number of standard paths without any need for the user to configure them

in a configuration file:

.dir - the root directory of the WildFly distributionjboss.home

 - user's home directoryuser.home

 - user's current working directoryuser.dir

 - java installation directoryjava.home

 - root directory for an individual server instancejboss.server.base.dir

 - directory the server will use for configuration file storagejboss.server.config.dir

 - directory the server will use for persistent data file storagejboss.server.data.dir

 - directory the server will use for log file storagejboss.server.log.dir

 - directory the server will use for temporary file storagejboss.server.temp.dir

 - directory the server will use for temporary file storagejboss.controller.temp.dir

 - directory under which a host controller will create the working areajboss.domain.servers.dir

for individual server instances (managed domain mode only)

Users can add their own paths or override all except the first 5 of the above by adding a element<path/>

to their configuration file.

<path name="example" path="example" relative-to="jboss.server.data.dir"/>

 The attributes are:

 -- the name of the path.name

 -- the actual filesystem path. Treated as an absolute path, unless the 'relative-to' attribute ispath

specified, in which case the value is treated as relative to that path.

 -- (optional) the name of another previously named path, or of one of the standardrelative-to

paths provided by the system.

A element in a need not include anything more than the attribute; i.e. it need<path/> domain.xml name

not include any information indicating what the actual filesystem path is:

<path name="x"/>

Latest WildFly Documentation

JBoss Community Documentation Page of 363 2293

Such a configuration simply says, "There is a path named 'x' that other parts of the domain.xml

configuration can reference. The actual filesystem location pointed to by 'x' is host-specific and will be

specified in each machine's file." If this approach is used, there must be a path element in eachhost.xml

machine's that specifies what the actual filesystem path is:host.xml

<path name="x" path="/var/x" />

A element in a must include the specification of the actual filesystem path.<path/> standalone.xml

Interfaces
A logical name for a network interface/IP address/host name to which sockets can be bound. The

, and configurations all include a section where interfaces candomain.xml host.xml standalone.xml

be declared. Other sections of the configuration can then reference those interfaces by their logical name,

rather than having to include the full details of the interface (which may vary on different machines). An

interface configuration includes the logical name of the interface as well as information specifying the criteria

to use for resolving the actual physical address to use. See for further details.Interfaces and ports

An element in a need not include anything more than the attribute; i.e. it<interface/> domain.xml name

need not include any information indicating what the actual IP address associated with the name is:

<interface name="internal"/>

Such a configuration simply says, "There is an interface named 'internal' that other parts of the domain.xml

configuration can reference. The actual IP address pointed to by 'internal' is host-specific and will be

specified in each machine's host.xml file." If this approach is used, there must be an interface element in

each machine's that specifies the criteria for determining the IP address:host.xml

<interface name="internal">

 <nic name="eth1"/>

</interface>

An element in a must include the criteria for determining the IP address.<interface/> standalone.xml

Socket Bindings and Socket Binding Groups
A socket binding is a named configuration for a socket.

The and configurations both include a section where named socketdomain.xml standalone.xml

configurations can be declared. Other sections of the configuration can then reference those sockets by their

logical name, rather than having to include the full details of the socket configuration (which may vary on

different machines). See for full details.Interfaces and ports

Latest WildFly Documentation

JBoss Community Documentation Page of 364 2293

System Properties
System property values can be set in a number of places in , and domain.xml host.xml

. The values in are set as part of the server boot process. Values in standalone.xml standalone.xml

 and are applied to servers when they are launched.domain.xml host.xml

When a system property is configured in or , the servers it ends up being applied todomain.xml host.xml

depends on where it is set. Setting a system property in a child element directly under the rootdomain.xml

results in the property being set on all servers. Setting it in a element inside a <system-property/>

 element in domain.xml results in the property being set on all servers in the group.<server-group/>

Setting it in a child element directly under the root results in the property being set on all servershost.xml

controlled by that host's Host Controller. Finally, setting it in a element inside a <system-property/>

 element in result in the property being set on that server. The same property can be<server/> host.xml

configured in multiple locations, with a value in a element taking precedence over a value<server/>

specified directly under the root element, the value in a taking precedence overhost.xml host.xml

anything from , and a value in a element taking precedence over a valuedomain.xml <server-group/>

specified directly under the root element.domain.xml

5.14.5 Management resources

When WildFly parses your configuration files at boot, or when you use one of the AS's Management Clients

you are adding, removing or modifying in the AS's internal management model. Amanagement resources

WildFly management resource has the following characteristics:

Latest WildFly Documentation

JBoss Community Documentation Page of 365 2293

Address
All WildFly management resources are organized in a tree. The path to the node in the tree for a particular

resource is its . Each segment in a resource's address is a key/value pair:address

The key is the resource's , in the context of its parent. So, for example, the root resource for atype

standalone server has children of type , , , etc. Thesubsystem interface socket-binding

resource for the subsystem that provides the AS's webserver capability has children of type

 and . The resource for the subsystem that provides the AS'sconnector virtual-server

messaging server capability has, among others, children of type and .jms-queue jms-topic

The value is the name of a particular resource of the given type, e.g or forweb messaging

subsystems or or for web subsystem connectors.http https

The full address for a resource is the ordered list of key/value pairs that lead from the root of the tree to the

resource. Typical notation is to separate the elements in the address with a '/' and to separate the key and

the value with an '=':

/subsystem=undertow/server=default-server/http-listener=default

/subsystem=messaging/jms-queue=testQueue

/interface=public

When using the HTTP API, a '/' is used to separate the key and the value instead of an '=':

http://localhost:9990/management/subsystem/undertow/server/default-server/http-listener/default

http://localhost:9990/management/subsystem/messaging/jms-queue/testQueue

http://localhost:9990/management/interface/public

Operations
Querying or modifying the state of a resource is done via an operation. An operation has the following

characteristics:

A string name

Zero or more named parameters. Each parameter has a string name, and a value of type

 (or, when invoked via the CLI, the text representation of a org.jboss.dmr.ModelNode

; when invoked via the HTTP API, the JSON representation of a .)ModelNode ModelNode

Parameters may be optional.

A return value, which will be of type (or, when invoked via the CLI, theorg.jboss.dmr.ModelNode

text representation of a ; when invoked via the HTTP API, the JSON representation of a ModelNode

.)ModelNode

Every resource except the root resource will have an operation and should have a operationadd remove

("should" because in WildFly 8 many do not). The parameters for the operation vary depending on theadd

resource. The operation has no parameters.remove

Latest WildFly Documentation

JBoss Community Documentation Page of 366 2293

There are also a number of "global" operations that apply to all resources. See for fullGlobal operations

details.

The operations a resource supports can themselves be determined by invoking an operation: the

 operation. Once the name of an operation is known, details about its parametersread-operation-names

and return value can be determined by invoking the operation. Forread-operation-description

example, to learn the names of the operations exposed by the root resource for a standalone server, and

then learn the full details of one of them, via the CLI one would:

Latest WildFly Documentation

JBoss Community Documentation Page of 367 2293

[standalone@localhost:9990 /] :read-operation-names

{

 "outcome" => "success",

 "result" => [

 "add-namespace",

 "add-schema-location",

 "delete-snapshot",

 "full-replace-deployment",

 "list-snapshots",

 "read-attribute",

 "read-children-names",

 "read-children-resources",

 "read-children-types",

 "read-config-as-xml",

 "read-operation-description",

 "read-operation-names",

 "read-resource",

 "read-resource-description",

 "reload",

 "remove-namespace",

 "remove-schema-location",

 "replace-deployment",

 "shutdown",

 "take-snapshot",

 "upload-deployment-bytes",

 "upload-deployment-stream",

 "upload-deployment-url",

 "validate-address",

 "write-attribute"

]

}

[standalone@localhost:9990 /] :read-operation-description(name=upload-deployment-url)

{

 "outcome" => "success",

 "result" => {

 "operation-name" => "upload-deployment-url",

 "description" => "Indicates that the deployment content available at the included URL

should be added to the deployment content repository. Note that this operation does not indicate

the content should be deployed into the runtime.",

 "request-properties" => {"url" => {

 "type" => STRING,

 "description" => "The URL at which the deployment content is available for upload to

the domain's or standalone server's deployment content repository.. Note that the URL must be

accessible from the target of the operation (i.e. the Domain Controller or standalone server).",

 "required" => true,

 "min-length" => 1,

 "nillable" => false

 }},

 "reply-properties" => {

 "type" => BYTES,

 "description" => "The hash of managed deployment content that has been uploaded to

the domain's or standalone server's deployment content repository.",

 "min-length" => 20,

 "max-length" => 20,

 "nillable" => false

 }

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 368 2293

See below for more on how to learn about the operations a resource exposes.Descriptions

Attributes
Management resources expose information about their state as attributes. Attributes have string name, and

a value of type (or: for the CLI, the text representation of a ; fororg.jboss.dmr.ModelNode ModelNode

HTTP API, the JSON representation of a .)ModelNode

Attributes can either be read-only or read-write. Reading and writing attribute values is done via the global

 and operations.read-attribute write-attribute

The operation takes a single parameter "name" whose value is a the name of theread-attribute

attribute. For example, to read the "port" attribute of a socket-binding resource via the CLI:

[standalone@localhost:9990 /]

/socket-binding-group=standard-sockets/socket-binding=https:read-attribute(name=port)

{

 "outcome" => "success",

 "result" => 8443

}

If an attribute is writable, the operation is used to mutate its state. The operation takeswrite-attribute

two parameters:

 – the name of the attributename

 – the value of the attributevalue

For example, to read the "port" attribute of a socket-binding resource via the CLI:

[standalone@localhost:9990 /]

/socket-binding-group=standard-sockets/socket-binding=https:write-attribute(name=port,value=8444)
{"outcome"

=> "success"}

Attributes can have one of two possible :storage types

 – means the value of the attribute is stored in the persistent configuration; i.e. inCONFIGURATION

the , or file from which the resource's configuration wasdomain.xml host.xml standalone.xml

read.

 – the attribute value is only available from a running server; the value is not stored in theRUNTIME

persistent configuration. A metric (e.g. number of requests serviced) is a typical example of a

RUNTIME attribute.

The values of all of the attributes a resource exposes can be obtained via the operation,read-resource

with the "include-runtime" parameter set to "true". For example, from the CLI:

Latest WildFly Documentation

JBoss Community Documentation Page of 369 2293

[standalone@localhost:9990 /]

/subsystem=undertow/server=default-server/http-listener=default:read-resource(include-runtime=true)
{

"outcome" => "success",

 "result" => {

 "allow-encoded-slash" => false,

 "allow-equals-in-cookie-value" => false,

 "always-set-keep-alive" => true,

 "buffer-pipelined-data" => true,

 "buffer-pool" => "default",

 "bytes-received" => 0L,

 "bytes-sent" => 0L,

 "certificate-forwarding" => false,

 "decode-url" => true,

 "disallowed-methods" => ["TRACE"],

 "enable-http2" => false,

 "enabled" => true,

 "error-count" => 0L,

 "max-buffered-request-size" => 16384,

 "max-connections" => undefined,

 "max-cookies" => 200,

 "max-header-size" => 1048576,

 "max-headers" => 200,

 "max-parameters" => 1000,

 "max-post-size" => 10485760L,

 "max-processing-time" => 0L,

 "no-request-timeout" => undefined,

 "processing-time" => 0L,

 "proxy-address-forwarding" => false,

 "read-timeout" => undefined,

 "receive-buffer" => undefined,

 "record-request-start-time" => false,

 "redirect-socket" => "https",

 "request-count" => 0L,

 "request-parse-timeout" => undefined,

 "resolve-peer-address" => false,

 "send-buffer" => undefined,

 "socket-binding" => "http",

 "tcp-backlog" => undefined,

 "tcp-keep-alive" => undefined,

 "url-charset" => "UTF-8",

 "worker" => "default",

 "write-timeout" => undefined

 }

}

Omit the "include-runtime" parameter (or set it to "false") to limit output to those attributes whose values are

stored in the persistent configuration:

Latest WildFly Documentation

JBoss Community Documentation Page of 370 2293

[standalone@localhost:9990 /]

/subsystem=undertow/server=default-server/http-listener=default:read-resource(include-runtime=false
{

"outcome" => "success",

 "result" => {

 "allow-encoded-slash" => false,

 "allow-equals-in-cookie-value" => false,

 "always-set-keep-alive" => true,

 "buffer-pipelined-data" => true,

 "buffer-pool" => "default",

 "certificate-forwarding" => false,

 "decode-url" => true,

 "disallowed-methods" => ["TRACE"],

 "enable-http2" => false,

 "enabled" => true,

 "max-buffered-request-size" => 16384,

 "max-connections" => undefined,

 "max-cookies" => 200,

 "max-header-size" => 1048576,

 "max-headers" => 200,

 "max-parameters" => 1000,

 "max-post-size" => 10485760L,

 "no-request-timeout" => undefined,

 "proxy-address-forwarding" => false,

 "read-timeout" => undefined,

 "receive-buffer" => undefined,

 "record-request-start-time" => false,

 "redirect-socket" => "https",

 "request-parse-timeout" => undefined,

 "resolve-peer-address" => false,

 "send-buffer" => undefined,

 "socket-binding" => "http",

 "tcp-backlog" => undefined,

 "tcp-keep-alive" => undefined,

 "url-charset" => "UTF-8",

 "worker" => "default",

 "write-timeout" => undefined

 }

}

See below for how to learn more about the attributes a particular resource exposes.Descriptions

Latest WildFly Documentation

JBoss Community Documentation Page of 371 2293

Children
Management resources may support child resources. The a resource supports (e.g. of childrentypes

 for the web subsystem resource) can be obtained by querying the resource's description (see connector

 below) or by invoking the operation. Once you know the legal childDescriptions read-children-types

types, you can query the names of all children of a given type by using the global read-children-types

operation. The operation takes a single parameter "child-type" whose value is the type. For example, a

resource representing a socket binding group has children. To find the type of those children and the names

of resources of that type via the CLI one could:

[standalone@localhost:9990 /] /socket-binding-group=standard-sockets:read-children-types

{

 "outcome" => "success",

 "result" => ["socket-binding"]

}

[standalone@localhost:9990 /]

/socket-binding-group=standard-sockets:read-children-names(child-type=socket-binding)

{

 "outcome" => "success",

 "result" => [

 "http",

 "https",

 "jmx-connector-registry",

 "jmx-connector-server",

 "jndi",

 "osgi-http",

 "remoting",

 "txn-recovery-environment",

 "txn-status-manager"

]

}

Descriptions
All resources expose metadata that describes their attributes, operations and child types. This metadata is

itself obtained by invoking one or more of the each resource supports. We showedglobal operations

examples of the , , read-operation-names read-operation-description read-children-types

and operations above.read-children-names

The operation can be used to find the details of the attributes and childread-resource-description

types associated with a resource. For example, using the CLI:

Latest WildFly Documentation

JBoss Community Documentation Page of 372 2293

[standalone@localhost:9990 /] /socket-binding-group=standard-sockets:read-resource-description

{

 "outcome" => "success",

 "result" => {

 "description" => "Contains a list of socket configurations.",

 "head-comment-allowed" => true,

 "tail-comment-allowed" => false,

 "attributes" => {

 "name" => {

 "type" => STRING,

 "description" => "The name of the socket binding group.",

 "required" => true,

 "head-comment-allowed" => false,

 "tail-comment-allowed" => false,

 "access-type" => "read-only",

 "storage" => "configuration"

 },

 "default-interface" => {

 "type" => STRING,

 "description" => "Name of an interface that should be used as the interface for

any sockets that do not explicitly declare one.",

 "required" => true,

 "head-comment-allowed" => false,

 "tail-comment-allowed" => false,

 "access-type" => "read-write",

 "storage" => "configuration"

 },

 "port-offset" => {

 "type" => INT,

 "description" => "Increment to apply to the base port values defined in the

socket bindings to derive the runtime values to use on this server.",

 "required" => false,

 "head-comment-allowed" => true,

 "tail-comment-allowed" => false,

 "access-type" => "read-write",

 "storage" => "configuration"

 }

 },

 "operations" => {},

 "children" => {"socket-binding" => {

 "description" => "The individual socket configurtions.",

 "min-occurs" => 0,

 "model-description" => undefined

 }}

 }

}

Note the "operations" => }} in the output above. If the command had included the

 parameter (i.e. {{operations

/socket-binding-group=standard-sockets:read-resource-description(operations=true)

) the output would have included the description of each operation supported by the resource.

Latest WildFly Documentation

JBoss Community Documentation Page of 373 2293

See the section for details on other parameters supported by the Global operations

 operation and all the other globally available operations.read-resource-description

Comparison to JMX MBeans
WildFly management resources are conceptually quite similar to Open MBeans. They have the following

primary differences:

WildFly management resources are organized in a tree structure. The order of the key value pairs in a

resource's address is significant, as it defines the resource's position in the tree. The order of the key

properties in a JMX is not significant.ObjectName

In an Open MBean attribute values, operation parameter values and operation return values must

either be one of the simple JDK types (String, Boolean, Integer, etc) or implement either the

 interface or the javax.management.openmbean.CompositeData

 interface. WildFly management resource attributejavax.management.openmbean.TabularData

values, operation parameter values and operation return values are all of type

.org.jboss.dmr.ModelNode

Basic structure of the management resource trees
As noted above, management resources are organized in a tree structure. The structure of the tree depends

on whether you are running a standalone server or a managed domain.

Standalone server
The structure of the managed resource tree is quite close to the structure of the standalone.xml

configuration file.

The root resource

 – extensions installed in the serverextension

 – paths available on the serverpath

 – system properties set as part of the configuration (i.e. not on thesystem-property

command line)

 – the server's core management servicescore-service=management

 – resource for the JBoss MSC core-service=service-container ServiceContainer

that's at the heart of the AS

 – the subsystems installed on the server. The bulk of the management model willsubsystem

be children of type subsystem

 – interface configurationsinterface

 – the central resource for the server's socket bindingssocket-binding-group

 – individual socket binding configurationssocket-binding

 – available deployments on the serverdeployment

Latest WildFly Documentation

JBoss Community Documentation Page of 374 2293

Managed domain
In a managed domain, the structure of the managed resource tree spans the entire domain, covering both

the domain wide configuration (e.g. what's in , the host specific configuration for each host (e.g.domain.xml

what's in , and the resources exposed by each running application server. The Host Controllerhost.xml

processes in a managed domain provide access to all or part of the overall resource tree. How much is

available depends on whether the management client is interacting with the Host Controller that is acting as

the master Domain Controller. If the Host Controller is the master Domain Controller, then the section of the

tree for each host is available. If the Host Controller is a slave to a remote Domain Controller, then only the

portion of the tree associated with that host is available.

The root resource for the entire domain. The persistent configuration associated with this resource

and its children, except for those of type , is persisted in the file on the Domainhost domain.xml

Controller.

Latest WildFly Documentation

JBoss Community Documentation Page of 375 2293

 – extensions available in the domainextension

 – paths available on across the domainpath

 – system properties set as part of the configuration (i.e. not on thesystem-property

command line) and available across the domain

 – sets of subsystem configurations that can be assigned to server groupsprofile

 – configuration of subsystems that are part of the profilesubsystem

 – interface configurationsinterface

 – sets of socket bindings configurations that can be applied tosocket-binding-group

server groups

 – individual socket binding configurationssocket-binding

 – deployments available for assignment to server groupsdeployment

deployment-overlay -- deployment-overlays content available to overlay deployments in server

groups

 – server group configurationsserver-group

host – the individual Host Controllers. Each child of this type represents the root resource for a

particular host. The persistent configuration associated with one of these resources or its

children is persisted in the host's file.host.xml

 – paths available on each server on the hostpath

 – system properties to set on each server on the hostsystem-property

 – the Host Controller's core management servicescore-service=management

 – interface configurations that apply to the Host Controller or servers on theinterface

host

 – JVM configurations that can be applied when launching serversjvm

 – configuration describing how the Host Controller should launch aserver-config

server; what server group configuration to use, and any server-specific overrides of

items specified in other resources

 – the root resource for a running server. Resources from here and below areserver

not directly persisted; the domain-wide and host level resources contain the persistent

configuration that drives a server

 – extensions installed in the serverextension

 – paths available on the serverpath

 – system properties set as part of the configuration (i.e. notsystem-property

on the command line)

 – the server's core management servicescore-service=management

 – resource for the JBoss MSC core-service=service-container

 that's at the heart of the ASServiceContainer

 – the subsystems installed on the server. The bulk of thesubsystem

management model will be children of type subsystem

 – interface configurationsinterface

 – the central resource for the server's socket bindingssocket-binding-group

 – individual socket binding configurationssocket-binding

 – available deployments on the serverdeployment

deployment-overlay -- available overlays on the server

Latest WildFly Documentation

JBoss Community Documentation Page of 376 2293

5.14.6 Operating modes

WildFly can be booted in two different modes. A allows you to run and manage amanaged domain

multi-server topology. Alternatively, you can run a instance.standalone server

Standalone Server
For many use cases, the centralized management capability available via a managed domain is not

necessary. For these use cases, a WildFly instance can be run as a "standalone server". A standalone

server instance is an independent process, much like an JBoss Application Server 3, 4, 5, or 6 instance is.

Standalone instances can be launched via the or launch scripts.standalone.sh standalone.bat

If more than one standalone instance is launched and multi-server management is desired, it is the user's

responsibility to coordinate management across the servers. For example, to deploy an application across all

of the standalone servers, the user would need to individually deploy the application on each server.

It is perfectly possible to launch multiple standalone server instances and have them form an HA cluster, just

like it was possible with JBoss Application Server 3, 4, 5 and 6.

Managed Domain
One of the primary new features of WildFly is the ability to manage multiple WildFly instances from a single

control point. A collection of such servers is referred to as the members of a "domain" with a single Domain

Controller process acting as the central management control point. All of the WildFly instances in the domain

share a common management policy, with the Domain Controller acting to ensure that each server is

configured according to that policy. Domains can span multiple physical (or virtual) machines, with all

WildFly instances on a given host under the control of a special Host Controller process. One Host Controller

instance is configured to act as the central Domain Controller. The Host Controller on each host interacts

with the Domain Controller to control the lifecycle of the application server instances running on its host and

to assist the Domain Controller in managing them.

When you launch a WildFly managed domain on a host (via the or launch scripts)domain.sh domain.bat

your intent is to launch a Host Controller and usually at least one WildFly instance. On one of the hosts the

Host Controller should be configured to act as the Domain Controller. See for details.Domain Setup

The following is an example managed domain topology:

Latest WildFly Documentation

JBoss Community Documentation Page of 377 2293

Host
Each "Host" box in the above diagram represents a physical or virtual host. A physical host can contain zero,

one or more server instances.

Latest WildFly Documentation

JBoss Community Documentation Page of 378 2293

Host Controller
When the domain.sh or domain.bat script is run on a host, a process known as a Host Controller is

launched. The Host Controller is solely concerned with server management; it does not itself handle

application server workloads. The Host Controller is responsible for starting and stopping the individual

application server processes that run on its host, and interacts with the Domain Controller to help manage

them.

Each Host Controller by default reads its configuration from the filedomain/configuration/host.xml

located in the unzipped WildFly installation on its host's filesystem. The file contains configurationhost.xml

information that is specific to the particular host. Primarily:

the listing of the names of the actual WildFly instances that are meant to run off of this installation.

configuration of how the Host Controller is to contact the Domain Controller to register itself and

access the domain configuration. This may either be configuration of how to find and contact a remote

Domain Controller, or a configuration telling the Host Controller to itself act as the Domain Controller.

configuration of items that are specific to the local physical installation. For example, named interface

definitions declared in (see below) can be mapped to an actual machine-specific IPdomain.xml

address in . Abstract path names in can be mapped to actual filesystemhost.xml domain.xml

paths in .host.xml

Domain Controller
One Host Controller instance is configured to act as the central management point for the entire domain, i.e.

to be the Domain Controller. The primary responsibility of the Domain Controller is to maintain the domain's

central management policy, to ensure all Host Controllers are aware of its current contents, and to assist the

Host Controllers in ensuring any running application server instances are configured in accordance with this

policy. This central management policy is stored by default in the domain/configuration/domain.xml

file in the unzipped WildFly installation on Domain Controller's host's filesystem.

A file must be located in the directory of an installation that'sdomain.xml domain/configuration

meant to run the Domain Controller. It does not need to be present in installations that are not meant to run a

Domain Controller; i.e. those whose Host Controller is configured to contact a remote Domain Controller.

The presence of a file on such a server does no harm.domain.xml

The file includes, among other things, the configuration of the various "profiles" that WildFlydomain.xml

instances in the domain can be configured to run. A profile configuration includes the detailed configuration

of the various subsystems that comprise that profile (e.g. an embedded JBoss Web instance is a subsystem;

a JBoss TS transaction manager is a subsystem, etc). The domain configuration also includes the definition

of groups of sockets that those subsystems may open. The domain configuration also includes the definition

of "server groups":

Latest WildFly Documentation

JBoss Community Documentation Page of 379 2293

Server Group
A server group is set of server instances that will be managed and configured as one. In a managed domain

each application server instance is a member of a server group. (Even if the group only has a single server,

the server is still a member of a group.) It is the responsibility of the Domain Controller and the Host

Controllers to ensure that all servers in a server group have a consistent configuration. They should all be

configured with the same profile and they should have the same deployment content deployed.

The domain can have multiple server groups. The above diagram shows two server groups, "ServerGroupA"

and "ServerGroupB". Different server groups can be configured with different profiles and deployments; for

example in a domain with different tiers of servers providing different services. Different server groups can

also run the same profile and have the same deployments; for example to support rolling application

upgrade scenarios where a complete service outage is avoided by first upgrading the application on one

server group and then upgrading a second server group.

An example server group definition is as follows:

<server-group name="main-server-group" profile="default">

 <socket-binding-group ref="standard-sockets"/>

 <deployments>

 <deployment name="foo.war_v1" runtime-name="foo.war" />

 <deployment name="bar.ear" runtime-name="bar.ear" />

 </deployments>

</server-group>

A server-group configuration includes the following required attributes:

name -- the name of the server group

profile -- the name of the profile the servers in the group should run

In addition, the following optional elements are available:

socket-binding-group -- specifies the name of the default socket binding group to use on servers in

the group. Can be overridden on a per-server basis in . If not provided in the host.xml

 element, it must be provided for each server in .server-group host.xml

deployments -- the deployment content that should be deployed on the servers in the group.

deployment-overlays -- the overlays and their associated deployments.

system-properties -- system properties that should be set on all servers in the group

jvm -- default jvm settings for all servers in the group. The Host Controller will merge these settings

with any provided in to derive the settings to use to launch the server's JVM. See host.xml JVM

 for further details.settings

Latest WildFly Documentation

JBoss Community Documentation Page of 380 2293

Server
Each "Server" in the above diagram represents an actual application server instance. The server runs in a

separate JVM process from the Host Controller. The Host Controller is responsible for launching that

process. (In a managed domain the end user cannot directly launch a server process from the command

line.)

The Host Controller synthesizes the server's configuration by combining elements from the domain wide

configuration (from domain.xml) and the host-specific configuration (from host.xml).

Deciding between running standalone servers or a managed domain
Which use cases are appropriate for managed domain and which are appropriate for standalone servers? A

managed domain is all about coordinated multi-server management -- with it WildFly provides a central point

through which users can manage multiple servers, with rich capabilities to keep those servers' configurations

consistent and the ability to roll out configuration changes (including deployments) to the servers in a

coordinated fashion.

It's important to understand that the choice between a managed domain and standalone servers is all about

how your servers are managed, not what capabilities they have to service end user requests. This distinction

is particularly important when it comes to high availability clusters. It's important to understand that HA

functionality is orthogonal to running standalone servers or a managed domain. That is, a group of

standalone servers can be configured to form an HA cluster. The domain and standalone modes determine

how the servers are managed, not what capabilities they provide.

So, given all that:

A single server installation gains nothing from running in a managed domain, so running a standalone

server is a better choice.

For multi-server production environments, the choice of running a managed domain versus

standalone servers comes down to whether the user wants to use the centralized management

capabilities a managed domain provides. Some enterprises have developed their own sophisticated

multi-server management capabilities and are comfortable coordinating changes across a number of

independent WildFly instances. For these enterprises, a multi-server architecture comprised of

individual standalone servers is a good option.

Running a standalone server is better suited for most development scenarios. Any individual server

configuration that can be achieved in a managed domain can also be achieved in a standalone

server, so even if the application being developed will eventually run in production on a managed

domain installation, much (probably most) development can be done using a standalone server.

Running a managed domain mode can be helpful in some advanced development scenarios; i.e.

those involving interaction between multiple WildFly instances. Developers may find that setting up

various servers as members of a domain is an efficient way to launch a multi-server cluster.

Latest WildFly Documentation

JBoss Community Documentation Page of 381 2293

5.15 Domain Setup

To run a group of servers as a managed domain you need to configure both the domain controller and each

host that joins the domain. This sections focuses on the network configuration for the domain and host

controller components. For background information users are encouraged to review the Operating modes

and sections.Configuration Files

5.15.1 Domain Controller Configuration

The domain controller is the central government for a managed domain. A domain controller configuration

requires two steps:

A host needs to be configured to act as the Domain Controller for the whole domain

The host must expose an addressable management interface binding for the managed hosts to

communicate with it

Example IP Addresses

In this example the domain controller uses 192.168.0.101 and the host controller 192.168.0.10

Configuring a host to act as the Domain Controller is done through the declaration in domain-controller

. If it includes the element, then this host will become the domain controller:host.xml <local/>

<domain-controller>

 <local/>

</domain-controller>

(See domain/configuration/host.xml)

A host acting as the Domain Controller expose a management interface on an address accessible tomust

the other hosts in the domain. Exposing an HTTP(S) management interface is not required, but is

recommended as it allows the Administration Console to work:

<management-interfaces>

 <native-interface security-realm="ManagementRealm">

 <socket interface="management" port="${jboss.management.native.port:9999}"/>

 </native-interface>

 <http-interface security-realm="ManagementRealm">

 <socket interface="management" port="${jboss.management.http.port:9990}"/>

 </http-interface>

</management-interfaces>

The interface attributes above refer to a named interface declaration later in the host.xml file. This interface

declaration will be used to resolve a corresponding network interface.

Latest WildFly Documentation

JBoss Community Documentation Page of 382 2293

<interfaces>

 <interface name="management">

 <inet-address value="192.168.0.101"/>

 </interface>

</interfaces>

(See domain/configuration/host.xml)

Please consult the chapter "Interface Configuration" for a more detailed explanation on how to configure

network interfaces.

Next by default the master domain controller is configured to require authentication so a user needs to be

added that can be used by the slave domain controller to connect.

Make use of the utility to add a new user, for this example I am adding a new user called slave.add-user

 MUST be run on the master domain controller and NOT the slave.add-user

When you reach the final question of the interactive flow answer or to indicate that the new user willy yes

be used for a process e.g.

Is this new user going to be used for one AS process to connect to another AS process e.g. slave

domain controller?

yes/no? y

To represent the user add the following to the server-identities definition <secret

value="cE3EBEkE=" />

Make a note of the XML Element output as that is going to be required within the slave configuration.

5.15.2 Host Controller Configuration

Once the domain controller is configured correctly you can proceed with any host that should join the

domain. The host controller configuration requires three steps:

The logical host name (within the domain) needs to be distinct

The host controller needs to know the domain controller IP address

Provide a distinct, logical name for the host. In the following example we simply name it "slave":

<host xmlns="urn:jboss:domain:3.0"

 name="slave">

[...]

</host>

Latest WildFly Documentation

JBoss Community Documentation Page of 383 2293

(See domain/configuration/host.xml)

If the attribute is not set, the default name for the host will be the value of the name jboss.host.name

system property. If that is not set, the value of the or environment variable willHOSTNAME COMPUTERNAME

be used, one of which will be set on most operating systems. If neither is set the name will be the value of

.InetAddress.getLocalHost().getHostName()

A security realm needs to be defined to hold the identity of the slave. Since it is performing a specific

purpose I would suggest a new realm is defined although it is possible to combine this with an existing

realm.

<security-realm name="SlaveRealm">

 <server-identities>

 <secret value="cE3EBEkE=" />

 </server-identities>

</security-realm>

The element here is the one output from previously. To create the <secret /> add-user <secret />

element yourself the needs to be the password encoded using Base64.value

Tell it how to find the domain controller so it can register itself with the domain:

<domain-controller>

 <remote protocol="remote" host="192.168.0.101" port="9999" username="slave"

security-realm="SlaveRealm"/>

</domain-controller>

Since we have also exposed the HTTP management interface we could also use :

<domain-controller>

 <remote protocol="http-remoting" host="192.168.0.101" port="9990" username="slave"

security-realm="SlaveRealm"/>

</domain-controller>

(See domain/configuration/host.xml)

The username attribute here is optional, if it is omitted then the name of the host will be used instead, in this

example that was already set to name.

The name of each host needs to be unique when registering with the domain controller, however

the username does not - using the username attribute allows the same account to be used by

multiple hosts if this makes sense in your environment.

Latest WildFly Documentation

JBoss Community Documentation Page of 384 2293

The element is also associated with the security realm , this is how it picks up<remote /> SlaveRealm

the password from the element.<secret />

Ignoring domain wide resources

WildFly 10 and later make it easy for slave host controllers to "ignore" parts of the domain wide

configuration. What does the mean and why is it useful?

One of the responsibilities of the Domain Controller is ensuring that all running Host Controllers have a

consistent local copy of the domain wide configuration (i.e. those resources whose address does not begin

with , i.e. those that are persisted in . Having that local copy allows a user to do the/host=* domain.xml

following things:

Ask the slave to launch its already configured servers, even if the Domain Controller is not running.

Configured new servers, using different server groups from those current running, and ask the slave

to launch them, even if the Domain Controller is not running.

Reconfigure the slave to act as the Domain Controller, allowing it to take over as the master if the

previous master has failed or been shut down.

However, of these three things only the latter two require that the slave maintain a copy of thecomplete

domain wide configuration. The first only requires the slave to have the of the domain wideportion

configuration that is relevant to its current servers. And the first use case is the most common one. A slave

that is only meant to support the first use case can safely "ignore" portions of the domain wide configuration.

And there are benefits to ignoring some resources:

If a server group is ignored, and the deployments mapped to that server group aren't mapped to other

non-ignored groups, then the slave does not need to pull down a copy of the deployment content from

the master. That can save disk space on the slave, improve the speed of starting new hosts and

reduce network traffic.

WildFly supports "mixed domains" where a later version Domain Controller can manage slaves

running previous versions. But those "legacy" slaves cannot understand configuration resources,

attributes and operations introduced in newer versions. So any attempt to use newer things in the

domain wide configuration will fail unless the legacy slaves are ignoring the relevant resources. But

ignoring resources will allow the legacy slaves to work fine managing servers using profiles without

new concepts, while other hosts can run servers with profiles that take advantage of the latest

features.

Prior to WildFly 10, a slave could be configured to ignore some resources, but the mechanism was not

particularly user friendly:

The resources to be ignored had to be listed in a fair amount of detail in each host's configuration.

If a new resource is added and needs to be ignored, then host that needs to ignore that must beeach

updated to record that.

Starting with WildFly 10, this kind of detailed configuration is no longer required. Instead, with the standard

versions of , the slave will behave as follows:host.xml

Latest WildFly Documentation

JBoss Community Documentation Page of 385 2293

If the slave was started with the command line parameter, the behavior will be the same--backup

as releases prior to 10; i.e. only resources specifically configured to be ignored will be ignored.

Otherwise, the slave will "ignore unused resources".

What does "ignoring unused resources" mean?

Any server-group that is not referenced by one of the host's server-config resources is ignored.

Any profile that is not referenced by a non-ignored server-group, either directly or indirectly via the

profile resource's 'include' attribute, is ignored

Any socket-binding-group that is not directly referenced by one of the host's server-config resources,

or referenced by a non-ignored server-group, is ignored

Extension resources will not be automatically ignored, even if no non-ignored profile uses the

extension. Ignoring an extension requires explicit configuration. Perhaps in a future release

extensions will be explicitly ignored.

If a change is made to the slave host's configuration or to the domain wide configuration that reduces

the set of ignored resources, then as part of handling that change the slave will contact the master to

pull down the missing pieces of configuration and will integrate those pieces in its local copy of the

management model. Examples of such changes include adding a new server-config that references a

previously ignored server-group or socket-binding-group, changing the server-group or

socket-binding-group assigned to a server-config, changing the profile or socket-binding-group

assigned to a non-ignored server-group, or adding a profile or socket-binding-group to the set of those

included directly or indirectly by a non-ignored profile or socket-binding-group.

The default behavior can be changed, either to always ignore unused resources, even if is used,--backup

or to not ignore unused resources, by updating the domain-controller element in the file andhost-xml

setting the attribute:ignore-unused-configuration

<domain-controller>

 <remote security-realm="ManagementRealm" ignore-unused-configuration="false">

 <discovery-options>

 <static-discovery name="primary"

protocol="${jboss.domain.master.protocol:remote}" host="${jboss.domain.master.address}"

port="${jboss.domain.master.port:9999}"/>

 </discovery-options>

 </remote>

 </domain-controller>

The "ignore unused resources" behavior can be used in combination with the pre-WildFly 10 detailed

specification of what to ignore. If that is done both the unused resources and the explicitly declared

resources will be ignored. Here's an example of such a configuration, one where the slave cannot use the

"org.example.foo" extension that has been installed on the Domain Controller and on some slaves, but not

this one:

Latest WildFly Documentation

JBoss Community Documentation Page of 386 2293

<domain-controller>

 <remote security-realm="ManagementRealm" ignore-unused-configuration="true">

 <ignored-resources type="extension">

 <instance name="org.example.foo"/>

 </ignored-resources>

 <discovery-options>

 <static-discovery name="primary"

protocol="${jboss.domain.master.protocol:remote}" host="${jboss.domain.master.address}"

port="${jboss.domain.master.port:9999}"/>

 </discovery-options>

 </remote>

 </domain-controller>

5.15.3 Server groups

The domain controller defines one or more server groups and associates each of these with a profile and a

socket binding group, and also :

<server-groups>

 <server-group name="main-server-group" profile="default">

 <jvm name="default">

 <heap size="64m" max-size="512m"/>

 <permgen size="128m" max-size="128m"/>

 </jvm>

 <socket-binding-group ref="standard-sockets"/>

 </server-group>

 <server-group name="other-server-group" profile="bigger">

 <jvm name="default">

 <heap size="64m" max-size="512m"/>

 </jvm>

 <socket-binding-group ref="bigger-sockets"/>

 </server-group>

</server-groups>

(See domain/configuration/domain.xml)

The domain controller also defines the socket binding groups and the profiles. The socket binding groups

define the default socket bindings that are used:

Latest WildFly Documentation

JBoss Community Documentation Page of 387 2293

<socket-binding-groups>

 <socket-binding-group name="standard-sockets" default-interface="public">

 <socket-binding name="http" port="8080"/>

 [...]

 </socket-binding-group>

 <socket-binding-group name="bigger-sockets" include="standard-sockets"

default-interface="public">

 <socket-binding name="unique-to-bigger" port="8123"/>

 </socket-binding-group>

</socket-binding-groups>

(See domain/configuration/domain.xml)

In this example the group includes all the socket bindings defined in the bigger-sockets

 groups and then defines an extra socket binding of its own.standard-sockets

A profile is a collection of subsystems, and these subsystems are what implement the functionality people

expect of an application server.

<profiles>

 <profile name="default">

 <subsystem xmlns="urn:jboss:domain:web:1.0">

 <connector name="http" scheme="http" protocol="HTTP/1.1" socket-binding="http"/>

 [...]

 </subsystem>

 <\!-\- The rest of the subsystems here \-->

 [...]

 </profile>

 <profile name="bigger">

 <subsystem xmlns="urn:jboss:domain:web:1.0">

 <connector name="http" scheme="http" protocol="HTTP/1.1" socket-binding="http"/>

 [...]

 </subsystem>

 <\!-\- The same subsystems as defined by 'default' here \-->

 [...]

 <subsystem xmlns="urn:jboss:domain:fictional-example:1.0">

 <socket-to-use name="unique-to-bigger"/>

 </subsystem>

 </profile>

</profiles>

(See domain/configuration/domain.xml)

Here we have two profiles. The profile contains all the same subsystems as the profilebigger default

(athough the parameters for the various subsystems could be different in each profile), and adds the

 subsystem which references the socket binding.fictional-example unique-to-bigger

5.15.4 Servers

The host controller defines one or more servers:

Latest WildFly Documentation

JBoss Community Documentation Page of 388 2293

<servers>

 <server name="server-one" group="main-server-group">

 <\!-\- server-one inherits the default socket-group declared in the server-group \-->

 <jvm name="default"/>

 </server>

 <server name="server-two" group="main-server-group" auto-start="true">

 <socket-binding-group ref="standard-sockets" port-offset="150"/>

 <jvm name="default">

 <heap size="64m" max-size="256m"/>

 </jvm>

 </server>

 <server name="server-three" group="other-server-group" auto-start="false">

 <socket-binding-group ref="bigger-sockets" port-offset="250"/>

 </server>

</servers>

(See domain/configuration/host.xml)

 and both are associated with so that means they bothserver-one server-two main-server-group

run the subsystems defined by the profile, and have the socket bindings defined by the default

 socket binding group. Since all the servers defined by a host will be run on the samestandard-sockets

physical host we would get port conflicts unless we used <socket-binding-group

 for . This means that ref="standard-sockets" port-offset="150"/> server-two server-two

will use the socket bindings defined by but it will add to each port number defined,standard-sockets 150

so the value used for will be for .http 8230 server-two

 will not be started due to its . The default value if no server-three auto-start="false" auto-start

is given is so both and will be started when the host controller is started. true server-one server-two

 belongs to , so if its were changed to it wouldserver-three other-server-group auto-start true

start up using the subsystems from the profile, and it would use the socketbigger bigger-sockets

binding group.

Latest WildFly Documentation

JBoss Community Documentation Page of 389 2293

JVM
The host controller contains the main definitions with arguments:jvm

<jvms>

 <jvm name="default">

 <heap size="64m" max-size="128m"/>

 </jvm>

</jvms>

(See domain/configuration/host.xml)

From the preceeding examples we can see that we also had a reference at server group level in thejvm

domain controller. The jvm's name match one of the definitions in the host controller. The valuesmust

supplied at domain controller and host controller level are combined, with the host controller taking

precedence if the same parameter is given in both places.

Finally, as seen, we can also override the at server level. Again, the jvm's name match one of thejvm must

definitions in the host controller. The values are combined with the ones coming in from domain controller

and host controller level, this time the server definition takes precedence if the same parameter is given in all

places.

Following these rules the jvm parameters to start each server would be

Server JVM parameters

server-one -Xms64m -Xmx128m

server-two -Xms64m -Xmx256m

server-three -Xms64m -Xmx128m

5.16 Interfaces and ports

5.16.1 Interface declarations

WildFly uses named interface references throughout the configuration. A network interface is declared by

specifying a logical name and a selection criteria for the physical interface:

Latest WildFly Documentation

JBoss Community Documentation Page of 390 2293

[standalone@localhost:9990 /] :read-children-names(child-type=interface)

{

 "outcome" => "success",

 "result" => [

 "management",

 "public"

]

}

This means the server in question declares two interfaces: One is referred to as " "; the othermanagement

one " ". The " " interface is used for all components and services that are required by thepublic management

management layer (i.e. the HTTP Management Endpoint). The " " interface binding is used for anypublic

application related network communication (i.e. Web, Messaging, etc). There is nothing special about these

names; interfaces can be declared with any name. Other sections of the configuration can then reference

those interfaces by their logical name, rather than having to include the full details of the interface (which, on

servers in a management domain, may vary on different machines).

The , and configuration files all include a section wheredomain.xml host.xml standalone.xml

interfaces can be declared. If we take a look at the XML declaration it reveals the selection criteria. The

criteria is one of two types: either a single element indicating that the interface should be bound to a wildcard

address, or a set of one or more characteristics that an interface or address must have in order to be a valid

match. The selection criteria in this example are specific IP addresses for each interface:

<interfaces>

 <interface name="management">

 <inet-address value="127.0.0.1"/>

 </interface>

 <interface name="public">

 <inet-address value="127.0.0.1"/>

 </interface>

</interfaces>

Some other examples:

Latest WildFly Documentation

JBoss Community Documentation Page of 391 2293

<interface name="global">

 <!-- Use the wildcard address -->

 <any-address/>

</interface>

<interface name="external">

 <nic name="eth0"/>

</interface>

<interface name="default">

 <!-- Match any interface/address on the right subnet if it's

 up, supports multicast and isn't point-to-point -->

 <subnet-match value="192.168.0.0/16"/>

 <up/>

 <multicast/>

 <not>

 <point-to-point/>

 </not>

</interface>

The -b command line argument
WildFly supports using the command line argument to specify the address to assign to interfaces. See -b

 for further details.Controlling the Bind Address with -b

Latest WildFly Documentation

JBoss Community Documentation Page of 392 2293

5.16.2 Socket Binding Groups

The socket configuration in WildFly works similarly to the interfaces declarations. Sockets are declared using

a logical name, by which they will be referenced throughout the configuration. Socket declarations are

grouped under a certain name. This allows you to easily reference a particular socket binding group when

configuring server groups in a managed domain. Socket binding groups reference an interface by its logical

name:

<socket-binding-group name="standard-sockets" default-interface="public">

 <socket-binding name="management-http" interface="management"

port="${jboss.management.http.port:9990}"/>

 <socket-binding name="management-https" interface="management"

port="${jboss.management.https.port:9993}"/>

 <socket-binding name="ajp" port="${jboss.ajp.port:8009}"/>

 <socket-binding name="http" port="${jboss.http.port:8080}"/>

 <socket-binding name="https" port="${jboss.https.port:8443}"/>

 <socket-binding name="txn-recovery-environment" port="4712"/>

 <socket-binding name="txn-status-manager" port="4713"/>

</socket-binding-group>

A socket binding includes the following information:

name -- logical name of the socket configuration that should be used elsewhere in the configuration

port -- base port to which a socket based on this configuration should be bound. (Note that servers

can be configured to override this base value by applying an increment or decrement to all port

values.)

interface (optional) -- logical name (see "Interfaces declarations" above) of the interface to which a

socket based on this configuration should be bound. If not defined, the value of the "default-interface"

attribute from the enclosing socket binding group will be used.

multicast-address (optional) -- if the socket will be used for multicast, the multicast address to use

multicast-port (optional) -- if the socket will be used for multicast, the multicast port to use

fixed-port (optional, defaults to false) -- if true, declares that the value of port should always be used

for the socket and should not be overridden by applying an increment or decrement

5.16.3 IPv4 versus IPv6

WildFly supports the use of both IPv4 and IPv6 addresses. By default, WildFly is configured for use in an

IPv4 network and so if you are running in an IPv4 network, no changes are required. If you need to run in an

IPv6 network, the changes required are minimal and involve changing the JVM stack and address

preferences, and adjusting any interface IP address values specified in the configuration (standalone.xml or

domain.xml).

Latest WildFly Documentation

JBoss Community Documentation Page of 393 2293

Stack and address preference
The system properties java.net.preferIPv4Stack and java.net.preferIPv6Addresses are used to configure the

JVM for use with IPv4 or IPv6 addresses. With WildFly, in order to run using IPv4 addresses, you need to

specify java.net.preferIPv4Stack=true; in order to run with IPv6 addresses, you need to specify

java.net.preferIPv4Stack=false (the JVM default) and java.net.preferIPv6Addresses=true. The latter ensures

that any hostname to IP address conversions always return IPv6 address variants.

These system properties are conveniently set by the JAVA_OPTS environment variable, defined in the

standalone.conf (or domain.conf) file. For example, to change the IP stack preference from its default of IPv4

to IPv6, edit the standalone.conf (or domain.conf) file and change its default IPv4 setting:

if ["x$JAVA_OPTS" = "x"]; then

 JAVA_OPTS=" ... -Djava.net.preferIPv4Stack=true ..."

...

to an IPv6 suitable setting:

if ["x$JAVA_OPTS" = "x"]; then

 JAVA_OPTS=" ... -Djava.net.preferIPv4Stack=false -Djava.net.preferIPv6Addresses=true ..."

...

Latest WildFly Documentation

JBoss Community Documentation Page of 394 2293

IP address literals
To change the IP address literals referenced in standalone.xml (or domain.xml), first visit the interface

declarations and ensure that valid IPv6 addresses are being used as interface values. For example, to

change the default configuration in which the loopback interface is used as the primary interface, change

from the IPv4 loopback address:

<interfaces>

 <interface name="management">

 <inet-address value="${jboss.bind.address.management:127.0.0.1}"/>

 </interface>

 <interface name="public">

 <inet-address value="${jboss.bind.address:127.0.0.1}"/>

 </interface>

</interfaces>

to the IPv6 loopback address:

<interfaces>

 <interface name="management">

 <inet-address value="${jboss.bind.address.management:[::1]}"/>

 </interface>

 <interface name="public">

 <inet-address value="${jboss.bind.address:[::1]}"/>

 </interface>

</interfaces>

Note that when embedding IPv6 address literals in the substitution expression, square brackets surrounding

the IP address literal are used to avoid ambiguity. This follows the convention for the use of IPv6 literals in

URLs.

Over and above making such changes for the interface definitions, you should also check the rest of your

configuration file and adjust IP address literals from IPv4 to IPv6 as required.

5.17 Management API reference

This section is an in depth reference to the WildFly management API. Readers are encouraged to read the

 and sections for fundamental background information, asManagement Clients Core management concepts

well as the and sections for key task oriented information. This section isManagement tasks Domain Setup

meant as an in depth reference to delve into some of the key details.

5.17.1 Global operations

The WildFly management API includes a number of operations that apply to every resource.

Latest WildFly Documentation

JBoss Community Documentation Page of 395 2293

The read-resource operation
Reads a management resource's attribute values along with either basic or complete information about any

child resources. Supports the

following parameters, none of which are required:

 – (boolean, default is) – whether to include complete information about childrecursive false

resources, recursively.

 – (int) – The depth to which information about child resources should be includedrecursive-depth

if is . If not set, the depth will be unlimited; i.e. all descendant resources will berecursive true

included.

 – (boolean, default is) – whether to include remote resources in a recursive queryproxies false

(i.e. host level resources from slave Host Controllers in a query of the Domain Controller; running

server resources in a query of a host).

 – (boolean, default is) – whether to include runtime attributes (i.e. thoseinclude-runtime false

whose value does not come from the persistent configuration) in the response.

 – (boolean, default is) – whether to include in the result default values notinclude-defaults true

set by users. Many attributes have a default value that will be used in the runtime if the users have not

provided an explicit value. If this parameter is the value for such attributes in the result will be false

. If the result will include the default value for such parameters.undefined true

The read-attribute operation
Reads the value of an individual attribute. Takes a single, required, parameter:

 – (string) – the name of the attribute to read.name

 – (boolean, default is) – whether to include in the result default values notinclude-defaults true

set by users. Many attributes have a default value that will be used in the runtime if the users have not

provided an explicit value. If this parameter is the value for such attributes in the result will be false

. If the result will include the default value for such parameters.undefined true

The write-attribute operation
Writes the value of an individual attribute. Takes two required parameters:

 – (string) – the name of the attribute to write.name

 – (type depends on the attribute being written) – the new value.value

The undefine-attribute operation
Sets the value of an individual attribute to the value, if such a value is allowed for the attribute.undefined

The operation will fail if the value is not allowed. Takes a single required parameter:undefined

 – (string) – the name of the attribute to write.name

Latest WildFly Documentation

JBoss Community Documentation Page of 396 2293

The list-add operation
Adds an element to the value of a list attribute, adding the element to the end of the list unless the optional

attribute is passed:index

 – (string) – the name of the list attribute to add new value to.name

 – (type depends on the element being written) – the new element to be added to the attributevalue

value.

 – (int, optional) – index where in the list to add the new element. By default it is index undefined

meaning add at the end. Index is zero based.

This operation will fail if the specified attribute is not a list.

The list-remove operation
Removes an element from the value of a list attribute, either the element at a specified , or the firstindex

element whose value matches a specified :value

 – (string) – the name of the list attribute to add new value to.name

 – (type depends on the element being written, optional) – the element to be removed. Optionalvalue

and ignored if is specified.index

 – (int, optional) – index in the list whose element should be removed. By default it is index

, meaning should be specified.undefined value

This operation will fail if the specified attribute is not a list.

The list-get operation
Gets one element from a list attribute by its index

 – (string) – the name of the list attributename

 – (int, required) – index of element to get from listindex

This operation will fail if the specified attribute is not a list.

The list-clear operation
Empties the list attribute. It is different from as it results in attribute of type list with:undefine-attribute

0 elements, whereas results in an value for the attribute:undefine-attribute undefined

 – (string) – the name of the list attributename

This operation will fail if the specified attribute is not a list.

Latest WildFly Documentation

JBoss Community Documentation Page of 397 2293

The map-put operation
Adds an key/value pair entry to the value of a map attribute:

 – (string) – the name of the map attribute to add the new entry to.name

 – (string) – the key of the new entry to be added.key

 – (type depends on the entry being written) – the value of the new entry to be added to thevalue

attribute value.

This operation will fail if the specified attribute is not a map.

The map-remove operation
Removes an entry from the value of a map attribute:

 – (string) – the name of the map attribute to remove the new entry from.name

 – (string) – the key of the entry to be removed.key

This operation will fail if the specified attribute is not a map.

The map-get operation
Gets the value of one entry from a map attribute

 – (string) – the name of the map attributename

 – (string) – the key of the entry.key

This operation will fail if the specified attribute is not a map.

The map-clear operation
Empties the map attribute. It is different from as it results in attribute of type map:undefine-attribute

with 0 entries, whereas results in an value for the attribute:undefine-attribute undefined

 – (string) – the name of the map attributename

This operation will fail if the specified attribute is not a map.

Latest WildFly Documentation

JBoss Community Documentation Page of 398 2293

The read-resource-description operation
Returns the description of a resource's attributes, types of children and, optionally, operations. Supports the

following parameters, none of which are required:

 – (boolean, default is) – whether to include information about child resources,recursive false

recursively.

 – (boolean, default is) – whether to include remote resources in a recursive queryproxies false

(i.e. host level resources from slave Host Controllers in a query of the Domain Controller; running

server resources in a query of a host)

 – (boolean, default is) – whether to include descriptions of the resource'soperations false

operations

 – (boolean, default is) – if is , whether to include descriptions ofinherited true operations true

operations inherited from higher level resources. The global operations described in this section are

themselves inherited from the root resource, so the primary effect of setting to isinherited false

to exclude the descriptions of the global operations from the output.

See for details on the result of this operation.Description of the Management Model

The read-operation-names operation
Returns a list of the names of all the operations the resource supports. Takes no parameters.

The read-operation-description operation
Returns the description of an operation, along with details of its parameter types and its return value. Takes

a single, required, parameter:

 – (string) – the name of the operationname

See for details on the result of this operation.Description of the Management Model

The read-children-types operation
Returns a list of the the resource supports. Takes two optional parameters:types of child resources

 – (boolean, default is) – whether to include alias children (i.e. those whichinclude-aliases false

are aliases of other sub-resources) in the response.

 – (boolean, default is) – whether to include singleton children (i.e.include-singletons false

those are children that acts as resource aggregate and are registered with a wildcard name) in the

response .wildfly-dev discussion around this topic

The read-children-names operation
Returns a list of the names of all child resources of a given . Takes a single, required, parameter:type

 – (string) – the name of the typechild-type

http://lists.jboss.org/pipermail/wildfly-dev/2014-August/002701.html

Latest WildFly Documentation

JBoss Community Documentation Page of 399 2293

The read-children-resources operation
Returns information about all of a resource's children that are of a given . For each child resource, thetype

returned information is equivalent to executing the operation on that resource. Takes theread-resource

following parameters, of which only {{child-type} is required:

 – (string) – the name of the type of child resourcechild-type

 – (boolean, default is) – whether to include complete information about childrecursive false

resources, recursively.

 – (int) – The depth to which information about child resources should be includedrecursive-depth

if is {{true}. If not set, the depth will be unlimited; i.e. all descendant resources will berecursive

included.

 – (boolean, default is) – whether to include remote resources in a recursive queryproxies false

(i.e. host level resources from slave Host Controllers in a query of the Domain Controller; running

server resources in a query of a host)

 – (boolean, default is) – whether to include runtime attributes (i.e. thoseinclude-runtime false

whose value does not come from the persistent configuration) in the response.

 – (boolean, default is) – whether to include in the result default values notinclude-defaults true

set by users. Many attributes have a default value that will be used in the runtime if the users have not

provided an explicit value. If this parameter is the value for such attributes in the result will be false

. If the result will include the default value for such parameters.undefined true

The read-attribute-group operation
Returns a list of attributes of a for a given attribute group name. For each attribute the returnedtype

information is equivalent to executing the operation of that resource. Takes the followingread-attribute

parameters, of which only {{name} is required:

 – (string) – the name of the attribute group to read.name

 – (boolean, default is) – whether to include in the result default values notinclude-defaults true

set by users. Many attributes have a default value that will be used in the runtime if the users have not

provided an explicit value. If this parameter is the value for such attributes in the result will be false

. If the result will include the default value for such parameters.undefined true

 – (boolean, default is) – whether to include runtime attributes (i.e. thoseinclude-runtime false

whose value does not come from the persistent configuration) in the response.

 – (boolean, default is) – whether to include alias attributes (i.e. thoseinclude-aliases false

which are alias of other attributes) in the response.

The read-attribute-group-names operation
Returns a list of attribute groups names for a given . Takes no parameters.type

Latest WildFly Documentation

JBoss Community Documentation Page of 400 2293

Standard Operations
Besides the global operations described above, by convention nearly every resource should expose an add

operation and a operation. Exceptions to this convention are the root resource, and resources thatremove

do not store persistent configuration and are created dynamically at runtime (e.g. resources representing the

JVM's platform mbeans or resources representing aspects of the running state of a deployment.)

The add operation
The operation that creates a new resource must be named . The operation may take zero or moreadd

parameters; what those parameters are depends on the resource being created.

The remove operation
The operation that removes an existing resource must be named . The operation should take noremove

parameters.

5.17.2 Detyped management and the jboss-dmr library

The management model exposed by WildFly is very large and complex. There are dozens, probably

hundreds of logical concepts involved – hosts, server groups, servers, subsystems, datasources, web

connectors, and on and on – each of which in a classic objected oriented API design could be represented

by a Java (i.e. a Java class or interface.) However, a primary goal in the development of WildFly'stype

native management API was to ensure that clients built to use the API had as few compile-time and run-time

dependencies on JBoss-provided classes as possible, and that the API exposed by those libraries be

powerful but also simple and stable. A management client running with the management libraries created for

an earlier version of WildFly should still work if used to manage a later version domain. The management

client libraries needed to be .forward compatible

It is highly unlikely that an API that consists of hundreds of Java types could be kept forward compatible.

Instead, the WildFly management API is a API. A detyped API is like decaffeinated coffee – it stilldetyped

has a little bit of caffeine, but not enough to keep you awake at night. WildFly's management API still has a

few Java types in it (it's impossible for a Java library to have no types!) but not enough to keep you (or us)

up at night worrying that your management clients won't be forward compatible.

A detyped API works by making it possible to build up arbitrarily complex data structures using a small

number of Java types. All of the parameter values and return values in the API are expressed using those

few types. Ideally, most of the types are basic JDK types, like , ,java.lang.String java.lang.Integer

etc. In addition to the basic JDK types, WildFly's detyped management API uses a small library called

. The purpose of this section is to provide a basic overview of the jboss-dmr library.jboss-dmr

Even if you don't use jboss-dmr directly (probably the case for all but a few users), some of the information in

this section may be useful. When you invoke operations using the application server's Command Line

Interface, the return values are just the text representation of of a jboss-dmr . If your CLIModelNode

commands require complex parameter values, you may yourself end up writing the text representation of a

. And if you use the HTTP management API, all response bodies as well as the request body forModelNode

any POST will be a JSON representation of a .ModelNode

Latest WildFly Documentation

JBoss Community Documentation Page of 401 2293

The source code for jboss-dmr is available on . The maven coordinates for a jboss-dmr release are Github

.org.jboss.jboss-dmr:jboss-dmr

ModelNode and ModelType
The public API exposed by jboss-dmr is very simple: just three classes, one of which is an enum!

The primary class is . A is essentially just a wrapper aroundorg.jboss.dmr.ModelNode ModelNode

some ; the value is typically some basic JDK type. A exposes a method. Thisvalue ModelNode getType()

method returns a value of type , which is an enum of all the valid types oforg.jboss.dmr.ModelType

values. And that's 95% of the public API; a class and an enum. (We'll get to the third class, ,Property

below.)

Basic ModelNode manipulation
To illustrate how to work with s, we'll use the scripting library. We won't get into manyModelNode Beanshell

details of beanshell here; it's a simple and intuitive tool and hopefully the following examples are as well.

We'll start by launching a beanshell interpreter, with the jboss-dmr library available on the classpath. Then

we'll tell beanshell to import all the jboss-dmr classes so they are available for use:

$ java -cp bsh-2.0b4.jar:jboss-dmr-1.0.0.Final.jar bsh.Interpreter

BeanShell 2.0b4 - by Pat Niemeyer (pat@pat.net)

bsh % import org.jboss.dmr.*;

bsh %

Next, create a and use the beanshell function to output what type it is:ModelNode print

bsh % ModelNode node = new ModelNode();

bsh % print(node.getType());

UNDEFINED

A new has no value stored, so its type is .ModelNode ModelType.UNDEFINED

Use one of the overloaded method variants to assign a node's value:set

bsh % node.set(1);

bsh % print(node.getType());

INT

bsh % node.set(true);

bsh % print(node.getType());

BOOLEAN

bsh % node.set("Hello, world");

bsh % print(node.getType());

STRING

Use one of the methods to retrieve the value:asXXX()

https://github.com/jbossas/jboss-dmr
http://www.beanshell.org

Latest WildFly Documentation

JBoss Community Documentation Page of 402 2293

bsh % node.set(2);

bsh % print(node.asInt());

2

bsh % node.set("A string");

bsh % print(node.asString());

A string

 will attempt to perform type conversions when you invoke the methods:ModelNode asXXX

bsh % node.set(1);

bsh % print(node.asString());

1

bsh % print(node.asBoolean());

true

bsh % node.set(0);

bsh % print(node.asBoolean());

false

bsh % node.set("true");

bsh % print(node.asBoolean());

true

Not all type conversions are possible:

bsh % node.set("A string");

bsh % print(node.asInt());

// Error: // Uncaught Exception: Method Invocation node.asInt : at Line: 20 : in file: <unknown

file> : node .asInt ()

Target exception: java.lang.NumberFormatException: For input string: "A string"

java.lang.NumberFormatException: For input string: "A string"

 at java.lang.NumberFormatException.forInputString(NumberFormatException.java:48)

 at java.lang.Integer.parseInt(Integer.java:449)

 at java.lang.Integer.parseInt(Integer.java:499)

 at org.jboss.dmr.StringModelValue.asInt(StringModelValue.java:61)

 at org.jboss.dmr.ModelNode.asInt(ModelNode.java:117)

The method can be used to ensure a node has an expected value type beforeModelNode.getType()

attempting a type conversion.

One variant takes another as its argument. The value of the passed in node is copied, soset ModelNode

there is no shared state between the two model nodes:

Latest WildFly Documentation

JBoss Community Documentation Page of 403 2293

bsh % node.set("A string");

bsh % ModelNode another = new ModelNode();

bsh % another.set(node);

bsh % print(another.asString());

A string

bsh % node.set("changed");

bsh % print(node.asString());

changed

bsh % print(another.asString());

A string

A can be cloned. Again, there is no shared state between the original node and its clone:ModelNode

bsh % ModelNode clone = another.clone();

bsh % print(clone.asString());

A string

bsh % another.set(42);

bsh % print(another.asString());

42

bsh % print(clone.asString());

A string

Use the method to make a immutable:protect() ModelNode

bsh % clone.protect();

bsh % clone.set("A different string");

// Error: // Uncaught Exception: Method Invocation clone.set : at Line: 15 : in file: <unknown

file> : clone .set ("A different string")

Target exception: java.lang.UnsupportedOperationException

java.lang.UnsupportedOperationException

 at org.jboss.dmr.ModelNode.checkProtect(ModelNode.java:1441)

 at org.jboss.dmr.ModelNode.set(ModelNode.java:351)

Lists
The above examples aren't particularly interesting; if all we can do with a is wrap a simple JavaModelNode

primitive, what use is that? However, a 's value can be more complex than a simple primitive,ModelNode

and using these more complex types we can build complex data structures. The first more complex type is

.ModelType.LIST

Use the methods to initialize a node's value as a list and add to the list:add

Latest WildFly Documentation

JBoss Community Documentation Page of 404 2293

bsh % ModelNode list = new ModelNode();

bsh % list.add(5);

bsh % list.add(10);

bsh % print(list.getType());

LIST

Use to find the size of the list:asInt()

bsh % print(list.asInt());

2

Use the overloaded method variant that takes an int param to retrieve an item. The item is returned as aget

:ModelNode

bsh % ModelNode child = list.get(1);

bsh % print(child.asInt());

10

Elements in a list need not all be of the same type:

bsh % list.add("A string");

bsh % print(list.get(1).getType());

INT

bsh % print(list.get(2).getType());

STRING

 Here's one of the trickiest things about jboss-dmr: The get methods actually mutate state; they are not

. For example, calling with an index that does not exist yet in the list will actually create a"read-only" get

child of type at that index (and will create UNDEFINED children for anyModelType.UNDEFINED

intervening indices.)

bsh % ModelNode four = list.get(4);

bsh % print(four.getType());

UNDEFINED

bsh % print(list.asInt());

6

Since the call always returns a and never it is safe to manipulate the return value:get ModelNode null

bsh % list.get(5).set(30);

bsh % print(list.get(5).asInt());

30

That's not so interesting in the above example, but later on with node of type we'll seeModelType.OBJECT

how that kind of method chaining can let you build up fairly complex data structures with a minimum of code.

Latest WildFly Documentation

JBoss Community Documentation Page of 405 2293

Use the method to get a of the children:asList() List<ModelNode>

bsh % for (ModelNode element : list.asList()) {

print(element.getType());

}

INT

INT

STRING

UNDEFINED

UNDEFINED

INT

The and methods provide slightly differently formatted text representations of a asString() toString()

 node:ModelType.LIST

bsh % print(list.asString());

[5,10,"A string",undefined,undefined,30]

bsh % print(list.toString());

[

 5,

 10,

 "A string",

 undefined,

 undefined,

 30

]

Finally, if you've previously used to assign a node's value to some non-list type, you cannot use the set add

method:

bsh % node.add(5);

// Error: // Uncaught Exception: Method Invocation node.add : at Line: 18 : in file: <unknown

file> : node .add (5)

Target exception: java.lang.IllegalArgumentException

java.lang.IllegalArgumentException

 at org.jboss.dmr.ModelValue.addChild(ModelValue.java:120)

 at org.jboss.dmr.ModelNode.add(ModelNode.java:1007)

 at org.jboss.dmr.ModelNode.add(ModelNode.java:761)

 ...

You can, however, use the method to change the node's type, and then use :setEmptyList() add

bsh % node.setEmptyList();

bsh % node.add(5);

bsh % print(node.toString());

[5]

Latest WildFly Documentation

JBoss Community Documentation Page of 406 2293

Properties
The third public class in the jboss-dmr library is . A is a org.jboss.dmr.Property Property String =>

 tuple.ModelNode

bsh % Property prop = new Property("stuff", list);

bsh % print(prop.toString());

org.jboss.dmr.Property@79a5f739

bsh % print(prop.getName());

stuff

bsh % print(prop.getValue());

[

 5,

 10,

 "A string",

 undefined,

 undefined,

 30

]

The property can be passed to :ModelNode.set

bsh % node.set(prop);

bsh % print(node.getType());

PROPERTY

The text format for a node of is:ModelType.PROPERTY

bsh % print(node.toString());

("stuff" => [

 5,

 10,

 "A string",

 undefined,

 undefined,

 30

])

Directly instantiating a via its constructor is not common. More typically one of the two argument Property

 or variants is used. The first argument is the property name:ModelNode.add ModelNode.set

Latest WildFly Documentation

JBoss Community Documentation Page of 407 2293

bsh % ModelNode simpleProp = new ModelNode();

bsh % simpleProp.set("enabled", true);

bsh % print(simpleProp.toString());

("enabled" => true)

bsh % print(simpleProp.getType());

PROPERTY

bsh % ModelNode propList = new ModelNode();

bsh % propList.add("min", 1);

bsh % propList.add("max", 10);

bsh % print(propList.toString());

[

 ("min" => 1),

 ("max" => 10)

]

bsh % print(propList.getType());

LIST

bsh % print(propList.get(0).getType());

PROPERTY

The method provides easy access to a :asPropertyList() List<Property>

bsh % for (Property prop : propList.asPropertyList()) {

print(prop.getName() + " = " + prop.getValue());

}

min = 1

max = 10

ModelType.OBJECT
The most powerful and most commonly used complex value type in jboss-dmr is . A ModelType.OBJECT

 whose value is internally maintains a .ModelNode ModelType.OBJECT Map<String, ModelNode

Use the method variant that takes a string argument to add an entry to the map. If no entry exists underget

the given name, a new entry is added with a the value being a node. The node isModelType.UNDEFINED

returned:

bsh % ModelNode range = new ModelNode();

bsh % ModelNode min = range.get("min");

bsh % print(range.toString());

{"min" => undefined}

bsh % min.set(2);

bsh % print(range.toString());

{"min" => 2}

Again it is important to remember that the get operation may mutate the state of a model node by

 adding a new entry. It is not a read-only operation.

Since will never return , a common pattern is to use method chaining to create the key/value pair:get null

Latest WildFly Documentation

JBoss Community Documentation Page of 408 2293

bsh % range.get("max").set(10);

bsh % print(range.toString());

{

 "min" => 2,

 "max" => 10

}

A call to passing an already existing key will of course return the same model node as was returned theget

first time was called with that key:get

bsh % print(min == range.get("min"));

true

Multiple parameters can be passed to . This is a simple way to traverse a tree made up of get

 nodes. Again, may mutate the node on which it is invoked; e.g. it will actuallyModelType.OBJECT get

create the tree if nodes do not exist. This next example uses a workaround to get beanshell to handle the

overloaded method that takes a variable number of arguments:get

bsh % String[] varargs = { "US", "Missouri", "St. Louis" };

bsh % salesTerritories.get(varargs).set("Brian");

bsh % print(salesTerritories.toString());

{"US" => {"Missouri" => {"St. Louis" => "Brian"}}}

The normal syntax would be:

salesTerritories.get("US", "Missouri", "St. Louis").set("Brian");

The key/value pairs in the map can be accessed as a :List<Property

bsh % for (Property prop : range.asPropertyList()) {

print(prop.getName() + " = " + prop.getValue());

}

min = 2

The semantics of the backing map in a node of are those of a . TheModelType.OBJECT LinkedHashMap

map remembers the order in which key/value pairs are added. This is relevant when iterating over the pairs

after calling and for controlling the order in which key/value pairs appear in the outputasPropertyList()

from .toString()

Since the method will actually mutate the state of a node if the given key does not exist, get ModelNode

provides a couple methods to let you check whether the entry is there. The method simply does that:has

Latest WildFly Documentation

JBoss Community Documentation Page of 409 2293

bsh % print(range.has("unit"));

false

bsh % print(range.has("min"));

true

Very often, the need is to not only know whether the key/value pair exists, but whether the value is defined

(i.e. not . This kind of check is analogous to checking whether a field in a JavaModelType.UNDEFINED

class has a null value. The lets you do this:hasDefined

bsh % print(range.hasDefined("unit"));

false

bsh % // Establish an undefined child 'unit';

bsh % range.get("unit");

bsh % print(range.toString());

{

 "min" => 2,

 "max" => 10,

 "unit" => undefined

}

bsh % print(range.hasDefined("unit"));

false

bsh % range.get("unit").set("meters");

bsh % print(range.hasDefined("unit"));

true

ModelType.EXPRESSION
A value of type is stored as a string, but can later be to different value.ModelType.EXPRESSION resolved

The string has a special syntax that should be familiar to those who have used the system property

substitution feature in previous JBoss AS releases.

[<prefix>][${<system-property-name>[:<default-value>]}][<suffix>]*

For example:

${queue.length}

http://${host}

http://${host:localhost}:${port:8080}/index.html

Use the method to set a node's value to type expression:setExpression

bsh % ModelNode expression = new ModelNode();

bsh % expression.setExpression("${queue.length}");

bsh % print(expression.getType());

EXPRESSION

Calling returns the same string that was input:asString()

Latest WildFly Documentation

JBoss Community Documentation Page of 410 2293

bsh % print(expression.asString());

${queue.length}

However, calling tells you that this node's value is not of :toString() ModelType.STRING

bsh % print(expression.toString());

expression "${queue.length}"

When the operation is called, the string is parsed and any embedded system properties areresolve

resolved against the JVM's current system property values. A new is returned whose value isModelNode

the resolved string:

bsh % System.setProperty("queue.length", "10");

bsh % ModelNode resolved = expression.resolve();

bsh % print(resolved.asInt());

10

Note that the type of the returned by is :ModelNode resolve() ModelType.STRING

bsh % print(resolved.getType());

STRING

The call in the previous example only worked because the string "10" happens to beresolved.asInt()

convertible into the int 10.

Calling has no effect on the value of the node on which the method is invoked:resolve()

bsh % resolved = expression.resolve();

bsh % print(resolved.toString());

"10"

bsh % print(expression.toString());

expression "${queue.length}"

If an expression cannot be resolved, just uses the original string. The string can include more thanresolve

one system property substitution:

bsh % expression.setExpression("http://${host}:${port}/index.html");

bsh % resolved = expression.resolve();

bsh % print(resolved.asString());

http://${host}:${port}/index.html

The expression can optionally include a default value, separated from the name of the system property by a

colon:

Latest WildFly Documentation

JBoss Community Documentation Page of 411 2293

bsh % expression.setExpression("http://${host:localhost}:${port:8080}/index.html");

bsh % resolved = expression.resolve();

bsh % print(resolved.asString());

http://localhost:8080/index.html

Actually including a system property substitution in the expression is not required:

bsh % expression.setExpression("no system property");

bsh % resolved = expression.resolve();

bsh % print(resolved.asString());

no system property

bsh % print(expression.toString());

expression "no system property"

The method works on nodes of other types as well; it returns a copy without attempting any realresolve

resolution:

bsh % ModelNode basic = new ModelNode();

bsh % basic.set(10);

bsh % resolved = basic.resolve();

bsh % print(resolved.getType());

INT

bsh % resolved.set(5);

bsh % print(resolved.asInt());

5

bsh % print(basic.asInt());

10

ModelType.TYPE
You can also pass one of the values of the enum to :ModelType set

bsh % ModelNode type = new ModelNode();

bsh % type.set(ModelType.LIST);

bsh % print(type.getType());

TYPE

bsh % print(type.toString());

LIST

This is useful when using a data structure to describe another data structure.ModelNode ModelNode

Latest WildFly Documentation

JBoss Community Documentation Page of 412 2293

Full list of ModelNode types
BIG_DECIMAL

BIG_INTEGER

BOOLEAN

BYTES

DOUBLE

EXPRESSION

INT

LIST

LONG

OBJECT

PROPERTY

STRING

TYPE

UNDEFINED

Text representation of a ModelNode
TODO – document the grammar

JSON representation of a ModelNode
TODO – document the grammar

5.17.3 Description of the Management Model

A detailed description of the resources, attributes and operations that make up the management model

provided by an individual WildFly instance or by any Domain Controller or slave Host Controller process can

be queried using the , , read-resource-description read-operation-names

 and operations described in the read-operation-description read-child-types Global operations

section. In this section we provide details on what's included in those descriptions.

Description of the WildFly Managed Resources
All portions of the management model exposed by WildFly are addressable via an ordered list of key/value

pairs. For each addressable , the following descriptive information will be available:Management Resource

Latest WildFly Documentation

JBoss Community Documentation Page of 413 2293

 – String – text description of this portion of the modeldescription

 – int, either 0 or 1 – Minimum number of resources of this type that must exist in a validmin-occurs

model. If not present, the default value is 0.

 – int – Maximum number of resources of this type that may exist in a valid model. If notmax-occurs

present, the default value depends upon the value of the final key/value pair in the address of the

described resource. If this value is '*', the default value is Integer.MAX_VALUE, i.e. there is no limit. If

this value is some other string, the default value is 1.

 – Map of String (the attribute name) to complex structure – the configuration attributesattributes

available in this portion of the model. See for the representation of each attribute.below

 – Map of String (the operation name) to complex structure – the operations that can beoperations

targetted at this address. See for the representation of each operation.below

 – Map of String (the type of child) to complex structure – the relationship of this portion ofchildren

the model to other addressable portions of the model. See for the representation of each childbelow

relationship.

 – boolean – indicates whether this portion of the model can store an XMLhead-comment-allowed

comment that would be written in the persistent form of the model (e.g. domain.xml) before the start of

the XML element that represents this portion of the model. This item is optional, and if not present

defaults to true. (Note: storing XML comments in the in-memory model is not currently supported. This

description key is for future use.)

 – boolean – similar to , but indicates whether atail-comment-allowed head-comment-allowed

comment just before the close of the XML element is supported. A tail comment can only be

supported if the element has child elements, in which case a comment can be inserted between the

final child element and the element's closing tag. This item is optional, and if not present defaults to

true. (Note: storing XML comments in the in-memory model is not currently supported. This

description key is for future use.)

For example:

{

 "description => "A manageable resource",

 "tail-comment-allowed" => false,

 "attributes" => {

 "foo" => {

 details of attribute foo

 }

 },

 "operations" => {

 "start" => {

 details of the start operation

 }

 },

 "children" => {

 "bar" => {

 details of the relationship with children of type "bar"

 }

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 414 2293

Description of an Attribute
An attribute is a portion of the management model that is not directly addressable. Instead, it is conceptually

a property of an addressable . For each attribute in the model, the followingmanagement resource

descriptive information will be available:

 – String – text description of the attributedescription

 – – the type of the attribute value. One of the enum valuestype org.jboss.dmr.ModelType

BIG_DECIMAL, BIG_INTEGER, BOOLEAN, BYTES, DOUBLE, INT, LIST, LONG, OBJECT,

PROPERTY, STRING. Most of these are self-explanatory. An OBJECT will be represented in the

detyped model as a map of string keys to values of some other legal type, conceptually similar to a

. A PROPERTY is a single key/value pair,javax.management.openmbean.CompositeData

where the key is a string, and the value is of some other legal type.

 – ModelType or complex structure – Only present if type is LIST or OBJECT. If allvalue-type

elements in the LIST or all the values of the OBJECT type are of the same type, this will be one of the

ModelType enums BIG_DECIMAL, BIG_INTEGER, BOOLEAN, BYTES, DOUBLE, INT, LONG,

STRING. Otherwise, will detail the structure of the attribute value, enumerating thevalue-type

value's fields and the type of their value. So, an attribute with a of LIST and a type value-type

value of is analogous to a Java , while one with a ModelType.STRING List<String> value-type

value of is analogous to a Java . An attribute with a ofModelType.INT List<Integer> type

OBJECT and a value of is analogous to a Java value-type ModelType.STRING Map<String,

. An attribute with a of OBJECT and a whose value is not of type String> type value-type

 represents a fully-defined complex object, with the object's legal fields and their valuesModelType

described.

 – boolean – indicates whether the value of the attribute may be of type expressions-allowed

, instead of its standard type (see and above forModelType.EXPRESSION type value-type

discussion of an attribute's standard type.) A value of ModelType.EXPRESSION contains a

system-property substitution expression that the server will resolve against the server-side system

property map before using the value. For example, an attribute named max-threads may have an

expression value of } instead of just 10. Default value if not${example.pool.max-threads:10

present is false.

 – boolean – true if the attribute must have a defined value in a representation of its portionrequired

of the model unless another attribute included in a list of is defined; false if it may bealternatives

undefined (implying a null value) even in the absence of alternatives. If not present, true is the default.

 – boolean – true if the attribute might not have a defined value in a representation of itsnillable

portion of the model. A nillable attribute may

be undefined either because it is not or because it is required but has andrequired alternatives

one of the alternatives is defined.

 – String – Either "configuration" or "runtime". If "configuration", the attribute's value is storedstorage

as part of the persistent configuration (e.g. in domain.xml, host.xml or standalone.xml.) If "runtime" the

attribute's value is not stored in the persistent configuration; the value only exists as long as the

resource is running.

Latest WildFly Documentation

JBoss Community Documentation Page of 415 2293

 – String – One of "read-only", "read-write" or "metric". Whether an attribute value canaccess-type

be written, or can only read. A "metric" is a read-only attribute whose value is not stored in the

persistent configuration, and whose value may change due to activity on the server. If an attribute is

"read-write", the resource will expose an operation named "write-attribute" whose "name" parameter

will accept this attribute's name and whose "value" parameter will accept a valid value for this

attribute. That operation will be the standard means of updating this attribute's value.

 – String – One of "no-services", "all-services", "resource-services" or "jvm".restart-required

Only relevant to attributes whose access-type is read-write. Indicates whether execution of a

write-attribute operation whose name parameter specifies this attribute requires a restart of services

(or an entire JVM) in order for the change to take effect in the runtime . See discussion of "Applying

" below. Default value is "no-services".Updates to Runtime Services

 – the default value for the attribute that will be used in runtime services if the attribute is notdefault

explicitly defined and no other attributes listed as are defined.alternatives

 – List of string – Indicates an exclusive relationship between attributes. If thisalternatives

attribute is defined, the other attributes listed in this descriptor's value should be undefined, even if

their descriptor says true; i.e. the presence of this attribute satisfies the requirement. Noterequired

that an attribute that is not explicitly configured but has a value is still regarded as not beingdefault

defined for purposes of checking whether the exclusive relationship has been violated. Default is

undefined; i.e. this does not apply to most attributes.

 – List of string – Indicates that if this attribute has a value (other than undefined), the otherrequires

attributes listed in this descriptor's value must also have a value, even if their required descriptor says

false. This would typically be used in conjunction with alternatives. For example, attributes "a" and "b"

are required, but are alternatives to each other; "c" and "d" are optional. But "b" requires "c" and "d",

so if "b" is used, "c" and "d" must also be defined. Default is undefined; i.e. this does not apply to most

attributes.

 – string – if defined indicates that this attribute's value specifies thecapability-reference

dynamic portion of the name of the specified capability provided by another resource. This indicates

the attribute is a reference to another area of the management model. (Note that at present some

attributes that reference other areas of the model may not provide this information.)

 – boolean – indicates whether the model can store an XML comment thathead-comment-allowed

would be written in the persistent form of the model (e.g. domain.xml) before the start of the XML

element that represents this attribute. This item is optional, and if not present defaults to false. (This is

a different default from what is used for an entire management resource, since model attributes often

map to XML attributes, which don't allow comments.) (Note: storing XML comments in the in-memory

model is not currently supported. This description key is for future use.)

 – boolean – similar to head-comment-allowed, but indicates whether atail-comment-allowed

comment just before the close of the XML element is supported. A tail comment can only be

supported if the element has child elements, in which case a comment can be inserted between the

final child element and the element's closing tag. This item is optional, and if not present defaults to

false. (This is a different default from what is used for an entire management resource, since model

attributes often map to XML attributes, which don't allow comments.) (Note: storing XML comments in

the in-memory model is not currently supported. This description key is for future use.)

arbitrary key/value pairs that further describe the attribute value, e.g. "max" => 2. See "Arbitrary

" below.Descriptors

Some examples:

Latest WildFly Documentation

JBoss Community Documentation Page of 416 2293

"foo" => {

 "description" => "The foo",

 "type" => INT,

 "max" => 2

}

"bar" => {

 "description" => "The bar",

 "type" => OBJECT,

 "value-type" => {

 "size" => INT,

 "color" => STRING

 }

}

Description of an Operation
A management resource may have operations associated with it. The description of an operation will include

the following information:

 – String – the name of the operationoperation-name

 – String – text description of the operationdescription

 – Map of String to complex structure – description of the parameters of therequest-properties

operation. Keys are the names of the parameters, values are descriptions of the parameter value

types. See for details on the description of parameter value types.below

 – complex structure, or empty – description of the return value of the operation,reply-properties

with an empty node meaning void. See for details on the description of operation return valuebelow

types.

 – String – One of "no-services", "all-services", "resource-services" or "jvm".restart-required

Indicates whether the operation makes a configuration change that requires a restart of services (or

an entire JVM) in order for the change to take effect in the runtime. See discussion of "Applying

" below. Default value is "no-services".Updates to Runtime Services

Description of an Operation Parameter or Return Value

 – String – text description of the parameter or return valuedescription

 – – the type of the parameter or return value. One of the enumtype org.jboss.dmr.ModelType

values BIG_DECIMAL, BIG_INTEGER, BOOLEAN, BYTES, DOUBLE, INT, LIST, LONG, OBJECT,

PROPERTY, STRING.

Latest WildFly Documentation

JBoss Community Documentation Page of 417 2293

 – or complex structure – Only present if type is LIST or OBJECT. If allvalue-type ModelType

elements in the LIST or all the values of the OBJECT type are of the same type, this will be one of the

ModelType enums BIG_DECIMAL, BIG_INTEGER, BOOLEAN, BYTES, DOUBLE, INT, LIST, LONG,

PROPERTY, STRING. Otherwise, value-type will detail the structure of the attribute value,

enumerating the value's fields and the type of their value.So, a parameter with a of LIST and a type

 value of is analogous to a Java , while one with avalue-type ModelType.STRING List<String>

 value of is analogous to a Java . A parameter withvalue-type ModelType.INT List<Integer>

a of OBJECT and a value of is analogous to a Java type value-type ModelType.STRING

. A parameter with a of OBJECT and a whose value isMap<String, String> type value-type

not of type represents a fully-defined complex object, with the object's legal fields andModelType

their values described.

 – boolean – indicates whether the value of the the parameter or returnexpressions-allowed

value may be of type , instead its standard type (see type and value-typeModelType.EXPRESSION

above for discussion of the standard type.) A value of ModelType.EXPRESSION contains a

system-property substitution expression that the server will resolve against the server-side system

property map before using the value. For example, a parameter named max-threads may have an

expression value of } instead of just 10. Default value if not${example.pool.max-threads:10

present is false.

 – boolean – true if the parameter or return value must have a defined value in therequired

operation or response unless another item included in a list of is defined; false if italternatives

may be undefined (implying a null value) even in the absence of alternatives. If not present, true is the

default.

 – boolean – true if the parameter or return value might not have a defined value in anillable

representation of its portion of the model. A nillable parameter or return value may be undefined either

because it is not or because it is required but has and one of therequired alternatives

alternatives is defined.

 – the default value for the parameter that will be used in runtime services if the parameter isdefault

not explicitly defined and no other parameters listed as are defined.alternatives

 – String – One of "no-services", "all-services", "resource-services" or "jvm".restart-required

Only relevant to attributes whose access-type is read-write. Indicates whether execution of a

write-attribute operation whose name parameter specifies this attribute requires a restart of services

(or an entire JVM) in order for the change to take effect in the runtime . See discussion of "Applying

" below. Default value is "no-services".Updates to Runtime Services

 – List of string – Indicates an exclusive relationship between parameters. If thisalternatives

attribute is defined, the other parameters listed in this descriptor's value should be undefined, even if

their required descriptor says true; i.e. the presence of this parameter satisfies the requirement. Note

that an parameer that is not explicitly configured but has a value is still regarded as notdefault

being defined for purposes of checking whether the exclusive relationship has been violated. Default

is undefined; i.e. this does not apply to most parameters.

 – List of string – Indicates that if this parameter has a value (other than undefined), therequires

other parameters listed in this descriptor's value must also have a value, even if their required

descriptor says false. This would typically be used in conjunction with alternatives. For example,

parameters "a" and "b" are required, but are alternatives to each other; "c" and "d" are optional. But

"b" requires "c" and "d", so if "b" is used, "c" and "d" must also be defined. Default is undefined; i.e.

this does not apply to most parameters.

Latest WildFly Documentation

JBoss Community Documentation Page of 418 2293

arbitrary key/value pairs that further describe the attribute value, e.g. "max" =>2. See "Arbitrary

" below.Descriptors

Latest WildFly Documentation

JBoss Community Documentation Page of 419 2293

Arbitrary Descriptors
The description of an attribute, operation parameter or operation return value type can include arbitrary

key/value pairs that provide extra information. Whether a particular key/value pair is present depends on the

context, e.g. a pair with key "max" would probably only occur as part of the description of some numeric

type.

Following are standard keys and their expected value type. If descriptor authors want to add an arbitrary

key/value pair to some descriptor and the semantic matches the meaning of one of the following items, the

standard key/value type must be used.

 – int – the minimum value of some numeric type. The absence of this item implies there is nomin

minimum value.

 – int – the maximum value of some numeric type. The absence of this item implies there is nomax

maximum value.

 – int – the minimum length of some string, list or byte[] type. The absence of this itemmin-length

implies a minimum length of zero.

 – int – the maximum length of some string, list or byte[]. The absence of this itemmax-length

implies there is no maximum value.

 – List – a list of legal values. The type of the elements in the list should match the type ofallowed

the attribute.

 - The unit of the value, if one is applicable - e.g. ns, ms, s, m, h, KB, MB, TB. See the unit

 in theorg.jboss.as.controller.client.helpers.MeasurementUnit

org.jboss.as:jboss-as-controller-client artifact for a listing of legal measurement units..

Some examples:

{

 "operation-name" => "incrementFoo",

 "description" => "Increase the value of the 'foo' attribute by the given amount",

 "request-properties" => {

 "increment" => {

 "type" => INT,

 "description" => "The amount to increment",

 "required" => true

 }},

 "reply-properties" => {

 "type" => INT,

 "description" => "The new value",

 }

}

{

 "operation-name" => "start",

 "description" => "Starts the thing",

 "request-properties" => {},

 "reply-properties" => {}

}

Latest WildFly Documentation

JBoss Community Documentation Page of 420 2293

Description of Parent/Child Relationships
The address used to target an addressable portion of the model must be an ordered list of key value pairs.

The effect of this requirement is the addressable portions of the model naturally form a tree structure, with

parent nodes in the tree defining what the valid keys are and the children defining what the valid values are.

The parent node also defines the cardinality of the relationship. The description of the parent node includes

a children element that describes these relationships:

{

 "children" => {

 "connector" => {

 description of the relationship with children of type "connector"

 },

 "virtual-host" => {

 description of the relationship with children of type "virtual-host"

 }

}

The description of each relationship will include the following elements:

 – String – text description of the relationshipdescription

 – either "undefined" or a complex structure – This is a node ofmodel-description

ModelType.OBJECT, the keys of which are legal values for the value portion of the address of a

resource of this type, with the special character '*' indicating the value portion can have an arbitrary

value. The values in the node are the full description of the particular child resource (its text

description, attributes, operations, children) as detailed above. This may alsomodel-description

be "undefined", i.e. a null value, if the query that asked for the parent node's description did not

include the "recursive" param set to true.

Example with if the recursive flag was set to true:

{

 "description" => "The connectors used to handle client connections",

 "model-description" => {

 "*" => {

 "description" => "Handles client connections",

 "min-occurs" => 1,

 "attributes => {

 ... details of children as documented above

 },

 "operations" => {

 details of operations as documented above

 },

 "children" => {

 details of the children's children

 }

 }

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 421 2293

If the recursive flag was false:

{

 "description" => "The connectors used to handle client connections",

 "model-description" => undefined

}

Applying Updates to Runtime Services
An attribute or operation description may include a " " descriptor; this section is anrestart-required

explanation of the meaning of that descriptor.

An operation that changes a management resource's persistent configuration usually can also also affect a

runtime service associated with the resource. For example, there is a runtime service associated with any

host.xml or standalone.xml element; other services in the runtime depend on that service to<interface>

provide the associated with the interface. In many cases, an update to a resource'sInetAddress

persistent configuration can be immediately applied to the associated runtime service. The runtime service's

state is updated to reflect the new value(s).

However, in many cases the runtime service's state cannot be updated without restarting the service.

Restarting a service can have broad effects. A restart of a service A will trigger a restart of other services B,

C and D that depend A, triggering a restart of services that depend on B, C and D, etc. Those service

restarts may very well disrupt handling of end-user requests.

Because restarting a service can be disruptive to end-user request handling, the handlers for management

operations will not restart any service without some form of explicit instruction from the end user indicating a

service restart is desired. In a few cases, simply executing the operation is an indication the user wants

services to restart (e.g. a operation in a/host=master/server-config=server-one:restart

managed domain, or a operation on a standalone server.) For all other cases, if an operation (or/:reload

attribute write) cannot be performed without restarting a service, the metadata describing the operation or

attribute will include a " " descriptor whose value indicates what is necessary for therestart-required

operation to affect the runtime:

Latest WildFly Documentation

JBoss Community Documentation Page of 422 2293

 – Applying the operation to the runtime does not require the restart of any services.no-services

This value is the default if the restart-required descriptor is not present.

 – The operation can only immediately update the persistent configuration; applyingall-services

the operation to the runtime will require a subsequent restart of all services in the affected VM.

Executing the operation will put the server into a " " state. Until a restart of allreload-required

services is performed the response to this operation and to any subsequent operation will include a

response header " ". For a standalone server, a restartprocess-state" => "reload-required

of all services can be accomplished by executing the CLI command. For a server in a/:reload

managed domain, restarting all services currently requires a full restart of the affected server VM (e.g.

)./host=master/server-config=server-one:restart

 --The operation can only immediately update the persistent configuration; applying the operationjvm

to the runtime will require a full process restart (i.e. stop the JVM and launch a new JVM). Executing

the operation will put the server into a " " state. Until a restart is performed therestart-required

response to this operation and to any subsequent operation will include a response header "

". For a standalone server, a full process restartprocess-state" => "restart-required

requires first stopping the server via OS-level operations (Ctrl-C, kill) or via the CLI/:shutdown

command, and then starting the server again from the command line. For a server in a managed

domain, restarting a server requires executing the

 operation./host=<host>/server-config=<server>:restart

 – The operation can only immediately update the persistent configuration;resource-services

applying the operation to the runtime will require a subsequent restart of some services associated

with the resource. If the operation includes the request header

, the handler for the operation will go ahead"allow-resource-service-restart" => true

and restart the runtime service. Otherwise executing the operation will put the server into a "

" state. (See the discussion of " " above for more on the "reload-required all-services

" state.)reload-required

5.17.4 The native management API

A standalone WildFly process, or a managed domain Domain Controller or slave Host Controller process

can be configured to listen for remote management requests using its "native management interface":

<native-interface interface="management" port="9999" security-realm="ManagementRealm"/>

(See standalone/configuration/standalone.xml or domain/configuration/host.xml)

The CLI tool that comes with the application server uses this interface, and user can develop custom clients

that use it as well. In this section we'll cover the basics on how to develop such a client. We'll also cover

details on the format of low-level management operation requests and responses – information that should

prove useful for users of the CLI tool as well.

Latest WildFly Documentation

JBoss Community Documentation Page of 423 2293

Native Management Client Dependencies
The native management interface uses an open protocol based on the JBoss Remoting library. JBoss

Remoting is used to establish a communication channel from the client to the process being managed. Once

the communication channel is established the primary traffic over the channel is management requests

initiated by the client and asynchronous responses from the target process.

A custom Java-based client should have the maven artifact

 and its dependencies on the classpath. The otherorg.jboss.as:jboss-as-controller-client

dependencies are:

Maven Artifact Purpose

org.jboss.remoting:jboss-remoting Remote communication

org.jboss:jboss-dmr Detyped representation of the management model

org.jboss.as:jboss-as-protocol Wire protocol for remote WildFly management

org.jboss.sasl:jboss-sasl SASL authentication

org.jboss.xnio:xnio-api Non-blocking IO

org.jboss.xnio:xnio-nio Non-blocking IO

org.jboss.logging:jboss-logging Logging

org.jboss.threads:jboss-threads Thread management

org.jboss.marshalling:jboss-marshalling Marshalling and unmarshalling data to/from streams

The client API is entirely within the artifact; the otherorg.jboss.as:jboss-as-controller-client

dependencies are part of the internal implementation of

 and are not compile-time dependencies of any customorg.jboss.as:jboss-as-controller-client

client based on it.

The management protocol is an open protocol, so a completely custom client could be developed without

using these libraries (e.g. using Python or some other language.)

Working with a ModelControllerClient
The class is the main class a customorg.jboss.as.controller.client.ModelControllerClient

client would use to manage a WildFly server instance or a Domain Controller or slave Host Controller.

The custom client must have maven artifact and itsorg.jboss.as:jboss-as-controller-client

dependencies on the classpath.

Latest WildFly Documentation

JBoss Community Documentation Page of 424 2293

Creating the ModelControllerClient
To create a management client that can connect to your target process's native management socket, simply:

ModelControllerClient client =

ModelControllerClient.Factory.create(InetAddress.getByName("localhost"), 9999);

The address and port are what is configured in the target process'

 element.<management><management-interfaces><native-interface.../>

Typically, however, the native management interface will be secured, requiring clients to authenticate. On

the client side, the custom client will need to provide the user's authentication credentials, obtained in

whatever manner is appropriate for the client (e.g. from a dialog box in a GUI-based client.) Access to these

credentials is provided by passing in an implementation of the

 interface. For example:javax.security.auth.callback.CallbackHandler

static ModelControllerClient createClient(final InetAddress host, final int port,

 final String username, final char[] password, final String securityRealmName)

{

 final CallbackHandler callbackHandler = new CallbackHandler() {

 public void handle(Callback[] callbacks) throws IOException,

UnsupportedCallbackException {

 for (Callback current : callbacks) {

 if (current instanceof NameCallback) {

 NameCallback ncb = (NameCallback) current;

 ncb.setName(username);

 } else if (current instanceof PasswordCallback) {

 PasswordCallback pcb = (PasswordCallback) current;

 pcb.setPassword(password.toCharArray());

 } else if (current instanceof RealmCallback) {

 RealmCallback rcb = (RealmCallback) current;

 rcb.setText(rcb.getDefaultText());

 } else {

 throw new UnsupportedCallbackException(current);

 }

 }

 }

 };

 return ModelControllerClient.Factory.create(host, port, callbackHandler);

}

Latest WildFly Documentation

JBoss Community Documentation Page of 425 2293

Creating an operation request object
Management requests are formulated using the class from the org.jboss.dmr.ModelNode jboss-dmr

library. The library allows the complete WildFly management model to be expressed using ajboss-dmr

very small number of Java types. See for full details onDetyped management and the jboss-dmr library

using this library.

Let's show an example of creating an operation request object that can be used to read the resource

 for the web subsystem's HTTP connector:description

ModelNode op = new ModelNode();

op.get("operation").set("read-resource-description");

ModelNode address = op.get("address");

address.add("subsystem", "web");

address.add("connector", "http");

op.get("recursive").set(true);

op.get("operations").set(true);

What we've done here is created a ModelNode of type with the following fields:ModelType.OBJECT

 – the name of the operation to invoke. All operation requests include this field andoperation must

its value must be a String.

 – the address of the resource to invoke the operation against. This field's must be of address

 with each element in the list being a . If this field isModelType.LIST ModelType.PROPERTY

omitted the operation will target the root resource. The operation can be targeted at any address in

the management model; here we are targeting it at the resource for the web subsystem's http

connector.

In this case, the request includes two optional parameters:

 – true means you want the description of child resources under this resource. Default isrecursive

false

 – true means you want the description of operations exposed by the resource to beoperations

included. Default is false.

Different operations take different parameters, and some take no parameters at all.

See for full details on the structure of a ModelNode that willFormat of a Detyped Operation Request

represent an operation request.

The example above produces an operation request ModelNode equivalent to what the CLI produces

internally when it parses and executes the following low-level CLI command:

[localhost:9999 /]

/subsystem=web/connector=http:read-resource-description(recursive=true,operations=true)

Latest WildFly Documentation

JBoss Community Documentation Page of 426 2293

Execute the operation and manipulate the result:
The method sends the operation request ModelNode to the process being managed and returns aexecute

ModelNode the contains the process' response:

ModelNode returnVal = client.execute(op);

System.out.println(returnVal.get("result").toString());

See for general details on the structure of the "returnVal"Format of a Detyped Operation Response

ModelNode.

The operation shown above will block the calling thread until the response is received from theexecute

process being managed. also exposes and API allowing asynchronousModelControllerClient

invocation:

Future<ModelNode> future = client.executeAsync(op);

. . . // do other stuff

ModelNode returnVal = future.get();

System.out.println(returnVal.get("result").toString());

Close the ModelControllerClient
A can be reused for multiple requests. Creating a new ModelControllerClient

 for each request is an anti-pattern. However, when the ModelControllerClient

 is no longer needed, it should always be explicitly closed, allowing it to closeModelControllerClient

down any connections to the process it was managing and release other resources:

client.close();

Format of a Detyped Operation Request
The basic method a user of the WildFly 8 programmatic management API would use is very simple:

ModelNode execute(ModelNode operation) throws IOException;

where the return value is the detyped representation of the response, and is the detypedoperation

representation of the operation being invoked.

The purpose of this section is to document the structure of .operation

See for a discussion of the format of the response.Format of a Detyped Operation Response

Latest WildFly Documentation

JBoss Community Documentation Page of 427 2293

Simple Operations
A text representation of simple operation would look like this:

{

 "operation" => "write-attribute",

 "address" => [

 ("profile" => "production"),

 ("subsystem" => "threads"),

 ("bounded-queue-thread-pool" => "pool1")

],

 "name" => "count",

 "value" => 20

}

Java code to produce that output would be:

ModelNode op = new ModelNode();

op.get("operation").set("write-attribute");

ModelNode addr = op.get("address");

addr.add("profile", "production");

addr.add("subsystem", "threads");

addr.add("bounded-queue-thread-pool", "pool1");

op.get("name").set("count");

op.get("value").set(20);

System.out.println(op);

The order in which the outermost elements appear in the request is not relevant. The required elements are:

 – String – The name of the operation being invoked.operation

 – the address of the managed resource against which the request should be executed. Ifaddress

not set, the address is the root resource. The address is an ordered list of key-value pairs describing

where the resource resides in the overall management resource tree. Management resources are

organized in a tree, so the order in which elements in the address occur is important.

The other key/value pairs are parameter names and their values. The names and values should match what

is specified in the .operation's description

Parameters may have any name, except for the reserved words , and operation address

.operation-headers

Operation Headers
Besides the special operation and address values discussed above, operation requests can also include

special "header" values that help control how the operation executes. These headers are created under the

special reserved word :operation-headers

Latest WildFly Documentation

JBoss Community Documentation Page of 428 2293

ModelNode op = new ModelNode();

op.get("operation").set("write-attribute");

ModelNode addr = op.get("address");

addr.add("base", "domain");

addr.add("profile", "production");

addr.add("subsystem", "threads");

addr.add("bounded-queue-thread-pool", "pool1");

op.get("name").set("count");

op.get("value").set(20);

op.get("operation-headers", "rollback-on-runtime-failure").set(false);

System.out.println(op);

This produces:

{

 "operation" => "write-attribute",

 "address" => [

 ("profile" => "production"),

 ("subsystem" => "threads"),

 ("bounded-queue-thread-pool" => "pool1")

],

 "name" => "count",

 "value" => 20,

 "operation-headers" => {

 "rollback-on-runtime-failure => false

 }

}

The following operation headers are supported:

Latest WildFly Documentation

JBoss Community Documentation Page of 429 2293

 – boolean, optional, defaults to true. Whether an operation thatrollback-on-runtime-failure

successfully updates the persistent configuration model should be reverted if it fails to apply to the

runtime. Operations that affect the persistent configuration are applied in two stages – first to the

configuration model and then to the actual running services. If there is an error applying to the

configuration model the operation will be aborted with no configuration change and no change to

running services will be attempted. However, operations are allowed to change the configuration

model even if there is a failure to apply the change to the running services – if and only if this

 header is set to . So, this header only deals with whatrollback-on-runtime-failure false

happens if there is a problem applying an operation to the running state of a server (e.g. actually

increasing the size of a runtime thread pool.)

 – only relevant to requests made to a Domain Controller or Host Controller. See "rollout-plan

" for details.Operations with a Rollout Plan

 – boolean, optional, defaults to false. Whether an operationallow-resource-service-restart

that requires restarting some runtime services in order to take effect should do so. See discussion of

 in the resource-services "Applying Updates to Runtime Services" section of the Description of

 for further details.the Management Model section

 – String or list of strings. Name(s) of RBAC role(s) the permissions for which should be usedroles

when making access control decisions instead of those from the roles normally associated with the

user invoking the operation. Only respected if the user is normally associated with a role with all

permissions (i.e. SuperUser), meaning this can only be used to reduce permissions for a caller, not to

increase permissions.

 – int, optional, defaults to 300. Maximum time, in seconds, that the operationblocking-timeout

should block at various points waiting for completion. If this period is exceeded, the operation will roll

back. Does not represent an overall maximum execution time for an operation; rather it is meant to

serve as a sort of fail-safe measure to prevent problematic operations indefinitely tying up resources.

Latest WildFly Documentation

JBoss Community Documentation Page of 430 2293

Composite Operations
The root resource for a Domain or Host Controller or an individual server will expose an operation named "

". This operation executes a list of other operations as an atomic unit (although the atomicitycomposite

requirement can be . The structure of the request for the " " operation has the samerelaxed composite

fundamental structure as a simple operation (i.e. operation name, address, params as key value pairs).

{

 "operation" => "composite",

 "address" => [],

 "steps" => [

 {

 "operation" => "write-attribute",

 "address" => [

 ("profile" => "production"),

 ("subsystem" => "threads"),

 ("bounded-queue-thread-pool" => "pool1")

],

 "count" => "count",

 "value" => 20

 },

 {

 "operation" => "write-attribute",

 "address" => [

 ("profile" => "production"),

 ("subsystem" => "threads"),

 ("bounded-queue-thread-pool" => "pool2")

],

 "name" => "count",

 "value" => 10

 }

],

 "operation-headers" => {

 "rollback-on-runtime-failure => false

 }

}

The "composite" operation takes a single parameter:

 – a list, where each item in the list has the same structure as a simple operation request. Insteps

the example above each of the two steps is modifying the thread pool configuration for a different

pool. There need not be any particular relationship between the steps. Note that the

 and operation headers are not supported forrollback-on-runtime-failure rollout-plan

the individual steps in a composite operation.

The operation header discussed above has a particular meaning whenrollback-on-runtime-failure

applied to a composite operation, controlling whether steps that successfully execute should be reverted if

other steps fail at runtime. Note that if any steps modify the persistent configuration, and any of those steps

fail, all steps will be reverted. Partial/incomplete changes to the persistent configuration are not allowed.

Latest WildFly Documentation

JBoss Community Documentation Page of 431 2293

Operations with a Rollout Plan
Operations targeted at domain or host level resources can potentially impact multiple servers. Such

operations can include a "rollout plan" detailing the sequence in which the operation should be applied to

servers as well as policies for detailing whether the operation should be reverted if it fails to execute

successfully on some servers.

If the operation includes a rollout plan, the structure is as follows:

{

 "operation" => "write-attribute",

 "address" => [

 ("profile" => "production"),

 ("subsystem" => "threads"),

 ("bounded-queue-thread-pool" => "pool1")

],

 "name" => "count",

 "value" => 20,

 "operation-headers" => {

 "rollout-plan" => {

 "in-series" => [

 {

 "concurrent-groups" => {

 "groupA" => {

 "rolling-to-servers" => true,

 "max-failure-percentage" => 20

 },

 "groupB" => undefined

 }

 },

 {

 "server-group" => {

 "groupC" => {

 "rolling-to-servers" => false,

 "max-failed-servers" => 1

 }

 }

 },

 {

 "concurrent-groups" => {

 "groupD" => {

 "rolling-to-servers" => true,

 "max-failure-percentage" => 20

 },

 "groupE" => undefined

 }

 }

],

 "rollback-across-groups" => true

 }

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 432 2293

As you can see, the rollout plan is another structure in the operation-headers section. The root node of the

structure allows two children:

 – a list – A list of activities that are to be performed in series, with each activity reachingin-series

completion before the next step is executed. Each activity involves the application of the operation to

the servers in one or more server groups. See below for details on each element in the list.

 – boolean – indicates whether the need to rollback the operation on allrollback-across-groups

the servers in one server group should trigger a rollback across all the server groups. This is an

optional setting, and defaults to .false

Each element in the list under the node must have one or the other of the following structures:in-series

 – a map of server group names to policies controlling how the operationconcurrent-groups

should be applied to that server group. For each server group in the map, the operation may be

applied concurrently. See below for details on the per-server-group policy configuration.

 – a single key/value mapping of a server group name to a policy controlling how theserver-group

operation should be applied to that server group. See below for details on the policy configuration.

(Note: there is no difference in plan execution between this and a " " map with aconcurrent-groups

single entry.)

The policy controlling how the operation is applied to the servers within a server group has the following

elements, each of which is optional:

 – boolean – If true, the operation will be applied to each server in the grouprolling-to-servers

in series. If false or not specified, the operation will be applied to the servers in the group

concurrently.

 – int – Maximum number of servers in the group that can fail to apply themax-failed-servers

operation before it should be reverted on all servers in the group. The default value if not specified is

zero; i.e. failure on any server triggers rollback across the group.

 – int between 0 and 100 – Maximum percentage of the total number ofmax-failure-percentage

servers in the group that can fail to apply the operation before it should be reverted on all servers in

the group. The default value if not specified is zero; i.e. failure on any server triggers rollback across

the group.

If both and are set, max-failed-servers max-failure-percentage max-failure-percentage

takes precedence.

Looking at the (contrived) example above, application of the operation to the servers in the domain would be

done in 3 phases. If the policy for any server group triggers a rollback of the operation across the server

group, all other server groups will be rolled back as well. The 3 phases are:

Latest WildFly Documentation

JBoss Community Documentation Page of 433 2293

1.

2.

3.

Server groups groupA and groupB will have the operation applied concurrently. The operation will be

applied to the servers in groupA in series, while all servers in groupB will handle the operation

concurrently. If more than 20% of the servers in groupA fail to apply the operation, it will be rolled

back across that group. If any servers in groupB fail to apply the operation it will be rolled back across

that group.

Once all servers in groupA and groupB are complete, the operation will be applied to the servers in

groupC. Those servers will handle the operation concurrently. If more than one server in groupC fails

to apply the operation it will be rolled back across that group.

Once all servers in groupC are complete, server groups groupD and groupE will have the operation

applied concurrently. The operation will be applied to the servers in groupD in series, while all servers

in groupE will handle the operation concurrently. If more than 20% of the servers in groupD fail to

apply the operation, it will be rolled back across that group. If any servers in groupE fail to apply the

operation it will be rolled back across that group.

Default Rollout Plan
All operations that impact multiple servers will be executed with a rollout plan. However, actually specifying

the rollout plan in the operation request is not required. If no operation header is specified,rollout-plan

a default plan will be generated. The plan will have the following characteristics:

There will only be a single high level phase. All server groups affected by the operation will have the

operation applied concurrently.

Within each server group, the operation will be applied to all servers concurrently.

Failure on any server in a server group will cause rollback across the group.

Failure of any server group will result in rollback of all other server groups.

Latest WildFly Documentation

JBoss Community Documentation Page of 434 2293

Creating and reusing a Rollout Plan
Since a rollout plan may be quite complex, having to pass it as a header every time can become quickly

painful. So instead we can store it in the model and then reference it when we want to use it.

To create a rollout plan you can use the operation like this :rollout-plan add

rollout-plan add --name=simple --content={"rollout-plan" => {"in-series" => [{"server-group" =>

{"main-server-group" => {"rolling-to-servers" => false,"max-failed-servers" => 1}}},

{"server-group" => {"other-server-group" => {"rolling-to-servers" =>

true,"max-failure-percentage" => 20}}}],"rollback-across-groups" => true}}

This will create a rollout plan called in the content repository.simple

[domain@192.168.1.20:9999 /]

/management-client-content=rollout-plans/rollout-plan=simple:read-resource

{

 "outcome" => "success",

 "result" => {

 "content" => {"rollout-plan" => {

 "in-series" => [

 {"server-group" => {"main-server-group" => {

 "rolling-to-servers" => false,

 "max-failed-servers" => 1

 }}},

 {"server-group" => {"other-server-group" => {

 "rolling-to-servers" => true,

 "max-failure-percentage" => 20

 }}}

],

 "rollback-across-groups" => true

 }},

 "hash" => bytes {

 0x13, 0x12, 0x76, 0x65, 0x8a, 0x28, 0xb8, 0xbc,

 0x34, 0x3c, 0xe9, 0xe6, 0x9f, 0x24, 0x05, 0xd2,

 0x30, 0xff, 0xa4, 0x34

 }

 }

}

Now you may reference the roolout plan in your command by adding a header just like this :

deploy /quickstart/ejb-in-war/target/wildfly-ejb-in-war.war --all-server-groups

--headers={rollout name=simple}

Format of a Detyped Operation Response
As noted previously, the basic method a user of the WildFly 8 programmatic management API would use is

very simple:

Latest WildFly Documentation

JBoss Community Documentation Page of 435 2293

ModelNode execute(ModelNode operation) throws IOException;

where the return value is the detyped representation of the response, and is the detypedoperation

representation of the operating being invoked.

The purpose of this section is to document the structure of the return value.

For the format of the request, see .Format of a Detyped Operation Request

Simple Responses
Simple responses are provided by the following types of operations:

Non-composite operations that target a single server. (See below for more on composite operations).

Non-composite operations that target a Domain Controller or slave Host Controller and don't require

the responder to apply the operation on multiple servers and aggregate their results (e.g. a simple

read of a domain configuration property.)

The response will always include a simple boolean outcome field, with one of three possible values:

 – the operation executed successfullysuccess

 – the operation failedfailed

 – the execution of the operation was cancelled. (This would be an unusual outcome for acancelled

simple operation which would generally very rapidly reach a point in its execution where it couldn't be

cancelled.)

The other fields in the response will depend on whether the operation was successful.

The response for a failed operation:

{

 "outcome" => "failed",

 "failure-description" => "[JBAS-12345] Some failure message"

}

A response for a successful operation will include an additional field:

 – the return value, or for void operations or those that return nullresult undefined

A non-void result:

{

 "outcome" => "success",

 "result" => {

 "name" => "Brian",

 "age" => 22

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 436 2293

A void result:

{

 "outcome" => "success",

 "result" => undefined

}

The response for a cancelled operation has no other fields:

{

 "outcome" => "cancelled"

}

Latest WildFly Documentation

JBoss Community Documentation Page of 437 2293

Response Headers
Besides the standard , and fields described above, theoutcome result failure-description

response may also include various headers that provide more information about the affect of the operation or

about the overall state of the server. The headers will be child element under a field named

. For example:response-headers

{

 "outcome" => "success",

 "result" => undefined,

 "response-headers" => {

 "operation-requires-reload" => true,

 "process-state" => "reload-required"

 }

}

A response header is typically related to whether an operation could be applied to the targeted runtime

without requiring a restart of some or all services, or even of the target process itself. Please see the

 for a"Applying Updates to Runtime Services" section of the Description of the Management Model section

discussion of the basic concepts related to what happens if an operation requires a service restart to be

applied.

The current possible response headers are:

 – boolean – indicates that the specific operation that has generatedoperation-requires-reload

this response requires a restart of all services in the process in order to take effect in the runtime. This

would typically only have a value of 'true'; the absence of the header is the same as a value of 'false.'

 – boolean – indicates that the specific operation that hasoperation-requires-restart

generated this response requires a full process restart in order to take effect in the runtime. This

would typically only have a value of 'true'; the absence of the header is the same as a value of 'false.'

 – enumeration – Provides information about the overall state of the target process.process-state

One of the following values:

 – the process is startingstarting

 – the process is in a normal running state. The header wouldrunning process-state

typically not be seen with this value; the absence of the header is the same as a value of

'running'.

 – some operation (not necessarily this one) has executed that requires areload-required

restart of all services in order for a configuration change to take effect in the runtime.

 – some operation (not necessarily this one) has executed that requires arestart-required

full process restart in order for a configuration change to take effect in the runtime.

 – the process is stoppingstopping

Basic Composite Operation Responses
A composite operation is one that incorporates more than one simple operation in a list and executes them

atomically. See the for more information."Composite Operations" section

Basic composite responses are provided by the following types of operations:

Latest WildFly Documentation

JBoss Community Documentation Page of 438 2293

Composite operations that target a single server.

Composite operations that target a Domain Controller or a slave Host Controller and don't require the

responder to apply the operation on multiple servers and aggregate their results (e.g. a list of simple

reads of domain configuration properties.)

The high level format of a basic composite operation response is largely the same as that of a simple

operation response, although there is an important semantic difference. For a composite operation, the

meaning of the outcome flag is controlled by the value of the operation request's

 header field. If that field was (default is true), the outcome flagrollback-on-runtime-failure false

will be success if all steps were successfully applied to the persistent configuration even if of thenone

composite operation's steps was successfully applied to the runtime.

What's distinctive about a composite operation response is the field. First, even if the operation wasresult

not successful, the field will usually be present. (It won't be present if there was some sort ofresult

immediate failure that prevented the responder from even attempting to execute the individual operations.)

Second, the content of the field will be a map. Each entry in the map will record the result of anresult

element in the parameter of the composite operation request. The key for each item in the map willsteps

be the string " " where "X" is the 1-based index of the step's position in the request's list. Sostep-X steps

each individual operation in the composite operation will have its result recorded.

The individual operation results will have the same basic format as the simple operation results described

above. However, there are some differences from the simple operation case when the individual operation's

 flag is . These relate to the fact that in a composite operation, individual operations can beoutcome failed

rolled back or not even attempted.

If an individual operation was not even attempted (because the overall operation was cancelled or, more

likely, a prior operation failed):

{

 "outcome" => "cancelled"

}

An individual operation that failed and was rolled back:

{

 "outcome" => "failed",

 "failure-description" => "[JBAS-12345] Some failure message",

 "rolled-back" => true

}

An individual operation that itself succeeded but was rolled back due to failure of another operation:

Latest WildFly Documentation

JBoss Community Documentation Page of 439 2293

{

 "outcome" => "failed",

 "result" => {

 "name" => "Brian",

 "age" => 22

 },

 "rolled-back" => true

}

An operation that failed and was rolled back:

{

 "outcome" => "failed",

 "failure-description" => "[JBAS-12345] Some failure message",

 "rolled-back" => true

}

Here's an example of the response for a successful 2 step composite operation:

{

 "outcome" => "success",

 "result" => [

 {

 "outcome" => "success",

 "result" => {

 "name" => "Brian",

 "age" => 22

 }

 },

 {

 "outcome" => "success",

 "result" => undefined

 }

]

}

And for a failed 3 step composite operation, where the first step succeeded and the second failed, triggering

cancellation of the 3rd and rollback of the others:

Latest WildFly Documentation

JBoss Community Documentation Page of 440 2293

{

 "outcome" => "failed",

 "failure-description" => "[JBAS-99999] Composite operation failed; see individual operation

results for details",

 "result" => [

 {

 "outcome" => "failed",

 "result" => {

 "name" => "Brian",

 "age" => 22

 },

 "rolled-back" => true

 },

 {

 "outcome" => "failed",

 "failure-description" => "[JBAS-12345] Some failure message",

 "rolled-back" => true

 },

 {

 "outcome" => "cancelled"

 }

]

}

Multi-Server Responses
Multi-server responses are provided by operations that target a Domain Controller or slave Host Controller

and require the responder to apply the operation on multiple servers and aggregate their results (e.g. nearly

all domain or host configuration updates.)

Multi-server operations are executed in several stages.

First, the operation may need to be applied against the authoritative configuration model maintained by the

Domain Controller (for confgurations) or a Host Controller (for a configuration). Ifdomain.xml host.xml

there is a failure at this stage, the operation is automatically rolled back, with a response like this:

{

 "outcome" => "failed",

 "failure-description" => {

 "domain-failure-description" => "[JBAS-33333] Failed to apply X to the domain model"

 }

}

If the operation was addressed to the domain model, in the next stage the Domain Controller will ask each

slave Host Controller to apply it to its local copy of the domain model. If any Host Controller fails to do so, the

Domain Controller will tell all Host Controllers to revert the change, and it will revert the change locally as

well. The response to the client will look like this:

Latest WildFly Documentation

JBoss Community Documentation Page of 441 2293

{

 "outcome" => "failed",

 "failure-description" => {

 "host-failure-descriptions" => {

 "hostA" => "[DOM-3333] Failed to apply to the domain model",

 "hostB" => "[DOM-3333] Failed to apply to the domain model"

 }

 }

}

If the preceding stages succeed, the operation will be pushed to all affected servers. If the operation is

successful on all servers, the response will look like this (this example operation has a void response, hence

the result for each server is undefined):

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => {

 "groupA" => {

 "serverA-1" => {

 "host" => "host1",

 "response" => {

 "outcome" => "success",

 "result" => undefined

 }

 },

 "serverA-2" => {

 "host" => "host2",

 "response" => {

 "outcome" => "success",

 "result" => undefined

 }

 }

 },

 "groupB" => {

 "serverB-1" => {

 "host" => "host1",

 "response" => {

 "outcome" => "success",

 "result" => undefined

 }

 },

 "serverB-2" => {

 "host" => "host2",

 "response" => {

 "outcome" => "success",

 "result" => undefined

 }

 }

 }

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 442 2293

The operation need not succeed on all servers in order to get an result. All"outcome" => "success"

that is required is that it succeed on at least one server without the rollback policies in the rollout plan

triggering a rollback on that server. An example response in such a situation would look like this:

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => {

 "groupA" => {

 "serverA-1" => {

 "host" => "host1",

 "response" => {

 "outcome" => "success",

 "result" => undefined

 }

 },

 "serverA-2" => {

 "host" => "host2",

 "response" => {

 "outcome" => "success",

 "result" => undefined

 }

 }

 },

 "groupB" => {

 "serverB-1" => {

 "host" => "host1",

 "response" => {

 "outcome" => "success",

 "result" => undefined,

 "rolled-back" => true

 }

 },

 "serverB-2" => {

 "host" => "host2",

 "response" => {

 "outcome" => "success",

 "result" => undefined,

 "rolled-back" => true

 }

 },

 "serverB-3" => {

 "host" => "host3",

 "response" => {

 "outcome" => "failed",

 "failure-description" => "[DOM-4556] Something didn't work right",

 "rolled-back" => true

 }

 }

 }

 }

}

Finally, if the operation fails or is rolled back on all servers, an example response would look like this:

Latest WildFly Documentation

JBoss Community Documentation Page of 443 2293

{

 "outcome" => "failed",

 "server-groups" => {

 "groupA" => {

 "serverA-1" => {

 "host" => "host1",

 "response" => {

 "outcome" => "success",

 "result" => undefined

 }

 },

 "serverA-2" => {

 "host" => "host2",

 "response" => {

 "outcome" => "success",

 "result" => undefined

 }

 }

 },

 "groupB" => {

 "serverB-1" => {

 "host" => "host1",

 "response" => {

 "outcome" => "failed",

 "result" => undefined,

 "rolled-back" => true

 }

 },

 "serverB-2" => {

 "host" => "host2",

 "response" => {

 "outcome" => "failed",

 "result" => undefined,

 "rolled-back" => true

 }

 },

 "serverB-3" => {

 "host" => "host3",

 "response" => {

 "outcome" => "failed",

 "failure-description" => "[DOM-4556] Something didn't work right",

 "rolled-back" => true

 }

 }

 }

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 444 2293

5.17.5 Description of the Management Model

A detailed description of the resources, attributes and operations that make up the management model

provided by an individual WildFly instance or by any Domain Controller or slave Host Controller process can

be queried using the , , read-resource-description read-operation-names

 and operations described in the read-operation-description read-child-types Global operations

section. In this section we provide details on what's included in those descriptions.

Description of the WildFly Managed Resources
All portions of the management model exposed by WildFly are addressable via an ordered list of key/value

pairs. For each addressable , the following descriptive information will be available:Management Resource

 – String – text description of this portion of the modeldescription

 – int, either 0 or 1 – Minimum number of resources of this type that must exist in a validmin-occurs

model. If not present, the default value is 0.

 – int – Maximum number of resources of this type that may exist in a valid model. If notmax-occurs

present, the default value depends upon the value of the final key/value pair in the address of the

described resource. If this value is '*', the default value is Integer.MAX_VALUE, i.e. there is no limit. If

this value is some other string, the default value is 1.

 – Map of String (the attribute name) to complex structure – the configuration attributesattributes

available in this portion of the model. See for the representation of each attribute.below

 – Map of String (the operation name) to complex structure – the operations that can beoperations

targetted at this address. See for the representation of each operation.below

 – Map of String (the type of child) to complex structure – the relationship of this portion ofchildren

the model to other addressable portions of the model. See for the representation of each childbelow

relationship.

 – boolean – indicates whether this portion of the model can store an XMLhead-comment-allowed

comment that would be written in the persistent form of the model (e.g. domain.xml) before the start of

the XML element that represents this portion of the model. This item is optional, and if not present

defaults to true. (Note: storing XML comments in the in-memory model is not currently supported. This

description key is for future use.)

 – boolean – similar to , but indicates whether atail-comment-allowed head-comment-allowed

comment just before the close of the XML element is supported. A tail comment can only be

supported if the element has child elements, in which case a comment can be inserted between the

final child element and the element's closing tag. This item is optional, and if not present defaults to

true. (Note: storing XML comments in the in-memory model is not currently supported. This

description key is for future use.)

For example:

Latest WildFly Documentation

JBoss Community Documentation Page of 445 2293

{

 "description => "A manageable resource",

 "tail-comment-allowed" => false,

 "attributes" => {

 "foo" => {

 details of attribute foo

 }

 },

 "operations" => {

 "start" => {

 details of the start operation

 }

 },

 "children" => {

 "bar" => {

 details of the relationship with children of type "bar"

 }

 }

}

Description of an Attribute
An attribute is a portion of the management model that is not directly addressable. Instead, it is conceptually

a property of an addressable . For each attribute in the model, the followingmanagement resource

descriptive information will be available:

 – String – text description of the attributedescription

 – – the type of the attribute value. One of the enum valuestype org.jboss.dmr.ModelType

BIG_DECIMAL, BIG_INTEGER, BOOLEAN, BYTES, DOUBLE, INT, LIST, LONG, OBJECT,

PROPERTY, STRING. Most of these are self-explanatory. An OBJECT will be represented in the

detyped model as a map of string keys to values of some other legal type, conceptually similar to a

. A PROPERTY is a single key/value pair,javax.management.openmbean.CompositeData

where the key is a string, and the value is of some other legal type.

 – ModelType or complex structure – Only present if type is LIST or OBJECT. If allvalue-type

elements in the LIST or all the values of the OBJECT type are of the same type, this will be one of the

ModelType enums BIG_DECIMAL, BIG_INTEGER, BOOLEAN, BYTES, DOUBLE, INT, LONG,

STRING. Otherwise, will detail the structure of the attribute value, enumerating thevalue-type

value's fields and the type of their value. So, an attribute with a of LIST and a type value-type

value of is analogous to a Java , while one with a ModelType.STRING List<String> value-type

value of is analogous to a Java . An attribute with a ofModelType.INT List<Integer> type

OBJECT and a value of is analogous to a Java value-type ModelType.STRING Map<String,

. An attribute with a of OBJECT and a whose value is not of type String> type value-type

 represents a fully-defined complex object, with the object's legal fields and their valuesModelType

described.

Latest WildFly Documentation

JBoss Community Documentation Page of 446 2293

 – boolean – indicates whether the value of the attribute may be of type expressions-allowed

, instead of its standard type (see and above forModelType.EXPRESSION type value-type

discussion of an attribute's standard type.) A value of ModelType.EXPRESSION contains a

system-property substitution expression that the server will resolve against the server-side system

property map before using the value. For example, an attribute named max-threads may have an

expression value of } instead of just 10. Default value if not${example.pool.max-threads:10

present is false.

 – boolean – true if the attribute must have a defined value in a representation of its portionrequired

of the model unless another attribute included in a list of is defined; false if it may bealternatives

undefined (implying a null value) even in the absence of alternatives. If not present, true is the default.

 – boolean – true if the attribute might not have a defined value in a representation of itsnillable

portion of the model. A nillable attribute may

be undefined either because it is not or because it is required but has andrequired alternatives

one of the alternatives is defined.

 – String – Either "configuration" or "runtime". If "configuration", the attribute's value is storedstorage

as part of the persistent configuration (e.g. in domain.xml, host.xml or standalone.xml.) If "runtime" the

attribute's value is not stored in the persistent configuration; the value only exists as long as the

resource is running.

 – String – One of "read-only", "read-write" or "metric". Whether an attribute value canaccess-type

be written, or can only read. A "metric" is a read-only attribute whose value is not stored in the

persistent configuration, and whose value may change due to activity on the server. If an attribute is

"read-write", the resource will expose an operation named "write-attribute" whose "name" parameter

will accept this attribute's name and whose "value" parameter will accept a valid value for this

attribute. That operation will be the standard means of updating this attribute's value.

 – String – One of "no-services", "all-services", "resource-services" or "jvm".restart-required

Only relevant to attributes whose access-type is read-write. Indicates whether execution of a

write-attribute operation whose name parameter specifies this attribute requires a restart of services

(or an entire JVM) in order for the change to take effect in the runtime . See discussion of "Applying

" below. Default value is "no-services".Updates to Runtime Services

 – the default value for the attribute that will be used in runtime services if the attribute is notdefault

explicitly defined and no other attributes listed as are defined.alternatives

 – List of string – Indicates an exclusive relationship between attributes. If thisalternatives

attribute is defined, the other attributes listed in this descriptor's value should be undefined, even if

their descriptor says true; i.e. the presence of this attribute satisfies the requirement. Noterequired

that an attribute that is not explicitly configured but has a value is still regarded as not beingdefault

defined for purposes of checking whether the exclusive relationship has been violated. Default is

undefined; i.e. this does not apply to most attributes.

 – List of string – Indicates that if this attribute has a value (other than undefined), the otherrequires

attributes listed in this descriptor's value must also have a value, even if their required descriptor says

false. This would typically be used in conjunction with alternatives. For example, attributes "a" and "b"

are required, but are alternatives to each other; "c" and "d" are optional. But "b" requires "c" and "d",

so if "b" is used, "c" and "d" must also be defined. Default is undefined; i.e. this does not apply to most

attributes.

Latest WildFly Documentation

JBoss Community Documentation Page of 447 2293

 – string – if defined indicates that this attribute's value specifies thecapability-reference

dynamic portion of the name of the specified capability provided by another resource. This indicates

the attribute is a reference to another area of the management model. (Note that at present some

attributes that reference other areas of the model may not provide this information.)

 – boolean – indicates whether the model can store an XML comment thathead-comment-allowed

would be written in the persistent form of the model (e.g. domain.xml) before the start of the XML

element that represents this attribute. This item is optional, and if not present defaults to false. (This is

a different default from what is used for an entire management resource, since model attributes often

map to XML attributes, which don't allow comments.) (Note: storing XML comments in the in-memory

model is not currently supported. This description key is for future use.)

 – boolean – similar to head-comment-allowed, but indicates whether atail-comment-allowed

comment just before the close of the XML element is supported. A tail comment can only be

supported if the element has child elements, in which case a comment can be inserted between the

final child element and the element's closing tag. This item is optional, and if not present defaults to

false. (This is a different default from what is used for an entire management resource, since model

attributes often map to XML attributes, which don't allow comments.) (Note: storing XML comments in

the in-memory model is not currently supported. This description key is for future use.)

arbitrary key/value pairs that further describe the attribute value, e.g. "max" => 2. See "Arbitrary

" below.Descriptors

Some examples:

"foo" => {

 "description" => "The foo",

 "type" => INT,

 "max" => 2

}

"bar" => {

 "description" => "The bar",

 "type" => OBJECT,

 "value-type" => {

 "size" => INT,

 "color" => STRING

 }

}

Description of an Operation
A management resource may have operations associated with it. The description of an operation will include

the following information:

Latest WildFly Documentation

JBoss Community Documentation Page of 448 2293

 – String – the name of the operationoperation-name

 – String – text description of the operationdescription

 – Map of String to complex structure – description of the parameters of therequest-properties

operation. Keys are the names of the parameters, values are descriptions of the parameter value

types. See for details on the description of parameter value types.below

 – complex structure, or empty – description of the return value of the operation,reply-properties

with an empty node meaning void. See for details on the description of operation return valuebelow

types.

 – String – One of "no-services", "all-services", "resource-services" or "jvm".restart-required

Indicates whether the operation makes a configuration change that requires a restart of services (or

an entire JVM) in order for the change to take effect in the runtime. See discussion of "Applying

" below. Default value is "no-services".Updates to Runtime Services

Description of an Operation Parameter or Return Value

 – String – text description of the parameter or return valuedescription

 – – the type of the parameter or return value. One of the enumtype org.jboss.dmr.ModelType

values BIG_DECIMAL, BIG_INTEGER, BOOLEAN, BYTES, DOUBLE, INT, LIST, LONG, OBJECT,

PROPERTY, STRING.

 – or complex structure – Only present if type is LIST or OBJECT. If allvalue-type ModelType

elements in the LIST or all the values of the OBJECT type are of the same type, this will be one of the

ModelType enums BIG_DECIMAL, BIG_INTEGER, BOOLEAN, BYTES, DOUBLE, INT, LIST, LONG,

PROPERTY, STRING. Otherwise, value-type will detail the structure of the attribute value,

enumerating the value's fields and the type of their value.So, a parameter with a of LIST and a type

 value of is analogous to a Java , while one with avalue-type ModelType.STRING List<String>

 value of is analogous to a Java . A parameter withvalue-type ModelType.INT List<Integer>

a of OBJECT and a value of is analogous to a Java type value-type ModelType.STRING

. A parameter with a of OBJECT and a whose value isMap<String, String> type value-type

not of type represents a fully-defined complex object, with the object's legal fields andModelType

their values described.

 – boolean – indicates whether the value of the the parameter or returnexpressions-allowed

value may be of type , instead its standard type (see type and value-typeModelType.EXPRESSION

above for discussion of the standard type.) A value of ModelType.EXPRESSION contains a

system-property substitution expression that the server will resolve against the server-side system

property map before using the value. For example, a parameter named max-threads may have an

expression value of } instead of just 10. Default value if not${example.pool.max-threads:10

present is false.

 – boolean – true if the parameter or return value must have a defined value in therequired

operation or response unless another item included in a list of is defined; false if italternatives

may be undefined (implying a null value) even in the absence of alternatives. If not present, true is the

default.

Latest WildFly Documentation

JBoss Community Documentation Page of 449 2293

 – boolean – true if the parameter or return value might not have a defined value in anillable

representation of its portion of the model. A nillable parameter or return value may be undefined either

because it is not or because it is required but has and one of therequired alternatives

alternatives is defined.

 – the default value for the parameter that will be used in runtime services if the parameter isdefault

not explicitly defined and no other parameters listed as are defined.alternatives

 – String – One of "no-services", "all-services", "resource-services" or "jvm".restart-required

Only relevant to attributes whose access-type is read-write. Indicates whether execution of a

write-attribute operation whose name parameter specifies this attribute requires a restart of services

(or an entire JVM) in order for the change to take effect in the runtime . See discussion of "Applying

" below. Default value is "no-services".Updates to Runtime Services

 – List of string – Indicates an exclusive relationship between parameters. If thisalternatives

attribute is defined, the other parameters listed in this descriptor's value should be undefined, even if

their required descriptor says true; i.e. the presence of this parameter satisfies the requirement. Note

that an parameer that is not explicitly configured but has a value is still regarded as notdefault

being defined for purposes of checking whether the exclusive relationship has been violated. Default

is undefined; i.e. this does not apply to most parameters.

 – List of string – Indicates that if this parameter has a value (other than undefined), therequires

other parameters listed in this descriptor's value must also have a value, even if their required

descriptor says false. This would typically be used in conjunction with alternatives. For example,

parameters "a" and "b" are required, but are alternatives to each other; "c" and "d" are optional. But

"b" requires "c" and "d", so if "b" is used, "c" and "d" must also be defined. Default is undefined; i.e.

this does not apply to most parameters.

arbitrary key/value pairs that further describe the attribute value, e.g. "max" =>2. See "Arbitrary

" below.Descriptors

Latest WildFly Documentation

JBoss Community Documentation Page of 450 2293

Arbitrary Descriptors
The description of an attribute, operation parameter or operation return value type can include arbitrary

key/value pairs that provide extra information. Whether a particular key/value pair is present depends on the

context, e.g. a pair with key "max" would probably only occur as part of the description of some numeric

type.

Following are standard keys and their expected value type. If descriptor authors want to add an arbitrary

key/value pair to some descriptor and the semantic matches the meaning of one of the following items, the

standard key/value type must be used.

 – int – the minimum value of some numeric type. The absence of this item implies there is nomin

minimum value.

 – int – the maximum value of some numeric type. The absence of this item implies there is nomax

maximum value.

 – int – the minimum length of some string, list or byte[] type. The absence of this itemmin-length

implies a minimum length of zero.

 – int – the maximum length of some string, list or byte[]. The absence of this itemmax-length

implies there is no maximum value.

 – List – a list of legal values. The type of the elements in the list should match the type ofallowed

the attribute.

 - The unit of the value, if one is applicable - e.g. ns, ms, s, m, h, KB, MB, TB. See the unit

 in theorg.jboss.as.controller.client.helpers.MeasurementUnit

org.jboss.as:jboss-as-controller-client artifact for a listing of legal measurement units..

Some examples:

{

 "operation-name" => "incrementFoo",

 "description" => "Increase the value of the 'foo' attribute by the given amount",

 "request-properties" => {

 "increment" => {

 "type" => INT,

 "description" => "The amount to increment",

 "required" => true

 }},

 "reply-properties" => {

 "type" => INT,

 "description" => "The new value",

 }

}

{

 "operation-name" => "start",

 "description" => "Starts the thing",

 "request-properties" => {},

 "reply-properties" => {}

}

Latest WildFly Documentation

JBoss Community Documentation Page of 451 2293

Description of Parent/Child Relationships
The address used to target an addressable portion of the model must be an ordered list of key value pairs.

The effect of this requirement is the addressable portions of the model naturally form a tree structure, with

parent nodes in the tree defining what the valid keys are and the children defining what the valid values are.

The parent node also defines the cardinality of the relationship. The description of the parent node includes

a children element that describes these relationships:

{

 "children" => {

 "connector" => {

 description of the relationship with children of type "connector"

 },

 "virtual-host" => {

 description of the relationship with children of type "virtual-host"

 }

}

The description of each relationship will include the following elements:

 – String – text description of the relationshipdescription

 – either "undefined" or a complex structure – This is a node ofmodel-description

ModelType.OBJECT, the keys of which are legal values for the value portion of the address of a

resource of this type, with the special character '*' indicating the value portion can have an arbitrary

value. The values in the node are the full description of the particular child resource (its text

description, attributes, operations, children) as detailed above. This may alsomodel-description

be "undefined", i.e. a null value, if the query that asked for the parent node's description did not

include the "recursive" param set to true.

Example with if the recursive flag was set to true:

{

 "description" => "The connectors used to handle client connections",

 "model-description" => {

 "*" => {

 "description" => "Handles client connections",

 "min-occurs" => 1,

 "attributes => {

 ... details of children as documented above

 },

 "operations" => {

 details of operations as documented above

 },

 "children" => {

 details of the children's children

 }

 }

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 452 2293

If the recursive flag was false:

{

 "description" => "The connectors used to handle client connections",

 "model-description" => undefined

}

Applying Updates to Runtime Services
An attribute or operation description may include a " " descriptor; this section is anrestart-required

explanation of the meaning of that descriptor.

An operation that changes a management resource's persistent configuration usually can also also affect a

runtime service associated with the resource. For example, there is a runtime service associated with any

host.xml or standalone.xml element; other services in the runtime depend on that service to<interface>

provide the associated with the interface. In many cases, an update to a resource'sInetAddress

persistent configuration can be immediately applied to the associated runtime service. The runtime service's

state is updated to reflect the new value(s).

However, in many cases the runtime service's state cannot be updated without restarting the service.

Restarting a service can have broad effects. A restart of a service A will trigger a restart of other services B,

C and D that depend A, triggering a restart of services that depend on B, C and D, etc. Those service

restarts may very well disrupt handling of end-user requests.

Because restarting a service can be disruptive to end-user request handling, the handlers for management

operations will not restart any service without some form of explicit instruction from the end user indicating a

service restart is desired. In a few cases, simply executing the operation is an indication the user wants

services to restart (e.g. a operation in a/host=master/server-config=server-one:restart

managed domain, or a operation on a standalone server.) For all other cases, if an operation (or/:reload

attribute write) cannot be performed without restarting a service, the metadata describing the operation or

attribute will include a " " descriptor whose value indicates what is necessary for therestart-required

operation to affect the runtime:

Latest WildFly Documentation

JBoss Community Documentation Page of 453 2293

 – Applying the operation to the runtime does not require the restart of any services.no-services

This value is the default if the restart-required descriptor is not present.

 – The operation can only immediately update the persistent configuration; applyingall-services

the operation to the runtime will require a subsequent restart of all services in the affected VM.

Executing the operation will put the server into a " " state. Until a restart of allreload-required

services is performed the response to this operation and to any subsequent operation will include a

response header " ". For a standalone server, a restartprocess-state" => "reload-required

of all services can be accomplished by executing the CLI command. For a server in a/:reload

managed domain, restarting all services currently requires a full restart of the affected server VM (e.g.

)./host=master/server-config=server-one:restart

 --The operation can only immediately update the persistent configuration; applying the operationjvm

to the runtime will require a full process restart (i.e. stop the JVM and launch a new JVM). Executing

the operation will put the server into a " " state. Until a restart is performed therestart-required

response to this operation and to any subsequent operation will include a response header "

". For a standalone server, a full process restartprocess-state" => "restart-required

requires first stopping the server via OS-level operations (Ctrl-C, kill) or via the CLI/:shutdown

command, and then starting the server again from the command line. For a server in a managed

domain, restarting a server requires executing the

 operation./host=<host>/server-config=<server>:restart

 – The operation can only immediately update the persistent configuration;resource-services

applying the operation to the runtime will require a subsequent restart of some services associated

with the resource. If the operation includes the request header

, the handler for the operation will go ahead"allow-resource-service-restart" => true

and restart the runtime service. Otherwise executing the operation will put the server into a "

" state. (See the discussion of " " above for more on the "reload-required all-services

" state.)reload-required

5.17.6 Detyped management and the jboss-dmr library

The management model exposed by WildFly is very large and complex. There are dozens, probably

hundreds of logical concepts involved – hosts, server groups, servers, subsystems, datasources, web

connectors, and on and on – each of which in a classic objected oriented API design could be represented

by a Java (i.e. a Java class or interface.) However, a primary goal in the development of WildFly'stype

native management API was to ensure that clients built to use the API had as few compile-time and run-time

dependencies on JBoss-provided classes as possible, and that the API exposed by those libraries be

powerful but also simple and stable. A management client running with the management libraries created for

an earlier version of WildFly should still work if used to manage a later version domain. The management

client libraries needed to be .forward compatible

Latest WildFly Documentation

JBoss Community Documentation Page of 454 2293

It is highly unlikely that an API that consists of hundreds of Java types could be kept forward compatible.

Instead, the WildFly management API is a API. A detyped API is like decaffeinated coffee – it stilldetyped

has a little bit of caffeine, but not enough to keep you awake at night. WildFly's management API still has a

few Java types in it (it's impossible for a Java library to have no types!) but not enough to keep you (or us)

up at night worrying that your management clients won't be forward compatible.

A detyped API works by making it possible to build up arbitrarily complex data structures using a small

number of Java types. All of the parameter values and return values in the API are expressed using those

few types. Ideally, most of the types are basic JDK types, like , ,java.lang.String java.lang.Integer

etc. In addition to the basic JDK types, WildFly's detyped management API uses a small library called

. The purpose of this section is to provide a basic overview of the jboss-dmr library.jboss-dmr

Even if you don't use jboss-dmr directly (probably the case for all but a few users), some of the information in

this section may be useful. When you invoke operations using the application server's Command Line

Interface, the return values are just the text representation of of a jboss-dmr . If your CLIModelNode

commands require complex parameter values, you may yourself end up writing the text representation of a

. And if you use the HTTP management API, all response bodies as well as the request body forModelNode

any POST will be a JSON representation of a .ModelNode

The source code for jboss-dmr is available on . The maven coordinates for a jboss-dmr release are Github

.org.jboss.jboss-dmr:jboss-dmr

ModelNode and ModelType
The public API exposed by jboss-dmr is very simple: just three classes, one of which is an enum!

The primary class is . A is essentially just a wrapper aroundorg.jboss.dmr.ModelNode ModelNode

some ; the value is typically some basic JDK type. A exposes a method. Thisvalue ModelNode getType()

method returns a value of type , which is an enum of all the valid types oforg.jboss.dmr.ModelType

values. And that's 95% of the public API; a class and an enum. (We'll get to the third class, ,Property

below.)

Basic ModelNode manipulation
To illustrate how to work with s, we'll use the scripting library. We won't get into manyModelNode Beanshell

details of beanshell here; it's a simple and intuitive tool and hopefully the following examples are as well.

We'll start by launching a beanshell interpreter, with the jboss-dmr library available on the classpath. Then

we'll tell beanshell to import all the jboss-dmr classes so they are available for use:

$ java -cp bsh-2.0b4.jar:jboss-dmr-1.0.0.Final.jar bsh.Interpreter

BeanShell 2.0b4 - by Pat Niemeyer (pat@pat.net)

bsh % import org.jboss.dmr.*;

bsh %

Next, create a and use the beanshell function to output what type it is:ModelNode print

https://github.com/jbossas/jboss-dmr
http://www.beanshell.org

Latest WildFly Documentation

JBoss Community Documentation Page of 455 2293

bsh % ModelNode node = new ModelNode();

bsh % print(node.getType());

UNDEFINED

A new has no value stored, so its type is .ModelNode ModelType.UNDEFINED

Use one of the overloaded method variants to assign a node's value:set

bsh % node.set(1);

bsh % print(node.getType());

INT

bsh % node.set(true);

bsh % print(node.getType());

BOOLEAN

bsh % node.set("Hello, world");

bsh % print(node.getType());

STRING

Use one of the methods to retrieve the value:asXXX()

bsh % node.set(2);

bsh % print(node.asInt());

2

bsh % node.set("A string");

bsh % print(node.asString());

A string

 will attempt to perform type conversions when you invoke the methods:ModelNode asXXX

bsh % node.set(1);

bsh % print(node.asString());

1

bsh % print(node.asBoolean());

true

bsh % node.set(0);

bsh % print(node.asBoolean());

false

bsh % node.set("true");

bsh % print(node.asBoolean());

true

Not all type conversions are possible:

Latest WildFly Documentation

JBoss Community Documentation Page of 456 2293

bsh % node.set("A string");

bsh % print(node.asInt());

// Error: // Uncaught Exception: Method Invocation node.asInt : at Line: 20 : in file: <unknown

file> : node .asInt ()

Target exception: java.lang.NumberFormatException: For input string: "A string"

java.lang.NumberFormatException: For input string: "A string"

 at java.lang.NumberFormatException.forInputString(NumberFormatException.java:48)

 at java.lang.Integer.parseInt(Integer.java:449)

 at java.lang.Integer.parseInt(Integer.java:499)

 at org.jboss.dmr.StringModelValue.asInt(StringModelValue.java:61)

 at org.jboss.dmr.ModelNode.asInt(ModelNode.java:117)

The method can be used to ensure a node has an expected value type beforeModelNode.getType()

attempting a type conversion.

One variant takes another as its argument. The value of the passed in node is copied, soset ModelNode

there is no shared state between the two model nodes:

bsh % node.set("A string");

bsh % ModelNode another = new ModelNode();

bsh % another.set(node);

bsh % print(another.asString());

A string

bsh % node.set("changed");

bsh % print(node.asString());

changed

bsh % print(another.asString());

A string

A can be cloned. Again, there is no shared state between the original node and its clone:ModelNode

bsh % ModelNode clone = another.clone();

bsh % print(clone.asString());

A string

bsh % another.set(42);

bsh % print(another.asString());

42

bsh % print(clone.asString());

A string

Use the method to make a immutable:protect() ModelNode

Latest WildFly Documentation

JBoss Community Documentation Page of 457 2293

bsh % clone.protect();

bsh % clone.set("A different string");

// Error: // Uncaught Exception: Method Invocation clone.set : at Line: 15 : in file: <unknown

file> : clone .set ("A different string")

Target exception: java.lang.UnsupportedOperationException

java.lang.UnsupportedOperationException

 at org.jboss.dmr.ModelNode.checkProtect(ModelNode.java:1441)

 at org.jboss.dmr.ModelNode.set(ModelNode.java:351)

Lists
The above examples aren't particularly interesting; if all we can do with a is wrap a simple JavaModelNode

primitive, what use is that? However, a 's value can be more complex than a simple primitive,ModelNode

and using these more complex types we can build complex data structures. The first more complex type is

.ModelType.LIST

Use the methods to initialize a node's value as a list and add to the list:add

bsh % ModelNode list = new ModelNode();

bsh % list.add(5);

bsh % list.add(10);

bsh % print(list.getType());

LIST

Use to find the size of the list:asInt()

bsh % print(list.asInt());

2

Use the overloaded method variant that takes an int param to retrieve an item. The item is returned as aget

:ModelNode

bsh % ModelNode child = list.get(1);

bsh % print(child.asInt());

10

Elements in a list need not all be of the same type:

bsh % list.add("A string");

bsh % print(list.get(1).getType());

INT

bsh % print(list.get(2).getType());

STRING

Latest WildFly Documentation

JBoss Community Documentation Page of 458 2293

 Here's one of the trickiest things about jboss-dmr: The get methods actually mutate state; they are not

. For example, calling with an index that does not exist yet in the list will actually create a"read-only" get

child of type at that index (and will create UNDEFINED children for anyModelType.UNDEFINED

intervening indices.)

bsh % ModelNode four = list.get(4);

bsh % print(four.getType());

UNDEFINED

bsh % print(list.asInt());

6

Since the call always returns a and never it is safe to manipulate the return value:get ModelNode null

bsh % list.get(5).set(30);

bsh % print(list.get(5).asInt());

30

That's not so interesting in the above example, but later on with node of type we'll seeModelType.OBJECT

how that kind of method chaining can let you build up fairly complex data structures with a minimum of code.

Use the method to get a of the children:asList() List<ModelNode>

bsh % for (ModelNode element : list.asList()) {

print(element.getType());

}

INT

INT

STRING

UNDEFINED

UNDEFINED

INT

The and methods provide slightly differently formatted text representations of a asString() toString()

 node:ModelType.LIST

bsh % print(list.asString());

[5,10,"A string",undefined,undefined,30]

bsh % print(list.toString());

[

 5,

 10,

 "A string",

 undefined,

 undefined,

 30

]

Latest WildFly Documentation

JBoss Community Documentation Page of 459 2293

Finally, if you've previously used to assign a node's value to some non-list type, you cannot use the set add

method:

bsh % node.add(5);

// Error: // Uncaught Exception: Method Invocation node.add : at Line: 18 : in file: <unknown

file> : node .add (5)

Target exception: java.lang.IllegalArgumentException

java.lang.IllegalArgumentException

 at org.jboss.dmr.ModelValue.addChild(ModelValue.java:120)

 at org.jboss.dmr.ModelNode.add(ModelNode.java:1007)

 at org.jboss.dmr.ModelNode.add(ModelNode.java:761)

 ...

You can, however, use the method to change the node's type, and then use :setEmptyList() add

bsh % node.setEmptyList();

bsh % node.add(5);

bsh % print(node.toString());

[5]

Properties
The third public class in the jboss-dmr library is . A is a org.jboss.dmr.Property Property String =>

 tuple.ModelNode

bsh % Property prop = new Property("stuff", list);

bsh % print(prop.toString());

org.jboss.dmr.Property@79a5f739

bsh % print(prop.getName());

stuff

bsh % print(prop.getValue());

[

 5,

 10,

 "A string",

 undefined,

 undefined,

 30

]

The property can be passed to :ModelNode.set

bsh % node.set(prop);

bsh % print(node.getType());

PROPERTY

The text format for a node of is:ModelType.PROPERTY

Latest WildFly Documentation

JBoss Community Documentation Page of 460 2293

bsh % print(node.toString());

("stuff" => [

 5,

 10,

 "A string",

 undefined,

 undefined,

 30

])

Directly instantiating a via its constructor is not common. More typically one of the two argument Property

 or variants is used. The first argument is the property name:ModelNode.add ModelNode.set

bsh % ModelNode simpleProp = new ModelNode();

bsh % simpleProp.set("enabled", true);

bsh % print(simpleProp.toString());

("enabled" => true)

bsh % print(simpleProp.getType());

PROPERTY

bsh % ModelNode propList = new ModelNode();

bsh % propList.add("min", 1);

bsh % propList.add("max", 10);

bsh % print(propList.toString());

[

 ("min" => 1),

 ("max" => 10)

]

bsh % print(propList.getType());

LIST

bsh % print(propList.get(0).getType());

PROPERTY

The method provides easy access to a :asPropertyList() List<Property>

bsh % for (Property prop : propList.asPropertyList()) {

print(prop.getName() + " = " + prop.getValue());

}

min = 1

max = 10

ModelType.OBJECT
The most powerful and most commonly used complex value type in jboss-dmr is . A ModelType.OBJECT

 whose value is internally maintains a .ModelNode ModelType.OBJECT Map<String, ModelNode

Use the method variant that takes a string argument to add an entry to the map. If no entry exists underget

the given name, a new entry is added with a the value being a node. The node isModelType.UNDEFINED

returned:

Latest WildFly Documentation

JBoss Community Documentation Page of 461 2293

bsh % ModelNode range = new ModelNode();

bsh % ModelNode min = range.get("min");

bsh % print(range.toString());

{"min" => undefined}

bsh % min.set(2);

bsh % print(range.toString());

{"min" => 2}

Again it is important to remember that the get operation may mutate the state of a model node by

 adding a new entry. It is not a read-only operation.

Since will never return , a common pattern is to use method chaining to create the key/value pair:get null

bsh % range.get("max").set(10);

bsh % print(range.toString());

{

 "min" => 2,

 "max" => 10

}

A call to passing an already existing key will of course return the same model node as was returned theget

first time was called with that key:get

bsh % print(min == range.get("min"));

true

Multiple parameters can be passed to . This is a simple way to traverse a tree made up of get

 nodes. Again, may mutate the node on which it is invoked; e.g. it will actuallyModelType.OBJECT get

create the tree if nodes do not exist. This next example uses a workaround to get beanshell to handle the

overloaded method that takes a variable number of arguments:get

bsh % String[] varargs = { "US", "Missouri", "St. Louis" };

bsh % salesTerritories.get(varargs).set("Brian");

bsh % print(salesTerritories.toString());

{"US" => {"Missouri" => {"St. Louis" => "Brian"}}}

The normal syntax would be:

salesTerritories.get("US", "Missouri", "St. Louis").set("Brian");

The key/value pairs in the map can be accessed as a :List<Property

Latest WildFly Documentation

JBoss Community Documentation Page of 462 2293

bsh % for (Property prop : range.asPropertyList()) {

print(prop.getName() + " = " + prop.getValue());

}

min = 2

The semantics of the backing map in a node of are those of a . TheModelType.OBJECT LinkedHashMap

map remembers the order in which key/value pairs are added. This is relevant when iterating over the pairs

after calling and for controlling the order in which key/value pairs appear in the outputasPropertyList()

from .toString()

Since the method will actually mutate the state of a node if the given key does not exist, get ModelNode

provides a couple methods to let you check whether the entry is there. The method simply does that:has

bsh % print(range.has("unit"));

false

bsh % print(range.has("min"));

true

Very often, the need is to not only know whether the key/value pair exists, but whether the value is defined

(i.e. not . This kind of check is analogous to checking whether a field in a JavaModelType.UNDEFINED

class has a null value. The lets you do this:hasDefined

bsh % print(range.hasDefined("unit"));

false

bsh % // Establish an undefined child 'unit';

bsh % range.get("unit");

bsh % print(range.toString());

{

 "min" => 2,

 "max" => 10,

 "unit" => undefined

}

bsh % print(range.hasDefined("unit"));

false

bsh % range.get("unit").set("meters");

bsh % print(range.hasDefined("unit"));

true

ModelType.EXPRESSION
A value of type is stored as a string, but can later be to different value.ModelType.EXPRESSION resolved

The string has a special syntax that should be familiar to those who have used the system property

substitution feature in previous JBoss AS releases.

[<prefix>][${<system-property-name>[:<default-value>]}][<suffix>]*

For example:

Latest WildFly Documentation

JBoss Community Documentation Page of 463 2293

${queue.length}

http://${host}

http://${host:localhost}:${port:8080}/index.html

Use the method to set a node's value to type expression:setExpression

bsh % ModelNode expression = new ModelNode();

bsh % expression.setExpression("${queue.length}");

bsh % print(expression.getType());

EXPRESSION

Calling returns the same string that was input:asString()

bsh % print(expression.asString());

${queue.length}

However, calling tells you that this node's value is not of :toString() ModelType.STRING

bsh % print(expression.toString());

expression "${queue.length}"

When the operation is called, the string is parsed and any embedded system properties areresolve

resolved against the JVM's current system property values. A new is returned whose value isModelNode

the resolved string:

bsh % System.setProperty("queue.length", "10");

bsh % ModelNode resolved = expression.resolve();

bsh % print(resolved.asInt());

10

Note that the type of the returned by is :ModelNode resolve() ModelType.STRING

bsh % print(resolved.getType());

STRING

The call in the previous example only worked because the string "10" happens to beresolved.asInt()

convertible into the int 10.

Calling has no effect on the value of the node on which the method is invoked:resolve()

Latest WildFly Documentation

JBoss Community Documentation Page of 464 2293

bsh % resolved = expression.resolve();

bsh % print(resolved.toString());

"10"

bsh % print(expression.toString());

expression "${queue.length}"

If an expression cannot be resolved, just uses the original string. The string can include more thanresolve

one system property substitution:

bsh % expression.setExpression("http://${host}:${port}/index.html");

bsh % resolved = expression.resolve();

bsh % print(resolved.asString());

http://${host}:${port}/index.html

The expression can optionally include a default value, separated from the name of the system property by a

colon:

bsh % expression.setExpression("http://${host:localhost}:${port:8080}/index.html");

bsh % resolved = expression.resolve();

bsh % print(resolved.asString());

http://localhost:8080/index.html

Actually including a system property substitution in the expression is not required:

bsh % expression.setExpression("no system property");

bsh % resolved = expression.resolve();

bsh % print(resolved.asString());

no system property

bsh % print(expression.toString());

expression "no system property"

The method works on nodes of other types as well; it returns a copy without attempting any realresolve

resolution:

bsh % ModelNode basic = new ModelNode();

bsh % basic.set(10);

bsh % resolved = basic.resolve();

bsh % print(resolved.getType());

INT

bsh % resolved.set(5);

bsh % print(resolved.asInt());

5

bsh % print(basic.asInt());

10

Latest WildFly Documentation

JBoss Community Documentation Page of 465 2293

ModelType.TYPE
You can also pass one of the values of the enum to :ModelType set

bsh % ModelNode type = new ModelNode();

bsh % type.set(ModelType.LIST);

bsh % print(type.getType());

TYPE

bsh % print(type.toString());

LIST

This is useful when using a data structure to describe another data structure.ModelNode ModelNode

Full list of ModelNode types
BIG_DECIMAL

BIG_INTEGER

BOOLEAN

BYTES

DOUBLE

EXPRESSION

INT

LIST

LONG

OBJECT

PROPERTY

STRING

TYPE

UNDEFINED

Text representation of a ModelNode
TODO – document the grammar

JSON representation of a ModelNode
TODO – document the grammar

5.17.7 Global operations

The WildFly management API includes a number of operations that apply to every resource.

Latest WildFly Documentation

JBoss Community Documentation Page of 466 2293

The read-resource operation
Reads a management resource's attribute values along with either basic or complete information about any

child resources. Supports the

following parameters, none of which are required:

 – (boolean, default is) – whether to include complete information about childrecursive false

resources, recursively.

 – (int) – The depth to which information about child resources should be includedrecursive-depth

if is . If not set, the depth will be unlimited; i.e. all descendant resources will berecursive true

included.

 – (boolean, default is) – whether to include remote resources in a recursive queryproxies false

(i.e. host level resources from slave Host Controllers in a query of the Domain Controller; running

server resources in a query of a host).

 – (boolean, default is) – whether to include runtime attributes (i.e. thoseinclude-runtime false

whose value does not come from the persistent configuration) in the response.

 – (boolean, default is) – whether to include in the result default values notinclude-defaults true

set by users. Many attributes have a default value that will be used in the runtime if the users have not

provided an explicit value. If this parameter is the value for such attributes in the result will be false

. If the result will include the default value for such parameters.undefined true

The read-attribute operation
Reads the value of an individual attribute. Takes a single, required, parameter:

 – (string) – the name of the attribute to read.name

 – (boolean, default is) – whether to include in the result default values notinclude-defaults true

set by users. Many attributes have a default value that will be used in the runtime if the users have not

provided an explicit value. If this parameter is the value for such attributes in the result will be false

. If the result will include the default value for such parameters.undefined true

The write-attribute operation
Writes the value of an individual attribute. Takes two required parameters:

 – (string) – the name of the attribute to write.name

 – (type depends on the attribute being written) – the new value.value

The undefine-attribute operation
Sets the value of an individual attribute to the value, if such a value is allowed for the attribute.undefined

The operation will fail if the value is not allowed. Takes a single required parameter:undefined

 – (string) – the name of the attribute to write.name

Latest WildFly Documentation

JBoss Community Documentation Page of 467 2293

The list-add operation
Adds an element to the value of a list attribute, adding the element to the end of the list unless the optional

attribute is passed:index

 – (string) – the name of the list attribute to add new value to.name

 – (type depends on the element being written) – the new element to be added to the attributevalue

value.

 – (int, optional) – index where in the list to add the new element. By default it is index undefined

meaning add at the end. Index is zero based.

This operation will fail if the specified attribute is not a list.

The list-remove operation
Removes an element from the value of a list attribute, either the element at a specified , or the firstindex

element whose value matches a specified :value

 – (string) – the name of the list attribute to add new value to.name

 – (type depends on the element being written, optional) – the element to be removed. Optionalvalue

and ignored if is specified.index

 – (int, optional) – index in the list whose element should be removed. By default it is index

, meaning should be specified.undefined value

This operation will fail if the specified attribute is not a list.

The list-get operation
Gets one element from a list attribute by its index

 – (string) – the name of the list attributename

 – (int, required) – index of element to get from listindex

This operation will fail if the specified attribute is not a list.

The list-clear operation
Empties the list attribute. It is different from as it results in attribute of type list with:undefine-attribute

0 elements, whereas results in an value for the attribute:undefine-attribute undefined

 – (string) – the name of the list attributename

This operation will fail if the specified attribute is not a list.

Latest WildFly Documentation

JBoss Community Documentation Page of 468 2293

The map-put operation
Adds an key/value pair entry to the value of a map attribute:

 – (string) – the name of the map attribute to add the new entry to.name

 – (string) – the key of the new entry to be added.key

 – (type depends on the entry being written) – the value of the new entry to be added to thevalue

attribute value.

This operation will fail if the specified attribute is not a map.

The map-remove operation
Removes an entry from the value of a map attribute:

 – (string) – the name of the map attribute to remove the new entry from.name

 – (string) – the key of the entry to be removed.key

This operation will fail if the specified attribute is not a map.

The map-get operation
Gets the value of one entry from a map attribute

 – (string) – the name of the map attributename

 – (string) – the key of the entry.key

This operation will fail if the specified attribute is not a map.

The map-clear operation
Empties the map attribute. It is different from as it results in attribute of type map:undefine-attribute

with 0 entries, whereas results in an value for the attribute:undefine-attribute undefined

 – (string) – the name of the map attributename

This operation will fail if the specified attribute is not a map.

Latest WildFly Documentation

JBoss Community Documentation Page of 469 2293

The read-resource-description operation
Returns the description of a resource's attributes, types of children and, optionally, operations. Supports the

following parameters, none of which are required:

 – (boolean, default is) – whether to include information about child resources,recursive false

recursively.

 – (boolean, default is) – whether to include remote resources in a recursive queryproxies false

(i.e. host level resources from slave Host Controllers in a query of the Domain Controller; running

server resources in a query of a host)

 – (boolean, default is) – whether to include descriptions of the resource'soperations false

operations

 – (boolean, default is) – if is , whether to include descriptions ofinherited true operations true

operations inherited from higher level resources. The global operations described in this section are

themselves inherited from the root resource, so the primary effect of setting to isinherited false

to exclude the descriptions of the global operations from the output.

See for details on the result of this operation.Description of the Management Model

The read-operation-names operation
Returns a list of the names of all the operations the resource supports. Takes no parameters.

The read-operation-description operation
Returns the description of an operation, along with details of its parameter types and its return value. Takes

a single, required, parameter:

 – (string) – the name of the operationname

See for details on the result of this operation.Description of the Management Model

The read-children-types operation
Returns a list of the the resource supports. Takes two optional parameters:types of child resources

 – (boolean, default is) – whether to include alias children (i.e. those whichinclude-aliases false

are aliases of other sub-resources) in the response.

 – (boolean, default is) – whether to include singleton children (i.e.include-singletons false

those are children that acts as resource aggregate and are registered with a wildcard name) in the

response .wildfly-dev discussion around this topic

The read-children-names operation
Returns a list of the names of all child resources of a given . Takes a single, required, parameter:type

 – (string) – the name of the typechild-type

http://lists.jboss.org/pipermail/wildfly-dev/2014-August/002701.html

Latest WildFly Documentation

JBoss Community Documentation Page of 470 2293

The read-children-resources operation
Returns information about all of a resource's children that are of a given . For each child resource, thetype

returned information is equivalent to executing the operation on that resource. Takes theread-resource

following parameters, of which only {{child-type} is required:

 – (string) – the name of the type of child resourcechild-type

 – (boolean, default is) – whether to include complete information about childrecursive false

resources, recursively.

 – (int) – The depth to which information about child resources should be includedrecursive-depth

if is {{true}. If not set, the depth will be unlimited; i.e. all descendant resources will berecursive

included.

 – (boolean, default is) – whether to include remote resources in a recursive queryproxies false

(i.e. host level resources from slave Host Controllers in a query of the Domain Controller; running

server resources in a query of a host)

 – (boolean, default is) – whether to include runtime attributes (i.e. thoseinclude-runtime false

whose value does not come from the persistent configuration) in the response.

 – (boolean, default is) – whether to include in the result default values notinclude-defaults true

set by users. Many attributes have a default value that will be used in the runtime if the users have not

provided an explicit value. If this parameter is the value for such attributes in the result will be false

. If the result will include the default value for such parameters.undefined true

The read-attribute-group operation
Returns a list of attributes of a for a given attribute group name. For each attribute the returnedtype

information is equivalent to executing the operation of that resource. Takes the followingread-attribute

parameters, of which only {{name} is required:

 – (string) – the name of the attribute group to read.name

 – (boolean, default is) – whether to include in the result default values notinclude-defaults true

set by users. Many attributes have a default value that will be used in the runtime if the users have not

provided an explicit value. If this parameter is the value for such attributes in the result will be false

. If the result will include the default value for such parameters.undefined true

 – (boolean, default is) – whether to include runtime attributes (i.e. thoseinclude-runtime false

whose value does not come from the persistent configuration) in the response.

 – (boolean, default is) – whether to include alias attributes (i.e. thoseinclude-aliases false

which are alias of other attributes) in the response.

The read-attribute-group-names operation
Returns a list of attribute groups names for a given . Takes no parameters.type

Latest WildFly Documentation

JBoss Community Documentation Page of 471 2293

Standard Operations
Besides the global operations described above, by convention nearly every resource should expose an add

operation and a operation. Exceptions to this convention are the root resource, and resources thatremove

do not store persistent configuration and are created dynamically at runtime (e.g. resources representing the

JVM's platform mbeans or resources representing aspects of the running state of a deployment.)

The add operation
The operation that creates a new resource must be named . The operation may take zero or moreadd

parameters; what those parameters are depends on the resource being created.

The remove operation
The operation that removes an existing resource must be named . The operation should take noremove

parameters.

5.17.8 The HTTP management API

Introduction
The Management API in WildFly is accessible through multiple channels, one of them being HTTP and

JSON.

Even if you haven't used a curl command line you might already have used this channel since it is how the

web console interact with the Management API.

WildFly 9 is distributed secured by default, the default security mechanism is basedusername / password

making use of for the authentication process.HTTP Digest

Thus with the script.you need to create a user add-user.sh

Latest WildFly Documentation

JBoss Community Documentation Page of 472 2293

Interacting with the model
Since we must be authenticated , the client will have to support HTTP Digest authentication.

For example this can be activated in using the option.curl --digest

The WildFly HTTP Management API adheres to the REST principles so the GET operations must be

idempotent.

This means that using a request with method can be used to read the model but GET you won't be able to

.change it

You must use to change the model or read it. A request may contain the operation either inPOST POST

DMR or in JSON format as its body.

You have to define the header in the request to specify that you are usingContent-Type=application/json

some JSON.

If you want to submit DMR in the request body then the or the header should be Content-Type Accept

."application/dmr-encoded"

GET for Reading
While you can do everything with , some operations can be called through a 'classical' request.POST GET

These are the supported operations for a GET :

attribute : for a read-attribute operation

resource : for a read-resource operation

resource-description : for a read-resource-description operation

snapshots : for the list-snapshots operation

operation-description : for a read-operation-description operation

operation-names : for ad read-operation-names operation

The URL format is the following one : http://server:9990/management/

<path_to_resource>?operation=<operation_name>&operation_parameter=<value>...

 is the path to the wanted resource replacing all '=' with '/' : thus for examplepath_to_resource

subsystem=undertow/server=default-server becomes subsystem/undertow/server/default-server.

So to read the server-state :

http://localhost:9990/management?operation=attribute&name=server-state&json.pretty=1

http://server:9990/management/

Latest WildFly Documentation

JBoss Community Documentation Page of 473 2293

Let's read some resource

This is simple operation that is equivalent of running :read-attribute(name=server-state) with CLI in

root directory

Using GET

http://localhost:9990/management?operation=attribute&name=server-state&json.pretty=1

Using POST

$ curl --digest -L -D - http://localhost:9990/management --header "Content-Type:

application/json" -d

'{"operation":"read-attribute","name":"server-state","json.pretty":1}' -u admin

Enter host password for user 'admin':

HTTP/1.1 401 Unauthorized

Connection: keep-alive

WWW-Authenticate: Digest

realm="ManagementRealm",domain="/management",nonce="P80WU3BANtQNMTQwNjg5Mzc5MDQ2MlpjmRaZ+Vlp1OVeNEGBeXg=",opaque="00000000000000000000000000000000",algorithm=MD5
Content-Length:

77

Content-Type: text/html

Date: Fri, 01 Aug 2014 11:49:50 GMT

HTTP/1.1 200 OK

Connection: keep-alive

Authentication-Info:

nextnonce="M+h9aADejeINMTQwNjg5Mzc5MDQ2OPQbHKdAS8pRE8BbGEDY5uI="

Content-Type: application/json; charset=utf-8

Content-Length: 55

Date: Fri, 01 Aug 2014 11:49:50 GMT

{

 "outcome" : "success",

 "result" : "running"

}

Here's an example of an operation on a resource with a nested address and passed parameters. This

is same as if you would run /host=master/server=server-01:read-attribute(name=server-state)

$ curl --digest -L -D - http://localhost:9990/management --header "Content-Type:

application/json" -d

'{"operation":"read-attribute","address":[{"host":"master"},{"server":"server-01"}],"name":"server-state","json.pretty":1}'
HTTP/1.1

200 OK

Transfer-encoding: chunked

Content-type: application/json

Date: Tue, 17 Apr 2012 04:02:24 GMT

{

 "outcome" : "success",

 "result" : "running"

}

Latest WildFly Documentation

JBoss Community Documentation Page of 474 2293

Following example will get us information from http connection in undertow subsystem including

run-time attributes

This is the same as running

/subsystem=undertow/server=default-server:read-resource(include-runtime=true,recursive=true) in

CLI

Using GET

http://localhost:9990/management/subsystem/undertow/server/default-server?operation=resource&recursive=true&json.pretty=1

{

"default-host" : "default-host",

 "servlet-container" : "default",

 "ajp-listener" : null,

 "host" : {"default-host" : {

 "alias" : ["localhost"],

 "default-web-module" : "ROOT.war",

 "filter-ref" : {

 "server-header" : {"predicate" : null},

 "x-powered-by-header" : {"predicate" : null}

 },

 "location" : {"/" : {

 "handler" : "welcome-content",

 "filter-ref" : null

 }},

 "setting" : null

 }},

 "http-listener" : {"default" : {

 "allow-encoded-slash" : false,

 "allow-equals-in-cookie-value" : false,

 "always-set-keep-alive" : true,

 "buffer-pipelined-data" : true,

 "buffer-pool" : "default",

 "certificate-forwarding" : false,

 "decode-url" : true,

 "enabled" : true,

 "max-buffered-request-size" : 16384,

 "max-cookies" : 200,

 "max-header-size" : 51200,

 "max-headers" : 200,

 "max-parameters" : 1000,

 "max-post-size" : 10485760,

 "proxy-address-forwarding" : false,

 "read-timeout" : null,

 "receive-buffer" : null,

 "record-request-start-time" : false,

 "redirect-socket" : "https",

 "send-buffer" : null,

 "socket-binding" : "http",

 "tcp-backlog" : null,

 "tcp-keep-alive" : null,

 "url-charset" : "UTF-8",

 "worker" : "default",

 "write-timeout" : null

 }},

 "https-listener" : null

}

Latest WildFly Documentation

JBoss Community Documentation Page of 475 2293

Using POST

$ curl --digest -D - http://localhost:9990/management --header "Content-Type:

application/json" -d '{"operation":"read-resource", "include-runtime":"true" ,

"recursive":"true", "address":["subsystem","undertow","server","default-server"],

"json.pretty":1}' -u admin:admin

HTTP/1.1 401 Unauthorized

Connection: keep-alive

WWW-Authenticate: Digest

realm="ManagementRealm",domain="/management",nonce="a3paQ9E0/l8NMTQwNjg5OTU0NDk4OKjmim2lopZNc5zCevjYWpk=",opaque="00000000000000000000000000000000",algorithm=MD5
Content-Length:

77

Content-Type: text/html

Date: Fri, 01 Aug 2014 13:25:44 GMT

HTTP/1.1 200 OK

Connection: keep-alive

Authentication-Info:

nextnonce="nTOSJd3ufO4NMTQwNjg5OTU0NDk5MeUsRw5rKXUT4Qvk1nbrG5c="

Content-Type: application/json; charset=utf-8

Content-Length: 1729

Date: Fri, 01 Aug 2014 13:25:45 GMT

{

 "outcome" : "success",

 "result" : {

 "default-host" : "default-host",

 "servlet-container" : "default",

 "ajp-listener" : null,

 "host" : {"default-host" : {

 "alias" : ["localhost"],

 "default-web-module" : "ROOT.war",

 "filter-ref" : {

 "server-header" : {"predicate" : null},

 "x-powered-by-header" : {"predicate" : null}

 },

 "location" : {"/" : {

 "handler" : "welcome-content",

 "filter-ref" : null

 }},

 "setting" : null

 }},

 "http-listener" : {"default" : {

 "allow-encoded-slash" : false,

 "allow-equals-in-cookie-value" : false,

 "always-set-keep-alive" : true,

 "buffer-pipelined-data" : true,

 "buffer-pool" : "default",

 "certificate-forwarding" : false,

 "decode-url" : true,

 "enabled" : true,

 "max-buffered-request-size" : 16384,

 "max-cookies" : 200,

 "max-header-size" : 51200,

 "max-headers" : 200,

 "max-parameters" : 1000,

 "max-post-size" : 10485760,

Latest WildFly Documentation

JBoss Community Documentation Page of 476 2293

 "proxy-address-forwarding" : false,

 "read-timeout" : null,

 "receive-buffer" : null,

 "record-request-start-time" : false,

 "redirect-socket" : "https",

 "send-buffer" : null,

 "socket-binding" : "http",

 "tcp-backlog" : null,

 "tcp-keep-alive" : null,

 "url-charset" : "UTF-8",

 "worker" : "default",

 "write-timeout" : null

 }},

 "https-listener" : null

 }

}

You may also used some encoded DMR but the result won't be human readable

curl --digest -u admin:admin --header "Content-Type: application/dmr-encoded" -d

bwAAAAMACW9wZXJhdGlvbnMADXJlYWQtcmVzb3VyY2UAB2FkZHJlc3NsAAAAAAAHcmVjdXJzZVoB

http://localhost:9990/management

You can deploy applications on the server

First upload the file which will create a managed content. You will have to use

http://localhost:9990/management/*add-content*

curl --digest -u admin:admin --form file=@tiny-webapp.war

http://localhost:9990/management/add-content

{"outcome" : "success", "result" : { "BYTES_VALUE" : "+QJlHTDrogO9pm/57GkT/vxWNz0="

}}

Now let's deploy the application

curl --digest -u admin:admin -L --header "Content-Type: application/json" -d

'{"content":[{"hash": {"BYTES_VALUE" : "+QJlHTDrogO9pm/57GkT/vxWNz0="}}],

"address": [{"deployment":"tiny-webapp.war"}], "operation":"add",

"enabled":"true"}' http://localhost:9990/management

{"outcome" : "success"}

http://localhost:9990/management/*add-content*

Latest WildFly Documentation

JBoss Community Documentation Page of 477 2293

Using some JAX-RS code

HttpAuthenticationFeature feature = HttpAuthenticationFeature.digest("admin", "admin");

Client client = ClientBuilder.newClient();

client.register(feature);

Entity<SimpleOperation> operation = Entity.entity(

 new SimpleOperation("read-resource", true, "subsystem", "undertow", "server",

"default-server"),

 MediaType.APPLICATION_JSON_TYPE);

WebTarget managementResource = client.target("http://localhost:9990/management");

String response = managementResource.request(MediaType.APPLICATION_JSON_TYPE)

 .header("Content-type", MediaType.APPLICATION_JSON)

 .post(operation, String.class);

System.out.println(response);

{"outcome" : "success", "result" : {"default-host" : "default-host", "servlet-container" :

"default", "ajp-listener" : null, "host" : {"default-host" : {"alias" : ["localhost"],

"default-web-module" : "ROOT.war", "filter-ref" : {"server-header" : {"predicate" : null},

"x-powered-by-header" : {"predicate" : null}}, "location" : {"/" : {"handler" :

"welcome-content", "filter-ref" : null}}, "setting" : null}}, "http-listener" : {"default" :

{"allow-encoded-slash" : false, "allow-equals-in-cookie-value" : false, "always-set-keep-alive"

: true, "buffer-pipelined-data" : true, "buffer-pool" : "default", "certificate-forwarding" :

false, "decode-url" : true, "enabled" : true, "max-buffered-request-size" : 16384, "max-cookies"

: 200, "max-header-size" : 51200, "max-headers" : 200, "max-parameters" : 1000, "max-post-size"

: 10485760, "proxy-address-forwarding" : false, "read-timeout" : null, "receive-buffer" : null,

"record-request-start-time" : false, "redirect-socket" : "https", "send-buffer" : null,

"socket-binding" : "http", "tcp-backlog" : null, "tcp-keep-alive" : null, "url-charset" :

"UTF-8", "worker" : "default", "write-timeout" : null}}, "https-listener" : null}}

5.17.9 The native management API

A standalone WildFly process, or a managed domain Domain Controller or slave Host Controller process

can be configured to listen for remote management requests using its "native management interface":

<native-interface interface="management" port="9999" security-realm="ManagementRealm"/>

(See standalone/configuration/standalone.xml or domain/configuration/host.xml)

The CLI tool that comes with the application server uses this interface, and user can develop custom clients

that use it as well. In this section we'll cover the basics on how to develop such a client. We'll also cover

details on the format of low-level management operation requests and responses – information that should

prove useful for users of the CLI tool as well.

Latest WildFly Documentation

JBoss Community Documentation Page of 478 2293

Native Management Client Dependencies
The native management interface uses an open protocol based on the JBoss Remoting library. JBoss

Remoting is used to establish a communication channel from the client to the process being managed. Once

the communication channel is established the primary traffic over the channel is management requests

initiated by the client and asynchronous responses from the target process.

A custom Java-based client should have the maven artifact

 and its dependencies on the classpath. The otherorg.jboss.as:jboss-as-controller-client

dependencies are:

Maven Artifact Purpose

org.jboss.remoting:jboss-remoting Remote communication

org.jboss:jboss-dmr Detyped representation of the management model

org.jboss.as:jboss-as-protocol Wire protocol for remote WildFly management

org.jboss.sasl:jboss-sasl SASL authentication

org.jboss.xnio:xnio-api Non-blocking IO

org.jboss.xnio:xnio-nio Non-blocking IO

org.jboss.logging:jboss-logging Logging

org.jboss.threads:jboss-threads Thread management

org.jboss.marshalling:jboss-marshalling Marshalling and unmarshalling data to/from streams

The client API is entirely within the artifact; the otherorg.jboss.as:jboss-as-controller-client

dependencies are part of the internal implementation of

 and are not compile-time dependencies of any customorg.jboss.as:jboss-as-controller-client

client based on it.

The management protocol is an open protocol, so a completely custom client could be developed without

using these libraries (e.g. using Python or some other language.)

Working with a ModelControllerClient
The class is the main class a customorg.jboss.as.controller.client.ModelControllerClient

client would use to manage a WildFly server instance or a Domain Controller or slave Host Controller.

The custom client must have maven artifact and itsorg.jboss.as:jboss-as-controller-client

dependencies on the classpath.

Latest WildFly Documentation

JBoss Community Documentation Page of 479 2293

Creating the ModelControllerClient
To create a management client that can connect to your target process's native management socket, simply:

ModelControllerClient client =

ModelControllerClient.Factory.create(InetAddress.getByName("localhost"), 9999);

The address and port are what is configured in the target process'

 element.<management><management-interfaces><native-interface.../>

Typically, however, the native management interface will be secured, requiring clients to authenticate. On

the client side, the custom client will need to provide the user's authentication credentials, obtained in

whatever manner is appropriate for the client (e.g. from a dialog box in a GUI-based client.) Access to these

credentials is provided by passing in an implementation of the

 interface. For example:javax.security.auth.callback.CallbackHandler

static ModelControllerClient createClient(final InetAddress host, final int port,

 final String username, final char[] password, final String securityRealmName)

{

 final CallbackHandler callbackHandler = new CallbackHandler() {

 public void handle(Callback[] callbacks) throws IOException,

UnsupportedCallbackException {

 for (Callback current : callbacks) {

 if (current instanceof NameCallback) {

 NameCallback ncb = (NameCallback) current;

 ncb.setName(username);

 } else if (current instanceof PasswordCallback) {

 PasswordCallback pcb = (PasswordCallback) current;

 pcb.setPassword(password.toCharArray());

 } else if (current instanceof RealmCallback) {

 RealmCallback rcb = (RealmCallback) current;

 rcb.setText(rcb.getDefaultText());

 } else {

 throw new UnsupportedCallbackException(current);

 }

 }

 }

 };

 return ModelControllerClient.Factory.create(host, port, callbackHandler);

}

Latest WildFly Documentation

JBoss Community Documentation Page of 480 2293

Creating an operation request object
Management requests are formulated using the class from the org.jboss.dmr.ModelNode jboss-dmr

library. The library allows the complete WildFly management model to be expressed using ajboss-dmr

very small number of Java types. See for full details onDetyped management and the jboss-dmr library

using this library.

Let's show an example of creating an operation request object that can be used to read the resource

 for the web subsystem's HTTP connector:description

ModelNode op = new ModelNode();

op.get("operation").set("read-resource-description");

ModelNode address = op.get("address");

address.add("subsystem", "web");

address.add("connector", "http");

op.get("recursive").set(true);

op.get("operations").set(true);

What we've done here is created a ModelNode of type with the following fields:ModelType.OBJECT

 – the name of the operation to invoke. All operation requests include this field andoperation must

its value must be a String.

 – the address of the resource to invoke the operation against. This field's must be of address

 with each element in the list being a . If this field isModelType.LIST ModelType.PROPERTY

omitted the operation will target the root resource. The operation can be targeted at any address in

the management model; here we are targeting it at the resource for the web subsystem's http

connector.

In this case, the request includes two optional parameters:

 – true means you want the description of child resources under this resource. Default isrecursive

false

 – true means you want the description of operations exposed by the resource to beoperations

included. Default is false.

Different operations take different parameters, and some take no parameters at all.

See for full details on the structure of a ModelNode that willFormat of a Detyped Operation Request

represent an operation request.

The example above produces an operation request ModelNode equivalent to what the CLI produces

internally when it parses and executes the following low-level CLI command:

[localhost:9999 /]

/subsystem=web/connector=http:read-resource-description(recursive=true,operations=true)

Latest WildFly Documentation

JBoss Community Documentation Page of 481 2293

Execute the operation and manipulate the result:
The method sends the operation request ModelNode to the process being managed and returns aexecute

ModelNode the contains the process' response:

ModelNode returnVal = client.execute(op);

System.out.println(returnVal.get("result").toString());

See for general details on the structure of the "returnVal"Format of a Detyped Operation Response

ModelNode.

The operation shown above will block the calling thread until the response is received from theexecute

process being managed. also exposes and API allowing asynchronousModelControllerClient

invocation:

Future<ModelNode> future = client.executeAsync(op);

. . . // do other stuff

ModelNode returnVal = future.get();

System.out.println(returnVal.get("result").toString());

Close the ModelControllerClient
A can be reused for multiple requests. Creating a new ModelControllerClient

 for each request is an anti-pattern. However, when the ModelControllerClient

 is no longer needed, it should always be explicitly closed, allowing it to closeModelControllerClient

down any connections to the process it was managing and release other resources:

client.close();

Format of a Detyped Operation Request
The basic method a user of the WildFly 8 programmatic management API would use is very simple:

ModelNode execute(ModelNode operation) throws IOException;

where the return value is the detyped representation of the response, and is the detypedoperation

representation of the operation being invoked.

The purpose of this section is to document the structure of .operation

See for a discussion of the format of the response.Format of a Detyped Operation Response

Latest WildFly Documentation

JBoss Community Documentation Page of 482 2293

Simple Operations
A text representation of simple operation would look like this:

{

 "operation" => "write-attribute",

 "address" => [

 ("profile" => "production"),

 ("subsystem" => "threads"),

 ("bounded-queue-thread-pool" => "pool1")

],

 "name" => "count",

 "value" => 20

}

Java code to produce that output would be:

ModelNode op = new ModelNode();

op.get("operation").set("write-attribute");

ModelNode addr = op.get("address");

addr.add("profile", "production");

addr.add("subsystem", "threads");

addr.add("bounded-queue-thread-pool", "pool1");

op.get("name").set("count");

op.get("value").set(20);

System.out.println(op);

The order in which the outermost elements appear in the request is not relevant. The required elements are:

 – String – The name of the operation being invoked.operation

 – the address of the managed resource against which the request should be executed. Ifaddress

not set, the address is the root resource. The address is an ordered list of key-value pairs describing

where the resource resides in the overall management resource tree. Management resources are

organized in a tree, so the order in which elements in the address occur is important.

The other key/value pairs are parameter names and their values. The names and values should match what

is specified in the .operation's description

Parameters may have any name, except for the reserved words , and operation address

.operation-headers

Operation Headers
Besides the special operation and address values discussed above, operation requests can also include

special "header" values that help control how the operation executes. These headers are created under the

special reserved word :operation-headers

Latest WildFly Documentation

JBoss Community Documentation Page of 483 2293

ModelNode op = new ModelNode();

op.get("operation").set("write-attribute");

ModelNode addr = op.get("address");

addr.add("base", "domain");

addr.add("profile", "production");

addr.add("subsystem", "threads");

addr.add("bounded-queue-thread-pool", "pool1");

op.get("name").set("count");

op.get("value").set(20);

op.get("operation-headers", "rollback-on-runtime-failure").set(false);

System.out.println(op);

This produces:

{

 "operation" => "write-attribute",

 "address" => [

 ("profile" => "production"),

 ("subsystem" => "threads"),

 ("bounded-queue-thread-pool" => "pool1")

],

 "name" => "count",

 "value" => 20,

 "operation-headers" => {

 "rollback-on-runtime-failure => false

 }

}

The following operation headers are supported:

Latest WildFly Documentation

JBoss Community Documentation Page of 484 2293

 – boolean, optional, defaults to true. Whether an operation thatrollback-on-runtime-failure

successfully updates the persistent configuration model should be reverted if it fails to apply to the

runtime. Operations that affect the persistent configuration are applied in two stages – first to the

configuration model and then to the actual running services. If there is an error applying to the

configuration model the operation will be aborted with no configuration change and no change to

running services will be attempted. However, operations are allowed to change the configuration

model even if there is a failure to apply the change to the running services – if and only if this

 header is set to . So, this header only deals with whatrollback-on-runtime-failure false

happens if there is a problem applying an operation to the running state of a server (e.g. actually

increasing the size of a runtime thread pool.)

 – only relevant to requests made to a Domain Controller or Host Controller. See "rollout-plan

" for details.Operations with a Rollout Plan

 – boolean, optional, defaults to false. Whether an operationallow-resource-service-restart

that requires restarting some runtime services in order to take effect should do so. See discussion of

 in the resource-services "Applying Updates to Runtime Services" section of the Description of

 for further details.the Management Model section

 – String or list of strings. Name(s) of RBAC role(s) the permissions for which should be usedroles

when making access control decisions instead of those from the roles normally associated with the

user invoking the operation. Only respected if the user is normally associated with a role with all

permissions (i.e. SuperUser), meaning this can only be used to reduce permissions for a caller, not to

increase permissions.

 – int, optional, defaults to 300. Maximum time, in seconds, that the operationblocking-timeout

should block at various points waiting for completion. If this period is exceeded, the operation will roll

back. Does not represent an overall maximum execution time for an operation; rather it is meant to

serve as a sort of fail-safe measure to prevent problematic operations indefinitely tying up resources.

Latest WildFly Documentation

JBoss Community Documentation Page of 485 2293

Composite Operations
The root resource for a Domain or Host Controller or an individual server will expose an operation named "

". This operation executes a list of other operations as an atomic unit (although the atomicitycomposite

requirement can be . The structure of the request for the " " operation has the samerelaxed composite

fundamental structure as a simple operation (i.e. operation name, address, params as key value pairs).

{

 "operation" => "composite",

 "address" => [],

 "steps" => [

 {

 "operation" => "write-attribute",

 "address" => [

 ("profile" => "production"),

 ("subsystem" => "threads"),

 ("bounded-queue-thread-pool" => "pool1")

],

 "count" => "count",

 "value" => 20

 },

 {

 "operation" => "write-attribute",

 "address" => [

 ("profile" => "production"),

 ("subsystem" => "threads"),

 ("bounded-queue-thread-pool" => "pool2")

],

 "name" => "count",

 "value" => 10

 }

],

 "operation-headers" => {

 "rollback-on-runtime-failure => false

 }

}

The "composite" operation takes a single parameter:

 – a list, where each item in the list has the same structure as a simple operation request. Insteps

the example above each of the two steps is modifying the thread pool configuration for a different

pool. There need not be any particular relationship between the steps. Note that the

 and operation headers are not supported forrollback-on-runtime-failure rollout-plan

the individual steps in a composite operation.

The operation header discussed above has a particular meaning whenrollback-on-runtime-failure

applied to a composite operation, controlling whether steps that successfully execute should be reverted if

other steps fail at runtime. Note that if any steps modify the persistent configuration, and any of those steps

fail, all steps will be reverted. Partial/incomplete changes to the persistent configuration are not allowed.

Latest WildFly Documentation

JBoss Community Documentation Page of 486 2293

Operations with a Rollout Plan
Operations targeted at domain or host level resources can potentially impact multiple servers. Such

operations can include a "rollout plan" detailing the sequence in which the operation should be applied to

servers as well as policies for detailing whether the operation should be reverted if it fails to execute

successfully on some servers.

If the operation includes a rollout plan, the structure is as follows:

{

 "operation" => "write-attribute",

 "address" => [

 ("profile" => "production"),

 ("subsystem" => "threads"),

 ("bounded-queue-thread-pool" => "pool1")

],

 "name" => "count",

 "value" => 20,

 "operation-headers" => {

 "rollout-plan" => {

 "in-series" => [

 {

 "concurrent-groups" => {

 "groupA" => {

 "rolling-to-servers" => true,

 "max-failure-percentage" => 20

 },

 "groupB" => undefined

 }

 },

 {

 "server-group" => {

 "groupC" => {

 "rolling-to-servers" => false,

 "max-failed-servers" => 1

 }

 }

 },

 {

 "concurrent-groups" => {

 "groupD" => {

 "rolling-to-servers" => true,

 "max-failure-percentage" => 20

 },

 "groupE" => undefined

 }

 }

],

 "rollback-across-groups" => true

 }

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 487 2293

As you can see, the rollout plan is another structure in the operation-headers section. The root node of the

structure allows two children:

 – a list – A list of activities that are to be performed in series, with each activity reachingin-series

completion before the next step is executed. Each activity involves the application of the operation to

the servers in one or more server groups. See below for details on each element in the list.

 – boolean – indicates whether the need to rollback the operation on allrollback-across-groups

the servers in one server group should trigger a rollback across all the server groups. This is an

optional setting, and defaults to .false

Each element in the list under the node must have one or the other of the following structures:in-series

 – a map of server group names to policies controlling how the operationconcurrent-groups

should be applied to that server group. For each server group in the map, the operation may be

applied concurrently. See below for details on the per-server-group policy configuration.

 – a single key/value mapping of a server group name to a policy controlling how theserver-group

operation should be applied to that server group. See below for details on the policy configuration.

(Note: there is no difference in plan execution between this and a " " map with aconcurrent-groups

single entry.)

The policy controlling how the operation is applied to the servers within a server group has the following

elements, each of which is optional:

 – boolean – If true, the operation will be applied to each server in the grouprolling-to-servers

in series. If false or not specified, the operation will be applied to the servers in the group

concurrently.

 – int – Maximum number of servers in the group that can fail to apply themax-failed-servers

operation before it should be reverted on all servers in the group. The default value if not specified is

zero; i.e. failure on any server triggers rollback across the group.

 – int between 0 and 100 – Maximum percentage of the total number ofmax-failure-percentage

servers in the group that can fail to apply the operation before it should be reverted on all servers in

the group. The default value if not specified is zero; i.e. failure on any server triggers rollback across

the group.

If both and are set, max-failed-servers max-failure-percentage max-failure-percentage

takes precedence.

Looking at the (contrived) example above, application of the operation to the servers in the domain would be

done in 3 phases. If the policy for any server group triggers a rollback of the operation across the server

group, all other server groups will be rolled back as well. The 3 phases are:

Latest WildFly Documentation

JBoss Community Documentation Page of 488 2293

1.

2.

3.

Server groups groupA and groupB will have the operation applied concurrently. The operation will be

applied to the servers in groupA in series, while all servers in groupB will handle the operation

concurrently. If more than 20% of the servers in groupA fail to apply the operation, it will be rolled

back across that group. If any servers in groupB fail to apply the operation it will be rolled back across

that group.

Once all servers in groupA and groupB are complete, the operation will be applied to the servers in

groupC. Those servers will handle the operation concurrently. If more than one server in groupC fails

to apply the operation it will be rolled back across that group.

Once all servers in groupC are complete, server groups groupD and groupE will have the operation

applied concurrently. The operation will be applied to the servers in groupD in series, while all servers

in groupE will handle the operation concurrently. If more than 20% of the servers in groupD fail to

apply the operation, it will be rolled back across that group. If any servers in groupE fail to apply the

operation it will be rolled back across that group.

Default Rollout Plan
All operations that impact multiple servers will be executed with a rollout plan. However, actually specifying

the rollout plan in the operation request is not required. If no operation header is specified,rollout-plan

a default plan will be generated. The plan will have the following characteristics:

There will only be a single high level phase. All server groups affected by the operation will have the

operation applied concurrently.

Within each server group, the operation will be applied to all servers concurrently.

Failure on any server in a server group will cause rollback across the group.

Failure of any server group will result in rollback of all other server groups.

Latest WildFly Documentation

JBoss Community Documentation Page of 489 2293

Creating and reusing a Rollout Plan
Since a rollout plan may be quite complex, having to pass it as a header every time can become quickly

painful. So instead we can store it in the model and then reference it when we want to use it.

To create a rollout plan you can use the operation like this :rollout-plan add

rollout-plan add --name=simple --content={"rollout-plan" => {"in-series" => [{"server-group" =>

{"main-server-group" => {"rolling-to-servers" => false,"max-failed-servers" => 1}}},

{"server-group" => {"other-server-group" => {"rolling-to-servers" =>

true,"max-failure-percentage" => 20}}}],"rollback-across-groups" => true}}

This will create a rollout plan called in the content repository.simple

[domain@192.168.1.20:9999 /]

/management-client-content=rollout-plans/rollout-plan=simple:read-resource

{

 "outcome" => "success",

 "result" => {

 "content" => {"rollout-plan" => {

 "in-series" => [

 {"server-group" => {"main-server-group" => {

 "rolling-to-servers" => false,

 "max-failed-servers" => 1

 }}},

 {"server-group" => {"other-server-group" => {

 "rolling-to-servers" => true,

 "max-failure-percentage" => 20

 }}}

],

 "rollback-across-groups" => true

 }},

 "hash" => bytes {

 0x13, 0x12, 0x76, 0x65, 0x8a, 0x28, 0xb8, 0xbc,

 0x34, 0x3c, 0xe9, 0xe6, 0x9f, 0x24, 0x05, 0xd2,

 0x30, 0xff, 0xa4, 0x34

 }

 }

}

Now you may reference the roolout plan in your command by adding a header just like this :

deploy /quickstart/ejb-in-war/target/wildfly-ejb-in-war.war --all-server-groups

--headers={rollout name=simple}

Format of a Detyped Operation Response
As noted previously, the basic method a user of the WildFly 8 programmatic management API would use is

very simple:

Latest WildFly Documentation

JBoss Community Documentation Page of 490 2293

ModelNode execute(ModelNode operation) throws IOException;

where the return value is the detyped representation of the response, and is the detypedoperation

representation of the operating being invoked.

The purpose of this section is to document the structure of the return value.

For the format of the request, see .Format of a Detyped Operation Request

Simple Responses
Simple responses are provided by the following types of operations:

Non-composite operations that target a single server. (See below for more on composite operations).

Non-composite operations that target a Domain Controller or slave Host Controller and don't require

the responder to apply the operation on multiple servers and aggregate their results (e.g. a simple

read of a domain configuration property.)

The response will always include a simple boolean outcome field, with one of three possible values:

 – the operation executed successfullysuccess

 – the operation failedfailed

 – the execution of the operation was cancelled. (This would be an unusual outcome for acancelled

simple operation which would generally very rapidly reach a point in its execution where it couldn't be

cancelled.)

The other fields in the response will depend on whether the operation was successful.

The response for a failed operation:

{

 "outcome" => "failed",

 "failure-description" => "[JBAS-12345] Some failure message"

}

A response for a successful operation will include an additional field:

 – the return value, or for void operations or those that return nullresult undefined

A non-void result:

{

 "outcome" => "success",

 "result" => {

 "name" => "Brian",

 "age" => 22

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 491 2293

A void result:

{

 "outcome" => "success",

 "result" => undefined

}

The response for a cancelled operation has no other fields:

{

 "outcome" => "cancelled"

}

Latest WildFly Documentation

JBoss Community Documentation Page of 492 2293

Response Headers
Besides the standard , and fields described above, theoutcome result failure-description

response may also include various headers that provide more information about the affect of the operation or

about the overall state of the server. The headers will be child element under a field named

. For example:response-headers

{

 "outcome" => "success",

 "result" => undefined,

 "response-headers" => {

 "operation-requires-reload" => true,

 "process-state" => "reload-required"

 }

}

A response header is typically related to whether an operation could be applied to the targeted runtime

without requiring a restart of some or all services, or even of the target process itself. Please see the

 for a"Applying Updates to Runtime Services" section of the Description of the Management Model section

discussion of the basic concepts related to what happens if an operation requires a service restart to be

applied.

The current possible response headers are:

 – boolean – indicates that the specific operation that has generatedoperation-requires-reload

this response requires a restart of all services in the process in order to take effect in the runtime. This

would typically only have a value of 'true'; the absence of the header is the same as a value of 'false.'

 – boolean – indicates that the specific operation that hasoperation-requires-restart

generated this response requires a full process restart in order to take effect in the runtime. This

would typically only have a value of 'true'; the absence of the header is the same as a value of 'false.'

 – enumeration – Provides information about the overall state of the target process.process-state

One of the following values:

 – the process is startingstarting

 – the process is in a normal running state. The header wouldrunning process-state

typically not be seen with this value; the absence of the header is the same as a value of

'running'.

 – some operation (not necessarily this one) has executed that requires areload-required

restart of all services in order for a configuration change to take effect in the runtime.

 – some operation (not necessarily this one) has executed that requires arestart-required

full process restart in order for a configuration change to take effect in the runtime.

 – the process is stoppingstopping

Basic Composite Operation Responses
A composite operation is one that incorporates more than one simple operation in a list and executes them

atomically. See the for more information."Composite Operations" section

Basic composite responses are provided by the following types of operations:

Latest WildFly Documentation

JBoss Community Documentation Page of 493 2293

Composite operations that target a single server.

Composite operations that target a Domain Controller or a slave Host Controller and don't require the

responder to apply the operation on multiple servers and aggregate their results (e.g. a list of simple

reads of domain configuration properties.)

The high level format of a basic composite operation response is largely the same as that of a simple

operation response, although there is an important semantic difference. For a composite operation, the

meaning of the outcome flag is controlled by the value of the operation request's

 header field. If that field was (default is true), the outcome flagrollback-on-runtime-failure false

will be success if all steps were successfully applied to the persistent configuration even if of thenone

composite operation's steps was successfully applied to the runtime.

What's distinctive about a composite operation response is the field. First, even if the operation wasresult

not successful, the field will usually be present. (It won't be present if there was some sort ofresult

immediate failure that prevented the responder from even attempting to execute the individual operations.)

Second, the content of the field will be a map. Each entry in the map will record the result of anresult

element in the parameter of the composite operation request. The key for each item in the map willsteps

be the string " " where "X" is the 1-based index of the step's position in the request's list. Sostep-X steps

each individual operation in the composite operation will have its result recorded.

The individual operation results will have the same basic format as the simple operation results described

above. However, there are some differences from the simple operation case when the individual operation's

 flag is . These relate to the fact that in a composite operation, individual operations can beoutcome failed

rolled back or not even attempted.

If an individual operation was not even attempted (because the overall operation was cancelled or, more

likely, a prior operation failed):

{

 "outcome" => "cancelled"

}

An individual operation that failed and was rolled back:

{

 "outcome" => "failed",

 "failure-description" => "[JBAS-12345] Some failure message",

 "rolled-back" => true

}

An individual operation that itself succeeded but was rolled back due to failure of another operation:

Latest WildFly Documentation

JBoss Community Documentation Page of 494 2293

{

 "outcome" => "failed",

 "result" => {

 "name" => "Brian",

 "age" => 22

 },

 "rolled-back" => true

}

An operation that failed and was rolled back:

{

 "outcome" => "failed",

 "failure-description" => "[JBAS-12345] Some failure message",

 "rolled-back" => true

}

Here's an example of the response for a successful 2 step composite operation:

{

 "outcome" => "success",

 "result" => [

 {

 "outcome" => "success",

 "result" => {

 "name" => "Brian",

 "age" => 22

 }

 },

 {

 "outcome" => "success",

 "result" => undefined

 }

]

}

And for a failed 3 step composite operation, where the first step succeeded and the second failed, triggering

cancellation of the 3rd and rollback of the others:

Latest WildFly Documentation

JBoss Community Documentation Page of 495 2293

{

 "outcome" => "failed",

 "failure-description" => "[JBAS-99999] Composite operation failed; see individual operation

results for details",

 "result" => [

 {

 "outcome" => "failed",

 "result" => {

 "name" => "Brian",

 "age" => 22

 },

 "rolled-back" => true

 },

 {

 "outcome" => "failed",

 "failure-description" => "[JBAS-12345] Some failure message",

 "rolled-back" => true

 },

 {

 "outcome" => "cancelled"

 }

]

}

Multi-Server Responses
Multi-server responses are provided by operations that target a Domain Controller or slave Host Controller

and require the responder to apply the operation on multiple servers and aggregate their results (e.g. nearly

all domain or host configuration updates.)

Multi-server operations are executed in several stages.

First, the operation may need to be applied against the authoritative configuration model maintained by the

Domain Controller (for confgurations) or a Host Controller (for a configuration). Ifdomain.xml host.xml

there is a failure at this stage, the operation is automatically rolled back, with a response like this:

{

 "outcome" => "failed",

 "failure-description" => {

 "domain-failure-description" => "[JBAS-33333] Failed to apply X to the domain model"

 }

}

If the operation was addressed to the domain model, in the next stage the Domain Controller will ask each

slave Host Controller to apply it to its local copy of the domain model. If any Host Controller fails to do so, the

Domain Controller will tell all Host Controllers to revert the change, and it will revert the change locally as

well. The response to the client will look like this:

Latest WildFly Documentation

JBoss Community Documentation Page of 496 2293

{

 "outcome" => "failed",

 "failure-description" => {

 "host-failure-descriptions" => {

 "hostA" => "[DOM-3333] Failed to apply to the domain model",

 "hostB" => "[DOM-3333] Failed to apply to the domain model"

 }

 }

}

If the preceding stages succeed, the operation will be pushed to all affected servers. If the operation is

successful on all servers, the response will look like this (this example operation has a void response, hence

the result for each server is undefined):

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => {

 "groupA" => {

 "serverA-1" => {

 "host" => "host1",

 "response" => {

 "outcome" => "success",

 "result" => undefined

 }

 },

 "serverA-2" => {

 "host" => "host2",

 "response" => {

 "outcome" => "success",

 "result" => undefined

 }

 }

 },

 "groupB" => {

 "serverB-1" => {

 "host" => "host1",

 "response" => {

 "outcome" => "success",

 "result" => undefined

 }

 },

 "serverB-2" => {

 "host" => "host2",

 "response" => {

 "outcome" => "success",

 "result" => undefined

 }

 }

 }

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 497 2293

The operation need not succeed on all servers in order to get an result. All"outcome" => "success"

that is required is that it succeed on at least one server without the rollback policies in the rollout plan

triggering a rollback on that server. An example response in such a situation would look like this:

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => {

 "groupA" => {

 "serverA-1" => {

 "host" => "host1",

 "response" => {

 "outcome" => "success",

 "result" => undefined

 }

 },

 "serverA-2" => {

 "host" => "host2",

 "response" => {

 "outcome" => "success",

 "result" => undefined

 }

 }

 },

 "groupB" => {

 "serverB-1" => {

 "host" => "host1",

 "response" => {

 "outcome" => "success",

 "result" => undefined,

 "rolled-back" => true

 }

 },

 "serverB-2" => {

 "host" => "host2",

 "response" => {

 "outcome" => "success",

 "result" => undefined,

 "rolled-back" => true

 }

 },

 "serverB-3" => {

 "host" => "host3",

 "response" => {

 "outcome" => "failed",

 "failure-description" => "[DOM-4556] Something didn't work right",

 "rolled-back" => true

 }

 }

 }

 }

}

Finally, if the operation fails or is rolled back on all servers, an example response would look like this:

Latest WildFly Documentation

JBoss Community Documentation Page of 498 2293

{

 "outcome" => "failed",

 "server-groups" => {

 "groupA" => {

 "serverA-1" => {

 "host" => "host1",

 "response" => {

 "outcome" => "success",

 "result" => undefined

 }

 },

 "serverA-2" => {

 "host" => "host2",

 "response" => {

 "outcome" => "success",

 "result" => undefined

 }

 }

 },

 "groupB" => {

 "serverB-1" => {

 "host" => "host1",

 "response" => {

 "outcome" => "failed",

 "result" => undefined,

 "rolled-back" => true

 }

 },

 "serverB-2" => {

 "host" => "host2",

 "response" => {

 "outcome" => "failed",

 "result" => undefined,

 "rolled-back" => true

 }

 },

 "serverB-3" => {

 "host" => "host3",

 "response" => {

 "outcome" => "failed",

 "failure-description" => "[DOM-4556] Something didn't work right",

 "rolled-back" => true

 }

 }

 }

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 499 2293

5.18 Management Clients

WildFly offers three different approaches to configure and manage servers: a web interface, a command line

client and a set of XML configuration files. Regardless of the approach you choose, the configuration is

always synchronized across the different views and finally persisted to the XML files.

5.18.1 Web Management Interface

The web interface is a GWT application that uses the HTTP management API to configure a management

domain or standalone server.

HTTP Management Endpoint
The HTTP API endpoint is the entry point for management clients that rely on the HTTP protocol to integrate

with the management layer. It uses a JSON encoded protocol and a de-typed, RPC style API to describe

and execute management operations against a managed domain or standalone server. It's used by the web

console, but offers integration capabilities for a wide range of other clients too.

The HTTP API endpoint is co-located with either the domain controller or a standalone server. By default, it

runs on port 9990:

<management-interfaces>

 [...]

 <http-interface security-realm="ManagementRealm">

 <socket-binding http="management-http"/>

 </http-interface>

<management-interfaces>

(See standalone/configuration/standalone.xml or domain/configuration/host.xml)

The HTTP API Endpoint serves two different contexts. One for executing management operations and

another one that allows you to access the web interface:

Domain API: http://<host>:9990/management

Web Console: http://<host>:9990/console

Latest WildFly Documentation

JBoss Community Documentation Page of 500 2293

Accessing the web console
The web console is served through the same port as the HTTP management API. It can be accessed by

pointing your browser to:

http://<host>:9990/console

Default URL

By default the web interface can be accessed here: .http://localhost:9990/console

Default HTTP Management Interface Security
WildFly is distributed secured by default. The default security mechanism is username / password based

making use of HTTP Digest for the authentication process.

The reason for securing the server by default is so that if the management interfaces are accidentally

exposed on a public IP address authentication is required to connect - for this reason there is no default user

in the distribution.

If you attempt to connect to the admin console before you have added a user to the server you will be

presented with the following screen.

The user are stored in a properties file called mgmt-users.properties under standalone/configuration and

domain/configuration depending on the running mode of the server, these files contain the users username

along with a pre-prepared hash of the username along with the name of the realm and the users password.

http://localhost:9990/console

Latest WildFly Documentation

JBoss Community Documentation Page of 501 2293

Although the properties files do not contain the plain text passwords they should still be guarded as

the pre-prepared hashes could be used to gain access to any server with the same realm if the

same user has used the same password.

To manipulate the files and add users we provide a utility add-user.sh and add-user.bat to add the users and

generate the hashes, to add a user you should execute the script and follow the guided process.

The full details of the add-user utility are described later but for the purpose of accessing the management

interface you need to enter the following values: -

Type of user - This will be a 'Management User' to selection option a.

Realm - This MUST match the realm name used in the configuration so unless you have changed the

configuration to use a different realm name leave this set as 'ManagementRealm'.

Username - The username of the user you are adding.

Password - The users password.

Provided the validation passes you will then be asked to confirm you want to add the user and the properties

files will be updated.

For the final question, as this is a user that is going to be accessing the admin console just answer 'n' - this

option will be described later for adding slave host controllers that authenticate against a master domain

controller but that is a later topic.

Latest WildFly Documentation

JBoss Community Documentation Page of 502 2293

Updates to the properties file are picked up in real time so either click 'Try Again' on the error page that was

displayed in the browser or navigate to the console again and you should then be prompted to enter the

username and password to connect to the server.

5.18.2 Command Line Interface

The Command Line Interface (CLI) is a management tool for a managed domain or standalone server. It

allows a user to connect to the domain controller or a standalone server and execute management

operations available through the de-typed management model.

Details on how to use the CLI can be found in the .Command Line Interface page

5.18.3 Configuration Files

WildFly stores its configuration in centralized XML configuration files, one per server for standalone servers

and, for managed domains, one per host with an additional domain wide policy controlled by the master

host. These files are meant to be human-readable and human editable.

The XML configuration files act as a central, authoritative source of configuration. Any configuration

changes made via the web interface or the CLI are persisted back to the XML configuration files. If

a domain or standalone server is offline, the XML configuration files can be hand edited as well,

and any changes will be picked up when the domain or standalone server is next started. However,

users are encouraged to use the web interface or the CLI in preference to making offline edits to

the configuration files. External changes made to the configuration files while processes are

running will not be detected, and may be overwritten.

Standalone Server Configuration File
The XML configuration for a standalone server can be found in the standalone/configuration

directory. The default configuration file is .standalone/configuration/standalone.xml

The directory includes a number of other standard configuration files, e.g. standalone/configuration

, and each of which isstandalone-full.xml standalone-ha.xml standalone-full-ha.xml

similar to the default file but includes additional subsystems not present in the defaultstandalone.xml

configuration. If you prefer to use one of these files as your server configuration, you can specify it with the c

or command line argument:-server-config

bin/standalone.sh -c=standalone-full.xml

bin/standalone.sh --server-config=standalone-ha.xml

Latest WildFly Documentation

JBoss Community Documentation Page of 503 2293

Managed Domain Configuration Files
In a managed domain, the XML files are found in the directory. There are twodomain/configuration

types of configuration files – one per host, and then a single domain-wide file managed by the master host,

aka the Domain Controller. (For more on the types of processes in a managed domain, see Operating

.)modes

Host Specific Configuration – host.xml
When you start a managed domain process, a Host Controller instance is launched, and it parses its own

configuration file to determine its own configuration, how it should integrate with the rest of the domain, any

host-specific values for settings in the domain wide configuration (e.g. IP addresses) and what servers it

should launch. This information is contained in the host-specific configuration file, the default version of

which is .domain/configuration/host.xml

Each host will have its own variant , with settings appropriate for its role in the domain. WildFlyhost.xml

ships with three standard variants:

host-master.xml A configuration that specifies the Host Controller should become the master, aka the

Domain Controller. No servers will be started by this Host Controller, which is a

recommended setup for a production master.

host-slave.xml A configuration that specifies the Host Controller should not become master and instead

should register with a remote master and be controlled by it. This configuration launches

servers, although a user will likely wish to modify how many servers are launched and

what server groups they belong to.

host.xml The default host configuration, tailored for an easy out of the box experience

experimenting with a managed domain. This configuration specifies the Host Controller

should become the master, aka the Domain Controller, but it also launches a couple of

servers.

Which host-specific configuration should be used can be controlled via the _ _ command line--host-config

argument:

$ bin/domain.sh --host-config=host-master.xml

Latest WildFly Documentation

JBoss Community Documentation Page of 504 2293

Domain Wide Configuration – domain.xml
Once a Host Controller has processed its host-specific configuration, it knows whether it is configured to act

as the master Domain Controller. If it is, it must parse the domain wide configuration file, by default located

at . This file contains the bulk of the settings that should be applieddomain/configuration/domain.xml

to the servers in the domain when they are launched – among other things, what subsystems they should

run with what settings, what sockets should be used, and what deployments should be deployed.

Which domain-wide configuration should be used can be controlled via the _ _ command line--domain-config

argument:

$ bin/domain.sh --domain-config=domain-production.xml

That argument is only relevant for hosts configured to act as the master.

A slave Host Controller does not usually parse the domain wide configuration file. A slave gets the domain

wide configuration from the remote master Domain Controller when it registers with it. A slave also will not

persist changes to a file if one is present on the filesystem. For that reason it is recommendeddomain.xml

that no be kept on the filesystem of hosts that will only run as slaves.domain.xml

A slave can be configured to keep a locally persisted copy of the domain wide configuration and then use it

on boot (in case the master is not available.) See under --backup and --cached-dc Command line

.parameters

5.18.4 Command Line Interface

The Command Line Interface (CLI) is a management tool for a managed domain or standalone server. It

allows a user to connect to the domain controller or a standalone server and execute management

operations available through the de-typed management model.

Running the CLI
Depending on the operating system, the CLI is launched using or locatedjboss-cli.sh jboss-cli.bat

in the WildFly directory. For further information on the default directory structure, please consult the "bin

".Getting Started Guide

The first thing to do after the CLI has started is to connect to a managed WildFly instance. This is done using

the command , e.g.connect

Latest WildFly Documentation

JBoss Community Documentation Page of 505 2293

./bin/jboss-cli.sh

You are disconnected at the moment. Type 'connect' to connect to the server

or 'help' for the list of supported commands.

[disconnected /]

[disconnected /] connect

[domain@localhost:9990 /]

[domain@localhost:9990 /] quit

Closed connection to localhost:9990

 is the default host and port combination for the WildFly CLI client.localhost:9990

The host and the port of the server can be provided as an optional parameter, if the server is not listening on

localhost:9990.

./bin/jboss-cli.sh

You are disconnected at the moment. Type 'connect' to connect to the server

[disconnected /] connect 192.168.0.10:9990

Connected to standalone controller at 192.168.0.1:9990

The :9990 is not required as the CLI will use port 9990 by default. The port needs to be provided if the server

is listening on some other port.

 To terminate the session type .quit

The jboss-cli script accepts a --connect parameter: ./jboss-cli.sh --connect

The --controller parameter can be used to specify the host and port of the server: ./jboss-cli.sh

--connect --controller=192.168.0.1:9990

Help is also available:

[domain@localhost:9990 /] help --commands

Commands available in the current context:

batch connection-factory deployment-overlay if

patch reload try

cd connection-info echo jdbc-driver-info

pwd rollout-plan undeploy

clear data-source echo-dmr jms-queue

quit run-batch unset

command deploy help jms-topic

read-attribute set version

connect deployment-info history ls

read-operation shutdown xa-data-source

To read a description of a specific command execute 'command_name --help'.

Latest WildFly Documentation

JBoss Community Documentation Page of 506 2293

interactive Mode
The CLI can also be run in non-interactive mode to support scripts and other types of command line or batch

processing. The --command and --commands arguments can be used to pass a command or a list of

commands to execute. Additionally a --file argument is supported which enables CLI commands to be

provided from a text file.

For example the following command can be used to list all the current deployments

$./bin/jboss-cli.sh --connect --commands=ls\ deployment

sample.war

osgi-bundle.jar

The output can be combined with other shell commands for further processing, for example to find out what

.war files are deployed:

$./bin/jboss-cli.sh --connect --commands=ls\ deployment | grep war

sample.war

In order to match a command with its output, you can provide the option --echo-command (or add the XML

element <echo-command> to the CLI configuration file) in order to make the CLI to include the prompt +

command + options in the output. With this option enabled, any executed command will be added to the

output.

Command timeout
By default CLI command and operation executions are not timely bounded. It means that a command never

ending its execution will make the CLI process to be stuck and unresponsive. To protect the CLI from this

behavior, one can set a command execution timeout.

Command Timeout behavior
In interactive mode, when a timeout occurs, an error message is displayed then the console prompt is made

available to type new commands. In non interactive mode (executing a script or a list of commands), when a

timeout occurs, an exception is thrown and the CLI execution is stopped. In both modes (interactive and non

interactive), when a timeout occurs, the CLI will make a best effort to cancel the associated server side

activities.

Configuring the Command timeout

Add the XML element to the CLI XML<command-timeout>{num seconds}</command-timeout>

configuration file.

Add the option - to the CLI command line. This will override any-command-timeout={num seconds}

value set in the XML configuration file.

Latest WildFly Documentation

JBoss Community Documentation Page of 507 2293

Managing the Command Timeout
Once the CLI is running, the timeout can be adjusted to cope with the commands to execute. For example a

batch command will need a longer timeout than a non batch one. The command allows tocommand-timeout

get, set and reset the command timeout.

Retrieving the command timeout
The command displays the current timeout in seconds. A timeout of 0 means nocommand-timeout get

timeout.

[standalone@localhost:9990 /] command-timeout get

0

Setting the command timeout
The command update the timeout value to a number of seconds. If a timeout hascommand-timeout set

been set via configuration (XML file or option), it is overridden by the action.set

[standalone@localhost:9990 /] command-timeout set 10

Resetting the command timeout
The command allows to set the timeout to its configuration valuecommand-timeout reset {config|default}

(XML file or option) or default value (0 second). If no configuration value is set, resetting to the configuration

value sets the timeout to its default value (0 seconds).

[standalone@localhost:9990 /] command-timeout reset config

[standalone@localhost:9990 /] command-timeout reset default

Default Native Management Interface Security
The native interface shares the same security configuration as the http interface, however we also support a

local authentication mechanism which means that the CLI can authenticate against the local WildFly

instance without prompting the user for a username and password. This mechanism only works if the user

running the CLI has read access to the standalone/tmp/auth folder or domain/tmp/auth folder under the

respective WildFly installation - if the local mechanism fails then the CLI will fallback to prompting for a

username and password for a user configured as in .Default HTTP Interface Security

Establishing a CLI connection to a remote server will require a username and password by default.

https://docs.jboss.org/author/display/AS71/Default+HTTP+Interface+Security

Latest WildFly Documentation

JBoss Community Documentation Page of 508 2293

Operation Requests
Operation requests allow for low level interaction with the management model. They are different from the

high level commands (i.e.) in that they allow you to read and modify the servercreate-jms-queue

configuration as if you were editing the XML configuration files directly. The configuration is represented as a

tree of addressable resources, where each node in the tree (aka resource) offers a set of operations to

execute.

An operation request basically consists of three parts: The , an and an optional setaddress operation name

of .parameters

The formal specification for an operation request is:

[/node-type=node-name (/node-type=node-name)*] : operation-name [(

[parameter-name=parameter-value (,parameter-name=parameter-value)*])]

For example:

/subsystem=logging/root-logger=ROOT:change-root-log-level(level=WARN)

Tab Completion

Tab-completion is supported for all commands and options, i.e. node-types and node-names,

operation names and parameter names. We are also considering adding aliases that are less

verbose for the user, and will translate into the corresponding operation requests in the

background.

Whitespaces between the separators in the operation request strings are not significant.

Latest WildFly Documentation

JBoss Community Documentation Page of 509 2293

Addressing resources
Operation requests might not always have the address part or the parameters. E.g.

:read-resource

which will list all the node types for the current node.

To syntactically disambiguate between the commands and operations, operations require one of the

following prefixes:

To execute an operation against the current node, e.g.

cd subsystem=logging

:read-resource(recursive="true")

To execute an operation against a child node of the current node, e.g.

cd subsystem=logging

./root-logger=ROOT:change-root-log-level(level=WARN)

To execute an operation against the root node, e.g.

/:read-resource

Available Operation Types and Descriptions
The operation types can be distinguished between common operations that exist on any node and specific

operations that belong to a particular configuration resource (i.e. subsystem). The common operations are:

add

read-attribute

read-children-names

read-children-resources

read-children-types

read-operation-description

read-operation-names

read-resource

read-resource-description

remove

validate-address

write-attribute

For a list of specific operations (e.g. operations that relate to the logging subsystem) you can always query

the model itself. For example, to read the operations supported by the logging subsystem resource on a

standalone server:

Latest WildFly Documentation

JBoss Community Documentation Page of 510 2293

[[standalone@localhost:9990 /] /subsystem=logging:read-operation-names

{

 "outcome" => "success",

 "result" => [

 "add",

 "change-root-log-level",

 "read-attribute",

 "read-children-names",

 "read-children-resources",

 "read-children-types",

 "read-operation-description",

 "read-operation-names",

 "read-resource",

 "read-resource-description",

 "remove-root-logger",

 "root-logger-assign-handler",

 "root-logger-unassign-handler",

 "set-root-logger",

 "validate-address",

 "write-attribute"

]

}

As you can see, the logging resource offers four additional operations, namely , root-logger-assign-handler

, and .root-logger-unassign-handler set-root-logger remove-root-logger

Further documentation about a resource or operation can be retrieved through the description:

[standalone@localhost:9990 /]

/subsystem=logging:read-operation-description(name=change-root-log-level)

{

 "outcome" => "success",

 "result" => {

 "operation-name" => "change-root-log-level",

 "description" => "Change the root logger level.",

 "request-properties" => {"level" => {

 "type" => STRING,

 "description" => "The log level specifying which message levels will be logged by

this logger.

 Message levels lower than this value will be discarded.",

 "required" => true

 }}

 }

}

Full model

To see the full model enter .:read-resource(recursive=true)

Latest WildFly Documentation

JBoss Community Documentation Page of 511 2293

Command History
Command (and operation request) history is enabled by default. The history is kept both in-memory and in a

file on the disk, i.e. it is preserved between command line sessions. The history file name is .jboss-cli-history

and is automatically created in the user's home directory. When the command line interface is launched this

file is read and the in-memory history is initialized with its content.

While in the command line session, you can use the arrow keys to go back and forth in the history

of commands and operations.

To manipulate the history you can use the command. If executed without any arguments, it will printhistory

all the recorded commands and operations (up to the configured maximum, which defaults to 500) from the

in-memory history.

 supports three optional arguments:history

 - will disable history expansion (but will not clear the previously recorded history);disable

 - will re-enable history expansion (starting from the last recorded command before the historyenabled

expansion was disabled);

 - will clear the in-memory history (but not the file one).clear

Latest WildFly Documentation

JBoss Community Documentation Page of 512 2293

Batch Processing
The batch mode allows one to group commands and operations and execute them together as an atomic

unit. If at least one of the commands or operations fails, all the other successfully executed commands and

operations in the batch are rolled back.

Not all of the commands are allowed in the batch. For example, commands like , , , etc. are notcd ls help

allowed in the batch since they don't translate into operation requests. Only the commands that translate into

operation requests are allowed in the batch. The batch, actually, is executed as a composite operation

request.

The batch mode is entered by executing command .batch

[standalone@localhost:9990 /] batch

[standalone@localhost:9990 / #] /subsystem=datasources/data-source="java\:\/H2DS":enable

[standalone@localhost:9990 / #]

/subsystem=messaging-activemq/server=default/jms-queue=newQueue:add

You can execute a batch using the command:run-batch

[standalone@localhost:9990 / #] run-batch

The batch executed successfully.

Exit the batch edit mode without losing your changes:

[standalone@localhost:9990 / #] holdback-batch

[standalone@localhost:9990 /]

Then activate it later on again:

[standalone@localhost:9990 /] batch

Re-activated batch

#1 /subsystem=datasources/data-source=java:/H2DS:\/H2DS:enable

There are several other notable batch commands available as well (tab complete to see the list):

clear-batch

 (e.g.)edit-batch-line edit-batch line 3 create-jms-topic name=mytopic

 (e.g.)remove-batch-line remove-batch-line 3

 (e.g.)move-batch-line move-batch-line 3 1

discard-batch

Latest WildFly Documentation

JBoss Community Documentation Page of 513 2293

5.18.5 Default HTTP Interface Security

WildFly is distributed secured by default. The default security mechanism is username / password based

making use of HTTP Digest for the authentication process.

The reason for securing the server by default is so that if the management interfaces are accidentally

exposed on a public IP address authentication is required to connect - for this reason there is no default user

in the distribution.

If you attempt to connect to the admin console before you have added a user to the server you will be

presented with the following screen.

The user are stored in a properties file called mgmt-users.properties under standalone/configuration and

domain/configuration depending on the running mode of the server, these files contain the users username

along with a pre-prepared hash of the username along with the name of the realm and the users password.

Although the properties files do not contain the plain text passwords they should still be guarded as

the pre-prepared hashes could be used to gain access to any server with the same realm if the

same user has used the same password.

Latest WildFly Documentation

JBoss Community Documentation Page of 514 2293

To manipulate the files and add users we provide a utility add-user.sh and add-user.bat to add the users and

generate the hashes, to add a user you should execute the script and follow the guided process.

The full details of the add-user utility are described later but for the purpose of accessing the management

interface you need to enter the following values: -

Type of user - This will be a 'Management User' to selection option a.

Realm - This MUST match the realm name used in the configuration so unless you have changed the

configuration to use a different realm name leave this set as 'ManagementRealm'.

Username - The username of the user you are adding.

Password - The users password.

Provided the validation passes you will then be asked to confirm you want to add the user and the properties

files will be updated.

For the final question, as this is a user that is going to be accessing the admin console just answer 'n' - this

option will be described later for adding slave host controllers that authenticate against a master domain

controller but that is a later topic.

Updates to the properties file are picked up in real time so either click 'Try Again' on the error page that was

displayed in the browser or navigate to the console again and you should then be prompted to enter the

username and password to connect to the server.

Latest WildFly Documentation

JBoss Community Documentation Page of 515 2293

5.18.6 Default Native Interface Security

The native interface shares the same security configuration as the http interface, however we also support a

local authentication mechanism which means that the CLI can authenticate against the local WildFly

instance without prompting the user for a username and password. This mechanism only works if the user

running the CLI has read access to the standalone/tmp/auth folder or domain/tmp/auth folder under the

respective WildFly installation - if the local mechanism fails then the CLI will fallback to prompting for a

username and password for a user configured as in .Default HTTP Interface Security

Establishing a CLI connection to a remote server will require a username and password by default.

5.19 Management tasks

5.19.1 Controlling operation via command line parameters

To start up a WildFly managed domain, execute the script. To start up a$JBOSS_HOME/bin/domain.sh

standalone server, execute the . With no arguments, the default$JBOSS_HOME/bin/standalone.sh

configuration is used. You can override the default configuration by providing arguments on the command

line, or in your calling script.

System properties
To set a system property, pass its new value using the standard jvm options:-Dkey=value

$JBOSS_HOME/bin/standalone.sh -Djboss.home.dir=some/location/wildFly \

 -Djboss.server.config.dir=some/location/wildFly/custom-standalone

This command starts up a standalone server instance using a non-standard AS home directory and a

custom configuration directory. For specific information about system properties, refer to the definitions

below.

Instead of passing the parameters directly, you can put them into a properties file, and pass the properties

file to the script, as in the two examples below.

$JBOSS_HOME/bin/domain.sh --properties=/some/location/jboss.properties

$JBOSS_HOME/bin/domain.sh -P=/some/location/jboss.properties

Note however, that properties set this way are not processed as part of JVM launch. They are processed

early in the boot process, but this mechanism should not be used for setting properties that control JVM

behavior (e.g. java.net.perferIPv4Stack) or the behavior of the JBoss Modules classloading system.

The syntax for passing in parameters and properties files is the same regardless of whether you are running

the , , or the Microsoft Windows scripts or .domain.sh standalone.sh domain.bat standalone.bat

https://docs.jboss.org/author/display/AS71/Default+HTTP+Interface+Security

Latest WildFly Documentation

JBoss Community Documentation Page of 516 2293

The properties file is a standard Java property file containing pairs:key=value

jboss.home.dir=/some/location/wildFly

jboss.domain.config.dir=/some/location/wildFly/custom-domain

System properties can also be set via the xml configuration files. Note however that for a standalone server

properties set this way will not be set until the xml configuration is parsed and the commands created by the

parser have been executed. So this mechanism should not be used for setting properties whose value needs

to be set before this point.

Controlling filesystem locations with system properties
The standalone and the managed domain modes each use a default configuration which expects various

files and writable directories to exist in standard locations. Each of these standard locations is associated

with a system property, which has a default value. To override a system property, pass its new value using

the one of the mechanisms above. The locations which can be controlled via system property are:

Standalone

Property name Usage Default value

java.ext.dirs The JDK extension directory paths null

jboss.home.dir The root directory of the WildFly

installation.

Set by to standalone.sh

$JBOSS_HOME

jboss.server.base.dir The base directory for server content. /standalonejboss.home.dir

jboss.server.config.dir The base configuration directory. jboss.server.base.dir

/configuration

jboss.server.data.dir The directory used for persistent data

file storage.

jboss.server.base.dir

/data

jboss.server.log.dir The directory containing the

 file.server.log

/logjboss.server.base.dir

jboss.server.temp.dir The directory used for temporary file

storage.

/tmpjboss.server.base.dir

jboss.server.deploy.dir The directory used to store deployed

content

jboss.server.data.dir

/content

Latest WildFly Documentation

JBoss Community Documentation Page of 517 2293

Managed Domain

Property name Usage Default value

jboss.home.dir The root directory of the WildFly

installation.

Set by to domain.sh

$JBOSS_HOME

jboss.domain.base.dir The base directory for domain

content.

/domainjboss.home.dir

jboss.domain.config.dir The base configuration directory jboss.domain.base.dir

/configuration

jboss.domain.data.dir The directory used for persistent data

file storage.

jboss.domain.base.dir

/data

jboss.domain.log.dir The directory containing the

 and host-controller.log

 filesprocess-controller.log

jboss.domain.base.dir

/log

jboss.domain.temp.dir The directory used for temporary file

storage

jboss.domain.base.dir

/tmp

jboss.domain.deployment.dir The directory used to store deployed

content

jboss.domain.base.dir

/content

jboss.domain.servers.dir The directory containing the output

for the managed server instances

jboss.domain.base.dir

/servers

Other command line parameters
The first acceptable format for command line arguments to the WildFly launch scripts is

--name=value

For example:

$JBOSS_HOME/bin/standalone.sh --server-config=standalone-ha.xml

If the parameter name is a single character, it is prefixed by a single '-' instead of two. Some parameters

have both a long and short option.

-x=value

For example:

Latest WildFly Documentation

JBoss Community Documentation Page of 518 2293

$JBOSS_HOME/bin/standalone.sh -P=/some/location/jboss.properties

For some command line arguments frequently used in previous major releases of WildFly, replacing the "="

in the above examples with a space is supported, for compatibility.

-b 192.168.100.10

If possible, use the syntax. New parameters will always support this syntax.-x=value

The sections below describe the command line parameter names that are available in standalone and

domain mode.

Standalone

Name Default if

absent

Value

--admin-only - Set the server's running type to ADMIN_ONLY

causing it to open administrative interfaces and

accept management requests but not start other

runtime services or

accept end user requests.

--server-config

-c

standalone.xml A relative path which is interpreted to be relative to

. The name of thejboss.server.config.dir

configuration file to use.

--read-only-server-config - A relative path which is interpreted to be relative to

. This is similar to jboss.server.config.dir

 but if this alternative is specified--server-config

the server will

not overwrite the file when the management model is

changed. However a full versioned history is

maintained of the file.

Latest WildFly Documentation

JBoss Community Documentation Page of 519 2293

Managed Domain

Name Default if

absent

Value

--admin-only - Set the server's running type to ADMIN_ONLY causing it

to open administrative interfaces and accept

management requests but not start servers or, if this host

controller

is the master for the domain, accept incoming

connections from slave host controllers.

--domain-config

-c

domain.xml A relative path which is interpreted to be relative to

. The name of the domainjboss.domain.config.dir

wide configuration file to use.

--read-only-domain-config - A relative path which is interpreted to be relative to

. This is similar to jboss.domain.config.dir

 but if this alternative is specified the--domain-config

host controller

will not overwrite the file when the management model is

changed. However a full versioned history is maintained

of the file.

--host-config host.xml A relative path which is interpreted to be relative to

. The name of thejboss.domain.config.dir

host-specific configuration file to use.

--read-only-host-config - A relative path which is interpreted to be relative to

. This is similar to jboss.domain.config.dir

 but if this alternative is specified the--host-config

host controller will

not overwrite the file when the management model is

changed. However a full versioned history is maintained

of the file.

The following parameters take no value and are only usable on slave host controllers (i.e. hosts configured

to connect to a domain controller.)remote

Latest WildFly Documentation

JBoss Community Documentation Page of 520 2293

Name Function

--backup Causes the slave host controller to create and maintain a local copy

(domain.cached-remote.xml) of the domain configuration. If ignore-unused-configuration

is unset in host.xml,

a complete copy of the domain configuration will be stored locally, otherwise the

configured value of in host.xml will be used. (See ignore-unused-configuration

 for more details.)ignore-unused-configuration

--cached-dc If the slave host controller is unable to contact the master domain controller to get its

configuration at boot, this option will allow the slave host controller to boot and become

operational using a previously cached copy of the domain configuration

(domain.cached-remote.xml.) If the cached configuration is not present, this boot will fail.

This file is created using using one of

the following methods:

 - A previously successful connection to the master domain controller using --backup or

--cached-dc.

 - Copying the domain configuration from an alternative host to

domain/configuration/domain.cached-remote.xml.

The unavailable master domain controller will be polled periodically for availability, and

once becoming available, the slave host controller will reconnect to the master host

controller and synchronize the domain

configuration. During the interval the master domain controller is unavailable, the slave

host controller will not be able make any modifications to the domain configuration, but it

may launch servers and handle

requests to deployed applications etc.

Latest WildFly Documentation

JBoss Community Documentation Page of 521 2293

Common parameters
These parameters apply in both standalone or managed domain mode:

Name Function

-b=<value> Sets system property to <value>. See jboss.bind.address Controlling the Bind

 for further details.Address with -b

-b<name>=<value> Sets system property to <value> where jboss.bind.address.<name> name

can vary. See for further details.Controlling the Bind Address with -b

-u=<value> Sets system property to <value>. See jboss.default.multicast.address

 for further details.Controlling the Default Multicast Address with -u

--version

-v

-V

Prints the version of WildFly to standard output and exits the JVM.

--help

-h

Prints a help message explaining the options and exits the JVM.

Controlling the Bind Address with -b
WildFly binds sockets to the IP addresses and interfaces contained in the elements in <interfaces>

, and . (See and for furtherstandalone.xml domain.xml host.xml Interfaces Socket Bindings

information on these elements.) The standard configurations that ship with WildFly includes two interface

configurations:

<interfaces>

 <interface name="management">

 <inet-address value="${jboss.bind.address.management:127.0.0.1}"/>

 </interface>

 <interface name="public">

 <inet-address value="${jboss.bind.address:127.0.0.1}"/>

 </interface>

</interfaces>

Those configurations use the values of system properties and jboss.bind.address.management

 if they are set. If they are not set, 127.0.0.1 is used for each value.jboss.bind.address

As noted in , the AS supports the and command line switches. The onlyCommon Parameters -b -b<name>

function of these switches is to set system properties and jboss.bind.address

 respectively. However, because of the way the standard WildFlyjboss.bind.address.<name>

configuration files are set up, using the switches can indirectly control how the AS binds sockets.-b

, using this as your launch command causes allIf your interface configurations match those shown above

sockets associated with interface named "public" to be bound to .192.168.100.10

Latest WildFly Documentation

JBoss Community Documentation Page of 522 2293

$JBOSS_HOME/bin/standalone.sh -b=192.168.100.10

In the standard config files, public interfaces are those not associated with server management. Public

interfaces handle normal end-user requests.

Interface names

The interface named "public" is not inherently special. It is provided as a convenience. You can

name your interfaces to suit your environment.

To bind the public interfaces to all IPv4 addresses (the IPv4 wildcard address), use the following syntax:

$JBOSS_HOME/bin/standalone.sh -b=0.0.0.0

You can also bind the management interfaces, as follows:

$JBOSS_HOME/bin/standalone.sh -bmanagement=192.168.100.10

In the standard config files, management interfaces are those sockets associated with server management,

such as the socket used by the CLI, the HTTP socket used by the admin console, and the JMX connector

socket.

Be Careful

The switch only controls the interface bindings because the standard config files that ship with-b

WildFly sets things up that way. If you change the section in your configuration to<interfaces>

no longer use the system properties controlled by , then setting in your launch command will-b -b

have no effect.

For example, this perfectly valid setting for the "public" interface causes to have no effect on-b

the "public" interface:

<interface name="public">

 <nic name="eth0"/>

</interface>

The key point is the contents of the configuration files determine the configuration. Settings

 They only provide a shorter syntax forlike -b are not overrides of the configuration files.

setting a system properties that may or may not be referenced in the configuration files. They are

provided as a convenience, and you can choose to modify your configuration to ignore them.

Latest WildFly Documentation

JBoss Community Documentation Page of 523 2293

Controlling the Default Multicast Address with -u
WildFly may use multicast communication for some services, particularly those involving high availability

clustering. The multicast addresses and ports used are configured using the elements in socket-binding

 and . (See for further information on these elements.) Thestandalone.xml domain.xml Socket Bindings

standard HA configurations that ship with WildFly include two socket binding configurations that use a

default multicast address:

<socket-binding name="jgroups-mping" port="0"

multicast-address="${jboss.default.multicast.address:230.0.0.4}" multicast-port="45700"/>

<socket-binding name="jgroups-udp" port="55200"

multicast-address="${jboss.default.multicast.address:230.0.0.4}" multicast-port="45688"/>

Those configurations use the values of system property if it is set.jboss.default.multicast.address

If it is not set, 230.0.0.4 is used for each value. (The configuration may include other socket bindings for

multicast-based services that are not meant to use the default multicast address; e.g. a binding the

mod-cluster services use to communicate on a separate address/port with Apache httpd servers.)

As noted in , the AS supports the command line switch. The only function of thisCommon Parameters -u

switch is to set system property . However, because of the wayjboss.default.multicast.address

the standard AS configuration files are set up, using the switches can indirectly control how the AS uses-u

multicast.

, using this as your launch command causesIf your socket binding configurations match those shown above

the service using those sockets configurations to be communicate over multicast address .230.0.1.2

$JBOSS_HOME/bin/standalone.sh -u=230.0.1.2

Be Careful

As with the switch, the switch only controls the multicast address used because the standard-b -u

config files that ship with WildFly sets things up that way. If you change the <socket-binding>

sections in your configuration to no longer use the system properties controlled by , then setting -u

 in your launch command will have no effect.-u

Latest WildFly Documentation

JBoss Community Documentation Page of 524 2293

5.19.2 Suspend, resume and graceful shutdown

Core Concepts
Wildfly introduces the ability to suspend and resume servers. This can be combined with shutdown to enable

the server to gracefully finish processing all active requests and then shut down. When a server is

suspended it will immediately stop accepting new requests, but wait for existing request to complete. A

suspended server can be resumed at any point, and will begin processing requests immediately.

Suspending and resuming has no effect on deployment state (e.g. if a server is suspended singleton EJB's

will not be destroyed). As of Wildfly 11 it is also possible to start a server in suspended mode which means it

will not accept requests until it has been resumed, servers will also be suspended during the boot process,

so no requests will be accepted until the startup process is 100% complete.

Suspend/Resume has no effect on management operations, management operations can still be performed

while a server is suspended. If you wish to perform a management operation that will affect the operation of

the server (e.g. changing a datasource) you can suspend the server, perform the operation, then resume the

server. This allows all requests to finish, and makes sure that no requests are running while the

management changes are taking place.

When a server is suspending it goes through four different phases:

 - The normal state, the server is accepting requests and running normallyRUNNING

 - In PRE_SUSPEND the server will notify external parties that it is about to suspend,PRE_SUSPEND

for example mod_cluster will notify the load balancer that the deployment is suspending. Requests

are still accepted in this phase.

 - All new requests are rejected, and the server is waiting for all active requests toSUSPENDING

finish. If there are no active requests at suspend time this phase will be skipped.

 - All requests have completed, and the server is suspended.SUSPENDED

Starting Suspended
In order to start into suspended mode when using a standalone server you need to add

 to the command line. It is also possible to specify the start-mode in the --start-mode=suspend reload

operation to cause the server to reload into suspended mode (other possible values for start-mode are

 and).normal admin-only

In domain mode servers can be started in suspended mode by passing the parameter to anysuspend=true

command that causes a server to start, restart or reload (e.g. :start-servers(suspend=true)).

Latest WildFly Documentation

JBoss Community Documentation Page of 525 2293

The Request Controller Subsystem
Wildfly introduces a new subsystem called the Request Controller Subsystem. This optional subsystem

tracks all requests at their entry point, which how the graceful shutdown mechanism know when all requests

are done (it also allows you to provide a global limit on the total number of running requests).

If this subsystem is not present suspend/resume will be limited, in general things that happen in the

PRE_SUSPEND phase will work as normal (stopping message delivery, notifying the load balancer),

however the server will not wait for all requests to complete and instead move straight to SUSPENDED

mode.

There is a small performance penalty associated with the request controller subsystem (about on par with

enabling statistics), so if you do not require the suspend/resume functionality this subsystem can be

removed to get a small performance boost.

Latest WildFly Documentation

JBoss Community Documentation Page of 526 2293

Subsystem Integrations
Suspend/Resume is a service provided by the Wildfly platform that any subsystem may choose to integrate

with. Some subsystems integrate directly with the suspend controller, while others integrate through the

request controller subsystem.

The following subsystems support graceful shutdown. Note that only subsystems that provide an external

entry point to the server need graceful shutdown support, for example the JAX-RS subsystem does not

require suspend/resume support as all access to JAX-RS is through the web connector.

 - Undertow will wait for all requests to finishUndertow

 - The mod_cluster subsystem will notify the load balancer that the server is suspendingmod_cluster

in the PRE_SUSPEND phase.

 - EJB will wait for all remote EJB requests and MDB message deliveries to finish. Delivery toEJB

MDB's is stopped in the PRE_SUSPEND phase. EJB timers are suspended, and missed timers will

be activated when the server is resumed.

 - Batch jobs will be stopped at a checkpoint while the server is suspending. They will beBatch

restarted from that checkpoint when the server returns to running mode.

 - The server will wait for all active jobs to finish. All jobs that have already beenEE Concurrency

queued will be skipped.

 - transaction subsystem waits for all running transactions to finish while server isTransactions

suspending. During that time server refuses to start any new transaction. But any in-flight transaction

will be serviced - e.g. it means that server accepts any incoming remote call which carries context of

the transaction already started at the suspending server.

When you work with EJBs you have to enable the graceful shutdown functionality by setting attribute

 to .enable-graceful-txn-shutdown true

(at the xml, for example):ejb3 subsystem

<enable-graceful-txn-shutdown value="false"/>

By graceful shutdown it's for ejb subsystem.default disabled

The reason is that the behavior might be unwelcome in cluster environments, as the server notifies

remote clients that the node is no longer available for remote calls only after the transactions are

finished. During that brief window of time, the client of a cluster may send a new request to a node

that is shutting down and will refuse the request because it is not related to an existing transaction.

If this attribute is set to , we disable the gracefulenable-graceful-txn-shutdown false

behavior and EJB clients will not attempt to invoke the node when it suspends, regardless of active

transactions.

Latest WildFly Documentation

JBoss Community Documentation Page of 527 2293

Standalone Mode
Suspend/Resume can be controlled via the following CLI operations in standalone mode:

:suspend(timeout=z)

Suspends the server. If the timeout is specified it will wait up to the specified number of seconds for all

requests to finish. If there is no timeout specified or the value is less than zero it will wait indefinitely.

:resume

Resumes a previously suspended server. The server should be able to begin serving requests immediately.

:read-attribute(name=suspend-state)

Returns the current suspend state of the server.

:shutdown(timeout=x)

If a timeout parameter is passed to the shutdown command then a graceful shutdown will be performed. The

server will be suspended, and will wait up to the specified number of seconds for all requests to finish before

shutting down. A timeout value of less than zero means it will wait indefinitely.

Domain Mode
Domain mode has similar commands as standalone mode, however they can be applied at both the global

and server group levels:

Whole Domain

:suspend-servers(timeout=x)

:resume-servers

:stop-servers(timeout=x)

Server Group

/server-group=main-server-group:suspend-servers(timeout=x)

/server-group=main-server-group:resume-servers

/server-group=main-server-group:stop-servers(timeout=x)

 Server

/host=master/server-config=server-one:suspend(timeout=x)

/host=master/server-config=server-one:resume

/host=master/server-config=server-one:stop(timeout=x)

Latest WildFly Documentation

JBoss Community Documentation Page of 528 2293

5.19.3 Starting & stopping Servers in a Managed Domain

Starting a standalone server is done through the script. However in a managedbin/standalone.sh

domain server instances are managed by the domain controller and need to be started through the

management layer:

First of all, get to know which are configured on a particular :servers host

[domain@localhost:9990 /] :read-children-names(child-type=host)

{

 "outcome" => "success",

 "result" => ["local"]

}

[domain@localhost:9990 /] /host=local:read-children-names(child-type=server-config)

{

 "outcome" => "success",

 "result" => [

 "my-server",

 "server-one",

 "server-three"

]

}

Now that we know, that there are two configured on " ", we can go ahead and checkservers host local

their status:

[domain@localhost:9990 /]

/host=local/server-config=server-one:read-resource(include-runtime=true)

{

 "outcome" => "success",

 "result" => {

 "auto-start" => true,

 "group" => "main-server-group",

 "interface" => undefined,

 "name" => "server-one",

 "path" => undefined,

 "socket-binding-group" => undefined,

 "socket-binding-port-offset" => undefined,

 "status" => "STARTED",

 "system-property" => undefined,

 "jvm" => {"default" => undefined}

 }

}

You can change the server state through the " " and " " operationsstart stop

Latest WildFly Documentation

JBoss Community Documentation Page of 529 2293

[domain@localhost:9990 /] /host=local/server-config=server-one:stop

{

 "outcome" => "success",

 "result" => "STOPPING"

}

Navigating through the domain topology is much more simple when you use the web interface.

5.19.4 Controlling JVM settings

Configuration of the JVM settings is different for a managed domain and a standalone server. In a managed

domain, the domain controller components are responsible for starting and stoping server processes and

hence determine the JVM settings. For a standalone server, it's the responsibility of the process that started

the server (e.g. passing them as command line arguments).

Managed Domain
In a managed domain the JVM settings can be declared at different scopes: For a specific server group, for

a host or for a particular server. If not declared, the settings are inherited from the parent scope. This allows

you to customize or extend the JVM settings within every layer.

Let's take a look at the JVM declaration for a server group:

<server-groups>

 <server-group name="main-server-group" profile="default">

 <jvm name="default">

 <heap size="64m" max-size="512m"/>

 </jvm>

 <socket-binding-group ref="standard-sockets"/>

 </server-group>

 <server-group name="other-server-group" profile="default">

 <jvm name="default">

 <heap size="64m" max-size="512m"/>

 </jvm>

 <socket-binding-group ref="standard-sockets"/>

 </server-group>

</server-groups>

 (See domain/configuration/domain.xml)

In this example the server group "main-server-group" declares a heap size of and a maximum heap size64m

of . Any server that belongs to this group will inherit these settings. You can change these settings for512m

the group as a whole, or a specific server or host:

Latest WildFly Documentation

JBoss Community Documentation Page of 530 2293

<servers>

 <server name="server-one" group="main-server-group" auto-start="true">

 <jvm name="default"/>

 </server>

 <server name="server-two" group="main-server-group" auto-start="true">

 <jvm name="default">

 <heap size="64m" max-size="256m"/>

 </jvm>

 <socket-binding-group ref="standard-sockets" port-offset="150"/>

 </server>

 <server name="server-three" group="other-server-group" auto-start="false">

 <socket-binding-group ref="standard-sockets" port-offset="250"/>

 </server>

</servers>

(See domain/configuration/host.xml)

In this case, , belongs to the and inherits the JVM settings named , butserver-two main-server-group default

declares a lower maximum heap size.

[domain@localhost:9999 /] /host=local/server-config=server-two/jvm=default:read-resource

{

 "outcome" => "success",

 "result" => {

 "heap-size" => "64m",

 "max-heap-size" => "256m",

 }

}

Standalone Server
For a standalone sever you have to pass in the JVM settings either as command line arguments when

executing the script, or by declaring them in $JBOSS_HOME/bin/standalone.sh

. (For Windows users, the script to execute is $JBOSS_HOME/bin/standalone.conf

 while the JVM settings can be declared in %JBOSS_HOME%/bin/standalone.bat

%JBOSS_HOME%/bin/standalone.conf.bat.)

5.19.5 Administrative audit logging

WildFly comes with audit logging built in for management operations affecting the management model. By

default it is turned off. The information is output as JSON records.

The default configuration of audit logging in standalone.xml looks as follows:

Latest WildFly Documentation

JBoss Community Documentation Page of 531 2293

<management>

 <security-realms>

...

 </security-realms>

 <audit-log>

 <formatters>

 <json-formatter name="json-formatter"/>

 </formatters>

 <handlers>

 <file-handler name="file" formatter="json-formatter" path="audit-log.log"

relative-to="jboss.server.data.dir"/>

 </handlers>

 <logger log-boot="true" log-read-only="true" enabled="false">

 <handlers>

 <handler name="file"/>

 </handlers>

 </logger>

 </audit-log>

...

Looking at this via the CLI it looks like

[standalone@localhost:9990 /]

/core-service=management/access=audit:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {

 "file-handler" => {"file" => {

 "formatter" => "json-formatter",

 "max-failure-count" => 10,

 "path" => "audit-log.log",

 "relative-to" => "jboss.server.data.dir"

 }},

 "json-formatter" => {"json-formatter" => {

 "compact" => false,

 "date-format" => "yyyy-MM-dd HH:mm:ss",

 "date-separator" => " - ",

 "escape-control-characters" => false,

 "escape-new-line" => false,

 "include-date" => true

 }},

 "logger" => {"audit-log" => {

 "enabled" => false,

 "log-boot" => true,

 "log-read-only" => false,

 "handler" => {"file" => {}}

 }},

 "syslog-handler" => undefined

 }

}

To enable it via CLI you need just

Latest WildFly Documentation

JBoss Community Documentation Page of 532 2293

[standalone@localhost:9990 /]

/core-service=management/access=audit/logger=audit-log:write-attribute(name=enabled,value=true)

{"outcome" => "success"}

Audit data are stored in standalone/data/audit-log.log.

The audit logging subsystem has a lot of internal dependencies, and it logs operations changing,

enabling and disabling its components. When configuring or changing things at runtime it is a good

idea to make these changes as part of a CLI batch. For example if you are adding a syslog handler

you need to add the handler and its information as one step. Similarly if you are using a file

handler, and want to change its and attributes, that needs to happen as onepath relative-to

step.

JSON Formatter
The first thing that needs configuring is the formatter, we currently support outputting log records as JSON.

You can define several formatters, for use with different handlers. A log record has the following format, and

it is the formatter's job to format the data presented:

2013-08-12 11:01:12 - {

 "type" : "core",

 "r/o" : false,

 "booting" : false,

 "version" : "8.0.0.Alpha4",

 "user" : "$local",

 "domainUUID" : null,

 "access" : "NATIVE",

 "remote-address" : "127.0.0.1/127.0.0.1",

 "success" : true,

 "ops" : [JMX|WFLY8:JMX subsystem configuration],

 "operation" : "write-attribute",

 "name" : "enabled",

 "value" : true,

 "operation-headers" : {"caller-type" : "user"}

 }]

}

It includes an optional timestamp and then the following information in the json record

Latest WildFly Documentation

JBoss Community Documentation Page of 533 2293

Field name Description

type This can have the values , meaning it is a management operation, or core jmx

meaning it comes from the jmx subsystem (see the jmx subsystem for configuration of

the jmx subsystem's audit logging)

r/o if the operation does not change the management model, otherwisetrue false

booting if the operation was executed during the bootup process, if it wastrue false

executed once the server is up and running

version The version number of the WildFly instance

user The username of the authenticated user. In this case the operation has been logged

via the CLI on the same machine as the running server, so the special user$local

is used

domainUUID An ID to link together all operations as they are propagated from the Doman

Controller to it servers, slave Host Controllers, and slave Host Controller servers

access This can have one of the following values:

* - The operation came in through the native management interface, forNATIVE

example the CLI

* - The operation came in through the domain HTTP interface, for example theHTTP

admin console

* - The operation came in through the JMX subsystem. See for how toJMX JMX

configure audit logging for JMX.

remote-address The address of the client executing this operation

success if the operation succeeded, if it was rolled backtrue false

ops The operations being executed. This is a list of the operations serialized to JSON. At

boot this will be all the operations resulting from parsing the xml. Once booted the list

will typically just contain a single entry

The json formatter resource has the following attributes:

Latest WildFly Documentation

JBoss Community Documentation Page of 534 2293

Attribute Description

include-date Boolan toggling whether or not to include the timestamp in the

formatted log records

date-separator A string containing characters to separate the date and the rest of the

formatted log message. Will be ignored if include-date=false

date-format The date format to use for the timestamp as understood by

. Will be ignored if java.text.SimpleDateFormat

include-date=false

compact If true will format the JSON on one line. There may still be values

containing new lines, so if having the whole record on one line is

important, set escape-new-line or escape-control-characters to true

escape-control-characters If it will escape all control characters (ascii entries with a decimaltrue

value < 32) with the ascii code in octal, e.g. a new line becomes '#012'.

If this is , it will override true escape-new-line=false

escape-new-line If it will escape all new lines with the ascii code in octal, e.g.true

"#012".

Handlers
A handler is responsible for taking the formatted data and logging it to a location. There are currently two

types of handlers, File and Syslog. You can configure several of each type of handler and use them to log

information.

Latest WildFly Documentation

JBoss Community Documentation Page of 535 2293

File handler
The file handlers log the audit log records to a file on the server. The attributes for the file handler are

Attribute Description Read

Only

formatter The name of a JSON formatter to use to format the log records false

path The path of the audit log file false

relative-to The name of another previously named path, or of one of the

standard paths provided by the system. If isrelative-to

provided, the value of the attribute is treated as relative topath

the path specified by this attribute

false

failure-count The number of logging failures since the handler was initialized true

max-failure-count The maximum number of logging failures before disabling this

handler

false

disabled-due-to-failure if this handler was disabled due to logging failurestrue true

In our standard configuration and ,path=audit-log.log relative-to=jboss.server.data.dir

typically this will be $JBOSS_HOME/standalone/data/audit-log.log

Syslog handler
The default configuration does not have syslog audit logging set up. Syslog is a better choice for audit

logging since you can log to a remote syslog server, and secure the authentication to happen over TLS with

client certificate authentication. Syslog servers vary a lot in their capabilities so not all settings in this section

apply to all syslog servers. We have tested with .rsyslog

The address for the syslog handler is

 and just like file handlers you can/core-service=management/access=audit/syslog-handler=*

add as many syslog entries as you like. The syslog handler resources reference the main RFC's for syslog a

fair bit, for reference they can be found at:

*http://www.ietf.org/rfc/rfc3164.txt

*http://www.ietf.org/rfc/rfc5424.txt

*http://www.ietf.org/rfc/rfc6587.txt

The syslog handler resource has the following attributes:

http://www.rsyslog.com
http://www.ietf.org/rfc/rfc3164.txt
http://www.ietf.org/rfc/rfc5424.txt
http://www.ietf.org/rfc/rfc6587.txt

Latest WildFly Documentation

JBoss Community Documentation Page of 536 2293

formatter The name of a JSON formatter to use to format the log records false

failure-count The number of logging failures since the handler was initialized true

max-failure-count The maximum number of logging failures before disabling this

handler

false

disabled-due-to-failure if this handler was disabled due to logging failurestrue true

syslog-format Whether to set the syslog format to the one specified in

RFC-5424 or RFC-3164

false

max-length The maximum length in bytes a log message, including the

header, is allowed to be. If undefined, it will default to 1024 bytes

if the syslog-format is RFC3164, or 2048 bytes if the

syslog-format is RFC5424.

false

truncate Whether or not a message, including the header, should truncate

the message if the length in bytes is greater than the maximum

length. If set to false messages will be split and sent with the

same header values

false

When adding a syslog handler you also need to add the protocol it will use to communicate with the syslog

server. The valid choices for protocol are , and . The protocol must be added at the same timeUDP TCP TLS

as you add the syslog handler, or it will fail. Also, you can only add one protocol for the handler.

UDP
Configures the handler to use UDP to communicate with the syslog server. The address of the resourceUDP

is . The attributes/core-service=management/access=audit/syslog-handler=*/protocol=udp

of the resource are:UDP

Attribute Description

host The host of the syslog server for the udp requests

port The port of the syslog server listening for the udp requests

Latest WildFly Documentation

JBoss Community Documentation Page of 537 2293

TCP
Configures the handler to use TCP to communicate with the syslog server. The address of the resourceTCP

is . The attributes/core-service=management/access=audit/syslog-handler=*/protocol=tcp

of the resource are:TCP

Attribute Description

host The host of the syslog server for the tcp requests

port The port of the syslog server listening for the tcp requests

message-transfer The message transfer setting as described in section 3.4 of RFC-6587. This can

either be OCTET_COUNTING as described in section 3.4.1 of RFC-6587, or

NON_TRANSPARENT_FRAMING as described in section 3.4.1 of RFC-6587

TLS
Configures the handler to use TLC to communicate securely with the syslog server. The address of the TLS

resource is . The/core-service=management/access=audit/syslog-handler=*/protocol=tls

attributes of the resource are the same as for :TLS TCP

Attribute Description

host The host of the syslog server for the tls requests

port The port of the syslog server listening for the tls requests

message-transfer The message transfer setting as described in section 3.4 of RFC-6587. This can

either be OCTET_COUNTING as described in section 3.4.1 of RFC-6587, or

NON_TRANSPARENT_FRAMING as described in section 3.4.1 of RFC-6587

If the syslog server's TLS certificate is not signed by a certificate signing authority, you will need to set up a

truststore to trust the certificate. The resource for the trust store is a child of the resource, and the fullTLS

address is

/core-service=management/access=audit/syslog-handler=*/protocol=tls/authentication=truststore

. The attributes of the truststore resource are:

Attribute Description

keystore-password The password for the truststore

keystore-path The path of the truststore

keystore-relative-to The name of another previously named path, or of one of the standard paths

provided by the system. If is provided, the valuekeystore-relative-to

of the attribute is treated as relative to the path specified bykeystore-path

this attribute

Latest WildFly Documentation

JBoss Community Documentation Page of 538 2293

TLS with Client certificate authentication.

If you have set up the syslog server to require client certificate authentication, when creating your handler

you will also need to set up a client certificate store containing the certificate to be presented to the syslog

server. The address of the client certificate store resource is

/core-service=management/access=audit/syslog-handler=*/protocol=tls/authentication=client-certificate-store

and its attributes are:

Attribute Description

keystore-password The password for the keystore

key-password The password for the keystore key

keystore-path The path of the keystore

keystore-relative-to The name of another previously named path, or of one of the standard paths

provided by the system. If is provided, the valuekeystore-relative-to

of the attribute is treated as relative to the path specified bykeystore-path

this attribute

Logger configuration
The final part that needs configuring is the logger for the management operations. This references one or

more handlers and is configured at /core-service=management/access=audit/logger=audit-log

. The attributes for this resource are:

Attribute Description

enabled to enable logging of the management operationstrue

log-boot to log the management operations when booting the server, otherwisetrue false

log-read-only If all operations will be audit logged, if only operations that change thetrue false

model will be logged

Then which handlers are used to log the management operations are configured as children ofhandler=*

the logger.

Domain Mode (host specific configuration)
In domain mode audit logging is configured for each host in its file. This means that whenhost.xml

connecting to the DC, the configuration of the audit logging is under the host's entry, e.g. here is the default

configuration:

Latest WildFly Documentation

JBoss Community Documentation Page of 539 2293

[domain@localhost:9990 /]

/host=master/core-service=management/access=audit:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {

 "file-handler" => {

 "host-file" => {

 "formatter" => "json-formatter",

 "max-failure-count" => 10,

 "path" => "audit-log.log",

 "relative-to" => "jboss.domain.data.dir"

 },

 "server-file" => {

 "formatter" => "json-formatter",

 "max-failure-count" => 10,

 "path" => "audit-log.log",

 "relative-to" => "jboss.server.data.dir"

 }

 },

 "json-formatter" => {"json-formatter" => {

 "compact" => false,

 "date-format" => "yyyy-MM-dd HH:mm:ss",

 "date-separator" => " - ",

 "escape-control-characters" => false,

 "escape-new-line" => false,

 "include-date" => true

 }},

 "logger" => {"audit-log" => {

 "enabled" => false,

 "log-boot" => true,

 "log-read-only" => false,

 "handler" => {"host-file" => {}}

 }},

 "server-logger" => {"audit-log" => {

 "enabled" => false,

 "log-boot" => true,

 "log-read-only" => false,

 "handler" => {"server-file" => {}}

 }},

 "syslog-handler" => undefined

 }

}

We now have two file handlers, one called used to configure the file to log managementhost-file

operations on the host, and one called used to log management operations executed on theserver-file

servers. Then is used to configure the logger for the host controller, referencing the logger=audit-log

 handler. is used to configure the logger for the managedhost-file server-logger=audit-log

servers, referencing the handler. The attributes for are theserver-file server-logger=audit-log

same as for in the previous section. Having the host controller and serverserver-logger=audit-log

loggers configured independently means we can control audit logging for managed servers and the host

controller independently.

Latest WildFly Documentation

JBoss Community Documentation Page of 540 2293

5.19.6 Canceling management operations

WildFly includes the ability to use the CLI to cancel management requests that are not proceeding normally.

Latest WildFly Documentation

JBoss Community Documentation Page of 541 2293

The cancel-non-progressing-operation operation
The operation instructs the target process to find any operationcancel-non-progressing-operation

that isn't proceeding normally and cancel it.

On a standalone server:

[standalone@localhost:9990 /]

/core-service=management/service=management-operations:cancel-non-progressing-operation

{

 "outcome" => "success",

 "result" => "-1155777943"

}

The result value is an internal identification number for the operation that was cancelled.

On a managed domain host controller, the equivalent resource is in the host=<hostname> portion of the

management resource tree:

[domain@localhost:9990 /]

/host=host-a/core-service=management/service=management-operations:cancel-non-progressing-operation
{

"outcome" => "success",

 "result" => "2156877946"

}

An operation can be cancelled on an individual managed domain server as well:

[domain@localhost:9990 /]

/host=host-a/server=server-one/core-service=management/service=management-operations:cancel-non-progressing-operation
{

"outcome" => "success",

 "result" => "6497786512"

}

An operation is considered to be not proceeding normally if it has been executing with the exclusive

operation lock held for longer than 15 seconds. Read-only operations do not acquire the exclusive operation

lock, so this operation will not cancel read-only operations. Operations blocking waiting for another operation

to release the exclusive lock will also not be cancelled.

If there isn't any operation that is failing to proceed normally, there will be a failure response:

[standalone@localhost:9990 /]

/core-service=management/service=management-operations:cancel-non-progressing-operation

{

 "outcome" => "failed",

 "failure-description" => "WFLYDM0089: No operation was found that has been holding the

operation execution write lock for long than [15] seconds",

 "rolled-back" => true

}

Latest WildFly Documentation

JBoss Community Documentation Page of 542 2293

The find-non-progressing-operation operation
To simply learn the id of an operation that isn't proceeding normally, but not cancel it, use the

 operation:find-non-progressing-operation

[standalone@localhost:9990 /]

/core-service=management/service=management-operations:find-non-progressing-operation

{

 "outcome" => "success",

 "result" => "-1155777943"

}

If there is no non-progressing operation, the outcome will still be but the result will be .success undefined

Once the id of the operation is known, the management resource for the operation can be examined to learn

more about its status.

Examining the status of an active operation
There is a management resource for any currently executing operation that can be queried:

[standalone@localhost:9990 /]

/core-service=management/service=management-operations/active-operation=-1155777943:read-resource(include-runtime=true)
{

"outcome" => "success",

 "result" => {

 "access-mechanism" => "undefined",

 "address" => [

 ("deployment" => "example")

],

 "caller-thread" => "management-handler-thread - 24",

 "cancelled" => false,

 "exclusive-running-time" => 101918273645L,

 "execution-status" => "awaiting-stability",

 "operation" => "deploy",

 "running-time" => 101918279999L

 }

}

The response includes the following attributes:

Latest WildFly Documentation

JBoss Community Documentation Page of 543 2293

Field Meaning

access-mechanism The mechanism used to submit a request to the server. NATIVE, JMX, HTTP

address The address of the resource targeted by the operation. The value in the final

element of the address will be '<hidden>' if the caller is not authorized to address

the operation's target resource.

caller-thread The name of the thread that is executing the operation.

cancelled Whether the operation has been cancelled.

exclusive-running-time Amount of time in nanoseconds the operation has been executing with the

exclusive operation execution lock held, or -1 if the operation does not hold the

exclusive execution lock.

execution-status The current activity of the operation. See below for details.

operation The name of the operation, or '<hidden>' if the caller is not authorized to address

the operation's target resource.

running-time Amount of time the operation has been executing, in nanoseconds.

The following are the values for the attribute:execution-status

Value Meaning

executing The caller thread is actively executing

awaiting-other-operation The caller thread is blocking waiting for another operation to release the

exclusive execution lock

awaiting-stability The caller thread has made changes to the service container and is waiting for

the service container to stabilize

completing The operation is committed and is completing execution

rolling-back The operation is rolling back

All currently executing operations can be viewed in one request using the read-children-resources

operation:

Latest WildFly Documentation

JBoss Community Documentation Page of 544 2293

[standalone@localhost:9990 /]

/core-service=management/service=management-operations:read-children-resources(child-type=active-operation)
{

"outcome" => "success",

 "result" => {"-1155777943" => {

 "access-mechanism" => "undefined",

 "address" => [

 ("deployment" => "example")

],

 "caller-thread" => "management-handler-thread - 24",

 "cancelled" => false,

 "exclusive-running-time" => 101918273645L,

 "execution-status" => "awaiting-stability",

 "operation" => "deploy",

 "running-time" => 101918279999L

 },

 {"-1246693202" => {

 "access-mechanism" => "undefined",

 "address" => [

 ("core-service" => "management"),

 ("service" => "management-operations")

],

 "caller-thread" => "management-handler-thread - 30",

 "cancelled" => false,

 "exclusive-running-time" => -1L,

 "execution-status" => "executing",

 "operation" => "read-children-resources",

 "running-time" => 3356000L

 }}

}

Canceling a specific operation
The operation is a convenience operation for identifying andcancel-non-progressing-operation

canceling an operation. However, an administrator can examine the active-operation resources to identify

any operation, and then directly cancel it by invoking the operation on the resource for the desiredcancel

operation.

[standalone@localhost:9990 /]

/core-service=management/service=management-operations/active-operation=-1155777943:cancel

{

 "outcome" => "success",

 "result" => undefined

}

Latest WildFly Documentation

JBoss Community Documentation Page of 545 2293

Controlling operation blocking time
As an operation executes, the execution thread may block at various points, particularly while waiting for the

service container to stabilize following any changes. Since an operation may be holding the exclusive

execution lock while blocking, in WildFly execution behavior was changed to ensure that blocking will

eventually time out, resulting in roll back of the operation.

The default blocking timeout is 300 seconds. This is intentionally long, as the idea is to only trigger a timeout

when something has definitely gone wrong with the operation, without any false positives.

An administrator can control the blocking timeout for an individual operation by using the

 operation header. For example, if a particular deployment is known to take anblocking-timeout

extremely long time to deploy, the default 300 second timeout could be increased:

[standalone@localhost:9990 /] deploy /tmp/mega.war --headers={blocking-timeout=450}

Note the blocking timeout is a guaranteed maximum execution time for an operation. If it only a timeoutnot

that will be enforced at various points during operation execution.

5.19.7 Configuration file history

The management operations may modify the model. When this occurs the xml backing the model is written

out again reflecting the latest changes. In addition a full history of the file is maintained. The history of the file

goes in a separate directory under the configuration directory.

As mentioned in the default configuration file can be selected usingCommand line parameters#parameters

a command-line parameter. For a standalone server instance the history of the active isstandalone.xml

kept in /standalone_xml_history (See jboss.server.config.dir Command line

 for more details). For a domain the active and parameters#standalone_system_properties domain.xml

 histories are kept in /domain_xml_history and host.xml jboss.domain.config.dir

/host_xml_history.jboss.domain.config.dir

The rest of this section will only discuss the history for . The concepts are exactly thestandalone.xml

same for and .domain.xml host.xml

Within itself following a successful first time boot we end up with three newstandalone_xml_history

files:

https://docs.jboss.org/author/display/WFLY10/Command+line+parameters#Commandlineparameters-parameters
https://docs.jboss.org/author/display/WFLY10/Command+line+parameters#Commandlineparameters-standalonesystemproperties
https://docs.jboss.org/author/display/WFLY10/Command+line+parameters#Commandlineparameters-standalonesystemproperties

Latest WildFly Documentation

JBoss Community Documentation Page of 546 2293

 - This contains the original configuration that was used the first time westandalone.initial.xml

successfully booted. This file will never be overwritten. You may of course delete the history directory

and any files in it at any stage.

 - This contains the original configuration that was used for the laststandalone.boot.xml

successful boot of the server. This gets overwritten every time we boot the server successfully.

 - At this stage the contents will be identical to .standalone.last.xml standalone.boot.xml

This file gets overwritten each time the server successfully writes the configuration, if there was an

unexpected failure writing the configuration this file is the last known successful write.

 contains a directory called which should be empty. Now if westandalone_xml_history current

execute a management operation that modifies the model, for example adding a new system property using

the CLI:

[standalone@localhost:9990 /] /system-property=test:add(value="test123")

{"outcome" => "success"}

What happens is:

The original configuration file is backed up to

. The next change to the modelstandalone_xml_history/current/standalone.v1.xml

would result in a file called etc. The 100 most recent of these files are kept.standalone.v2.xml

The change is applied to the original configuration file

The changed original configuration file is copied to standalone.last.xml

When restarting the server, any existing directory is moved to astandalone_xml_history/current

new timestamped folder within the , and a new folder is created.standalone_xml_history current

These timestamped folders are kept for 30 days.

Snapshots
In addition to the backups taken by the server as described above you can manually take take snapshots

which will be stored in the folder under the folder, the automatic backupssnapshot _xml_history

described above are subject to automatic house keeping so will eventually be automatically removed, the

snapshots on the other hand can be entirely managed by the administrator.

You may also take your own snapshots using the CLI:

[standalone@localhost:9990 /] :take-snapshot

{

 "outcome" => "success",

 "result" => {"name" =>

"/Users/kabir/wildfly/standalone/configuration/standalone_xml_history/snapshot/20110630-172258657standalone.xml"}
}

You can also use the CLI to list all the snapshots

Latest WildFly Documentation

JBoss Community Documentation Page of 547 2293

[standalone@localhost:9990 /] :list-snapshots

{

 "outcome" => "success",

 "result" => {

 "directory" =>

"/Users/kabir/wildfly/standalone/configuration/standalone_xml_history/snapshot",

 "names" => [

 "20110630-165714239standalone.xml",

 "20110630-165821795standalone.xml",

 "20110630-170113581standalone.xml",

 "20110630-171411463standalone.xml",

 "20110630-171908397standalone.xml",

 "20110630-172258657standalone.xml"

]

 }

}

 To delete a particular snapshot:

[standalone@localhost:9990 /] :delete-snapshot(name="20110630-165714239standalone.xml")

{"outcome" => "success"}

and to delete all snapshots:

[standalone@localhost:9990 /] :delete-snapshot(name="all")

{"outcome" => "success"}

In domain mode executing the snapshot operations against the root node will work against the domain

model. To do this for a host model you need to navigate to the host in question:

[domain@localhost:9990 /] /host=master:list-snapshots

{

 "outcome" => "success",

 "result" => {

 "domain-results" => {"step-1" => {

 "directory" =>

"/Users/kabir/wildfly/domain/configuration/host_xml_history/snapshot",

 "names" => [

 "20110630-141129571host.xml",

 "20110630-172522225host.xml"

]

 }},

 "server-operations" => undefined

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 548 2293

Subsequent Starts
For subsequent server starts it may be desirable to take the state of the server back to one of the previously

known states, for a number of items an abbreviated reverence to the file can be used:

Abreviation Parameter Description

initial --server-config=initial This will start the server using the initial configuration first

used to start the server.

boot --server-config=boot This will use the configuration from the last successful boot

of the server.

last --server-config=last This will start the server using the configuration backed up

from the last successful save.

v? --server-config=v? This will server the _xml_history/current folder for the

configuration where ? is the number of the backup to use.

-? --server-config=-? The server will be started after searching the snapshot

folder for the configuration which matches this prefix.

In addition to this the parameter can always be used to specify a configuration relative--server-config

to the and finally if no matching configuration is found an attempt to locatejboss.server.config.dir

the configuration as an absolute path will be made.

5.19.8 Application deployment

Managed Domain
In a managed domain, deployments are associated with a (see server-group Core management

). Any server within the server group will then be provided with that deployment.concepts

The domain and host controller components manage the distribution of binaries across network boundaries.

Deployment Commands
Distributing deployment binaries involves two steps: uploading the deployment to the repository the domain

controller will use to distribute its contents, and then assigning the deployment to one or more server groups.

You can do this in one sweep with the CLI:

[domain@localhost:9990 /] deploy ~/Desktop/test-application.war

Either --all-server-groups or --server-groups must be specified.

[domain@localhost:9990 /] deploy ~/Desktop/test-application.war --all-server-groups

'test-application.war' deployed successfully.

Latest WildFly Documentation

JBoss Community Documentation Page of 549 2293

The deployment will be available to the domain controller, assigned to a server group, and deployed on all

running servers in that group:

[domain@localhost:9990 /] :read-children-names(child-type=deployment)

{

 "outcome" => "success",

 "result" => [

 "mysql-connector-java-5.1.15.jar",

 "test-application.war"

]

}

[domain@localhost:9990 /]

/server-group=main-server-group/deployment=test-application.war:read-resource(include-runtime)

{

 "outcome" => "success",

 "result" => {

 "enabled" => true,

 "name" => "test-application.war",

 "managed" => true,

 "runtime-name" => "test-application.war"

 }

}

If you only want the deployment deployed on servers in some server groups, but not all, use the

 parameter instead of :--server-groups -all-server-groups

[domain@localhost:9990 /] deploy ~/Desktop/test-application.war

--server-groups=main-server-group,another-group

'test-application.war' deployed successfully.

If you have a new version of the deployment that you want to deploy replacing an existing one, use the

 parameter:--force

[domain@localhost:9990 /] deploy ~/Desktop/test-application.war --all-server-groups --force

'test-application.war' deployed successfully.

You can remove binaries from server groups with the command:undeploy

[domain@localhost:9990 /] undeploy test-application.war --all-relevant-server-groups

Successfully undeployed test-application.war.

[domain@localhost:9990 /]

/server-group=main-server-group:read-children-names(child-type=deployment)

{

 "outcome" => "success",

 "result" => []

}

Latest WildFly Documentation

JBoss Community Documentation Page of 550 2293

If you only want to undeploy from some server groups but not others, use the parameter-server-groups

instead of .-all-relevant-server-groups

The CLI command supports a number of other parameters that can control behavior. Use the deploy

 parameter to learn more:--help

[domain@localhost:9990 /] deploy --help

[...]

Managing deployments through the web interface provides an alternate, sometimes simpler

approach.

Exploded managed deployments
Managed and unmanaged deployments can be 'exploded', i.e. on the filesystem in the form of a directory

structure whose structure corresponds to an unzipped version of the archive. An exploded deployment can

be convenient to administer if your administrative processes involve inserting or replacing files from a base

version in order to create a version tailored for a particular use (for example, copy in a base deployment and

then copy in a jboss-web.xml file to tailor a deployment for use in WildFly.) Exploded deployments are also

nice in some development scenarios, as you can replace static content (e.g. .html, .css) files in the

deployment and have the new content visible immediately without requiring a redeploy.

Since unmanaged deployment content is directly in your charge, the following operations only make sense

for a managed deployment.

[domain@localhost:9990 /] /deployment=exploded.war:add(content=[{empty=true}])

This will create an empty exploded deployment to which you'll be able to add content. The contentempty

parameter is required to check that you really intend to create an empty deployment and not just forget to

define the content.

[domain@localhost:9990 /] /deployment=kitchensink.ear:explode()

This will 'explode' an existing archive deployment to its exploded format. This operation is not recursive so

you need to explode the sub-deployment if you want to be able to manipulate the sub-deployment content.

You can do this by specifying the sub-deployment archive as a parameter to the explode operation.path

[domain@localhost:9990 /]

/deployment=kitchensink.ear:explode(path=wildfly-kitchensink-ear-web.war)

Now you can add or remove content to your exploded deployment. Note that per-default this will overwrite

existing contents, you can specify the overwrite parameter to make the operation fail if the content already

exists.

Latest WildFly Documentation

JBoss Community Documentation Page of 551 2293

[domain@localhost:9990 /]

/deployment=exploded.war:add-content(content=[{target-path=WEB-INF/classes/org/jboss/as/test/deployment/trivial/ServiceActivatorDeployment.class,

input-stream-index=/home/demo/org/jboss/as/test/deployment/trivial/ServiceActivatorDeployment.class},

{target-path=META-INF/MANIFEST.MF, input-stream-index=/home/demo/META-INF/MANIFEST.MF},

{target-path=META-INF/services/org.jboss.msc.service.ServiceActivator,

input-stream-index=/home/demo/META-INF/services/org.jboss.msc.service.ServiceActivator}])

Each content specifies a source content and the target path to which it will be copied relative to the

deployment root. With WildFly 11 you can use (which was a convenient way to pass ainput-stream-index

stream of content) from the CLI by pointing it to a local file.

[domain@localhost:9990 /]

/deployment=exploded.war:remove-content(paths=[WEB-INF/classes/org/jboss/as/test/deployment/trivial/ServiceActivatorDeployment.class,

META-INF/MANIFEST.MF, META-INF/services/org.jboss.msc.service.ServiceActivator])

Now you can list the content of an exploded deployment, or just some part of it.

[domain@localhost:9990 /] /deployment=kitchensink.ear:browse-content(archive=false,

path=wildfly-kitchensink-ear-web.war)

{

 "outcome" => "success",

 "result" => [

 {

 "path" => "META-INF/",

 "directory" => true

 },

 {

 "path" => "META-INF/MANIFEST.MF",

 "directory" => false,

 "file-size" => 128L

 },

 {

 "path" => "WEB-INF/",

 "directory" => true

 },

 {

 "path" => "WEB-INF/templates/",

 "directory" => true

 },

 {

 "path" => "WEB-INF/classes/",

 "directory" => true

 },

 {

 "path" => "WEB-INF/classes/org/",

 "directory" => true

 },

 {

 "path" => "WEB-INF/classes/org/jboss/",

 "directory" => true

 },

 {

Latest WildFly Documentation

JBoss Community Documentation Page of 552 2293

 "path" => "WEB-INF/classes/org/jboss/as/",

 "directory" => true

 },

 {

 "path" => "WEB-INF/classes/org/jboss/as/quickstarts/",

 "directory" => true

 },

 {

 "path" => "WEB-INF/classes/org/jboss/as/quickstarts/kitchensink_ear/",

 "directory" => true

 },

 {

 "path" => "WEB-INF/classes/org/jboss/as/quickstarts/kitchensink_ear/controller/",

 "directory" => true

 },

 {

 "path" => "WEB-INF/classes/org/jboss/as/quickstarts/kitchensink_ear/rest/",

 "directory" => true

 },

 {

 "path" => "WEB-INF/classes/org/jboss/as/quickstarts/kitchensink_ear/util/",

 "directory" => true

 },

 {

 "path" => "resources/",

 "directory" => true

 },

 {

 "path" => "resources/css/",

 "directory" => true

 },

 {

 "path" => "resources/gfx/",

 "directory" => true

 },

 {

 "path" => "WEB-INF/templates/default.xhtml",

 "directory" => false,

 "file-size" => 2113L

 },

 {

 "path" => "WEB-INF/faces-config.xml",

 "directory" => false,

 "file-size" => 1365L

 },

 {

 "path" =>

"WEB-INF/classes/org/jboss/as/quickstarts/kitchensink_ear/controller/MemberController.class",

 "directory" => false,

 "file-size" => 2750L

 },

 {

 "path" =>

"WEB-INF/classes/org/jboss/as/quickstarts/kitchensink_ear/rest/MemberResourceRESTService.class",

 "directory" => false,

 "file-size" => 6363L

 },

 {

Latest WildFly Documentation

JBoss Community Documentation Page of 553 2293

 "path" =>

"WEB-INF/classes/org/jboss/as/quickstarts/kitchensink_ear/rest/JaxRsActivator.class",

 "directory" => false,

 "file-size" => 464L

 },

 {

 "path" =>

"WEB-INF/classes/org/jboss/as/quickstarts/kitchensink_ear/util/WebResources.class",

 "directory" => false,

 "file-size" => 667L

 },

 {

 "path" => "WEB-INF/beans.xml",

 "directory" => false,

 "file-size" => 1262L

 },

 {

 "path" => "index.xhtml",

 "directory" => false,

 "file-size" => 3603L

 },

 {

 "path" => "index.html",

 "directory" => false,

 "file-size" => 949L

 },

 {

 "path" => "resources/css/screen.css",

 "directory" => false,

 "file-size" => 4025L

 },

 {

 "path" => "resources/gfx/headerbkg.png",

 "directory" => false,

 "file-size" => 1147L

 },

 {

 "path" => "resources/gfx/asidebkg.png",

 "directory" => false,

 "file-size" => 1374L

 },

 {

 "path" => "resources/gfx/banner.png",

 "directory" => false,

 "file-size" => 41473L

 },

 {

 "path" => "resources/gfx/bkg-blkheader.png",

 "directory" => false,

 "file-size" => 116L

 },

 {

 "path" => "resources/gfx/rhjb_eap_logo.png",

 "directory" => false,

 "file-size" => 2637L

 },

 {

 "path" => "META-INF/maven/",

Latest WildFly Documentation

JBoss Community Documentation Page of 554 2293

 "directory" => true

 },

 {

 "path" => "META-INF/maven/org.wildfly.quickstarts/",

 "directory" => true

 },

 {

 "path" => "META-INF/maven/org.wildfly.quickstarts/wildfly-kitchensink-ear-web/",

 "directory" => true

 },

 {

 "path" =>

"META-INF/maven/org.wildfly.quickstarts/wildfly-kitchensink-ear-web/pom.xml",

 "directory" => false,

 "file-size" => 4128L

 },

 {

 "path" =>

"META-INF/maven/org.wildfly.quickstarts/wildfly-kitchensink-ear-web/pom.properties",

 "directory" => false,

 "file-size" => 146L

 }

]

}

You also have a operation but since it returns a binary stream, this is not displayable from theread-content

CLI.

[domain@localhost:9990 /] /deployment=kitchensink.ear:read-content(path=META-INF/MANIFEST.MF)

{

 "outcome" => "success",

 "result" => {"uuid" => "b373d587-72ee-4b1e-a02a-71fbb0c85d32"},

 "response-headers" => {"attached-streams" => [{

 "uuid" => "b373d587-72ee-4b1e-a02a-71fbb0c85d32",

 "mime-type" => "text/plain"

 }]}

}

The management CLI however provides high level commands to display or save binary stream attachments:

[domain@localhost:9990 /] attachment display

--operation=/deployment=kitchensink.ear:read-content(path=META-INF/MANIFEST.MF)

ATTACHMENT d052340a-abb7-4a66-aa24-4eeeb6b256be:

Manifest-Version: 1.0

Archiver-Version: Plexus Archiver

Built-By: mjurc

Created-By: Apache Maven 3.3.9

Build-Jdk: 1.8.0_91

[domain@localhost:9990 /] attachment save

--operation=/deployment=kitchensink.ear:read-content(path=META-INF/MANIFEST.MF) --file=example

File saved to /home/mjurc/wildfly/build/target/wildfly-11.0.0.Alpha1-SNAPSHOT/example

Latest WildFly Documentation

JBoss Community Documentation Page of 555 2293

XML Configuration File
When you deploy content, the domain controller adds two types of entries to the configurationdomain.xml

file, one showing global information about the deployment, and another for each relevant server group

showing how it is used by that server group:

[...]

<deployments>

 <deployment name="test-application.war"

 runtime-name="test-application.war">

 <content sha1="dda9881fa7811b22f1424b4c5acccb13c71202bd"/>

 </deployment>

</deployments>

[...]

<server-groups>

 <server-group name="main-server-group" profile="default">

 [...]

 <deployments>

 <deployment name="test-application.war" runtime-name="test-application.war"/>

 </deployments>

 </server-group>

</server-groups>

[...]

(See domain/configuration/domain.xml)

Standalone Server
Deployments on a standalone server work in a similar way to those on managed domains. The main

difference is that there are no server group associations.

Deployment Commands
The same CLI commands used for managed domains work for standalone servers when deploying and

removing an application:

[standalone@localhost:9990 /] deploy ~/Desktop/test-application.war

'test-application.war' deployed successfully.

[standalone@localhost:9990 /] undeploy test-application.war

Successfully undeployed test-application.war.

Deploying Using the Deployment Scanner
Deployment content (for example, war, ear, jar, and sar files) can be placed in the standalone/deployments

directory of the WildFly distribution, in order to be automatically deployed into the server runtime. For this to

work the subsystem must be present. The scanner periodically checks the contentsdeployment-scanner

of the deployments directory and reacts to changes by updating the server.

Latest WildFly Documentation

JBoss Community Documentation Page of 556 2293

Users are encouraged to use the WildFly management APIs to upload and deploy deployment

content instead of relying on the deployment scanner that periodically scans the directory,

particularly if running production systems.

Deployment Scanner Modes
The WildFly filesystem deployment scanner operates in one of two different modes, depending on whether it

will directly monitor the deployment content in order to decide to deploy or redeploy it.

:Auto-deploy mode

The scanner will directly monitor the deployment content, automatically deploying new content and

redeploying content whose timestamp has changed. This is similiar to the behavior of previous AS releases,

although there are differences:

A change in any file in an exploded deployment triggers redeploy. Because EE 6+ applications do not

require deployment descriptors,

there is no attempt to monitor deployment descriptors and only redeploy when a deployment

descriptor changes.

The scanner will place marker files in this directory as an indication of the status of its attempts to

deploy or undeploy content. These are detailed below.

:Manual deploy mode

The scanner will not attempt to directly monitor the deployment content and decide if or when the end user

wishes the content to be deployed. Instead, the scanner relies on a system of marker files, with the user's

addition or removal of a marker file serving as a sort of command telling the scanner to deploy, undeploy or

redeploy content.

Auto-deploy mode and manual deploy mode can be independently configured for zipped deployment content

and exploded deployment content. This is done via the "auto-deploy" attribute on the deployment-scanner

element in the standalone.xml configuration file:

<deployment-scanner scan-interval="5000" relative-to="jboss.server.base.dir"

 path="deployments" auto-deploy-zipped="true" auto-deploy-exploded="false"/>

By default, auto-deploy of zipped content is enabled, and auto-deploy of exploded content is disabled.

Manual deploy mode is strongly recommended for exploded content, as exploded content is inherently

vulnerable to the scanner trying to auto-deploy partially copied content.

Marker Files
The marker files always have the same name as the deployment content to which they relate, but with an

additional file suffix appended. For example, the marker file to indicate the example.war file should be

deployed is named example.war.dodeploy. Different marker file suffixes have different meanings.

The relevant marker file types are:

Latest WildFly Documentation

JBoss Community Documentation Page of 557 2293

File Purpose

.dodeploy Placed by the user to indicate that the given content should

be deployed into the runtime (or redeployed if already

deployed in the runtime.)

.skipdeploy Disables auto-deploy of the content for as long as the file

is present. Most useful for allowing updates to exploded

content without having the scanner initiate redeploy in the

middle of the update. Can be used with zipped content as

well, although the scanner will detect in-progress changes

to zipped content and wait until changes are complete.

.isdeploying Placed by the deployment scanner service to indicate that it

has noticed a .dodeploy file or new or updated auto-deploy

mode content and is in the process of deploying the content.

This marker file will be deleted when the deployment process

completes.

.deployed Placed by the deployment scanner service to indicate that the

given content has been deployed into the runtime. If an end

user deletes this file, the content will be undeployed.

.failed Placed by the deployment scanner service to indicate that the

given content failed to deploy into the runtime. The content

of the file will include some information about the cause of

the failure. Note that with auto-deploy mode, removing this

file will make the deployment eligible for deployment again.

.isundeploying Placed by the deployment scanner service to indicate that it

has noticed a .deployed file has been deleted and the

content is being undeployed. This marker file will be deleted

when the undeployment process completes.

.undeployed Placed by the deployment scanner service to indicate that the

given content has been undeployed from the runtime. If an end

user deletes this file, it has no impact.

.pending Placed by the deployment scanner service to indicate that it

has noticed the need to deploy content but has not yet

instructed the server to deploy it. This file is created if

the scanner detects that some auto-deploy content is still in

the process of being copied or if there is some problem that

prevents auto-deployment. The scanner will not instruct the

server to deploy or undeploy any content (not just the

directly affected content) as long as this condition holds.

Basic workflows:

All examples assume variable $JBOSS_HOME points to the root of the WildFly distribution.

Latest WildFly Documentation

JBoss Community Documentation Page of 558 2293

1.

2.

1.

2.

1.

1.

1.

2.

1.

2.

3.

4.

1.

2.

3.

1.

1.

2.

1.

A) Add new zipped content and deploy it:

cp target/example.war/ $JBOSS_HOME/standalone/deployments

(Manual mode only) touch $JBOSS_HOME/standalone/deployments/example.war.dodeploy

B) Add new unzipped content and deploy it:

cp -r target/example.war/ $JBOSS_HOME/standalone/deployments

(Manual mode only) touch $JBOSS_HOME/standalone/deployments/example.war.dodeploy

C) Undeploy currently deployed content:

rm $JBOSS_HOME/standalone/deployments/example.war.deployed

D) Auto-deploy mode only: Undeploy currently deployed content:

rm $JBOSS_HOME/standalone/deployments/example.war

E) Replace currently deployed zipped content with a new version and deploy it:

cp target/example.war/ $JBOSS_HOME/standalone/deployments

(Manual mode only) touch $JBOSS_HOME/standalone/deployments/example.war.dodeploy

F) Manual mode only: Replace currently deployed unzipped content with a new version and deploy it:

rm $JBOSS_HOME/standalone/deployments/example.war.deployed

wait for $JBOSS_HOME/standalone/deployments/example.war.undeployed file to appear

cp -r target/example.war/ $JBOSS_HOME/standalone/deployments

touch $JBOSS_HOME/standalone/deployments/example.war.dodeploy

G) Auto-deploy mode only: Replace currently deployed unzipped content with a new version and deploy it:

touch $JBOSS_HOME/standalone/deployments/example.war.skipdeploy

cp -r target/example.war/ $JBOSS_HOME/standalone/deployments

rm $JBOSS_HOME/standalone/deployments/example.war.skipdeploy

H) Manual mode only: Live replace portions of currently deployed unzipped content without redeploying:

cp -r target/example.war/foo.html $JBOSS_HOME/standalone/deployments/example.war

I) Auto-deploy mode only: Live replace portions of currently deployed unzipped content without redeploying:

touch $JBOSS_HOME/standalone/deployments/example.war.skipdeploy

cp -r target/example.war/foo.html $JBOSS_HOME/standalone/deployments/example.war

J) Manual or auto-deploy mode: Redeploy currently deployed content (i.e. bounce it with no content change):

touch $JBOSS_HOME/standalone/deployments/example.war.dodeploy

K) Auto-deploy mode only: Redeploy currently deployed content (i.e. bounce it with no content change):

Latest WildFly Documentation

JBoss Community Documentation Page of 559 2293

1. touch $JBOSS_HOME/standalone/deployments/example.war

The above examples use Unix shell commands. Windows equivalents are:

cp src dest --> xcopy /y src dest

cp -r src dest --> xcopy /e /s /y src dest

rm afile --> del afile

touch afile --> echo>> afile

Note that the behavior of 'touch' and 'echo' are different but the differences are not relevant to the

usages in the examples above.

Managed and Unmanaged Deployments
WildFly supports two mechanisms for dealing with deployment content – managed and unmanaged

deployments.

With a managed deployment the server takes the deployment content and copies it into an internal content

repository and thereafter uses that copy of the content, not the original user-provided content. The server is

thereafter responsible for the content it uses.

With an unmanaged deployment the user provides the local filesystem path of deployment content, and the

server directly uses that content. However the user is responsible for ensuring that content, e.g. for making

sure that no changes are made to it that will negatively impact the functioning of the deployed application.

To help you differentiate managed from unmanaged deployments the deployment model has a runtime

boolean attribute 'managed'.

Managed deployments have a number of benefits over unmanaged:

They can be manipulated by remote management clients, not requiring access to the server

filesystem.

In a managed domain, WildFly/EAP will take responsibility for replicating a copy of the deployment to

all hosts/servers in the domain where it is needed. With an unmanaged deployment, it is the user's

responsibility to have the deployment available on the local filesystem on all relevant hosts, at a

consistent path.

The deployment content actually used is stored on the filesystem in the internal content repository,

which should help shelter it from unintended changes.

All of the previous examples above illustrate using managed deployments, except for any discussion of

deployment scanner handling of exploded deployments. In WildFly 10 and earlier exploded deployments are

always unmanaged, this is no longer the case since WildFly 11.

Latest WildFly Documentation

JBoss Community Documentation Page of 560 2293

Content Repository
For a managed deployment, the actual file the server uses when creating runtime services is not the file

provided to the CLI command or to the web console. It is a copy of that file stored in an internaldeploy

content repository. The repository is located in the directory for a manageddomain/data/content

domain, or in for a standalone server. Actual binaries are stored in astandalone/data/content

subdirectory:

ls domain/data/content/

 |---/47

 |-----95cc29338b5049e238941231b36b3946952991

 |---/dd

 |-----a9881fa7811b22f1424b4c5acccb13c71202bd

The location of the content repository and its internal structure is subject to change at any time and

should not be relied upon by end users.

The description of a managed deployment in the domain or standalone configuration file includes an attribute

recording the SHA1 hash of the deployment content:

<deployments>

 <deployment name="test-application.war"

 runtime-name="test-application.war">

 <content sha1="dda9881fa7811b22f1424b4c5acccb13c71202bd"/>

 </deployment>

</deployments>

The WildFly process calculates and records that hash when the user invokes a management operation (e.g.

CLI command or using the console) providing deployment content. The user is not expected todeploy

calculate the hash.

The sha1 attribute in the content element tells the WildFly process where to find the deployment content in

its internal content repository.

In a domain each host will have a copy of the content needed by its servers in its own local content

repository. The WildFly domain controller and slave host controller processes take responsibility for ensuring

each host has the needed content.

Latest WildFly Documentation

JBoss Community Documentation Page of 561 2293

Unmanaged Deployments
An unmanaged deployment is one where the server directly deploys the content at a path you specify

instead of making an internal copy and then deploying the copy.

Initially deploying an unmanaged deployment is much like deploying a managed one, except you tell WildFly

that you do not want the deployment to be managed:

[standalone@localhost:9990 /] deploy ~/Desktop/test-application.war --unmanaged

'test-application.war' deployed successfully.

When you do this, instead of the server making a copy of the content at

, calculating the hash of the content, storing the hash in the/Desktop/test-application.war

configuration file and then installing the copy into the runtime, instead it will convert

 to an absolute path, store the path in the configuration file, and then/Desktop/test-application.war

install the original content in the runtime.

You can also use unmanaged deployments in a domain:

[domain@localhost:9990 /] deploy /home/example/Desktop/test-application.war

--server-group=main-server-group --unmanaged

'test-application.war' deployed successfully.

However, before you run this command you must ensure that a copy of the content is present on all

machines that have servers in the target server groups, all at the same filesystem path. The domain will not

copy the file for you.

Undeploy is no different from a managed undeploy:

[standalone@localhost:9990 /] undeploy test-application.war

Successfully undeployed test-application.war.

Doing a replacement of the deployment with a new version is a bit different, the server is using the file you

want to replace. You should undeploy the deployment, replace the content, and then deploy again. Or you

can stop the server, replace the deployment and deploy again.

Latest WildFly Documentation

JBoss Community Documentation Page of 562 2293

Deployment overlays
Deployment overlays are our way of 'overlaying' content into an existing deployment, without physically

modifying the contents of the deployment archive. Possible use cases include swapping out deployment

descriptors, modifying static web resources to change the branding of an application, or even replacing jar

libraries with different versions.

Deployment overlays have a different lifecycle to a deployment. In order to use a deployment overlay, you

first create the overlay, using the CLI or the management API. You then add files to the overlay, specifying

the deployment paths you want them to overlay. Once you have created the overlay you then have to link it

to a deployment name (which is done slightly differently depending on if you are in standalone or domain

mode). Once you have created the link any deployment that matches the specified deployment name will

have the overlay applied.

When you modify or create an overlay it will not affect existing deployments, they must be redeployed in

order to take effect

Creating a deployment overlay
To create a deployment overlay the CLI provides a high level command to do all the steps specified above in

one go. An example command is given below for both standalone and domain mode:

deployment-overlay add --name=myOverlay

--content=/WEB-INF/web.xml=/myFiles/myWeb.xml,/WEB-INF/ejb-jar.xml=/myFiles/myEjbJar.xml

--deployments=test.war,*-admin.war --redeploy-affected

deployment-overlay add --name=myOverlay

--content=/WEB-INF/web.xml=/myFiles/myWeb.xml,/WEB-INF/ejb-jar.xml=/myFiles/myEjbJar.xml

--deployments=test.war,*-admin.war --server-groups=main-server-group --redeploy-affected

5.19.9 Audit logging

WildFly comes with audit logging built in for management operations affecting the management model. By

default it is turned off. The information is output as JSON records.

The default configuration of audit logging in standalone.xml looks as follows:

Latest WildFly Documentation

JBoss Community Documentation Page of 563 2293

<management>

 <security-realms>

...

 </security-realms>

 <audit-log>

 <formatters>

 <json-formatter name="json-formatter"/>

 </formatters>

 <handlers>

 <file-handler name="file" formatter="json-formatter" path="audit-log.log"

relative-to="jboss.server.data.dir"/>

 </handlers>

 <logger log-boot="true" log-read-only="true" enabled="false">

 <handlers>

 <handler name="file"/>

 </handlers>

 </logger>

 </audit-log>

...

Looking at this via the CLI it looks like

[standalone@localhost:9990 /]

/core-service=management/access=audit:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {

 "file-handler" => {"file" => {

 "formatter" => "json-formatter",

 "max-failure-count" => 10,

 "path" => "audit-log.log",

 "relative-to" => "jboss.server.data.dir"

 }},

 "json-formatter" => {"json-formatter" => {

 "compact" => false,

 "date-format" => "yyyy-MM-dd HH:mm:ss",

 "date-separator" => " - ",

 "escape-control-characters" => false,

 "escape-new-line" => false,

 "include-date" => true

 }},

 "logger" => {"audit-log" => {

 "enabled" => false,

 "log-boot" => true,

 "log-read-only" => false,

 "handler" => {"file" => {}}

 }},

 "syslog-handler" => undefined

 }

}

To enable it via CLI you need just

Latest WildFly Documentation

JBoss Community Documentation Page of 564 2293

[standalone@localhost:9990 /]

/core-service=management/access=audit/logger=audit-log:write-attribute(name=enabled,value=true)

{"outcome" => "success"}

Audit data are stored in standalone/data/audit-log.log.

The audit logging subsystem has a lot of internal dependencies, and it logs operations changing,

enabling and disabling its components. When configuring or changing things at runtime it is a good

idea to make these changes as part of a CLI batch. For example if you are adding a syslog handler

you need to add the handler and its information as one step. Similarly if you are using a file

handler, and want to change its and attributes, that needs to happen as onepath relative-to

step.

JSON Formatter
The first thing that needs configuring is the formatter, we currently support outputting log records as JSON.

You can define several formatters, for use with different handlers. A log record has the following format, and

it is the formatter's job to format the data presented:

2013-08-12 11:01:12 - {

 "type" : "core",

 "r/o" : false,

 "booting" : false,

 "version" : "8.0.0.Alpha4",

 "user" : "$local",

 "domainUUID" : null,

 "access" : "NATIVE",

 "remote-address" : "127.0.0.1/127.0.0.1",

 "success" : true,

 "ops" : [JMX|WFLY8:JMX subsystem configuration],

 "operation" : "write-attribute",

 "name" : "enabled",

 "value" : true,

 "operation-headers" : {"caller-type" : "user"}

 }]

}

It includes an optional timestamp and then the following information in the json record

Latest WildFly Documentation

JBoss Community Documentation Page of 565 2293

Field name Description

type This can have the values , meaning it is a management operation, or core jmx

meaning it comes from the jmx subsystem (see the jmx subsystem for configuration of

the jmx subsystem's audit logging)

r/o if the operation does not change the management model, otherwisetrue false

booting if the operation was executed during the bootup process, if it wastrue false

executed once the server is up and running

version The version number of the WildFly instance

user The username of the authenticated user. In this case the operation has been logged

via the CLI on the same machine as the running server, so the special user$local

is used

domainUUID An ID to link together all operations as they are propagated from the Doman

Controller to it servers, slave Host Controllers, and slave Host Controller servers

access This can have one of the following values:

* - The operation came in through the native management interface, forNATIVE

example the CLI

* - The operation came in through the domain HTTP interface, for example theHTTP

admin console

* - The operation came in through the JMX subsystem. See for how toJMX JMX

configure audit logging for JMX.

remote-address The address of the client executing this operation

success if the operation succeeded, if it was rolled backtrue false

ops The operations being executed. This is a list of the operations serialized to JSON. At

boot this will be all the operations resulting from parsing the xml. Once booted the list

will typically just contain a single entry

The json formatter resource has the following attributes:

Latest WildFly Documentation

JBoss Community Documentation Page of 566 2293

Attribute Description

include-date Boolan toggling whether or not to include the timestamp in the

formatted log records

date-separator A string containing characters to separate the date and the rest of the

formatted log message. Will be ignored if include-date=false

date-format The date format to use for the timestamp as understood by

. Will be ignored if java.text.SimpleDateFormat

include-date=false

compact If true will format the JSON on one line. There may still be values

containing new lines, so if having the whole record on one line is

important, set escape-new-line or escape-control-characters to true

escape-control-characters If it will escape all control characters (ascii entries with a decimaltrue

value < 32) with the ascii code in octal, e.g. a new line becomes '#012'.

If this is , it will override true escape-new-line=false

escape-new-line If it will escape all new lines with the ascii code in octal, e.g.true

"#012".

Handlers
A handler is responsible for taking the formatted data and logging it to a location. There are currently two

types of handlers, File and Syslog. You can configure several of each type of handler and use them to log

information.

Latest WildFly Documentation

JBoss Community Documentation Page of 567 2293

File handler
The file handlers log the audit log records to a file on the server. The attributes for the file handler are

Attribute Description Read

Only

formatter The name of a JSON formatter to use to format the log records false

path The path of the audit log file false

relative-to The name of another previously named path, or of one of the

standard paths provided by the system. If isrelative-to

provided, the value of the attribute is treated as relative topath

the path specified by this attribute

false

failure-count The number of logging failures since the handler was initialized true

max-failure-count The maximum number of logging failures before disabling this

handler

false

disabled-due-to-failure if this handler was disabled due to logging failurestrue true

In our standard configuration and ,path=audit-log.log relative-to=jboss.server.data.dir

typically this will be $JBOSS_HOME/standalone/data/audit-log.log

Syslog handler
The default configuration does not have syslog audit logging set up. Syslog is a better choice for audit

logging since you can log to a remote syslog server, and secure the authentication to happen over TLS with

client certificate authentication. Syslog servers vary a lot in their capabilities so not all settings in this section

apply to all syslog servers. We have tested with .rsyslog

The address for the syslog handler is

 and just like file handlers you can/core-service=management/access=audit/syslog-handler=*

add as many syslog entries as you like. The syslog handler resources reference the main RFC's for syslog a

fair bit, for reference they can be found at:

*http://www.ietf.org/rfc/rfc3164.txt

*http://www.ietf.org/rfc/rfc5424.txt

*http://www.ietf.org/rfc/rfc6587.txt

The syslog handler resource has the following attributes:

http://www.rsyslog.com
http://www.ietf.org/rfc/rfc3164.txt
http://www.ietf.org/rfc/rfc5424.txt
http://www.ietf.org/rfc/rfc6587.txt

Latest WildFly Documentation

JBoss Community Documentation Page of 568 2293

formatter The name of a JSON formatter to use to format the log records false

failure-count The number of logging failures since the handler was initialized true

max-failure-count The maximum number of logging failures before disabling this

handler

false

disabled-due-to-failure if this handler was disabled due to logging failurestrue true

syslog-format Whether to set the syslog format to the one specified in

RFC-5424 or RFC-3164

false

max-length The maximum length in bytes a log message, including the

header, is allowed to be. If undefined, it will default to 1024 bytes

if the syslog-format is RFC3164, or 2048 bytes if the

syslog-format is RFC5424.

false

truncate Whether or not a message, including the header, should truncate

the message if the length in bytes is greater than the maximum

length. If set to false messages will be split and sent with the

same header values

false

When adding a syslog handler you also need to add the protocol it will use to communicate with the syslog

server. The valid choices for protocol are , and . The protocol must be added at the same timeUDP TCP TLS

as you add the syslog handler, or it will fail. Also, you can only add one protocol for the handler.

UDP
Configures the handler to use UDP to communicate with the syslog server. The address of the resourceUDP

is . The attributes/core-service=management/access=audit/syslog-handler=*/protocol=udp

of the resource are:UDP

Attribute Description

host The host of the syslog server for the udp requests

port The port of the syslog server listening for the udp requests

Latest WildFly Documentation

JBoss Community Documentation Page of 569 2293

TCP
Configures the handler to use TCP to communicate with the syslog server. The address of the resourceTCP

is . The attributes/core-service=management/access=audit/syslog-handler=*/protocol=tcp

of the resource are:TCP

Attribute Description

host The host of the syslog server for the tcp requests

port The port of the syslog server listening for the tcp requests

message-transfer The message transfer setting as described in section 3.4 of RFC-6587. This can

either be OCTET_COUNTING as described in section 3.4.1 of RFC-6587, or

NON_TRANSPARENT_FRAMING as described in section 3.4.1 of RFC-6587

TLS
Configures the handler to use TLC to communicate securely with the syslog server. The address of the TLS

resource is . The/core-service=management/access=audit/syslog-handler=*/protocol=tls

attributes of the resource are the same as for :TLS TCP

Attribute Description

host The host of the syslog server for the tls requests

port The port of the syslog server listening for the tls requests

message-transfer The message transfer setting as described in section 3.4 of RFC-6587. This can

either be OCTET_COUNTING as described in section 3.4.1 of RFC-6587, or

NON_TRANSPARENT_FRAMING as described in section 3.4.1 of RFC-6587

If the syslog server's TLS certificate is not signed by a certificate signing authority, you will need to set up a

truststore to trust the certificate. The resource for the trust store is a child of the resource, and the fullTLS

address is

/core-service=management/access=audit/syslog-handler=*/protocol=tls/authentication=truststore

. The attributes of the truststore resource are:

Attribute Description

keystore-password The password for the truststore

keystore-path The path of the truststore

keystore-relative-to The name of another previously named path, or of one of the standard paths

provided by the system. If is provided, the valuekeystore-relative-to

of the attribute is treated as relative to the path specified bykeystore-path

this attribute

Latest WildFly Documentation

JBoss Community Documentation Page of 570 2293

TLS with Client certificate authentication.

If you have set up the syslog server to require client certificate authentication, when creating your handler

you will also need to set up a client certificate store containing the certificate to be presented to the syslog

server. The address of the client certificate store resource is

/core-service=management/access=audit/syslog-handler=*/protocol=tls/authentication=client-certificate-store

and its attributes are:

Attribute Description

keystore-password The password for the keystore

key-password The password for the keystore key

keystore-path The path of the keystore

keystore-relative-to The name of another previously named path, or of one of the standard paths

provided by the system. If is provided, the valuekeystore-relative-to

of the attribute is treated as relative to the path specified bykeystore-path

this attribute

Logger configuration
The final part that needs configuring is the logger for the management operations. This references one or

more handlers and is configured at /core-service=management/access=audit/logger=audit-log

. The attributes for this resource are:

Attribute Description

enabled to enable logging of the management operationstrue

log-boot to log the management operations when booting the server, otherwisetrue false

log-read-only If all operations will be audit logged, if only operations that change thetrue false

model will be logged

Then which handlers are used to log the management operations are configured as children ofhandler=*

the logger.

Domain Mode (host specific configuration)
In domain mode audit logging is configured for each host in its file. This means that whenhost.xml

connecting to the DC, the configuration of the audit logging is under the host's entry, e.g. here is the default

configuration:

Latest WildFly Documentation

JBoss Community Documentation Page of 571 2293

[domain@localhost:9990 /]

/host=master/core-service=management/access=audit:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {

 "file-handler" => {

 "host-file" => {

 "formatter" => "json-formatter",

 "max-failure-count" => 10,

 "path" => "audit-log.log",

 "relative-to" => "jboss.domain.data.dir"

 },

 "server-file" => {

 "formatter" => "json-formatter",

 "max-failure-count" => 10,

 "path" => "audit-log.log",

 "relative-to" => "jboss.server.data.dir"

 }

 },

 "json-formatter" => {"json-formatter" => {

 "compact" => false,

 "date-format" => "yyyy-MM-dd HH:mm:ss",

 "date-separator" => " - ",

 "escape-control-characters" => false,

 "escape-new-line" => false,

 "include-date" => true

 }},

 "logger" => {"audit-log" => {

 "enabled" => false,

 "log-boot" => true,

 "log-read-only" => false,

 "handler" => {"host-file" => {}}

 }},

 "server-logger" => {"audit-log" => {

 "enabled" => false,

 "log-boot" => true,

 "log-read-only" => false,

 "handler" => {"server-file" => {}}

 }},

 "syslog-handler" => undefined

 }

}

We now have two file handlers, one called used to configure the file to log managementhost-file

operations on the host, and one called used to log management operations executed on theserver-file

servers. Then is used to configure the logger for the host controller, referencing the logger=audit-log

 handler. is used to configure the logger for the managedhost-file server-logger=audit-log

servers, referencing the handler. The attributes for are theserver-file server-logger=audit-log

same as for in the previous section. Having the host controller and serverserver-logger=audit-log

loggers configured independently means we can control audit logging for managed servers and the host

controller independently.

Latest WildFly Documentation

JBoss Community Documentation Page of 572 2293

5.19.10 Canceling Management Operations

WildFly includes the ability to use the CLI to cancel management requests that are not proceeding normally.

Latest WildFly Documentation

JBoss Community Documentation Page of 573 2293

The cancel-non-progressing-operation operation
The operation instructs the target process to find any operationcancel-non-progressing-operation

that isn't proceeding normally and cancel it.

On a standalone server:

[standalone@localhost:9990 /]

/core-service=management/service=management-operations:cancel-non-progressing-operation

{

 "outcome" => "success",

 "result" => "-1155777943"

}

The result value is an internal identification number for the operation that was cancelled.

On a managed domain host controller, the equivalent resource is in the host=<hostname> portion of the

management resource tree:

[domain@localhost:9990 /]

/host=host-a/core-service=management/service=management-operations:cancel-non-progressing-operation
{

"outcome" => "success",

 "result" => "2156877946"

}

An operation can be cancelled on an individual managed domain server as well:

[domain@localhost:9990 /]

/host=host-a/server=server-one/core-service=management/service=management-operations:cancel-non-progressing-operation
{

"outcome" => "success",

 "result" => "6497786512"

}

An operation is considered to be not proceeding normally if it has been executing with the exclusive

operation lock held for longer than 15 seconds. Read-only operations do not acquire the exclusive operation

lock, so this operation will not cancel read-only operations. Operations blocking waiting for another operation

to release the exclusive lock will also not be cancelled.

If there isn't any operation that is failing to proceed normally, there will be a failure response:

[standalone@localhost:9990 /]

/core-service=management/service=management-operations:cancel-non-progressing-operation

{

 "outcome" => "failed",

 "failure-description" => "WFLYDM0089: No operation was found that has been holding the

operation execution write lock for long than [15] seconds",

 "rolled-back" => true

}

Latest WildFly Documentation

JBoss Community Documentation Page of 574 2293

The find-non-progressing-operation operation
To simply learn the id of an operation that isn't proceeding normally, but not cancel it, use the

 operation:find-non-progressing-operation

[standalone@localhost:9990 /]

/core-service=management/service=management-operations:find-non-progressing-operation

{

 "outcome" => "success",

 "result" => "-1155777943"

}

If there is no non-progressing operation, the outcome will still be but the result will be .success undefined

Once the id of the operation is known, the management resource for the operation can be examined to learn

more about its status.

Examining the status of an active operation
There is a management resource for any currently executing operation that can be queried:

[standalone@localhost:9990 /]

/core-service=management/service=management-operations/active-operation=-1155777943:read-resource(include-runtime=true)
{

"outcome" => "success",

 "result" => {

 "access-mechanism" => "undefined",

 "address" => [

 ("deployment" => "example")

],

 "caller-thread" => "management-handler-thread - 24",

 "cancelled" => false,

 "exclusive-running-time" => 101918273645L,

 "execution-status" => "awaiting-stability",

 "operation" => "deploy",

 "running-time" => 101918279999L

 }

}

The response includes the following attributes:

Latest WildFly Documentation

JBoss Community Documentation Page of 575 2293

Field Meaning

access-mechanism The mechanism used to submit a request to the server. NATIVE, JMX, HTTP

address The address of the resource targeted by the operation. The value in the final

element of the address will be '<hidden>' if the caller is not authorized to address

the operation's target resource.

caller-thread The name of the thread that is executing the operation.

cancelled Whether the operation has been cancelled.

exclusive-running-time Amount of time in nanoseconds the operation has been executing with the

exclusive operation execution lock held, or -1 if the operation does not hold the

exclusive execution lock.

execution-status The current activity of the operation. See below for details.

operation The name of the operation, or '<hidden>' if the caller is not authorized to address

the operation's target resource.

running-time Amount of time the operation has been executing, in nanoseconds.

The following are the values for the attribute:execution-status

Value Meaning

executing The caller thread is actively executing

awaiting-other-operation The caller thread is blocking waiting for another operation to release the

exclusive execution lock

awaiting-stability The caller thread has made changes to the service container and is waiting for

the service container to stabilize

completing The operation is committed and is completing execution

rolling-back The operation is rolling back

All currently executing operations can be viewed in one request using the read-children-resources

operation:

Latest WildFly Documentation

JBoss Community Documentation Page of 576 2293

[standalone@localhost:9990 /]

/core-service=management/service=management-operations:read-children-resources(child-type=active-operation)
{

"outcome" => "success",

 "result" => {"-1155777943" => {

 "access-mechanism" => "undefined",

 "address" => [

 ("deployment" => "example")

],

 "caller-thread" => "management-handler-thread - 24",

 "cancelled" => false,

 "exclusive-running-time" => 101918273645L,

 "execution-status" => "awaiting-stability",

 "operation" => "deploy",

 "running-time" => 101918279999L

 },

 {"-1246693202" => {

 "access-mechanism" => "undefined",

 "address" => [

 ("core-service" => "management"),

 ("service" => "management-operations")

],

 "caller-thread" => "management-handler-thread - 30",

 "cancelled" => false,

 "exclusive-running-time" => -1L,

 "execution-status" => "executing",

 "operation" => "read-children-resources",

 "running-time" => 3356000L

 }}

}

Canceling a specific operation
The operation is a convenience operation for identifying andcancel-non-progressing-operation

canceling an operation. However, an administrator can examine the active-operation resources to identify

any operation, and then directly cancel it by invoking the operation on the resource for the desiredcancel

operation.

[standalone@localhost:9990 /]

/core-service=management/service=management-operations/active-operation=-1155777943:cancel

{

 "outcome" => "success",

 "result" => undefined

}

Latest WildFly Documentation

JBoss Community Documentation Page of 577 2293

Controlling operation blocking time
As an operation executes, the execution thread may block at various points, particularly while waiting for the

service container to stabilize following any changes. Since an operation may be holding the exclusive

execution lock while blocking, in WildFly execution behavior was changed to ensure that blocking will

eventually time out, resulting in roll back of the operation.

The default blocking timeout is 300 seconds. This is intentionally long, as the idea is to only trigger a timeout

when something has definitely gone wrong with the operation, without any false positives.

An administrator can control the blocking timeout for an individual operation by using the

 operation header. For example, if a particular deployment is known to take anblocking-timeout

extremely long time to deploy, the default 300 second timeout could be increased:

[standalone@localhost:9990 /] deploy /tmp/mega.war --headers={blocking-timeout=450}

Note the blocking timeout is a guaranteed maximum execution time for an operation. If it only a timeoutnot

that will be enforced at various points during operation execution.

5.19.11 Command line parameters

To start up a WildFly managed domain, execute the script. To start up a$JBOSS_HOME/bin/domain.sh

standalone server, execute the . With no arguments, the default$JBOSS_HOME/bin/standalone.sh

configuration is used. You can override the default configuration by providing arguments on the command

line, or in your calling script.

System properties
To set a system property, pass its new value using the standard jvm options:-Dkey=value

$JBOSS_HOME/bin/standalone.sh -Djboss.home.dir=some/location/wildFly \

 -Djboss.server.config.dir=some/location/wildFly/custom-standalone

This command starts up a standalone server instance using a non-standard AS home directory and a

custom configuration directory. For specific information about system properties, refer to the definitions

below.

Instead of passing the parameters directly, you can put them into a properties file, and pass the properties

file to the script, as in the two examples below.

$JBOSS_HOME/bin/domain.sh --properties=/some/location/jboss.properties

$JBOSS_HOME/bin/domain.sh -P=/some/location/jboss.properties

Latest WildFly Documentation

JBoss Community Documentation Page of 578 2293

Note however, that properties set this way are not processed as part of JVM launch. They are processed

early in the boot process, but this mechanism should not be used for setting properties that control JVM

behavior (e.g. java.net.perferIPv4Stack) or the behavior of the JBoss Modules classloading system.

The syntax for passing in parameters and properties files is the same regardless of whether you are running

the , , or the Microsoft Windows scripts or .domain.sh standalone.sh domain.bat standalone.bat

The properties file is a standard Java property file containing pairs:key=value

jboss.home.dir=/some/location/wildFly

jboss.domain.config.dir=/some/location/wildFly/custom-domain

System properties can also be set via the xml configuration files. Note however that for a standalone server

properties set this way will not be set until the xml configuration is parsed and the commands created by the

parser have been executed. So this mechanism should not be used for setting properties whose value needs

to be set before this point.

Controlling filesystem locations with system properties
The standalone and the managed domain modes each use a default configuration which expects various

files and writable directories to exist in standard locations. Each of these standard locations is associated

with a system property, which has a default value. To override a system property, pass its new value using

the one of the mechanisms above. The locations which can be controlled via system property are:

Standalone

Property name Usage Default value

java.ext.dirs The JDK extension directory paths null

jboss.home.dir The root directory of the WildFly

installation.

Set by to standalone.sh

$JBOSS_HOME

jboss.server.base.dir The base directory for server content. /standalonejboss.home.dir

jboss.server.config.dir The base configuration directory. jboss.server.base.dir

/configuration

jboss.server.data.dir The directory used for persistent data

file storage.

jboss.server.base.dir

/data

jboss.server.log.dir The directory containing the

 file.server.log

/logjboss.server.base.dir

jboss.server.temp.dir The directory used for temporary file

storage.

/tmpjboss.server.base.dir

jboss.server.deploy.dir The directory used to store deployed

content

jboss.server.data.dir

/content

Latest WildFly Documentation

JBoss Community Documentation Page of 579 2293

Managed Domain

Property name Usage Default value

jboss.home.dir The root directory of the WildFly

installation.

Set by to domain.sh

$JBOSS_HOME

jboss.domain.base.dir The base directory for domain

content.

/domainjboss.home.dir

jboss.domain.config.dir The base configuration directory jboss.domain.base.dir

/configuration

jboss.domain.data.dir The directory used for persistent data

file storage.

jboss.domain.base.dir

/data

jboss.domain.log.dir The directory containing the

 and host-controller.log

 filesprocess-controller.log

jboss.domain.base.dir

/log

jboss.domain.temp.dir The directory used for temporary file

storage

jboss.domain.base.dir

/tmp

jboss.domain.deployment.dir The directory used to store deployed

content

jboss.domain.base.dir

/content

jboss.domain.servers.dir The directory containing the output

for the managed server instances

jboss.domain.base.dir

/servers

Other command line parameters
The first acceptable format for command line arguments to the WildFly launch scripts is

--name=value

For example:

$JBOSS_HOME/bin/standalone.sh --server-config=standalone-ha.xml

If the parameter name is a single character, it is prefixed by a single '-' instead of two. Some parameters

have both a long and short option.

-x=value

For example:

Latest WildFly Documentation

JBoss Community Documentation Page of 580 2293

$JBOSS_HOME/bin/standalone.sh -P=/some/location/jboss.properties

For some command line arguments frequently used in previous major releases of WildFly, replacing the "="

in the above examples with a space is supported, for compatibility.

-b 192.168.100.10

If possible, use the syntax. New parameters will always support this syntax.-x=value

The sections below describe the command line parameter names that are available in standalone and

domain mode.

Standalone

Name Default if

absent

Value

--admin-only - Set the server's running type to ADMIN_ONLY

causing it to open administrative interfaces and

accept management requests but not start other

runtime services or

accept end user requests.

--server-config

-c

standalone.xml A relative path which is interpreted to be relative to

. The name of thejboss.server.config.dir

configuration file to use.

--read-only-server-config - A relative path which is interpreted to be relative to

. This is similar to jboss.server.config.dir

 but if this alternative is specified--server-config

the server will

not overwrite the file when the management model is

changed. However a full versioned history is

maintained of the file.

Latest WildFly Documentation

JBoss Community Documentation Page of 581 2293

Managed Domain

Name Default if

absent

Value

--admin-only - Set the server's running type to ADMIN_ONLY causing it

to open administrative interfaces and accept

management requests but not start servers or, if this host

controller

is the master for the domain, accept incoming

connections from slave host controllers.

--domain-config

-c

domain.xml A relative path which is interpreted to be relative to

. The name of the domainjboss.domain.config.dir

wide configuration file to use.

--read-only-domain-config - A relative path which is interpreted to be relative to

. This is similar to jboss.domain.config.dir

 but if this alternative is specified the--domain-config

host controller

will not overwrite the file when the management model is

changed. However a full versioned history is maintained

of the file.

--host-config host.xml A relative path which is interpreted to be relative to

. The name of thejboss.domain.config.dir

host-specific configuration file to use.

--read-only-host-config - A relative path which is interpreted to be relative to

. This is similar to jboss.domain.config.dir

 but if this alternative is specified the--host-config

host controller will

not overwrite the file when the management model is

changed. However a full versioned history is maintained

of the file.

The following parameters take no value and are only usable on slave host controllers (i.e. hosts configured

to connect to a domain controller.)remote

Latest WildFly Documentation

JBoss Community Documentation Page of 582 2293

Name Function

--backup Causes the slave host controller to create and maintain a local copy

(domain.cached-remote.xml) of the domain configuration. If ignore-unused-configuration

is unset in host.xml,

a complete copy of the domain configuration will be stored locally, otherwise the

configured value of in host.xml will be used. (See ignore-unused-configuration

 for more details.)ignore-unused-configuration

--cached-dc If the slave host controller is unable to contact the master domain controller to get its

configuration at boot, this option will allow the slave host controller to boot and become

operational using a previously cached copy of the domain configuration

(domain.cached-remote.xml.) If the cached configuration is not present, this boot will fail.

This file is created using using one of

the following methods:

 - A previously successful connection to the master domain controller using --backup or

--cached-dc.

 - Copying the domain configuration from an alternative host to

domain/configuration/domain.cached-remote.xml.

The unavailable master domain controller will be polled periodically for availability, and

once becoming available, the slave host controller will reconnect to the master host

controller and synchronize the domain

configuration. During the interval the master domain controller is unavailable, the slave

host controller will not be able make any modifications to the domain configuration, but it

may launch servers and handle

requests to deployed applications etc.

Latest WildFly Documentation

JBoss Community Documentation Page of 583 2293

Common parameters
These parameters apply in both standalone or managed domain mode:

Name Function

-b=<value> Sets system property to <value>. See jboss.bind.address Controlling the Bind

 for further details.Address with -b

-b<name>=<value> Sets system property to <value> where jboss.bind.address.<name> name

can vary. See for further details.Controlling the Bind Address with -b

-u=<value> Sets system property to <value>. See jboss.default.multicast.address

 for further details.Controlling the Default Multicast Address with -u

--version

-v

-V

Prints the version of WildFly to standard output and exits the JVM.

--help

-h

Prints a help message explaining the options and exits the JVM.

Controlling the Bind Address with -b
WildFly binds sockets to the IP addresses and interfaces contained in the elements in <interfaces>

, and . (See and for furtherstandalone.xml domain.xml host.xml Interfaces Socket Bindings

information on these elements.) The standard configurations that ship with WildFly includes two interface

configurations:

<interfaces>

 <interface name="management">

 <inet-address value="${jboss.bind.address.management:127.0.0.1}"/>

 </interface>

 <interface name="public">

 <inet-address value="${jboss.bind.address:127.0.0.1}"/>

 </interface>

</interfaces>

Those configurations use the values of system properties and jboss.bind.address.management

 if they are set. If they are not set, 127.0.0.1 is used for each value.jboss.bind.address

As noted in , the AS supports the and command line switches. The onlyCommon Parameters -b -b<name>

function of these switches is to set system properties and jboss.bind.address

 respectively. However, because of the way the standard WildFlyjboss.bind.address.<name>

configuration files are set up, using the switches can indirectly control how the AS binds sockets.-b

, using this as your launch command causes allIf your interface configurations match those shown above

sockets associated with interface named "public" to be bound to .192.168.100.10

Latest WildFly Documentation

JBoss Community Documentation Page of 584 2293

$JBOSS_HOME/bin/standalone.sh -b=192.168.100.10

In the standard config files, public interfaces are those not associated with server management. Public

interfaces handle normal end-user requests.

Interface names

The interface named "public" is not inherently special. It is provided as a convenience. You can

name your interfaces to suit your environment.

To bind the public interfaces to all IPv4 addresses (the IPv4 wildcard address), use the following syntax:

$JBOSS_HOME/bin/standalone.sh -b=0.0.0.0

You can also bind the management interfaces, as follows:

$JBOSS_HOME/bin/standalone.sh -bmanagement=192.168.100.10

In the standard config files, management interfaces are those sockets associated with server management,

such as the socket used by the CLI, the HTTP socket used by the admin console, and the JMX connector

socket.

Be Careful

The switch only controls the interface bindings because the standard config files that ship with-b

WildFly sets things up that way. If you change the section in your configuration to<interfaces>

no longer use the system properties controlled by , then setting in your launch command will-b -b

have no effect.

For example, this perfectly valid setting for the "public" interface causes to have no effect on-b

the "public" interface:

<interface name="public">

 <nic name="eth0"/>

</interface>

The key point is the contents of the configuration files determine the configuration. Settings

 They only provide a shorter syntax forlike -b are not overrides of the configuration files.

setting a system properties that may or may not be referenced in the configuration files. They are

provided as a convenience, and you can choose to modify your configuration to ignore them.

Latest WildFly Documentation

JBoss Community Documentation Page of 585 2293

Controlling the Default Multicast Address with -u
WildFly may use multicast communication for some services, particularly those involving high availability

clustering. The multicast addresses and ports used are configured using the elements in socket-binding

 and . (See for further information on these elements.) Thestandalone.xml domain.xml Socket Bindings

standard HA configurations that ship with WildFly include two socket binding configurations that use a

default multicast address:

<socket-binding name="jgroups-mping" port="0"

multicast-address="${jboss.default.multicast.address:230.0.0.4}" multicast-port="45700"/>

<socket-binding name="jgroups-udp" port="55200"

multicast-address="${jboss.default.multicast.address:230.0.0.4}" multicast-port="45688"/>

Those configurations use the values of system property if it is set.jboss.default.multicast.address

If it is not set, 230.0.0.4 is used for each value. (The configuration may include other socket bindings for

multicast-based services that are not meant to use the default multicast address; e.g. a binding the

mod-cluster services use to communicate on a separate address/port with Apache httpd servers.)

As noted in , the AS supports the command line switch. The only function of thisCommon Parameters -u

switch is to set system property . However, because of the wayjboss.default.multicast.address

the standard AS configuration files are set up, using the switches can indirectly control how the AS uses-u

multicast.

, using this as your launch command causesIf your socket binding configurations match those shown above

the service using those sockets configurations to be communicate over multicast address .230.0.1.2

$JBOSS_HOME/bin/standalone.sh -u=230.0.1.2

Be Careful

As with the switch, the switch only controls the multicast address used because the standard-b -u

config files that ship with WildFly sets things up that way. If you change the <socket-binding>

sections in your configuration to no longer use the system properties controlled by , then setting -u

 in your launch command will have no effect.-u

5.19.12 Configuration file history

The management operations may modify the model. When this occurs the xml backing the model is written

out again reflecting the latest changes. In addition a full history of the file is maintained. The history of the file

goes in a separate directory under the configuration directory.

Latest WildFly Documentation

JBoss Community Documentation Page of 586 2293

As mentioned in the default configuration file can be selected usingCommand line parameters#parameters

a command-line parameter. For a standalone server instance the history of the active isstandalone.xml

kept in /standalone_xml_history (See jboss.server.config.dir Command line

 for more details). For a domain the active and parameters#standalone_system_properties domain.xml

 histories are kept in /domain_xml_history and host.xml jboss.domain.config.dir

/host_xml_history.jboss.domain.config.dir

The rest of this section will only discuss the history for . The concepts are exactly thestandalone.xml

same for and .domain.xml host.xml

Within itself following a successful first time boot we end up with three newstandalone_xml_history

files:

 - This contains the original configuration that was used the first time westandalone.initial.xml

successfully booted. This file will never be overwritten. You may of course delete the history directory

and any files in it at any stage.

 - This contains the original configuration that was used for the laststandalone.boot.xml

successful boot of the server. This gets overwritten every time we boot the server successfully.

 - At this stage the contents will be identical to .standalone.last.xml standalone.boot.xml

This file gets overwritten each time the server successfully writes the configuration, if there was an

unexpected failure writing the configuration this file is the last known successful write.

 contains a directory called which should be empty. Now if westandalone_xml_history current

execute a management operation that modifies the model, for example adding a new system property using

the CLI:

[standalone@localhost:9990 /] /system-property=test:add(value="test123")

{"outcome" => "success"}

What happens is:

The original configuration file is backed up to

. The next change to the modelstandalone_xml_history/current/standalone.v1.xml

would result in a file called etc. The 100 most recent of these files are kept.standalone.v2.xml

The change is applied to the original configuration file

The changed original configuration file is copied to standalone.last.xml

When restarting the server, any existing directory is moved to astandalone_xml_history/current

new timestamped folder within the , and a new folder is created.standalone_xml_history current

These timestamped folders are kept for 30 days.

Snapshots
In addition to the backups taken by the server as described above you can manually take take snapshots

which will be stored in the folder under the folder, the automatic backupssnapshot _xml_history

described above are subject to automatic house keeping so will eventually be automatically removed, the

snapshots on the other hand can be entirely managed by the administrator.

https://docs.jboss.org/author/display/WFLY10/Command+line+parameters#Commandlineparameters-parameters
https://docs.jboss.org/author/display/WFLY10/Command+line+parameters#Commandlineparameters-standalonesystemproperties
https://docs.jboss.org/author/display/WFLY10/Command+line+parameters#Commandlineparameters-standalonesystemproperties

Latest WildFly Documentation

JBoss Community Documentation Page of 587 2293

You may also take your own snapshots using the CLI:

[standalone@localhost:9990 /] :take-snapshot

{

 "outcome" => "success",

 "result" => {"name" =>

"/Users/kabir/wildfly/standalone/configuration/standalone_xml_history/snapshot/20110630-172258657standalone.xml"}
}

You can also use the CLI to list all the snapshots

[standalone@localhost:9990 /] :list-snapshots

{

 "outcome" => "success",

 "result" => {

 "directory" =>

"/Users/kabir/wildfly/standalone/configuration/standalone_xml_history/snapshot",

 "names" => [

 "20110630-165714239standalone.xml",

 "20110630-165821795standalone.xml",

 "20110630-170113581standalone.xml",

 "20110630-171411463standalone.xml",

 "20110630-171908397standalone.xml",

 "20110630-172258657standalone.xml"

]

 }

}

 To delete a particular snapshot:

[standalone@localhost:9990 /] :delete-snapshot(name="20110630-165714239standalone.xml")

{"outcome" => "success"}

and to delete all snapshots:

[standalone@localhost:9990 /] :delete-snapshot(name="all")

{"outcome" => "success"}

In domain mode executing the snapshot operations against the root node will work against the domain

model. To do this for a host model you need to navigate to the host in question:

Latest WildFly Documentation

JBoss Community Documentation Page of 588 2293

[domain@localhost:9990 /] /host=master:list-snapshots

{

 "outcome" => "success",

 "result" => {

 "domain-results" => {"step-1" => {

 "directory" =>

"/Users/kabir/wildfly/domain/configuration/host_xml_history/snapshot",

 "names" => [

 "20110630-141129571host.xml",

 "20110630-172522225host.xml"

]

 }},

 "server-operations" => undefined

 }

}

Subsequent Starts
For subsequent server starts it may be desirable to take the state of the server back to one of the previously

known states, for a number of items an abbreviated reverence to the file can be used:

Abreviation Parameter Description

initial --server-config=initial This will start the server using the initial configuration first

used to start the server.

boot --server-config=boot This will use the configuration from the last successful boot

of the server.

last --server-config=last This will start the server using the configuration backed up

from the last successful save.

v? --server-config=v? This will server the _xml_history/current folder for the

configuration where ? is the number of the backup to use.

-? --server-config=-? The server will be started after searching the snapshot

folder for the configuration which matches this prefix.

In addition to this the parameter can always be used to specify a configuration relative--server-config

to the and finally if no matching configuration is found an attempt to locatejboss.server.config.dir

the configuration as an absolute path will be made.

Latest WildFly Documentation

JBoss Community Documentation Page of 589 2293

5.19.13 Deployment Overlays

Deployment overlays are our way of 'overlaying' content into an existing deployment, without physically

modifying the contents of the deployment archive. Possible use cases include swapping out deployment

descriptors, modifying static web resources to change the branding of an application, or even replacing jar

libraries with different versions.

Deployment overlays have a different lifecycle to a deployment. In order to use a deployment overlay, you

first create the overlay, using the CLI or the management API. You then add files to the overlay, specifying

the deployment paths you want them to overlay. Once you have created the overlay you then have to link it

to a deployment name (which is done slightly differently depending on if you are in standalone or domain

mode). Once you have created the link any deployment that matches the specified deployment name will

have the overlay applied.

When you modify or create an overlay it will not affect existing deployments, they must be redeployed in

order to take effect

Creating a deployment overlay
To create a deployment overlay the CLI provides a high level command to do all the steps specified above in

one go. An example command is given below for both standalone and domain mode:

deployment-overlay add --name=myOverlay

--content=/WEB-INF/web.xml=/myFiles/myWeb.xml,/WEB-INF/ejb-jar.xml=/myFiles/myEjbJar.xml

--deployments=test.war,*-admin.war --redeploy-affected

deployment-overlay add --name=myOverlay

--content=/WEB-INF/web.xml=/myFiles/myWeb.xml,/WEB-INF/ejb-jar.xml=/myFiles/myEjbJar.xml

--deployments=test.war,*-admin.war --server-groups=main-server-group --redeploy-affected

5.19.14 JVM settings

Configuration of the JVM settings is different for a managed domain and a standalone server. In a managed

domain, the domain controller components are responsible for starting and stoping server processes and

hence determine the JVM settings. For a standalone server, it's the responsibility of the process that started

the server (e.g. passing them as command line arguments).

Managed Domain
In a managed domain the JVM settings can be declared at different scopes: For a specific server group, for

a host or for a particular server. If not declared, the settings are inherited from the parent scope. This allows

you to customize or extend the JVM settings within every layer.

Let's take a look at the JVM declaration for a server group:

Latest WildFly Documentation

JBoss Community Documentation Page of 590 2293

<server-groups>

 <server-group name="main-server-group" profile="default">

 <jvm name="default">

 <heap size="64m" max-size="512m"/>

 </jvm>

 <socket-binding-group ref="standard-sockets"/>

 </server-group>

 <server-group name="other-server-group" profile="default">

 <jvm name="default">

 <heap size="64m" max-size="512m"/>

 </jvm>

 <socket-binding-group ref="standard-sockets"/>

 </server-group>

</server-groups>

 (See domain/configuration/domain.xml)

In this example the server group "main-server-group" declares a heap size of and a maximum heap size64m

of . Any server that belongs to this group will inherit these settings. You can change these settings for512m

the group as a whole, or a specific server or host:

<servers>

 <server name="server-one" group="main-server-group" auto-start="true">

 <jvm name="default"/>

 </server>

 <server name="server-two" group="main-server-group" auto-start="true">

 <jvm name="default">

 <heap size="64m" max-size="256m"/>

 </jvm>

 <socket-binding-group ref="standard-sockets" port-offset="150"/>

 </server>

 <server name="server-three" group="other-server-group" auto-start="false">

 <socket-binding-group ref="standard-sockets" port-offset="250"/>

 </server>

</servers>

(See domain/configuration/host.xml)

In this case, , belongs to the and inherits the JVM settings named , butserver-two main-server-group default

declares a lower maximum heap size.

[domain@localhost:9999 /] /host=local/server-config=server-two/jvm=default:read-resource

{

 "outcome" => "success",

 "result" => {

 "heap-size" => "64m",

 "max-heap-size" => "256m",

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 591 2293

Standalone Server
For a standalone sever you have to pass in the JVM settings either as command line arguments when

executing the script, or by declaring them in $JBOSS_HOME/bin/standalone.sh

. (For Windows users, the script to execute is $JBOSS_HOME/bin/standalone.conf

 while the JVM settings can be declared in %JBOSS_HOME%/bin/standalone.bat

%JBOSS_HOME%/bin/standalone.conf.bat.)

5.19.15 Starting & stopping Servers in a Managed Domain

Starting a standalone server is done through the script. However in a managedbin/standalone.sh

domain server instances are managed by the domain controller and need to be started through the

management layer:

First of all, get to know which are configured on a particular :servers host

[domain@localhost:9990 /] :read-children-names(child-type=host)

{

 "outcome" => "success",

 "result" => ["local"]

}

[domain@localhost:9990 /] /host=local:read-children-names(child-type=server-config)

{

 "outcome" => "success",

 "result" => [

 "my-server",

 "server-one",

 "server-three"

]

}

Now that we know, that there are two configured on " ", we can go ahead and checkservers host local

their status:

Latest WildFly Documentation

JBoss Community Documentation Page of 592 2293

[domain@localhost:9990 /]

/host=local/server-config=server-one:read-resource(include-runtime=true)

{

 "outcome" => "success",

 "result" => {

 "auto-start" => true,

 "group" => "main-server-group",

 "interface" => undefined,

 "name" => "server-one",

 "path" => undefined,

 "socket-binding-group" => undefined,

 "socket-binding-port-offset" => undefined,

 "status" => "STARTED",

 "system-property" => undefined,

 "jvm" => {"default" => undefined}

 }

}

You can change the server state through the " " and " " operationsstart stop

[domain@localhost:9990 /] /host=local/server-config=server-one:stop

{

 "outcome" => "success",

 "result" => "STOPPING"

}

Navigating through the domain topology is much more simple when you use the web interface.

Latest WildFly Documentation

JBoss Community Documentation Page of 593 2293

5.19.16 Suspend, Resume and Graceful shutdown

Core Concepts
Wildfly introduces the ability to suspend and resume servers. This can be combined with shutdown to enable

the server to gracefully finish processing all active requests and then shut down. When a server is

suspended it will immediately stop accepting new requests, but wait for existing request to complete. A

suspended server can be resumed at any point, and will begin processing requests immediately.

Suspending and resuming has no effect on deployment state (e.g. if a server is suspended singleton EJB's

will not be destroyed). As of Wildfly 11 it is also possible to start a server in suspended mode which means it

will not accept requests until it has been resumed, servers will also be suspended during the boot process,

so no requests will be accepted until the startup process is 100% complete.

Suspend/Resume has no effect on management operations, management operations can still be performed

while a server is suspended. If you wish to perform a management operation that will affect the operation of

the server (e.g. changing a datasource) you can suspend the server, perform the operation, then resume the

server. This allows all requests to finish, and makes sure that no requests are running while the

management changes are taking place.

When a server is suspending it goes through four different phases:

 - The normal state, the server is accepting requests and running normallyRUNNING

 - In PRE_SUSPEND the server will notify external parties that it is about to suspend,PRE_SUSPEND

for example mod_cluster will notify the load balancer that the deployment is suspending. Requests

are still accepted in this phase.

 - All new requests are rejected, and the server is waiting for all active requests toSUSPENDING

finish. If there are no active requests at suspend time this phase will be skipped.

 - All requests have completed, and the server is suspended.SUSPENDED

Starting Suspended
In order to start into suspended mode when using a standalone server you need to add

 to the command line. It is also possible to specify the start-mode in the --start-mode=suspend reload

operation to cause the server to reload into suspended mode (other possible values for start-mode are

 and).normal admin-only

In domain mode servers can be started in suspended mode by passing the parameter to anysuspend=true

command that causes a server to start, restart or reload (e.g. :start-servers(suspend=true)).

Latest WildFly Documentation

JBoss Community Documentation Page of 594 2293

The Request Controller Subsystem
Wildfly introduces a new subsystem called the Request Controller Subsystem. This optional subsystem

tracks all requests at their entry point, which how the graceful shutdown mechanism know when all requests

are done (it also allows you to provide a global limit on the total number of running requests).

If this subsystem is not present suspend/resume will be limited, in general things that happen in the

PRE_SUSPEND phase will work as normal (stopping message delivery, notifying the load balancer),

however the server will not wait for all requests to complete and instead move straight to SUSPENDED

mode.

There is a small performance penalty associated with the request controller subsystem (about on par with

enabling statistics), so if you do not require the suspend/resume functionality this subsystem can be

removed to get a small performance boost.

Latest WildFly Documentation

JBoss Community Documentation Page of 595 2293

Subsystem Integrations
Suspend/Resume is a service provided by the Wildfly platform that any subsystem may choose to integrate

with. Some subsystems integrate directly with the suspend controller, while others integrate through the

request controller subsystem.

The following subsystems support graceful shutdown. Note that only subsystems that provide an external

entry point to the server need graceful shutdown support, for example the JAX-RS subsystem does not

require suspend/resume support as all access to JAX-RS is through the web connector.

 - Undertow will wait for all requests to finishUndertow

 - The mod_cluster subsystem will notify the load balancer that the server is suspendingmod_cluster

in the PRE_SUSPEND phase.

 - EJB will wait for all remote EJB requests and MDB message deliveries to finish. Delivery toEJB

MDB's is stopped in the PRE_SUSPEND phase. EJB timers are suspended, and missed timers will

be activated when the server is resumed.

 - Batch jobs will be stopped at a checkpoint while the server is suspending. They will beBatch

restarted from that checkpoint when the server returns to running mode.

 - The server will wait for all active jobs to finish. All jobs that have already beenEE Concurrency

queued will be skipped.

 - transaction subsystem waits for all running transactions to finish while server isTransactions

suspending. During that time server refuses to start any new transaction. But any in-flight transaction

will be serviced - e.g. it means that server accepts any incoming remote call which carries context of

the transaction already started at the suspending server.

When you work with EJBs you have to enable the graceful shutdown functionality by setting attribute

 to .enable-graceful-txn-shutdown true

(at the xml, for example):ejb3 subsystem

<enable-graceful-txn-shutdown value="false"/>

By graceful shutdown it's for ejb subsystem.default disabled

The reason is that the behavior might be unwelcome in cluster environments, as the server notifies

remote clients that the node is no longer available for remote calls only after the transactions are

finished. During that brief window of time, the client of a cluster may send a new request to a node

that is shutting down and will refuse the request because it is not related to an existing transaction.

If this attribute is set to , we disable the gracefulenable-graceful-txn-shutdown false

behavior and EJB clients will not attempt to invoke the node when it suspends, regardless of active

transactions.

Latest WildFly Documentation

JBoss Community Documentation Page of 596 2293

Standalone Mode
Suspend/Resume can be controlled via the following CLI operations in standalone mode:

:suspend(timeout=z)

Suspends the server. If the timeout is specified it will wait up to the specified number of seconds for all

requests to finish. If there is no timeout specified or the value is less than zero it will wait indefinitely.

:resume

Resumes a previously suspended server. The server should be able to begin serving requests immediately.

:read-attribute(name=suspend-state)

Returns the current suspend state of the server.

:shutdown(timeout=x)

If a timeout parameter is passed to the shutdown command then a graceful shutdown will be performed. The

server will be suspended, and will wait up to the specified number of seconds for all requests to finish before

shutting down. A timeout value of less than zero means it will wait indefinitely.

Domain Mode
Domain mode has similar commands as standalone mode, however they can be applied at both the global

and server group levels:

Whole Domain

:suspend-servers(timeout=x)

:resume-servers

:stop-servers(timeout=x)

Server Group

/server-group=main-server-group:suspend-servers(timeout=x)

/server-group=main-server-group:resume-servers

/server-group=main-server-group:stop-servers(timeout=x)

 Server

/host=master/server-config=server-one:suspend(timeout=x)

/host=master/server-config=server-one:resume

/host=master/server-config=server-one:stop(timeout=x)

Latest WildFly Documentation

JBoss Community Documentation Page of 597 2293

5.20 Authorizing management actions with Role Based

Access Control

WildFly introduces a Role Based Access Control scheme that allows different administrative users to have

different sets of permissions to read and update parts of the management tree. This replaces the simple

permission scheme used in JBoss AS 7, where anyone who could successfully authenticate to the

management security realm would have all permissions.

5.20.1 Access Control Providers

WildFly ships with two access control "providers", the "simple" provider, and the "rbac" provider. The

"simple" provider is the default, and provides a permission scheme equivalent to the JBoss AS 7 behavior

where any authenticated administrator has all permissions. The "rbac" provider gives the finer grained

permission scheme that is the focus of this section.

The access control configuration is included in the management section of a standalone server's

standalone.xml, or in a new "management" section in a managed domain's domain.xml. The access control

policy is centrally configured in a managed domain.

<management>

 . . .

 <access-control provider="simple">

 <role-mapping>

 <role name="SuperUser">

 <include>

 <user name="$local"/>

 </include>

 </role>

 </role-mapping>

 </access-control>

</management>

As you can see, the provider is set to "simple" by default. With the "simple" provider, the nested

"role-mapping" section is not actually relevant. It's there to help ensure that if the provider attribute is

switched to "rbac" there will be at least one user mapped to a role that can continue to administer the

system. This default mapping assigns the "$local" user name to the RBAC role that provides all permissions,

the "SuperUser" role. The "$local" user name is the name an administrator will be assigned if he or she uses

the CLI on the same system as the WildFly instance and the is enabled."local" authentication scheme

5.20.2 RBAC provider overview

The access control scheme implemented by the "rbac" provider is based on seven standard roles. A role is a

named set of permissions to perform one of the actions: addressing (i.e. looking up) a management

resource, reading it, or modifying it. The different roles have constraints applied to their permissions that are

used to determine whether the permission is granted.

Latest WildFly Documentation

JBoss Community Documentation Page of 598 2293

RBAC roles
The seven standard roles are divided into two broad categories, based on whether the role can deal with

items that are considered to be "security sensitive". Resources, attributes and operations that may affect

administrative security (e.g. security realm resources and attributes that contain passwords) are "security

sensitive".

Four roles are not given permissions for "security sensitive" items:

Monitor – a read-only role. Cannot modify any resource.

Operator – Monitor permissions, plus can modify runtime state, but cannot modify anything that ends

up in the persistent configuration. Could, for example, restart a server.

Maintainer – Operator permissions, plus can modify the persistent configuration.

Deployer – like a Maintainer, but with permission to modify persistent configuration constrained to

resources that are considered to be "application resources". A deployment is an application resource.

The messaging server is not. Items like datasources and JMS destinations are not considered to be

application resources by default, but this is .configurable

Three roles are granted permissions for security sensitive items:

SuperUser – has all permissions. Equivalent to a JBoss AS 7 administrator.

Administrator – has all permissions except cannot read or write resources related to the administrative

audit logging system.

Auditor – can read anything. Can only modify the resources related to the administrative audit logging

system.

The Auditor and Administrator roles are meant for organizations that want a separation of responsibilities

between those who audit normal administrative actions and those who perform them, with those who

perform most actions (Administrator role) not being able to read or alter the auditing configuration.

Access control constraints
The following factors are used to determine whether a given role is granted a permission:

What the requested action is (address, read, write)

Whether the resource, attribute or operation affects the persistent configuration

Whether the resource, attribute or operation is related to the administrative audit logging function

Whether the resource, attribute or operation is configured as security sensitive

Whether an attribute or operation parameter value has a security vault expression

Whether a resource is considered to be associated with applications, as opposed to being part of a

general container configuration

The first three of these factors are non-configurable; the latter three allow some customization. See "

" for details.Configuring constraints

Latest WildFly Documentation

JBoss Community Documentation Page of 599 2293

Addressing a resource
As mentioned above, permissions are granted to perform one of three actions, addressing a resource,

reading it, and modifying. The latter two actions are fairly self-explanatory. But what is meant by

"addressing" a resource?

"Addressing" a resource refers to taking an action that allows the user to determine whether a resource at a

given address actually exists. For example, the "read-children-names" operation lets a user determine valid

addresses. Trying to read a resource and getting a "Permission denied" error also gives the user a clue that

there actually is a resource at the requested address.

Some resources may include sensitive information as part of their address. For example, security realm

resources include the realm name as the last element in the address. That realm name is potentially security

sensitive; for example it is part of the data used when creating a hash of a user password. Because some

addresses may contain security sensitive data, a user needs permission to even "address" a resource. If a

user attempts to address a resource and does not have permission, they will not receive a "permission

denied" type error. Rather, the system will respond as if the resource does not even exist, e.g. excluding the

resource from the result of the "read-children-names" operation or responding with a "No such resource"

error instead of "Permission denied" if the user is attempting to read or write the resource.

Another term for "addressing" a resource is "looking up" the resource.

5.20.3 Switching to the "rbac" provider

Use the CLI to switch the access-control provider.

Before changing the provider to "rbac", be sure your configuration has a user who will be mapped

to one of the RBAC roles, preferably with at least one in the Administrator or SuperUser role.

Otherwise your installation will not be manageable except by shutting it down and editing the xml

configuration. If you have started with one of the standard xml configurations shipped with WildFly,

the "$local" user will be mapped to the "SuperUser" role and the will"local" authentication scheme

be enabled. This will allow a user running the CLI on the same system as the WildFly process to

have full administrative permissions. Remote CLI users and web-based admin console users will

have no permissions.

We recommend besides "$local" before switching the provider to "rbac".mapping at least one user

You can do all of the configuration associated with the "rbac" provider even when the provider is

set to "simple"

The management resources related to access control are located in the

 portion of the management resource tree.core-service=management/access=authorization

Update the attribute to change between the "simple" and "rbac" providers. Any update requires aprovider

reload or restart to take effect.

Latest WildFly Documentation

JBoss Community Documentation Page of 600 2293

[standalone@localhost:9990 /] cd core-service=management/access=authorization

[standalone@localhost:9990 access=authorization] :write-attribute(name=provider,value=rbac)

{

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-reload" => true,

 "process-state" => "reload-required"

 }

}

[standalone@localhost:9990 access=authorization] reload

In a managed domain, the access control configuration is part of the domain wide configuration, so the

resource address is the same as above, but the CLI is connected to the master Domain Controller:

[domain@localhost:9990 /] cd core-service=management/access=authorization

[domain@localhost:9990 access=authorization] :write-attribute(name=provider,value=rbac)

{

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-reload" => true,

 "process-state" => "reload-required"

 },

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {"master" => {

 "server-one" => {"response" => {

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-reload" => true,

 "process-state" => "reload-required"

 }

 }},

 "server-two" => {"response" => {

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-reload" => true,

 "process-state" => "reload-required"

 }

 }}

 }}}}

}

[domain@localhost:9990 access=authorization] reload --host=master

As with a standalone server, a reload or restart is required for the change to take effect. In this case, all

hosts and servers in the domain will need to be reloaded or restarted, starting with the master Domain

Controller, so be sure to plan well before making this change.

Latest WildFly Documentation

JBoss Community Documentation Page of 601 2293

5.20.4 Mapping users and groups to roles

Once the "rbac" access control provider is enabled, only users who are mapped to one of the available roles

will have any administrative permissions at all. So, to make RBAC useful, a mapping between individual

users or groups of users and the available roles must be performed.

Mapping individual users
The easiest way to map individual users to roles is to use the web-based admin console.

Navigate to the "Administration" tab and the "Users" subtab. From there individual user mappings can be

added, removed, or edited.

The CLI can also be used to map individuals users to roles.

First, if one does not exist, create the parent resource for all mappings for a role. Here we create the

resource for the role.Administrator

[domain@localhost:9990 /]

/core-service=management/access=authorization/role-mapping=Administrator:add

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {"master" => {

 "server-one" => {"response" => {"outcome" => "success"}},

 "server-two" => {"response" => {"outcome" => "success"}}

 }}}}

}

Latest WildFly Documentation

JBoss Community Documentation Page of 602 2293

Once this is done, map a user to the role:

[domain@localhost:9990 /]

/core-service=management/access=authorization/role-mapping=Administrator/include=user-jsmith:add(name=jsmith,type=USER)
{

"outcome" => "success",

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {"master" => {

 "server-one" => {"response" => {"outcome" => "success"}},

 "server-two" => {"response" => {"outcome" => "success"}}

 }}}}

}

Now if user authenticates to any security realm associated with the management interface they arejsmith

using, he will be mapped to the role.Administrator

To restrict the mapping to a particular security realm, change the attribute to the realm name. Thisrealm

might be useful if different realms are associated with different management interfaces, and the goal is to

limit a user to a particular interface.

[domain@localhost:9990 /]

/core-service=management/access=authorization/role-mapping=Administrator/include=user-mjones:add(name=mjones,type=USER,realm=ManagementRealm)
{

"outcome" => "success",

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {"master" => {

 "server-one" => {"response" => {"outcome" => "success"}},

 "server-two" => {"response" => {"outcome" => "success"}}

 }}}}

}

User groups
A "group" is an arbitrary collection of users that may exist in the end user environment. They can be named

whatever the end user organization wants and can contain whatever users the end user organization wants.

Some of the authentication store types supported by WildFly security realms include the ability to access

information about what groups a user is a member of and associate this information with the Subject

produced when the user is authenticated. This is currently supported for the following authentication store

types:

properties file (via the file)<realm_name>-groups.properties

LDAP (via directory-server-specific configuration)

Groups are convenient when it comes to associating a user with a role, since entire groups can be

associated with a role in a single mapping.

Mapping groups to roles
The easiest way to map groups to roles is to use the web-based admin console.

Latest WildFly Documentation

JBoss Community Documentation Page of 603 2293

Navigate to the "Administration" tab and the "Groups" subtab. From there group mappings can be added,

removed, or edited.

The CLI can also be used to map groups to roles. The only difference to individual user mapping is the value

of the attribute should be instead of .type GROUP USER

[domain@localhost:9990 /]

/core-service=management/access=authorization/role-mapping=Administrator/include=group-SeniorAdmins:add(name=SeniorAdmins,type=GROUP)
{

"outcome" => "success",

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {"master" => {

 "server-one" => {"response" => {"outcome" => "success"}},

 "server-two" => {"response" => {"outcome" => "success"}}

 }}}}

}

As with individual user mappings, the mapping can be restricted to users authenticating via a particular

security realm:

[domain@localhost:9990 /]

/core-service=management/access=authorization/role-mapping=Administrator/include=group-PowerAdmins:add(name=PowerAdmins,type=GROUP,realm=ManagementRealm)
{

"outcome" => "success",

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {"master" => {

 "server-one" => {"response" => {"outcome" => "success"}},

 "server-two" => {"response" => {"outcome" => "success"}}

 }}}}

}

Latest WildFly Documentation

JBoss Community Documentation Page of 604 2293

Including all authenticated users in a role
It's possible to specify that all authenticated users should be mapped to a particular role. This could be used,

for example, to ensure that anyone who can authenticate can at least have privileges.Monitor

A user who can authenticate to the management security realm but who does not map to a role will

not be able to perform any administrative functions, not even reads.

In the web based admin console, navigate to the "Administration" tab, "Roles" subtab, highlight the relevant

role, click the "Edit" button and click on the "Include All" checkbox:

The same change can be made using the CLI:

[domain@localhost:9990 /]

/core-service=management/access=authorization/role-mapping=Monitor:write-attribute(name=include-all,value=true)
{

"outcome" => "success",

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {"master" => {

 "server-one" => {"response" => {"outcome" => "success"}},

 "server-two" => {"response" => {"outcome" => "success"}}

 }}}}

}

Latest WildFly Documentation

JBoss Community Documentation Page of 605 2293

Excluding users and groups
It is also possible to explicitly exclude certain users and groups from a role. Exclusions take precedence over

inclusions, including cases where the attribute is set to true for a role.include-all

In the admin console, excludes are done in the same screens as includes. In the add dialog, simply change

the "Type" pulldown to "Exclude".

In the CLI, excludes are identical to includes, except the resource address has instead of exclude

 as the key for the last address element:include

[domain@localhost:9990 /]

/core-service=management/access=authorization/role-mapping=Monitor/exclude=group-Temps:add(name=Temps,type=GROUP)
{

"outcome" => "success",

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {"master" => {

 "server-one" => {"response" => {"outcome" => "success"}},

 "server-two" => {"response" => {"outcome" => "success"}}

 }}}}

}

Latest WildFly Documentation

JBoss Community Documentation Page of 606 2293

Users who map to multiple roles
It is possible that a given user will be mapped to more than one role. When this occurs, by default the user

will be granted the union of the permissions of the two roles. This behavior can be changed on a global

 to instead respond to the user request with an error if this situation is detected:basis

[standalone@localhost:9990 /] cd core-service=management/access=authorization

[standalone@localhost:9990 access=authorization]

:write-attribute(name=permission-combination-policy,value=rejecting)

{"outcome" => "success"}

Note that no reload is required; the change takes immediate effect.

To restore the default behavior, set the value to "permissive":

[standalone@localhost:9990 /] cd core-service=management/access=authorization

[standalone@localhost:9990 access=authorization]

:write-attribute(name=permission-combination-policy,value=permissive)

{"outcome" => "success"}

5.20.5 Adding custom roles in a managed domain

A managed domain may involve a variety of servers running different configurations and hosting different

applications. In such an environment, it is likely that there will be different teams of administrators

responsible for different parts of the domain. To allow organizations to grant permissions to only parts of a

domain, WildFly's RBAC scheme allows for the creation of custom "scoped roles". Scoped roles are based

on the seven standard roles, but with permissions limited to a portion of the domain – either to a set of server

groups or to a set of hosts.

Latest WildFly Documentation

JBoss Community Documentation Page of 607 2293

Server group scoped roles
The privileges for a server-group scoped role are constrained to resources associated with one or more

server groups. Server groups are often associated with a particular application or set of applications;

organizations that have separate teams responsible for different applications may find server-group scoped

roles useful.

A server-group scoped role is equivalent to the default role upon which it is based, but with privileges

constrained to target resources in the resource trees rooted in the server group resources. The server-group

scoped role can be configured to include privileges for the following resources trees logically related to the

server group:

Profile

Socket Binding Group

Deployment

Deployment override

Server group

Server config

Server

Resources in the profile, socket binding group, server config and server portions of the tree that are not

logically related to a server group associated with the server-group scoped role will not be addressable by a

user in that role. So, in a domain with server groups “a” and “b”, a user in a server-group scoped role that

grants access to “a” will not be able to address /server-group=b. The system will treat that resource as

non-existent for that user.

In addition to these privileges, users in a server-group scoped role will have non-sensitive read privileges

(equivalent to the Monitor role) for resources other than those listed above.

The easiest way to create a server-group scoped role is to . But you can also use theuse the admin console

CLI to create a server-group scoped role.

[domain@localhost:9990 /]

/core-service=management/access=authorization/server-group-scoped-role=MainGroupAdmins:add(base-role=Administrator,server-groups=[main-server-group])
{

"outcome" => "success",

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {"master" => {

 "server-one" => {"response" => {"outcome" => "success"}},

 "server-two" => {"response" => {"outcome" => "success"}}

 }}}}

}

Once the role is created, users or groups can be mapped to it the same as with the seven standard roles.

Latest WildFly Documentation

JBoss Community Documentation Page of 608 2293

Host scoped roles
The privileges for a host-scoped role are constrained to resources associated with one or more hosts. A user

with a host-scoped role cannot modify the domain wide configuration. Organizations may use host-scoped

roles to give administrators relatively broad administrative rights for a host without granting such rights

across the managed domain.

A host-scoped role is equivalent to the default role upon which it is based, but with privileges constrained to

target resources in the resource trees rooted in the host resources for one or more specified hosts.

In addition to these privileges, users in a host-scoped role will have non-sensitive read privileges (equivalent

to the Monitor role) for domain wide resources (i.e. those not in the /host=* section of the tree.)

Resources in the /host=* portion of the tree that are unrelated to the hosts specified for the Host Scoped

Role will not be visible to users in that host-scoped role. So, in a domain with hosts “a” and “b”, a user in a

host-scoped role that grants access to “a” will not be able to address /host=b. The system will treat that

resource as non-existent for that user.

The easiest way to create a host-scoped role is to . But you can also use the CLI touse the admin console

create a host scoped role.

[domain@localhost:9990 /]

/core-service=management/access=authorization/host-scoped-role=MasterOperators:add(base-role=Operator,hosts=[master]}
{

"outcome" => "success",

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {"master" => {

 "server-one" => {"response" => {"outcome" => "success"}},

 "server-two" => {"response" => {"outcome" => "success"}}

 }}}}

}

Once the role is created, users or groups can be mapped to it the same as with the seven standard roles.

Latest WildFly Documentation

JBoss Community Documentation Page of 609 2293

Using the admin console to create scoped roles
Both server-group and host scoped roles can be added, removed or edited via the admin console. Select

"Scoped Roles" from the "Administration" tab, "Roles" subtab:

When adding a new scoped role, use the dialogue's "Type" pull down to choose between a host scoped role

and a server-group scoped role. Then place the names of the relevant hosts or server groups in the "Scope"

text are.

Latest WildFly Documentation

JBoss Community Documentation Page of 610 2293

5.20.6 Configuring constraints

The following factors are used to determine whether a given role is granted a permission:

What the requested action is (address, read, write)

Whether the resource, attribute or operation affects the persistent configuration

Whether the resource, attribute or operation is related to the administrative audit logging function

Whether the resource, attribute or operation is configured as security sensitive

Whether an attribute or operation parameter value has a security vault expression

Whether a resource is considered to be associated with applications, as opposed to being part of a

general container configuration

The first three of these factors are non-configurable; the latter three allow some customization.

Configuring sensitivity
"Sensitivity" constraints are about restricting access to security-sensitive data. Different organizations may

have different opinions about what is security sensitive, so WildFly provides configuration options to allow

users to tailor these constraints.

Sensitive resources, attributes and operations
The developers of the WildFly core and of any subsystem may annotate resources, attributes or operations

with a "sensitivity classification". Classifications are either provided by the core and may be applicable

anywhere in the management model, or they are scoped to a particular subsystem. For each classification,

there will be a setting declaring whether by default the addressing, read and write actions are considered to

be sensitive. If an action is sensitive, only users in the roles able to deal with sensitive data (Administrator,

Auditor, SuperUser) will have permissions.

Using the CLI, administrators can see the settings for a classification. For example, there is a core

classification called "socket-config" that is applied to elements throughout the model that relate to configuring

sockets:

[domain@localhost:9990 /] cd

core-service=management/access=authorization/constraint=sensitivity-classification/type=core/classification=socket-config
[domain@localhost:9990

classification=socket-config] ls -l

ATTRIBUTE VALUE TYPE

configured-requires-addressable undefined BOOLEAN

configured-requires-read undefined BOOLEAN

configured-requires-write undefined BOOLEAN

default-requires-addressable false BOOLEAN

default-requires-read false BOOLEAN

default-requires-write true BOOLEAN

CHILD MIN-OCCURS MAX-OCCURS

applies-to n/a n/a

Latest WildFly Documentation

JBoss Community Documentation Page of 611 2293

The various attributes indicate whether a user must be in a role that allowsdefault-requires-...

security sensitive actions in order to perform the action. In the example above, socket-config

 is true, while the others are false. So, by default modifying a setting involvingdefault-requires-write

socket configuration is considered sensitive, while addressing those resources or doing reads is not

sensitive.

The attributes are read-only. The attributesdefault-requires-... configured-requires-...

however can be modified to override the default settings with ones appropriate for your organization. For

example, if your organization doesn't regard modifying socket configuration settings to be security sensitive,

you can change that setting:

[domain@localhost:9990 classification=socket-config]

:write-attribute(name=configured-requires-write,value=false)

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {"master" => {

 "server-one" => {"response" => {"outcome" => "success"}},

 "server-two" => {"response" => {"outcome" => "success"}}

 }}}}

}

Administrators can also read the management model to see to which resources, attributes and operations a

particular sensitivity classification applies:

[domain@localhost:9990 classification=socket-config]

:read-children-resources(child-type=applies-to)

{

 "outcome" => "success",

 "result" => {

 "/host=master" => {

 "address" => "/host=master",

 "attributes" => [],

 "entire-resource" => false,

 "operations" => ["resolve-internet-address"]

 },

 "/host=master/core-service=host-environment" => {

 "address" => "/host=master/core-service=host-environment",

 "attributes" => [

 "host-controller-port",

 "host-controller-address",

 "process-controller-port",

 "process-controller-address"

],

 "entire-resource" => false,

 "operations" => []

 },

 "/host=master/core-service=management/management-interface=http-interface" => {

 "address" =>

"/host=master/core-service=management/management-interface=http-interface",

 "attributes" => [

 "port",

 "secure-interface",

Latest WildFly Documentation

JBoss Community Documentation Page of 612 2293

 "secure-port",

 "interface"

],

 "entire-resource" => false,

 "operations" => []

 },

 "/host=master/core-service=management/management-interface=native-interface" => {

 "address" =>

"/host=master/core-service=management/management-interface=native-interface",

 "attributes" => [

 "port",

 "interface"

],

 "entire-resource" => false,

 "operations" => []

 },

 "/host=master/interface=*" => {

 "address" => "/host=master/interface=*",

 "attributes" => [],

 "entire-resource" => true,

 "operations" => ["resolve-internet-address"]

 },

 "/host=master/server-config=*/interface=*" => {

 "address" => "/host=master/server-config=*/interface=*",

 "attributes" => [],

 "entire-resource" => true,

 "operations" => []

 },

 "/interface=*" => {

 "address" => "/interface=*",

 "attributes" => [],

 "entire-resource" => true,

 "operations" => []

 },

 "/profile=*/subsystem=messaging/hornetq-server=*/broadcast-group=*" => {

 "address" => "/profile=*/subsystem=messaging/hornetq-server=*/broadcast-group=*",

 "attributes" => [

 "group-address",

 "group-port",

 "local-bind-address",

 "local-bind-port"

],

 "entire-resource" => false,

 "operations" => []

 },

 "/profile=*/subsystem=messaging/hornetq-server=*/discovery-group=*" => {

 "address" => "/profile=*/subsystem=messaging/hornetq-server=*/discovery-group=*",

 "attributes" => [

 "group-address",

 "group-port",

 "local-bind-address"

],

 "entire-resource" => false,

 "operations" => []

 },

 "/profile=*/subsystem=transactions" => {

 "address" => "/profile=*/subsystem=transactions",

 "attributes" => ["process-id-socket-max-ports"],

Latest WildFly Documentation

JBoss Community Documentation Page of 613 2293

 "entire-resource" => false,

 "operations" => []

 },

 "/server-group=*" => {

 "address" => "/server-group=*",

 "attributes" => ["socket-binding-port-offset"],

 "entire-resource" => false,

 "operations" => []

 },

 "/socket-binding-group=*" => {

 "address" => "/socket-binding-group=*",

 "attributes" => [],

 "entire-resource" => true,

 "operations" => []

 }

 }

}

There will be a separate child for each address to which the classification applies. The entire-resource

attribute will be true if the classification applies to the entire resource. Otherwise, the and attributes

 attributes will include the names of attributes or operations to which the classification applies.operations

Classifications with broad use
Several of the core sensitivity classifications are commonly used across the management model and

deserve special mention.

Name Description

credential An attribute whose value is some sort of credential, e.g. a password or a username.

By default sensitive for both reads and writes

security-domain-ref An attribute whose value is the name of a security domain. By default sensitive for

both reads and writes

security-realm-ref An attribute whose value is the name of a security realm. By default sensitive for both

reads and writes

socket-binding-ref An attribute whose value is the name of a socket binding. By default not sensitive for

any action

socket-config A resource, attribute or operation that somehow relates to configuring a socket. By

default sensitive for writes

Values with security vault expressions
By default any attribute or operation parameter whose value includes a security vault expression will be

treated as sensitive, even if no sensitivity classification applies or the classification does not treat the action

as sensitive.

This setting can be changed via the CLI. There is a resource for this configuration:globally

Latest WildFly Documentation

JBoss Community Documentation Page of 614 2293

[domain@localhost:9990 /] cd

core-service=management/access=authorization/constraint=vault-expression

[domain@localhost:9990 constraint=vault-expression] ls -l

ATTRIBUTE VALUE TYPE

configured-requires-read undefined BOOLEAN

configured-requires-write undefined BOOLEAN

default-requires-read true BOOLEAN

default-requires-write true BOOLEAN

The various attributes indicate whether a user must be in a role that allowsdefault-requires-...

security sensitive actions in order to perform the action. So, by default both reading and writing attributes

whose values include vault expressions requires a user to be in one of the roles with sensitive data

permissions.

The attributes are read-only. The attributesdefault-requires-... configured-requires-...

however can be modified to override the default settings with settings appropriate for your organization. For

example, if your organization doesn't regard reading vault expressions to be security sensitive, you can

change that setting:

[domain@localhost:9990 constraint=vault-expression]

:write-attribute(name=configured-requires-read,value=false)

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {"master" => {

 "server-one" => {"response" => {"outcome" => "success"}},

 "server-two" => {"response" => {"outcome" => "success"}}

 }}}}

}

This vault-expression constraint overlaps somewhat with the core "credential" sensitivity

 in that the most typical uses of a vault expression are in attributes that contain a userclassification

name or password, and those will typically be annotated with the "credential" sensitivity

classification. So, if you change the settings for the "credential" sensitivity classification you may

also need to make a corresponding change to the vault-expression constraint settings, or your

change will not have full effect.

Be aware though, that vault expressions can be used in any attribute that supports expressions,

not just in credential-type attributes. So it is important to be familiar with where and how your

organization uses vault expressions before changing these settings.

Latest WildFly Documentation

JBoss Community Documentation Page of 615 2293

Configuring "Deployer" role access
The standard has its write permissions limited to resources that are considered to beDeployer role

"application resources"; i.e. conceptually part of an application and not part of the general server

configuration. By default, only deployment resources are considered to be application resources. However,

different organizations may have different opinions on what qualifies as an application resource, so for

resource types that subsystems authors consider to be application resources, WildFly provides apotentially

configuration option to declare them as such. Such resources will be annotated with an "application

classification".

For example, the mail subsystem provides such a classification:

[domain@localhost:9990 /] cd

/core-service=management/access=authorization/constraint=application-classification/type=mail/classification=mail-session
[domain@localhost:9990

classification=mail-session] ls -l

ATTRIBUTE VALUE TYPE

configured-application undefined BOOLEAN

default-application false BOOLEAN

CHILD MIN-OCCURS MAX-OCCURS

applies-to n/a n/a

Use or to see what resources have this classificationread-resource read-children-resources

applied:

[domain@localhost:9990 classification=mail-session]

:read-children-resources(child-type=applies-to)

{

 "outcome" => "success",

 "result" => {"/profile=*/subsystem=mail/mail-session=*" => {

 "address" => "/profile=*/subsystem=mail/mail-session=*",

 "attributes" => [],

 "entire-resource" => true,

 "operations" => []

 }}

}

This indicates that this classification, intuitively enough, only applies to mail subsystem mail-session

resources.

To make resources with this classification writeable by users in the Deployer role, set the

 attribute to true.configured-application

Latest WildFly Documentation

JBoss Community Documentation Page of 616 2293

[domain@localhost:9990 classification=mail-session]

:write-attribute(name=configured-application,value=true)

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {"master" => {

 "server-one" => {"response" => {"outcome" => "success"}},

 "server-two" => {"response" => {"outcome" => "success"}}

 }}}}

}

Application classifications shipped with WildFly
The subsystems shipped with the full WildFly distribution include the following application classifications:

Subsystem Classification

datasources data-source

datasources jdbc-driver

datasources xa-data-source

logging logger

logging logging-profile

mail mail-session

messaging jms-queue

messaging jms-topic

messaging queue

messaging security-setting

naming binding

resource-adapters resource-adapter

security security-domain

In each case the classification applies to the resources you would expect, given its name.

5.20.7 RBAC effect on administrator user experience

The RBAC scheme will result in reduced permissions for administrators who do not map to the SuperUser

role, so this will of course have some impact on their experience when using administrative tools like the

admin console and the CLI.

Latest WildFly Documentation

JBoss Community Documentation Page of 617 2293

Admin console
The admin console takes great pains to provide a good user experience even when the user has reduced

permissions. Resources the user is not permitted to see will simply not be shown, or if appropriate will be

replaced in the UI with an indication that the user is not authorized. Interaction units like "Add" and "Remove"

buttons and "Edit" links will be suppressed if the user has no write permissions.

CLI
The CLI is a much more unconstrained tool than the admin console is, allowing users to try to execute

whatever operations they wish, so it's more likely that users who attempt to do things for which they lack

necessary permissions will receive failure messages. For example, a user in the Monitor role cannot read

passwords:

[domain@localhost:9990 /]

/profile=default/subsystem=datasources/data-source=ExampleDS:read-attribute(name=password)

{

 "outcome" => "failed",

 "result" => undefined,

 "failure-description" => "WFLYCTL0313: Unauthorized to execute operation 'read-attribute'

for resource '[

 (\"profile\" => \"default\"),

 (\"subsystem\" => \"datasources\"),

 (\"data-source\" => \"ExampleDS\")

]' -- \"WFLYCTL0332: Permission denied\"",

 "rolled-back" => true

}

If the user isn't even allowed to then the response would be as if the resource doesn'taddress the resource

exist, even though it actually does:

[domain@localhost:9990 /]

/profile=default/subsystem=security/security-domain=other:read-resource

{

 "outcome" => "failed",

 "failure-description" => "WFLYCTL0216: Management resource '[

 (\"profile\" => \"default\"),

 (\"subsystem\" => \"security\"),

 (\"security-domain\" => \"other\")

]' not found",

 "rolled-back" => true

}

This prevents unauthorized users fishing for sensitive data in resource addresses by checking for

"Permission denied" type failures.

Latest WildFly Documentation

JBoss Community Documentation Page of 618 2293

Users who use the operation may ask for data, some of which they are allowed to see andread-resource

some of which they are not. If this happens, the request will not fail, but inaccessible data will be elided and

a response header will be included advising on what was not included. Here we show the effect of a Monitor

trying to recursively read the security subsystem configuration:

[domain@localhost:9990 /] /profile=default/subsystem=security:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {

 "deep-copy-subject-mode" => undefined,

 "security-domain" => undefined,

 "vault" => undefined

 },

 "response-headers" => {"access-control" => [{

 "absolute-address" => [

 ("profile" => "default"),

 ("subsystem" => "security")

],

 "relative-address" => [],

 "filtered-attributes" => ["deep-copy-subject-mode"],

 "filtered-children-types" => ["security-domain"]

 }]}

}

The section includes access control data in a list with one element per relevantresponse-headers

resource. (In this case there's just one.) The absolute and relative address of the resource is shown, along

with the fact that the value of the attribute has been filtered (i.e. undefined isdeep-copy-subject-mode

shown as the value, which may not be the real value) as well as the fact that child resources of type

 have been filtered.security-domain

Description of access control constraints in the management model

metadata
The management model descriptive metadata returned from operations like

 and can be configured to includeread-resource-description read-operation-description

information describing the access control constraints relevant to the resource, This is done by using the

 parameter. The output will be tailored to the caller's permissions. For example, a useraccess-control

who maps to the Monitor role could ask for information about a resource in the mail subsystem:

Latest WildFly Documentation

JBoss Community Documentation Page of 619 2293

[domain@localhost:9990 /] cd /profile=default/subsystem=mail/mail-session=default/server=smtp

[domain@localhost:9990 server=smtp] :read-resource-description(access-control=trim-descriptions)

{

 "outcome" => "success",

 "result" => {

 "description" => undefined,

 "access-constraints" => {"application" => {"mail-session" => {"type" => "mail"}}},

 "attributes" => undefined,

 "operations" => undefined,

 "children" => {},

 "access-control" => {

 "default" => {

 "read" => true,

 "write" => false,

 "attributes" => {

 "outbound-socket-binding-ref" => {

 "read" => true,

 "write" => false

 },

 "username" => {

 "read" => false,

 "write" => false

 },

 "tls" => {

 "read" => true,

 "write" => false

 },

 "ssl" => {

 "read" => true,

 "write" => false

 },

 "password" => {

 "read" => false,

 "write" => false

 }

 }

 },

 "exceptions" => {}

 }

 }

}

Because was used as the value for the parameter, the typicaltrim-descriptions access-control

"description", "attributes", "operations" and "children" data is largely suppressed. (For more on this, see

.) The field indicates that this resource is annotated with an below access-constraints [application

. The field includes information about the permissions the current caller has forconstraint] access-control

this resource. The section shows the default settings for resources of this type. The and default read

 fields directly under show that the caller can, in general, read this resource but cannot writewrite default

it. The section shows the individual attribute settings. Note that Monitor cannot read the attributes

 and attributes.username password

Latest WildFly Documentation

JBoss Community Documentation Page of 620 2293

There are three valid values for the parameter to and access-control read-resource-description

:read-operation-description

 – do not include access control information in the response. This is the default behavior if nonone

parameter is included.

 – remove the normal description details, as shown in the example abovetrim-descriptions

 – include both the normal output and the access control datacombined-descriptions

5.20.8 Learning about your own role mappings

Users can learn in which roles they are operating. In the admin console, click on your name in the top right

corner; the roles you are in will be shown.

CLI users should use the operation with the attribute set:whoami verbose

[domain@localhost:9990 /] :whoami(verbose=true)

{

 "outcome" => "success",

 "result" => {

 "identity" => {

 "username" => "aadams",

 "realm" => "ManagementRealm"

 },

 "mapped-roles" => [

 "Maintainer"

]

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 621 2293

5.20.9 "Run-as" capability for SuperUsers

If a user maps to the SuperUser role, WildFly also supports letting that user request that they instead map to

one or more other roles. This can be useful when doing demos, or when the SuperUser is changing the

RBAC configuration and wants to see what effect the changes have from the perspective of a user in

another role. This capability is only available to the SuperUser role, so it can only be used to narrow a user's

permissions, not to potentially increase them.

CLI run-as
With the CLI, run-as capability is on a per-request basis. It is done by using the "roles" operation header, the

value of which can be the name of a single role or a bracket-enclosed, comma-delimited list of role names.

Example with a low level operation:

[standalone@localhost:9990 /] :whoami(verbose=true){roles=[Operator,Auditor]}

{

 "outcome" => "success",

 "result" => {

 "identity" => {

 "username" => "$local",

 "realm" => "ManagementRealm"

 },

 "mapped-roles" => [

 "Auditor",

 "Operator"

]

 }

}

Example with a CLI command:

[standalone@localhost:9990 /] deploy /tmp/helloworld.war --headers={roles=Monitor}

{"WFLYCTL0062: Composite operation failed and was rolled back. Steps that failed:" =>

{"Operation step-1" => "WFLYCTL0313: Unauthorized to execute operation 'add' for resource

'[(\"deployment\" => \"helloworld.war\")]' -- \"WFLYCTL0332: Permission denied\""}}

[standalone@localhost:9990 /] deploy /tmp/helloworld.war --headers={roles=Maintainer}

Here we show the effect of switching to a role that isn't granted the necessary permission.

Latest WildFly Documentation

JBoss Community Documentation Page of 622 2293

Admin console run-as
Admin console users can change the role in which they operate by clicking on their name in the top right

corner and clicking on the "Run as..." link.

Then select the role in which you wish to operate:

The console will need to be restarted in order for the change to take effect.

Latest WildFly Documentation

JBoss Community Documentation Page of 623 2293

Using run-as roles with the "simple" access control provider
This "run-as" capability is available even if the "simple" access control provider is used. When the "simple"

provider is used, any authenticated administrator is treated the same as if they would map to SuperUser

when the "rbac" provider is used.

However, the "simple" provider actually understands all of the "rbac" provider configuration settings

described above, but only makes use of them if the "run-as" capability is used for a request. Otherwise, the

SuperUser role has all permissions, so detailed configuration is irrelevant.

Using the run-as capability with the "simple" provider may be useful if an administrator is setting up an rbac

provider configuration before switching the provider to rbac to make that configuration take effect. The

administrator can then run-as different roles to see the effect of the planned settings.

5.21 Security Realms

Within WildFly we make use of security realms to secure access to the management interfaces, these same

realms are used to secure inbound access as exposed by JBoss Remoting such as remote JNDI and EJB

access, the realms are also used to define an identity for the server - this identity can be used for both

inbound connections to the server and outbound connections being established by the server.

Latest WildFly Documentation

JBoss Community Documentation Page of 624 2293

5.21.1 General Structure

The general structure of a management realm definition is: -

<security-realm name="ManagementRealm">

 <plug-ins></plug-ins>

 <server-identities></server-identities>

 <authentication></authentication>

 <authorization></authorization>

</security-realm>

 - This is an optional element that is used to define modules what will be searched forplug-ins

security realm PlugInProviders to extend the capabilities of the security realms.

 - An optional element to define the identity of the server as visible to theserver-identities

outside world, this applies to both inbound connection to a resource secured by the realm and to

outbound connections also associated with the realm.

One example is the SSL identity of the server, for inbound connections this will control the identity of the

server as the SSL connection is established, for outbound connections this same identity can be used where

CLIENT-CERT style authentication is being performed.

A second example is where the server is establishing an outbound connection that requires username /

password authentication - this element can be used to define that password.

 - This is probably the most important element that will be used within a securityauthentication

realm definition and mostly applies to inbound connections to the server, this element defines which

backing stores will be used to provide the verification of the inbound connection.

This element is optional as there are some scenarios where it will not be required such as if a realm is being

defined for an outbound connection using a username and password.

 - This is the final optional element and is used to define how roles are loaded for anauthorization

authenticated identity. At the moment this is more applicable for realms used for access to EE

deployments such as web applications or EJBs but this will also become relevant as we add role

based authorization checks to the management model.

5.21.2 Using a Realm

After a realm has been defined it needs to be associated with an inbound or outbound connection for it to be

used, the following are some examples where these associations are used within the WildFly

8 configuration.

Latest WildFly Documentation

JBoss Community Documentation Page of 625 2293

Inbound Connections

Management Interfaces
Either within the or configurations the security realms can be associated withstandalone.xml host.xml

the management interface as follows:

<http-interface security-realm="ManagementRealm">...</http-interface>

If the attribute is omitted or removed from the interface definition it means that access tosecurity-realm

that interface will be unsecured.

By default we do bind these interfaces to the loopback address so that the interfaces are not

accessible remotely out of the box, however do be aware that if these interfaces are then

unsecured any other local user will be able to control and administer the WildFly installation.

Remoting Subsystem
The Remoting subsystem exposes a connector to allow for inbound comunications with JNDI and the EJB

subsystem by default we associate the with this connection.ApplicationRealm

<subsystem xmlns="urn:jboss:domain:remoting:3.0">

 <endpoint worker="default"/>

 <http-connector name="http-remoting-connector" connector-ref="default"

security-realm="ApplicationRealm"/>

</subsystem>

Latest WildFly Documentation

JBoss Community Documentation Page of 626 2293

Outbound Connections

Remoting Subsystem
Outbound connections can also be defined within the Remoting subsystem, these are typically used for

remote EJB invocations from one AS server to another, in this scenario the security realm is used to obtain

the server identity either it's password for X.509 certificate and possibly a trust store to verify the certificate of

the remote host.

Even if the referenced realm contains username and password authentication configuration the

client side of the connection will NOT use this to verify the remote server.

<remote-outbound-connection name="remote-ejb-connection"

 outbound-socket-binding-ref="binding-remote-ejb-connection"

 username="user1"

 security-realm="PasswordRealm">

The security realm is only used to obtain the password for this example, as you can see here the

username is specified separately.

Slave Host Controller
When running in domain mode slave host controllers need to establish a connection to the native interface of

the master domain controller so these also need a realm for the identity of the slave.

<domain-controller>

 <remote host="${jboss.domain.master.address}" port="${jboss.domain.master.port:9999}"

security-realm="ManagementRealm"/>

</domain-controller>

By default when a slave host controller authenticates against the master domain controller it uses

its configured name as its username. If you want to override the username used for authentication

a attribute can be added to the element.username <remote />

Latest WildFly Documentation

JBoss Community Documentation Page of 627 2293

5.21.3 Authentication

One of the primary functions of the security realms is to define the user stores that will be used to verify the

identity of inbound connections, the actual approach taken at the transport level is based on the capabilities

of these backing store definitions. The security realms are used to secure inbound connections for both the

http management interface and for inbound remoting connections for both the native management interface

and to access other services exposed over remoting - because of this there are some small differences

between how the realm is used for each of these.

At the transport level we support the following authentication mechanisms.

HTTP Remoting (SASL)

None Anonymous

N/A JBoss Local User

Digest Digest

Basic Plain

Client Cert Client Cert

The most notable are the first two in this list as they need some additional explanation - the final 3 are fairly

standard mechanisms.

If either the http interface, the native interface or a remoting connection are difined a security realmwithout

reference then they are effectively unsecured, in the case of the http interface this means that no

authentication will be performed on the incoming connection - for the remoting connections however we

make use of SASL so require at least one authentication mechanism so make use of the anonymous

mechanism to allow a user in without requiring a validated authentication process.

The next mechanism 'JBoss Local User' is specific to the remoting connections - as we ship WildFly secured

by default we wanted a way to allow users to connect to their own AS installation after it is started without

mandating that they define a user with a password - to accomplish this we have added the 'JBoss Local

User' mechanism. This mechanism makes the use of tokens exchanged on the filesystem to prove that the

client is local to the AS installation and has the appropriate file permissions to read a token written by the AS

to file. As this mechanism is dependent on both server and client implementation details it is only supported

for the remoting connections and not the http connections - at some point we may review if we can add

support for this to the http interface but we would need to explore the options available with the commony

used web browsers that are used to communicate with the http interface.

The Digest mechanism is simply the HTTP Digest / SASL Digest mechanism that authenticates the user by

making use of md5 hashed including nonces to avoid sending passwords in plain text over the network - this

is the preferred mechanism for username / password authentication.

Latest WildFly Documentation

JBoss Community Documentation Page of 628 2293

The HTTP Basic / SASL Plain mechanism is made available for times that Digest can not be used but

effectively this means that the users password will be sent over the network in the clear unless SSL is

enabled.

The final mechanism Client-Cert allows X.509 certificates to be used to verify the identity of the remote

client.

One point bearing in mind is that it is possible that an association with a realm can mean that a

single incoming connection has the ability to choose between one or more authentication

mechanisms. As an example it is possible that an incoming remoting connection could choose

between 'Client Cert', A username password mechanism or 'JBoss Local User' for authentication -

this would allow say a local user to use the local mechanism, a remote user to supply their

username and password whilst a remote script could make a call and authenticate using a

certificate.

5.21.4 Authorization

The actual security realms are not involved in any authorization decisions. However, they can be configured

to load a user's roles, which will subsequently be used to make authorization decisions - when references to

authorization are seen in the context of security realms, it is this loading of roles that is being referred to.

For the loading of roles, the process is split out to occur after the authentication step so after a user has

been authenticated, a second step will occur to load the roles based on the username they used to

authenticate with.

5.21.5 Out Of The Box Configuration

Before describing the complete set of configuration options available within the realms, we will look at the

default configuration, as for most users, that is going to be the starting point before customising further.

The examples here are taken from the standalone configuration. However, the descriptions are

equally applicable to domain mode. One point worth noting is that all security realms defined in the

 are available to be referenced within the domain configuration for the servers runninghost.xml

on that host controller.

Latest WildFly Documentation

JBoss Community Documentation Page of 629 2293

Management Realm

<security-realm name="ManagementRealm">

 <authentication>

 <local default-user="$local"/>

 <properties path="mgmt-users.properties" relative-to="jboss.server.config.dir"/>

 </authentication>

</security-realm>

The realm is the simplest realm within the default configuration. This realm simplyManagementRealm

enables two authentication mechanisms, the local mechanism and username/password authentication which

will be using Digest authentication.

local

When using the local mechanism, it is optional for remote clients to send a username to the server. This

configuration specifies that where clients do not send a username, it will be assumed that the clients

username is - the element can also be configured to allow other usernames to be$local <local />

specified by remote clients. However, for the default configuration, this is not enabled so is not supported.

properties

For username / password authentication the users details will be loaded from the file

 which is located in { or {mgmt-users.properties jboss.home}/standalone/configuration

 depending on the running mode of the server.jboss.home}/domain/configuration

Each user is represented on their own line and the format of each line is where is ausername=HASH HASH

pre-prepared hash of the users password along with their username and the name of the realm which in this

case is .ManagementRealm

You do not need to worry about generating the entries within the properties file as we provide a

utility or to add the users, this utility is described in more detailadd-user.sh add-user.bat

below.

By pre-hashing the passwords in the properties file it does mean that if the user has used the same

password on different realms then the contents of the file falling into the wrong hands does not

nescesarily mean all accounts are compromised. the contents of the files do still needHOWEVER

to be protected as they can be used to access any server where the realm name is the same and

the user has the same username and password pair.

Latest WildFly Documentation

JBoss Community Documentation Page of 630 2293

Application Realm

<security-realm name="ApplicationRealm">

 <authentication>

 <local default-user="$local" allowed-users="*"/>

 <properties path="application-users.properties" relative-to="jboss.server.config.dir"/>

 </authentication>

 <authorization>

 <properties path="application-roles.properties" relative-to="jboss.server.config.dir"/>

 </authorization>

</security-realm>

The realm is a slightly more complex realm as this is used for bothApplicationRealm

Authentication
The authentication configuration is very similar to the in that it enabled both the localManagementRealm

mechanism and a username/password based Digest mechanism.

local

The local configuration is similar to the in that where the remote user does not supply aManagementRealm

username it will be assumed that the username is , however in addition to this there is now an $local

 attribute with a value of - this means that the remote user can specify any usernameallowed-users '*'

and it will be accepted over the local mechanism provided that the local verification is a success.

To restrict the usernames that can be specified by the remote user a comma separated list of

usernames can be specified instead within the attribute.allowed-users

properties

The properties definition works in exactly the same way as the definition for except nowManagementRealm

the properties file is called .application-users.properties

Latest WildFly Documentation

JBoss Community Documentation Page of 631 2293

Authorization
The contents of the element are specific to the , in this case aAuthorization ApplicationRealm

properties file is used to load a users roles.

The properties file is called and is located in {application-roles.properties

 or { dependingjboss.home}/standalone/configuration jboss.home}/domain/configuration

on the running mode of the server. The format of this file is where is a commausername=ROLES ROLES

separated list of the users roles.

As the loading of a users roles is a second step this is where it may be desirable to restrict which

users can use the local mechanism so that some users still require username and password

authentication for their roles to be loaded.

Latest WildFly Documentation

JBoss Community Documentation Page of 632 2293

other security domain

<security-domain name="other" cache-type="default">

 <authentication>

 <login-module code="Remoting" flag="optional">

 <module-option name="password-stacking" value="useFirstPass"/>

 </login-module>

 <login-module code="RealmDirect" flag="required">

 <module-option name="password-stacking" value="useFirstPass"/>

 </login-module>

 </authentication>

</security-domain>

When applications are deployed to the application server they are associated with a security domain within

the security subsystem, the security domain is provided to work with the , thisother ApplicationRealm

domain is defined with a pair of login modules Remoting and RealmDirect.

Remoting

The login module is used to check if the request currently being authenticated is a requestRemoting

received over a Remoting connection, if so the identity that was created during the authentication process is

used and associated with the current request.

If the request did not arrive over a Remoting connection this module does nothing and allows the JAAS

based login to continue to the next module.

RealmDirect

The login module makes use of a security realm to authenticate the current request if that didRealmDirect

not occur in the login module and then use the realm to load the users roles, by default this loginRemoting

module assumes the realm to use is called although other names can be overriddenApplicationRealm

using the "realm" module-option.

The advantage of this approach is that all of the backing store configuration can be left within the realm with

the security domain just delegating to the realm.

5.21.6 user.sh

For use with the default configuration we supply a utility which can be used to manage theadd-user

properties files for the default realms used to store the users and their roles.

The add-user utility can be used to manage both the users in the and the users in the ManagementRealm

, changes made apply to the properties file used both for domain mode and standaloneApplicationRealm

mode.

Latest WildFly Documentation

JBoss Community Documentation Page of 633 2293

After you have installed your application server and decided if you are going to run in standalone

mode or domain mode you can delete the parent folder for the mode you are not using, the

add-user utility will then only be managing the properties file for the mode in use.

The add-user utility is a command line utility however it can be run in both interactive and non-interactive

mode. Depending on your platform the script to run the add-user utility is either or add-user.sh

 which can be found in { .add-user.bat jboss.home}/bin

This guide now contains a couple of examples of this utility in use to accomplish the most common tasks.

Adding a User
Adding users to the properties files is the primary purpose of this utility. Usernames can only contain the

following characters in any number and in any order:

Alphanumeric characters (a-z, A-Z, 0-9)

Dashes (-), periods (.), commas (,), at (@)

Escaped backslash (\\)

Escaped equals (\=)

The server caches the contents of the properties files in memory, however the server does check

the modified time of the properties files on each authentication request and re-load if the time has

been updated - this means all changes made by this utility are immediately applied to any running

server.

A Management User

The default name of the realm for management users is , when the utilityManagementRealm

prompts for the realm name just accept the default unless you have switched to a different realm.

Latest WildFly Documentation

JBoss Community Documentation Page of 634 2293

Interactive Mode

Here we have added a new Management User called , as you can see some of the questionsadminUser

offer default responses so you can just press enter without repeating the default value.

For now just answer or to the final question, adding users to be used by processes is described in moren no

detail in the domain management chapter.

Latest WildFly Documentation

JBoss Community Documentation Page of 635 2293

Interactive Mode
To add a user in non-interactive mode the command } can be./add-user.sh {username} {password

used.

If you add users using this approach there is a risk that any other user that can view the list of

running process may see the arguments including the password of the user being added, there is

also the risk that the username / password combination will be cached in the history file of the shell

you are currently using.

An Application User
When adding application users in addition to adding the user with their pre-hashed password it is also now

possible to define the roles of the user.

Latest WildFly Documentation

JBoss Community Documentation Page of 636 2293

Interactive Mode

Here a new user called has been added, in this case a comma separated list of roles has alsoappUser

been specified.

As with adding a management user just answer or to the final question until you know you are adding an no

user that will be establishing a connection from one server to another.

Interactive Mode
To add an application user non-interactively use the command ./add-user.sh -a {username}

}.{password

Non-interactive mode does not support defining a list of users, to associate a user with a set of

roles you will need to manually edit the file by hand.application-roles.properties

Latest WildFly Documentation

JBoss Community Documentation Page of 637 2293

Updating a User
Within the add-user utility it is also possible to update existing users, in interactive mode you will be

prompted to confirm if this is your intention.

A Management User

Interactive Mode

Interactive Mode
In non-interactive mode if a user already exists the update is automatic with no confirmation prompt.

Latest WildFly Documentation

JBoss Community Documentation Page of 638 2293

An Application User

Interactive Mode

On updating a user with roles you will need to re-enter the list of roles assigned to the user.

Interactive Mode
In non-interactive mode if a user already exists the update is automatic with no confirmation prompt.

Community Contributions
There are still a few features to add to the add-user utility such as removing users or adding application

users with roles in non-interactive mode, if you are interested in contributing to WildFly development the

add-user utility is a good place to start as it is a stand alone utility, however it is a part of the AS build so you

can become familiar with the AS development processes without needing to delve straight into the internals

of the application server.

Latest WildFly Documentation

JBoss Community Documentation Page of 639 2293

5.21.7 JMX Security

When configuring the security realms remote access to the server's MBeanServer needs a special mention.

When running in standalone mode the following is the default configuration:

<subsystem xmlns="urn:jboss:domain:jmx:1.3">

 ...

 <remoting-connector/>

</subsystem>

With this configuration remote access to JMX is provided over the http management interface, this is

secured using the realm , this means that any user that can connect to the nativeManagementRealm

interface can also use this interface to access the MBeanServer - to disable this just remove the

 element.<remoting-connector />

In domain mode it is slightly more complicates as the native interface is exposed by the host controller

process however each application server is running in it's own process so by default remote access to JMX

is disabled.

<subsystem xmlns="urn:jboss:domain:remoting:3.0">

 <http-connector name="http-remoting-connector" connector-ref="default"

security-realm="ApplicationRealm"/>

</subsystem>

<subsystem xmlns="urn:jboss:domain:jmx:1.3">

 ...

 <!--<remoting-connector use-management-endpoint="false"/>-->

</subsystem>

To enable remote access to JMX uncomment the element however be aware<remoting-connector />

that this will make the MBeanServer accessible over the same Remoting connector used for remote JNDI

and EJB access - this means that any user that can authenticate against the realm willApplicationRealm

be able to access the MBeanServer.

The following Jira issue is currently outstanding to allow access to the individual MBeanServers by

proxying through the host controllers native interface , if this is a feature you would useAS7-4009

please add your vote to the issue.

5.21.8 Detailed Configuration

This section of the documentation describes the various configuration options when defining realms, plug-ins

are a slightly special case so the configuration options for plug-ins is within it's own section.

https://issues.jboss.org/browse/AS7-4009

Latest WildFly Documentation

JBoss Community Documentation Page of 640 2293

Within a security realm definition there are four optional elements , <plug-ins /> <server-identities

, , and , as mentioned above plug-ins is defined within it's/> <authentication /> <authorization />

own section below so we will begin by looking at the element.<server-identities />

<server-identities />
The server identities section of a realm definition is used to define how a server appears to the outside

world, currently this element can be used to configure a password to be used when establishing a remote

outbound connection and also how to load a X.509 key which can be used for both inbound and outbound

SSL connections.

<ssl />

<server-identities>

 <ssl protocol="...">

 <keystore path="..." relative-to="..." keystore-password="..." alias="..."

key-password="..." />

 </ssl>

</server-identities>

 - By default this is set to TLS and in general does not need to be set.protocol

The SSL element then contains the nested element, this is used to define how to load the<keystore />

key from the file based (JKS) keystore.

 (mandatory) - This is the path to the keystore, this can be an absolute path or relative to the nextpath

attribute.

 (optional) - The name of a service representing a path the keystore is relative to.relative-to

 (mandatory) - The password required to open the keystore.keystore-password

 (optional) - The alias of the entry to use from the keystore - for a keystore with multiple entries inalias

practice the first usable entry is used but this should not be relied on and the alias should be set to

guarantee which entry is used.

 (optional) - The password to load the key entry, if omitted the keystore-password willkey-password

be used instead.

If you see the error the most likelyUnrecoverableKeyException: Cannot recover key

cause that you need to specify a and possible even an as well to ensurekey-password alias

only one key is loaded.

Latest WildFly Documentation

JBoss Community Documentation Page of 641 2293

<secret />

<server-identities>

 <secret value="..." />

</server-identities>

 (mandatory) - The password to use for outbound connections encoded as Base64, this fieldvalue

also supports a vault expression should stronger protection be required.

The username for the outbound connection is specified at the point the outbound connection is

defined.

<authentication />
The authentication element is predominantly used to configure the authentication that is performed on an

inbound connection, however there is one exception and that is if a trust store is defined - on negotiating an

outbound SSL connection the trust store will be used to verify the remote server.

<authentication>

 <truststore />

 <local />

 <jaas />

 <ldap />

 <properties />

 <users />

 <plug-in />

</authentication>

An authentication definition can have zero or one , it can also have zero or one <truststore /> <local

 and it can also have one of , , , , and /> <jaas /> <ldap /> <properties /> <users /> <plug-in />

i.e. the local mechanism and a truststore for certificate verification can be independent switched on and off

and a single username / password store can be defined.

Latest WildFly Documentation

JBoss Community Documentation Page of 642 2293

<truststore />

<authentication>

 <truststore path="..." relative-to="..." keystore-password="..."/>

</authentication>

This element is used to define how to load a key store file that can be used as the trust store within the

SSLContext we create internally, the store is then used to verify the certificates of the remote side of the

connection be that inbound or outbound.

 (mandatory) - This is the path to the keystore, this can be an absolute path or relative to the nextpath

attribute.

 (optional) - The name of a service representing a path the keystore is relative to.relative-to

 (mandatory) - The password required to open the keystore.keystore-password

Although this is a definition of a trust store the attribute for the password is ,keystore-password

this is because the underlying file being opened is still a key store.

<local />

<authentication>

 <local default-user="..." allowed-users="..." />

</authentication>

This element switches on the local authentication mechanism that allows clients to the server to verify that

they are local to the server, at the protocol level it is optional for the remote client to send a user name in the

authentication response.

 (optional) - If the client does not pass in a username this is the assumed username, thisdefault-user

value is also automatically added to the list of allowed-users.

 (optional) - This attribute is used to specify a comma separated list of users allowed toallowed-users

authenticate using the local mechanism, alternatively ' ' can be specified to allow any username to be*

specified.

Latest WildFly Documentation

JBoss Community Documentation Page of 643 2293

<jaas />

<authentication>

 <jaas name="..." />

</authentication>

The jaas element is used to enable username and password based authentication where the supplied

username and password are verified by making use of a configured jaas domain.

 (mandatory) - The name of the jaas domain to use to verify the supplied username andname

password.

As JAAS authentication works by taking a username and password and verifying these the use of

this element means that at the transport level authentication will be forced to send the password in

plain text, any interception of the messages exchanged between the client and server without SSL

enabled will reveal the users password.

Latest WildFly Documentation

JBoss Community Documentation Page of 644 2293

<ldap />

<authentication>

 <ldap connection="..." base-dn="..." recursive="..." user-dn="...">

 <username-filter attribute="..." />

 <advanced-filter filter="..." />

 </ldap>

</authentication>

The ldap element is used to define how LDAP searches will be used to authenticate a user, this works by

first connecting to LDAP and performing a search using the supplied user name to identity the distinguished

name of the user and then a subsequent connection is made to the server using the password supplied by

the user - if this second connection is a success then authentication succeeds.

Due to the verification approach used this configuration causes the authentication mechanisms

selected for the protocol to cause the password to be sent from the client in plain text, the following

Jira issue is to investigating proxying a Digest authentication with the LDAP server so no plain text

password is needed .AS7-4195

 (mandatory) - The name of the connection to use to connect to LDAP.connection

 (mandatory) - The distinguished name of the context to use to begin the search from.base-dn

 (optional) - Should the filter be executed recursively? Defaults to false.recursive

 (optional) - After the user has been found specifies which attribute to read for the usersuser-dn

distinguished name, defaults to ' '.dn

Within the ldap element only one of or can be specified.<username-filter /> <advanced-filter />

<username-filter />
This element is used for a simple filter to match the username specified by the remote user against a single

attribute, as an example with Active Directory the match is most likely to be against the ' 'sAMAccountName

attribute.

 (mandatory) - The name of the field to match the users supplied username against.attribute

<advanced-filter />
This element is used where a more advanced filter is required, one example use of this filter is to exclude

certain matches by specifying some additional criteria for the filter.

 (mandatory) - The filter to execute to locate the user, this filter should contain '{ }' as a placefilter 0

holder for the username supplied by the user authenticating.

https://issues.jboss.org/browse/AS7-4195

Latest WildFly Documentation

JBoss Community Documentation Page of 645 2293

<properties />

<authentication>

 <properties path="..." relative-to="..." plain-text="..." />

</authentication>

The properties element is used to reference a properties file to load to read a users password or

pre-prepared digest for the authentication process.

 (mandatory) - The path to the properties file, either absolute or relative to the path referenced bypath

the relative-to attribute.

 (optional) - The name of a path service that the defined path will be relative to.relative-to

 (optional) - Setting to specify if the passwords are stored as plain text within the propertiesplain-text

file, defaults to false.

By default the properties files are expected to store a pre-prepared hash of the users password in

the form HEX(MD5(username ':' realm ':' password))

<users />

<authentication>

 <users>

 <user username="...">

 <password>...</password>

 </user>

 </users>

</authentication>

This is a very simple store of a username and password that stores both of these within the domain model,

this is only really provided for the provision of simple examples.

 (mandatory) - A users username.username

The element is then used to define the password for the user.<password/>

Latest WildFly Documentation

JBoss Community Documentation Page of 646 2293

<authorization />
The authorization element is used to define how a users roles can be loaded after the authentication process

completes, these roles may then be used for subsequent authorization decisions based on the service being

accessed. At the moment only a properties file approach or a custom plug-in are supported - support for

loading roles from LDAP or from a database are planned for a subsequent release.

<authorization>

 <properties />

 <plug-in />

</authorization>

<properties />

<authorization>

 <properties path="..." relative-to="..." />

</authorization>

The format of the properties file is } where { } is a comma separated list of theusername={ROLES ROLES

users roles.

 (mandatory) - The path to the properties file, either absolute or relative to the path referenced bypath

the relative-to attribute.

 (optional) - The name of a path service that the defined path will be relative to.relative-to

Latest WildFly Documentation

JBoss Community Documentation Page of 647 2293

<outbound-connection />
Strictly speaking these are not a part of the security realm definition, however at the moment they are only

used by security realms so the definition of outbound connection is described here.

<management>

 <security-realms />

 <outbound-connections>

 <ldap />

 </outbound-connections>

</management>

<ldap />
At the moment we only support outbound connections to ldap servers for the authentication process - this

will later be expanded when we add support for database based authentication.

<outbound-connections>

 <ldap name="..." url="..." search-dn="..." search-credential="..."

initial-context-factory="..." />

</outbound-connections>

The outbound connections are defined in this section and then referenced by name from the configuration

that makes use of them.

 (mandatory) - The unique name used to reference this connection.name

 (mandatory) - The URL use to establish the LDAP connection.url

 (mandatory) - The distinguished name of the user to authenticate as to perform thesearch-dn

searches.

 (mandatory) - The password required to connect to LDAP as the search-dn.search-credential

 (optional) - Allows overriding the initial context factory, defaults to 'initial-context-factory

'com.sun.jndi.ldap.LdapCtxFactory

5.21.9 Plug Ins

Within WildFly 8 for communication with the management interfaces and for other services exposed using

Remoting where username / password authentication is used the use of Digest authentication is preferred

over the use of HTTP Basic or SASL Plain so that we can avoid the sending of password in the clear over

the network. For validation of the digests to work on the server we either need to be able to retrieve a users

plain text password or we need to be able to obtain a ready prepared hash of their password along with the

username and realm.

Latest WildFly Documentation

JBoss Community Documentation Page of 648 2293

Previously to allow the addition of custom user stores we have added an option to the realms to call out to a

JAAS domain to validate a users username and password, the problem with this approach is that to call

JAAS we need the remote user to send in their plain text username and password so that a JAAS

LoginModule can perform the validation, this forces us down to use either the HTTP Basic authentication

mechanism or the SASL Plain mechanism depending on the transport used which is undesirable as we can

not longer use Digest.

To overcome this we now support plugging in custom user stores to support loading a users password, hash

and roles from a custom store to allow different stores to be implemented without forcing the authentication

back to plain text variant, this article describes the requirements for a plug in and shows a simple example

plug-in for use with WildFly 8.

When implementing a plug in there are two steps to the authentication process, the first step is to load the

users identity and credential from the relevant store - this is then used to verify the user attempting to

connect is valid. After the remote user is validated we then load the users roles in a second step. For this

reason the support for plug-ins is split into the two stages, when providing a plug-in either of these two steps

can be implemented but there is no requirement to implement the other side.

When implementing a plug-in the following interfaces are the bare minimum that need to be implemented so

depending on if a plug-in to load a users identity or a plug-in to load a users roles is being implemented you

will be implementing one of these interfaces.

 Note - All classes and interfaces of the SPI to be implemented are in the

'org.jboss.as.domain.management.plugin' package which is a part of the 'org.jboss.as.domain-management'

module but for simplicity for the rest of this section only the short names will be shown.

AuthenticationPlugIn
To implement an the following interface needs to be implemened: -AuthenticationPlugIn

public interface AuthenticationPlugIn<T extends Credential> {

 Identity<T> loadIdentity(final String userName, final String realm) throws IOException;

}

During the authentication process this method will be called with the user name supplied by the remote user

and the name of the realm they are authenticating against, this method call represents that an authentication

attempt is occurring but it is the Identity instance that is returned that will be used for the actual

authentication to verify the remote user.

The Identity interface is also an interface you will implement: -

public interface Identity<T extends Credential> {

 String getUserName();

 T getCredential();

}

Latest WildFly Documentation

JBoss Community Documentation Page of 649 2293

Additional information can be contained within the Identity implementation although it will not currently be

used, the key piece of information here is the Credential that will be returned - this needs to be one of the

following: -

PasswordCredential

public final class PasswordCredential implements Credential {

 public PasswordCredential(final char[] password);

 public char[] getPassword();

 void clear();

}

The is already implemented so use this class if you have the plain text password ofPasswordCredential

the remote user, by using this the secured interfaces will be able to continue using the Digest mechanism for

authentication.

DigestCredential

public final class DigestCredential implements Credential {

 public DigestCredential(final String hash);

 public String getHash();

}

This class is also already implemented and should be returned if instead of the plain text password you

already have a pre-prepared hash of the username, realm and password.

ValidatePasswordCredential

public interface ValidatePasswordCredential extends Credential {

 boolean validatePassword(final char[] password);

}

This is a special Credential type to use when it is not possible to obtain either a plain text representation of

the password or a pre-prepared hash - this is an interface as you will need to provide an implementation to

verify a supplied password. The down side of using this type of Credential is that the authentication

mechanism used at the transport level will need to drop down from Digest to either HTTP Basic or SASL

Plain which will now mean that the remote client is sending their credential across the network in the clear.

If you use this type of credential be sure to force the mechanism choice to Plain as described in the

configuration section below.

Latest WildFly Documentation

JBoss Community Documentation Page of 650 2293

AuthorizationPlugIn
If you are implementing a custom mechanism to load a users roles you need to implement the

AuthorizationPlugIn

public interface AuthorizationPlugIn {

 String[] loadRoles(final String userName, final String realm) throws IOException;

}

As with the this has a single method that takes a users userName and realm -AuthenticationPlugIn

the return type is an array of Strings with each entry representing a role the user is a member of.

PlugInConfigurationSupport
In addition to the specific interfaces above there is an additional interface that a plug-in can implement to

receive configuration information before the plug-in is used and also to receive a Map instance that can be

used to share state between the plug-in instance used for the authentication step of the call and the plug-in

instance used for the authorization step.

public interface PlugInConfigurationSupport {

 void init(final Map<String, String> configuration, final Map<String, Object> sharedState)

throws IOException;

}

Installing and Configuring a Plug-In
The next step of this article describes the steps to implement a plug-in provider and how to make it available

within WildFly 8 and how to configure it. Example configuration and an example implementation are shown

to illustrate this.

The following is an example security realm definition which will be used to illustrate this: -

<security-realm name="PlugInRealm">

 <plug-ins>

 <plug-in module="org.jboss.as.sample.plugin"/>

 </plug-ins>

 <authentication>

 <plug-in name="Sample">

 <properties>

 <property name="darranl.password" value="dpd"/>

 <property name="darranl.roles" value="Admin,Banker,User"/>

 </properties>

 </plug-in>

 </authentication>

 <authorization>

 <plug-in name="Delegate" />

 </authorization>

</security-realm>

Latest WildFly Documentation

JBoss Community Documentation Page of 651 2293

Before looking closely at the packaging and configuration there is one more interface to implement and that

is the interface, that interface is responsible for making PlugIn instances available atPlugInProvider

runtime to handle the requests.

PlugInProvider

public interface PlugInProvider {

 AuthenticationPlugIn<Credential> loadAuthenticationPlugIn(final String name);

 AuthorizationPlugIn loadAuthorizationPlugIn(final String name);

}

These methods are called with the name that is supplied in the plug-in elements that are contained within the

authentication and authorization elements of the configuration, based on the sample configuration above the

loadAuthenticationPlugIn method will be called with a parameter of 'Sample' and the loadAuthorizationPlugIn

method will be called with a parameter of 'Delegate'.

Multiple plug-in providers may be available to the application server so if a PlugInProvider

implementation does not recognise a name then it should just return null and the server will continue

searching the other providers. If a does recognise a name but fails to instantiate thePlugInProvider

PlugIn then a can be thrown to indicate the failure.RuntimeException

As a server could have many providers registered it is recommended that a naming convention including

some form of hierarchy is used e.g. use package style names to avoid conflicts.

For the example the implementation is as follows: -

public class SamplePluginProvider implements PlugInProvider {

 public AuthenticationPlugIn<Credential> loadAuthenticationPlugIn(String name) {

 if ("Sample".equals(name)) {

 return new SampleAuthenticationPlugIn();

 }

 return null;

 }

 public AuthorizationPlugIn loadAuthorizationPlugIn(String name) {

 if ("Sample".equals(name)) {

 return new SampleAuthenticationPlugIn();

 } else if ("Delegate".equals(name)) {

 return new DelegateAuthorizationPlugIn();

 }

 return null;

 }

}

The load methods are called for each authentication attempt but it will be an implementation detail of the

provider if it decides to return a new instance of the provider each time - in this scenario as we also use

configuration and shared state then new instances of the implementations make sense.

Latest WildFly Documentation

JBoss Community Documentation Page of 652 2293

To load the provider use a ServiceLoader so within the META-INF/services folder of the jar this project adds

a file called ' ' - this contains a singleorg.jboss.as.domain.management.plugin.PlugInProvider

entry which is the fully qualified class name of the PlugInProvider implementation class.

org.jboss.as.sample.SamplePluginProvider

Package as a Module
To make the available to the application it is bundled as a module and added to thePlugInProvider

modules already shipped with WildFly 8.

To add as a module we first need a : -module.xml

<?xml version="1.0" encoding="UTF-8"?>

<module xmlns="urn:jboss:module:1.1" name="org.jboss.as.sample.plugin">

 <properties>

 </properties>

 <resources>

 <resource-root path="SamplePlugIn.jar"/>

 </resources>

 <dependencies>

 <module name="org.jboss.as.domain-management" />

 </dependencies>

</module>

The interfaces being implemented are in the ' ' module so aorg.jboss.as.domain-management

dependency on that module is defined, this is then placed in the '{module.xml

'.jboss.home}/modules/org/jboss/as/sample/plugin/main

The compiled classed and as described above are assembled into a jar called META-INF/services

 and also placed into this folder.SamplePlugIn.jar

Looking back at the sample configuration at the top of the realm definition the following element was added:

-

<plug-ins>

 <plug-in module="org.jboss.as.sample.plugin"/>

 </plug-ins>

This element is used to list the modules that should be searched for plug-ins. As plug-ins are loaded during

the server start up this search is a lazy search so don't expect a definition to a non existant module or to a

module that does not contain a plug-in to report an error.

The AuthenticationPlugIn
The example is implemented as: -AuthenticationPlugIn

Latest WildFly Documentation

JBoss Community Documentation Page of 653 2293

public class SampleAuthenticationPlugIn extends AbstractPlugIn {

 private static final String PASSWORD_SUFFIX = ".password";

 private static final String ROLES_SUFFIX = ".roles";

 private Map<String, String> configuration;

 public void init(Map<String, String> configuration, Map<String, Object> sharedState) throws

IOException {

 this.configuration = configuration;

 // This will allow an AuthorizationPlugIn to delegate back to this instance.

 sharedState.put(AuthorizationPlugIn.class.getName(), this);

 }

 public Identity loadIdentity(String userName, String realm) throws IOException {

 String passwordKey = userName + PASSWORD_SUFFIX;

 if (configuration.containsKey(passwordKey)) {

 return new SampleIdentity(userName, configuration.get(passwordKey));

 }

 throw new IOException("Identity not found.");

 }

 public String[] loadRoles(String userName, String realm) throws IOException {

 String rolesKey = userName + ROLES_SUFFIX;

 if (configuration.containsKey(rolesKey)) {

 String roles = configuration.get(rolesKey);

 return roles.split(",");

 } else {

 return new String[0];

 }

 }

 private static class SampleIdentity implements Identity {

 private final String userName;

 private final Credential credential;

 private SampleIdentity(final String userName, final String password) {

 this.userName = userName;

 this.credential = new PasswordCredential(password.toCharArray());

 }

 public String getUserName() {

 return userName;

 }

 public Credential getCredential() {

 return credential;

 }

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 654 2293

As you can see from this implementation there is also an additional class being extended AbstractPlugIn

- that is simply an abstract class that implements the , ,AuthenticationPlugIn AuthorizationPlugIn

and interfaces already. The properties that were defined in thePlugInConfigurationSupport

configuration are passed in as a Map and importantly for this sample the plug-in adds itself to the shared

state map.

The AuthorizationPlugIn
The example implementation of the authentication plug in is as follows: -

public class DelegateAuthorizationPlugIn extends AbstractPlugIn {

 private AuthorizationPlugIn authorizationPlugIn;

 public void init(Map<String, String> configuration, Map<String, Object> sharedState) throws

IOException {

 authorizationPlugIn = (AuthorizationPlugIn)

sharedState.get(AuthorizationPlugIn.class.getName());

 }

 public String[] loadRoles(String userName, String realm) throws IOException {

 return authorizationPlugIn.loadRoles(userName, realm);

 }

}

This plug-in illustrates how two plug-ins can work together, by the placing itself inAuthenticationPlugIn

the shared state map it is possible for the authorization plug-in to make use of it for the loadRoles

implementation.

Another option to consider to achieve similar behaviour could be to provide an Identity implementation that

also contains the roles and place this in the shared state map - the can retrieveAuthorizationPlugIn

this and return the roles.

Forcing Plain Text Authentication
As mentioned earlier in this article if the is going to be used then theValidatePasswordCredential

authentication used at the transport level needs to be forced from Digest authentication to plain text

authentication, this can be achieved by adding a mechanism attribute to the plug-in definition within the

authentication element i.e.

<authentication>

 <plug-in name="Sample" mechanism="PLAIN">

Latest WildFly Documentation

JBoss Community Documentation Page of 655 2293

5.21.10 Example Configurations

This section of the document contains a couple of examples for the most common scenarios likely to be

used with the security realms, please feel free to raise Jira issues requesting additional scenarios or if you

have configured something not covered here please feel free to add your own examples - this document is

editable after all

At the moment these examples are making use of the ' ' however the same can apply toManagementRealm

the ' ' or any custom realm you create for yourselves.ApplicationRealm

LDAP Authentication
The following example demonstrates an example configuration making use of Active Directory to verify the

users username and password.

<management>

 <security-realms>

 <security-realm name="ManagementRealm">

 <authentication>

 <ldap connection="EC2" base-dn="CN=Users,DC=darranl,DC=jboss,DC=org">

 <username-filter attribute="sAMAccountName" />

 </ldap>

 </authentication>

 </security-realm>

 </security-realms>

 <outbound-connections>

 <ldap name="EC2" url="ldap://127.0.0.1:9797"

search-dn="CN=wf8,CN=Users,DC=darranl,DC=jboss,DC=org" search-credential="password"/>

 </outbound-connections>

 ...

</management>

For simplicity the configuration has been removed from this example, however there it<local/>

is fine to leave that in place for local authentication to remain possible.

Latest WildFly Documentation

JBoss Community Documentation Page of 656 2293

Enable SSL
The first step is the creation of the key, by default this is going to be used for both the native management

interface and the http management interface - to create the key we can use the , the followingkeyTool

example will create a key valid for one year.

Open a terminal window in the folder { and enter thejboss.home}/standalone/configuration

following command: -

keytool -genkey -alias server -keyalg RSA -keystore server.keystore -validity

365

Enter keystore password:

Re-enter new password:

In this example I choose ' '.keystore_password

What is your first and last name?

 [Unknown]: localhost

Of all of the questions asked this is the most important and should match the host name that will be

entered into the web browser to connect to the admin console.

Answer the remaining questions as you see fit and at the end for the purpose of this example I set the key

password to ' '.key_password

The following example shows how this newly created keystore will be referenced to enable SSL.

<security-realm name="ManagementRealm">

 <server-identities>

 <ssl>

 <keystore path="server.keystore" relative-to="jboss.server.config.dir"

keystore-password="keystore_password" alias="server" key-password="key_password" />

 </ssl>

 </server-identities>

 <authentication>

 ...

 </authentication>

</security-realm>

The contents of the have not been changed in this example so authentication still<authentication />

occurs using either the local mechanism or username/password authentication using Digest.

Latest WildFly Documentation

JBoss Community Documentation Page of 657 2293

Add Client-Cert to SSL
To enable Client-Cert style authentication we just now need to add a element to the <truststore />

 element referencing a trust store that has had the certificates or trusted clients<authentication />

imported.

<security-realm name="ManagementRealm">

 <server-identities>

 <ssl>

 <keystore path="server.keystore" relative-to="jboss.server.config.dir"

keystore-password="keystore_password" alias="server" key-password="key_password" />

 </ssl>

 </server-identities>

 <authentication>

 <truststore path="server.truststore" relative-to="jboss.server.config.dir"

keystore-password="truststore_password" />

 <local default-user="$local"/>

 <properties path="mgmt-users.properties" relative-to="jboss.server.config.dir"/>

 </authentication>

</security-realm>

In this scenario if Client-Cert authentication does not occur clients can fall back to use either the local

mechanism or username/password authentication. To make Client-Cert based authentication mandatory just

remove the and elements.<local /> <properties />

5.21.11 user utility

For use with the default configuration we supply a utility which can be used to manage theadd-user

properties files for the default realms used to store the users and their roles.

The add-user utility can be used to manage both the users in the and the users in the ManagementRealm

, changes made apply to the properties file used both for domain mode and standaloneApplicationRealm

mode.

After you have installed your application server and decided if you are going to run in standalone

mode or domain mode you can delete the parent folder for the mode you are not using, the

add-user utility will then only be managing the properties file for the mode in use.

The add-user utility is a command line utility however it can be run in both interactive and non-interactive

mode. Depending on your platform the script to run the add-user utility is either or add-user.sh

 which can be found in { .add-user.bat jboss.home}/bin

This guide now contains a couple of examples of this utility in use to accomplish the most common tasks.

Latest WildFly Documentation

JBoss Community Documentation Page of 658 2293

Adding a User
Adding users to the properties files is the primary purpose of this utility. Usernames can only contain the

following characters in any number and in any order:

Alphanumeric characters (a-z, A-Z, 0-9)

Dashes (-), periods (.), commas (,), at (@)

Escaped backslash (\\)

Escaped equals (\=)

The server caches the contents of the properties files in memory, however the server does check

the modified time of the properties files on each authentication request and re-load if the time has

been updated - this means all changes made by this utility are immediately applied to any running

server.

A Management User

The default name of the realm for management users is , when the utilityManagementRealm

prompts for the realm name just accept the default unless you have switched to a different realm.

Latest WildFly Documentation

JBoss Community Documentation Page of 659 2293

Interactive Mode

Here we have added a new Management User called , as you can see some of the questionsadminUser

offer default responses so you can just press enter without repeating the default value.

For now just answer or to the final question, adding users to be used by processes is described in moren no

detail in the domain management chapter.

Latest WildFly Documentation

JBoss Community Documentation Page of 660 2293

Interactive Mode
To add a user in non-interactive mode the command } can be./add-user.sh {username} {password

used.

If you add users using this approach there is a risk that any other user that can view the list of

running process may see the arguments including the password of the user being added, there is

also the risk that the username / password combination will be cached in the history file of the shell

you are currently using.

An Application User
When adding application users in addition to adding the user with their pre-hashed password it is also now

possible to define the roles of the user.

Latest WildFly Documentation

JBoss Community Documentation Page of 661 2293

Interactive Mode

Here a new user called has been added, in this case a comma separated list of roles has alsoappUser

been specified.

As with adding a management user just answer or to the final question until you know you are adding an no

user that will be establishing a connection from one server to another.

Interactive Mode
To add an application user non-interactively use the command ./add-user.sh -a {username}

}.{password

Non-interactive mode does not support defining a list of users, to associate a user with a set of

roles you will need to manually edit the file by hand.application-roles.properties

Latest WildFly Documentation

JBoss Community Documentation Page of 662 2293

Updating a User
Within the add-user utility it is also possible to update existing users, in interactive mode you will be

prompted to confirm if this is your intention.

A Management User

Interactive Mode

Interactive Mode
In non-interactive mode if a user already exists the update is automatic with no confirmation prompt.

Latest WildFly Documentation

JBoss Community Documentation Page of 663 2293

An Application User

Interactive Mode

On updating a user with roles you will need to re-enter the list of roles assigned to the user.

Interactive Mode
In non-interactive mode if a user already exists the update is automatic with no confirmation prompt.

Community Contributions
There are still a few features to add to the add-user utility such as removing users or adding application

users with roles in non-interactive mode, if you are interested in contributing to WildFly development the

add-user utility is a good place to start as it is a stand alone utility, however it is a part of the AS build so you

can become familiar with the AS development processes without needing to delve straight into the internals

of the application server.

5.21.12 Detailed Configuration

This section of the documentation describes the various configuration options when defining realms, plug-ins

are a slightly special case so the configuration options for plug-ins is within it's own section.

Latest WildFly Documentation

JBoss Community Documentation Page of 664 2293

Within a security realm definition there are four optional elements , <plug-ins /> <server-identities

, , and , as mentioned above plug-ins is defined within it's/> <authentication /> <authorization />

own section below so we will begin by looking at the element.<server-identities />

<server-identities />
The server identities section of a realm definition is used to define how a server appears to the outside

world, currently this element can be used to configure a password to be used when establishing a remote

outbound connection and also how to load a X.509 key which can be used for both inbound and outbound

SSL connections.

<ssl />

<server-identities>

 <ssl protocol="...">

 <keystore path="..." relative-to="..." keystore-password="..." alias="..."

key-password="..." />

 </ssl>

</server-identities>

 - By default this is set to TLS and in general does not need to be set.protocol

The SSL element then contains the nested element, this is used to define how to load the<keystore />

key from the file based (JKS) keystore.

 (mandatory) - This is the path to the keystore, this can be an absolute path or relative to the nextpath

attribute.

 (optional) - The name of a service representing a path the keystore is relative to.relative-to

 (mandatory) - The password required to open the keystore.keystore-password

 (optional) - The alias of the entry to use from the keystore - for a keystore with multiple entries inalias

practice the first usable entry is used but this should not be relied on and the alias should be set to

guarantee which entry is used.

 (optional) - The password to load the key entry, if omitted the keystore-password willkey-password

be used instead.

If you see the error the most likelyUnrecoverableKeyException: Cannot recover key

cause that you need to specify a and possible even an as well to ensurekey-password alias

only one key is loaded.

Latest WildFly Documentation

JBoss Community Documentation Page of 665 2293

<secret />

<server-identities>

 <secret value="..." />

</server-identities>

 (mandatory) - The password to use for outbound connections encoded as Base64, this fieldvalue

also supports a vault expression should stronger protection be required.

The username for the outbound connection is specified at the point the outbound connection is

defined.

<authentication />
The authentication element is predominantly used to configure the authentication that is performed on an

inbound connection, however there is one exception and that is if a trust store is defined - on negotiating an

outbound SSL connection the trust store will be used to verify the remote server.

<authentication>

 <truststore />

 <local />

 <jaas />

 <ldap />

 <properties />

 <users />

 <plug-in />

</authentication>

An authentication definition can have zero or one , it can also have zero or one <truststore /> <local

 and it can also have one of , , , , and /> <jaas /> <ldap /> <properties /> <users /> <plug-in />

i.e. the local mechanism and a truststore for certificate verification can be independent switched on and off

and a single username / password store can be defined.

Latest WildFly Documentation

JBoss Community Documentation Page of 666 2293

<truststore />

<authentication>

 <truststore path="..." relative-to="..." keystore-password="..."/>

</authentication>

This element is used to define how to load a key store file that can be used as the trust store within the

SSLContext we create internally, the store is then used to verify the certificates of the remote side of the

connection be that inbound or outbound.

 (mandatory) - This is the path to the keystore, this can be an absolute path or relative to the nextpath

attribute.

 (optional) - The name of a service representing a path the keystore is relative to.relative-to

 (mandatory) - The password required to open the keystore.keystore-password

Although this is a definition of a trust store the attribute for the password is ,keystore-password

this is because the underlying file being opened is still a key store.

<local />

<authentication>

 <local default-user="..." allowed-users="..." />

</authentication>

This element switches on the local authentication mechanism that allows clients to the server to verify that

they are local to the server, at the protocol level it is optional for the remote client to send a user name in the

authentication response.

 (optional) - If the client does not pass in a username this is the assumed username, thisdefault-user

value is also automatically added to the list of allowed-users.

 (optional) - This attribute is used to specify a comma separated list of users allowed toallowed-users

authenticate using the local mechanism, alternatively ' ' can be specified to allow any username to be*

specified.

Latest WildFly Documentation

JBoss Community Documentation Page of 667 2293

<jaas />

<authentication>

 <jaas name="..." />

</authentication>

The jaas element is used to enable username and password based authentication where the supplied

username and password are verified by making use of a configured jaas domain.

 (mandatory) - The name of the jaas domain to use to verify the supplied username andname

password.

As JAAS authentication works by taking a username and password and verifying these the use of

this element means that at the transport level authentication will be forced to send the password in

plain text, any interception of the messages exchanged between the client and server without SSL

enabled will reveal the users password.

Latest WildFly Documentation

JBoss Community Documentation Page of 668 2293

<ldap />

<authentication>

 <ldap connection="..." base-dn="..." recursive="..." user-dn="...">

 <username-filter attribute="..." />

 <advanced-filter filter="..." />

 </ldap>

</authentication>

The ldap element is used to define how LDAP searches will be used to authenticate a user, this works by

first connecting to LDAP and performing a search using the supplied user name to identity the distinguished

name of the user and then a subsequent connection is made to the server using the password supplied by

the user - if this second connection is a success then authentication succeeds.

Due to the verification approach used this configuration causes the authentication mechanisms

selected for the protocol to cause the password to be sent from the client in plain text, the following

Jira issue is to investigating proxying a Digest authentication with the LDAP server so no plain text

password is needed .AS7-4195

 (mandatory) - The name of the connection to use to connect to LDAP.connection

 (mandatory) - The distinguished name of the context to use to begin the search from.base-dn

 (optional) - Should the filter be executed recursively? Defaults to false.recursive

 (optional) - After the user has been found specifies which attribute to read for the usersuser-dn

distinguished name, defaults to ' '.dn

Within the ldap element only one of or can be specified.<username-filter /> <advanced-filter />

<username-filter />
This element is used for a simple filter to match the username specified by the remote user against a single

attribute, as an example with Active Directory the match is most likely to be against the ' 'sAMAccountName

attribute.

 (mandatory) - The name of the field to match the users supplied username against.attribute

<advanced-filter />
This element is used where a more advanced filter is required, one example use of this filter is to exclude

certain matches by specifying some additional criteria for the filter.

 (mandatory) - The filter to execute to locate the user, this filter should contain '{ }' as a placefilter 0

holder for the username supplied by the user authenticating.

https://issues.jboss.org/browse/AS7-4195

Latest WildFly Documentation

JBoss Community Documentation Page of 669 2293

<properties />

<authentication>

 <properties path="..." relative-to="..." plain-text="..." />

</authentication>

The properties element is used to reference a properties file to load to read a users password or

pre-prepared digest for the authentication process.

 (mandatory) - The path to the properties file, either absolute or relative to the path referenced bypath

the relative-to attribute.

 (optional) - The name of a path service that the defined path will be relative to.relative-to

 (optional) - Setting to specify if the passwords are stored as plain text within the propertiesplain-text

file, defaults to false.

By default the properties files are expected to store a pre-prepared hash of the users password in

the form HEX(MD5(username ':' realm ':' password))

<users />

<authentication>

 <users>

 <user username="...">

 <password>...</password>

 </user>

 </users>

</authentication>

This is a very simple store of a username and password that stores both of these within the domain model,

this is only really provided for the provision of simple examples.

 (mandatory) - A users username.username

The element is then used to define the password for the user.<password/>

Latest WildFly Documentation

JBoss Community Documentation Page of 670 2293

<authorization />
The authorization element is used to define how a users roles can be loaded after the authentication process

completes, these roles may then be used for subsequent authorization decisions based on the service being

accessed. At the moment only a properties file approach or a custom plug-in are supported - support for

loading roles from LDAP or from a database are planned for a subsequent release.

<authorization>

 <properties />

 <plug-in />

</authorization>

<properties />

<authorization>

 <properties path="..." relative-to="..." />

</authorization>

The format of the properties file is } where { } is a comma separated list of theusername={ROLES ROLES

users roles.

 (mandatory) - The path to the properties file, either absolute or relative to the path referenced bypath

the relative-to attribute.

 (optional) - The name of a path service that the defined path will be relative to.relative-to

Latest WildFly Documentation

JBoss Community Documentation Page of 671 2293

<outbound-connection />
Strictly speaking these are not a part of the security realm definition, however at the moment they are only

used by security realms so the definition of outbound connection is described here.

<management>

 <security-realms />

 <outbound-connections>

 <ldap />

 </outbound-connections>

</management>

<ldap />
At the moment we only support outbound connections to ldap servers for the authentication process - this

will later be expanded when we add support for database based authentication.

<outbound-connections>

 <ldap name="..." url="..." search-dn="..." search-credential="..."

initial-context-factory="..." />

</outbound-connections>

The outbound connections are defined in this section and then referenced by name from the configuration

that makes use of them.

 (mandatory) - The unique name used to reference this connection.name

 (mandatory) - The URL use to establish the LDAP connection.url

 (mandatory) - The distinguished name of the user to authenticate as to perform thesearch-dn

searches.

 (mandatory) - The password required to connect to LDAP as the search-dn.search-credential

 (optional) - Allows overriding the initial context factory, defaults to 'initial-context-factory

'com.sun.jndi.ldap.LdapCtxFactory

5.21.13 Examples

This section of the document contains a couple of examples for the most common scenarios likely to be

used with the security realms, please feel free to raise Jira issues requesting additional scenarios or if you

have configured something not covered here please feel free to add your own examples - this document is

editable after all

At the moment these examples are making use of the ' ' however the same can apply toManagementRealm

the ' ' or any custom realm you create for yourselves.ApplicationRealm

Latest WildFly Documentation

JBoss Community Documentation Page of 672 2293

LDAP Authentication
The following example demonstrates an example configuration making use of Active Directory to verify the

users username and password.

<management>

 <security-realms>

 <security-realm name="ManagementRealm">

 <authentication>

 <ldap connection="EC2" base-dn="CN=Users,DC=darranl,DC=jboss,DC=org">

 <username-filter attribute="sAMAccountName" />

 </ldap>

 </authentication>

 </security-realm>

 </security-realms>

 <outbound-connections>

 <ldap name="EC2" url="ldap://127.0.0.1:9797"

search-dn="CN=wf8,CN=Users,DC=darranl,DC=jboss,DC=org" search-credential="password"/>

 </outbound-connections>

 ...

</management>

For simplicity the configuration has been removed from this example, however there it<local/>

is fine to leave that in place for local authentication to remain possible.

Latest WildFly Documentation

JBoss Community Documentation Page of 673 2293

Enable SSL
The first step is the creation of the key, by default this is going to be used for both the native management

interface and the http management interface - to create the key we can use the , the followingkeyTool

example will create a key valid for one year.

Open a terminal window in the folder { and enter thejboss.home}/standalone/configuration

following command: -

keytool -genkey -alias server -keyalg RSA -keystore server.keystore -validity

365

Enter keystore password:

Re-enter new password:

In this example I choose ' '.keystore_password

What is your first and last name?

 [Unknown]: localhost

Of all of the questions asked this is the most important and should match the host name that will be

entered into the web browser to connect to the admin console.

Answer the remaining questions as you see fit and at the end for the purpose of this example I set the key

password to ' '.key_password

The following example shows how this newly created keystore will be referenced to enable SSL.

<security-realm name="ManagementRealm">

 <server-identities>

 <ssl>

 <keystore path="server.keystore" relative-to="jboss.server.config.dir"

keystore-password="keystore_password" alias="server" key-password="key_password" />

 </ssl>

 </server-identities>

 <authentication>

 ...

 </authentication>

</security-realm>

The contents of the have not been changed in this example so authentication still<authentication />

occurs using either the local mechanism or username/password authentication using Digest.

Latest WildFly Documentation

JBoss Community Documentation Page of 674 2293

Add Client-Cert to SSL
To enable Client-Cert style authentication we just now need to add a element to the <truststore />

 element referencing a trust store that has had the certificates or trusted clients<authentication />

imported.

<security-realm name="ManagementRealm">

 <server-identities>

 <ssl>

 <keystore path="server.keystore" relative-to="jboss.server.config.dir"

keystore-password="keystore_password" alias="server" key-password="key_password" />

 </ssl>

 </server-identities>

 <authentication>

 <truststore path="server.truststore" relative-to="jboss.server.config.dir"

keystore-password="truststore_password" />

 <local default-user="$local"/>

 <properties path="mgmt-users.properties" relative-to="jboss.server.config.dir"/>

 </authentication>

</security-realm>

In this scenario if Client-Cert authentication does not occur clients can fall back to use either the local

mechanism or username/password authentication. To make Client-Cert based authentication mandatory just

remove the and elements.<local /> <properties />

5.21.14 Plug Ins

Within WildFly 8 for communication with the management interfaces and for other services exposed using

Remoting where username / password authentication is used the use of Digest authentication is preferred

over the use of HTTP Basic or SASL Plain so that we can avoid the sending of password in the clear over

the network. For validation of the digests to work on the server we either need to be able to retrieve a users

plain text password or we need to be able to obtain a ready prepared hash of their password along with the

username and realm.

Previously to allow the addition of custom user stores we have added an option to the realms to call out to a

JAAS domain to validate a users username and password, the problem with this approach is that to call

JAAS we need the remote user to send in their plain text username and password so that a JAAS

LoginModule can perform the validation, this forces us down to use either the HTTP Basic authentication

mechanism or the SASL Plain mechanism depending on the transport used which is undesirable as we can

not longer use Digest.

To overcome this we now support plugging in custom user stores to support loading a users password, hash

and roles from a custom store to allow different stores to be implemented without forcing the authentication

back to plain text variant, this article describes the requirements for a plug in and shows a simple example

plug-in for use with WildFly 8.

Latest WildFly Documentation

JBoss Community Documentation Page of 675 2293

When implementing a plug in there are two steps to the authentication process, the first step is to load the

users identity and credential from the relevant store - this is then used to verify the user attempting to

connect is valid. After the remote user is validated we then load the users roles in a second step. For this

reason the support for plug-ins is split into the two stages, when providing a plug-in either of these two steps

can be implemented but there is no requirement to implement the other side.

When implementing a plug-in the following interfaces are the bare minimum that need to be implemented so

depending on if a plug-in to load a users identity or a plug-in to load a users roles is being implemented you

will be implementing one of these interfaces.

 Note - All classes and interfaces of the SPI to be implemented are in the

'org.jboss.as.domain.management.plugin' package which is a part of the 'org.jboss.as.domain-management'

module but for simplicity for the rest of this section only the short names will be shown.

AuthenticationPlugIn
To implement an the following interface needs to be implemened: -AuthenticationPlugIn

public interface AuthenticationPlugIn<T extends Credential> {

 Identity<T> loadIdentity(final String userName, final String realm) throws IOException;

}

During the authentication process this method will be called with the user name supplied by the remote user

and the name of the realm they are authenticating against, this method call represents that an authentication

attempt is occurring but it is the Identity instance that is returned that will be used for the actual

authentication to verify the remote user.

The Identity interface is also an interface you will implement: -

public interface Identity<T extends Credential> {

 String getUserName();

 T getCredential();

}

Additional information can be contained within the Identity implementation although it will not currently be

used, the key piece of information here is the Credential that will be returned - this needs to be one of the

following: -

Latest WildFly Documentation

JBoss Community Documentation Page of 676 2293

PasswordCredential

public final class PasswordCredential implements Credential {

 public PasswordCredential(final char[] password);

 public char[] getPassword();

 void clear();

}

The is already implemented so use this class if you have the plain text password ofPasswordCredential

the remote user, by using this the secured interfaces will be able to continue using the Digest mechanism for

authentication.

DigestCredential

public final class DigestCredential implements Credential {

 public DigestCredential(final String hash);

 public String getHash();

}

This class is also already implemented and should be returned if instead of the plain text password you

already have a pre-prepared hash of the username, realm and password.

ValidatePasswordCredential

public interface ValidatePasswordCredential extends Credential {

 boolean validatePassword(final char[] password);

}

This is a special Credential type to use when it is not possible to obtain either a plain text representation of

the password or a pre-prepared hash - this is an interface as you will need to provide an implementation to

verify a supplied password. The down side of using this type of Credential is that the authentication

mechanism used at the transport level will need to drop down from Digest to either HTTP Basic or SASL

Plain which will now mean that the remote client is sending their credential across the network in the clear.

If you use this type of credential be sure to force the mechanism choice to Plain as described in the

configuration section below.

Latest WildFly Documentation

JBoss Community Documentation Page of 677 2293

AuthorizationPlugIn
If you are implementing a custom mechanism to load a users roles you need to implement the

AuthorizationPlugIn

public interface AuthorizationPlugIn {

 String[] loadRoles(final String userName, final String realm) throws IOException;

}

As with the this has a single method that takes a users userName and realm -AuthenticationPlugIn

the return type is an array of Strings with each entry representing a role the user is a member of.

PlugInConfigurationSupport
In addition to the specific interfaces above there is an additional interface that a plug-in can implement to

receive configuration information before the plug-in is used and also to receive a Map instance that can be

used to share state between the plug-in instance used for the authentication step of the call and the plug-in

instance used for the authorization step.

public interface PlugInConfigurationSupport {

 void init(final Map<String, String> configuration, final Map<String, Object> sharedState)

throws IOException;

}

Installing and Configuring a Plug-In
The next step of this article describes the steps to implement a plug-in provider and how to make it available

within WildFly 8 and how to configure it. Example configuration and an example implementation are shown

to illustrate this.

The following is an example security realm definition which will be used to illustrate this: -

<security-realm name="PlugInRealm">

 <plug-ins>

 <plug-in module="org.jboss.as.sample.plugin"/>

 </plug-ins>

 <authentication>

 <plug-in name="Sample">

 <properties>

 <property name="darranl.password" value="dpd"/>

 <property name="darranl.roles" value="Admin,Banker,User"/>

 </properties>

 </plug-in>

 </authentication>

 <authorization>

 <plug-in name="Delegate" />

 </authorization>

</security-realm>

Latest WildFly Documentation

JBoss Community Documentation Page of 678 2293

Before looking closely at the packaging and configuration there is one more interface to implement and that

is the interface, that interface is responsible for making PlugIn instances available atPlugInProvider

runtime to handle the requests.

PlugInProvider

public interface PlugInProvider {

 AuthenticationPlugIn<Credential> loadAuthenticationPlugIn(final String name);

 AuthorizationPlugIn loadAuthorizationPlugIn(final String name);

}

These methods are called with the name that is supplied in the plug-in elements that are contained within the

authentication and authorization elements of the configuration, based on the sample configuration above the

loadAuthenticationPlugIn method will be called with a parameter of 'Sample' and the loadAuthorizationPlugIn

method will be called with a parameter of 'Delegate'.

Multiple plug-in providers may be available to the application server so if a PlugInProvider

implementation does not recognise a name then it should just return null and the server will continue

searching the other providers. If a does recognise a name but fails to instantiate thePlugInProvider

PlugIn then a can be thrown to indicate the failure.RuntimeException

As a server could have many providers registered it is recommended that a naming convention including

some form of hierarchy is used e.g. use package style names to avoid conflicts.

For the example the implementation is as follows: -

public class SamplePluginProvider implements PlugInProvider {

 public AuthenticationPlugIn<Credential> loadAuthenticationPlugIn(String name) {

 if ("Sample".equals(name)) {

 return new SampleAuthenticationPlugIn();

 }

 return null;

 }

 public AuthorizationPlugIn loadAuthorizationPlugIn(String name) {

 if ("Sample".equals(name)) {

 return new SampleAuthenticationPlugIn();

 } else if ("Delegate".equals(name)) {

 return new DelegateAuthorizationPlugIn();

 }

 return null;

 }

}

The load methods are called for each authentication attempt but it will be an implementation detail of the

provider if it decides to return a new instance of the provider each time - in this scenario as we also use

configuration and shared state then new instances of the implementations make sense.

Latest WildFly Documentation

JBoss Community Documentation Page of 679 2293

To load the provider use a ServiceLoader so within the META-INF/services folder of the jar this project adds

a file called ' ' - this contains a singleorg.jboss.as.domain.management.plugin.PlugInProvider

entry which is the fully qualified class name of the PlugInProvider implementation class.

org.jboss.as.sample.SamplePluginProvider

Package as a Module
To make the available to the application it is bundled as a module and added to thePlugInProvider

modules already shipped with WildFly 8.

To add as a module we first need a : -module.xml

<?xml version="1.0" encoding="UTF-8"?>

<module xmlns="urn:jboss:module:1.1" name="org.jboss.as.sample.plugin">

 <properties>

 </properties>

 <resources>

 <resource-root path="SamplePlugIn.jar"/>

 </resources>

 <dependencies>

 <module name="org.jboss.as.domain-management" />

 </dependencies>

</module>

The interfaces being implemented are in the ' ' module so aorg.jboss.as.domain-management

dependency on that module is defined, this is then placed in the '{module.xml

'.jboss.home}/modules/org/jboss/as/sample/plugin/main

The compiled classed and as described above are assembled into a jar called META-INF/services

 and also placed into this folder.SamplePlugIn.jar

Looking back at the sample configuration at the top of the realm definition the following element was added:

-

<plug-ins>

 <plug-in module="org.jboss.as.sample.plugin"/>

 </plug-ins>

This element is used to list the modules that should be searched for plug-ins. As plug-ins are loaded during

the server start up this search is a lazy search so don't expect a definition to a non existant module or to a

module that does not contain a plug-in to report an error.

The AuthenticationPlugIn
The example is implemented as: -AuthenticationPlugIn

Latest WildFly Documentation

JBoss Community Documentation Page of 680 2293

public class SampleAuthenticationPlugIn extends AbstractPlugIn {

 private static final String PASSWORD_SUFFIX = ".password";

 private static final String ROLES_SUFFIX = ".roles";

 private Map<String, String> configuration;

 public void init(Map<String, String> configuration, Map<String, Object> sharedState) throws

IOException {

 this.configuration = configuration;

 // This will allow an AuthorizationPlugIn to delegate back to this instance.

 sharedState.put(AuthorizationPlugIn.class.getName(), this);

 }

 public Identity loadIdentity(String userName, String realm) throws IOException {

 String passwordKey = userName + PASSWORD_SUFFIX;

 if (configuration.containsKey(passwordKey)) {

 return new SampleIdentity(userName, configuration.get(passwordKey));

 }

 throw new IOException("Identity not found.");

 }

 public String[] loadRoles(String userName, String realm) throws IOException {

 String rolesKey = userName + ROLES_SUFFIX;

 if (configuration.containsKey(rolesKey)) {

 String roles = configuration.get(rolesKey);

 return roles.split(",");

 } else {

 return new String[0];

 }

 }

 private static class SampleIdentity implements Identity {

 private final String userName;

 private final Credential credential;

 private SampleIdentity(final String userName, final String password) {

 this.userName = userName;

 this.credential = new PasswordCredential(password.toCharArray());

 }

 public String getUserName() {

 return userName;

 }

 public Credential getCredential() {

 return credential;

 }

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 681 2293

As you can see from this implementation there is also an additional class being extended AbstractPlugIn

- that is simply an abstract class that implements the , ,AuthenticationPlugIn AuthorizationPlugIn

and interfaces already. The properties that were defined in thePlugInConfigurationSupport

configuration are passed in as a Map and importantly for this sample the plug-in adds itself to the shared

state map.

The AuthorizationPlugIn
The example implementation of the authentication plug in is as follows: -

public class DelegateAuthorizationPlugIn extends AbstractPlugIn {

 private AuthorizationPlugIn authorizationPlugIn;

 public void init(Map<String, String> configuration, Map<String, Object> sharedState) throws

IOException {

 authorizationPlugIn = (AuthorizationPlugIn)

sharedState.get(AuthorizationPlugIn.class.getName());

 }

 public String[] loadRoles(String userName, String realm) throws IOException {

 return authorizationPlugIn.loadRoles(userName, realm);

 }

}

This plug-in illustrates how two plug-ins can work together, by the placing itself inAuthenticationPlugIn

the shared state map it is possible for the authorization plug-in to make use of it for the loadRoles

implementation.

Another option to consider to achieve similar behaviour could be to provide an Identity implementation that

also contains the roles and place this in the shared state map - the can retrieveAuthorizationPlugIn

this and return the roles.

Forcing Plain Text Authentication
As mentioned earlier in this article if the is going to be used then theValidatePasswordCredential

authentication used at the transport level needs to be forced from Digest authentication to plain text

authentication, this can be achieved by adding a mechanism attribute to the plug-in definition within the

authentication element i.e.

<authentication>

 <plug-in name="Sample" mechanism="PLAIN">

Latest WildFly Documentation

JBoss Community Documentation Page of 682 2293

5.22 Subsystem configuration

The following chapters will focus on the high level management use cases that are available through the CLI

and the web interface. For a detailed description of each subsystem configuration property, please consult

the respective component reference.

Schema Location

The configuration schemas can found in .$JBOSS_HOME/docs/schema

5.22.1 EE Subsystem Configuration

Overview
The EE subsystem provides common functionality in the Java EE platform, such as the EE Concurrency

Utilities (JSR 236) and injection. The subsystem is also responsible for managing the lifecycle@Resource

of Java EE application's deployments, that is, files..ear

The EE subsystem configuration may be used to:

customise the deployment of Java EE applications

create EE Concurrency Utilities instances

define the default bindings

The subsystem name is ee and this document covers EE subsystem version , which XML namespace2.0

within WildFly XML configurations is . The path for the subsystem's XMLurn:jboss:domain:ee:2.0

schema, within WildFly's distribution, is .docs/schema/jboss-as-ee_2_0.xsd

Subsystem XML configuration example with all elements and attributes specified:

<subsystem xmlns="urn:jboss:domain:ee:2.0" >

 <global-modules>

 <module name="org.jboss.logging"

 slot="main"/>

 <module name="org.apache.log4j"

 annotations="true"

 meta-inf="true"

 services="false" />

 </global-modules>

 <ear-subdeployments-isolated>true</ear-subdeployments-isolated>

 <spec-descriptor-property-replacement>false</spec-descriptor-property-replacement>

 <jboss-descriptor-property-replacement>false</jboss-descriptor-property-replacement>

 <annotation-property-replacement>false</annotation-property-replacement>

 <concurrent>

 <context-services>

 <context-service

Latest WildFly Documentation

JBoss Community Documentation Page of 683 2293

 name="default"

 jndi-name="java:jboss/ee/concurrency/context/default"

 use-transaction-setup-provider="true" />

 </context-services>

 <managed-thread-factories>

 <managed-thread-factory

 name="default"

 jndi-name="java:jboss/ee/concurrency/factory/default"

 context-service="default"

 priority="1" />

 </managed-thread-factories>

 <managed-executor-services>

 <managed-executor-service

 name="default"

 jndi-name="java:jboss/ee/concurrency/executor/default"

 context-service="default"

 thread-factory="default"

 hung-task-threshold="60000"

 core-threads="5"

 max-threads="25"

 keepalive-time="5000"

 queue-length="1000000"

 reject-policy="RETRY_ABORT" />

 </managed-executor-services>

 <managed-scheduled-executor-services>

 <managed-scheduled-executor-service

 name="default"

 jndi-name="java:jboss/ee/concurrency/scheduler/default"

 context-service="default"

 thread-factory="default"

 hung-task-threshold="60000"

 core-threads="5"

 keepalive-time="5000"

 reject-policy="RETRY_ABORT" />

 </managed-scheduled-executor-services>

 </concurrent>

 <default-bindings

 context-service="java:jboss/ee/concurrency/context/default"

 datasource="java:jboss/datasources/ExampleDS"

 jms-connection-factory="java:jboss/DefaultJMSConnectionFactory"

 managed-executor-service="java:jboss/ee/concurrency/executor/default"

 managed-scheduled-executor-service="java:jboss/ee/concurrency/scheduler/default"

 managed-thread-factory="java:jboss/ee/concurrency/factory/default" />

</subsystem>

Java EE Application Deployment
The EE subsystem configuration allows the customisation of the deployment behaviour for Java EE

Applications.

Latest WildFly Documentation

JBoss Community Documentation Page of 684 2293

Global Modules
Global modules is a set of JBoss Modules that will be added as dependencies to the JBoss Module of every

Java EE deployment. Such dependencies allows Java EE deployments to see the classes exported by the

global modules.

Each global module is defined through the resource, an example of its XML configuration:module

<global-modules>

 <module name="org.jboss.logging" slot="main"/>

 <module name="org.apache.log4j" annotations="true" meta-inf="true" services="false" />

 </global-modules>

The only mandatory attribute is the JBoss Module , the attribute defaults to , and bothname slot main

define the JBoss Module ID to reference.

The optional attribute, which defaults to , indicates if a pre-computed annotation indexannotations false

should be imported from META-INF/jandex.idx

The optional attribute indicates if any services exposed in META-INF/services should be madeservices

available to the deployments class loader, and defaults to .false

The optional attribute, which defaults to , indicates if the Module's path shouldmeta-inf true META-INF

be available to the deployment's class loader.

Latest WildFly Documentation

JBoss Community Documentation Page of 685 2293

EAR Subdeployments Isolation
A flag indicating whether each of the subdeployments within a can access classes belonging to.ear

another subdeployment within the same . The default value is , which allows the.ear false

subdeployments to see classes belonging to other subdeployments within the ..ear

<ear-subdeployments-isolated>true</ear-subdeployments-isolated>

For example:

myapp.ear

|

|--- web.war

|

|--- ejb1.jar

|

|--- ejb2.jar

If the is set to false, then the classes in can access classesear-subdeployments-isolated web.war

belonging to and . Similarly, classes from can access classes from ejb1.jar ejb2.jar ejb1.jar

 (and vice-versa).ejb2.jar

This flag has no effect on the isolated classloader of the file(s), i.e. irrespective of whether.war

this flag is set to or , the within a will have a isolated classloader, andtrue false .war .ear

other subdeployments within that will not be able to access classes from that . This is.ear .war

as per spec.

Latest WildFly Documentation

JBoss Community Documentation Page of 686 2293

Property Replacement
The EE subsystem configuration includes flags to configure whether system property replacement will be

done on XML descriptors and Java Annotations included in Java EE deployments.

System properties etc are resolved in the security context of the application server itself, not the

deployment that contains the file. This means that if you are running with a security manager and

enable this property, a deployment can potentially access system properties or environment entries

that the security manager would have otherwise prevented.

Spec Descriptor Property Replacement
Flag indicating whether system property replacement will be performed on standard Java EE XML

descriptors. If not configured this defaults to , however it is set to in the standard configurationtrue false

files shipped with WildFly.

<spec-descriptor-property-replacement>false</spec-descriptor-property-replacement>

JBoss Descriptor Property Replacement
Flag indicating whether system property replacement will be performed on WildFly proprietary XML

descriptors, such as . This defaults to .jboss-app.xml true

<jboss-descriptor-property-replacement>false</jboss-descriptor-property-replacement>

Annotation Property Replacement
Flag indicating whether system property replacement will be performed on Java annotations. The default

value is .false

<annotation-property-replacement>false</annotation-property-replacement>

EE Concurrency Utilities
EE Concurrency Utilities (JSR 236) were introduced with Java EE 7, to ease the task of writing multithreaded

Java EE applications. Instances of these utilities are managed by WildFly, and the related configuration

provided by the EE subsystem.

Latest WildFly Documentation

JBoss Community Documentation Page of 687 2293

Context Services
The Context Service is a concurrency utility which creates contextual proxies from existent objects. WildFly

Context Services are also used to propagate the context from a Java EE application invocation thread, to the

threads internally used by the other EE Concurrency Utilities. Context Service instances may be created

using the subsystem XML configuration:

<context-services>

 <context-service

 name="default"

 jndi-name="java:jboss/ee/concurrency/context/default"

 use-transaction-setup-provider="true" />

 </context-services>

The attribute is mandatory, and it's value should be a unique name within all Context Services.name

The attribute is also mandatory, and defines where in the JNDI the Context Service should bejndi-name

placed.

The optional attribute indicates if the contextual proxies built by theuse-trasaction-setup-provider

Context Service should suspend transactions in context, when invoking the proxy objects, and its value

defaults to true.

Management clients, such as the WildFly CLI, may also be used to configure Context Service instances. An

example to and one named :add remove other

/subsystem=ee/context-service=other:add(jndi-name=java\:jboss\/ee\/concurrency\/other)

/subsystem=ee/context-service=other:remove

Latest WildFly Documentation

JBoss Community Documentation Page of 688 2293

Managed Thread Factories
The Managed Thread Factory allows Java EE applications to create new threads. WildFly Managed Thread

Factory instances may also, optionally, use a Context Service instance to propagate the Java EE application

thread’s context to the new threads. Instance creation is done through the EE subsystem, by editing the

subsystem XML configuration:

<managed-thread-factories>

 <managed-thread-factory

 name="default"

 jndi-name="java:jboss/ee/concurrency/factory/default"

 context-service="default"

 priority="1" />

 </managed-thread-factories>

The attribute is mandatory, and it's value should be a unique name within all Managed Threadname

Factories.

The attribute is also mandatory, and defines where in the JNDI the Managed Thread Factoryjndi-name

should be placed.

The optional references an existent Context Service by its . If specified thencontext-service name

thread created by the factory will propagate the invocation context, present when creating the thread.

The optional indicates the priority for new threads created by the factory, and defaults to .priority 5

Management clients, such as the WildFly CLI, may also be used to configure Managed Thread Factory

instances. An example to and one named :add remove other

/subsystem=ee/managed-thread-factory=other:add(jndi-name=java\:jboss\/ee\/factory\/other)

/subsystem=ee/managed-thread-factory=other:remove

Managed Executor Services
The Managed Executor Service is the Java EE adaptation of Java SE Executor Service, providing to Java

EE applications the functionality of asynchronous task execution. WildFly is responsible to manage the

lifecycle of Managed Executor Service instances, which are specified through the EE subsystem XML

configuration:

Latest WildFly Documentation

JBoss Community Documentation Page of 689 2293

<managed-executor-services>

 <managed-executor-service

 name="default"

 jndi-name="java:jboss/ee/concurrency/executor/default"

 context-service="default"

 thread-factory="default"

 hung-task-threshold="60000"

 core-threads="5"

 max-threads="25"

 keepalive-time="5000"

 queue-length="1000000"

 reject-policy="RETRY_ABORT" />

 </managed-executor-services>

The attribute is mandatory, and it's value should be a unique name within all Managed Executorname

Services.

The attribute is also mandatory, and defines where in the JNDI the Managed Executor Servicejndi-name

should be placed.

The optional references an existent Context Service by its . If specified then thecontext-service name

referenced Context Service will capture the invocation context present when submitting a task to the

executor, which will then be used when executing the task.

The optional references an existent Managed Thread Factory by its , to handle thethread-factory name

creation of internal threads. If not specified then a Managed Thread Factory with default configuration will be

created and used internally.

The mandatory provides the number of threads to keep in the executor's pool, even if theycore-threads

are idle. A value of means there is no limit.0

The optional indicates the number of tasks that can be stored in the input queue. Thequeue-length

default value is , which means the queue capacity is unlimited.0

The executor’s task queue is based on the values of the attributes and :core-threads queue-length

If is , or is and queue-length 0 queue-length Integer.MAX_VALUE (2147483647)

 is , direct handoff queuing strategy will be used and a synchronous queue will becore-threads 0

created.

If is but is not , an unbounded queue willqueue-length Integer.MAX_VALUE core-threads 0

be used.

For any other valid value for , a bounded queue wil be created.queue-length

The optional defines a threshold value, in milliseconds, to hung a possibly blockedhung-task-threshold

task. A value of will never hung a task, and is the default.0

The optional is a hint to optimize the execution of long running tasks, and defaultslong-running-tasks

to .false

Latest WildFly Documentation

JBoss Community Documentation Page of 690 2293

The optional defines the the maximum number of threads used by the executor, whichmax-threads

defaults to Integer.MAX_VALUE (2147483647).

The optional defines the time, in milliseconds, that an internal thread may be idle. Thekeepalive-time

attribute default value is .60000

The optional reject-policy defines the policy to use when a task is rejected by the executor. The attribute

value may be the default , which means an exception should be thrown, or , whichABORT RETRY_ABORT

means the executor will try to submit it once more, before throwing an exception.

Management clients, such as the WildFly CLI, may also be used to configure Managed Executor Service

instances. An example to and one named :add remove other

/subsystem=ee/managed-executor-service=other:add(jndi-name=java\:jboss\/ee\/executor\/other,

core-threads=2)

/subsystem=ee/managed-executor-service=other:remove

Managed Scheduled Executor Services
The Managed Scheduled Executor Service is the Java EE adaptation of Java SE Scheduled Executor

Service, providing to Java EE applications the functionality of scheduling task execution. WildFly is

responsible to manage the lifecycle of Managed Scheduled Executor Service instances, which are specified

through the EE subsystem XML configuration:

<managed-scheduled-executor-services>

 <managed-scheduled-executor-service

 name="default"

 jndi-name="java:jboss/ee/concurrency/scheduler/default"

 context-service="default"

 thread-factory="default"

 hung-task-threshold="60000"

 core-threads="5"

 keepalive-time="5000"

 reject-policy="RETRY_ABORT" />

 </managed-scheduled-executor-services>

The attribute is mandatory, and it's value should be a unique name within all Managed Scheduledname

Executor Services.

The attribute is also mandatory, and defines where in the JNDI the Managed Scheduledjndi-name

Executor Service should be placed.

The optional references an existent Context Service by its . If specified then thecontext-service name

referenced Context Service will capture the invocation context present when submitting a task to the

executor, which will then be used when executing the task.

The optional references an existent Managed Thread Factory by its , to handle thethread-factory name

creation of internal threads. If not specified then a Managed Thread Factory with default configuration will be

created and used internally.

Latest WildFly Documentation

JBoss Community Documentation Page of 691 2293

The mandatory provides the number of threads to keep in the executor's pool, even if theycore-threads

are idle. A value of means there is no limit.0

The optional defines a threshold value, in milliseconds, to hung a possibly blockedhung-task-threshold

task. A value of will never hung a task, and is the default.0

The optional is a hint to optimize the execution of long running tasks, and defaultslong-running-tasks

to .false

The optional defines the time, in milliseconds, that an internal thread may be idle. Thekeepalive-time

attribute default value is .60000

The optional reject-policy defines the policy to use when a task is rejected by the executor. The attribute

value may be the default , which means an exception should be thrown, or , whichABORT RETRY_ABORT

means the executor will try to submit it once more, before throwing an exception.

Management clients, such as the WildFly CLI, may also be used to configure Managed Scheduled Executor

Service instances. An example to and one named :add remove other

/subsystem=ee/managed-scheduled-executor-service=other:add(jndi-name=java\:jboss\/ee\/scheduler\/other,

core-threads=2)

/subsystem=ee/managed-scheduled-executor-service=other:remove

Latest WildFly Documentation

JBoss Community Documentation Page of 692 2293

Default EE Bindings
The Java EE Specification mandates the existence of a default instance for each of the following resources:

Context Service

Datasource

JMS Connection Factory

Managed Executor Service

Managed Scheduled Executor Service

Managed Thread Factory

The EE subsystem looks up the default instances from JNDI, using the names in the default bindings

configuration, before placing those in the standard JNDI names, such as

:java:comp/DefaultManagedExecutorService

<default-bindings

 context-service="java:jboss/ee/concurrency/context/default"

 datasource="java:jboss/datasources/ExampleDS"

 jms-connection-factory="java:jboss/DefaultJMSConnectionFactory"

 managed-executor-service="java:jboss/ee/concurrency/executor/default"

 managed-scheduled-executor-service="java:jboss/ee/concurrency/scheduler/default"

 managed-thread-factory="java:jboss/ee/concurrency/factory/default" />

The default bindings are optional, if the jndi name for a default binding is not configured then the

related resource will not be available to Java EE applications.

Latest WildFly Documentation

JBoss Community Documentation Page of 693 2293

5.22.2 Naming

Overview
The Naming subsystem provides the JNDI implementation on WildFly, and its configuration allows to:

bind entries in global JNDI namespaces

turn off/on the remote JNDI interface

The subsystem name is naming and this document covers Naming subsystem version , which XML2.0

namespace within WildFly XML configurations is . The path for theurn:jboss:domain:naming:2.0

subsystem's XML schema, within WildFly's distribution, is .docs/schema/jboss-as-naming_2_0.xsd

Subsystem XML configuration example with all elements and attributes specified:

<subsystem xmlns="urn:jboss:domain:naming:2.0">

 <bindings>

 <simple name="java:global/a" value="100" type="int" />

 <simple name="java:global/jboss.org/docs/url" value="https://docs.jboss.org"

type="java.net.URL" />

 <object-factory name="java:global/foo/bar/factory" module="org.foo.bar"

class="org.foo.bar.ObjectFactory" />

 <external-context name="java:global/federation/ldap/example"

class="javax.naming.directory.InitialDirContext" cache="true">

 <environment>

 <property name="java.naming.factory.initial"

value="com.sun.jndi.ldap.LdapCtxFactory" />

 <property name="java.naming.provider.url" value="ldap://ldap.example.com:389" />

 <property name="java.naming.security.authentication" value="simple" />

 <property name="java.naming.security.principal" value="uid=admin,ou=system" />

 <property name="java.naming.security.credentials" value="secret" />

 </environment>

 </external-context>

 <lookup name="java:global/c" lookup="java:global/b" />

 </bindings>

 <remote-naming/>

</subsystem>

Global Bindings Configuration
The Naming subsystem configuration allows binding entries into the following global JNDI namespaces:

java:global

java:jboss

java:

Latest WildFly Documentation

JBoss Community Documentation Page of 694 2293

If WildFly is to be used as a Java EE application server, then it's recommended to opt for

, since it is a standard (i.e. portable) namespace.java:global

Four different types of bindings are supported:

Simple

Object Factory

External Context

Lookup

In the subsystem's XML configuration, global bindings are configured through the XML<bindings />

element, as an example:

<bindings>

 <simple name="java:global/a" value="100" type="int" />

 <object-factory name="java:global/foo/bar/factory" module="org.foo.bar"

class="org.foo.bar.ObjectFactory" />

 <external-context name="java:global/federation/ldap/example"

class="javax.naming.directory.InitialDirContext" cache="true">

 <environment>

 <property name="java.naming.factory.initial"

value="com.sun.jndi.ldap.LdapCtxFactory" />

 <property name="java.naming.provider.url" value="ldap://ldap.example.com:389" />

 <property name="java.naming.security.authentication" value="simple" />

 <property name="java.naming.security.principal" value="uid=admin,ou=system" />

 <property name="java.naming.security.credentials" value="secret" />

 </environment>

 </external-context>

 <lookup name="java:global/c" lookup="java:global/b" />

</bindings>

Latest WildFly Documentation

JBoss Community Documentation Page of 695 2293

Simple Bindings
A simple binding is a primitive or java.net.URL entry, and it is defined through the XML element. Ansimple

example of its XML configuration:

<simple name="java:global/a" value="100" type="int" />

The attribute is mandatory and specifies the target JNDI name for the entry.name

The attribute is mandatory and defines the entry's value.value

The optional attribute, which defaults to , specifies the type of the entry's value.type java.lang.String

Besides java.lang.String, allowed types are all the primitive types and their corresponding object wrapper

classes, such as int or java.lang.Integer, and java.net.URL.

Management clients, such as the WildFly CLI, may be used to configure simple bindings. An example to add

and the one in the XML example above:remove

/subsystem=naming/binding=java\:global\/a:add(binding-type=simple, type=int, value=100)

/subsystem=naming/binding=java\:global\/a:remove

Latest WildFly Documentation

JBoss Community Documentation Page of 696 2293

Object Factories
The Naming subsystem configuration allows the binding of entries,javax.naming.spi.ObjectFactory

through the XML element, for instance:object-factory

<object-factory name="java:global/foo/bar/factory" module="org.foo.bar"

class="org.foo.bar.ObjectFactory">

 <environment>

 <property name="p1" value="v1" />

 <property name="p2" value="v2" />

 </environment>

</object-factory>

The attribute is mandatory and specifies the target JNDI name for the entry.name

The attribute is mandatory and defines the object factory's Java type.class

The attribute is mandatory and specifies the JBoss Module ID where the object factory Java classmodule

may be loaded from.

The optional child element may be used to provide a custom environment to the objectenvironment

factory.

Management clients, such as the WildFly CLI, may be used to configure object factory bindings. An example

to and the one in the XML example above:add remove

/subsystem=naming/binding=java\:global\/foo\/bar\/factory:add(binding-type=object-factory,

module=org.foo.bar, class=org.foo.bar.ObjectFactory, environment=[p1=v1, p2=v2])

/subsystem=naming/binding=java\:global\/foo\/bar\/factory:remove

External Context Federation
Federation of external JNDI contexts, such as a LDAP context, are achieved by adding External Context

bindings to the global bindings configuration, through the XML element. An example ofexternal-context

its XML configuration:

<external-context name="java:global/federation/ldap/example"

class="javax.naming.directory.InitialDirContext" cache="true">

 <environment>

 <property name="java.naming.factory.initial" value="com.sun.jndi.ldap.LdapCtxFactory" />

 <property name="java.naming.provider.url" value="ldap://ldap.example.com:389" />

 <property name="java.naming.security.authentication" value="simple" />

 <property name="java.naming.security.principal" value="uid=admin,ou=system" />

 <property name="java.naming.security.credentials" value="secret" />

 </environment>

</external-context>

The attribute is mandatory and specifies the target JNDI name for the entry.name

Latest WildFly Documentation

JBoss Community Documentation Page of 697 2293

The attribute is mandatory and indicates the Java initial naming context type used to create theclass

federated context. Note that such type must have a constructor with a single environment map argument.

The optional attribute specifies the JBoss Module ID where any classes required by the externalmodule

JNDI context may be loaded from.

The optional attribute, which value defaults to , indicates if the external context instancecache false

should be cached.

The optional child element may be used to provide the custom environment needed toenvironment

lookup the external context.

Management clients, such as the WildFly CLI, may be used to configure external context bindings. An

example to and the one in the XML example above:add remove

/subsystem=naming/binding=java\:global\/federation\/ldap\/example:add(binding-type=external-context,

cache=true, class=javax.naming.directory.InitialDirContext,

environment=[java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory,

java.naming.provider.url=ldap\:\/\/ldap.example.com\:389,

java.naming.security.authentication=simple,

java.naming.security.principal=uid\=admin\,ou\=system, java.naming.security.credentials=

secret])

/subsystem=naming/binding=java\:global\/federation\/ldap\/example:remove

Some JNDI providers may fail when their resources are looked up if they do not implement properly the

lookup(Name) method. Their errors would look like:

11:31:49,047 ERROR org.jboss.resource.adapter.jms.inflow.JmsActivation (default-threads

-1) javax.naming.InvalidNameException: Only support CompoundName names

 at com.tibco.tibjms.naming.TibjmsContext.lookup(TibjmsContext.java:504)

 at javax.naming.InitialContext.lookup(InitialContext.java:421)

To work around their shortcomings, the property can beorg.jboss.as.naming.lookup.by.string

specified in the external-context's environment to use instead the lookup(String) method (with a performance

degradation):

<property name="org.jboss.as.naming.lookup.by.string" value="true"/>

Binding Aliases

The Naming subsystem configuration allows the binding of existent entries into additional names, i.e.

aliases. Binding aliases are specified through the XML element. An example of its XMLlookup

configuration:

<lookup name="java:global/c" lookup="java:global/b" />

Latest WildFly Documentation

JBoss Community Documentation Page of 698 2293

The attribute is mandatory and specifies the target JNDI name for the entry.name

The attribute is mandatory and indicates the source JNDI name. It can chain lookups on externallookup

contexts. For example, having an external context bounded to ,java:global/federation/ldap/example

searching can be done there by setting attribute to .lookup java:global/federation/ldap/example/subfolder

Management clients, such as the WildFly CLI, may be used to configure binding aliases. An example to add

and the one in the XML example above:remove

/subsystem=naming/binding=java\:global\/c:add(binding-type=lookup, lookup=java\:global\/b)

/subsystem=naming/binding=java\:global\/c:remove

Remote JNDI Configuration
The Naming subsystem configuration may be used to (de)activate the remote JNDI interface, which allows

clients to lookup entries present in a remote WildFly instance.

Only entries within the context are accessible over remote JNDI.java:jboss/exported

In the subsystem's XML configuration, remote JNDI access bindings are configured through the

 XML element:<remote-naming />

<remote-naming />

Management clients, such as the WildFly CLI, may be used to add/remove the remote JNDI interface. An

example to and the one in the XML example above:add remove

/subsystem=naming/service=remote-naming:add

/subsystem=naming/service=remote-naming:remove

5.22.3 Data sources

Datasources are configured through the subsystem. Declaring a new datasource consists of twodatasource

separate steps: You would need to provide a JDBC driver and define a datasource that references the driver

you installed.

Latest WildFly Documentation

JBoss Community Documentation Page of 699 2293

1.

2.

3.

4.

5.

JDBC Driver Installation
The recommended way to install a JDBC driver into WildFly 8 is to deploy it as a regular JAR deployment.

The reason for this is that when you run WildFly in domain mode, deployments are automatically propagated

to all servers to which the deployment applies; thus distribution of the driver JAR is one less thing for you to

worry about!

Any JDBC 4-compliant driver will automatically be recognized and installed into the system by name and

version. A JDBC JAR is identified using the Java service provider mechanism. Such JARs will contain a text

a file named , which contains the name of the class(es) of theMETA-INF/services/java.sql.Driver

Drivers which exist in that JAR. If your JDBC driver JAR is not JDBC 4-compliant, it can be made deployable

in one of a few ways.

Modify the JAR

The most straightforward solution is to simply modify the JAR and add the missing file. You can do this from

your command shell by:

Change to, or create, an empty temporary directory.

Create a subdirectory.META-INF

Create a subdirectory.META-INF/services

Create a file which contains one line - the fully-qualifiedMETA-INF/services/java.sql.Driver

class name of the JDBC driver.

Use the command-line tool to update the JAR like this:jar

jar \-uf jdbc-driver.jar META-INF/services/java.sql.Driver

For a detailed explanation how to deploy JDBC 4 compliant driver jar, please refer to the chapter "

".Application Deployment

Datasource Definitions
The datasource itself is defined within the subsystem :datasources

https://docs.jboss.org/author/display/WFLY10/Application+deployment

Latest WildFly Documentation

JBoss Community Documentation Page of 700 2293

<subsystem xmlns="urn:jboss:domain:datasources:4.0">

 <datasources>

 <datasource jndi-name="java:jboss/datasources/ExampleDS" pool-name="ExampleDS">

 <connection-url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-1</connection-url>

 <driver>h2</driver>

 <pool>

 <min-pool-size>10</min-pool-size>

 <max-pool-size>20</max-pool-size>

 <prefill>true</prefill>

 </pool>

 <security>

 <user-name>sa</user-name>

 <password>sa</password>

 </security>

 </datasource>

 <xa-datasource jndi-name="java:jboss/datasources/ExampleXADS" pool-name="ExampleXADS">

 <driver>h2</driver>

 <xa-datasource-property name="URL">jdbc:h2:mem:test</xa-datasource-property>

 <xa-pool>

 <min-pool-size>10</min-pool-size>

 <max-pool-size>20</max-pool-size>

 <prefill>true</prefill>

 </xa-pool>

 <security>

 <user-name>sa</user-name>

 <password>sa</password>

 </security>

 </xa-datasource>

 <drivers>

 <driver name="h2" module="com.h2database.h2">

 <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-datasource-class>

 </driver>

 </drivers>

 </datasources>

</subsystem>

 (See standalone/configuration/standalone.xml)

As you can see the datasource references a driver by it's logical name.

You can easily query the same information through the CLI:

Latest WildFly Documentation

JBoss Community Documentation Page of 701 2293

[standalone@localhost:9990 /] /subsystem=datasources:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {

 "data-source" => {"H2DS" => {

 "connection-url" => "jdbc:h2:mem:test;DB_CLOSE_DELAY=-1",

 "jndi-name" => "java:/H2DS",

 "driver-name" => "h2",

 "pool-name" => "H2DS",

 "use-java-context" => true,

 "enabled" => true,

 "jta" => true,

 "pool-prefill" => true,

 "pool-use-strict-min" => false,

 "user-name" => "sa",

 "password" => "sa",

 "flush-strategy" => "FailingConnectionOnly",

 "background-validation" => false,

 "use-fast-fail" => false,

 "validate-on-match" => false,

 "use-ccm" => true

 }},

 "xa-data-source" => undefined,

 "jdbc-driver" => {"h2" => {

 "driver-name" => "h2",

 "driver-module-name" => "com.h2database.h2",

 "driver-xa-datasource-class-name" => "org.h2.jdbcx.JdbcDataSource"

 }}

 }

}

[standalone@localhost:9990 /] /subsystem=datasources:installed-drivers-list

{

 "outcome" => "success",

 "result" => [{

 "driver-name" => "h2",

 "deployment-name" => undefined,

 "driver-module-name" => "com.h2database.h2",

 "module-slot" => "main",

 "driver-xa-datasource-class-name" => "org.h2.jdbcx.JdbcDataSource",

 "driver-class-name" => "org.h2.Driver",

 "driver-major-version" => 1,

 "driver-minor-version" => 3,

 "jdbc-compliant" => true

 }]

}

Using the web console or the CLI greatly simplifies the deployment of JDBC drivers and the

creation of datasources.

The CLI offers a set of commands to create and modify datasources:

Latest WildFly Documentation

JBoss Community Documentation Page of 702 2293

[standalone@localhost:9990 /] data-source --help

SYNOPSIS

 data-source --help [--properties | --commands] |

 (--name=<resource_id> (--<property>=<value>)*) |

 (<command> --name=<resource_id> (--<parameter>=<value>)*)

 [--headers={<operation_header> (;<operation_header>)*}]

DESCRIPTION

 The command is used to manage resources of type /subsystem=datasources/data-source.

[...]

[standalone@localhost:9990 /] xa-data-source --help

SYNOPSIS

 xa-data-source --help [--properties | --commands] |

 (--name=<resource_id> (--<property>=<value>)*) |

 (<command> --name=<resource_id> (--<parameter>=<value>)*)

 [--headers={<operation_header> (;<operation_header>)*}]

DESCRIPTION

 The command is used to manage resources of type /subsystem=datasources/xa-data-source.

RESOURCE DESCRIPTION

 A JDBC XA data-source configuration

[...]

Using security domains
Information can be found at https://community.jboss.org/wiki/JBossAS7SecurityDomainModel

Component Reference
The datasource subsystem is provided by the project. For a detailed description of the availableIronJacamar

configuration properties, please consult the project documentation.

IronJacamar homepage: http://ironjacamar.org/

Project Documentation: http://ironjacamar.org/documentation.html

Schema description:

http://www.ironjacamar.org/doc/userguide/1.1/en-US/html_single/index.html#deployingds_descriptor

https://community.jboss.org/wiki/JBossAS7SecurityDomainModel
http://www.jboss.org/ironjacamar
http://ironjacamar.org/
http://ironjacamar.org/documentation.html
http://www.ironjacamar.org/doc/userguide/1.1/en-US/html_single/index.html#deployingds_descriptor

Latest WildFly Documentation

JBoss Community Documentation Page of 703 2293

5.22.4 Logging

Overview

Attributes

add-logging-api-dependencies

use-deployment-logging-config

Per-deployment Logging

Logging Profiles

Default Log File Locations

Managed Domain

Standalone Server

Filter Expressions

List Log Files and Reading Log Files

List Log Files

Read Log File

FAQ

Why is there a file?logging.properties

Latest WildFly Documentation

JBoss Community Documentation Page of 704 2293

Overview
The overall server logging configuration is represented by the logging subsystem. It consists of four notable

parts: configurations, , the declarations (aka log categories) and logginghandler logger root logger

profiles. Each logger does reference a handler (or set of handlers). Each handler declares the log format and

output:

<subsystem xmlns="urn:jboss:domain:logging:3.0">

 <console-handler name="CONSOLE" autoflush="true">

 <level name="DEBUG"/>

 <formatter>

 <named-formatter name="COLOR-PATTERN"/>

 </formatter>

 </console-handler>

 <periodic-rotating-file-handler name="FILE" autoflush="true">

 <formatter>

 <named-formatter name="PATTERN"/>

 </formatter>

 <file relative-to="jboss.server.log.dir" path="server.log"/>

 <suffix value=".yyyy-MM-dd"/>

 </periodic-rotating-file-handler>

 <logger category="com.arjuna">

 <level name="WARN"/>

 </logger>

 [...]

 <root-logger>

 <level name="DEBUG"/>

 <handlers>

 <handler name="CONSOLE"/>

 <handler name="FILE"/>

 </handlers>

 </root-logger>

 <formatter name="PATTERN">

 <pattern-formatter pattern="%d{yyyy-MM-dd HH:mm:ss,SSS} %-5p [%c] (%t) %s%e%n"/>

 </formatter>

 <formatter name="COLOR-PATTERN">

 <pattern-formatter pattern="%K{level}%d{HH:mm:ss,SSS} %-5p [%c] (%t) %s%e%n"/>

 </formatter>

</subsystem>

Latest WildFly Documentation

JBoss Community Documentation Page of 705 2293

Attributes
The root resource contains two notable attributes and add-logging-api-dependencies

.use-deployment-logging-config

logging-api-dependencies
The controls whether or not the container adds logging APIadd-logging-api-dependencies implicit

dependencies to your deployments. If set to , the default, all the implicit logging API dependencies aretrue

added. If set to the dependencies are not added to your deployments.false

deployment-logging-config
The controls whether or not your deployment is scanned for use-deployment-logging-config

. If set to , the default, is enabled. Set to toper-deployment logging true per-deployment logging false

disable this feature.

deployment Logging
Per-deployment logging allows you to add a logging configuration file to your deployment and have the

logging for that deployment configured according to the configuration file. In an EAR the configuration should

be in the directory. In a WAR or JAR deployment the configuration file can be in either the META-INF

 or directories.META-INF WEB-INF/classes

The following configuration files are allowed:

logging.properties

jboss-logging.properties

log4j.properties

log4j.xml

jboss-log4j.xml

You can also disable this functionality by changing the attribute to use-deployment-logging-config

.false

Latest WildFly Documentation

JBoss Community Documentation Page of 706 2293

Logging Profiles
Logging profiles are like additional logging subsystems. Each logging profile constists of three of the four

notable parts listed above: configurations, and the declarations.handler logger root logger

You can assign a logging profile to a deployment via the deployments manifest. Add a Logging-Profile

entry to the file with a value of the logging profile id. For example a logging profile defined on MANIFEST.MF

 the MANIFEST.MF would look like:/subsystem=logging/logging-profile=ejbs

Manifest-Version: 1.0

Logging-Profile: ejbs

A logging profile can be assigned to any number of deployments. Using a logging profile also allows for

runtime changes to the configuration. This is an advantage over the per-deployment logging configuration as

the redeploy is not required for logging changes to take affect.

Default Log File Locations

Managed Domain
In a managed domain two types of log files do exist: Controller and server logs. The controller components

govern the domain as whole. It's their responsibility to start/stop server instances and execute managed

operations throughout the domain. Server logs contain the logging information for a particular server

instance. They are co-located with the host the server is running on.

For the sake of simplicity we look at the default setup for managed domain. In this case, both the domain

controller components and the servers are located on the same host:

Process Log File

Host Controller ./domain/log/host-controller.log

Process Controller ./domain/log/process-controller.log

"Server One" ./domain/servers/server-one/log/server.log

"Server Two" ./domain/servers/server-two/log/server.log

"Server Three" ./domain/servers/server-three/log/server.log

Standalone Server
The default log files for a standalone server can be found in the log subdirectory of the distribution:

Process Log File

Server ./standalone/log/server.log

Latest WildFly Documentation

JBoss Community Documentation Page of 707 2293

Filter Expressions

Filter Type Expression Description Parameter(s) Examples

accept accept Accepts all log

messages.

None accept

deny deny enies all log

messages.

None deny

not not(filterExpression) Accepts a filter as

an argument and

inverts the

returned value.

The expression

takes a single

filter for it's

argument.

not(match("JBAS"))

all all(filterExpressions) A filter consisting

of several filters in

a chain. If any

filter find the log

message to be

unloggable, the

message will not

be logged and

subsequent filters

will not be

checked.

The expression

takes a comma

delimited list of

filters for it's

argument.

all(match("JBAS"),

match("WELD"))

any any(filterExpressions) A filter consisting

of several filters in

a chain. If any

filter fins the log

message to be

loggable, the

message will be

logged and the

subsequent filters

will not be

checked.

The expression

takes a comma

delimited list of

filters for it's

argument.

any(match("JBAS"),

match("WELD"))

levelChange levelChange(level) A filter which

modifies the log

record with a new

level.

The expression

takes a single

string based level

for it's argument.

levelChange(WARN)

Latest WildFly Documentation

JBoss Community Documentation Page of 708 2293

levels levels(levels) A filter which

includes log

messages with a

level that is listed

in the list of levels.

The expression

takes a comma

delimited list of

string based

levels for it's

argument.

levels(DEBUG, INFO,

WARN, ERROR)

levelRange levelRange([minLevel,maxLevel]) A filter which logs

records that are

within the level

range.

The filter

expression uses

a "[" to indicate a

minimum

inclusive level

and a "]" to

indicate a

maximum

inclusive level.

Otherwise use "("

or ")" respectively

indicate

exclusive. The

first argument for

the expression is

the minimum

level allowed, the

second argument

is the maximum

level allowed.

minimum level must

be less than

ERROR and the

maximum level must

be greater than

DEBUG

levelRange(ERROR,

DEBUG)

minimum level must

be less than or

equal to ERROR

and the maximum

level must be

greater than

DEBUG

levelRange[ERROR,

DEBUG)

minimum level must

be less than or

equal to ERROR

and the maximum

level must be

greater or equal to

INFO

levelRange[ERROR,

INFO]

match match("pattern") A

regular-expression

based filter. The

raw unformatted

message is used

against the

pattern.

The expression

takes a regular

expression for it's

argument.

match("JBAS\d+")

Latest WildFly Documentation

JBoss Community Documentation Page of 709 2293

substitute substitute("pattern",

"replacement value")

A filter which

replaces the first

match to the

pattern with the

replacement

value.

The first

argument for the

expression is the

pattern the

second argument

is the

replacement text.

substitute("JBAS", "EAP")

substituteAll substituteAll("pattern",

"replacement value")

A filter which

replaces all

matches of the

pattern with the

replacement

value.

The first

argument for the

expression is the

pattern the

second argument

is the

replacement text.

substituteAll("JBAS",

"EAP")

List Log Files and Reading Log Files
Log files can be listed and viewed via management operations. The log files allowed to be viewed are

intentionally limited to files that exist in the and are associated with a known filejboss.server.log.dir

handler. Known file handler types include , and file-handler periodic-rotating-file-handler

. The operations are valid in both standalone and domain modes.size-rotating-file-handler

List Log Files
The logging subsystem has a resource off the subsystem root resource and off each log-file

 resource to list each log file.logging-profile

CLI command and output

[standalone@localhost:9990 /] /subsystem=logging:read-children-names(child-type=log-file)

{

 "outcome" => "success",

 "result" => [

 "server.log",

 "server.log.2014-02-12",

 "server.log.2014-02-13"

]

}

Latest WildFly Documentation

JBoss Community Documentation Page of 710 2293

Read Log File
The operation is available on each resource. This operation has 4 optionalread-log-file log-file

parameters.

Name Description

encoding the encoding the file should be read in

lines the number of lines from the file. A value of -1 indicates all lines should be read.

skip the number of lines to skip before reading.

tail true to read from the end of the file up or false to read top down.

CLI command and output

[standalone@localhost:9990 /] /subsystem=logging/log-file=server.log:read-log-file

{

 "outcome" => "success",

 "result" => [

 "2014-02-14 14:16:48,781 INFO [org.jboss.as.server.deployment.scanner] (MSC service

thread 1-11) JBAS015012: Started FileSystemDeploymentService for directory

/home/jperkins/servers/wildfly-8.0.0.Final/standalone/deployments",

 "2014-02-14 14:16:48,782 INFO [org.jboss.as.connector.subsystems.datasources] (MSC

service thread 1-8) JBAS010400: Bound data source [java:jboss/myDs]",

 "2014-02-14 14:16:48,782 INFO [org.jboss.as.connector.subsystems.datasources] (MSC

service thread 1-15) JBAS010400: Bound data source [java:jboss/datasources/ExampleDS]",

 "2014-02-14 14:16:48,786 INFO [org.jboss.as.server.deployment] (MSC service thread 1-9)

JBAS015876: Starting deployment of \"simple-servlet.war\" (runtime-name:

\"simple-servlet.war\")",

 "2014-02-14 14:16:48,978 INFO [org.jboss.ws.common.management] (MSC service thread

1-10) JBWS022052: Starting JBoss Web Services - Stack CXF Server 4.2.3.Final",

 "2014-02-14 14:16:49,160 INFO [org.wildfly.extension.undertow] (MSC service thread

1-16) JBAS017534: Registered web context: /simple-servlet",

 "2014-02-14 14:16:49,189 INFO [org.jboss.as.server] (Controller Boot Thread)

JBAS018559: Deployed \"simple-servlet.war\" (runtime-name : \"simple-servlet.war\")",

 "2014-02-14 14:16:49,224 INFO [org.jboss.as] (Controller Boot Thread) JBAS015961: Http

management interface listening on http://127.0.0.1:9990/management",

 "2014-02-14 14:16:49,224 INFO [org.jboss.as] (Controller Boot Thread) JBAS015951: Admin

console listening on http://127.0.0.1:9990",

 "2014-02-14 14:16:49,225 INFO [org.jboss.as] (Controller Boot Thread) JBAS015874:

WildFly 8.0.0.Final \"WildFly\" started in 1906ms - Started 258 of 312 services (90 services are

lazy, passive or on-demand)"

]

}

Latest WildFly Documentation

JBoss Community Documentation Page of 711 2293

FAQ

Why is there a logging.properties file?
You may have noticed that there is a file in the configuration directory. This islogging.properties

logging configuration is used when the server boots up until the logging subsystem kicks in. If the logging

subsystem is not included in your configuration, then this would act as the logging configuration for the entire

server.

The file is overwritten at boot and with each change to the logginglogging.properties

subsystem. Any changes made to the file are not persisted. Any changes made to the XML

configuration or via management operations will be persisted to the filelogging.properties

and used on the next boot.

5.22.5 Web (Undertow)

Web subsystem was replaced in WildFly 8 with Undertow.

There are two main parts to the undertow subsystem, which are server and Servlet container configuration,

as well as some ancillary items. Advanced topics like load balancing and failover are covered on the "High

Availability Guide". The default configuration does is suitable for most use cases and provides reasonable

performance settings.

Required extension:

<extension module="org.wildfly.extension.undertow" />

Basic subsystem configuration example:

Latest WildFly Documentation

JBoss Community Documentation Page of 712 2293

<subsystem xmlns="urn:jboss:domain:undertow:1.0">

 <buffer-caches>

 <buffer-cache name="default" buffer-size="1024" buffers-per-region="1024"

max-regions="10"/>

 </buffer-caches>

 <server name="default-server">

 <http-listener name="default" socket-binding="http" />

 <host name="default-host" alias="localhost">

 <location name="/" handler="welcome-content" />

 </host>

 </server>

 <servlet-container name="default" default-buffer-cache="default"

stack-trace-on-error="local-only" >

 <jsp-config/>

 <persistent-sessions/>

 </servlet-container>

 <handlers>

 <file name="welcome-content" path="${jboss.home.dir}/welcome-content"

directory-listing="true"/>

 </handlers>

 </subsystem>

Dependencies on other subsystems:

IO Subsystem

Buffer cache configuration
The buffer cache is used for caching content, such as static files. Multiple buffer caches can be configured,

which allows for separate servers to use different sized caches.

Buffers are allocated in regions, and are of a fixed size. If you are caching many small files then using a

smaller buffer size will be better.

The total amount of space used can be calculated by multiplying the buffer size by the number of buffers per

region by the maximum number of regions.

<buffer-caches>

 <buffer-cache name="default" buffer-size="1024" buffers-per-region="1024" max-regions="10"/>

 </buffer-caches>

Attribute Description

buffer-size The size of the buffers. Smaller buffers allow space to be utilised more effectively

buffers-per-region The numbers of buffers per region

max-regions The maximum number of regions. This controls the maximum amount of memory that

can be used for caching

Latest WildFly Documentation

JBoss Community Documentation Page of 713 2293

Server configuration
A server represents an instance of Undertow. Basically this consists of a set of connectors and some

configured handlers.

<server name="default-server" default-host="default-host" servlet-container="default" >

Attribute Description

default-host the virtual host that will be used if an incoming request as no Host: header

servlet-container the servlet container that will be used by this server, unless is is explicitly overriden by

the deployment

Connector configuration
Undertow provides HTTP, HTTPS and AJP connectors, which are configured per server.

Latest WildFly Documentation

JBoss Community Documentation Page of 714 2293

Common settings
The following settings are common to all connectors:

Attribute Description

socket-binding The socket binding to use. This determines the address and port the listener listens

on.

worker A reference to an XNIO worker, as defined in the IO subsystem. The worker that is

in use controls the IO and blocking thread pool.

buffer-pool A reference to a buffer pool as defined in the IO subsystem. These buffers are

used internally to read and write requests. In general these should be at least 8k,

unless you are in a memory constrained environment.

enabled If the connector is enabled.

max-post-size The maximum size of incoming post requests that is allowed.

buffer-pipelined-data If responses to HTTP pipelined requests should be buffered, and send out in a

single write. This can improve performance if HTTP pipe lining is in use and

responses are small.

max-header-size The maximum size of a HTTP header block that is allowed. Responses with to

much data in their header block will have the request terminated and a bad request

response send.

max-parameters The maximum number of query or path parameters that are allowed. This limit

exists to prevent hash collision based DOS attacks.

max-headers The maximum number of headers that are allowed. This limit exists to prevent

hash collision based DOS attacks.

max-cookies The maximum number of cookies that are allowed. This limit exists to prevent hash

collision based DOS attacks.

allow-encoded-slash Set this to true if you want the server to decode percent encoded slash characters.

This is probably a bad idea, as it can have security implications, due to different

servers interpreting the slash differently. Only enable this if you have a legacy

application that requires it.

decode-url If the URL should be decoded. If this is not set to true then percent encoded

characters in the URL will be left as is.

url-charset The charset to decode the URL to.

always-set-keep-alive If the 'Connection: keep-alive' header should be added to all responses, even if not

required by spec.

disallowed-methods A comma separated list of HTTP methods that are not allowed. HTTP TRACE is

disabled by default.

Latest WildFly Documentation

JBoss Community Documentation Page of 715 2293

HTTP Connector

<http-listener name="default" socket-binding="http" />

Attribute Description

certificate-forwarding If this is set to true then the HTTP listener will read a client certificate from the

SSL_CLIENT_CERT header. This allows client cert authentication to be used,

even if the server does not have a direct SSL connection to the end user. This

should only be enabled for servers behind a proxy that has been configured to

always set these headers.

redirect-socket The socket binding to redirect requests that require security too.

proxy-address-forwarding If this is enabled then the X-Forwarded-For and X-Forwarded-Proto headers

will be used to determine the peer address. This allows applications that are

behind a proxy to see the real address of the client, rather than the address of

the proxy.

HTTPS listener
Https listener provides secure access to the server. The most important configuration option is security realm

which defines SSL secure context.

<https-listener name="default" socket-binding="https" security-realm="ssl-realm" />

Attribute Description

security-realm The security realm to use for the SSL configuration. See Security realm examples

for how to configure it: Examples

verify-client One of either NOT_REQUESTED, REQUESTED or REQUIRED. If client cert auth

is in use this should be either REQUESTED or REQUIRED.

enabled-cipher-suites A list of cypher suit names that are allowed.

AJP listener

<ajp-listener name="default" socket-binding="ajp" />

https://docs.jboss.org/author/display/WFLY10/Examples

Latest WildFly Documentation

JBoss Community Documentation Page of 716 2293

Host configuration
The host element corresponds to a virtual host.

Attribute Description

name The virtual host name

alias A whitespace separated list of additional host names that should be matched

default-web-module The name of a deployment that should be used to serve up requests that do not

match anything.

Servlet container configuration
The servlet-container element corresponds to an instance of an Undertow Servlet container. Most servers

will only need a single servlet container, however there may be cases where it makes sense to define

multiple containers (in particular if you want applications to be isolated, so they cannot dispatch to each

other using the RequestDispatcher. You can also use multiple Servlet containers to serve different

applications from the same context path on different virtual hosts).

Attribute Description

allow-non-standard-wrappers The Servlet specification requires applications to only wrap the

request/response using wrapper classes that extend from the

ServletRequestWrapper and ServletResponseWrapper classes. If this is set

to true then this restriction is relaxed.

default-buffer-cache The buffer cache that is used to cache static resources in the default

Servlet.

stack-trace-on-error Can be either all, none, or local-only. When set to none Undertow will never

display stack traces. When set to All Undertow will always display them (not

recommended for production use). When set to local-only Undertow will

only display them for requests from local addresses, where there are no

headers to indicate that the request has been proxied. Note that this feature

means that the Undertow error page will be displayed instead of the default

error page specified in web.xml.

default-encoding The default encoding to use for requests and responses.

use-listener-encoding If this is true then the default encoding will be the same as that used by the

listener that received the request.

JSP configuration

Latest WildFly Documentation

JBoss Community Documentation Page of 717 2293

Session Cookie Configuration
This allows you to change the attributes of the session cookie.

Attribute Description

name The cookie name

domain The cookie domain

comment The cookie comment

http-only If the cookie is HTTP only

secure If the cookie is marked secure

max-age The max age of the cookie

Persistent Session Configuration
Persistent sessions allow session data to be saved across redeploys and restarts. This feature is enabled by

adding the persistent-sessions element to the server config. This is mostly intended to be a development

time feature.

If the path is not specified then session data is stored in memory, and will only be persistent across

redeploys, rather than restarts.

Attribute Description

path The path to the persistent sessions data

relative-to The location that the path is relevant to

5.22.6 Messaging

The JMS server configuration is done through the subsystem. In this chapter we aremessaging-activemq

going outline the frequently used configuration options. For a more detailed explanation please consult the

Artemis user guide (See "Component Reference").

Latest WildFly Documentation

JBoss Community Documentation Page of 718 2293

Required Extension
The configuration options discussed in this section assume that the the

 extension is present in your configuration. Thisorg.wildfly.extension.messaging-activemq

extension is not included in the standard and configurationsstandalone.xml standalone-ha.xml

included in the WildFly distribution. It is, however, included with the and standalone-full.xml

 configurations.standalone-full-ha.xml

You can add the extension to a configuration without it either by adding an <extension

 element to the xml or by using themodule="org.wildfly.extension.messaging-activemq"/>

following CLI operation:

[standalone@localhost:9990 /]/extension=org.wildfly.extension.messaging-activemq:add

Connectors
There are three kind of connectors that can be used to connect to WildFly JMS Server

 can be used by a local client (i.e. one running in the same JVM as the server)in-vm-connector

 can be used by a remote client (and uses Netty over TCP for theremote-connector

communication)

 can be used by a remote client (and uses Undertow Web Server to upgrade fromhttp-connector

a HTTP connection)

JMS Connection Factories
There are three kinds of JMS that depends on the type of connectors that isbasic connection-factory

used.

There is also a which is special in that it is essentially a configurationpooled-connection-factory

facade for the inbound and outbound connectors of the the Artemis JCA Resource Adapter. An MDBboth

can be configured to use a (e.g. using). In thispooled-connection-factory @ResourceAdapter

context, the MDB leverages the of the Artemis JCA RA. Other kinds of clients can lookinbound connector

up the pooled-connection-factory in JNDI (or inject it) and use it to send messages. In this context, such a

client would leverage the of the Artemis JCA RA. A outbound connector pooled-connection-factory

 is also special because:

Latest WildFly Documentation

JBoss Community Documentation Page of 719 2293

It is only available to local clients, although it can be configured to point to a remote server.

As the name suggests, it is pooled and therefore provides superior performance to the clients which

are able to use it. The pool size can be configured via the and max-pool-size min-pool-size

attributes.

It should only be used to (i.e. produce) messages when looked up in JNDI or injected.send

It can be configured to use specific security credentials via the and attributes. Thisuser password

is useful if the remote server to which it is pointing is secured.

Resources acquired from it will be automatically enlisted any on-going JTA transaction. If you want to

send a message from an EJB using CMT then this is likely the connection factory you want to use so

the send operation will be atomically committed along with the rest of the EJB's transaction

operations.

To be clear, the of the Artemis JCA RA (which is for consuming messages) is only usedinbound connector

by MDBs and other JCA-based components. It is not available to traditional clients.

Both a and a reference a connection-factory pooled-connection-factory connector

declaration.

A is associated with a which tells the client using the remote-connector socket-binding

 where to connect.connection-factory

A referencing a is suitable to be used by a connection-factory remote-connector remote

client to send messages to or receive messages from the server (assuming the connection-factory

has an appropriately exported). entry

A looked up in JNDI or injected which is referencing a pooled-connection-factory

 is suitable to be used by a client to send messages to a remote serverremote-connector local

granted the references an pointing to the remotesocket-binding outbound-socket-binding

server in question.

A used by an MDB which is referencing a ispooled-connection-factory remote-connector

suitable to consume messages from a remote server granted the references an socket-binding

 pointing to the remote server in question.outbound-socket-binding

An is associated with a which tells the client using the in-vm-connector server-id

 where to connect (since multiple Artemis servers can run in a single JVM).connection-factory

A referencing an is suitable to be used by a clientconnection-factory in-vm-connector local

to either send messages to or receive messages from a local server.

A looked up in JNDI or injected which is referencing an pooled-connection-factory

 is suitable to be used by a client only to send messages to a local server.in-vm-connector local

A used by an MDB which is referencing an ispooled-connection-factory in-vm-connector

suitable only to consume messages from a local server.

A is associated with the that represents the HTTP socket (by default,http-connector socket-binding

named).http

Latest WildFly Documentation

JBoss Community Documentation Page of 720 2293

A referencing a is suitable to be used by a remote clientconnection-factory http-connector

to send messages to or receive messages from the server by connecting to its HTTP port before

upgrading to the messaging protocol.

A referencing a is suitable to be used by a localpooled-connection-factory http-connector

client to send messages to a remote server granted the references an socket-binding

 pointing to the remote server in question.outbound-socket-binding

A used by an MDB which is referencing a ispooled-connection-factory http-connector

suitable only to consume messages from a remote server granted the referencessocket-binding

an pointing to the remote server in question.outbound-socket-binding

The declaration of a or a specifies theentry connection-factory pooled-connection-factory

JNDI name under which the factory will be exposed. Only JNDI names bound in the

 namespace are available to remote clients. If a has"java:jboss/exported" connection-factory

an entry bound in the namespace a remote client would look-up the "java:jboss/exported"

 using the text . For example, the "connection-factory after "java:jboss/exported"

" is bound by default to RemoteConnectionFactory

 which means a remote client would"java:jboss/exported/jms/RemoteConnectionFactory"

look-up this using " ". A connection-factory jms/RemoteConnectionFactory

 should have any bound in the " "pooled-connection-factory not entry java:jboss/exported

namespace because a is not suitable for remote clients.pooled-connection-factory

Since JMS 2.0, a default JMS connection factory is accessible to EE application under the JNDI name

 WildFly messaging subsystem defines a java:comp/DefaultJMSConnectionFactory.

 that is used to provide this default connection factory. Any parameterpooled-connection-factory

change on this will be take into account by any EE application looking thepooled-connection-factory

default JMS provider under the JNDI name java:comp/DefaultJMSConnectionFactory.

Latest WildFly Documentation

JBoss Community Documentation Page of 721 2293

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">

 <server name="default">

 [...]

 <http-connector name="http-connector"

 socket-binding="http"

 endpoint="http-acceptor" />

 <http-connector name="http-connector-throughput"

 socket-binding="http"

 endpoint="http-acceptor-throughput">

 <param name="batch-delay"

 value="50"/>

 </http-connector>

 <in-vm-connector name="in-vm"

 server-id="0"/>

 [...]

 <connection-factory name="InVmConnectionFactory"

 connectors="in-vm"

 entries="java:/ConnectionFactory" />

 <pooled-connection-factory name="activemq-ra"

 transaction="xa"

 connectors="in-vm"

 entries="java:/JmsXA java:jboss/DefaultJMSConnectionFactory"/>

 [...]

 </server>

</subsystem>

(See standalone/configuration/standalone-full.xml)

JMS Queues and Topics
JMS queues and topics are sub resources of the messaging-actively subsystem. One can define either a

 or . Each destination be given a and contain at least one entry in its jms-queue jms-topic must name

 element (separated by whitespace).entries

Each entry refers to a JNDI name of the queue or topic. Keep in mind that any or jms-queue jms-topic

which needs to be accessed by a remote client needs to have an entry in the "java:jboss/exported"

namespace. As with connection factories, if a or or has an entry bound in thejms-queue jms-topic

"java:jboss/exported" namespace a remote client would look it up using the text after

". For example, the following "testQueue" is bound to"java:jboss/exported jms-queue

"java:jboss/exported/jms/queue/test" which means a remote client would look-up this {{kms-queue} using

"jms/queue/test". A local client could look it up using "java:jboss/exported/jms/queue/test",

"java:jms/queue/test", or more simply "jms/queue/test":

Latest WildFly Documentation

JBoss Community Documentation Page of 722 2293

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">

 <server name="default">

 [...]

 <jms-queue name="testQueue"

 entries="jms/queue/test java:jboss/exported/jms/queue/test" />

 <jms-topic name="testTopic"

 entries="jms/topic/test java:jboss/exported/jms/topic/test" />

</subsystem>

(See standalone/configuration/standalone-full.xml)

JMS endpoints can easily be created through the CLI:

[standalone@localhost:9990 /] jms-queue add --queue-address=myQueue --entries=queues/myQueue

[standalone@localhost:9990 /]

/subsystem=messaging-activemq/server=default/jms-queue=myQueue:read-resource

{

 "outcome" => "success",

 "result" => {

 "durable" => true,

 "entries" => ["queues/myQueue"],

 "selector" => undefined

 }

}

A number of additional commands to maintain the JMS subsystem are available as well:

[standalone@localhost:9990 /] jms-queue --help --commands

add

...

remove

To read the description of a specific command execute 'jms-queue command_name --help'.

Latest WildFly Documentation

JBoss Community Documentation Page of 723 2293

Dead Letter & Redelivery
Some of the settings are applied against an address wild card instead of a specific messaging destination.

The dead letter queue and redelivery settings belong into this group:

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">

 <server name="default">

 [...]

 <address-setting name="#"

 dead-letter-address="jms.queue.DLQ"

 expiry-address="jms.queue.ExpiryQueue"

 [...] />

(See standalone/configuration/standalone-full.xml)

Security Settings for Artemis addresses and JMS destinations
Security constraints are matched against an address wildcard, similar to the DLQ and redelivery settings.

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">

 <server name="default">

 [...]

 <security-setting name="#">

 <role name="guest"

 send="true"

 consume="true"

 create-non-durable-queue="true"

 delete-non-durable-queue="true"/>

(See standalone/configuration/standalone-full.xml)

Security Domain for Users
By default, Artemis will use the " " JAAS security domain. This domain is used to authenticate usersother

making connections to Artemis and then they are authorized to perform specific functions based on their

role(s) and the described above. This domain can be changed by using the security-settings

, e.g.:security-domain

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">

 <server name="default">

 <security domain="mySecurityDomain" />

 [...]

Latest WildFly Documentation

JBoss Community Documentation Page of 724 2293

1.

2.

Using the Elytron Subsystem
You can also use the elytron subsystem to secure the messaging-activemq subsystem.

To use an Elytron security domain:

Undefine the legacy security domain.

/subsystem=messaging-activemq/server=default:undefine-attribute(name=security-domain)

Set an Elytron security domain.

/subsystem=messaging-activemq/server=default:write-attribute(name=elytron-domain,

value=myElytronSecurityDomain)

You can only define either or , but you cannot have bothsecurity-domain elytron-domain

defined at the same time. If neither is defined, WildFly will use the defaultsecurity-domain

value of , which maps to the legacy security domain.other other

Cluster Authentication
If the Artemis server is configured to be clustered, it will use the cluster 's user and password attributes

to connect to other Artemis nodes in the cluster.

If you do not change the default value of <cluster-password>, Artemis will fail to authenticate with the error:

HQ224018: Failed to create session: HornetQExceptionerrorType=CLUSTER_SECURITY_EXCEPTION

message=HQ119099: Unable to authenticate cluster user: HORNETQ.CLUSTER.ADMIN.USER

To prevent this error, you must specify a value for . It is possible to encrypt this<cluster-password>

value by following .this guide

Alternatively, you can use the system property jboss.messaging.cluster.password to specify the cluster

password from the command line.

https://access.redhat.com/site/documentation/en-US/JBoss_Enterprise_Application_Platform/6.1/html/Security_Guide/sect-Password_Vaults_for_Sensitive_Strings.html

Latest WildFly Documentation

JBoss Community Documentation Page of 725 2293

Deployment of -jms.xml files
Starting with WildFly 8, you have the ability to deploy a -jms.xml file defining JMS destinations, e.g.:

<?xml version="1.0" encoding="UTF-8"?>

<messaging-deployment xmlns="urn:jboss:messaging-activemq-deployment:1.0">

 <server name="default">

 <jms-destinations>

 <jms-queue name="sample">

 <entry name="jms/queue/sample"/>

 <entry name="java:jboss/exported/jms/queue/sample"/>

 </jms-queue>

 </jms-destinations>

 </server>

</messaging-deployment>

This feature as destinations deployed this way can not beis primarily intended for development

managed with any of the provided management tools (e.g. console, CLI, etc).

JMS Bridge
The function of a JMS bridge is to consume messages from a source JMS destination, and send them to a

target JMS destination. Typically either the source or the target destinations are on different servers.

The bridge can also be used to bridge messages from other non Artemis JMS servers, as long as they are

JMS 1.1 compliant.

The JMS Bridge is provided by the Artemis project. For a detailed description of the available configuration

properties, please consult the project documentation.

Modules for other messaging brokers
Source and target JMS resources (destination and connection factories) are looked up using JNDI.

If either the source or the target resources are managed by another messaging server than WildFly, the

required client classes must be bundled in a module. The name of the module must then be declared when

the JMS Bridge is configured.

The use of a JMS bridges with any messaging provider will require to create a module containing the jar of

this provider.

Let's suppose we want to use an hypothetical messaging provider named AcmeMQ. We want to bridge

messages coming from a source AcmeMQ destination to a target destination on the local WildFly messaging

server. To lookup AcmeMQ resources from JNDI, 2 jars are required, acmemq-1.2.3.jar, mylogapi-0.0.1.jar

(please note these jars do not exist, this is just for the example purpose). We must include a JMS jarnot

since it will be provided by a WildFly module directly.

To use these resources in a JMS bridge, we must bundle them in a WildFly module:

in JBOSS_HOME/modules, we create the layout:

Latest WildFly Documentation

JBoss Community Documentation Page of 726 2293

modules/

`-- org

 `-- acmemq

 `-- main

 |-- acmemq-1.2.3.jar

 |-- mylogapi-0.0.1.jar

 `-- module.xml

We define the module in :module.xml

<?xml version="1.0" encoding="UTF-8"?>

<module xmlns="urn:jboss:module:1.1" name="org.acmemq">

 <properties>

 <property name="jboss.api" value="private"/>

 </properties>

 <resources>

 <!-- insert resources required to connect to the source or target -->

 <!-- messaging brokers if it not another WildFly instance -->

 <resource-root path="acmemq-1.2.3.jar" />

 <resource-root path="mylogapi-0.0.1.jar" />

 </resources>

 <dependencies>

 <!-- add the dependencies required by JMS Bridge code -->

 <module name="javax.api" />

 <module name="javax.jms.api" />

 <module name="javax.transaction.api"/>

 <module name="org.jboss.remote-naming"/>

 <!-- we depend on org.apache.activemq.artemis module since we will send messages to -->

 <!-- the Artemis server embedded in the local WildFly instance -->

 <module name="org.apache.activemq.artemis" />

 </dependencies>

</module>

Latest WildFly Documentation

JBoss Community Documentation Page of 727 2293

Configuration
A JMS bridge is defined inside a section of the `messaging-activemq` subsystem in the XMLjms-bridge

configuration files.

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">

 <jms-bridge name="myBridge" module="org.acmemq">

 <source connection-factory="ConnectionFactory"

 destination="sourceQ"

 user="user1"

 password="pwd1"

 quality-of-service="AT_MOST_ONCE"

 failure-retry-interval="500"

 max-retries="1"

 max-batch-size="500"

 max-batch-time="500"

 add-messageID-in-header="true">

 <source-context>

 <property name="java.naming.factory.initial"

 value="org.acmemq.jndi.AcmeMQInitialContextFactory"/>

 <property name="java.naming.provider.url"

 value="tcp://127.0.0.1:9292"/>

 </source-context>

 </source>

 <target connection-factory"/jms/invmTargetCF"

 destination="/jms/targetQ" />

 </target>

 </jms-bridge>

</subsystem>

The and sections contain the name of the JMS resource (and source target connection-factory

) that will be looked up in JNDI.destination

It optionally defines the and credentials. If they are set, they will be passed as argumentsuser password

when creating the JMS connection from the looked up ConnectionFactory.

It is also possible to define JNDI context properties in the and source-context target-context

sections. If these sections are absent, the JMS resources will be looked up in the local WildFly instance (as it

is the case in the section in the example above).target

Latest WildFly Documentation

JBoss Community Documentation Page of 728 2293

Management commands
A JMS Bridge can also be managed using the WildFly command line interface:

[standalone@localhost:9990 /] /subsystem=messaging/jms-bridge=myBridge/:add(module="org.acmemq",

\

 source-destination="sourceQ",

\

 source-connection-factory="ConnectionFactory",

\

 source-user="user1",

\

 source-password="pwd1",

\

 source-context={"java.naming.factory.initial" =>

"org.acmemq.jndi.AcmeMQInitialContextFactory", \

 "java.naming.provider.url" => "tcp://127.0.0.1:9292"},

\

 target-destination="/jms/targetQ",

\

 target-connection-factory="/jms/invmTargetCF",

\

 quality-of-service=AT_MOST_ONCE,

\

 failure-retry-interval=500,

\

 max-retries=1,

\

 max-batch-size=500,

\

 max-batch-time=500,

\

 add-messageID-in-header=true)

{"outcome" => "success"}

You can also see the complete JMS Bridge resource description from the CLI:

[standalone@localhost:9990 /] /subsystem=messaging/jms-bridge=*/:read-resource-description

{

 "outcome" => "success",

 "result" => [{

 "address" => [

 ("subsystem" => "messaging"),

 ("jms-bridge" => "*")

],

 "outcome" => "success",

 "result" => {

 "description" => "A JMS bridge instance.",

 "attributes" => {

 ...

 }

 }]

}

Latest WildFly Documentation

JBoss Community Documentation Page of 729 2293

Component Reference
The messaging-activemq subsystem is provided by the Artemis project. For a detailed description of the

available configuration properties, please consult the project documentation.

Artemis Homepage: http://activemq.apache.org/artemis/

Artemis User Documentation: http://activemq.apache.org/artemis/docs.html

5.22.7 Security

The security subsystem is the subsystem that brings the security services provided by to thePicketBox

WildFly 8 server instances.

If you are looking to secure the management interfaces for the management of the domain then you should

read the chapter as the management interfaces themselves are notSecuring the Management Interfaces

run within a WildFly process so use a custom configuration.

http://activemq.apache.org/artemis/
http://activemq.apache.org/artemis/docs.html
http://www.jboss.org/picketbox
https://docs.jboss.org/author/display/AS7/Securing+the+Management+Interfaces

Latest WildFly Documentation

JBoss Community Documentation Page of 730 2293

Structure of the Security Subsystem
When deploying applications to WildFly most of the time it is likely that you would be deploying a web

application or EJBs and just require a security domain to be defined with login modules to verify the users

identity, this chapter aims to provide additional detail regarding the architecture and capability of the security

subsystem however if you are just looking to define a security domain and leave the rest to the container

please jump to the section.security-domains

The security subsystem operates by using a security context associated with the current request, this

security context then makes available to the relevant container a number of capabilities from the configured

security domain, the capabilities exposed are an authentication manager, an authorization manager, an audit

manager and a mapping manager.

Authentication Manager
The authentication manager is the component that performs the actual authentication taking the declared

users identity and their credential so that the login context for the security domain can be used to 'login' the

user using the configured login module or modules.

Authorization Manager
The authorization manager is a component which can be obtained by the container from the current security

context to either obtain information about a users roles or to perform an authorization check against a

resource for the currently authenticated user.

Audit Manager
The audit manager from the security context is the component that can be used to log audit events in

relation to the security domain.

Mapping Manager
The mapping manager can be used to assign additional principals, credentials, roles or attributes to the

authenticated subject.

Security Subsystem Configuration
By default a lot of defaults have already been selected for the security subsystem and unless there is a

specific implementation detail you need to change, these defaults should not require modification. This

chapter describes all of the possible configuration attributes for completeness but do keep in mind that not all

will need to be changed.

The security subsystem is enabled by default by the addition of the following extension: -

<extension module="org.jboss.as.security"/>

The namespace used for the configuration of the security subsystem is urn:jboss:domain:security:1.0, the

configuration is defined within the <subsystem> element from this namespace.

The <subsystem> element can optionally contain the following child elements.

Latest WildFly Documentation

JBoss Community Documentation Page of 731 2293

security-management

subject-factory

security-domains

security-properties

security-management
This element is used to override some of the high level implementation details of the PicketBox

implementation if you have a need to change some of this behaviour.

The element can have any or the following attributes set, all of which are optional.

authentication-manager-class-name Specifies the AuthenticationManager implementation class name to

use.

deep-copy-subject-mode Sets the copy mode of subjects done by the security managers to be

deep copies that makes copies of the subject principals and

credentials if they are cloneable. It should be set to true if subject

include mutable content that can be corrupted when multiple threads

have the same identity and cache flushes/logout clearing the subject

in one thread results in subject references affecting other threads.

Default value is "false".

default-callback-handler-class-name Specifies a global class name for the CallbackHandler

implementation to be used with login modules.

authorization-manager-class-name Attribute specifies the AuthorizationManager implementation class

name to use.

audit-manager-class-name Specifies the AuditManager implementation class name to use.

identity-trust-manager-class-name Specifies the IdentityTrustManager implementation class name to

use.

mapping-manager-class-name Specifies the MappingManager implementation class name to use.

subject-factory
The subject factory is responsible for creating subject instances, this also makes use of the authentication

manager to actually verify the caller. It is used mainly by JCA components to establish a subject. It is not

likely this would need to be overridden but if it is required the "subject-factory-class-name" attribute can be

specified on the subject-factory element.

security-domains

This portion of the configuration is where the bulk of the security subsystem configuration will actually take

place for most administrators, the security domains contain the configuration which is specific to a

deployment.

Latest WildFly Documentation

JBoss Community Documentation Page of 732 2293

The security-domains element can contain numerous <security-domain> definitions, a security-domain can

have the following attributes set:

name The unique name of this security domain.

extends Although version 1.0 of the security subsystem schema contained an 'extends' attribute,

security domain inheritance is not supported and this attribute should not be used.

cache-type The type of authentication cache to use with this domain. If this attribute is removed no cache

will be used. Allowed values are "default" or "infinispan"

The following elements can then be set within the security-domain to configure the domain behaviour.

authentication

The authentication element is used to hold the list of login modules that will be used for authentication when

this domain is used, the structure of the login-module element is:

<login-module code="..." flag="..." module="...">

 <module-option name="..." value="..."/>

</login-module>

The code attribute is used to specify the implementing class of the login module which can either be the full

class name or one of the abbreviated names from the following list:

Latest WildFly Documentation

JBoss Community Documentation Page of 733 2293

Code Classname

Client org.jboss.security.ClientLoginModule

Certificate org.jboss.security.auth.spi.BaseCertLoginModule

CertificateUsers org.jboss.security.auth.spi.BaseCertLoginModule

CertificateRoles org.jboss.security.auth.spi.CertRolesLoginModule

Database org.jboss.security.auth.spi.DatabaseServerLoginModule

DatabaseCertificate org.jboss.security.auth.spi.DatabaseCertLoginModule

DatabaseUsers org.jboss.security.auth.spi.DatabaseServerLoginModule

Identity org.jboss.security.auth.spi.IdentityLoginModule

Ldap org.jboss.security.auth.spi.LdapLoginModule

LdapExtended org.jboss.security.auth.spi.LdapExtLoginModule

RoleMapping org.jboss.security.auth.spi.RoleMappingLoginModule

RunAs org.jboss.security.auth.spi.RunAsLoginModule

Simple org.jboss.security.auth.spi.SimpleServerLoginModule

ConfiguredIdentity org.picketbox.datasource.security.ConfiguredIdentityLoginModule

SecureIdentity org.picketbox.datasource.security.SecureIdentityLoginModule

PropertiesUsers org.jboss.security.auth.spi.PropertiesUsersLoginModule

SimpleUsers org.jboss.security.auth.spi.SimpleUsersLoginModule

LdapUsers org.jboss.security.auth.spi.LdapUsersLoginModule

Kerberos com.sun.security.auth.module.Krb5LoginModule

SPNEGOUsers org.jboss.security.negotiation.spnego.SPNEGOLoginModule

AdvancedLdap org.jboss.security.negotiation.AdvancedLdapLoginModule

AdvancedADLdap org.jboss.security.negotiation.AdvancedADLoginModule

UsersRoles org.jboss.security.auth.spi.UsersRolesLoginModule

The module attribute specifies the name of the JBoss Modules module from which the class specified by the

code attribute should be loaded. Specifying it is not necessary if one of the abbreviated names in the above

list is used.

The flag attribute is used to specify the JAAS flag for this module and should be one of required, requisite,

sufficient, or optional.

Latest WildFly Documentation

JBoss Community Documentation Page of 734 2293

The module-option element can be repeated zero or more times to specify the module options as required

for the login module being configured. It requires the name and value attributes.

See for further details on the various modules listed above.Authentication Modules

authentication-jaspi
The authentication-jaspi is used to configure a Java Authentication SPI (JASPI) provider as the

authentication mechanism. A security domain can have either a <authentication> or a <authentication-jaspi>

element, but not both. We set up JASPI by configuring one or more login modules inside the

login-module-stack element and setting up an authentication module. Here is the structure of the

authentication-jaspi element:

<login-module-stack name="...">

 <login-module code="..." flag="..." module="...">

 <module-option name="..." value="..."/>

 </login-module>

</login-module-stack>

<auth-module code="..." login-module-stack-ref="...">

 <module-option name="..." value="..."/>

</auth-module>

The login-module-stack-ref attribute value must be the name of the login-module-stack element to be used.

The sub-element login-module is configured just like in the partauthentication

Latest WildFly Documentation

JBoss Community Documentation Page of 735 2293

authorization
Authorization in the AS container is normally done with RBAC (role based access control) but there are

situations where a more fine grained authorization policy is required. The authorization element allows

definition of different authorization modules to used, such that authorization can be checked with JACC

(Java Authorization Contract for Containers) or XACML (eXtensible Access Control Markup Language). The

structure of the authorization element is:

<policy-module code="..." flag="..." module="...">

 <module-option name="..." value="..."/>

</policy-module>

The code attribute is used to specify the implementing class of the policy module which can either be the full

class name or one of the abbreviated names from the following list:

Code Classname

DenyAll org.jboss.security.authorization.modules.AllDenyAuthorizationModule

PermitAll org.jboss.security.authorization.modules.AllPermitAuthorizationModule

Delegating org.jboss.security.authorization.modules.DelegatingAuthorizationModule

Web org.jboss.security.authorization.modules.WebAuthorizationModule

JACC org.jboss.security.authorization.modules.JACCAuthorizationModule

XACML org.jboss.security.authorization.modules.XACMLAuthorizationModule

The module attribute specifies the name of the JBoss Modules module from which the class specified by the

code attribute should be loaded. Specifying it is not necessary if one of the abbreviated names in the above

list is used.

The flag attribute is used to specify the JAAS flag for this module and should be one of required, requisite,

sufficient, or optional.

The module-option element can be repeated zero or more times to specify the module options as required

for the login module being configured. It requires the name and value attributes.

Latest WildFly Documentation

JBoss Community Documentation Page of 736 2293

mapping
The mapping element defines additional mapping of principals, credentials, roles and attributes for the

subject. The structure of the mapping element is:

<mapping-module type="..."code="..." module="...">

 <module-option name="..." value="..."/>

</mapping-module>

The type attribute reflects the type of mapping of the provider and should be one of principal, credential, role

or attribute. By default "role" is the type used if the attribute is not set.

The code attribute is used to specify the implementing class of the login module which can either be the full

class name or one of the abbreviated names from the following list:

Code Classname

PropertiesRoles org.jboss.security.mapping.providers.role.PropertiesRolesMappingProvider

SimpleRoles org.jboss.security.mapping.providers.role.SimpleRolesMappingProvider

DeploymentRoles org.jboss.security.mapping.providers.DeploymentRolesMappingProvider

DatabaseRoles org.jboss.security.mapping.providers.role.DatabaseRolesMappingProvider

LdapRoles org.jboss.security.mapping.providers.role.LdapRolesMappingProvider

The module attribute specifies the name of the JBoss Modules module from which the class specified by the

code attribute should be loaded. Specifying it is not necessary if one of the abbreviated names in the above

list is used.

The module-option element can be repeated zero or more times to specify the module options as required

for the login module being configured. It requires the name and value attributes.

audit
The audit element can be used to define a custom audit provider. The default implementation used is

. The structure of the audit element is:org.jboss.security.audit.providers.LogAuditProvider

<provider-module code="..." module="...">

 <module-option name="..." value="..."/>

</provider-module>

The code attribute is used to specify the implementing class of the provider module.

The module attribute specifies the name of the JBoss Modules module from which the class specified by the

code attribute should be loaded.

The module-option element can be repeated zero or more times to specify the module options as required

for the login module being configured. It requires the name and value attributes.

Latest WildFly Documentation

JBoss Community Documentation Page of 737 2293

jsse
The jsse element defines configuration for keystores and truststores that can be used for SSL context

configuration or for certificate storing/retrieving.

The set of attributes (all of them optional) of this element are:

Latest WildFly Documentation

JBoss Community Documentation Page of 738 2293

keystore-password Password of the keystore

keystore-type Type of the keystore. By default it's "JKS"

keystore-url where the keystore file can be foundURL

keystore-provider of the keystore. The default JDK provider for the keystoreProvider

type is used if this attribute is null

keystore-provider-argument String that can be passed as the argument of the keystore Provider

constructor

key-manager-factory-algorithm Algorithm of the . The default JDK algorithm of theKeyManagerFactory

key manager factory is used if this attribute is null

key-manager-factory-provider of the . The default JDK provider forProvider KeyManagerFactory

the key manager factory algorithm is used if this attribute is null

truststore-password Password of the truststore

truststore-type Type of the truststore. By deafult it's "JKS"

truststore-url where the truststore file can be foundURL

truststore-provider of the truststore. The default JDK provider for the truststoreProvider

type is used if this attribute is null

truststore-provider-argument String that can be passed as the argument of the truststore Provider

constructor

trust-manager-factory-algorithm Algorithm of the . The default JDK algorithm ofTrustManagerFactory

the trust manager factory is used if this attribute is null

trust-manager-factory-provider of the . The default JDK provider forProvider TrustManagerFactory

the trust manager factory algorithm is used if this attribute is null

client-alias Alias of the keystore to be used when creating client side SSL sockets

server-alias Alias of the keystore to be used when creating server side SSL sockets

service-auth-token Validation token to enable third party services to retrieve a keystore .Key

This is typically used to retrieve a private key for signing purposes

client-auth Flag to indicate if the server side SSL socket should require client

authentication. Default is "false"

cipher-suites Comma separated list of cipher suites to be used by a SSLContext

protocols Comma separated list of SSL protocols to be used by a SSLContext

The optional additional-properties element can be used to include other options. The structure of the jsse

element is:

Latest WildFly Documentation

JBoss Community Documentation Page of 739 2293

<jsse keystore-url="..." keystore-password="..." keystore-type="..." keystore-provider="..."

keystore-provider-argument="..." key-manager-factory-algorithm="..."

key-manager-factory-provider="..." truststore-url="..." truststore-password="..."

truststore-type="..." truststore-provider="..." truststore-provider-argument="..."

trust-manager-factory-algorithm="..." trust-manager-factory-provider="..." client-alias="..."

server-alias="..." service-auth-token="..." client-auth="..." cipher-suites="..."

protocols="...">

 <additional-properties>x=y

 a=b

 </additional-properties>

</jsse>

security-properties
This element is used to specify additional properties as required by the security subsystem, properties are

specified in the following format:

<security-properties>

 <property name="..." value="..."/>

</security-properties>

The property element can be repeated as required for as many properties need to be defined.

Each property specified is set on the class.java.security.Security

5.22.8 Web services

JBossWS components are provided to the application server through the webservices subsystem.

JBossWS components handle the processing of WS endpoints. The subsystem supports the configuration

of published endpoint addresses, and endpoint handler chains. A default webservice subsystem is provided

in the server's domain and standalone configuration files.

Structure of the webservices subsystem

Published endpoint address
JBossWS supports the rewriting of the element of endpoints published in WSDL<soap:address>

contracts. This feature is useful for controlling the server address that is advertised to clients for each

endpoint.

The following elements are available and can be modified (all are optional):

Name Type Description

Latest WildFly Documentation

JBoss Community Documentation Page of 740 2293

modify-wsdl-address boolean This boolean enables and disables the address rewrite functionality.

When modify-wsdl-address is set to true and the content of

<soap:address> is a valid URL, JBossWS will rewrite the URL using the

values of wsdl-host and wsdl-port or wsdl-secure-port.

When modify-wsdl-address is set to false and the content of

<soap:address> is a valid URL, JBossWS will not rewrite the URL. The

<soap:address> URL will be used.

When the content of <soap:address> is not a valid URL, JBossWS will

rewrite it no matter what the setting of modify-wsdl-address.

If modify-wsdl-address is set to true and wsdl-host is not defined or

explicitly set to the content of'jbossws.undefined.host'

<soap:address> URL is use. JBossWS uses the requester's host when

rewriting the <soap:address>

When modify-wsdl-address is not defined JBossWS uses a default value

of true.

wsdl-host string The hostname / IP address to be used for rewriting .<soap:address>

If is set to , JBossWS uses thewsdl-host jbossws.undefined.host

requester's host when rewriting the <soap:address>

When wsdl-host is not defined JBossWS uses a default value of '

'.jbossws.undefined.host

wsdl-port int Set this property to explicitly define the HTTP port that will be used for

rewriting the SOAP address.

Otherwise the HTTP port will be identified by querying the list of installed

HTTP connectors.

wsdl-secure-port int Set this property to explicitly define the HTTPS port that will be used for

rewriting the SOAP address.

Otherwise the HTTPS port will be identified by querying the list of

installed HTTPS connectors.

wsdl-uri-scheme string This property explicitly sets the URI scheme to use for rewriting

 . Valid values are and . This<soap:address> http https

configuration overrides scheme computed by processing the endpoint

(even if a transport guarantee

is specified). The provided values for and wsdl-port

 (or their default values) are used depending onwsdl-secure-port

specified scheme.

Latest WildFly Documentation

JBoss Community Documentation Page of 741 2293

wsdl-path-rewrite-rule string This string defines a SED substitution command (e.g.,

's/regexp/replacement/g') that JBossWS executes against the path

component of each <soap:address> URL published from the server.

When wsdl-path-rewrite-rule is not defined, JBossWS retains the original

path component of each <soap:address> URL.

When 'modify-wsdl-address' is set to "false" this element is ignored.

Predefined endpoint configurations
JBossWS enables extra setup configuration data to be predefined and associated with an endpoint

implementation. Predefined endpoint configurations can be used for JAX-WS client and JAX-WS endpoint

setup. Endpoint configurations can include JAX-WS handlers and key/value properties declarations. This

feature provides a convenient way to add handlers to WS endpoints and to set key/value properties that

control JBossWS and Apache CXF internals ().see Apache CXF configuration

The webservices subsystem provides to support the definition of named sets of endpointschema

configuration data. Annotation, is provided to map the namedorg.jboss.ws.api.annotation.EndpointConfig

configuration to the endpoint implementation.

There is no limit to the number of endpoint configurations that can be defined within the webservices

subsystem. Each endpoint configuration must have a name that is unique within the webservices

subsystem. Endpoint configurations defined in the webservices subsystem are available for reference by

name through the annotation to any endpoint in a deployed application.

WildFly ships with two predefined endpoint configurations. Standard-Endpoint-Config is the default

configuration. Recording-Endpoint-Config is an example of custom endpoint configuration and includes a

recording handler.

[standalone@localhost:9999 /] /subsystem=webservices:read-resource

{

 "outcome" => "success",

 "result" => {

 "endpoint" => {},

 "modify-wsdl-address" => true,

 "wsdl-host" => expression "${jboss.bind.address:127.0.0.1}",

 "endpoint-config" => {

 "Standard-Endpoint-Config" => undefined,

 "Recording-Endpoint-Config" => undefined

 }

 }

}

The is a special endpoint configuration. It is used for anyStandard-Endpoint-Config

endpoint that does not have an explicitly assigned endpoint configuration.

https://docs.jboss.org/author/display/JBWS/Apache+CXF+integration#ApacheCXFintegration-Deploymentdescriptorproperties
http://www.jboss.org/schema/jbossas/jboss-as-webservices_1_2.xsd

Latest WildFly Documentation

JBoss Community Documentation Page of 742 2293

Endpoint configs
Endpoint configs are defined using element. Each endpoint configuration maythe endpoint-config

include properties and handlers set to the endpoints associated to the configuration.

[standalone@localhost:9999 /]

/subsystem=webservices/endpoint-config=Recording-Endpoint-Config:read-resource

{

 "outcome" => "success",

 "result" => {

 "post-handler-chain" => undefined,

 "property" => undefined,

 "pre-handler-chain" => {"recording-handlers" => undefined}

 }

}

A new endpoint configuration can be added as follows:

[standalone@localhost:9999 /] /subsystem=webservices/endpoint-config=My-Endpoint-Config:add

{

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-restart" => true,

 "process-state" => "restart-required"

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 743 2293

Handler chains
Each endpoint configuration may be associated with zero or more PRE and POST handler chains. Each

handler chain may include JAXWS handlers. For outbound messages the PRE handler chains are executed

before any handler that is attached to the endpoint using the standard means, such as with annotation

@HandlerChain, and POST handler chains are executed after those objects have executed. For inbound

messages the POST handler chains are executed before any handler that is attached to the endpoint using

the standard means and the PRE handler chains are executed after those objects have executed.

* Server inbound messages

Client --> ... --> POST HANDLER --> ENDPOINT HANDLERS --> PRE HANDLERS --> Endpoint

* Server outbound messages

Endpoint --> PRE HANDLER --> ENDPOINT HANDLERS --> POST HANDLERS --> ... --> Client

The protocol-binding attribute must be used to set the protocols for which the chain will be triggered.

[standalone@localhost:9999 /]

/subsystem=webservices/endpoint-config=Recording-Endpoint-Config/pre-handler-chain=recording-handlers:read-resource
{

"outcome" => "success",

 "result" => {

 "protocol-bindings" => "##SOAP11_HTTP ##SOAP11_HTTP_MTOM ##SOAP12_HTTP

##SOAP12_HTTP_MTOM",

 "handler" => {"RecordingHandler" => undefined}

 },

 "response-headers" => {"process-state" => "restart-required"}

}

A new handler chain can be added as follows:

[standalone@localhost:9999 /]

/subsystem=webservices/endpoint-config=My-Endpoint-Config/post-handler-chain=my-handlers:add(protocol-bindings="##SOAP11_HTTP")
{

"outcome" => "success",

 "response-headers" => {

 "operation-requires-restart" => true,

 "process-state" => "restart-required"

 }

}

[standalone@localhost:9999 /]

/subsystem=webservices/endpoint-config=My-Endpoint-Config/post-handler-chain=my-handlers:read-resource
{

"outcome" => "success",

 "result" => {

 "handler" => undefined,

 "protocol-bindings" => "##SOAP11_HTTP"

 },

 "response-headers" => {"process-state" => "restart-required"}

}

Latest WildFly Documentation

JBoss Community Documentation Page of 744 2293

Handlers
JAXWS handler can be added in handler chains:

[standalone@localhost:9999 /]

/subsystem=webservices/endpoint-config=Recording-Endpoint-Config/pre-handler-chain=recording-handlers/handler=RecordingHandler:read-resource
{

"outcome" => "success",

 "result" => {"class" => "org.jboss.ws.common.invocation.RecordingServerHandler"},

 "response-headers" => {"process-state" => "restart-required"}

}

[standalone@localhost:9999 /]

/subsystem=webservices/endpoint-config=My-Endpoint-Config/post-handler-chain=my-handlers/handler=foo-handler:add(class="org.jboss.ws.common.invocation.RecordingServerHandler")
{

"outcome" => "success",

 "response-headers" => {

 "operation-requires-restart" => true,

 "process-state" => "restart-required"

 }

}

Endpoint-config handler classloading

The attribute is used to provide the fully qualified class name of the handler. At deploy time,class

an instance of the class is created for each referencing deployment. For class creation to succeed,

the deployment classloader must to be able to load the handler class.

Latest WildFly Documentation

JBoss Community Documentation Page of 745 2293

Runtime information
Each web service endpoint is exposed through the deployment that provides the endpoint implementation.

Each endpoint can be queried as a deployment resource. For further information please consult the chapter

"Application Deployment". Each web service endpoint specifies a web context and a WSDL Url:

[standalone@localhost:9999 /] /deployment="*"/subsystem=webservices/endpoint="*":read-resource

{

 "outcome" => "success",

 "result" => [{

 "address" => [

 ("deployment" => "jaxws-samples-handlerchain.war"),

 ("subsystem" => "webservices"),

 ("endpoint" => "jaxws-samples-handlerchain:TestService")

],

 "outcome" => "success",

 "result" => {

 "class" => "org.jboss.test.ws.jaxws.samples.handlerchain.EndpointImpl",

 "context" => "jaxws-samples-handlerchain",

 "name" => "TestService",

 "type" => "JAXWS_JSE",

 "wsdl-url" => "http://localhost:8080/jaxws-samples-handlerchain?wsdl"

 }

 }]

}

Component Reference
The web service subsystem is provided by the JBossWS project. For a detailed description of the available

configuration properties, please consult the project documentation.

JBossWS homepage: http://www.jboss.org/jbossws

Project Documentation: https://docs.jboss.org/author/display/JBWS

5.22.9 Resource adapters

Resource adapters are configured through the subsystem. Declaring a new resourceresource-adapters

adapter consists of two separate steps: You would need to deploy the .rar archive and define a resource

adapter entry in the subsystem.

http://www.jboss.org/jbossws
https://docs.jboss.org/author/display/JBWS

Latest WildFly Documentation

JBoss Community Documentation Page of 746 2293

Resource Adapter Definitions
The resource adapter itself is defined within the subsystem :resource-adapters

<subsystem xmlns="urn:jboss:domain:resource-adapters:1.0">

 <resource-adapters>

 <resource-adapter>

 <archive>eis.rar</archive>

 <!-- Resource adapter level config-property -->

 <config-property name="Server">localhost</config-property>

 <config-property name="Port">19000</config-property>

 <transaction-support>XATransaction</transaction-support>

 <connection-definitions>

 <connection-definition class-name="com.acme.eis.ra.EISManagedConnectionFactory"

 jndi-name="java:/eis/AcmeConnectionFactory"

 pool-name="AcmeConnectionFactory">

 <!-- Managed connection factory level config-property -->

 <config-property name="Name">Acme Inc</config-property>

 <pool>

 <min-pool-size>10</min-pool-size>

 <max-pool-size>100</max-pool-size>

 </pool>

 <security>

 <application/>

 </security>

 </connection-definition>

 </connection-definitions>

 <admin-objects>

 <admin-object class-name="com.acme.eis.ra.EISAdminObjectImpl"

 jndi-name="java:/eis/AcmeAdminObject">

 <config-property name="Threshold">10</config-property>

 </admin-object>

 </admin-objects>

 </resource-adapter>

 </resource-adapters>

</subsystem>

Note, that only JNDI bindings under java:/ or java:jboss/ are supported.

 (See standalone/configuration/standalone.xml)

Using security domains
Information about using security domains can be found at

https://community.jboss.org/wiki/JBossAS7SecurityDomainModel

Automatic activation of resource adapter archives
A resource adapter archive can be automatically activated with a configuration by including an

META-INF/ironjacamar.xml in the archive.

The schema can be found at http://docs.jboss.org/ironjacamar/schema/ironjacamar_1_0.xsd

https://community.jboss.org/wiki/JBossAS7SecurityDomainModel
http://docs.jboss.org/ironjacamar/schema/ironjacamar_1_0.xsd

Latest WildFly Documentation

JBoss Community Documentation Page of 747 2293

Component Reference
The resource adapter subsystem is provided by the project. For a detailed description of theIronJacamar

available configuration properties, please consult the project documentation.

IronJacamar homepage: http://www.jboss.org/ironjacamar

Project Documentation: http://www.jboss.org/ironjacamar/docs

Schema description:

http://docs.jboss.org/ironjacamar/userguide/1.0/en-US/html/deployment.html#deployingra_descriptor

5.22.10 Batch

Overview

Default Subsystem Configuration

Security

Deployment Descriptors

Deployment Resources

Overview
The batch subsystem is used to configure an environment for running batch applications. uses WildFly

 for it's batch implementation. Specific information about JBeret can be found in the . TheJBeret user guide

resource path, in , for the subsystem is .CLI notation subsystem=batch-jberet

Default Subsystem Configuration
For up to date information about subsystem configuration options see .http://wildscribe.github.io/

http://www.jboss.org/ironjacamar
http://www.jboss.org/ironjacamar
http://www.jboss.org/ironjacamar/docs
http://docs.jboss.org/ironjacamar/userguide/1.0/en-US/html/deployment.html#deployingra_descriptor
http://wildfly.org
https://github.com/jberet/jsr352
http://jberet.gitbooks.io/jberet-user-guide/content/
http://wildscribe.github.io/

Latest WildFly Documentation

JBoss Community Documentation Page of 748 2293

Security
A new attribute was added to the subsystem to allow batch jobs to besecurity-domain batch-jberet

executed under that security domain. Jobs that are stopped as part of a operation will be restartedsuspend

on execution of a with the original user that started job.resume

There was a added toorg.wildfly.extension.batch.jberet.deployment.BatchPermission

allow a security restraint to various batch functions. The following functions can be controlled with this

permission.

start

stop

restart

abandon

read

The read function allows users to use the getter methods from the

 or read the deployment resource, forjavax.batch.operations.JobOperator batch-jberet

example ./deployment=my.war/subsystem=batch-jberet:read-resource

Latest WildFly Documentation

JBoss Community Documentation Page of 749 2293

Deployment Descriptors
There are no deployment descriptors for configuring a batch environment defined by the JSR-352

. In you can use a deployment descriptor to define aspects of thespecification WildFly jboss-all.xml

batch environment for your deployment.

In the deployment descriptor you can define a named job repository, a new job repositoryjboss-all.xml

and/or a named thread pool. A named job repository and named thread pool are resources defined on the

batch subsystem. Only a named thread pool is allowed to be defined in the deployment descriptor.

Example Named Job Repository and Thread Pool

<jboss umlns="urn:jboss:1.0">

 <batch xmlns="urn:jboss:batch-jberet:1.0">

 <job-repository>

 <named name="batch-ds"/>

 </job-repository>

 <thread-pool name="deployment-thread-pool"/>

 </batch>

</jboss>

Example new Job Repository

<jboss umlns="urn:jboss:1.0">

 <batch xmlns="urn:jboss:batch-jberet:1.0">

 <job-repository>

 <jdbc jndi-name="java:jboss/datasources/ExampleDS"/>

 </job-repository>

 </batch>

</jboss>

Deployment Resources
Some subsystems in register runtime resources for deployments. The batch subsystem registersWildFly

jobs and executions. The jobs are registered using the job name, this is the job XML name. Executionsnot

are registered using the execution id.

https://www.jcp.org/en/jsr/detail?id=352
https://www.jcp.org/en/jsr/detail?id=352
http://wildfly.org
http://wildfly.org

Latest WildFly Documentation

JBoss Community Documentation Page of 750 2293

Batch application in a standalone server

[standalone@localhost:9990 /]

/deployment=batch-jdbc-chunk.war/subsystem=batch-jberet:read-resource(recursive=true,include-runtime=true)
{

"outcome" => "success",

 "result" => {"job" => {

 "reader-3" => {

 "instance-count" => 1,

 "running-executions" => 0,

 "execution" => {"1" => {

 "batch-status" => "COMPLETED",

 "create-time" => "2015-08-07T15:37:06.416-0700",

 "end-time" => "2015-08-07T15:37:06.519-0700",

 "exit-status" => "COMPLETED",

 "instance-id" => 1L,

 "last-updated-time" => "2015-08-07T15:37:06.519-0700",

 "start-time" => "2015-08-07T15:37:06.425-0700"

 }}

 },

 "reader-5" => {

 "instance-count" => 0,

 "running-executions" => 0,

 "execution" => undefined

 }

 }}

}

The batch subsystem resource on a deployment also has 3 operations to interact with batch jobs on the

selected deployment. There is a , and operation. The start-job stop-job restart-job execution

resource also has a and operation.stop-job restart-job

Example start-job

[standalone@localhost:9990 /]

/deployment=batch-chunk.war/subsystem=batch-jberet:start-job(job-xml-name=simple,

properties={writer.sleep=5000})

{

 "outcome" => "success",

 "result" => 1L

}

Example stop-job

[standalone@localhost:9990 /]

/deployment=batch-chunk.war/subsystem=batch-jberet:stop-job(execution-id=2)

Latest WildFly Documentation

JBoss Community Documentation Page of 751 2293

Example restart-job

[standalone@localhost:9990 /]

/deployment=batch-chunk.war/subsystem=batch-jberet:restart-job(execution-id=2)

{

 "outcome" => "success",

 "result" => 3L

}

Result of resource after the 3 executions

[standalone@localhost:9990 /]

/deployment=batch-chunk.war/subsystem=batch-jberet:read-resource(recursive=true,

include-runtime=true)

{

 "outcome" => "success",

 "result" => {"job" => {"chunkPartition" => {

 "instance-count" => 2,

 "running-executions" => 0,

 "execution" => {

 "1" => {

 "batch-status" => "COMPLETED",

 "create-time" => "2015-08-07T15:41:55.504-0700",

 "end-time" => "2015-08-07T15:42:15.513-0700",

 "exit-status" => "COMPLETED",

 "instance-id" => 1L,

 "last-updated-time" => "2015-08-07T15:42:15.513-0700",

 "start-time" => "2015-08-07T15:41:55.504-0700"

 },

 "2" => {

 "batch-status" => "STOPPED",

 "create-time" => "2015-08-07T15:44:39.879-0700",

 "end-time" => "2015-08-07T15:44:54.882-0700",

 "exit-status" => "STOPPED",

 "instance-id" => 2L,

 "last-updated-time" => "2015-08-07T15:44:54.882-0700",

 "start-time" => "2015-08-07T15:44:39.879-0700"

 },

 "3" => {

 "batch-status" => "COMPLETED",

 "create-time" => "2015-08-07T15:45:48.162-0700",

 "end-time" => "2015-08-07T15:45:53.165-0700",

 "exit-status" => "COMPLETED",

 "instance-id" => 2L,

 "last-updated-time" => "2015-08-07T15:45:53.165-0700",

 "start-time" => "2015-08-07T15:45:48.163-0700"

 }

 }

 }}}

}

Latest WildFly Documentation

JBoss Community Documentation Page of 752 2293

Pro Tip

You can filter jobs by an attribute on the execution resource with the operation.query

View all stopped jobs

/deployment=batch-chunk.war/subsystem=batch-jberet/job=*/execution=*:query(where=["batch-status",

"STOPPED"])

As with all operations you can see details about the operation using the :read-operation-description

operation.

Tab completion

Don't forget that CLI has tab completion which will complete operations and attributes (arguments)

on operations.

Latest WildFly Documentation

JBoss Community Documentation Page of 753 2293

Example start-job operation description

[standalone@localhost:9990 /]

/deployment=batch-chunk.war/subsystem=batch-jberet:read-operation-description(name=start-job)

{

 "outcome" => "success",

 "result" => {

 "operation-name" => "start-job",

 "description" => "Starts a batch job.",

 "request-properties" => {

 "job-xml-name" => {

 "type" => STRING,

 "description" => "The name of the job XML file to use when starting the job.",

 "expressions-allowed" => false,

 "required" => true,

 "nillable" => false,

 "min-length" => 1L,

 "max-length" => 2147483647L

 },

 "properties" => {

 "type" => OBJECT,

 "description" => "Optional properties to use when starting the batch job.",

 "expressions-allowed" => false,

 "required" => false,

 "nillable" => true,

 "value-type" => STRING

 }

 },

 "reply-properties" => {"type" => LONG},

 "read-only" => false,

 "runtime-only" => true

 }

}

5.22.11 JSF

Overview

Installing a new JSF implementation manually

Add a module slot for the new JSF implementation JAR

Add a module slot for the new JSF API JAR

Add a module slot for the JSF injection JAR

For MyFaces only - add a module for the commons-digester JAR

Start the server

Changing the default JSF implementation

Configuring a JSF app to use a non-default JSF implementation

Latest WildFly Documentation

JBoss Community Documentation Page of 754 2293

Overview
JSF configuration is handled by the JSF subsystem. The JSF subsystem allows multiple JSF

implementations to be installed on the same WildFly server. In particular, any version of Mojarra or MyFaces

that implements spec level 2.1 or higher can be installed. For each JSF implementation, a new slot needs to

be created under , , and .com.sun.jsf-impl javax.faces.api org.jboss.as.jsf-injection

When the JSF subsystem starts up, it scans the module path to find all of the JSF implementations that have

been installed. The default JSF implementation that WildFly should use is defined by the

 attribute.default-jsf-impl-slot

Installing a new JSF implementation manually
A new JSF implementation can be manually installed as follows:

Add a module slot for the new JSF implementation JAR

Create the following directory structure under the WILDFLY_HOME/modules directory:

WILDFLY_HOME/modules/com/sun/jsf-impl/<JSF_IMPL_NAME>-<JSF_VERSION>

For example, for Mojarra 2.2.11, the above path would resolve to:

WILDFLY_HOME/modules/com/sun/jsf-impl/mojarra-2.2.11

Place the JSF implementation JAR in the <JSF_IMPL_NAME>-<JSF_VERSION> subdirectory. In the

same subdirectory, add a file similar to the or template examples.module.xml Mojarra MyFaces

Change the to the name of your JSF implementation JAR and fill inresource-root-path

appropriate values for ${ } and ${ }.jsf-impl-name jsf-version

Add a module slot for the new JSF API JAR

Create the following directory structure under the WILDFLY_HOME/modules directory:

WILDFLY_HOME/modules/javax/faces/api/<JSF_IMPL_NAME>-<JSF_VERSION>

Place the JSF API JAR in the <JSF_IMPL_NAME>-<JSF_VERSION> subdirectory. In the same

subdirectory, add a file similar to the or template examples. Changemodule.xml Mojarra MyFaces

the to the name of your JSF API JAR and fill in appropriate values for ${resource-root-path

} and ${ }.jsf-impl-name jsf-version

https://github.com/wildfly/wildfly/blob/master/jsf/multi-jsf-installer/src/main/resources/mojarra-impl-module.xml
https://github.com/wildfly/wildfly/blob/master/jsf/multi-jsf-installer/src/main/resources/myfaces-impl-module.xml
https://github.com/wildfly/wildfly/blob/master/jsf/multi-jsf-installer/src/main/resources/mojarra-api-module.xml
https://github.com/wildfly/wildfly/blob/master/jsf/multi-jsf-installer/src/main/resources/myfaces-api-module.xml

Latest WildFly Documentation

JBoss Community Documentation Page of 755 2293

Add a module slot for the JSF injection JAR

Create the following directory structure under the WILDFLY_HOME/modules directory:

WILDFLY_HOME/modules/org/jboss/as/jsf-injection/<JSF_IMPL_NAME>-<JSF_VERSION>

Copy the wildfly-jsf-injection JAR and the weld-core-jsf JAR from

WILDFLY_HOME/modules/system/layers/base/org/jboss/as/jsf-injection/main to the

<JSF_IMPL_NAME>-<JSF_VERSION> subdirectory.

In the <JSF_IMPL_NAME>-<JSF_VERSION> subdirectory, add a file similar to the module.xml

 or template examples and fill in appropriate values for ${ }, ${Mojarra MyFaces jsf-impl-name

}, ${ }, and ${ }. (These last twojsf-version version.jboss.as version.weld.core

placeholders depend on the versions of the wildfly-jsf-injection and weld-core-jsf JARs that were

copied over in the previous step.)

For MyFaces only - add a module for the commons-digester JAR

Create the following directory structure under the WILDFLY_HOME/modules directory:

WILDFLY_HOME/modules/org/apache/commons/digester/main

Place the JAR in WILDFLY_HOME/modules/org/apache/commons/digester/main.commons-digester

In the subdirectory, add a file similar to this . Fill in the appropriate valuemain module.xml template

for ${ }.version.commons-digester

Start the server
After starting the server, the following CLI command can be used to verify that your new JSF implementation

has been installed successfully. The new JSF implementation should appear in the output of this command.

[standalone@localhost:9990 /] /subsystem=jsf:list-active-jsf-impls()

Changing the default JSF implementation
The following CLI command can be used to make a newly installed JSF implementation the default JSF

implementation used by WildFly:

/subsystem=jsf:write-attribute(name=default-jsf-impl-slot,value=<JSF_IMPL_NAME>-<JSF_VERSION>)

A server restart will be required for this change to take effect.

https://gist.github.com/fjuma/30160f0e95ade328253118c706339604
https://gist.github.com/fjuma/f73b05c3864255e7b10b49f989f0b75e
http://search.maven.org/remotecontent?filepath=commons-digester/commons-digester/1.8/commons-digester-1.8.jar
https://github.com/wildfly/wildfly/blob/master/jsf/multi-jsf-installer/src/main/resources/myfaces-digester-module.xml

Latest WildFly Documentation

JBoss Community Documentation Page of 756 2293

Configuring a JSF app to use a non-default JSF implementation
A JSF app can be configured to use an installed JSF implementation that's not the default implementation by

adding a context parameter to its file. Fororg.jboss.jbossfaces.JSF_CONFIG_NAME web.xml

example, to indicate that a JSF app should use MyFaces 2.2.12 (assuming MyFaces 2.2.12 has been

installed on the server), the following context parameter would need to be added:

<context-param>

 <param-name>org.jboss.jbossfaces.JSF_CONFIG_NAME</param-name>

 <param-value>myfaces-2.2.12</param-value>

</context-param>

If a JSF app does not specify this context parameter, the default JSF implementation will be used for that

app.

5.22.12 JMX

The JMX subsystem registers a service with the Remoting endpoint so that remote access to JMX can be

obtained over the exposed Remoting connector.

This is switched on by default in standalone mode and accessible over port 9990 but in domain mode is

switched off so needs to be enabled - in domain mode the port will be the port of the Remoting connector for

the WildFly instance to be monitored.

To use the connector you can access it in the standard way using a URL:service:jmx

Latest WildFly Documentation

JBoss Community Documentation Page of 757 2293

import javax.management.MBeanServerConnection;

import javax.management.remote.JMXConnector;

import javax.management.remote.JMXConnectorFactory;

import javax.management.remote.JMXServiceURL;

public class JMXExample {

 public static void main(String[] args) throws Exception {

 //Get a connection to the WildFly MBean server on localhost

 String host = "localhost";

 int port = 9990; // management-web port

 String urlString =

 System.getProperty("jmx.service.url","service:jmx:remote+http://" + host + ":" +

port);

 JMXServiceURL serviceURL = new JMXServiceURL(urlString);

 JMXConnector jmxConnector = JMXConnectorFactory.connect(serviceURL, null);

 MBeanServerConnection connection = jmxConnector.getMBeanServerConnection();

 //Invoke on the WildFly MBean server

 int count = connection.getMBeanCount();

 System.out.println(count);

 jmxConnector.close();

 }

}

You also need to set your classpath when running the above example. The following script covers Linux. If

your environment is much different, paste your script when you have it working.

!/bin/bash

specify your WildFly folder

export YOUR_JBOSS_HOME=~/WildFly

java -classpath $YOUR_JBOSS_HOME/bin/client/jboss-client.jar:./ JMXExample

You can also connect using jconsole.

If using jconsole use the and scripts included in the /bin directoryjconsole.sh jconsole.bat

of the WildFly distribution as these set the classpath as required to connect over Remoting.

In addition to the standard JVM MBeans, the WildFly MBean server contains the following MBeans:

Latest WildFly Documentation

JBoss Community Documentation Page of 758 2293

JMX ObjectName Description

jboss.msc:type=container,name=jboss-as Exposes management operations on the JBoss

Modular Service Container, which is the dependency

injection framework at the heart of WildFly. It is

useful for debugging dependency problems, for

example if you are integrating your own subsystems,

as it exposes operations to dump all services and

their current states

jboss.naming:type=JNDIView Shows what is bound in JNDI

jboss.modules:type=ModuleLoader,name=* This collection of MBeans exposes management

operations on JBoss Modules classloading layer. It is

useful for debugging dependency problems arising

from missing module dependencies

Audit logging
Audit logging for the JMX MBean server managed by the JMX subsystem. The resource is at

 and its attributes are similar to the ones mentioned for /subsystem=jmx/configuration=audit-log

 in ./core-service=management/access=audit/logger=audit-log Audit logging

Attribute Description

enabled to enable logging of the JMX operationstrue

log-boot to log the JMX operations when booting the server, otherwisetrue false

log-read-only If all operations will be audit logged, if only operations that change thetrue false

model will be logged

Then which handlers are used to log the management operations are configured as children ofhandler=*

the logger. These handlers and their formatters are defined in the global

 section mentioned in ./core-service=management/access=audit Audit logging

JSON Formatter
The same JSON Formatter is used as described in . However the records for MBean ServerAudit logging

invocations have slightly different fields from those logged for the core management layer.

Latest WildFly Documentation

JBoss Community Documentation Page of 759 2293

2013-08-29 18:26:29 - {

 "type" : "jmx",

 "r/o" : false,

 "booting" : false,

 "version" : "10.0.0.Final",

 "user" : "$local",

 "domainUUID" : null,

 "access" : "JMX",

 "remote-address" : "127.0.0.1/127.0.0.1",

 "method" : "invoke",

 "sig" : [

 "javax.management.ObjectName",

 "java.lang.String",

 "[Ljava.lang.Object;",

 "[Ljava.lang.String;"

],

 "params" : [

 "java.lang:type=Threading",

 "getThreadInfo",

 "[Ljava.lang.Object;@5e6c33c",

 "[Ljava.lang.String;@4b681c69"

]

}

It includes an optional timestamp and then the following information in the json record

Latest WildFly Documentation

JBoss Community Documentation Page of 760 2293

Field name Description

type This will have the value meaning it comes from the jmx subsystemjmx

r/o if the operation has read only impact on the MBean(s)true

booting if the operation was executed during the bootup process, if it wastrue false

executed once the server is up and running

version The version number of the WildFly instance

user The username of the authenticated user.

domainUUID This is not currently populated for JMX operations

access This can have one of the following values:

* - The operation came in through the native management interface, forNATIVE

example the CLI

* - The operation came in through the domain HTTP interface, for example theHTTP

admin console

* - The operation came in through the JMX subsystem. See for how toJMX JMX

configure audit logging for JMX.

remote-address The address of the client executing this operation

method The name of the called MBeanServer method

sig The signature of the called called MBeanServer method

params The actual parameters passed in to the MBeanServer method, a simple

 is called on each parameter.Object.toString()

error If calling the MBeanServer method resulted in an error, this field will be populated with

Throwable.getMessage()

5.22.13 Deployment Scanner

The deployment scanner is only used in standalone mode. Its job is to monitor a directory for new files and

to deploy those files. It can be found in :standalone.xml

<subsystem xmlns="urn:jboss:domain:deployment-scanner:2.0">

 <deployment-scanner scan-interval="5000"

 relative-to="jboss.server.base.dir" path="deployments" />

</subsystem>

Latest WildFly Documentation

JBoss Community Documentation Page of 761 2293

You can define more entries to scan for deployments from more locations. Thedeployment-scanner

configuration showed will scan the directory every fiveJBOSS_HOME/standalone/deployments

seconds. The runtime model is shown below, and uses default values for attributes not specified in the xml:

[standalone@localhost:9999 /] /subsystem=deployment-scanner:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {"scanner" => {"default" => {

 "auto-deploy-exploded" => false,

 "auto-deploy-zipped" => true,

 "deployment-timeout" => 60L,

 "name" => "default",

 "path" => "deployments",

 "relative-to" => "jboss.server.base.dir",

 "scan-enabled" => true,

 "scan-interval" => 5000

 }}}

}

The attributes are

Latest WildFly Documentation

JBoss Community Documentation Page of 762 2293

Name Type Description

name STRING The name of the scanner. is used if not specifieddefault

path STRING The actual filesystem path to be scanned. Treated as an

absolute path, unless the 'relative-to' attribute is specified, in

which case the value is treated as relative to that path.

relative-to STRING Reference to a filesystem path defined in the "paths" section of

the server configuration, or one of the system properties

specified on startup. In the example above

 resolves to jboss.server.base.dir

JBOSS_HOME/standalone

scan-enabled BOOLEAN If true scanning is enabled

scan-interval INT Periodic interval, in milliseconds, at which the repository should

be scanned for changes. A value of less than 1 indicates the

repository should only be scanned at initial startup.

auto-deploy-zipped BOOLEAN Controls whether zipped deployment content should be

automatically deployed by the scanner without requiring the user

to add a .dodeploy marker file.

auto-deploy-exploded BOOLEAN Controls whether exploded deployment content should be

automatically deployed by the scanner without requiring the user

to add a .dodeploy marker file. Setting this to 'true' is not

recommended for anything but basic development scenarios, as

there is no way to ensure that deployment will not occur in the

middle of changes to the content.

auto-deploy-xml BOOLEAN Controls whether XML content should be automatically deployed

by the scanner without requiring a .dodeploy marker file.

deployment-timeout LONG Timeout, in seconds, a deployment is allows to execute before

being canceled. The default is 60 seconds.

Deployment scanners can be added by modifying before starting up the server or theystandalone.xml

can be added and removed at runtime using the CLI

[standalone@localhost:9990 /]

/subsystem=deployment-scanner/scanner=new:add(scan-interval=10000,relative-to="jboss.server.base.dir",path="other-deployments")
{"outcome"

=> "success"}

[standalone@localhost:9990 /] /subsystem=deployment-scanner/scanner=new:remove

{"outcome" => "success"}

You can also change the attributes at runtime, so for example to turn off scanning you can do

Latest WildFly Documentation

JBoss Community Documentation Page of 763 2293

[standalone@localhost:9990 /]

/subsystem=deployment-scanner/scanner=default:write-attribute(name="scan-enabled",value=false)

{"outcome" => "success"}

[standalone@localhost:9990 /] /subsystem=deployment-scanner:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {"scanner" => {"default" => {

 "auto-deploy-exploded" => false,

 "auto-deploy-zipped" => true,

 "deployment-timeout" => 60L,

 "name" => "default",

 "path" => "deployments",

 "relative-to" => "jboss.server.base.dir",

 "scan-enabled" => false,

 "scan-interval" => 5000

 }}}

}

5.22.14 Core Management

Overview
The core management subsystem is composed services used to manage the server or monitor its status.

The core management subsystem configuration may be used to:

register a listener for a server lifecycle events.

list the last configuration changes on a server.

Lifecycle listener
You can create an implementation of org.wildfly.extension.core.management.client.ProcessStateListener

which will be notified on running and runtime configuration state changes thus enabling the developer to

react to those changes.

In order to use this feature you need to create your own module then configure and deploy it using the core

management subsystem.

For example let's create a simple listener :

Latest WildFly Documentation

JBoss Community Documentation Page of 764 2293

public class SimpleListener implements ProcessStateListener {

 private File file;

 private FileWriter fileWriter;

 private ProcessStateListenerInitParameters parameters;

 @Override

 public void init(ProcessStateListenerInitParameters parameters) {

 this.parameters = parameters;

 this.file = new File(parameters.getInitProperties().get("file"));

 try {

 fileWriter = new FileWriter(file, true);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void cleanup() {

 try {

 fileWriter.close();

 } catch (IOException e) {

 e.printStackTrace();

 } finally {

 fileWriter = null;

 }

 }

 @Override

 public void runtimeConfigurationStateChanged(RuntimeConfigurationStateChangeEvent evt) {

 try {

 fileWriter.write(String.format("%s %s %s %s\n", parameters.getProcessType(),

parameters.getRunningMode(), evt.getOldState(), evt.getNewState()));

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void runningStateChanged(RunningStateChangeEvent evt) {

 try {

 fileWriter.write(String.format("%s %s %s %s\n", parameters.getProcessType(),

parameters.getRunningMode(), evt.getOldState(), evt.getNewState()));

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

To compile it you need to depend on the maven module.org.wildfly.core:wildfly-core-management-client

Now let's add the module to the wildfly modules :

Latest WildFly Documentation

JBoss Community Documentation Page of 765 2293

module add --name=org.simple.lifecycle.events.listener

--dependencies=org.wildfly.extension.core-management-client

--resources=/home/ehsavoie/dev/demo/simple-listener/target/simple-process-state-listener.jar

Now we can register or listener :

/subsystem=core-management/process-state-listener=simple-listener:add(class=org.simple.lifecycle.events.listener.SimpleListener,

module=org.simple.lifecycle.events.listener, properties={file=/home/wildfly/tmp/events.txt})

Configuration changes
You can use the core management subsystem to enable and configure an history of the lastin-memory

configuration changes.

For example to track the last 5 configuration changes let's active this :

/subsystem=core-management/service=configuration-changes:add(max-history=5)

Now we can list the last configuration changes :

/subsystem=core-management/service=configuration-changes:list-changes()

{

 "outcome" => "success",

 "result" => [{

 "operation-date" => "2016-12-05T11:05:12.867Z",

 "access-mechanism" => "NATIVE",

 "remote-address" => "/127.0.0.1",

 "outcome" => "success",

 "operations" => [{

 "address" => [

 ("subsystem" => "core-management"),

 ("service" => "configuration-changes")

],

 "operation" => "add",

 "max-history" => 5,

 "operation-headers" => {

 "caller-type" => "user",

 "access-mechanism" => "NATIVE"

 }

 }]

 }]

}

Latest WildFly Documentation

JBoss Community Documentation Page of 766 2293

5.22.15 Simple configuration subsystems

The following subsystems currently have no configuration beyond its root element in the configuration

<subsystem xmlns="urn:jboss:domain:jaxrs:1.0"/>

<subsystem xmlns="urn:jboss:domain:jdr:1.0"/>

<subsystem xmlns="urn:jboss:domain:pojo:1.0"/>

<subsystem xmlns="urn:jboss:domain:sar:1.0"/>

The presence of each of these turns on a piece of functionality:

Name Description

jaxrs Enables the deployment and functionality of JAX-RS applications

jdr Enables the gathering of diagnostic data for use in remote analysis of error conditions. Although

the data is in a simple format and could be useful to anyone, primarily useful for JBoss EAP

subscribers who would provide the data to Red Hat when requesting support

pojo Enables the deployment of applications containing JBoss Microcontainer services, as supported

by previous versions of JBoss Application Server

sar Enables the deployment of .SAR archives containing MBean services, as supported by previous

versions of JBoss Application Server

5.22.16 Batch (JSR-352) Subsystem Configuration

Overview

Default Subsystem Configuration

Security

Deployment Descriptors

Deployment Resources

Overview
The batch subsystem is used to configure an environment for running batch applications. uses WildFly

 for it's batch implementation. Specific information about JBeret can be found in the . TheJBeret user guide

resource path, in , for the subsystem is .CLI notation subsystem=batch-jberet

Default Subsystem Configuration
For up to date information about subsystem configuration options see .http://wildscribe.github.io/

http://wildfly.org
https://github.com/jberet/jsr352
http://jberet.gitbooks.io/jberet-user-guide/content/
http://wildscribe.github.io/

Latest WildFly Documentation

JBoss Community Documentation Page of 767 2293

Security
A new attribute was added to the subsystem to allow batch jobs to besecurity-domain batch-jberet

executed under that security domain. Jobs that are stopped as part of a operation will be restartedsuspend

on execution of a with the original user that started job.resume

There was a added toorg.wildfly.extension.batch.jberet.deployment.BatchPermission

allow a security restraint to various batch functions. The following functions can be controlled with this

permission.

start

stop

restart

abandon

read

The read function allows users to use the getter methods from the

 or read the deployment resource, forjavax.batch.operations.JobOperator batch-jberet

example ./deployment=my.war/subsystem=batch-jberet:read-resource

Latest WildFly Documentation

JBoss Community Documentation Page of 768 2293

Deployment Descriptors
There are no deployment descriptors for configuring a batch environment defined by the JSR-352

. In you can use a deployment descriptor to define aspects of thespecification WildFly jboss-all.xml

batch environment for your deployment.

In the deployment descriptor you can define a named job repository, a new job repositoryjboss-all.xml

and/or a named thread pool. A named job repository and named thread pool are resources defined on the

batch subsystem. Only a named thread pool is allowed to be defined in the deployment descriptor.

Example Named Job Repository and Thread Pool

<jboss umlns="urn:jboss:1.0">

 <batch xmlns="urn:jboss:batch-jberet:1.0">

 <job-repository>

 <named name="batch-ds"/>

 </job-repository>

 <thread-pool name="deployment-thread-pool"/>

 </batch>

</jboss>

Example new Job Repository

<jboss umlns="urn:jboss:1.0">

 <batch xmlns="urn:jboss:batch-jberet:1.0">

 <job-repository>

 <jdbc jndi-name="java:jboss/datasources/ExampleDS"/>

 </job-repository>

 </batch>

</jboss>

Deployment Resources
Some subsystems in register runtime resources for deployments. The batch subsystem registersWildFly

jobs and executions. The jobs are registered using the job name, this is the job XML name. Executionsnot

are registered using the execution id.

https://www.jcp.org/en/jsr/detail?id=352
https://www.jcp.org/en/jsr/detail?id=352
http://wildfly.org
http://wildfly.org

Latest WildFly Documentation

JBoss Community Documentation Page of 769 2293

Batch application in a standalone server

[standalone@localhost:9990 /]

/deployment=batch-jdbc-chunk.war/subsystem=batch-jberet:read-resource(recursive=true,include-runtime=true)
{

"outcome" => "success",

 "result" => {"job" => {

 "reader-3" => {

 "instance-count" => 1,

 "running-executions" => 0,

 "execution" => {"1" => {

 "batch-status" => "COMPLETED",

 "create-time" => "2015-08-07T15:37:06.416-0700",

 "end-time" => "2015-08-07T15:37:06.519-0700",

 "exit-status" => "COMPLETED",

 "instance-id" => 1L,

 "last-updated-time" => "2015-08-07T15:37:06.519-0700",

 "start-time" => "2015-08-07T15:37:06.425-0700"

 }}

 },

 "reader-5" => {

 "instance-count" => 0,

 "running-executions" => 0,

 "execution" => undefined

 }

 }}

}

The batch subsystem resource on a deployment also has 3 operations to interact with batch jobs on the

selected deployment. There is a , and operation. The start-job stop-job restart-job execution

resource also has a and operation.stop-job restart-job

Example start-job

[standalone@localhost:9990 /]

/deployment=batch-chunk.war/subsystem=batch-jberet:start-job(job-xml-name=simple,

properties={writer.sleep=5000})

{

 "outcome" => "success",

 "result" => 1L

}

Example stop-job

[standalone@localhost:9990 /]

/deployment=batch-chunk.war/subsystem=batch-jberet:stop-job(execution-id=2)

Latest WildFly Documentation

JBoss Community Documentation Page of 770 2293

Example restart-job

[standalone@localhost:9990 /]

/deployment=batch-chunk.war/subsystem=batch-jberet:restart-job(execution-id=2)

{

 "outcome" => "success",

 "result" => 3L

}

Result of resource after the 3 executions

[standalone@localhost:9990 /]

/deployment=batch-chunk.war/subsystem=batch-jberet:read-resource(recursive=true,

include-runtime=true)

{

 "outcome" => "success",

 "result" => {"job" => {"chunkPartition" => {

 "instance-count" => 2,

 "running-executions" => 0,

 "execution" => {

 "1" => {

 "batch-status" => "COMPLETED",

 "create-time" => "2015-08-07T15:41:55.504-0700",

 "end-time" => "2015-08-07T15:42:15.513-0700",

 "exit-status" => "COMPLETED",

 "instance-id" => 1L,

 "last-updated-time" => "2015-08-07T15:42:15.513-0700",

 "start-time" => "2015-08-07T15:41:55.504-0700"

 },

 "2" => {

 "batch-status" => "STOPPED",

 "create-time" => "2015-08-07T15:44:39.879-0700",

 "end-time" => "2015-08-07T15:44:54.882-0700",

 "exit-status" => "STOPPED",

 "instance-id" => 2L,

 "last-updated-time" => "2015-08-07T15:44:54.882-0700",

 "start-time" => "2015-08-07T15:44:39.879-0700"

 },

 "3" => {

 "batch-status" => "COMPLETED",

 "create-time" => "2015-08-07T15:45:48.162-0700",

 "end-time" => "2015-08-07T15:45:53.165-0700",

 "exit-status" => "COMPLETED",

 "instance-id" => 2L,

 "last-updated-time" => "2015-08-07T15:45:53.165-0700",

 "start-time" => "2015-08-07T15:45:48.163-0700"

 }

 }

 }}}

}

Latest WildFly Documentation

JBoss Community Documentation Page of 771 2293

Pro Tip

You can filter jobs by an attribute on the execution resource with the operation.query

View all stopped jobs

/deployment=batch-chunk.war/subsystem=batch-jberet/job=*/execution=*:query(where=["batch-status",

"STOPPED"])

As with all operations you can see details about the operation using the :read-operation-description

operation.

Tab completion

Don't forget that CLI has tab completion which will complete operations and attributes (arguments)

on operations.

Latest WildFly Documentation

JBoss Community Documentation Page of 772 2293

Example start-job operation description

[standalone@localhost:9990 /]

/deployment=batch-chunk.war/subsystem=batch-jberet:read-operation-description(name=start-job)

{

 "outcome" => "success",

 "result" => {

 "operation-name" => "start-job",

 "description" => "Starts a batch job.",

 "request-properties" => {

 "job-xml-name" => {

 "type" => STRING,

 "description" => "The name of the job XML file to use when starting the job.",

 "expressions-allowed" => false,

 "required" => true,

 "nillable" => false,

 "min-length" => 1L,

 "max-length" => 2147483647L

 },

 "properties" => {

 "type" => OBJECT,

 "description" => "Optional properties to use when starting the batch job.",

 "expressions-allowed" => false,

 "required" => false,

 "nillable" => true,

 "value-type" => STRING

 }

 },

 "reply-properties" => {"type" => LONG},

 "read-only" => false,

 "runtime-only" => true

 }

}

5.22.17 Core Management Subsystem Configuration

Overview
The core management subsystem is composed services used to manage the server or monitor its status.

The core management subsystem configuration may be used to:

register a listener for a server lifecycle events.

list the last configuration changes on a server.

Lifecycle listener
You can create an implementation of org.wildfly.extension.core.management.client.ProcessStateListener

which will be notified on running and runtime configuration state changes thus enabling the developer to

react to those changes.

Latest WildFly Documentation

JBoss Community Documentation Page of 773 2293

In order to use this feature you need to create your own module then configure and deploy it using the core

management subsystem.

For example let's create a simple listener :

public class SimpleListener implements ProcessStateListener {

 private File file;

 private FileWriter fileWriter;

 private ProcessStateListenerInitParameters parameters;

 @Override

 public void init(ProcessStateListenerInitParameters parameters) {

 this.parameters = parameters;

 this.file = new File(parameters.getInitProperties().get("file"));

 try {

 fileWriter = new FileWriter(file, true);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void cleanup() {

 try {

 fileWriter.close();

 } catch (IOException e) {

 e.printStackTrace();

 } finally {

 fileWriter = null;

 }

 }

 @Override

 public void runtimeConfigurationStateChanged(RuntimeConfigurationStateChangeEvent evt) {

 try {

 fileWriter.write(String.format("%s %s %s %s\n", parameters.getProcessType(),

parameters.getRunningMode(), evt.getOldState(), evt.getNewState()));

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void runningStateChanged(RunningStateChangeEvent evt) {

 try {

 fileWriter.write(String.format("%s %s %s %s\n", parameters.getProcessType(),

parameters.getRunningMode(), evt.getOldState(), evt.getNewState()));

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 774 2293

To compile it you need to depend on the maven module.org.wildfly.core:wildfly-core-management-client

Now let's add the module to the wildfly modules :

module add --name=org.simple.lifecycle.events.listener

--dependencies=org.wildfly.extension.core-management-client

--resources=/home/ehsavoie/dev/demo/simple-listener/target/simple-process-state-listener.jar

Now we can register or listener :

/subsystem=core-management/process-state-listener=simple-listener:add(class=org.simple.lifecycle.events.listener.SimpleListener,

module=org.simple.lifecycle.events.listener, properties={file=/home/wildfly/tmp/events.txt})

Configuration changes
You can use the core management subsystem to enable and configure an history of the lastin-memory

configuration changes.

For example to track the last 5 configuration changes let's active this :

/subsystem=core-management/service=configuration-changes:add(max-history=5)

Now we can list the last configuration changes :

/subsystem=core-management/service=configuration-changes:list-changes()

{

 "outcome" => "success",

 "result" => [{

 "operation-date" => "2016-12-05T11:05:12.867Z",

 "access-mechanism" => "NATIVE",

 "remote-address" => "/127.0.0.1",

 "outcome" => "success",

 "operations" => [{

 "address" => [

 ("subsystem" => "core-management"),

 ("service" => "configuration-changes")

],

 "operation" => "add",

 "max-history" => 5,

 "operation-headers" => {

 "caller-type" => "user",

 "access-mechanism" => "NATIVE"

 }

 }]

 }]

}

Latest WildFly Documentation

JBoss Community Documentation Page of 775 2293

1.

2.

3.

4.

5.

5.22.18 DataSource configuration

Datasources are configured through the subsystem. Declaring a new datasource consists of twodatasource

separate steps: You would need to provide a JDBC driver and define a datasource that references the driver

you installed.

JDBC Driver Installation
The recommended way to install a JDBC driver into WildFly 8 is to deploy it as a regular JAR deployment.

The reason for this is that when you run WildFly in domain mode, deployments are automatically propagated

to all servers to which the deployment applies; thus distribution of the driver JAR is one less thing for you to

worry about!

Any JDBC 4-compliant driver will automatically be recognized and installed into the system by name and

version. A JDBC JAR is identified using the Java service provider mechanism. Such JARs will contain a text

a file named , which contains the name of the class(es) of theMETA-INF/services/java.sql.Driver

Drivers which exist in that JAR. If your JDBC driver JAR is not JDBC 4-compliant, it can be made deployable

in one of a few ways.

Modify the JAR

The most straightforward solution is to simply modify the JAR and add the missing file. You can do this from

your command shell by:

Change to, or create, an empty temporary directory.

Create a subdirectory.META-INF

Create a subdirectory.META-INF/services

Create a file which contains one line - the fully-qualifiedMETA-INF/services/java.sql.Driver

class name of the JDBC driver.

Use the command-line tool to update the JAR like this:jar

jar \-uf jdbc-driver.jar META-INF/services/java.sql.Driver

For a detailed explanation how to deploy JDBC 4 compliant driver jar, please refer to the chapter "

".Application Deployment

Datasource Definitions
The datasource itself is defined within the subsystem :datasources

https://docs.jboss.org/author/display/WFLY10/Application+deployment

Latest WildFly Documentation

JBoss Community Documentation Page of 776 2293

<subsystem xmlns="urn:jboss:domain:datasources:4.0">

 <datasources>

 <datasource jndi-name="java:jboss/datasources/ExampleDS" pool-name="ExampleDS">

 <connection-url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-1</connection-url>

 <driver>h2</driver>

 <pool>

 <min-pool-size>10</min-pool-size>

 <max-pool-size>20</max-pool-size>

 <prefill>true</prefill>

 </pool>

 <security>

 <user-name>sa</user-name>

 <password>sa</password>

 </security>

 </datasource>

 <xa-datasource jndi-name="java:jboss/datasources/ExampleXADS" pool-name="ExampleXADS">

 <driver>h2</driver>

 <xa-datasource-property name="URL">jdbc:h2:mem:test</xa-datasource-property>

 <xa-pool>

 <min-pool-size>10</min-pool-size>

 <max-pool-size>20</max-pool-size>

 <prefill>true</prefill>

 </xa-pool>

 <security>

 <user-name>sa</user-name>

 <password>sa</password>

 </security>

 </xa-datasource>

 <drivers>

 <driver name="h2" module="com.h2database.h2">

 <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-datasource-class>

 </driver>

 </drivers>

 </datasources>

</subsystem>

 (See standalone/configuration/standalone.xml)

As you can see the datasource references a driver by it's logical name.

You can easily query the same information through the CLI:

Latest WildFly Documentation

JBoss Community Documentation Page of 777 2293

[standalone@localhost:9990 /] /subsystem=datasources:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {

 "data-source" => {"H2DS" => {

 "connection-url" => "jdbc:h2:mem:test;DB_CLOSE_DELAY=-1",

 "jndi-name" => "java:/H2DS",

 "driver-name" => "h2",

 "pool-name" => "H2DS",

 "use-java-context" => true,

 "enabled" => true,

 "jta" => true,

 "pool-prefill" => true,

 "pool-use-strict-min" => false,

 "user-name" => "sa",

 "password" => "sa",

 "flush-strategy" => "FailingConnectionOnly",

 "background-validation" => false,

 "use-fast-fail" => false,

 "validate-on-match" => false,

 "use-ccm" => true

 }},

 "xa-data-source" => undefined,

 "jdbc-driver" => {"h2" => {

 "driver-name" => "h2",

 "driver-module-name" => "com.h2database.h2",

 "driver-xa-datasource-class-name" => "org.h2.jdbcx.JdbcDataSource"

 }}

 }

}

[standalone@localhost:9990 /] /subsystem=datasources:installed-drivers-list

{

 "outcome" => "success",

 "result" => [{

 "driver-name" => "h2",

 "deployment-name" => undefined,

 "driver-module-name" => "com.h2database.h2",

 "module-slot" => "main",

 "driver-xa-datasource-class-name" => "org.h2.jdbcx.JdbcDataSource",

 "driver-class-name" => "org.h2.Driver",

 "driver-major-version" => 1,

 "driver-minor-version" => 3,

 "jdbc-compliant" => true

 }]

}

Using the web console or the CLI greatly simplifies the deployment of JDBC drivers and the

creation of datasources.

The CLI offers a set of commands to create and modify datasources:

Latest WildFly Documentation

JBoss Community Documentation Page of 778 2293

[standalone@localhost:9990 /] data-source --help

SYNOPSIS

 data-source --help [--properties | --commands] |

 (--name=<resource_id> (--<property>=<value>)*) |

 (<command> --name=<resource_id> (--<parameter>=<value>)*)

 [--headers={<operation_header> (;<operation_header>)*}]

DESCRIPTION

 The command is used to manage resources of type /subsystem=datasources/data-source.

[...]

[standalone@localhost:9990 /] xa-data-source --help

SYNOPSIS

 xa-data-source --help [--properties | --commands] |

 (--name=<resource_id> (--<property>=<value>)*) |

 (<command> --name=<resource_id> (--<parameter>=<value>)*)

 [--headers={<operation_header> (;<operation_header>)*}]

DESCRIPTION

 The command is used to manage resources of type /subsystem=datasources/xa-data-source.

RESOURCE DESCRIPTION

 A JDBC XA data-source configuration

[...]

Using security domains
Information can be found at https://community.jboss.org/wiki/JBossAS7SecurityDomainModel

Component Reference
The datasource subsystem is provided by the project. For a detailed description of the availableIronJacamar

configuration properties, please consult the project documentation.

IronJacamar homepage: http://ironjacamar.org/

Project Documentation: http://ironjacamar.org/documentation.html

Schema description:

http://www.ironjacamar.org/doc/userguide/1.1/en-US/html_single/index.html#deployingds_descriptor

https://community.jboss.org/wiki/JBossAS7SecurityDomainModel
http://www.jboss.org/ironjacamar
http://ironjacamar.org/
http://ironjacamar.org/documentation.html
http://www.ironjacamar.org/doc/userguide/1.1/en-US/html_single/index.html#deployingds_descriptor

Latest WildFly Documentation

JBoss Community Documentation Page of 779 2293

5.22.19 Deployment Scanner configuration

The deployment scanner is only used in standalone mode. Its job is to monitor a directory for new files and

to deploy those files. It can be found in :standalone.xml

<subsystem xmlns="urn:jboss:domain:deployment-scanner:2.0">

 <deployment-scanner scan-interval="5000"

 relative-to="jboss.server.base.dir" path="deployments" />

</subsystem>

You can define more entries to scan for deployments from more locations. Thedeployment-scanner

configuration showed will scan the directory every fiveJBOSS_HOME/standalone/deployments

seconds. The runtime model is shown below, and uses default values for attributes not specified in the xml:

[standalone@localhost:9999 /] /subsystem=deployment-scanner:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {"scanner" => {"default" => {

 "auto-deploy-exploded" => false,

 "auto-deploy-zipped" => true,

 "deployment-timeout" => 60L,

 "name" => "default",

 "path" => "deployments",

 "relative-to" => "jboss.server.base.dir",

 "scan-enabled" => true,

 "scan-interval" => 5000

 }}}

}

The attributes are

Latest WildFly Documentation

JBoss Community Documentation Page of 780 2293

Name Type Description

name STRING The name of the scanner. is used if not specifieddefault

path STRING The actual filesystem path to be scanned. Treated as an

absolute path, unless the 'relative-to' attribute is specified, in

which case the value is treated as relative to that path.

relative-to STRING Reference to a filesystem path defined in the "paths" section of

the server configuration, or one of the system properties

specified on startup. In the example above

 resolves to jboss.server.base.dir

JBOSS_HOME/standalone

scan-enabled BOOLEAN If true scanning is enabled

scan-interval INT Periodic interval, in milliseconds, at which the repository should

be scanned for changes. A value of less than 1 indicates the

repository should only be scanned at initial startup.

auto-deploy-zipped BOOLEAN Controls whether zipped deployment content should be

automatically deployed by the scanner without requiring the user

to add a .dodeploy marker file.

auto-deploy-exploded BOOLEAN Controls whether exploded deployment content should be

automatically deployed by the scanner without requiring the user

to add a .dodeploy marker file. Setting this to 'true' is not

recommended for anything but basic development scenarios, as

there is no way to ensure that deployment will not occur in the

middle of changes to the content.

auto-deploy-xml BOOLEAN Controls whether XML content should be automatically deployed

by the scanner without requiring a .dodeploy marker file.

deployment-timeout LONG Timeout, in seconds, a deployment is allows to execute before

being canceled. The default is 60 seconds.

Deployment scanners can be added by modifying before starting up the server or theystandalone.xml

can be added and removed at runtime using the CLI

[standalone@localhost:9990 /]

/subsystem=deployment-scanner/scanner=new:add(scan-interval=10000,relative-to="jboss.server.base.dir",path="other-deployments")
{"outcome"

=> "success"}

[standalone@localhost:9990 /] /subsystem=deployment-scanner/scanner=new:remove

{"outcome" => "success"}

You can also change the attributes at runtime, so for example to turn off scanning you can do

Latest WildFly Documentation

JBoss Community Documentation Page of 781 2293

[standalone@localhost:9990 /]

/subsystem=deployment-scanner/scanner=default:write-attribute(name="scan-enabled",value=false)

{"outcome" => "success"}

[standalone@localhost:9990 /] /subsystem=deployment-scanner:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {"scanner" => {"default" => {

 "auto-deploy-exploded" => false,

 "auto-deploy-zipped" => true,

 "deployment-timeout" => 60L,

 "name" => "default",

 "path" => "deployments",

 "relative-to" => "jboss.server.base.dir",

 "scan-enabled" => false,

 "scan-interval" => 5000

 }}}

}

5.22.20 EE Subsystem Configuration

Overview
The EE subsystem provides common functionality in the Java EE platform, such as the EE Concurrency

Utilities (JSR 236) and injection. The subsystem is also responsible for managing the lifecycle@Resource

of Java EE application's deployments, that is, files..ear

The EE subsystem configuration may be used to:

customise the deployment of Java EE applications

create EE Concurrency Utilities instances

define the default bindings

The subsystem name is ee and this document covers EE subsystem version , which XML namespace2.0

within WildFly XML configurations is . The path for the subsystem's XMLurn:jboss:domain:ee:2.0

schema, within WildFly's distribution, is .docs/schema/jboss-as-ee_2_0.xsd

Subsystem XML configuration example with all elements and attributes specified:

<subsystem xmlns="urn:jboss:domain:ee:2.0" >

 <global-modules>

 <module name="org.jboss.logging"

 slot="main"/>

 <module name="org.apache.log4j"

 annotations="true"

 meta-inf="true"

 services="false" />

 </global-modules>

 <ear-subdeployments-isolated>true</ear-subdeployments-isolated>

Latest WildFly Documentation

JBoss Community Documentation Page of 782 2293

 <spec-descriptor-property-replacement>false</spec-descriptor-property-replacement>

 <jboss-descriptor-property-replacement>false</jboss-descriptor-property-replacement>

 <annotation-property-replacement>false</annotation-property-replacement>

 <concurrent>

 <context-services>

 <context-service

 name="default"

 jndi-name="java:jboss/ee/concurrency/context/default"

 use-transaction-setup-provider="true" />

 </context-services>

 <managed-thread-factories>

 <managed-thread-factory

 name="default"

 jndi-name="java:jboss/ee/concurrency/factory/default"

 context-service="default"

 priority="1" />

 </managed-thread-factories>

 <managed-executor-services>

 <managed-executor-service

 name="default"

 jndi-name="java:jboss/ee/concurrency/executor/default"

 context-service="default"

 thread-factory="default"

 hung-task-threshold="60000"

 core-threads="5"

 max-threads="25"

 keepalive-time="5000"

 queue-length="1000000"

 reject-policy="RETRY_ABORT" />

 </managed-executor-services>

 <managed-scheduled-executor-services>

 <managed-scheduled-executor-service

 name="default"

 jndi-name="java:jboss/ee/concurrency/scheduler/default"

 context-service="default"

 thread-factory="default"

 hung-task-threshold="60000"

 core-threads="5"

 keepalive-time="5000"

 reject-policy="RETRY_ABORT" />

 </managed-scheduled-executor-services>

 </concurrent>

 <default-bindings

 context-service="java:jboss/ee/concurrency/context/default"

 datasource="java:jboss/datasources/ExampleDS"

 jms-connection-factory="java:jboss/DefaultJMSConnectionFactory"

 managed-executor-service="java:jboss/ee/concurrency/executor/default"

 managed-scheduled-executor-service="java:jboss/ee/concurrency/scheduler/default"

 managed-thread-factory="java:jboss/ee/concurrency/factory/default" />

</subsystem>

Java EE Application Deployment
The EE subsystem configuration allows the customisation of the deployment behaviour for Java EE

Applications.

Latest WildFly Documentation

JBoss Community Documentation Page of 783 2293

Global Modules
Global modules is a set of JBoss Modules that will be added as dependencies to the JBoss Module of every

Java EE deployment. Such dependencies allows Java EE deployments to see the classes exported by the

global modules.

Each global module is defined through the resource, an example of its XML configuration:module

<global-modules>

 <module name="org.jboss.logging" slot="main"/>

 <module name="org.apache.log4j" annotations="true" meta-inf="true" services="false" />

 </global-modules>

The only mandatory attribute is the JBoss Module , the attribute defaults to , and bothname slot main

define the JBoss Module ID to reference.

The optional attribute, which defaults to , indicates if a pre-computed annotation indexannotations false

should be imported from META-INF/jandex.idx

The optional attribute indicates if any services exposed in META-INF/services should be madeservices

available to the deployments class loader, and defaults to .false

The optional attribute, which defaults to , indicates if the Module's path shouldmeta-inf true META-INF

be available to the deployment's class loader.

Latest WildFly Documentation

JBoss Community Documentation Page of 784 2293

EAR Subdeployments Isolation
A flag indicating whether each of the subdeployments within a can access classes belonging to.ear

another subdeployment within the same . The default value is , which allows the.ear false

subdeployments to see classes belonging to other subdeployments within the ..ear

<ear-subdeployments-isolated>true</ear-subdeployments-isolated>

For example:

myapp.ear

|

|--- web.war

|

|--- ejb1.jar

|

|--- ejb2.jar

If the is set to false, then the classes in can access classesear-subdeployments-isolated web.war

belonging to and . Similarly, classes from can access classes from ejb1.jar ejb2.jar ejb1.jar

 (and vice-versa).ejb2.jar

This flag has no effect on the isolated classloader of the file(s), i.e. irrespective of whether.war

this flag is set to or , the within a will have a isolated classloader, andtrue false .war .ear

other subdeployments within that will not be able to access classes from that . This is.ear .war

as per spec.

Latest WildFly Documentation

JBoss Community Documentation Page of 785 2293

Property Replacement
The EE subsystem configuration includes flags to configure whether system property replacement will be

done on XML descriptors and Java Annotations included in Java EE deployments.

System properties etc are resolved in the security context of the application server itself, not the

deployment that contains the file. This means that if you are running with a security manager and

enable this property, a deployment can potentially access system properties or environment entries

that the security manager would have otherwise prevented.

Spec Descriptor Property Replacement
Flag indicating whether system property replacement will be performed on standard Java EE XML

descriptors. If not configured this defaults to , however it is set to in the standard configurationtrue false

files shipped with WildFly.

<spec-descriptor-property-replacement>false</spec-descriptor-property-replacement>

JBoss Descriptor Property Replacement
Flag indicating whether system property replacement will be performed on WildFly proprietary XML

descriptors, such as . This defaults to .jboss-app.xml true

<jboss-descriptor-property-replacement>false</jboss-descriptor-property-replacement>

Annotation Property Replacement
Flag indicating whether system property replacement will be performed on Java annotations. The default

value is .false

<annotation-property-replacement>false</annotation-property-replacement>

EE Concurrency Utilities
EE Concurrency Utilities (JSR 236) were introduced with Java EE 7, to ease the task of writing multithreaded

Java EE applications. Instances of these utilities are managed by WildFly, and the related configuration

provided by the EE subsystem.

Latest WildFly Documentation

JBoss Community Documentation Page of 786 2293

Context Services
The Context Service is a concurrency utility which creates contextual proxies from existent objects. WildFly

Context Services are also used to propagate the context from a Java EE application invocation thread, to the

threads internally used by the other EE Concurrency Utilities. Context Service instances may be created

using the subsystem XML configuration:

<context-services>

 <context-service

 name="default"

 jndi-name="java:jboss/ee/concurrency/context/default"

 use-transaction-setup-provider="true" />

 </context-services>

The attribute is mandatory, and it's value should be a unique name within all Context Services.name

The attribute is also mandatory, and defines where in the JNDI the Context Service should bejndi-name

placed.

The optional attribute indicates if the contextual proxies built by theuse-trasaction-setup-provider

Context Service should suspend transactions in context, when invoking the proxy objects, and its value

defaults to true.

Management clients, such as the WildFly CLI, may also be used to configure Context Service instances. An

example to and one named :add remove other

/subsystem=ee/context-service=other:add(jndi-name=java\:jboss\/ee\/concurrency\/other)

/subsystem=ee/context-service=other:remove

Latest WildFly Documentation

JBoss Community Documentation Page of 787 2293

Managed Thread Factories
The Managed Thread Factory allows Java EE applications to create new threads. WildFly Managed Thread

Factory instances may also, optionally, use a Context Service instance to propagate the Java EE application

thread’s context to the new threads. Instance creation is done through the EE subsystem, by editing the

subsystem XML configuration:

<managed-thread-factories>

 <managed-thread-factory

 name="default"

 jndi-name="java:jboss/ee/concurrency/factory/default"

 context-service="default"

 priority="1" />

 </managed-thread-factories>

The attribute is mandatory, and it's value should be a unique name within all Managed Threadname

Factories.

The attribute is also mandatory, and defines where in the JNDI the Managed Thread Factoryjndi-name

should be placed.

The optional references an existent Context Service by its . If specified thencontext-service name

thread created by the factory will propagate the invocation context, present when creating the thread.

The optional indicates the priority for new threads created by the factory, and defaults to .priority 5

Management clients, such as the WildFly CLI, may also be used to configure Managed Thread Factory

instances. An example to and one named :add remove other

/subsystem=ee/managed-thread-factory=other:add(jndi-name=java\:jboss\/ee\/factory\/other)

/subsystem=ee/managed-thread-factory=other:remove

Managed Executor Services
The Managed Executor Service is the Java EE adaptation of Java SE Executor Service, providing to Java

EE applications the functionality of asynchronous task execution. WildFly is responsible to manage the

lifecycle of Managed Executor Service instances, which are specified through the EE subsystem XML

configuration:

Latest WildFly Documentation

JBoss Community Documentation Page of 788 2293

<managed-executor-services>

 <managed-executor-service

 name="default"

 jndi-name="java:jboss/ee/concurrency/executor/default"

 context-service="default"

 thread-factory="default"

 hung-task-threshold="60000"

 core-threads="5"

 max-threads="25"

 keepalive-time="5000"

 queue-length="1000000"

 reject-policy="RETRY_ABORT" />

 </managed-executor-services>

The attribute is mandatory, and it's value should be a unique name within all Managed Executorname

Services.

The attribute is also mandatory, and defines where in the JNDI the Managed Executor Servicejndi-name

should be placed.

The optional references an existent Context Service by its . If specified then thecontext-service name

referenced Context Service will capture the invocation context present when submitting a task to the

executor, which will then be used when executing the task.

The optional references an existent Managed Thread Factory by its , to handle thethread-factory name

creation of internal threads. If not specified then a Managed Thread Factory with default configuration will be

created and used internally.

The mandatory provides the number of threads to keep in the executor's pool, even if theycore-threads

are idle. A value of means there is no limit.0

The optional indicates the number of tasks that can be stored in the input queue. Thequeue-length

default value is , which means the queue capacity is unlimited.0

The executor’s task queue is based on the values of the attributes and :core-threads queue-length

If is , or is and queue-length 0 queue-length Integer.MAX_VALUE (2147483647)

 is , direct handoff queuing strategy will be used and a synchronous queue will becore-threads 0

created.

If is but is not , an unbounded queue willqueue-length Integer.MAX_VALUE core-threads 0

be used.

For any other valid value for , a bounded queue wil be created.queue-length

The optional defines a threshold value, in milliseconds, to hung a possibly blockedhung-task-threshold

task. A value of will never hung a task, and is the default.0

The optional is a hint to optimize the execution of long running tasks, and defaultslong-running-tasks

to .false

Latest WildFly Documentation

JBoss Community Documentation Page of 789 2293

The optional defines the the maximum number of threads used by the executor, whichmax-threads

defaults to Integer.MAX_VALUE (2147483647).

The optional defines the time, in milliseconds, that an internal thread may be idle. Thekeepalive-time

attribute default value is .60000

The optional reject-policy defines the policy to use when a task is rejected by the executor. The attribute

value may be the default , which means an exception should be thrown, or , whichABORT RETRY_ABORT

means the executor will try to submit it once more, before throwing an exception.

Management clients, such as the WildFly CLI, may also be used to configure Managed Executor Service

instances. An example to and one named :add remove other

/subsystem=ee/managed-executor-service=other:add(jndi-name=java\:jboss\/ee\/executor\/other,

core-threads=2)

/subsystem=ee/managed-executor-service=other:remove

Managed Scheduled Executor Services
The Managed Scheduled Executor Service is the Java EE adaptation of Java SE Scheduled Executor

Service, providing to Java EE applications the functionality of scheduling task execution. WildFly is

responsible to manage the lifecycle of Managed Scheduled Executor Service instances, which are specified

through the EE subsystem XML configuration:

<managed-scheduled-executor-services>

 <managed-scheduled-executor-service

 name="default"

 jndi-name="java:jboss/ee/concurrency/scheduler/default"

 context-service="default"

 thread-factory="default"

 hung-task-threshold="60000"

 core-threads="5"

 keepalive-time="5000"

 reject-policy="RETRY_ABORT" />

 </managed-scheduled-executor-services>

The attribute is mandatory, and it's value should be a unique name within all Managed Scheduledname

Executor Services.

The attribute is also mandatory, and defines where in the JNDI the Managed Scheduledjndi-name

Executor Service should be placed.

The optional references an existent Context Service by its . If specified then thecontext-service name

referenced Context Service will capture the invocation context present when submitting a task to the

executor, which will then be used when executing the task.

The optional references an existent Managed Thread Factory by its , to handle thethread-factory name

creation of internal threads. If not specified then a Managed Thread Factory with default configuration will be

created and used internally.

Latest WildFly Documentation

JBoss Community Documentation Page of 790 2293

The mandatory provides the number of threads to keep in the executor's pool, even if theycore-threads

are idle. A value of means there is no limit.0

The optional defines a threshold value, in milliseconds, to hung a possibly blockedhung-task-threshold

task. A value of will never hung a task, and is the default.0

The optional is a hint to optimize the execution of long running tasks, and defaultslong-running-tasks

to .false

The optional defines the time, in milliseconds, that an internal thread may be idle. Thekeepalive-time

attribute default value is .60000

The optional reject-policy defines the policy to use when a task is rejected by the executor. The attribute

value may be the default , which means an exception should be thrown, or , whichABORT RETRY_ABORT

means the executor will try to submit it once more, before throwing an exception.

Management clients, such as the WildFly CLI, may also be used to configure Managed Scheduled Executor

Service instances. An example to and one named :add remove other

/subsystem=ee/managed-scheduled-executor-service=other:add(jndi-name=java\:jboss\/ee\/scheduler\/other,

core-threads=2)

/subsystem=ee/managed-scheduled-executor-service=other:remove

Latest WildFly Documentation

JBoss Community Documentation Page of 791 2293

Default EE Bindings
The Java EE Specification mandates the existence of a default instance for each of the following resources:

Context Service

Datasource

JMS Connection Factory

Managed Executor Service

Managed Scheduled Executor Service

Managed Thread Factory

The EE subsystem looks up the default instances from JNDI, using the names in the default bindings

configuration, before placing those in the standard JNDI names, such as

:java:comp/DefaultManagedExecutorService

<default-bindings

 context-service="java:jboss/ee/concurrency/context/default"

 datasource="java:jboss/datasources/ExampleDS"

 jms-connection-factory="java:jboss/DefaultJMSConnectionFactory"

 managed-executor-service="java:jboss/ee/concurrency/executor/default"

 managed-scheduled-executor-service="java:jboss/ee/concurrency/scheduler/default"

 managed-thread-factory="java:jboss/ee/concurrency/factory/default" />

The default bindings are optional, if the jndi name for a default binding is not configured then the

related resource will not be available to Java EE applications.

Latest WildFly Documentation

JBoss Community Documentation Page of 792 2293

Default EE Bindings
The Java EE Specification mandates the existence of a default instance for each of the following resources:

Context Service

Datasource

JMS Connection Factory

Managed Executor Service

Managed Scheduled Executor Service

Managed Thread Factory

The EE subsystem looks up the default instances from JNDI, using the names in the default bindings

configuration, before placing those in the standard JNDI names, such as

:java:comp/DefaultManagedExecutorService

<default-bindings

 context-service="java:jboss/ee/concurrency/context/default"

 datasource="java:jboss/datasources/ExampleDS"

 jms-connection-factory="java:jboss/DefaultJMSConnectionFactory"

 managed-executor-service="java:jboss/ee/concurrency/executor/default"

 managed-scheduled-executor-service="java:jboss/ee/concurrency/scheduler/default"

 managed-thread-factory="java:jboss/ee/concurrency/factory/default" />

The default bindings are optional, if the jndi name for a default binding is not configured then the

related resource will not be available to Java EE applications.

EE Concurrency Utilities
EE Concurrency Utilities (JSR 236) were introduced with Java EE 7, to ease the task of writing multithreaded

Java EE applications. Instances of these utilities are managed by WildFly, and the related configuration

provided by the EE subsystem.

Latest WildFly Documentation

JBoss Community Documentation Page of 793 2293

Context Services
The Context Service is a concurrency utility which creates contextual proxies from existent objects. WildFly

Context Services are also used to propagate the context from a Java EE application invocation thread, to the

threads internally used by the other EE Concurrency Utilities. Context Service instances may be created

using the subsystem XML configuration:

<context-services>

 <context-service

 name="default"

 jndi-name="java:jboss/ee/concurrency/context/default"

 use-transaction-setup-provider="true" />

 </context-services>

The attribute is mandatory, and it's value should be a unique name within all Context Services.name

The attribute is also mandatory, and defines where in the JNDI the Context Service should bejndi-name

placed.

The optional attribute indicates if the contextual proxies built by theuse-trasaction-setup-provider

Context Service should suspend transactions in context, when invoking the proxy objects, and its value

defaults to true.

Management clients, such as the WildFly CLI, may also be used to configure Context Service instances. An

example to and one named :add remove other

/subsystem=ee/context-service=other:add(jndi-name=java\:jboss\/ee\/concurrency\/other)

/subsystem=ee/context-service=other:remove

Latest WildFly Documentation

JBoss Community Documentation Page of 794 2293

Managed Thread Factories
The Managed Thread Factory allows Java EE applications to create new threads. WildFly Managed Thread

Factory instances may also, optionally, use a Context Service instance to propagate the Java EE application

thread’s context to the new threads. Instance creation is done through the EE subsystem, by editing the

subsystem XML configuration:

<managed-thread-factories>

 <managed-thread-factory

 name="default"

 jndi-name="java:jboss/ee/concurrency/factory/default"

 context-service="default"

 priority="1" />

 </managed-thread-factories>

The attribute is mandatory, and it's value should be a unique name within all Managed Threadname

Factories.

The attribute is also mandatory, and defines where in the JNDI the Managed Thread Factoryjndi-name

should be placed.

The optional references an existent Context Service by its . If specified thencontext-service name

thread created by the factory will propagate the invocation context, present when creating the thread.

The optional indicates the priority for new threads created by the factory, and defaults to .priority 5

Management clients, such as the WildFly CLI, may also be used to configure Managed Thread Factory

instances. An example to and one named :add remove other

/subsystem=ee/managed-thread-factory=other:add(jndi-name=java\:jboss\/ee\/factory\/other)

/subsystem=ee/managed-thread-factory=other:remove

Managed Executor Services
The Managed Executor Service is the Java EE adaptation of Java SE Executor Service, providing to Java

EE applications the functionality of asynchronous task execution. WildFly is responsible to manage the

lifecycle of Managed Executor Service instances, which are specified through the EE subsystem XML

configuration:

Latest WildFly Documentation

JBoss Community Documentation Page of 795 2293

<managed-executor-services>

 <managed-executor-service

 name="default"

 jndi-name="java:jboss/ee/concurrency/executor/default"

 context-service="default"

 thread-factory="default"

 hung-task-threshold="60000"

 core-threads="5"

 max-threads="25"

 keepalive-time="5000"

 queue-length="1000000"

 reject-policy="RETRY_ABORT" />

 </managed-executor-services>

The attribute is mandatory, and it's value should be a unique name within all Managed Executorname

Services.

The attribute is also mandatory, and defines where in the JNDI the Managed Executor Servicejndi-name

should be placed.

The optional references an existent Context Service by its . If specified then thecontext-service name

referenced Context Service will capture the invocation context present when submitting a task to the

executor, which will then be used when executing the task.

The optional references an existent Managed Thread Factory by its , to handle thethread-factory name

creation of internal threads. If not specified then a Managed Thread Factory with default configuration will be

created and used internally.

The mandatory provides the number of threads to keep in the executor's pool, even if theycore-threads

are idle. A value of means there is no limit.0

The optional indicates the number of tasks that can be stored in the input queue. Thequeue-length

default value is , which means the queue capacity is unlimited.0

The executor’s task queue is based on the values of the attributes and :core-threads queue-length

If is , or is and queue-length 0 queue-length Integer.MAX_VALUE (2147483647)

 is , direct handoff queuing strategy will be used and a synchronous queue will becore-threads 0

created.

If is but is not , an unbounded queue willqueue-length Integer.MAX_VALUE core-threads 0

be used.

For any other valid value for , a bounded queue wil be created.queue-length

The optional defines a threshold value, in milliseconds, to hung a possibly blockedhung-task-threshold

task. A value of will never hung a task, and is the default.0

The optional is a hint to optimize the execution of long running tasks, and defaultslong-running-tasks

to .false

Latest WildFly Documentation

JBoss Community Documentation Page of 796 2293

The optional defines the the maximum number of threads used by the executor, whichmax-threads

defaults to Integer.MAX_VALUE (2147483647).

The optional defines the time, in milliseconds, that an internal thread may be idle. Thekeepalive-time

attribute default value is .60000

The optional reject-policy defines the policy to use when a task is rejected by the executor. The attribute

value may be the default , which means an exception should be thrown, or , whichABORT RETRY_ABORT

means the executor will try to submit it once more, before throwing an exception.

Management clients, such as the WildFly CLI, may also be used to configure Managed Executor Service

instances. An example to and one named :add remove other

/subsystem=ee/managed-executor-service=other:add(jndi-name=java\:jboss\/ee\/executor\/other,

core-threads=2)

/subsystem=ee/managed-executor-service=other:remove

Managed Scheduled Executor Services
The Managed Scheduled Executor Service is the Java EE adaptation of Java SE Scheduled Executor

Service, providing to Java EE applications the functionality of scheduling task execution. WildFly is

responsible to manage the lifecycle of Managed Scheduled Executor Service instances, which are specified

through the EE subsystem XML configuration:

<managed-scheduled-executor-services>

 <managed-scheduled-executor-service

 name="default"

 jndi-name="java:jboss/ee/concurrency/scheduler/default"

 context-service="default"

 thread-factory="default"

 hung-task-threshold="60000"

 core-threads="5"

 keepalive-time="5000"

 reject-policy="RETRY_ABORT" />

 </managed-scheduled-executor-services>

The attribute is mandatory, and it's value should be a unique name within all Managed Scheduledname

Executor Services.

The attribute is also mandatory, and defines where in the JNDI the Managed Scheduledjndi-name

Executor Service should be placed.

The optional references an existent Context Service by its . If specified then thecontext-service name

referenced Context Service will capture the invocation context present when submitting a task to the

executor, which will then be used when executing the task.

The optional references an existent Managed Thread Factory by its , to handle thethread-factory name

creation of internal threads. If not specified then a Managed Thread Factory with default configuration will be

created and used internally.

Latest WildFly Documentation

JBoss Community Documentation Page of 797 2293

The mandatory provides the number of threads to keep in the executor's pool, even if theycore-threads

are idle. A value of means there is no limit.0

The optional defines a threshold value, in milliseconds, to hung a possibly blockedhung-task-threshold

task. A value of will never hung a task, and is the default.0

The optional is a hint to optimize the execution of long running tasks, and defaultslong-running-tasks

to .false

The optional defines the time, in milliseconds, that an internal thread may be idle. Thekeepalive-time

attribute default value is .60000

The optional reject-policy defines the policy to use when a task is rejected by the executor. The attribute

value may be the default , which means an exception should be thrown, or , whichABORT RETRY_ABORT

means the executor will try to submit it once more, before throwing an exception.

Management clients, such as the WildFly CLI, may also be used to configure Managed Scheduled Executor

Service instances. An example to and one named :add remove other

/subsystem=ee/managed-scheduled-executor-service=other:add(jndi-name=java\:jboss\/ee\/scheduler\/other,

core-threads=2)

/subsystem=ee/managed-scheduled-executor-service=other:remove

Java EE Application Deployment
The EE subsystem configuration allows the customisation of the deployment behaviour for Java EE

Applications.

Latest WildFly Documentation

JBoss Community Documentation Page of 798 2293

Global Modules
Global modules is a set of JBoss Modules that will be added as dependencies to the JBoss Module of every

Java EE deployment. Such dependencies allows Java EE deployments to see the classes exported by the

global modules.

Each global module is defined through the resource, an example of its XML configuration:module

<global-modules>

 <module name="org.jboss.logging" slot="main"/>

 <module name="org.apache.log4j" annotations="true" meta-inf="true" services="false" />

 </global-modules>

The only mandatory attribute is the JBoss Module , the attribute defaults to , and bothname slot main

define the JBoss Module ID to reference.

The optional attribute, which defaults to , indicates if a pre-computed annotation indexannotations false

should be imported from META-INF/jandex.idx

The optional attribute indicates if any services exposed in META-INF/services should be madeservices

available to the deployments class loader, and defaults to .false

The optional attribute, which defaults to , indicates if the Module's path shouldmeta-inf true META-INF

be available to the deployment's class loader.

Latest WildFly Documentation

JBoss Community Documentation Page of 799 2293

EAR Subdeployments Isolation
A flag indicating whether each of the subdeployments within a can access classes belonging to.ear

another subdeployment within the same . The default value is , which allows the.ear false

subdeployments to see classes belonging to other subdeployments within the ..ear

<ear-subdeployments-isolated>true</ear-subdeployments-isolated>

For example:

myapp.ear

|

|--- web.war

|

|--- ejb1.jar

|

|--- ejb2.jar

If the is set to false, then the classes in can access classesear-subdeployments-isolated web.war

belonging to and . Similarly, classes from can access classes from ejb1.jar ejb2.jar ejb1.jar

 (and vice-versa).ejb2.jar

This flag has no effect on the isolated classloader of the file(s), i.e. irrespective of whether.war

this flag is set to or , the within a will have a isolated classloader, andtrue false .war .ear

other subdeployments within that will not be able to access classes from that . This is.ear .war

as per spec.

Latest WildFly Documentation

JBoss Community Documentation Page of 800 2293

Property Replacement
The EE subsystem configuration includes flags to configure whether system property replacement will be

done on XML descriptors and Java Annotations included in Java EE deployments.

System properties etc are resolved in the security context of the application server itself, not the

deployment that contains the file. This means that if you are running with a security manager and

enable this property, a deployment can potentially access system properties or environment entries

that the security manager would have otherwise prevented.

Spec Descriptor Property Replacement
Flag indicating whether system property replacement will be performed on standard Java EE XML

descriptors. If not configured this defaults to , however it is set to in the standard configurationtrue false

files shipped with WildFly.

<spec-descriptor-property-replacement>false</spec-descriptor-property-replacement>

JBoss Descriptor Property Replacement
Flag indicating whether system property replacement will be performed on WildFly proprietary XML

descriptors, such as . This defaults to .jboss-app.xml true

<jboss-descriptor-property-replacement>false</jboss-descriptor-property-replacement>

Annotation Property Replacement
Flag indicating whether system property replacement will be performed on Java annotations. The default

value is .false

<annotation-property-replacement>false</annotation-property-replacement>

5.22.21 JMX subsystem configuration

The JMX subsystem registers a service with the Remoting endpoint so that remote access to JMX can be

obtained over the exposed Remoting connector.

This is switched on by default in standalone mode and accessible over port 9990 but in domain mode is

switched off so needs to be enabled - in domain mode the port will be the port of the Remoting connector for

the WildFly instance to be monitored.

To use the connector you can access it in the standard way using a URL:service:jmx

Latest WildFly Documentation

JBoss Community Documentation Page of 801 2293

import javax.management.MBeanServerConnection;

import javax.management.remote.JMXConnector;

import javax.management.remote.JMXConnectorFactory;

import javax.management.remote.JMXServiceURL;

public class JMXExample {

 public static void main(String[] args) throws Exception {

 //Get a connection to the WildFly MBean server on localhost

 String host = "localhost";

 int port = 9990; // management-web port

 String urlString =

 System.getProperty("jmx.service.url","service:jmx:remote+http://" + host + ":" +

port);

 JMXServiceURL serviceURL = new JMXServiceURL(urlString);

 JMXConnector jmxConnector = JMXConnectorFactory.connect(serviceURL, null);

 MBeanServerConnection connection = jmxConnector.getMBeanServerConnection();

 //Invoke on the WildFly MBean server

 int count = connection.getMBeanCount();

 System.out.println(count);

 jmxConnector.close();

 }

}

You also need to set your classpath when running the above example. The following script covers Linux. If

your environment is much different, paste your script when you have it working.

!/bin/bash

specify your WildFly folder

export YOUR_JBOSS_HOME=~/WildFly

java -classpath $YOUR_JBOSS_HOME/bin/client/jboss-client.jar:./ JMXExample

You can also connect using jconsole.

If using jconsole use the and scripts included in the /bin directoryjconsole.sh jconsole.bat

of the WildFly distribution as these set the classpath as required to connect over Remoting.

In addition to the standard JVM MBeans, the WildFly MBean server contains the following MBeans:

Latest WildFly Documentation

JBoss Community Documentation Page of 802 2293

JMX ObjectName Description

jboss.msc:type=container,name=jboss-as Exposes management operations on the JBoss

Modular Service Container, which is the dependency

injection framework at the heart of WildFly. It is

useful for debugging dependency problems, for

example if you are integrating your own subsystems,

as it exposes operations to dump all services and

their current states

jboss.naming:type=JNDIView Shows what is bound in JNDI

jboss.modules:type=ModuleLoader,name=* This collection of MBeans exposes management

operations on JBoss Modules classloading layer. It is

useful for debugging dependency problems arising

from missing module dependencies

Audit logging
Audit logging for the JMX MBean server managed by the JMX subsystem. The resource is at

 and its attributes are similar to the ones mentioned for /subsystem=jmx/configuration=audit-log

 in ./core-service=management/access=audit/logger=audit-log Audit logging

Attribute Description

enabled to enable logging of the JMX operationstrue

log-boot to log the JMX operations when booting the server, otherwisetrue false

log-read-only If all operations will be audit logged, if only operations that change thetrue false

model will be logged

Then which handlers are used to log the management operations are configured as children ofhandler=*

the logger. These handlers and their formatters are defined in the global

 section mentioned in ./core-service=management/access=audit Audit logging

JSON Formatter
The same JSON Formatter is used as described in . However the records for MBean ServerAudit logging

invocations have slightly different fields from those logged for the core management layer.

Latest WildFly Documentation

JBoss Community Documentation Page of 803 2293

2013-08-29 18:26:29 - {

 "type" : "jmx",

 "r/o" : false,

 "booting" : false,

 "version" : "10.0.0.Final",

 "user" : "$local",

 "domainUUID" : null,

 "access" : "JMX",

 "remote-address" : "127.0.0.1/127.0.0.1",

 "method" : "invoke",

 "sig" : [

 "javax.management.ObjectName",

 "java.lang.String",

 "[Ljava.lang.Object;",

 "[Ljava.lang.String;"

],

 "params" : [

 "java.lang:type=Threading",

 "getThreadInfo",

 "[Ljava.lang.Object;@5e6c33c",

 "[Ljava.lang.String;@4b681c69"

]

}

It includes an optional timestamp and then the following information in the json record

Latest WildFly Documentation

JBoss Community Documentation Page of 804 2293

Field name Description

type This will have the value meaning it comes from the jmx subsystemjmx

r/o if the operation has read only impact on the MBean(s)true

booting if the operation was executed during the bootup process, if it wastrue false

executed once the server is up and running

version The version number of the WildFly instance

user The username of the authenticated user.

domainUUID This is not currently populated for JMX operations

access This can have one of the following values:

* - The operation came in through the native management interface, forNATIVE

example the CLI

* - The operation came in through the domain HTTP interface, for example theHTTP

admin console

* - The operation came in through the JMX subsystem. See for how toJMX JMX

configure audit logging for JMX.

remote-address The address of the client executing this operation

method The name of the called MBeanServer method

sig The signature of the called called MBeanServer method

params The actual parameters passed in to the MBeanServer method, a simple

 is called on each parameter.Object.toString()

error If calling the MBeanServer method resulted in an error, this field will be populated with

Throwable.getMessage()

5.22.22 JSF Configuration

Overview

Installing a new JSF implementation manually

Add a module slot for the new JSF implementation JAR

Add a module slot for the new JSF API JAR

Add a module slot for the JSF injection JAR

For MyFaces only - add a module for the commons-digester JAR

Start the server

Changing the default JSF implementation

Configuring a JSF app to use a non-default JSF implementation

Latest WildFly Documentation

JBoss Community Documentation Page of 805 2293

Overview
JSF configuration is handled by the JSF subsystem. The JSF subsystem allows multiple JSF

implementations to be installed on the same WildFly server. In particular, any version of Mojarra or MyFaces

that implements spec level 2.1 or higher can be installed. For each JSF implementation, a new slot needs to

be created under , , and .com.sun.jsf-impl javax.faces.api org.jboss.as.jsf-injection

When the JSF subsystem starts up, it scans the module path to find all of the JSF implementations that have

been installed. The default JSF implementation that WildFly should use is defined by the

 attribute.default-jsf-impl-slot

Installing a new JSF implementation manually
A new JSF implementation can be manually installed as follows:

Add a module slot for the new JSF implementation JAR

Create the following directory structure under the WILDFLY_HOME/modules directory:

WILDFLY_HOME/modules/com/sun/jsf-impl/<JSF_IMPL_NAME>-<JSF_VERSION>

For example, for Mojarra 2.2.11, the above path would resolve to:

WILDFLY_HOME/modules/com/sun/jsf-impl/mojarra-2.2.11

Place the JSF implementation JAR in the <JSF_IMPL_NAME>-<JSF_VERSION> subdirectory. In the

same subdirectory, add a file similar to the or template examples.module.xml Mojarra MyFaces

Change the to the name of your JSF implementation JAR and fill inresource-root-path

appropriate values for ${ } and ${ }.jsf-impl-name jsf-version

Add a module slot for the new JSF API JAR

Create the following directory structure under the WILDFLY_HOME/modules directory:

WILDFLY_HOME/modules/javax/faces/api/<JSF_IMPL_NAME>-<JSF_VERSION>

Place the JSF API JAR in the <JSF_IMPL_NAME>-<JSF_VERSION> subdirectory. In the same

subdirectory, add a file similar to the or template examples. Changemodule.xml Mojarra MyFaces

the to the name of your JSF API JAR and fill in appropriate values for ${resource-root-path

} and ${ }.jsf-impl-name jsf-version

https://github.com/wildfly/wildfly/blob/master/jsf/multi-jsf-installer/src/main/resources/mojarra-impl-module.xml
https://github.com/wildfly/wildfly/blob/master/jsf/multi-jsf-installer/src/main/resources/myfaces-impl-module.xml
https://github.com/wildfly/wildfly/blob/master/jsf/multi-jsf-installer/src/main/resources/mojarra-api-module.xml
https://github.com/wildfly/wildfly/blob/master/jsf/multi-jsf-installer/src/main/resources/myfaces-api-module.xml

Latest WildFly Documentation

JBoss Community Documentation Page of 806 2293

Add a module slot for the JSF injection JAR

Create the following directory structure under the WILDFLY_HOME/modules directory:

WILDFLY_HOME/modules/org/jboss/as/jsf-injection/<JSF_IMPL_NAME>-<JSF_VERSION>

Copy the wildfly-jsf-injection JAR and the weld-core-jsf JAR from

WILDFLY_HOME/modules/system/layers/base/org/jboss/as/jsf-injection/main to the

<JSF_IMPL_NAME>-<JSF_VERSION> subdirectory.

In the <JSF_IMPL_NAME>-<JSF_VERSION> subdirectory, add a file similar to the module.xml

 or template examples and fill in appropriate values for ${ }, ${Mojarra MyFaces jsf-impl-name

}, ${ }, and ${ }. (These last twojsf-version version.jboss.as version.weld.core

placeholders depend on the versions of the wildfly-jsf-injection and weld-core-jsf JARs that were

copied over in the previous step.)

For MyFaces only - add a module for the commons-digester JAR

Create the following directory structure under the WILDFLY_HOME/modules directory:

WILDFLY_HOME/modules/org/apache/commons/digester/main

Place the JAR in WILDFLY_HOME/modules/org/apache/commons/digester/main.commons-digester

In the subdirectory, add a file similar to this . Fill in the appropriate valuemain module.xml template

for ${ }.version.commons-digester

Start the server
After starting the server, the following CLI command can be used to verify that your new JSF implementation

has been installed successfully. The new JSF implementation should appear in the output of this command.

[standalone@localhost:9990 /] /subsystem=jsf:list-active-jsf-impls()

Changing the default JSF implementation
The following CLI command can be used to make a newly installed JSF implementation the default JSF

implementation used by WildFly:

/subsystem=jsf:write-attribute(name=default-jsf-impl-slot,value=<JSF_IMPL_NAME>-<JSF_VERSION>)

A server restart will be required for this change to take effect.

https://gist.github.com/fjuma/30160f0e95ade328253118c706339604
https://gist.github.com/fjuma/f73b05c3864255e7b10b49f989f0b75e
http://search.maven.org/remotecontent?filepath=commons-digester/commons-digester/1.8/commons-digester-1.8.jar
https://github.com/wildfly/wildfly/blob/master/jsf/multi-jsf-installer/src/main/resources/myfaces-digester-module.xml

Latest WildFly Documentation

JBoss Community Documentation Page of 807 2293

Configuring a JSF app to use a non-default JSF implementation
A JSF app can be configured to use an installed JSF implementation that's not the default implementation by

adding a context parameter to its file. Fororg.jboss.jbossfaces.JSF_CONFIG_NAME web.xml

example, to indicate that a JSF app should use MyFaces 2.2.12 (assuming MyFaces 2.2.12 has been

installed on the server), the following context parameter would need to be added:

<context-param>

 <param-name>org.jboss.jbossfaces.JSF_CONFIG_NAME</param-name>

 <param-value>myfaces-2.2.12</param-value>

</context-param>

If a JSF app does not specify this context parameter, the default JSF implementation will be used for that

app.

5.22.23 Logging Configuration

Overview

Attributes

add-logging-api-dependencies

use-deployment-logging-config

Per-deployment Logging

Logging Profiles

Default Log File Locations

Managed Domain

Standalone Server

Filter Expressions

List Log Files and Reading Log Files

List Log Files

Read Log File

FAQ

Why is there a file?logging.properties

Latest WildFly Documentation

JBoss Community Documentation Page of 808 2293

Overview
The overall server logging configuration is represented by the logging subsystem. It consists of four notable

parts: configurations, , the declarations (aka log categories) and logginghandler logger root logger

profiles. Each logger does reference a handler (or set of handlers). Each handler declares the log format and

output:

<subsystem xmlns="urn:jboss:domain:logging:3.0">

 <console-handler name="CONSOLE" autoflush="true">

 <level name="DEBUG"/>

 <formatter>

 <named-formatter name="COLOR-PATTERN"/>

 </formatter>

 </console-handler>

 <periodic-rotating-file-handler name="FILE" autoflush="true">

 <formatter>

 <named-formatter name="PATTERN"/>

 </formatter>

 <file relative-to="jboss.server.log.dir" path="server.log"/>

 <suffix value=".yyyy-MM-dd"/>

 </periodic-rotating-file-handler>

 <logger category="com.arjuna">

 <level name="WARN"/>

 </logger>

 [...]

 <root-logger>

 <level name="DEBUG"/>

 <handlers>

 <handler name="CONSOLE"/>

 <handler name="FILE"/>

 </handlers>

 </root-logger>

 <formatter name="PATTERN">

 <pattern-formatter pattern="%d{yyyy-MM-dd HH:mm:ss,SSS} %-5p [%c] (%t) %s%e%n"/>

 </formatter>

 <formatter name="COLOR-PATTERN">

 <pattern-formatter pattern="%K{level}%d{HH:mm:ss,SSS} %-5p [%c] (%t) %s%e%n"/>

 </formatter>

</subsystem>

Latest WildFly Documentation

JBoss Community Documentation Page of 809 2293

Attributes
The root resource contains two notable attributes and add-logging-api-dependencies

.use-deployment-logging-config

logging-api-dependencies
The controls whether or not the container adds logging APIadd-logging-api-dependencies implicit

dependencies to your deployments. If set to , the default, all the implicit logging API dependencies aretrue

added. If set to the dependencies are not added to your deployments.false

deployment-logging-config
The controls whether or not your deployment is scanned for use-deployment-logging-config

. If set to , the default, is enabled. Set to toper-deployment logging true per-deployment logging false

disable this feature.

deployment Logging
Per-deployment logging allows you to add a logging configuration file to your deployment and have the

logging for that deployment configured according to the configuration file. In an EAR the configuration should

be in the directory. In a WAR or JAR deployment the configuration file can be in either the META-INF

 or directories.META-INF WEB-INF/classes

The following configuration files are allowed:

logging.properties

jboss-logging.properties

log4j.properties

log4j.xml

jboss-log4j.xml

You can also disable this functionality by changing the attribute to use-deployment-logging-config

.false

Latest WildFly Documentation

JBoss Community Documentation Page of 810 2293

Logging Profiles
Logging profiles are like additional logging subsystems. Each logging profile constists of three of the four

notable parts listed above: configurations, and the declarations.handler logger root logger

You can assign a logging profile to a deployment via the deployments manifest. Add a Logging-Profile

entry to the file with a value of the logging profile id. For example a logging profile defined on MANIFEST.MF

 the MANIFEST.MF would look like:/subsystem=logging/logging-profile=ejbs

Manifest-Version: 1.0

Logging-Profile: ejbs

A logging profile can be assigned to any number of deployments. Using a logging profile also allows for

runtime changes to the configuration. This is an advantage over the per-deployment logging configuration as

the redeploy is not required for logging changes to take affect.

Default Log File Locations

Managed Domain
In a managed domain two types of log files do exist: Controller and server logs. The controller components

govern the domain as whole. It's their responsibility to start/stop server instances and execute managed

operations throughout the domain. Server logs contain the logging information for a particular server

instance. They are co-located with the host the server is running on.

For the sake of simplicity we look at the default setup for managed domain. In this case, both the domain

controller components and the servers are located on the same host:

Process Log File

Host Controller ./domain/log/host-controller.log

Process Controller ./domain/log/process-controller.log

"Server One" ./domain/servers/server-one/log/server.log

"Server Two" ./domain/servers/server-two/log/server.log

"Server Three" ./domain/servers/server-three/log/server.log

Standalone Server
The default log files for a standalone server can be found in the log subdirectory of the distribution:

Process Log File

Server ./standalone/log/server.log

Latest WildFly Documentation

JBoss Community Documentation Page of 811 2293

Filter Expressions

Filter Type Expression Description Parameter(s) Examples

accept accept Accepts all log

messages.

None accept

deny deny enies all log

messages.

None deny

not not(filterExpression) Accepts a filter as

an argument and

inverts the

returned value.

The expression

takes a single

filter for it's

argument.

not(match("JBAS"))

all all(filterExpressions) A filter consisting

of several filters in

a chain. If any

filter find the log

message to be

unloggable, the

message will not

be logged and

subsequent filters

will not be

checked.

The expression

takes a comma

delimited list of

filters for it's

argument.

all(match("JBAS"),

match("WELD"))

any any(filterExpressions) A filter consisting

of several filters in

a chain. If any

filter fins the log

message to be

loggable, the

message will be

logged and the

subsequent filters

will not be

checked.

The expression

takes a comma

delimited list of

filters for it's

argument.

any(match("JBAS"),

match("WELD"))

levelChange levelChange(level) A filter which

modifies the log

record with a new

level.

The expression

takes a single

string based level

for it's argument.

levelChange(WARN)

Latest WildFly Documentation

JBoss Community Documentation Page of 812 2293

levels levels(levels) A filter which

includes log

messages with a

level that is listed

in the list of levels.

The expression

takes a comma

delimited list of

string based

levels for it's

argument.

levels(DEBUG, INFO,

WARN, ERROR)

levelRange levelRange([minLevel,maxLevel]) A filter which logs

records that are

within the level

range.

The filter

expression uses

a "[" to indicate a

minimum

inclusive level

and a "]" to

indicate a

maximum

inclusive level.

Otherwise use "("

or ")" respectively

indicate

exclusive. The

first argument for

the expression is

the minimum

level allowed, the

second argument

is the maximum

level allowed.

minimum level must

be less than

ERROR and the

maximum level must

be greater than

DEBUG

levelRange(ERROR,

DEBUG)

minimum level must

be less than or

equal to ERROR

and the maximum

level must be

greater than

DEBUG

levelRange[ERROR,

DEBUG)

minimum level must

be less than or

equal to ERROR

and the maximum

level must be

greater or equal to

INFO

levelRange[ERROR,

INFO]

match match("pattern") A

regular-expression

based filter. The

raw unformatted

message is used

against the

pattern.

The expression

takes a regular

expression for it's

argument.

match("JBAS\d+")

Latest WildFly Documentation

JBoss Community Documentation Page of 813 2293

substitute substitute("pattern",

"replacement value")

A filter which

replaces the first

match to the

pattern with the

replacement

value.

The first

argument for the

expression is the

pattern the

second argument

is the

replacement text.

substitute("JBAS", "EAP")

substituteAll substituteAll("pattern",

"replacement value")

A filter which

replaces all

matches of the

pattern with the

replacement

value.

The first

argument for the

expression is the

pattern the

second argument

is the

replacement text.

substituteAll("JBAS",

"EAP")

List Log Files and Reading Log Files
Log files can be listed and viewed via management operations. The log files allowed to be viewed are

intentionally limited to files that exist in the and are associated with a known filejboss.server.log.dir

handler. Known file handler types include , and file-handler periodic-rotating-file-handler

. The operations are valid in both standalone and domain modes.size-rotating-file-handler

List Log Files
The logging subsystem has a resource off the subsystem root resource and off each log-file

 resource to list each log file.logging-profile

CLI command and output

[standalone@localhost:9990 /] /subsystem=logging:read-children-names(child-type=log-file)

{

 "outcome" => "success",

 "result" => [

 "server.log",

 "server.log.2014-02-12",

 "server.log.2014-02-13"

]

}

Latest WildFly Documentation

JBoss Community Documentation Page of 814 2293

Read Log File
The operation is available on each resource. This operation has 4 optionalread-log-file log-file

parameters.

Name Description

encoding the encoding the file should be read in

lines the number of lines from the file. A value of -1 indicates all lines should be read.

skip the number of lines to skip before reading.

tail true to read from the end of the file up or false to read top down.

CLI command and output

[standalone@localhost:9990 /] /subsystem=logging/log-file=server.log:read-log-file

{

 "outcome" => "success",

 "result" => [

 "2014-02-14 14:16:48,781 INFO [org.jboss.as.server.deployment.scanner] (MSC service

thread 1-11) JBAS015012: Started FileSystemDeploymentService for directory

/home/jperkins/servers/wildfly-8.0.0.Final/standalone/deployments",

 "2014-02-14 14:16:48,782 INFO [org.jboss.as.connector.subsystems.datasources] (MSC

service thread 1-8) JBAS010400: Bound data source [java:jboss/myDs]",

 "2014-02-14 14:16:48,782 INFO [org.jboss.as.connector.subsystems.datasources] (MSC

service thread 1-15) JBAS010400: Bound data source [java:jboss/datasources/ExampleDS]",

 "2014-02-14 14:16:48,786 INFO [org.jboss.as.server.deployment] (MSC service thread 1-9)

JBAS015876: Starting deployment of \"simple-servlet.war\" (runtime-name:

\"simple-servlet.war\")",

 "2014-02-14 14:16:48,978 INFO [org.jboss.ws.common.management] (MSC service thread

1-10) JBWS022052: Starting JBoss Web Services - Stack CXF Server 4.2.3.Final",

 "2014-02-14 14:16:49,160 INFO [org.wildfly.extension.undertow] (MSC service thread

1-16) JBAS017534: Registered web context: /simple-servlet",

 "2014-02-14 14:16:49,189 INFO [org.jboss.as.server] (Controller Boot Thread)

JBAS018559: Deployed \"simple-servlet.war\" (runtime-name : \"simple-servlet.war\")",

 "2014-02-14 14:16:49,224 INFO [org.jboss.as] (Controller Boot Thread) JBAS015961: Http

management interface listening on http://127.0.0.1:9990/management",

 "2014-02-14 14:16:49,224 INFO [org.jboss.as] (Controller Boot Thread) JBAS015951: Admin

console listening on http://127.0.0.1:9990",

 "2014-02-14 14:16:49,225 INFO [org.jboss.as] (Controller Boot Thread) JBAS015874:

WildFly 8.0.0.Final \"WildFly\" started in 1906ms - Started 258 of 312 services (90 services are

lazy, passive or on-demand)"

]

}

Latest WildFly Documentation

JBoss Community Documentation Page of 815 2293

FAQ

Why is there a logging.properties file?
You may have noticed that there is a file in the configuration directory. This islogging.properties

logging configuration is used when the server boots up until the logging subsystem kicks in. If the logging

subsystem is not included in your configuration, then this would act as the logging configuration for the entire

server.

The file is overwritten at boot and with each change to the logginglogging.properties

subsystem. Any changes made to the file are not persisted. Any changes made to the XML

configuration or via management operations will be persisted to the filelogging.properties

and used on the next boot.

Handlers

WIP

This is still a work in progress. Please feel free to edit any mistakes you find .

Overview
Handlers are used to determine what happens with a log message if the determines the message islogger

loggable.

There are 6 main handlers provided with WildFly and 1 generic handler;

async-handler

console-handler

file-handler

periodic-rotating-file-handler

size-rotating-file-handler

syslog-handler

custom-handler

Latest WildFly Documentation

JBoss Community Documentation Page of 816 2293

async-handler
An is a handler that asynchronously writes log messages to it's child handlers. This type ofasync-handler

handler is generally used for other handlers that take a substantial time to write logged messages.

Attributes

enabled

filter-spec

level

overflow-action

queue-length

subhandlers

console-handler
A is a handler that writes log messages to the console. Generally this writes to ,console-handler stdout

but can be set to write to .stderr

Attributes

autoflush

enabled

encoding

filter-spec

formatter

level

named-formatter

target

file-handler
A is a handler that writes log messages to the specified file.file-handler

Attributes

autoflush

enabled

encoding

filter-spec

formatter

level

named-formatter

file

Latest WildFly Documentation

JBoss Community Documentation Page of 817 2293

periodic-rotating-file-handler
A is a handler that writes log messages to the specified file. The fileperiodic-rotating-file-handler

rotates on the date pattern specified in the attribute. The suffix must be a valid pattern recognized bysuffix

the and must not rotate on seconds or milliseconds.java.text.SimpleDateFormat

The rotate happens before the next message is written by the handler.

Attributes

autoflush

enabled

encoding

filter-spec

formatter

level

named-formatter

file

suffix

size-rotating-file-handler
A is a handler that writes log messages to the specified file. The filesize-rotating-file-handler

rotates when the file size is greater than the attribute. The rotated file will be kept and the indexrotate-size

appended to the name moving previously rotated file indexes up by 1 until the is reached.max-backup-index

Once the is reached, the indexed files will be overwritten.max-backup-index

The rotate happens before the next message is written by the handler.

Attributes

autoflush

enabled

encoding

filter-spec

formatter

level

named-formatter

file

max-backup-index

rotate-size

rotate-on-boot

http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html

Latest WildFly Documentation

JBoss Community Documentation Page of 818 2293

syslog-handler
A is a handler that writes to a syslog server. The handler support or syslog-handler RFC3164 RFC5424

formats.

Attributes

port

app-name

enabled

level

facility

server-address

hostname

syslog-format

The syslog-handler is missing some configuration properties that may be useful in some scenarios

like setting a formatter. Use the inorg.jboss.logmanager.handlers.SyslogHandler

module as a to exploit these benefits. Additionalorg.jboss.logmanager custom-handler

attributes will be added at some point so this will no longer be necessary.

custom-handler

Attributes
autoflush

Description: Indicates whether a flush should happen after each write.

Type: boolean

Default Value: true

Allowed Values: true or false

http://www.ietf.org/rfc/rfc3164.txt
http://www.ietf.org/rfc/rfc5424.txt

Latest WildFly Documentation

JBoss Community Documentation Page of 819 2293

enabled

Description: If set to true the handler is enabled and functioning as normal, if set to false the handler

is ignored when processing log messages.

Type: boolean

Default

Value:

true

Allowed

Values:

true or false

encoding

Description: The character encoding used by this Handler.

Type: string

Default Value: null

Allowed Values: Any valid encoding

file

Description: An object describing the file the handler should write to.

Type: object

Default

Value:

null

Allowed

Values:

An object optionally containing a relative-to property and a path. The path is a required

property of the object.

Latest WildFly Documentation

JBoss Community Documentation Page of 820 2293

named-formatter

Description: The name of a defined formatter to be used on the handler.

Type: string

Default Value: null

Allowed Values: add linkTODO

formatter

Description: Defines a pattern for a pattern formatter.

Type: string

Default Value: %d{HH:mm:ss,SSS} %-5p [%c] (%t) %s%E%n

Allowed Values: add linkTODO

filter-spec

Description: A filter expression value to define a filter.

Type: string

Default Value: null

Allowed Values: See Filter Expression

Latest WildFly Documentation

JBoss Community Documentation Page of 821 2293

level

Description

:

The log level specifying which message levels will be logged by this logger. Message

levels lower than this value will be discarded.

Type: string

Default

Value:

ALL

Allowed

Values: ALL

FINEST

FINER

TRACE

DEBUG

FINE

CONFIG

INFO

WARN

WARNING

ERROR

SEVERE

FATAL

OFF

backup-index

Description: The maximum number of rotated files to keep.

Type: integer

Default Value: 1

Allowed Values: any integer greater than 0

Latest WildFly Documentation

JBoss Community Documentation Page of 822 2293

overflow-action

Description: Specify what action to take when the overflowing.

Type: string

Default Value: BLOCK

Allowed Values: BLOCK or DISCARD

queue-length

Description: The queue length to use before flushing writing

Type: integer

Default Value: 0

Allowed Values: any positive integer

rotate-on-boot

Description: Indicates whether or not the file should be rotated each time the attribute isfile

changed.

If set to will rotate on each boot of the server.true

Type: boolean

Default Value: false

Allowed

Values:

true or false

Latest WildFly Documentation

JBoss Community Documentation Page of 823 2293

rotate-size

Description: The size at which the file should be rotated.

Type: string

Default

Value:

2m

Allowed

Values:

Any positive integer with a size type appended to the end. Valid types are b for bytes, k

for kilobytes, m for megabytes, g for gigabytes or t for terabytes. Type character is not

case sensitive.

subhandlers

Description: The handlers to associate with the async handler

Type: list of strings

Default Value: null

Allowed Values: An array of valid handler names

suffix

Description: The pattern used to determine when the file should be rotated.

Type: string

Default Value: null

Allowed Values: Any valid pattern.java.text.SimpleDateFormat

http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html

Latest WildFly Documentation

JBoss Community Documentation Page of 824 2293

target

Description: Defines the target of the console handler.

Type: string

Default Value: System.out

Allowed Values: System.out or System.err

How To

How do I add a log category?

How do I change a log level?

How do I log my applications messages to their own file?

How do I use log4j.properties or log4j.xml instead of using the logging subsystem configuration?

How do I use my own version of log4j?

How do I add a log category?

/subsystem=logging/logger=com.your.category:add

How do I change a log level?
To change a handlers log level:

/subsystem=logging/console-handler=CONSOLE:write-attribute(name=level,value=DEBUG)

Changing the level on a log category is the same:

/subsystem=logging/logger=com.your.category:write-attribute(name=level,value=ALL)

Latest WildFly Documentation

JBoss Community Documentation Page of 825 2293

1.

2.

1.

2.

How do I log my applications messages to their own file?

Create a file handler. There are 3 different types of file handlers to choose from; , file-handler

 and . In this exampleperiodic-rotating-file-handler size-rotating-file-handler

we'll just use a simple .file-handler

/subsystem=logging/file-handler=fh:add(level=INFO,

file={"relative-to"=>"jboss.server.log.dir", "path"=>"fh.log"}, append=false,

autoflush=true)

Now create the log category.

/subsystem=logging/logger=org.your.company:add(use-parent-handlers=false,handlers=["fh"])

How do I use log4j.properties or log4j.xml instead of using the logging subsystem

configuration?
First note that if you choose to use a log4j configuration file, you will no longer be able to make runtime

logging changes to your deployments logging configuration.

If that is acceptable you can use and just include a configuration file in yourper-deployment logging

deployment.

How do I use my own version of log4j?
If you need/want to include your version of log4j then you need to do the following two steps.

Disable the adding of the logging dependencies to all your deployments with the

 attribute and disable the attribute add-logging-api-dependencies use-deployment-logging-config OR

exclude the logging subsystem in a .jboss-deployment-structure.xml

Then need to include a log4j library in your deployment.

This only works for logging in your deployment. Server logs will continue to use the logging subsystem

configuration.

Loggers

Overview

Logger Resource

filter-spec

handlers

level

use-parent-handlers

Root Logger Resource

Logger Hierarchy

Latest WildFly Documentation

JBoss Community Documentation Page of 826 2293

WIP

This is still a work in progress. Please feel free to edit any mistakes you find .

Overview
Loggers are used to log messages. A logger is defined by a category generally consisting of a package

name or a class name.

A logger is the first step to determining if a messages should be logged or not. If a logger is defined with a

level, the level of the message must be greater than the level defined on the logger. The filter is then

checked next and the rules of the filter will determine whether or not the messages is said to be loggable.

Latest WildFly Documentation

JBoss Community Documentation Page of 827 2293

Logger Resource
A logger resource uses the path where is the ofsubsystem=logging/logger=$category $category

the logger. For example to a logger named org.wildfly.example would have a resource path of

.subsystem=logging/logger=org.wildfly.example

A logger as 4 writeable attributes;

filter-spec

handlers

level

use-parent-handlers

You may notice that the and attributes are missing. While is writable itcategory filter filter

may be deprecated and removed in the future. Both attributes are still on the resource for legacy

reasons.

filter-spec

The attribute is an expression based string to define filters for the logger.filter-spec

Filters on loggers are not inherited.

handlers

The attribute is a list of handler names that should be attached to the logger. If the handlers

 attribute is set to and the log messages is determined to be loggable, parentuse-parent-handlers true

loggers will continue to be processed.

level

The attribute allows the minimum level to allow messages to be logged at for the logger.level

parent-handlers

The attribute is a boolean attribute to determine whether or not parent loggersuse-parent-handlers

should also process the log message.

Root Logger Resource
The is similar to a only it has no category and it's name is must be .root-logger Logger Resource ROOT

Logger Hierarchy
A logger hierarchy is defined by it's category. The category is a (dot) delimited string generally consisting.

of the package name or a class name. For example the logger is the parent logger of org.wildfly

.org.wildfly.example

Latest WildFly Documentation

JBoss Community Documentation Page of 828 2293

5.22.24 Messaging configuration

The JMS server configuration is done through the subsystem. In this chapter we aremessaging-activemq

going outline the frequently used configuration options. For a more detailed explanation please consult the

Artemis user guide (See "Component Reference").

Required Extension
The configuration options discussed in this section assume that the the

 extension is present in your configuration. Thisorg.wildfly.extension.messaging-activemq

extension is not included in the standard and configurationsstandalone.xml standalone-ha.xml

included in the WildFly distribution. It is, however, included with the and standalone-full.xml

 configurations.standalone-full-ha.xml

You can add the extension to a configuration without it either by adding an <extension

 element to the xml or by using themodule="org.wildfly.extension.messaging-activemq"/>

following CLI operation:

[standalone@localhost:9990 /]/extension=org.wildfly.extension.messaging-activemq:add

Connectors
There are three kind of connectors that can be used to connect to WildFly JMS Server

 can be used by a local client (i.e. one running in the same JVM as the server)in-vm-connector

 can be used by a remote client (and uses Netty over TCP for theremote-connector

communication)

 can be used by a remote client (and uses Undertow Web Server to upgrade fromhttp-connector

a HTTP connection)

JMS Connection Factories
There are three kinds of JMS that depends on the type of connectors that isbasic connection-factory

used.

There is also a which is special in that it is essentially a configurationpooled-connection-factory

facade for the inbound and outbound connectors of the the Artemis JCA Resource Adapter. An MDBboth

can be configured to use a (e.g. using). In thispooled-connection-factory @ResourceAdapter

context, the MDB leverages the of the Artemis JCA RA. Other kinds of clients can lookinbound connector

up the pooled-connection-factory in JNDI (or inject it) and use it to send messages. In this context, such a

client would leverage the of the Artemis JCA RA. A outbound connector pooled-connection-factory

 is also special because:

Latest WildFly Documentation

JBoss Community Documentation Page of 829 2293

It is only available to local clients, although it can be configured to point to a remote server.

As the name suggests, it is pooled and therefore provides superior performance to the clients which

are able to use it. The pool size can be configured via the and max-pool-size min-pool-size

attributes.

It should only be used to (i.e. produce) messages when looked up in JNDI or injected.send

It can be configured to use specific security credentials via the and attributes. Thisuser password

is useful if the remote server to which it is pointing is secured.

Resources acquired from it will be automatically enlisted any on-going JTA transaction. If you want to

send a message from an EJB using CMT then this is likely the connection factory you want to use so

the send operation will be atomically committed along with the rest of the EJB's transaction

operations.

To be clear, the of the Artemis JCA RA (which is for consuming messages) is only usedinbound connector

by MDBs and other JCA-based components. It is not available to traditional clients.

Both a and a reference a connection-factory pooled-connection-factory connector

declaration.

A is associated with a which tells the client using the remote-connector socket-binding

 where to connect.connection-factory

A referencing a is suitable to be used by a connection-factory remote-connector remote

client to send messages to or receive messages from the server (assuming the connection-factory

has an appropriately exported). entry

A looked up in JNDI or injected which is referencing a pooled-connection-factory

 is suitable to be used by a client to send messages to a remote serverremote-connector local

granted the references an pointing to the remotesocket-binding outbound-socket-binding

server in question.

A used by an MDB which is referencing a ispooled-connection-factory remote-connector

suitable to consume messages from a remote server granted the references an socket-binding

 pointing to the remote server in question.outbound-socket-binding

An is associated with a which tells the client using the in-vm-connector server-id

 where to connect (since multiple Artemis servers can run in a single JVM).connection-factory

A referencing an is suitable to be used by a clientconnection-factory in-vm-connector local

to either send messages to or receive messages from a local server.

A looked up in JNDI or injected which is referencing an pooled-connection-factory

 is suitable to be used by a client only to send messages to a local server.in-vm-connector local

A used by an MDB which is referencing an ispooled-connection-factory in-vm-connector

suitable only to consume messages from a local server.

A is associated with the that represents the HTTP socket (by default,http-connector socket-binding

named).http

Latest WildFly Documentation

JBoss Community Documentation Page of 830 2293

A referencing a is suitable to be used by a remote clientconnection-factory http-connector

to send messages to or receive messages from the server by connecting to its HTTP port before

upgrading to the messaging protocol.

A referencing a is suitable to be used by a localpooled-connection-factory http-connector

client to send messages to a remote server granted the references an socket-binding

 pointing to the remote server in question.outbound-socket-binding

A used by an MDB which is referencing a ispooled-connection-factory http-connector

suitable only to consume messages from a remote server granted the referencessocket-binding

an pointing to the remote server in question.outbound-socket-binding

The declaration of a or a specifies theentry connection-factory pooled-connection-factory

JNDI name under which the factory will be exposed. Only JNDI names bound in the

 namespace are available to remote clients. If a has"java:jboss/exported" connection-factory

an entry bound in the namespace a remote client would look-up the "java:jboss/exported"

 using the text . For example, the "connection-factory after "java:jboss/exported"

" is bound by default to RemoteConnectionFactory

 which means a remote client would"java:jboss/exported/jms/RemoteConnectionFactory"

look-up this using " ". A connection-factory jms/RemoteConnectionFactory

 should have any bound in the " "pooled-connection-factory not entry java:jboss/exported

namespace because a is not suitable for remote clients.pooled-connection-factory

Since JMS 2.0, a default JMS connection factory is accessible to EE application under the JNDI name

 WildFly messaging subsystem defines a java:comp/DefaultJMSConnectionFactory.

 that is used to provide this default connection factory. Any parameterpooled-connection-factory

change on this will be take into account by any EE application looking thepooled-connection-factory

default JMS provider under the JNDI name java:comp/DefaultJMSConnectionFactory.

Latest WildFly Documentation

JBoss Community Documentation Page of 831 2293

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">

 <server name="default">

 [...]

 <http-connector name="http-connector"

 socket-binding="http"

 endpoint="http-acceptor" />

 <http-connector name="http-connector-throughput"

 socket-binding="http"

 endpoint="http-acceptor-throughput">

 <param name="batch-delay"

 value="50"/>

 </http-connector>

 <in-vm-connector name="in-vm"

 server-id="0"/>

 [...]

 <connection-factory name="InVmConnectionFactory"

 connectors="in-vm"

 entries="java:/ConnectionFactory" />

 <pooled-connection-factory name="activemq-ra"

 transaction="xa"

 connectors="in-vm"

 entries="java:/JmsXA java:jboss/DefaultJMSConnectionFactory"/>

 [...]

 </server>

</subsystem>

(See standalone/configuration/standalone-full.xml)

JMS Queues and Topics
JMS queues and topics are sub resources of the messaging-actively subsystem. One can define either a

 or . Each destination be given a and contain at least one entry in its jms-queue jms-topic must name

 element (separated by whitespace).entries

Each entry refers to a JNDI name of the queue or topic. Keep in mind that any or jms-queue jms-topic

which needs to be accessed by a remote client needs to have an entry in the "java:jboss/exported"

namespace. As with connection factories, if a or or has an entry bound in thejms-queue jms-topic

"java:jboss/exported" namespace a remote client would look it up using the text after

". For example, the following "testQueue" is bound to"java:jboss/exported jms-queue

"java:jboss/exported/jms/queue/test" which means a remote client would look-up this {{kms-queue} using

"jms/queue/test". A local client could look it up using "java:jboss/exported/jms/queue/test",

"java:jms/queue/test", or more simply "jms/queue/test":

Latest WildFly Documentation

JBoss Community Documentation Page of 832 2293

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">

 <server name="default">

 [...]

 <jms-queue name="testQueue"

 entries="jms/queue/test java:jboss/exported/jms/queue/test" />

 <jms-topic name="testTopic"

 entries="jms/topic/test java:jboss/exported/jms/topic/test" />

</subsystem>

(See standalone/configuration/standalone-full.xml)

JMS endpoints can easily be created through the CLI:

[standalone@localhost:9990 /] jms-queue add --queue-address=myQueue --entries=queues/myQueue

[standalone@localhost:9990 /]

/subsystem=messaging-activemq/server=default/jms-queue=myQueue:read-resource

{

 "outcome" => "success",

 "result" => {

 "durable" => true,

 "entries" => ["queues/myQueue"],

 "selector" => undefined

 }

}

A number of additional commands to maintain the JMS subsystem are available as well:

[standalone@localhost:9990 /] jms-queue --help --commands

add

...

remove

To read the description of a specific command execute 'jms-queue command_name --help'.

Latest WildFly Documentation

JBoss Community Documentation Page of 833 2293

Dead Letter & Redelivery
Some of the settings are applied against an address wild card instead of a specific messaging destination.

The dead letter queue and redelivery settings belong into this group:

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">

 <server name="default">

 [...]

 <address-setting name="#"

 dead-letter-address="jms.queue.DLQ"

 expiry-address="jms.queue.ExpiryQueue"

 [...] />

(See standalone/configuration/standalone-full.xml)

Security Settings for Artemis addresses and JMS destinations
Security constraints are matched against an address wildcard, similar to the DLQ and redelivery settings.

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">

 <server name="default">

 [...]

 <security-setting name="#">

 <role name="guest"

 send="true"

 consume="true"

 create-non-durable-queue="true"

 delete-non-durable-queue="true"/>

(See standalone/configuration/standalone-full.xml)

Security Domain for Users
By default, Artemis will use the " " JAAS security domain. This domain is used to authenticate usersother

making connections to Artemis and then they are authorized to perform specific functions based on their

role(s) and the described above. This domain can be changed by using the security-settings

, e.g.:security-domain

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">

 <server name="default">

 <security domain="mySecurityDomain" />

 [...]

Latest WildFly Documentation

JBoss Community Documentation Page of 834 2293

1.

2.

Using the Elytron Subsystem
You can also use the elytron subsystem to secure the messaging-activemq subsystem.

To use an Elytron security domain:

Undefine the legacy security domain.

/subsystem=messaging-activemq/server=default:undefine-attribute(name=security-domain)

Set an Elytron security domain.

/subsystem=messaging-activemq/server=default:write-attribute(name=elytron-domain,

value=myElytronSecurityDomain)

You can only define either or , but you cannot have bothsecurity-domain elytron-domain

defined at the same time. If neither is defined, WildFly will use the defaultsecurity-domain

value of , which maps to the legacy security domain.other other

Cluster Authentication
If the Artemis server is configured to be clustered, it will use the cluster 's user and password attributes

to connect to other Artemis nodes in the cluster.

If you do not change the default value of <cluster-password>, Artemis will fail to authenticate with the error:

HQ224018: Failed to create session: HornetQExceptionerrorType=CLUSTER_SECURITY_EXCEPTION

message=HQ119099: Unable to authenticate cluster user: HORNETQ.CLUSTER.ADMIN.USER

To prevent this error, you must specify a value for . It is possible to encrypt this<cluster-password>

value by following .this guide

Alternatively, you can use the system property jboss.messaging.cluster.password to specify the cluster

password from the command line.

https://access.redhat.com/site/documentation/en-US/JBoss_Enterprise_Application_Platform/6.1/html/Security_Guide/sect-Password_Vaults_for_Sensitive_Strings.html

Latest WildFly Documentation

JBoss Community Documentation Page of 835 2293

Deployment of -jms.xml files
Starting with WildFly 8, you have the ability to deploy a -jms.xml file defining JMS destinations, e.g.:

<?xml version="1.0" encoding="UTF-8"?>

<messaging-deployment xmlns="urn:jboss:messaging-activemq-deployment:1.0">

 <server name="default">

 <jms-destinations>

 <jms-queue name="sample">

 <entry name="jms/queue/sample"/>

 <entry name="java:jboss/exported/jms/queue/sample"/>

 </jms-queue>

 </jms-destinations>

 </server>

</messaging-deployment>

This feature as destinations deployed this way can not beis primarily intended for development

managed with any of the provided management tools (e.g. console, CLI, etc).

JMS Bridge
The function of a JMS bridge is to consume messages from a source JMS destination, and send them to a

target JMS destination. Typically either the source or the target destinations are on different servers.

The bridge can also be used to bridge messages from other non Artemis JMS servers, as long as they are

JMS 1.1 compliant.

The JMS Bridge is provided by the Artemis project. For a detailed description of the available configuration

properties, please consult the project documentation.

Modules for other messaging brokers
Source and target JMS resources (destination and connection factories) are looked up using JNDI.

If either the source or the target resources are managed by another messaging server than WildFly, the

required client classes must be bundled in a module. The name of the module must then be declared when

the JMS Bridge is configured.

The use of a JMS bridges with any messaging provider will require to create a module containing the jar of

this provider.

Let's suppose we want to use an hypothetical messaging provider named AcmeMQ. We want to bridge

messages coming from a source AcmeMQ destination to a target destination on the local WildFly messaging

server. To lookup AcmeMQ resources from JNDI, 2 jars are required, acmemq-1.2.3.jar, mylogapi-0.0.1.jar

(please note these jars do not exist, this is just for the example purpose). We must include a JMS jarnot

since it will be provided by a WildFly module directly.

To use these resources in a JMS bridge, we must bundle them in a WildFly module:

in JBOSS_HOME/modules, we create the layout:

Latest WildFly Documentation

JBoss Community Documentation Page of 836 2293

modules/

`-- org

 `-- acmemq

 `-- main

 |-- acmemq-1.2.3.jar

 |-- mylogapi-0.0.1.jar

 `-- module.xml

We define the module in :module.xml

<?xml version="1.0" encoding="UTF-8"?>

<module xmlns="urn:jboss:module:1.1" name="org.acmemq">

 <properties>

 <property name="jboss.api" value="private"/>

 </properties>

 <resources>

 <!-- insert resources required to connect to the source or target -->

 <!-- messaging brokers if it not another WildFly instance -->

 <resource-root path="acmemq-1.2.3.jar" />

 <resource-root path="mylogapi-0.0.1.jar" />

 </resources>

 <dependencies>

 <!-- add the dependencies required by JMS Bridge code -->

 <module name="javax.api" />

 <module name="javax.jms.api" />

 <module name="javax.transaction.api"/>

 <module name="org.jboss.remote-naming"/>

 <!-- we depend on org.apache.activemq.artemis module since we will send messages to -->

 <!-- the Artemis server embedded in the local WildFly instance -->

 <module name="org.apache.activemq.artemis" />

 </dependencies>

</module>

Latest WildFly Documentation

JBoss Community Documentation Page of 837 2293

Configuration
A JMS bridge is defined inside a section of the `messaging-activemq` subsystem in the XMLjms-bridge

configuration files.

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">

 <jms-bridge name="myBridge" module="org.acmemq">

 <source connection-factory="ConnectionFactory"

 destination="sourceQ"

 user="user1"

 password="pwd1"

 quality-of-service="AT_MOST_ONCE"

 failure-retry-interval="500"

 max-retries="1"

 max-batch-size="500"

 max-batch-time="500"

 add-messageID-in-header="true">

 <source-context>

 <property name="java.naming.factory.initial"

 value="org.acmemq.jndi.AcmeMQInitialContextFactory"/>

 <property name="java.naming.provider.url"

 value="tcp://127.0.0.1:9292"/>

 </source-context>

 </source>

 <target connection-factory"/jms/invmTargetCF"

 destination="/jms/targetQ" />

 </target>

 </jms-bridge>

</subsystem>

The and sections contain the name of the JMS resource (and source target connection-factory

) that will be looked up in JNDI.destination

It optionally defines the and credentials. If they are set, they will be passed as argumentsuser password

when creating the JMS connection from the looked up ConnectionFactory.

It is also possible to define JNDI context properties in the and source-context target-context

sections. If these sections are absent, the JMS resources will be looked up in the local WildFly instance (as it

is the case in the section in the example above).target

Latest WildFly Documentation

JBoss Community Documentation Page of 838 2293

Management commands
A JMS Bridge can also be managed using the WildFly command line interface:

[standalone@localhost:9990 /] /subsystem=messaging/jms-bridge=myBridge/:add(module="org.acmemq",

\

 source-destination="sourceQ",

\

 source-connection-factory="ConnectionFactory",

\

 source-user="user1",

\

 source-password="pwd1",

\

 source-context={"java.naming.factory.initial" =>

"org.acmemq.jndi.AcmeMQInitialContextFactory", \

 "java.naming.provider.url" => "tcp://127.0.0.1:9292"},

\

 target-destination="/jms/targetQ",

\

 target-connection-factory="/jms/invmTargetCF",

\

 quality-of-service=AT_MOST_ONCE,

\

 failure-retry-interval=500,

\

 max-retries=1,

\

 max-batch-size=500,

\

 max-batch-time=500,

\

 add-messageID-in-header=true)

{"outcome" => "success"}

You can also see the complete JMS Bridge resource description from the CLI:

[standalone@localhost:9990 /] /subsystem=messaging/jms-bridge=*/:read-resource-description

{

 "outcome" => "success",

 "result" => [{

 "address" => [

 ("subsystem" => "messaging"),

 ("jms-bridge" => "*")

],

 "outcome" => "success",

 "result" => {

 "description" => "A JMS bridge instance.",

 "attributes" => {

 ...

 }

 }]

}

Latest WildFly Documentation

JBoss Community Documentation Page of 839 2293

Component Reference
The messaging-activemq subsystem is provided by the Artemis project. For a detailed description of the

available configuration properties, please consult the project documentation.

Artemis Homepage: http://activemq.apache.org/artemis/

Artemis User Documentation: http://activemq.apache.org/artemis/docs.html

Connect a pooled-connection-factory to a Remote Artemis Server
The subsystem allows to configure a resource tomessaging-activemq pooled-connection-factory

let a local client deployed in WildFly connect to a remote Artemis server.

The configuration of such a is done in 3 steps:pooled-connection-factory

1. create an outbound-socket-binding pointing to the remote messaging server:

/socket-binding-group=standard-sockets/remote-destination-outbound-socket-binding=remote-artemis:add(host=<server

host>, port=61616)

2. create a remote-connector referencing the outbound-socket-binding created at step (1).

/subsystem=messaging-activemq/server=default/remote-connector=remote-artemis:add(socket-binding=remote-artemis)

3. create a pooled-connection-factory referencing the remote-connector created at step (2).

/subsystem=messaging-activemq/server=default/pooled-connection-factory=remote-artemis:add(connectors=[remote-artemis],

entries=[java:/jms/remoteCF])

Configuration of a MDB using a pooled-connection-factory
When a is configured to connect to a remote Artemis, it is possible topooled-connection-factory

configure Message-Driven Beans (MDB) to have them consume messages from this remote server.

The MDB must be annotated with the annotation using the of the @ResourceAdapter name

pooled-connection-factory resource

http://activemq.apache.org/artemis/
http://activemq.apache.org/artemis/docs.html

Latest WildFly Documentation

JBoss Community Documentation Page of 840 2293

import org.jboss.ejb3.annotation.ResourceAdapter;

@ResourceAdapter("remote-artemis")

@MessageDriven(name = "MyMDB", activationConfig = {

 ...

})

public class MyMDB implements MessageListener {

 public void onMessage(Message message) {

 ...

 }

}

If the MDB needs to produce messages to the remote server, it must inject the

 by looking it up in JNDI using one of its .pooled-connection-factory entries

@Inject

@JMSConnectionFactory("java:/jms/remoteCF")

private JMSContext context;

Latest WildFly Documentation

JBoss Community Documentation Page of 841 2293

Configuration of the destination
A MDB must also specify which destination it will consume messages from.

The standard way is to define a activation config property that corresponds to a JNDIdestinationLookup

lookup on the local server.

When the MDB is consuming from a remote Artemis server, there may not have such a JNDI binding in the

local WildFly.

It is possible to use the naming subsystem to configure to have local JNDIexternal context federation

bindings delegating to external bindings.

However there is a simpler solution to configure the destination when using the Artemis Resource Adapter.

Instead of using JDNI to lookup the JMS Destination resource, you can just specify the of thename

destination (as configured in the remote Artemis server) using the activation config propertydestination

and set the activation config property to false to let the Artemis Resource Adapter createuseJNDI

automatically the JMS destination without requiring any JNDI lookup.

@ResourceAdapter("remote-artemis")

@MessageDriven(name = "MyMDB", activationConfig = {

 @ActivationConfigProperty(propertyName = "useJNDI", propertyValue = "false"),

 @ActivationConfigProperty(propertyName = "destination", propertyValue = "myQueue"),

 @ActivationConfigProperty(propertyName = "destinationType", propertyValue =

"javax.jms.Queue"),

 @ActivationConfigProperty(propertyName = "acknowledgeMode", propertyValue =

"Auto-acknowledge")

})

public class MyMDB implements MessageListener {

 ...

}

These properties configure the MDB to consume messages from the JMS Queue named hostedmyQueue

on the remote Artemis server.

In most cases, such a MDB does not need to lookup other destinations to process the consumed messages

and it can use the JMSReplyTo destination if it is defined on the message.

If the MDB needs any other JMS destinations defined on the remote server, it must use client-side JNDI by

following the or configure external configuration context in the naming subsystemArtemis documentation

(which allows to inject the JMS resources using the annotation).@Resource

Backward & Forward Compatibility
WildFly 10 supports both backwards and forwards compatibility with legacy versions that were using

HornetQ as their messaging brokers (such as JBoss AS7, WildFly 8 & 9).

These two compatibility modes are provided by the ActiveMQ Artemis project that supports the HornetQ's

CORE protocol:

backward compatibility: WildFly 10 JMS clients (using Artemis) can connect to legacy app server

(running HornetQ)

forward compatibility: legacy JMS clients (using HornetQ) can connect to WildFly 10 app server

(running Artemis).

https://docs.jboss.org/author/display/WFLY10/Naming+Subsystem+Configuration
http://activemq.apache.org/artemis/docs/1.1.0/using-jms.html#jndi-configuration

Latest WildFly Documentation

JBoss Community Documentation Page of 842 2293

Forward Compatibility
Forward compatibility requires no code change in legacy JMS clients. It is provided by WildFly 10

messaging-activemq subsystem and its resources.

 is a subresource of the 's and canlegacy-connection-factory messaging-activemq server

be used to store in JNDI a HornetQ-based JMS ConnectionFactory.

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">

 <server name="default">

 ...

 <legacy-connection-factory name="legacyConnectionFactory-discovery"

 entries="java:jboss/exported/jms/RemoteConnectionFactory"

 ... />

 </server>

</subsystem>

Legacy HornetQ-based JMS destinations can also be configured by providing a legacy-entries

attribute to the and resource.jms-queue jms-topic

<jms-queue name="myQueue"

 entries="java:jboss/exported/jms/myQueue-new"

 legacy-entries="java:jboss/exported/jms/myQueue" />

 <jms-topic name="testTopic"

 entries="java:jboss/exported/jms/myTopic-new"

 legacy-entries="java:jboss/exported/jms/myTopic" />

The must be used by legacy JMS clients (using HornetQ) while the regular arelegacy-entries entries

for WildFly 10 JMS clients (using Artemis).

The legacy JMS client will then lookup this JMS resources to communicate with WildFly 10.legacy

To avoid any code change in the legacy JMS clients, the legacy JNDI entries must match the lookup

expected by the legacy JMS client.

Migration
During migration, the legacy subsystem will create resourcemessaging legacy-connection-factory

and add to the and resource if the boolean attribute legacy-entries jms-queue jms-topic

 is set to for its operation. If that is the case, the legacy entries in theadd-legacy-entries true migrate

migrated subsystem will correspond to the entries specified in the legacy messaging-activemq

 subsystem and the regular entries will be created with a suffix.messaging -new

If is set to during migration, no legacy resources will be created in the add-legacy-entries false

 subsystem and legacy JMS clients will not be able to communicate with WildFly 10messaging-activemq

servers.

Latest WildFly Documentation

JBoss Community Documentation Page of 843 2293

Backward Compatibility
Backward compatibility requires no configuration change in the legacy server.

WildFly 10 JMS clients do not look up resources on the legacy server but uses client-side JNDI to create

their JMS resources. Artemis JMS client can then uses these resources to communicate with the legacy

server using the HornetQ CORE protocol.

Artemis supports to create JMS resources (and).Client-side JNDI ConnectionFactory Destination

For example, if a WidFly 10 JMS clients wants to communicate with a legacy server using a JMS queue

named , it must use the following properties to configure its JNDI :myQueue InitialContext

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.jms/ConnectionFactory=tcp://<legacy server address>:5445? \

protocolManagerFactoryStr=org.apache.activemq.artemis.core.protocol.hornetq.client.HornetQClientProtocolManagerFactory
queue.jms/myQueue=myQueue

It can then use the name to create the JMS ConnectionFactory and jms/ConnectionFactory

 to create the JMS Queue.jms/myQueue

Note that the property

protocolManagerFactoryStr=org.apache.activemq.artemis.core.protocol.hornetq.client.HornetQClientProtocolManagerFactory

is mandatory when specifying the URL of the legacy connection factory so that the Artemis JMS client can

communicate with the HornetQ broker in the legacy server.

AIO - NIO for messaging journal
Apache ActiveMQ Artemis (like HornetQ beforehand) ships with a . Since Apachehigh performance journal

ActiveMQ Artemis handles its own persistence, rather than relying on a database or other 3rd party

persistence engine it is very highly optimised for the specific messaging use cases. The majority of the

journal is written in Java, however we abstract out the interaction with the actual file system to allow different

pluggable implementations.

Apache ActiveMQ Artemis ships with two implementations:

Java NIO.

The first implementation uses standard Java NIO to interface with the file system. This provides extremely

good performance and runs on any platform where there's a Java 6+ runtime.

Linux Asynchronous IO

The second implementation uses a thin native code wrapper to talk to the Linux asynchronous IO library

(AIO). With AIO, Apache ActiveMQ Artemis will be called back when the data has made it to disk, allowing

us to avoid explicit syncs altogether and simply send back confirmation of completion when AIO informs us

that the data has been persisted.

Using AIO will typically provide even better performance than using Java NIO.

http://activemq.apache.org/artemis/docs/1.1.0/using-jms.html#jndi-configuration

Latest WildFly Documentation

JBoss Community Documentation Page of 844 2293

The AIO journal is only available when running Linux kernel 2.6 or later and after having installed libaio (if it's

not already installed).

Also, please note that AIO will only work with the following file systems: ext2, ext3, ext4, jfs, xfs. With other

file systems, e.g. NFS it may appear to work, but it will fall back to a slower synchronous behaviour. Don't

put the journal on a NFS share!

One point that should be added is that AIO doesn't work well with encrypted partitions, thus you

have to move to NIO on those.

What are the symptoms of an AIO isssue ?

AIO issue on WildFly 10
If you see the following exception in your WildFly log file / console

[org.apache.activemq.artemis.core.server] (ServerService Thread Pool -- 64) AMQ222010: Critical

IO Error, shutting down the server.

file=AIOSequentialFile:/home/wildfly/wildfly-10.0.0.Final/standalone/data/activemq/journal/activemq-data-2.amq,

message=Cannot open file:The Argument is invalid: java.io.IOException: Cannot open file:The

Argument is invalid

 at org.apache.activemq.artemis.jlibaio.LibaioContext.open(Native Method)

that means that AIO isn't working properly on your system.

To use NIO instead execute the following commnd using jboss-cli :

/subsystem=messaging-activemq/server=default:write-attribute(name=journal-type, value=NIO)

You need to reload or restart your server and you should see the following trace in your server console :

INFO [org.apache.activemq.artemis.core.server] (ServerService Thread Pool -- 64) AMQ221013:

Using NIO Journal

Latest WildFly Documentation

JBoss Community Documentation Page of 845 2293

AIO issue on WildFly 9

[org.hornetq.core.server] (ServerService Thread Pool -- 64) HQ222010: Critical IO Error,

shutting down the server.

file=AIOSequentialFile:/home/wildfly/wildfly-9.0.2.Final/standalone/data/messagingjournal/hornetq-data-1.hq,

message=Can't open file: HornetQException[errorType=NATIVE_ERROR_CANT_OPEN_CLOSE_FILE

message=Can't open file]

 at org.hornetq.core.libaio.Native.init(Native Method)

that means that AIO isn't working properly on your system.

To use NIO instead execute the following commnd using jboss-cli :

/subsystem=messaging/hornetq-server=default:write-attribute(name=journal-type,value=NIO)

You need to reload or restart your server and you see the following trace in your server console :

INFO [org.hornetq.core.server] (ServerService Thread Pool -- 64) HQ221013: Using NIO Journal

JDBC Store for Messaging Journal
The Artemis server that are integrated to WildFly can be configured to use a JDBC store for its messaging

journal instead of its file-based journal.

The of the messaging-activemq subsystem needs to configure its server resource

 attribute to be able to use JDBC store. If this attribute is not defined, the regularjournal-datasource

file-base journal will be used for the Artemis server.

This attribute value must correspond to a data source defined in the datasource subsystem.

For example, if the datasources subsystem defines an data source at ExampleDS

, the Artemis server can use it for its JDBC store/subsystem=datasources/data-source=ExampleDS

with the operation:

/subsystem=messaging-activemq/server=default:write-attribute(name=journal-datasource,

value=ExampleDS)

Artemis JDBC store uses SQL commands to create the tables used to persist its information.

These SQL commands may differ depending on the type of database. The SQL commands used by the

JDBC store are located in the file at:

$JBOSS_HOME/modules/system/layers/base/org/wildfly/extension/messaging-activemq/main/database/journal-sql.properties

By default, "vanilla" SQL commands are used to communicate with the database. However some databases

requires specific commands to create table, update content, etc.

Latest WildFly Documentation

JBoss Community Documentation Page of 846 2293

The journal-sql.properties can also specify these provider-specific commands. You can customize them by

adding a suffix to the vanilla SQL properties.

The suffix is determined based on information from the JDBC driver and the connection metadata. If the type

of database is not supported by the code, you can specify it explicitly with the journal-database property on

the server resource.

Artemis uses different JDBC tables to store its bindings information, the persistent messages and the large

messages (paging is not supported yet).

The name of these tables can be configured with the , journal-bindings-table

, journal-messages-table journal-page-store-table, and

.journal-large-messages-table

Reference

Artemis JDBC Persistence -

http://activemq.apache.org/artemis/docs/1.5.0/persistence.html#configuring-jdbc-persistence

http://activemq.apache.org/artemis/docs/1.5.0/persistence.html#configuring-jdbc-persistence

Latest WildFly Documentation

JBoss Community Documentation Page of 847 2293

5.22.25 Naming Subsystem Configuration

Overview
The Naming subsystem provides the JNDI implementation on WildFly, and its configuration allows to:

bind entries in global JNDI namespaces

turn off/on the remote JNDI interface

The subsystem name is naming and this document covers Naming subsystem version , which XML2.0

namespace within WildFly XML configurations is . The path for theurn:jboss:domain:naming:2.0

subsystem's XML schema, within WildFly's distribution, is .docs/schema/jboss-as-naming_2_0.xsd

Subsystem XML configuration example with all elements and attributes specified:

<subsystem xmlns="urn:jboss:domain:naming:2.0">

 <bindings>

 <simple name="java:global/a" value="100" type="int" />

 <simple name="java:global/jboss.org/docs/url" value="https://docs.jboss.org"

type="java.net.URL" />

 <object-factory name="java:global/foo/bar/factory" module="org.foo.bar"

class="org.foo.bar.ObjectFactory" />

 <external-context name="java:global/federation/ldap/example"

class="javax.naming.directory.InitialDirContext" cache="true">

 <environment>

 <property name="java.naming.factory.initial"

value="com.sun.jndi.ldap.LdapCtxFactory" />

 <property name="java.naming.provider.url" value="ldap://ldap.example.com:389" />

 <property name="java.naming.security.authentication" value="simple" />

 <property name="java.naming.security.principal" value="uid=admin,ou=system" />

 <property name="java.naming.security.credentials" value="secret" />

 </environment>

 </external-context>

 <lookup name="java:global/c" lookup="java:global/b" />

 </bindings>

 <remote-naming/>

</subsystem>

Global Bindings Configuration
The Naming subsystem configuration allows binding entries into the following global JNDI namespaces:

java:global

java:jboss

java:

Latest WildFly Documentation

JBoss Community Documentation Page of 848 2293

If WildFly is to be used as a Java EE application server, then it's recommended to opt for

, since it is a standard (i.e. portable) namespace.java:global

Four different types of bindings are supported:

Simple

Object Factory

External Context

Lookup

In the subsystem's XML configuration, global bindings are configured through the XML<bindings />

element, as an example:

<bindings>

 <simple name="java:global/a" value="100" type="int" />

 <object-factory name="java:global/foo/bar/factory" module="org.foo.bar"

class="org.foo.bar.ObjectFactory" />

 <external-context name="java:global/federation/ldap/example"

class="javax.naming.directory.InitialDirContext" cache="true">

 <environment>

 <property name="java.naming.factory.initial"

value="com.sun.jndi.ldap.LdapCtxFactory" />

 <property name="java.naming.provider.url" value="ldap://ldap.example.com:389" />

 <property name="java.naming.security.authentication" value="simple" />

 <property name="java.naming.security.principal" value="uid=admin,ou=system" />

 <property name="java.naming.security.credentials" value="secret" />

 </environment>

 </external-context>

 <lookup name="java:global/c" lookup="java:global/b" />

</bindings>

Latest WildFly Documentation

JBoss Community Documentation Page of 849 2293

Simple Bindings
A simple binding is a primitive or java.net.URL entry, and it is defined through the XML element. Ansimple

example of its XML configuration:

<simple name="java:global/a" value="100" type="int" />

The attribute is mandatory and specifies the target JNDI name for the entry.name

The attribute is mandatory and defines the entry's value.value

The optional attribute, which defaults to , specifies the type of the entry's value.type java.lang.String

Besides java.lang.String, allowed types are all the primitive types and their corresponding object wrapper

classes, such as int or java.lang.Integer, and java.net.URL.

Management clients, such as the WildFly CLI, may be used to configure simple bindings. An example to add

and the one in the XML example above:remove

/subsystem=naming/binding=java\:global\/a:add(binding-type=simple, type=int, value=100)

/subsystem=naming/binding=java\:global\/a:remove

Latest WildFly Documentation

JBoss Community Documentation Page of 850 2293

Object Factories
The Naming subsystem configuration allows the binding of entries,javax.naming.spi.ObjectFactory

through the XML element, for instance:object-factory

<object-factory name="java:global/foo/bar/factory" module="org.foo.bar"

class="org.foo.bar.ObjectFactory">

 <environment>

 <property name="p1" value="v1" />

 <property name="p2" value="v2" />

 </environment>

</object-factory>

The attribute is mandatory and specifies the target JNDI name for the entry.name

The attribute is mandatory and defines the object factory's Java type.class

The attribute is mandatory and specifies the JBoss Module ID where the object factory Java classmodule

may be loaded from.

The optional child element may be used to provide a custom environment to the objectenvironment

factory.

Management clients, such as the WildFly CLI, may be used to configure object factory bindings. An example

to and the one in the XML example above:add remove

/subsystem=naming/binding=java\:global\/foo\/bar\/factory:add(binding-type=object-factory,

module=org.foo.bar, class=org.foo.bar.ObjectFactory, environment=[p1=v1, p2=v2])

/subsystem=naming/binding=java\:global\/foo\/bar\/factory:remove

External Context Federation
Federation of external JNDI contexts, such as a LDAP context, are achieved by adding External Context

bindings to the global bindings configuration, through the XML element. An example ofexternal-context

its XML configuration:

<external-context name="java:global/federation/ldap/example"

class="javax.naming.directory.InitialDirContext" cache="true">

 <environment>

 <property name="java.naming.factory.initial" value="com.sun.jndi.ldap.LdapCtxFactory" />

 <property name="java.naming.provider.url" value="ldap://ldap.example.com:389" />

 <property name="java.naming.security.authentication" value="simple" />

 <property name="java.naming.security.principal" value="uid=admin,ou=system" />

 <property name="java.naming.security.credentials" value="secret" />

 </environment>

</external-context>

The attribute is mandatory and specifies the target JNDI name for the entry.name

Latest WildFly Documentation

JBoss Community Documentation Page of 851 2293

The attribute is mandatory and indicates the Java initial naming context type used to create theclass

federated context. Note that such type must have a constructor with a single environment map argument.

The optional attribute specifies the JBoss Module ID where any classes required by the externalmodule

JNDI context may be loaded from.

The optional attribute, which value defaults to , indicates if the external context instancecache false

should be cached.

The optional child element may be used to provide the custom environment needed toenvironment

lookup the external context.

Management clients, such as the WildFly CLI, may be used to configure external context bindings. An

example to and the one in the XML example above:add remove

/subsystem=naming/binding=java\:global\/federation\/ldap\/example:add(binding-type=external-context,

cache=true, class=javax.naming.directory.InitialDirContext,

environment=[java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory,

java.naming.provider.url=ldap\:\/\/ldap.example.com\:389,

java.naming.security.authentication=simple,

java.naming.security.principal=uid\=admin\,ou\=system, java.naming.security.credentials=

secret])

/subsystem=naming/binding=java\:global\/federation\/ldap\/example:remove

Some JNDI providers may fail when their resources are looked up if they do not implement properly the

lookup(Name) method. Their errors would look like:

11:31:49,047 ERROR org.jboss.resource.adapter.jms.inflow.JmsActivation (default-threads

-1) javax.naming.InvalidNameException: Only support CompoundName names

 at com.tibco.tibjms.naming.TibjmsContext.lookup(TibjmsContext.java:504)

 at javax.naming.InitialContext.lookup(InitialContext.java:421)

To work around their shortcomings, the property can beorg.jboss.as.naming.lookup.by.string

specified in the external-context's environment to use instead the lookup(String) method (with a performance

degradation):

<property name="org.jboss.as.naming.lookup.by.string" value="true"/>

Binding Aliases

The Naming subsystem configuration allows the binding of existent entries into additional names, i.e.

aliases. Binding aliases are specified through the XML element. An example of its XMLlookup

configuration:

<lookup name="java:global/c" lookup="java:global/b" />

Latest WildFly Documentation

JBoss Community Documentation Page of 852 2293

The attribute is mandatory and specifies the target JNDI name for the entry.name

The attribute is mandatory and indicates the source JNDI name. It can chain lookups on externallookup

contexts. For example, having an external context bounded to ,java:global/federation/ldap/example

searching can be done there by setting attribute to .lookup java:global/federation/ldap/example/subfolder

Management clients, such as the WildFly CLI, may be used to configure binding aliases. An example to add

and the one in the XML example above:remove

/subsystem=naming/binding=java\:global\/c:add(binding-type=lookup, lookup=java\:global\/b)

/subsystem=naming/binding=java\:global\/c:remove

Remote JNDI Configuration
The Naming subsystem configuration may be used to (de)activate the remote JNDI interface, which allows

clients to lookup entries present in a remote WildFly instance.

Only entries within the context are accessible over remote JNDI.java:jboss/exported

In the subsystem's XML configuration, remote JNDI access bindings are configured through the

 XML element:<remote-naming />

<remote-naming />

Management clients, such as the WildFly CLI, may be used to add/remove the remote JNDI interface. An

example to and the one in the XML example above:add remove

/subsystem=naming/service=remote-naming:add

/subsystem=naming/service=remote-naming:remove

Global Bindings Configuration
The Naming subsystem configuration allows binding entries into the following global JNDI namespaces:

java:global

java:jboss

java:

If WildFly is to be used as a Java EE application server, then it's recommended to opt for

, since it is a standard (i.e. portable) namespace.java:global

Latest WildFly Documentation

JBoss Community Documentation Page of 853 2293

Four different types of bindings are supported:

Simple

Object Factory

External Context

Lookup

In the subsystem's XML configuration, global bindings are configured through the XML<bindings />

element, as an example:

<bindings>

 <simple name="java:global/a" value="100" type="int" />

 <object-factory name="java:global/foo/bar/factory" module="org.foo.bar"

class="org.foo.bar.ObjectFactory" />

 <external-context name="java:global/federation/ldap/example"

class="javax.naming.directory.InitialDirContext" cache="true">

 <environment>

 <property name="java.naming.factory.initial"

value="com.sun.jndi.ldap.LdapCtxFactory" />

 <property name="java.naming.provider.url" value="ldap://ldap.example.com:389" />

 <property name="java.naming.security.authentication" value="simple" />

 <property name="java.naming.security.principal" value="uid=admin,ou=system" />

 <property name="java.naming.security.credentials" value="secret" />

 </environment>

 </external-context>

 <lookup name="java:global/c" lookup="java:global/b" />

</bindings>

Simple Bindings
A simple binding is a primitive or java.net.URL entry, and it is defined through the XML element. Ansimple

example of its XML configuration:

<simple name="java:global/a" value="100" type="int" />

The attribute is mandatory and specifies the target JNDI name for the entry.name

The attribute is mandatory and defines the entry's value.value

The optional attribute, which defaults to , specifies the type of the entry's value.type java.lang.String

Besides java.lang.String, allowed types are all the primitive types and their corresponding object wrapper

classes, such as int or java.lang.Integer, and java.net.URL.

Management clients, such as the WildFly CLI, may be used to configure simple bindings. An example to add

and the one in the XML example above:remove

/subsystem=naming/binding=java\:global\/a:add(binding-type=simple, type=int, value=100)

/subsystem=naming/binding=java\:global\/a:remove

Latest WildFly Documentation

JBoss Community Documentation Page of 854 2293

Object Factories
The Naming subsystem configuration allows the binding of entries,javax.naming.spi.ObjectFactory

through the XML element, for instance:object-factory

<object-factory name="java:global/foo/bar/factory" module="org.foo.bar"

class="org.foo.bar.ObjectFactory">

 <environment>

 <property name="p1" value="v1" />

 <property name="p2" value="v2" />

 </environment>

</object-factory>

The attribute is mandatory and specifies the target JNDI name for the entry.name

The attribute is mandatory and defines the object factory's Java type.class

The attribute is mandatory and specifies the JBoss Module ID where the object factory Java classmodule

may be loaded from.

The optional child element may be used to provide a custom environment to the objectenvironment

factory.

Management clients, such as the WildFly CLI, may be used to configure object factory bindings. An example

to and the one in the XML example above:add remove

/subsystem=naming/binding=java\:global\/foo\/bar\/factory:add(binding-type=object-factory,

module=org.foo.bar, class=org.foo.bar.ObjectFactory, environment=[p1=v1, p2=v2])

/subsystem=naming/binding=java\:global\/foo\/bar\/factory:remove

External Context Federation
Federation of external JNDI contexts, such as a LDAP context, are achieved by adding External Context

bindings to the global bindings configuration, through the XML element. An example ofexternal-context

its XML configuration:

<external-context name="java:global/federation/ldap/example"

class="javax.naming.directory.InitialDirContext" cache="true">

 <environment>

 <property name="java.naming.factory.initial" value="com.sun.jndi.ldap.LdapCtxFactory" />

 <property name="java.naming.provider.url" value="ldap://ldap.example.com:389" />

 <property name="java.naming.security.authentication" value="simple" />

 <property name="java.naming.security.principal" value="uid=admin,ou=system" />

 <property name="java.naming.security.credentials" value="secret" />

 </environment>

</external-context>

The attribute is mandatory and specifies the target JNDI name for the entry.name

Latest WildFly Documentation

JBoss Community Documentation Page of 855 2293

The attribute is mandatory and indicates the Java initial naming context type used to create theclass

federated context. Note that such type must have a constructor with a single environment map argument.

The optional attribute specifies the JBoss Module ID where any classes required by the externalmodule

JNDI context may be loaded from.

The optional attribute, which value defaults to , indicates if the external context instancecache false

should be cached.

The optional child element may be used to provide the custom environment needed toenvironment

lookup the external context.

Management clients, such as the WildFly CLI, may be used to configure external context bindings. An

example to and the one in the XML example above:add remove

/subsystem=naming/binding=java\:global\/federation\/ldap\/example:add(binding-type=external-context,

cache=true, class=javax.naming.directory.InitialDirContext,

environment=[java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory,

java.naming.provider.url=ldap\:\/\/ldap.example.com\:389,

java.naming.security.authentication=simple,

java.naming.security.principal=uid\=admin\,ou\=system, java.naming.security.credentials=

secret])

/subsystem=naming/binding=java\:global\/federation\/ldap\/example:remove

Some JNDI providers may fail when their resources are looked up if they do not implement properly the

lookup(Name) method. Their errors would look like:

11:31:49,047 ERROR org.jboss.resource.adapter.jms.inflow.JmsActivation (default-threads

-1) javax.naming.InvalidNameException: Only support CompoundName names

 at com.tibco.tibjms.naming.TibjmsContext.lookup(TibjmsContext.java:504)

 at javax.naming.InitialContext.lookup(InitialContext.java:421)

To work around their shortcomings, the property can beorg.jboss.as.naming.lookup.by.string

specified in the external-context's environment to use instead the lookup(String) method (with a performance

degradation):

<property name="org.jboss.as.naming.lookup.by.string" value="true"/>

Binding Aliases

The Naming subsystem configuration allows the binding of existent entries into additional names, i.e.

aliases. Binding aliases are specified through the XML element. An example of its XMLlookup

configuration:

<lookup name="java:global/c" lookup="java:global/b" />

Latest WildFly Documentation

JBoss Community Documentation Page of 856 2293

The attribute is mandatory and specifies the target JNDI name for the entry.name

The attribute is mandatory and indicates the source JNDI name. It can chain lookups on externallookup

contexts. For example, having an external context bounded to ,java:global/federation/ldap/example

searching can be done there by setting attribute to .lookup java:global/federation/ldap/example/subfolder

Management clients, such as the WildFly CLI, may be used to configure binding aliases. An example to add

and the one in the XML example above:remove

/subsystem=naming/binding=java\:global\/c:add(binding-type=lookup, lookup=java\:global\/b)

/subsystem=naming/binding=java\:global\/c:remove

Remote JNDI Configuration
The Naming subsystem configuration may be used to (de)activate the remote JNDI interface, which allows

clients to lookup entries present in a remote WildFly instance.

Only entries within the context are accessible over remote JNDI.java:jboss/exported

In the subsystem's XML configuration, remote JNDI access bindings are configured through the

 XML element:<remote-naming />

<remote-naming />

Management clients, such as the WildFly CLI, may be used to add/remove the remote JNDI interface. An

example to and the one in the XML example above:add remove

/subsystem=naming/service=remote-naming:add

/subsystem=naming/service=remote-naming:remove

5.22.26 Resource adapters

Resource adapters are configured through the subsystem. Declaring a new resourceresource-adapters

adapter consists of two separate steps: You would need to deploy the .rar archive and define a resource

adapter entry in the subsystem.

Latest WildFly Documentation

JBoss Community Documentation Page of 857 2293

Resource Adapter Definitions
The resource adapter itself is defined within the subsystem :resource-adapters

<subsystem xmlns="urn:jboss:domain:resource-adapters:1.0">

 <resource-adapters>

 <resource-adapter>

 <archive>eis.rar</archive>

 <!-- Resource adapter level config-property -->

 <config-property name="Server">localhost</config-property>

 <config-property name="Port">19000</config-property>

 <transaction-support>XATransaction</transaction-support>

 <connection-definitions>

 <connection-definition class-name="com.acme.eis.ra.EISManagedConnectionFactory"

 jndi-name="java:/eis/AcmeConnectionFactory"

 pool-name="AcmeConnectionFactory">

 <!-- Managed connection factory level config-property -->

 <config-property name="Name">Acme Inc</config-property>

 <pool>

 <min-pool-size>10</min-pool-size>

 <max-pool-size>100</max-pool-size>

 </pool>

 <security>

 <application/>

 </security>

 </connection-definition>

 </connection-definitions>

 <admin-objects>

 <admin-object class-name="com.acme.eis.ra.EISAdminObjectImpl"

 jndi-name="java:/eis/AcmeAdminObject">

 <config-property name="Threshold">10</config-property>

 </admin-object>

 </admin-objects>

 </resource-adapter>

 </resource-adapters>

</subsystem>

Note, that only JNDI bindings under java:/ or java:jboss/ are supported.

 (See standalone/configuration/standalone.xml)

Using security domains
Information about using security domains can be found at

https://community.jboss.org/wiki/JBossAS7SecurityDomainModel

Automatic activation of resource adapter archives
A resource adapter archive can be automatically activated with a configuration by including an

META-INF/ironjacamar.xml in the archive.

The schema can be found at http://docs.jboss.org/ironjacamar/schema/ironjacamar_1_0.xsd

https://community.jboss.org/wiki/JBossAS7SecurityDomainModel
http://docs.jboss.org/ironjacamar/schema/ironjacamar_1_0.xsd

Latest WildFly Documentation

JBoss Community Documentation Page of 858 2293

Component Reference
The resource adapter subsystem is provided by the project. For a detailed description of theIronJacamar

available configuration properties, please consult the project documentation.

IronJacamar homepage: http://www.jboss.org/ironjacamar

Project Documentation: http://www.jboss.org/ironjacamar/docs

Schema description:

http://docs.jboss.org/ironjacamar/userguide/1.0/en-US/html/deployment.html#deployingra_descriptor

5.22.27 Security subsystem configuration

The security subsystem is the subsystem that brings the security services provided by to thePicketBox

WildFly 8 server instances.

If you are looking to secure the management interfaces for the management of the domain then you should

read the chapter as the management interfaces themselves are notSecuring the Management Interfaces

run within a WildFly process so use a custom configuration.

http://www.jboss.org/ironjacamar
http://www.jboss.org/ironjacamar
http://www.jboss.org/ironjacamar/docs
http://docs.jboss.org/ironjacamar/userguide/1.0/en-US/html/deployment.html#deployingra_descriptor
http://www.jboss.org/picketbox
https://docs.jboss.org/author/display/AS7/Securing+the+Management+Interfaces

Latest WildFly Documentation

JBoss Community Documentation Page of 859 2293

Structure of the Security Subsystem
When deploying applications to WildFly most of the time it is likely that you would be deploying a web

application or EJBs and just require a security domain to be defined with login modules to verify the users

identity, this chapter aims to provide additional detail regarding the architecture and capability of the security

subsystem however if you are just looking to define a security domain and leave the rest to the container

please jump to the section.security-domains

The security subsystem operates by using a security context associated with the current request, this

security context then makes available to the relevant container a number of capabilities from the configured

security domain, the capabilities exposed are an authentication manager, an authorization manager, an audit

manager and a mapping manager.

Authentication Manager
The authentication manager is the component that performs the actual authentication taking the declared

users identity and their credential so that the login context for the security domain can be used to 'login' the

user using the configured login module or modules.

Authorization Manager
The authorization manager is a component which can be obtained by the container from the current security

context to either obtain information about a users roles or to perform an authorization check against a

resource for the currently authenticated user.

Audit Manager
The audit manager from the security context is the component that can be used to log audit events in

relation to the security domain.

Mapping Manager
The mapping manager can be used to assign additional principals, credentials, roles or attributes to the

authenticated subject.

Security Subsystem Configuration
By default a lot of defaults have already been selected for the security subsystem and unless there is a

specific implementation detail you need to change, these defaults should not require modification. This

chapter describes all of the possible configuration attributes for completeness but do keep in mind that not all

will need to be changed.

The security subsystem is enabled by default by the addition of the following extension: -

<extension module="org.jboss.as.security"/>

The namespace used for the configuration of the security subsystem is urn:jboss:domain:security:1.0, the

configuration is defined within the <subsystem> element from this namespace.

The <subsystem> element can optionally contain the following child elements.

Latest WildFly Documentation

JBoss Community Documentation Page of 860 2293

security-management

subject-factory

security-domains

security-properties

security-management
This element is used to override some of the high level implementation details of the PicketBox

implementation if you have a need to change some of this behaviour.

The element can have any or the following attributes set, all of which are optional.

authentication-manager-class-name Specifies the AuthenticationManager implementation class name to

use.

deep-copy-subject-mode Sets the copy mode of subjects done by the security managers to be

deep copies that makes copies of the subject principals and

credentials if they are cloneable. It should be set to true if subject

include mutable content that can be corrupted when multiple threads

have the same identity and cache flushes/logout clearing the subject

in one thread results in subject references affecting other threads.

Default value is "false".

default-callback-handler-class-name Specifies a global class name for the CallbackHandler

implementation to be used with login modules.

authorization-manager-class-name Attribute specifies the AuthorizationManager implementation class

name to use.

audit-manager-class-name Specifies the AuditManager implementation class name to use.

identity-trust-manager-class-name Specifies the IdentityTrustManager implementation class name to

use.

mapping-manager-class-name Specifies the MappingManager implementation class name to use.

subject-factory
The subject factory is responsible for creating subject instances, this also makes use of the authentication

manager to actually verify the caller. It is used mainly by JCA components to establish a subject. It is not

likely this would need to be overridden but if it is required the "subject-factory-class-name" attribute can be

specified on the subject-factory element.

security-domains

This portion of the configuration is where the bulk of the security subsystem configuration will actually take

place for most administrators, the security domains contain the configuration which is specific to a

deployment.

Latest WildFly Documentation

JBoss Community Documentation Page of 861 2293

The security-domains element can contain numerous <security-domain> definitions, a security-domain can

have the following attributes set:

name The unique name of this security domain.

extends Although version 1.0 of the security subsystem schema contained an 'extends' attribute,

security domain inheritance is not supported and this attribute should not be used.

cache-type The type of authentication cache to use with this domain. If this attribute is removed no cache

will be used. Allowed values are "default" or "infinispan"

The following elements can then be set within the security-domain to configure the domain behaviour.

authentication

The authentication element is used to hold the list of login modules that will be used for authentication when

this domain is used, the structure of the login-module element is:

<login-module code="..." flag="..." module="...">

 <module-option name="..." value="..."/>

</login-module>

The code attribute is used to specify the implementing class of the login module which can either be the full

class name or one of the abbreviated names from the following list:

Latest WildFly Documentation

JBoss Community Documentation Page of 862 2293

Code Classname

Client org.jboss.security.ClientLoginModule

Certificate org.jboss.security.auth.spi.BaseCertLoginModule

CertificateUsers org.jboss.security.auth.spi.BaseCertLoginModule

CertificateRoles org.jboss.security.auth.spi.CertRolesLoginModule

Database org.jboss.security.auth.spi.DatabaseServerLoginModule

DatabaseCertificate org.jboss.security.auth.spi.DatabaseCertLoginModule

DatabaseUsers org.jboss.security.auth.spi.DatabaseServerLoginModule

Identity org.jboss.security.auth.spi.IdentityLoginModule

Ldap org.jboss.security.auth.spi.LdapLoginModule

LdapExtended org.jboss.security.auth.spi.LdapExtLoginModule

RoleMapping org.jboss.security.auth.spi.RoleMappingLoginModule

RunAs org.jboss.security.auth.spi.RunAsLoginModule

Simple org.jboss.security.auth.spi.SimpleServerLoginModule

ConfiguredIdentity org.picketbox.datasource.security.ConfiguredIdentityLoginModule

SecureIdentity org.picketbox.datasource.security.SecureIdentityLoginModule

PropertiesUsers org.jboss.security.auth.spi.PropertiesUsersLoginModule

SimpleUsers org.jboss.security.auth.spi.SimpleUsersLoginModule

LdapUsers org.jboss.security.auth.spi.LdapUsersLoginModule

Kerberos com.sun.security.auth.module.Krb5LoginModule

SPNEGOUsers org.jboss.security.negotiation.spnego.SPNEGOLoginModule

AdvancedLdap org.jboss.security.negotiation.AdvancedLdapLoginModule

AdvancedADLdap org.jboss.security.negotiation.AdvancedADLoginModule

UsersRoles org.jboss.security.auth.spi.UsersRolesLoginModule

The module attribute specifies the name of the JBoss Modules module from which the class specified by the

code attribute should be loaded. Specifying it is not necessary if one of the abbreviated names in the above

list is used.

The flag attribute is used to specify the JAAS flag for this module and should be one of required, requisite,

sufficient, or optional.

Latest WildFly Documentation

JBoss Community Documentation Page of 863 2293

The module-option element can be repeated zero or more times to specify the module options as required

for the login module being configured. It requires the name and value attributes.

See for further details on the various modules listed above.Authentication Modules

authentication-jaspi
The authentication-jaspi is used to configure a Java Authentication SPI (JASPI) provider as the

authentication mechanism. A security domain can have either a <authentication> or a <authentication-jaspi>

element, but not both. We set up JASPI by configuring one or more login modules inside the

login-module-stack element and setting up an authentication module. Here is the structure of the

authentication-jaspi element:

<login-module-stack name="...">

 <login-module code="..." flag="..." module="...">

 <module-option name="..." value="..."/>

 </login-module>

</login-module-stack>

<auth-module code="..." login-module-stack-ref="...">

 <module-option name="..." value="..."/>

</auth-module>

The login-module-stack-ref attribute value must be the name of the login-module-stack element to be used.

The sub-element login-module is configured just like in the partauthentication

Latest WildFly Documentation

JBoss Community Documentation Page of 864 2293

authorization
Authorization in the AS container is normally done with RBAC (role based access control) but there are

situations where a more fine grained authorization policy is required. The authorization element allows

definition of different authorization modules to used, such that authorization can be checked with JACC

(Java Authorization Contract for Containers) or XACML (eXtensible Access Control Markup Language). The

structure of the authorization element is:

<policy-module code="..." flag="..." module="...">

 <module-option name="..." value="..."/>

</policy-module>

The code attribute is used to specify the implementing class of the policy module which can either be the full

class name or one of the abbreviated names from the following list:

Code Classname

DenyAll org.jboss.security.authorization.modules.AllDenyAuthorizationModule

PermitAll org.jboss.security.authorization.modules.AllPermitAuthorizationModule

Delegating org.jboss.security.authorization.modules.DelegatingAuthorizationModule

Web org.jboss.security.authorization.modules.WebAuthorizationModule

JACC org.jboss.security.authorization.modules.JACCAuthorizationModule

XACML org.jboss.security.authorization.modules.XACMLAuthorizationModule

The module attribute specifies the name of the JBoss Modules module from which the class specified by the

code attribute should be loaded. Specifying it is not necessary if one of the abbreviated names in the above

list is used.

The flag attribute is used to specify the JAAS flag for this module and should be one of required, requisite,

sufficient, or optional.

The module-option element can be repeated zero or more times to specify the module options as required

for the login module being configured. It requires the name and value attributes.

Latest WildFly Documentation

JBoss Community Documentation Page of 865 2293

mapping
The mapping element defines additional mapping of principals, credentials, roles and attributes for the

subject. The structure of the mapping element is:

<mapping-module type="..."code="..." module="...">

 <module-option name="..." value="..."/>

</mapping-module>

The type attribute reflects the type of mapping of the provider and should be one of principal, credential, role

or attribute. By default "role" is the type used if the attribute is not set.

The code attribute is used to specify the implementing class of the login module which can either be the full

class name or one of the abbreviated names from the following list:

Code Classname

PropertiesRoles org.jboss.security.mapping.providers.role.PropertiesRolesMappingProvider

SimpleRoles org.jboss.security.mapping.providers.role.SimpleRolesMappingProvider

DeploymentRoles org.jboss.security.mapping.providers.DeploymentRolesMappingProvider

DatabaseRoles org.jboss.security.mapping.providers.role.DatabaseRolesMappingProvider

LdapRoles org.jboss.security.mapping.providers.role.LdapRolesMappingProvider

The module attribute specifies the name of the JBoss Modules module from which the class specified by the

code attribute should be loaded. Specifying it is not necessary if one of the abbreviated names in the above

list is used.

The module-option element can be repeated zero or more times to specify the module options as required

for the login module being configured. It requires the name and value attributes.

audit
The audit element can be used to define a custom audit provider. The default implementation used is

. The structure of the audit element is:org.jboss.security.audit.providers.LogAuditProvider

<provider-module code="..." module="...">

 <module-option name="..." value="..."/>

</provider-module>

The code attribute is used to specify the implementing class of the provider module.

The module attribute specifies the name of the JBoss Modules module from which the class specified by the

code attribute should be loaded.

The module-option element can be repeated zero or more times to specify the module options as required

for the login module being configured. It requires the name and value attributes.

Latest WildFly Documentation

JBoss Community Documentation Page of 866 2293

jsse
The jsse element defines configuration for keystores and truststores that can be used for SSL context

configuration or for certificate storing/retrieving.

The set of attributes (all of them optional) of this element are:

Latest WildFly Documentation

JBoss Community Documentation Page of 867 2293

keystore-password Password of the keystore

keystore-type Type of the keystore. By default it's "JKS"

keystore-url where the keystore file can be foundURL

keystore-provider of the keystore. The default JDK provider for the keystoreProvider

type is used if this attribute is null

keystore-provider-argument String that can be passed as the argument of the keystore Provider

constructor

key-manager-factory-algorithm Algorithm of the . The default JDK algorithm of theKeyManagerFactory

key manager factory is used if this attribute is null

key-manager-factory-provider of the . The default JDK provider forProvider KeyManagerFactory

the key manager factory algorithm is used if this attribute is null

truststore-password Password of the truststore

truststore-type Type of the truststore. By deafult it's "JKS"

truststore-url where the truststore file can be foundURL

truststore-provider of the truststore. The default JDK provider for the truststoreProvider

type is used if this attribute is null

truststore-provider-argument String that can be passed as the argument of the truststore Provider

constructor

trust-manager-factory-algorithm Algorithm of the . The default JDK algorithm ofTrustManagerFactory

the trust manager factory is used if this attribute is null

trust-manager-factory-provider of the . The default JDK provider forProvider TrustManagerFactory

the trust manager factory algorithm is used if this attribute is null

client-alias Alias of the keystore to be used when creating client side SSL sockets

server-alias Alias of the keystore to be used when creating server side SSL sockets

service-auth-token Validation token to enable third party services to retrieve a keystore .Key

This is typically used to retrieve a private key for signing purposes

client-auth Flag to indicate if the server side SSL socket should require client

authentication. Default is "false"

cipher-suites Comma separated list of cipher suites to be used by a SSLContext

protocols Comma separated list of SSL protocols to be used by a SSLContext

The optional additional-properties element can be used to include other options. The structure of the jsse

element is:

Latest WildFly Documentation

JBoss Community Documentation Page of 868 2293

<jsse keystore-url="..." keystore-password="..." keystore-type="..." keystore-provider="..."

keystore-provider-argument="..." key-manager-factory-algorithm="..."

key-manager-factory-provider="..." truststore-url="..." truststore-password="..."

truststore-type="..." truststore-provider="..." truststore-provider-argument="..."

trust-manager-factory-algorithm="..." trust-manager-factory-provider="..." client-alias="..."

server-alias="..." service-auth-token="..." client-auth="..." cipher-suites="..."

protocols="...">

 <additional-properties>x=y

 a=b

 </additional-properties>

</jsse>

security-properties
This element is used to specify additional properties as required by the security subsystem, properties are

specified in the following format:

<security-properties>

 <property name="..." value="..."/>

</security-properties>

The property element can be repeated as required for as many properties need to be defined.

Each property specified is set on the class.java.security.Security

Authentication Modules
In this section we will describe each login module's options available.

Client
This login module is designed to establish caller identity and credentials when WildFly is acting a client. It

should never be used as part of a security domain used for actual server authentication.

Options Usage Description

multi-threaded optional Set to if each thread has its own principal and credential storage. Settrue

to to indicate that all threads in the VM share the same identity andfalse

credential. Default is false

restore-login-identity optional Set to if the identity and credential seen at the start of the login()true

method should be restored after the logout() method is invoked. Default is

false

password-stacking optional Set to to indicate that this login module should look foruseFirstPass

information stored in the LoginContext to use as the identity. This option

can be used when stacking other login modules with this one. Default is

false

Latest WildFly Documentation

JBoss Community Documentation Page of 869 2293

Database
This login module is designed to be used for authenticating users against a database backend.

Options Usage Description

dsJndiName required JNDI name of the datasource containing the tables for users and roles

principalsQuery required SQL prepared statement to be executed in order to match the password.

Default is select Password from Principals where PrincipalID=?

rolesQuery optional SQL prepared statement to be executed in order to map roles. It should be an

equivalent to ,select Role, RoleGroup from Roles where PrincipalID=?

where Role is the role name and RoleGroup column value should always be

"Roles" with capital R.

suspendResume optional A boolean flag that specifies that any existing JTA transaction be suspended

during DB operations. The default is true

Certificate
This login module is designed to authenticate users based on X509Certificates. A use case for this is

CLIENT-CERT authentication of a web application.

Options Usage Description

securityDomain optional Name of the security domain that has the jsse configuration for the truststore

holding the trusted certificates

verifier optional The class name of the org.jboss.security.auth.certs.X509CertificateVerifier to

use for verification of the login certificate

If there is no verifier set, this login module will try to validate the user's certificate with a public certificate

stored in the truststore. The public certificate must be stored in the truststore using the DN of the certificate

as the truststore alias.

Latest WildFly Documentation

JBoss Community Documentation Page of 870 2293

CertificateRoles
This login module extends the Certificate login module to add role mapping capabilities from a properties file.

It has the same options plus these additional options:

Options Usage Description

rolesProperties optional Name of the resource/file containing the roles to assign to each user.

Default is roles.properties

defaultRolesProperties optional Name of the resource/file to fall back to if the rolesProperties file can't

be found. Default is defaultRoles.properties

roleGroupSeperator optional Character to use as the role group separator in the role properties file.

Default character is '.' (period)

The role properties file must be in the format username=role1,role2 where the username is the DN of the

certificate, escaping any equals and space characters. Here is an example:

CN\=unit-tests-client,\ OU\=JBoss\ Inc.,\ O\=JBoss\ Inc.,\ ST\=Washington,\ C\=US=JBossAdmin

This would assign the role to an user that presents a certificate with JBossAdmin CN=unit-tests-client,

 as the DN.OU=JBoss Inc., O=JBoss Inc., ST=Washington, C=US

DatabaseCertificate
This login module extends the Certificate login to add role mapping capabilities from a database table. It has

the same options plus these additional options:

Options Usage Description

dsJndiName required JNDI name of the datasource containing the tables for users

and roles

rolesQuery optional SQL prepared statement to be executed in order to map roles.

It should be an equivalent to select Role, RoleGroup from

, where Role is the role name andRoles where PrincipalID=?

RoleGroup column value should always be "Roles" with

capital R. Default is select Role, RoleGroup from Roles

where PrincipalID=?

suspendResume optional A boolean flag that specifies that any existing JTA transaction

be suspended during DB operations. The default is true

select Role,

RoleGroup

from Roles

where

PrincipalID=?

Latest WildFly Documentation

JBoss Community Documentation Page of 871 2293

5.22.28 Simple configuration subsystems

The following subsystems currently have no configuration beyond its root element in the configuration

<subsystem xmlns="urn:jboss:domain:jaxrs:1.0"/>

<subsystem xmlns="urn:jboss:domain:jdr:1.0"/>

<subsystem xmlns="urn:jboss:domain:pojo:1.0"/>

<subsystem xmlns="urn:jboss:domain:sar:1.0"/>

The presence of each of these turns on a piece of functionality:

Name Description

jaxrs Enables the deployment and functionality of JAX-RS applications

jdr Enables the gathering of diagnostic data for use in remote analysis of error conditions. Although

the data is in a simple format and could be useful to anyone, primarily useful for JBoss EAP

subscribers who would provide the data to Red Hat when requesting support

pojo Enables the deployment of applications containing JBoss Microcontainer services, as supported

by previous versions of JBoss Application Server

sar Enables the deployment of .SAR archives containing MBean services, as supported by previous

versions of JBoss Application Server

5.22.29 Undertow subsystem configuration

Web subsystem was replaced in WildFly 8 with Undertow.

There are two main parts to the undertow subsystem, which are server and Servlet container configuration,

as well as some ancillary items. Advanced topics like load balancing and failover are covered on the "High

Availability Guide". The default configuration does is suitable for most use cases and provides reasonable

performance settings.

Required extension:

<extension module="org.wildfly.extension.undertow" />

Basic subsystem configuration example:

Latest WildFly Documentation

JBoss Community Documentation Page of 872 2293

<subsystem xmlns="urn:jboss:domain:undertow:1.0">

 <buffer-caches>

 <buffer-cache name="default" buffer-size="1024" buffers-per-region="1024"

max-regions="10"/>

 </buffer-caches>

 <server name="default-server">

 <http-listener name="default" socket-binding="http" />

 <host name="default-host" alias="localhost">

 <location name="/" handler="welcome-content" />

 </host>

 </server>

 <servlet-container name="default" default-buffer-cache="default"

stack-trace-on-error="local-only" >

 <jsp-config/>

 <persistent-sessions/>

 </servlet-container>

 <handlers>

 <file name="welcome-content" path="${jboss.home.dir}/welcome-content"

directory-listing="true"/>

 </handlers>

 </subsystem>

Dependencies on other subsystems:

IO Subsystem

Buffer cache configuration
The buffer cache is used for caching content, such as static files. Multiple buffer caches can be configured,

which allows for separate servers to use different sized caches.

Buffers are allocated in regions, and are of a fixed size. If you are caching many small files then using a

smaller buffer size will be better.

The total amount of space used can be calculated by multiplying the buffer size by the number of buffers per

region by the maximum number of regions.

<buffer-caches>

 <buffer-cache name="default" buffer-size="1024" buffers-per-region="1024" max-regions="10"/>

 </buffer-caches>

Attribute Description

buffer-size The size of the buffers. Smaller buffers allow space to be utilised more effectively

buffers-per-region The numbers of buffers per region

max-regions The maximum number of regions. This controls the maximum amount of memory that

can be used for caching

Latest WildFly Documentation

JBoss Community Documentation Page of 873 2293

Server configuration
A server represents an instance of Undertow. Basically this consists of a set of connectors and some

configured handlers.

<server name="default-server" default-host="default-host" servlet-container="default" >

Attribute Description

default-host the virtual host that will be used if an incoming request as no Host: header

servlet-container the servlet container that will be used by this server, unless is is explicitly overriden by

the deployment

Connector configuration
Undertow provides HTTP, HTTPS and AJP connectors, which are configured per server.

Latest WildFly Documentation

JBoss Community Documentation Page of 874 2293

Common settings
The following settings are common to all connectors:

Attribute Description

socket-binding The socket binding to use. This determines the address and port the listener listens

on.

worker A reference to an XNIO worker, as defined in the IO subsystem. The worker that is

in use controls the IO and blocking thread pool.

buffer-pool A reference to a buffer pool as defined in the IO subsystem. These buffers are

used internally to read and write requests. In general these should be at least 8k,

unless you are in a memory constrained environment.

enabled If the connector is enabled.

max-post-size The maximum size of incoming post requests that is allowed.

buffer-pipelined-data If responses to HTTP pipelined requests should be buffered, and send out in a

single write. This can improve performance if HTTP pipe lining is in use and

responses are small.

max-header-size The maximum size of a HTTP header block that is allowed. Responses with to

much data in their header block will have the request terminated and a bad request

response send.

max-parameters The maximum number of query or path parameters that are allowed. This limit

exists to prevent hash collision based DOS attacks.

max-headers The maximum number of headers that are allowed. This limit exists to prevent

hash collision based DOS attacks.

max-cookies The maximum number of cookies that are allowed. This limit exists to prevent hash

collision based DOS attacks.

allow-encoded-slash Set this to true if you want the server to decode percent encoded slash characters.

This is probably a bad idea, as it can have security implications, due to different

servers interpreting the slash differently. Only enable this if you have a legacy

application that requires it.

decode-url If the URL should be decoded. If this is not set to true then percent encoded

characters in the URL will be left as is.

url-charset The charset to decode the URL to.

always-set-keep-alive If the 'Connection: keep-alive' header should be added to all responses, even if not

required by spec.

disallowed-methods A comma separated list of HTTP methods that are not allowed. HTTP TRACE is

disabled by default.

Latest WildFly Documentation

JBoss Community Documentation Page of 875 2293

HTTP Connector

<http-listener name="default" socket-binding="http" />

Attribute Description

certificate-forwarding If this is set to true then the HTTP listener will read a client certificate from the

SSL_CLIENT_CERT header. This allows client cert authentication to be used,

even if the server does not have a direct SSL connection to the end user. This

should only be enabled for servers behind a proxy that has been configured to

always set these headers.

redirect-socket The socket binding to redirect requests that require security too.

proxy-address-forwarding If this is enabled then the X-Forwarded-For and X-Forwarded-Proto headers

will be used to determine the peer address. This allows applications that are

behind a proxy to see the real address of the client, rather than the address of

the proxy.

HTTPS listener
Https listener provides secure access to the server. The most important configuration option is security realm

which defines SSL secure context.

<https-listener name="default" socket-binding="https" security-realm="ssl-realm" />

Attribute Description

security-realm The security realm to use for the SSL configuration. See Security realm examples

for how to configure it: Examples

verify-client One of either NOT_REQUESTED, REQUESTED or REQUIRED. If client cert auth

is in use this should be either REQUESTED or REQUIRED.

enabled-cipher-suites A list of cypher suit names that are allowed.

AJP listener

<ajp-listener name="default" socket-binding="ajp" />

https://docs.jboss.org/author/display/WFLY10/Examples

Latest WildFly Documentation

JBoss Community Documentation Page of 876 2293

Host configuration
The host element corresponds to a virtual host.

Attribute Description

name The virtual host name

alias A whitespace separated list of additional host names that should be matched

default-web-module The name of a deployment that should be used to serve up requests that do not

match anything.

Servlet container configuration
The servlet-container element corresponds to an instance of an Undertow Servlet container. Most servers

will only need a single servlet container, however there may be cases where it makes sense to define

multiple containers (in particular if you want applications to be isolated, so they cannot dispatch to each

other using the RequestDispatcher. You can also use multiple Servlet containers to serve different

applications from the same context path on different virtual hosts).

Attribute Description

allow-non-standard-wrappers The Servlet specification requires applications to only wrap the

request/response using wrapper classes that extend from the

ServletRequestWrapper and ServletResponseWrapper classes. If this is set

to true then this restriction is relaxed.

default-buffer-cache The buffer cache that is used to cache static resources in the default

Servlet.

stack-trace-on-error Can be either all, none, or local-only. When set to none Undertow will never

display stack traces. When set to All Undertow will always display them (not

recommended for production use). When set to local-only Undertow will

only display them for requests from local addresses, where there are no

headers to indicate that the request has been proxied. Note that this feature

means that the Undertow error page will be displayed instead of the default

error page specified in web.xml.

default-encoding The default encoding to use for requests and responses.

use-listener-encoding If this is true then the default encoding will be the same as that used by the

listener that received the request.

JSP configuration

Latest WildFly Documentation

JBoss Community Documentation Page of 877 2293

Session Cookie Configuration
This allows you to change the attributes of the session cookie.

Attribute Description

name The cookie name

domain The cookie domain

comment The cookie comment

http-only If the cookie is HTTP only

secure If the cookie is marked secure

max-age The max age of the cookie

Persistent Session Configuration
Persistent sessions allow session data to be saved across redeploys and restarts. This feature is enabled by

adding the persistent-sessions element to the server config. This is mostly intended to be a development

time feature.

If the path is not specified then session data is stored in memory, and will only be persistent across

redeploys, rather than restarts.

Attribute Description

path The path to the persistent sessions data

relative-to The location that the path is relevant to

Latest WildFly Documentation

JBoss Community Documentation Page of 878 2293

AJP listeners
The AJP listeners are child resources of the subsystem undertow. They are used with mod_jk, mod_proxy

and mod_cluster of the Apache httpd front-end. Each listener does reference a particular socket binding:

[standalone@localhost:9999 /]

/subsystem=undertow/server=default-server:read-children-names(child-type=ajp-listener)

{

 "outcome" => "success",

 "result" => [

 "ajp-listener",

]

}

[standalone@localhost:9999 /]

/subsystem=undertow/server=default-server/ajp-listener=*:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {

 "enabled" => "true",

 "scheme" => "http",

 "socket-binding" => "ajp",

 }

}

Creating a new requires you to declare a new first:ajp-listener socket binding

[standalone@localhost:9999 /]

/socket-binding-group=standard-sockets/socket-binding=ajp:add(port=8009)

The newly created, unused socket binding can then be used to create a new connector configuration:

[standalone@localhost:9999 /]

/subsystem=undertow/server=default-server/ajp-listener=myListener:add(socket-binding=ajp,

scheme=http, enabled=true)

Using Wildfly as a Load Balancer
Wildfly 10 adds support for using the Undertow subsystem as a load balancer. Wildfly supports two different

approaches, you can either define a static load balancer, and specify the back end hosts in your

configuration, or use it as a mod_cluster frontend, and use mod_cluster to dynamically update the hosts.

General Overview
Wildly uses Undertow's proxy capabilities to act as a load balancer. Undertow will connect to the back end

servers using its built in client, and proxies requests.

The following protocols are supported:

Latest WildFly Documentation

JBoss Community Documentation Page of 879 2293

http

ajp

http2

h2c (clear text HTTP2)

Of these protocols h2c should give the best performance, if the back end servers support it.

The Undertow proxy uses async IO, the only threads that are involved in the request is the IO thread that is

responsible for the connection. The connection to the back end server is made from the same thread, which

removes the need for any thread safety constructs.

If both the front and back end servers support server push, and HTTP2 is in use then the proxy also

supports pushing responses to the client. In cases where proxy and backend are capable of server push, but

the client does not support it the server will send a X-Disable-Push header to let the backend know that it

should not attempt to push for this request.

Latest WildFly Documentation

JBoss Community Documentation Page of 880 2293

Load balancer server profiles
WildFly 11 adds load balancer profiles for both standalone and domain modes.

Example: Start standalone load balancer

configure correct path to WildFly installation

WILDFLY_HOME=/path/to/wildfly

configure correct IP of the node

MY_IP=192.168.1.1

run the load balancer profile

$WILDFLY_HOME/bin/standalone.sh -b $MY_IP -bprivate $MY_IP -c standalone-load-balancer.xml

It's highly recommended to use private/internal network for communication between load balancer and

nodes. To do this set the correct IP address to the interface (argument).private -bprivate

Example: Start worker node

Run the server with the HA (or Full HA) profile, which has component included. If the UDPmod_cluster

multicast is working in your environment, the workers should work out of the box without any change. If it's

not the case, then configure the IP address of the load-balancer statically.

configure correct path to WildFly installation

WILDFLY_HOME=/path/to/wildfly

configure correct IP of the node

MY_IP=192.168.1.2

Configure static load balancer IP address.

This is necessary when UDP multicast doesn't work in your environment.

LOAD_BALANCER_IP=192.168.1.1

$WILDFLY_HOME/bin/jboss-cli.sh <<EOT

embed-server -c=standalone-ha.xml

/subsystem=modcluster/mod-cluster-config=configuration:write-attribute(name=advertise,value=false)
/socket-binding-group=standard-sockets/remote-destination-outbound-socket-binding=proxy1:add(host=$LOAD_BALANCER_IP,port=8090)
/subsystem=modcluster/mod-cluster-config=configuration:list-add(name=proxies,value=proxy1)
EOT

#

start the woker node with HA profile

$WILDFLY_HOME/bin/standalone.sh -c standalone-ha.xml -b $MY_IP -bprivate $MY_IP

Again, to make it safe, users should configure private/internal IP address into variable.MY_IP

Latest WildFly Documentation

JBoss Community Documentation Page of 881 2293

Using Wildly as a static load balancer
To use WildFly as a static load balancer the first step is to create a proxy handler in the Undertow

subsystem. For the purposes of this example we are going to assume that our load balancer is going to load

balance between two servers, sv1.foo.com and sv2.foo.com, and will be using the AJP protocol.

The first step is to add a reverse proxy handler to the Undertow subsystem:

/subsystem=undertow/configuration=handler/reverse-proxy=my-handler:add()

Then we need to define outbound socket bindings for remote hosts

/socket-binding-group=standard-sockets/remote-destination-outbound-socket-binding=remote-host1/:add(host=sv1.foo.com,

port=8009)

/socket-binding-group=standard-sockets/remote-destination-outbound-socket-binding=remote-host2/:add(host=sv2.foo.com,

port=8009)

and than we add them as hosts to reverse proxy handler

/subsystem=undertow/configuration=handler/reverse-proxy=my-handler/host=host1:add(outbound-socket-binding=remote-host1,

scheme=ajp, instance-id=myroute, path=/test)

/subsystem=undertow/configuration=handler/reverse-proxy=my-handler/host=host2:add(outbound-socket-binding=remote-host2,

scheme=ajp, instance-id=myroute, path=/test)

Now we need to actually add the reverse proxy to a location. I am going to assume we are serving the path

:/app

/subsystem=undertow/server=default-server/host=default-host/location=\/app:add(handler=my-handler)

This is all there is to it. If you point your browser to you should be able tohttp://localhost:8080/app

see the proxied content.

The full details of all configuration options available can be found in the .subsystem reference

5.22.30 Web services configuration

JBossWS components are provided to the application server through the webservices subsystem.

JBossWS components handle the processing of WS endpoints. The subsystem supports the configuration

of published endpoint addresses, and endpoint handler chains. A default webservice subsystem is provided

in the server's domain and standalone configuration files.

https://wildscribe.github.io/Wildfly/10.0.0.Final/%2Fsubsystem%2Fundertow%2Findex.html

Latest WildFly Documentation

JBoss Community Documentation Page of 882 2293

Structure of the webservices subsystem

Published endpoint address
JBossWS supports the rewriting of the element of endpoints published in WSDL<soap:address>

contracts. This feature is useful for controlling the server address that is advertised to clients for each

endpoint.

The following elements are available and can be modified (all are optional):

Name Type Description

modify-wsdl-address boolean This boolean enables and disables the address rewrite functionality.

When modify-wsdl-address is set to true and the content of

<soap:address> is a valid URL, JBossWS will rewrite the URL using the

values of wsdl-host and wsdl-port or wsdl-secure-port.

When modify-wsdl-address is set to false and the content of

<soap:address> is a valid URL, JBossWS will not rewrite the URL. The

<soap:address> URL will be used.

When the content of <soap:address> is not a valid URL, JBossWS will

rewrite it no matter what the setting of modify-wsdl-address.

If modify-wsdl-address is set to true and wsdl-host is not defined or

explicitly set to the content of'jbossws.undefined.host'

<soap:address> URL is use. JBossWS uses the requester's host when

rewriting the <soap:address>

When modify-wsdl-address is not defined JBossWS uses a default value

of true.

wsdl-host string The hostname / IP address to be used for rewriting .<soap:address>

If is set to , JBossWS uses thewsdl-host jbossws.undefined.host

requester's host when rewriting the <soap:address>

When wsdl-host is not defined JBossWS uses a default value of '

'.jbossws.undefined.host

wsdl-port int Set this property to explicitly define the HTTP port that will be used for

rewriting the SOAP address.

Otherwise the HTTP port will be identified by querying the list of installed

HTTP connectors.

Latest WildFly Documentation

JBoss Community Documentation Page of 883 2293

wsdl-secure-port int Set this property to explicitly define the HTTPS port that will be used for

rewriting the SOAP address.

Otherwise the HTTPS port will be identified by querying the list of

installed HTTPS connectors.

wsdl-uri-scheme string This property explicitly sets the URI scheme to use for rewriting

 . Valid values are and . This<soap:address> http https

configuration overrides scheme computed by processing the endpoint

(even if a transport guarantee

is specified). The provided values for and wsdl-port

 (or their default values) are used depending onwsdl-secure-port

specified scheme.

wsdl-path-rewrite-rule string This string defines a SED substitution command (e.g.,

's/regexp/replacement/g') that JBossWS executes against the path

component of each <soap:address> URL published from the server.

When wsdl-path-rewrite-rule is not defined, JBossWS retains the original

path component of each <soap:address> URL.

When 'modify-wsdl-address' is set to "false" this element is ignored.

Predefined endpoint configurations
JBossWS enables extra setup configuration data to be predefined and associated with an endpoint

implementation. Predefined endpoint configurations can be used for JAX-WS client and JAX-WS endpoint

setup. Endpoint configurations can include JAX-WS handlers and key/value properties declarations. This

feature provides a convenient way to add handlers to WS endpoints and to set key/value properties that

control JBossWS and Apache CXF internals ().see Apache CXF configuration

The webservices subsystem provides to support the definition of named sets of endpointschema

configuration data. Annotation, is provided to map the namedorg.jboss.ws.api.annotation.EndpointConfig

configuration to the endpoint implementation.

There is no limit to the number of endpoint configurations that can be defined within the webservices

subsystem. Each endpoint configuration must have a name that is unique within the webservices

subsystem. Endpoint configurations defined in the webservices subsystem are available for reference by

name through the annotation to any endpoint in a deployed application.

WildFly ships with two predefined endpoint configurations. Standard-Endpoint-Config is the default

configuration. Recording-Endpoint-Config is an example of custom endpoint configuration and includes a

recording handler.

https://docs.jboss.org/author/display/JBWS/Apache+CXF+integration#ApacheCXFintegration-Deploymentdescriptorproperties
http://www.jboss.org/schema/jbossas/jboss-as-webservices_1_2.xsd

Latest WildFly Documentation

JBoss Community Documentation Page of 884 2293

[standalone@localhost:9999 /] /subsystem=webservices:read-resource

{

 "outcome" => "success",

 "result" => {

 "endpoint" => {},

 "modify-wsdl-address" => true,

 "wsdl-host" => expression "${jboss.bind.address:127.0.0.1}",

 "endpoint-config" => {

 "Standard-Endpoint-Config" => undefined,

 "Recording-Endpoint-Config" => undefined

 }

 }

}

The is a special endpoint configuration. It is used for anyStandard-Endpoint-Config

endpoint that does not have an explicitly assigned endpoint configuration.

Endpoint configs
Endpoint configs are defined using element. Each endpoint configuration maythe endpoint-config

include properties and handlers set to the endpoints associated to the configuration.

[standalone@localhost:9999 /]

/subsystem=webservices/endpoint-config=Recording-Endpoint-Config:read-resource

{

 "outcome" => "success",

 "result" => {

 "post-handler-chain" => undefined,

 "property" => undefined,

 "pre-handler-chain" => {"recording-handlers" => undefined}

 }

}

A new endpoint configuration can be added as follows:

[standalone@localhost:9999 /] /subsystem=webservices/endpoint-config=My-Endpoint-Config:add

{

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-restart" => true,

 "process-state" => "restart-required"

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 885 2293

Handler chains
Each endpoint configuration may be associated with zero or more PRE and POST handler chains. Each

handler chain may include JAXWS handlers. For outbound messages the PRE handler chains are executed

before any handler that is attached to the endpoint using the standard means, such as with annotation

@HandlerChain, and POST handler chains are executed after those objects have executed. For inbound

messages the POST handler chains are executed before any handler that is attached to the endpoint using

the standard means and the PRE handler chains are executed after those objects have executed.

* Server inbound messages

Client --> ... --> POST HANDLER --> ENDPOINT HANDLERS --> PRE HANDLERS --> Endpoint

* Server outbound messages

Endpoint --> PRE HANDLER --> ENDPOINT HANDLERS --> POST HANDLERS --> ... --> Client

The protocol-binding attribute must be used to set the protocols for which the chain will be triggered.

[standalone@localhost:9999 /]

/subsystem=webservices/endpoint-config=Recording-Endpoint-Config/pre-handler-chain=recording-handlers:read-resource
{

"outcome" => "success",

 "result" => {

 "protocol-bindings" => "##SOAP11_HTTP ##SOAP11_HTTP_MTOM ##SOAP12_HTTP

##SOAP12_HTTP_MTOM",

 "handler" => {"RecordingHandler" => undefined}

 },

 "response-headers" => {"process-state" => "restart-required"}

}

A new handler chain can be added as follows:

[standalone@localhost:9999 /]

/subsystem=webservices/endpoint-config=My-Endpoint-Config/post-handler-chain=my-handlers:add(protocol-bindings="##SOAP11_HTTP")
{

"outcome" => "success",

 "response-headers" => {

 "operation-requires-restart" => true,

 "process-state" => "restart-required"

 }

}

[standalone@localhost:9999 /]

/subsystem=webservices/endpoint-config=My-Endpoint-Config/post-handler-chain=my-handlers:read-resource
{

"outcome" => "success",

 "result" => {

 "handler" => undefined,

 "protocol-bindings" => "##SOAP11_HTTP"

 },

 "response-headers" => {"process-state" => "restart-required"}

}

Latest WildFly Documentation

JBoss Community Documentation Page of 886 2293

Handlers
JAXWS handler can be added in handler chains:

[standalone@localhost:9999 /]

/subsystem=webservices/endpoint-config=Recording-Endpoint-Config/pre-handler-chain=recording-handlers/handler=RecordingHandler:read-resource
{

"outcome" => "success",

 "result" => {"class" => "org.jboss.ws.common.invocation.RecordingServerHandler"},

 "response-headers" => {"process-state" => "restart-required"}

}

[standalone@localhost:9999 /]

/subsystem=webservices/endpoint-config=My-Endpoint-Config/post-handler-chain=my-handlers/handler=foo-handler:add(class="org.jboss.ws.common.invocation.RecordingServerHandler")
{

"outcome" => "success",

 "response-headers" => {

 "operation-requires-restart" => true,

 "process-state" => "restart-required"

 }

}

Endpoint-config handler classloading

The attribute is used to provide the fully qualified class name of the handler. At deploy time,class

an instance of the class is created for each referencing deployment. For class creation to succeed,

the deployment classloader must to be able to load the handler class.

Latest WildFly Documentation

JBoss Community Documentation Page of 887 2293

Runtime information
Each web service endpoint is exposed through the deployment that provides the endpoint implementation.

Each endpoint can be queried as a deployment resource. For further information please consult the chapter

"Application Deployment". Each web service endpoint specifies a web context and a WSDL Url:

[standalone@localhost:9999 /] /deployment="*"/subsystem=webservices/endpoint="*":read-resource

{

 "outcome" => "success",

 "result" => [{

 "address" => [

 ("deployment" => "jaxws-samples-handlerchain.war"),

 ("subsystem" => "webservices"),

 ("endpoint" => "jaxws-samples-handlerchain:TestService")

],

 "outcome" => "success",

 "result" => {

 "class" => "org.jboss.test.ws.jaxws.samples.handlerchain.EndpointImpl",

 "context" => "jaxws-samples-handlerchain",

 "name" => "TestService",

 "type" => "JAXWS_JSE",

 "wsdl-url" => "http://localhost:8080/jaxws-samples-handlerchain?wsdl"

 }

 }]

}

Component Reference
The web service subsystem is provided by the JBossWS project. For a detailed description of the available

configuration properties, please consult the project documentation.

JBossWS homepage: http://www.jboss.org/jbossws

Project Documentation: https://docs.jboss.org/author/display/JBWS

http://www.jboss.org/jbossws
https://docs.jboss.org/author/display/JBWS

Latest WildFly Documentation

JBoss Community Documentation Page of 888 2293

5.23 Target Audience

This document is a guide to the setup, administration, and configuration of WildFly.

5.23.1 Prerequisites

Before continuing, you should know how to download, install and run WildFly. For more information on these

steps, refer here: .Getting Started Guide

5.23.2 Examples in this guide

The examples in this guide are largely expressed as XML configuration file excerpts, or by using a

representation of the de-typed management model.

Latest WildFly Documentation

JBoss Community Documentation Page of 889 2293

6 Developer Guide

WildFly Developer Guide

Target Audience

Prerequisites

Class loading in WildFly

Deployment Module Names

Automatic Dependencies

Class Loading Precedence

WAR Class Loading

EAR Class Loading

Class Path Entries

Global Modules

JBoss Deployment Structure File

Accessing JDK classes

The "jboss.api" property and application use of modules shipped with WildFly

Implicit module dependencies for deployments

What's an implicit module dependency?

How and when is an implicit module dependency added?

Which are the implicit module dependencies?

How do I migrate my application from JBoss AS 5 or AS 6 to WildFly?

EJB invocations from a remote standalone client using JNDI

Deploying your EJBs on the server side:

Writing a remote client application for accessing and invoking the EJBs deployed on the server

Setting up EJB client context properties

Using a different file for setting up EJB client context

Setting up the client classpath with the jars that are required to run the client application

Summary

Latest WildFly Documentation

JBoss Community Documentation Page of 890 2293

EJB invocations from a remote server

Application packaging

Beans

Security

Configuring a user on the "Destination Server"

Start the "Destination Server"

Deploying the application

Configuring the "Client Server" to point to the EJB remoting connector on the "Destination

Server"

Start the "Client Server"

Create a security realm on the client server

Create a outbound-socket-binding on the "Client Server"

Create a "remote-outbound-connection" which uses this newly created

"outbound-socket-binding"

Packaging the client application on the "Client Server"

Contents on jboss-ejb-client.xml

Deploy the client application

Client code invoking the bean

Remote EJB invocations via JNDI - Which approach to use?

JBoss EJB 3 reference guide

Resource Adapter for Message Driven Beans

Specification of Resource Adapter using Metadata Annotations

Run-as Principal

Specification of Run-as Principal using Metadata Annotations

Security Domain

Specification of Security Domain using Metadata Annotations

Transaction Timeout

Specification of Transaction Timeout with Metadata Annotations

Specification of Transaction Timeout in the Deployment Descriptor

Example of trans-timeout

Timer service

Single event timer

Recurring timer

Calendar timer

Programmatic calendar timer

Annotated calendar timer

Latest WildFly Documentation

JBoss Community Documentation Page of 891 2293

JPA reference guide

Introduction

Update your Persistence.xml for Hibernate 5.1

Entity manager

Container-managed entity manager

Application-managed entity manager

Persistence Context

Transaction-scoped Persistence Context

Extended Persistence Context

Extended Persistence Context Inheritance

Entities

Deployment

Troubleshooting

Using the Infinispan second level cache

Replacing the current Hibernate 5.x jars with a newer version

Using Hibernate Search

Packaging the Hibernate JPA persistence provider with your application

Migrating from OpenJPA

Migrating from EclipseLink

Migrating from DataNucleus

Native Hibernate use

Injection of Hibernate Session and SessionFactoryInjection of Hibernate Session and

SessionFactory

Hibernate properties

Persistence unit properties

Determine the persistence provider module

Binding EntityManagerFactory/EntityManager to JNDI

Community

People who have contributed to the WildFly JPA layer:

OSGi developer guide

JNDI reference guide

Overview

Local JNDI

Binding entries to JNDI

Using a deployment descriptor

Programatically

Java EE Applications

WildFly Modules and Extensions

Naming Subsystem Configuration

Retrieving entries from JNDI

Resource Injection

Standard Java SE JNDI API

Remote JNDI

remote:

ejb:

Latest WildFly Documentation

JBoss Community Documentation Page of 892 2293

Spring applications development and migration guide

Dependencies and Modularity

Persistence usage guide

Native Spring/Hibernate applications

JPA-based applications

Using server-deployed persistence units

Using Spring-managed persistence units

Placement of the persistence unit definitions

Managing dependencies

All WildFly documentation

6.1 WildFly Developer Guide

6.1.1 Target Audience

Java Developers

6.1.2 Prerequisites

6.2 Class loading in WildFly

Since JBoss AS 7, Class loading is considerably different to previous versions of JBoss AS. Class loading is

based on the project. Instead of the more familiar hierarchical class loading environment,JBoss Modules

WildFly's class loading is based on modules that have to define explicit dependencies on other modules.

Deployments in WildFly are also modules, and do not have access to classes that are defined in jars in the

application server unless an explicit dependency on those classes is defined.

6.2.1 Deployment Module Names

Module names for top level deployments follow the format while subdeployment.myarchive.war

deployments are named like . deployment.myear.ear.mywar.war

This means that it is possible for a deployment to import classes from another deployment using the other

deployments module name, the details of how to add an explicit module dependency are explained below.

https://docs.jboss.org/author/display/MODULES

Latest WildFly Documentation

JBoss Community Documentation Page of 893 2293

1.

2.

3.

4.

6.2.2 Automatic Dependencies

Even though in WildFly modules are isolated by default, as part of the deployment process some

dependencies on modules defined by the application server are set up for you automatically. For instance, if

you are deploying a Java EE application a dependency on the Java EE API's will be added to your module

automatically. Similarly if your module contains a beans.xml file a dependency on will be addedWeld

automatically, along with any supporting modules that weld needs to operate.

For a complete list of the automatic dependencies that are added, please see Implicit module dependencies

.for deployments

Automatic dependencies can be excluded through the use of .jboss-deployment-structure.xml

6.2.3 Class Loading Precedence

A common source of errors in Java applications is including API classes in a deployment that are also

provided by the container. This can result in multiple versions of the class being created and the deployment

failing to deploy properly. To prevent this in WildFly, module dependencies are added in a specific order that

should prevent this situation from occurring.

In order of highest priority to lowest priority

System Dependencies - These are dependencies that are added to the module automatically by the

container, including the Java EE api's.

User Dependencies - These are dependencies that are added through

 or through the manifest entry.jboss-deployment-structure.xml Dependencies:

Local Resource - Class files packaged up inside the deployment itself, e.g. class files from

 or of a war.WEB-INF/classes WEB-INF/lib

Inter deployment dependencies - These are dependencies on other deployments in an ear

deployment. This can include classes in an ear's lib directory, or classes defined in other ejb jars.

6.2.4 WAR Class Loading

The war is considered to be a single module, so classes defined in are treated the same asWEB-INF/lib

classes in . All classes packaged in the war will be loaded with the same class loader.WEB-INF/classes

http://seamframework.org/Weld
https://docs.jboss.org/author/display/WFLY10/Implicit+module+dependencies+for+deployments
https://docs.jboss.org/author/display/WFLY10/Implicit+module+dependencies+for+deployments

Latest WildFly Documentation

JBoss Community Documentation Page of 894 2293

6.2.5 EAR Class Loading

Ear deployments are multi-module deployments. This means that not all classes inside an ear will

necessarily have access to all other classes in the ear, unless explicit dependencies have been defined. By

default the directory is a single module, and every WAR or EJB jar deployment is also a separateEAR/lib

module. Sub deployments (wars and ejb-jars) always have a dependency on the parent module, which gives

them access to classes in , however they do not always have an automatic dependency on eachEAR/lib

other. This behaviour is controlled via the setting in the ee subsystemear-subdeployments-isolated

configuration:

<subsystem xmlns="urn:jboss:domain:ee:1.0" >

 <ear-subdeployments-isolated>false</ear-subdeployments-isolated>

</subsystem>

By default this is set to false, which allows the sub-deployments to see classes belonging to other

sub-deployments within the .ear.

For example, consider the following .ear deployment:

myapp.ear

 |

 |--- web.war

 |

 |--- ejb1.jar

 |

 |--- ejb2.jar

If the ear-subdeployments-isolated is set to false, then the classes in web.war can access classes belonging

to ejb1.jar and ejb2.jar. Similarly, classes from ejb1.jar can access classes from ejb2.jar (and vice-versa).

The ear-subdeployments-isolated element value has no effect on the isolated classloader of the

.war file(s). i.e. irrespective of whether this flag is set to true or false, the .war within a .ear will have

a isolated classloader and other sub-deployments within that .ear will not be able to access classes

from that .war. This is as per spec.

If the ear-subdeployments-isolated is set to true then no automatic module dependencies between the

sub-deployments are set up. User must manually setup the dependency with entries, or byClass-Path

setting up explicit module dependencies.

Latest WildFly Documentation

JBoss Community Documentation Page of 895 2293

Portability

The Java EE specification says that portable applications should not rely on sub deployments

having access to other sub deployments unless an explicit Class-Path entry is set in the

MANIFEST.MF. So portable applications should always use Class-Path entry to explicitly state their

dependencies.

It is also possible to override the ear-subdeployments-isolated element value at a per deployment

level. See the section on jboss-deployment-structure.xml below.

Dependencies: Manifest Entries

Deployments (or more correctly modules within a deployment) may set up dependencies on other modules

by adding a manifest entry. This entry consists of a comma separated list of moduleDependencies:

names that the deployment requires. The available modules can be seen under the directory in themodules

application server distribution. For example to add a dependency on javassist and apache velocity you can

add a manifest entry as follows:

Dependencies: org.javassist export,org.apache.velocity export services,org.antlr

Each dependency entry may also specify some of the following parameters by adding them after the module

name:

 This means that the dependencies will be exported, so any module that depends on thisexport

module will also get access to the dependency.

 By default items in META-INF of a dependency are not accessible, this makes items from services

 accessible so in the modules can be loaded.META-INF/services services

 If this is specified the deployment will not fail if the module is not available.optional

 This will make the contents of the directory available (unlike , whichmeta-inf META-INF services

just makes available). In general this will not cause any deploymentMETA-INF/services

descriptors in META-INF to be processed, with the exception of . If a file isbeans.xml beans.xml

present this module will be scanned by Weld and any resulting beans will be available to the

application.

 If a jandex index has be created for the module these annotations will be merged intoannotations

the deployments annotation index. The index can be generated using the ,Jandex Jandex ant task

and must be named . Note that it is not necessary to break open the jarMETA-INF/jandex.idx

being indexed to add this to the modules class path, a better approach is to create a jar containing

just this index, and adding it as an additional resource root in the file.module.xml

http://download.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html
https://github.com/jbossas/jandex
https://github.com/jbossas/jandex/blob/master/src/main/java/org/jboss/jandex/JandexAntTask.java

Latest WildFly Documentation

JBoss Community Documentation Page of 896 2293

Adding a dependency to all modules in an EAR

Using the parameter it is possible to add a dependency to all sub deployments in an ear. Ifexport

a module is exported from a entry in the top level of the ear (or by a jar in the Dependencies:

 directory) it will be available to all sub deployments as well.ear/lib

To generate a MANIFEST.MF entry when using maven put the following in your pom.xml:

pom.xml

<build>

 ...

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-war-plugin</artifactId>

 <configuration>

 <archive>

 <manifestEntries>

 <Dependencies>org.slf4j</Dependencies>

 </manifestEntries>

 </archive>

 </configuration>

 </plugin>

 </plugins>

</build>

If your deployment is a jar you must use the rather than the maven-jar-plugin

.maven-war-plugin

Class Path Entries
It is also possible to add module dependencies on other modules inside the deployment using the

 manifest entry. This can be used within an ear to set up dependencies between subClass-Path

deployments, and also to allow modules access to additional jars deployed in an ear that are not sub

deployments and are not in the directory. If a jar in the directory references a jar via EAR/lib EAR/lib

 then this additional jar is merged into the parent ear's module, and is accessible to all subClass-Path:

deployments in the ear.

Latest WildFly Documentation

JBoss Community Documentation Page of 897 2293

6.2.6 Global Modules

It is also possible to set up global modules, that are accessible to all deployments. This is done by modifying

the configuration file (standalone/domain.xml).

For example, to add javassist to all deployments you can use the following XML:

standalone.xml/domain.xml

<subsystem xmlns="urn:jboss:domain:ee:1.0" >

 <global-modules>

 <module name="org.javassist" slot="main" />

 </global-modules>

</subsystem>

Note that the field is optional and defaults to .slot main

6.2.7 JBoss Deployment Structure File

 is a JBoss specific deployment descriptor that can be used tojboss-deployment-structure.xml

control class loading in a fine grained manner. It should be placed in the top level deployment, in META-INF

(or for web deployments). It can do the following:WEB-INF

Prevent automatic dependencies from being added

Add additional dependencies

Define additional modules

Change an EAR deployments isolated class loading behaviour

Add additional resource roots to a module

An example of a complete file for an ear deployment is as follows:jboss-deployment-structure.xml

jboss-deployment-structure.xml

<jboss-deployment-structure>

 <!-- Make sub deployments isolated by default, so they cannot see each others classes without

a Class-Path entry -->

 <ear-subdeployments-isolated>true</ear-subdeployments-isolated>

 <!-- This corresponds to the top level deployment. For a war this is the war's module, for an

ear -->

 <!-- This is the top level ear module, which contains all the classes in the EAR's lib folder

-->

 <deployment>

 <!-- exclude-subsystem prevents a subsystems deployment unit processors running on a

deployment -->

 <!-- which gives basically the same effect as removing the subsystem, but it only affects

single deployment -->

 <exclude-subsystems>

 <subsystem name="resteasy" />

Latest WildFly Documentation

JBoss Community Documentation Page of 898 2293

 </exclude-subsystems>

 <!-- Exclusions allow you to prevent the server from automatically adding some dependencies

-->

 <exclusions>

 <module name="org.javassist" />

 </exclusions>

 <!-- This allows you to define additional dependencies, it is the same as using the

Dependencies: manifest attribute -->

 <dependencies>

 <module name="deployment.javassist.proxy" />

 <module name="deployment.myjavassist" />

 <!-- Import META-INF/services for ServiceLoader impls as well -->

 <module name="myservicemodule" services="import"/>

 </dependencies>

 <!-- These add additional classes to the module. In this case it is the same as including

the jar in the EAR's lib directory -->

 <resources>

 <resource-root path="my-library.jar" />

 </resources>

 </deployment>

 <sub-deployment name="myapp.war">

 <!-- This corresponds to the module for a web deployment -->

 <!-- it can use all the same tags as the <deployment> entry above -->

 <dependencies>

 <!-- Adds a dependency on a ejb jar. This could also be done with a Class-Path entry -->

 <module name="deployment.myear.ear.myejbjar.jar" />

 </dependencies>

 <!-- Set's local resources to have the lowest priority -->

 <!-- If the same class is both in the sub deployment and in another sub deployment that -->

 <!-- is visible to the war, then the Class from the other deployment will be loaded, -->

 <!-- rather than the class actually packaged in the war. -->

 <!-- This can be used to resolve ClassCastExceptions if the same class is in multiple sub

deployments-->

 <local-last value="true" />

 </sub-deployment>

 <!-- Now we are going to define two additional modules -->

 <!-- This one is a different version of javassist that we have packaged -->

 <module name="deployment.myjavassist" >

 <resources>

 <resource-root path="javassist.jar" >

 <!-- We want to use the servers version of javassist.util.proxy.* so we filter it out-->

 <filter>

 <exclude path="javassist/util/proxy" />

 </filter>

 </resource-root>

 </resources>

 </module>

 <!-- This is a module that re-exports the containers version of javassist.util.proxy -->

 <!-- This means that there is only one version of the Proxy classes defined -->

 <module name="deployment.javassist.proxy" >

 <dependencies>

 <module name="org.javassist" >

 <imports>

 <include path="javassist/util/proxy" />

 <exclude path="/**" />

 </imports>

 </module>

 </dependencies>

Latest WildFly Documentation

JBoss Community Documentation Page of 899 2293

 </module>

</jboss-deployment-structure>

The xsd for jboss-deployment-structure.xml is available at

https://github.com/wildfly/wildfly/blob/master/build/src/main/resources/docs/schema/jboss-deployment-structure-1_2.xsd

6.2.8 Accessing JDK classes

Not all JDK classes are exposed to a deployment by default. If your deployment uses JDK classes that are

not exposed you can get access to them using jboss-deployment-structure.xml with system dependencies:

Using jboss-deployment-structure.xml to access JDK classes

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.1">

 <deployment>

 <dependencies>

 <system export="true">

 <paths>

 <path name="com/sun/corba/se/spi/legacy/connection"/>

 </paths>

 </system>

 </dependencies>

 </deployment>

</jboss-deployment-structure>

6.2.9 The "jboss.api" property and application use of modules

shipped with WildFly

The WildFly distribution includes a large number of modules, a great many of which are included for use by

WildFly internals, with no testing of the appropriateness of their direct use by applications or any

commitment to continue to ship those modules in future releases if they are no longer needed by the

internals. So how can a user know whether it is advisable for their application to specify an explicit

dependency on a module WildFly ships? The "jboss.api" property specified in the module's module.xml file

can tell you:

Example declaration of the jboss.api property

<module xmlns="urn:jboss:module:1.3" name="com.google.guava">

 <properties>

 <property name="jboss.api" value="private"/>

 </properties>

If a module does not have a property element like the above, then it's equivalent to one with a value of

"public".

https://github.com/wildfly/wildfly-core/blob/e737eff554ee433ca54835154fd67725fd52f63e/server/src/main/resources/schema/jboss-deployment-structure-1_2.xsd

Latest WildFly Documentation

JBoss Community Documentation Page of 900 2293

Following are the meanings of the various values you may see for the jboss.api property:

Value Meaning

public May be explicitly depended upon by end user applications. Will continue to be available in

future releases within the same major series and should not have incompatible API changes

in future releases within the same minor series, and ideally not within the same major series.

private Intended for internal use only. Only tested according to internal usage. May not be safe for

end user applications to use directly.

Could change significantly or be removed in a future release without notice.

unsupported If you see this value in a module.xml in a WildFly release, please file a bug report, as it is

not applicable in WildFly. In EAP it has a meaning equivalent to "private" but that does not

mean the module is "private" in WildFly; it could very easily be "public".

preview May be explicitly depended upon by end user applications, but there are no guarantees of

continued availability in future releases or that there will not be incompatible API changes.

This is not a common classification in WildFly. It is not used in WildFly 10.

deprecated May be explicitly depended upon by end user applications. Stable and reliable but an

alternative should be sought. Will be removed in a future major release.

Note that these definitions are only applicable to WildFly. In EAP and other Red Hat products based on

WildFly the same classifiers are used, with generally similar meaning, but the precise meaning is per the

definitions on the Red Hat customer support portal.

If an application declares a direct dependency on a module marked "private", "unsupported" or "deprecated",

during deployment a WARN message will be logged. The logging will be in log categories

"org.jboss.as.dependency.private", "org.jboss.as.dependency.unsupported" and

"org.jboss.as.dependency.deprecated" respectively. These categories are not used for other purposes, so

once you feel sufficiently warned the logging can be safely suppressed by turning the log level for the

relevant category to ERROR or higher.

Other than the WARN messages noted above, declaring a direct dependency on a non-public module has

no impact on how WildFly processes the deployment.

6.3 Implicit module dependencies for deployments

As explained in the article, WildFly 8 is based on module classloading. A classClass Loading in WildFly

within a module B isn't visible to a class within a module A, unless module B adds a dependency on module

A. Module dependencies can be explicitly (as explained in that classloading article) or can be "implicit". This

article will explain what implicit module dependencies mean and how, when and which modules are added

as implicit dependencies.

https://docs.jboss.org/author/display/WFLY8/Class+Loading+in+WildFly

Latest WildFly Documentation

JBoss Community Documentation Page of 901 2293

6.3.1 What's an implicit module dependency?

Consider an application deployment which contains EJBs. EJBs typically need access to classes from the

javax.ejb.* package and other Java EE API packages. The jars containing these packages are already

shipped in WildFly and are available as "modules". The module which contains the javax.ejb.* classes has a

specific name and so does the module which contains all the Java EE API classes. For an application to be

able to use these classes, it has to add a dependency on the relevant modules. Forcing the application

developers to add module dependencies like these (i.e. dependencies which can be "inferred") isn't a

productive approach. Hence, whenever an application is being deployed, the deployers within the server,

which are processing this deployment "implicitly" add these module dependencies to the deployment so that

these classes are visible to the deployment at runtime. This way the application developer doesn't have to

worry about adding them explicitly. How and when these implicit dependencies are added is explained in the

next section.

6.3.2 How and when is an implicit module dependency added?

When a deployment is being processed by the server, it goes through a chain of "deployment processors".

Each of these processors will have a way to check if the deployment meets a certain criteria and if it does,

the deployment processor adds a implicit module dependency to that deployment. Let's take an example -

Consider (again) an EJB3 deployment which has the following class:

MySuperDuperBean.java

@Stateless

public class MySuperDuperBean {

...

}

As can be seen, we have a simple @Stateless EJB. When the deployment containing this class is being

processed, the EJB deployment processor will see that the deployment contains a class with the @Stateless

annotation and thus identifies this as a EJB deployment. This is just one of the several ways, various

 The EJB deploymentdeployment processors can identify a deployment of some specific type.

processor will then add an implicit dependency on the Java EE API module, so that all the Java EE API

classes are visible to the deployment.

Some subsystems will always add a API classes, even if the trigger condition is not met. These are

listed separately below.

In the next section, we'll list down the implicit module dependencies that are added to a deployment, by

various deployers within WildFly.

Latest WildFly Documentation

JBoss Community Documentation Page of 902 2293

6.3.3 Which are the implicit module dependencies?

Subsystem

responsible

for adding

the implicit

dependency

Dependencies that are always

added

Dependencies that are added if a trigger

condition is met

Core Server
javax.api

sun.jdk

org.jboss.vfs

Batch

Subsystem javax.batch.api

EE

Subsystem javaee.api

EJB3

subsystem

javaee.api

JAX-RS

(Resteasy)

subsystem

javax.xml.bind.api org.jboss.resteasy.resteasy-atom-provider

org.jboss.resteasy.resteasy-cdi

org.jboss.resteasy.resteasy-jaxrs

org.jboss.resteasy.resteasy-jaxb-provider

org.jboss.resteasy.resteasy-jackson-provider

org.jboss.resteasy.resteasy-jsapi

org.jboss.resteasy.resteasy-multipart-provider

org.jboss.resteasy.async-http-servlet-30

Latest WildFly Documentation

JBoss Community Documentation Page of 903 2293

JCA

subsystem javax.resource.api javax.jms.api

javax.validation.api

org.jboss.logging

org.jboss.ironjacamar.api

org.jboss.ironjacamar.impl

org.hibernate.validator

JPA

(Hibernate)

subsystem

javax.persistence.api javaee.api

org.jboss.as.jpa

org.hibernate

Logging

Subsystem org.jboss.logging

org.apache.commons.logging

org.apache.log4j

org.slf4j

org.jboss.logging.jul-to-slf4j-stub

SAR

Subsystem

org.jboss.logging

org.jboss.modules

Security

Subsystem org.picketbox

Web

Subsystem

javaee.api

com.sun.jsf-impl

org.hibernate.validator

org.jboss.as.web

org.jboss.logging

Web

Services

Subsystem

org.jboss.ws.api

org.jboss.ws.spi

Latest WildFly Documentation

JBoss Community Documentation Page of 904 2293

Weld (CDI)

Subsystem

javax.persistence.api

javaee.api

org.javassist

org.jboss.interceptor

org.jboss.as.weld

org.jboss.logging

org.jboss.weld.core

org.jboss.weld.api

org.jboss.weld.spi

6.4 How do I migrate my application from JBoss AS 5 or

AS 6 to WildFly?

Couldn't find a page to include called: How do I migrate my application from AS5 or AS6 to WildFly

6.5 EJB invocations from a remote standalone client

using JNDI

This chapter explains how to invoke EJBs from a remote client by using the JNDI API to first lookup the bean

proxy and then invoke on that proxy.

After you have read this article, do remember to take a look at Remote EJB invocations via JNDI -

EJB client API or remote-naming project

Before getting into the details, we would like the users to know that we have introduced a new EJB client

API, which is a WildFly-specific API and allows invocation on remote EJBs. This client API isn't based on

JNDI. So remote clients need not rely on JNDI API to invoke on EJBs. A separate document covering the

EJB remote client API will be made available. For now, you can refer to the javadocs of the EJB client

project at . In this document, we'll just concentrate on the traditional JNDIhttp://docs.jboss.org/ejbclient/

based invocation on EJBs. So let's get started:

6.5.1 Deploying your EJBs on the server side:

Users who already have EJBs deployed on the server side can just skip to the next section.

https://docs.jboss.org/author/display/WFLY8/Remote+EJB+invocations+via+JNDI+-+EJB+client+API+or+remote-naming+project
https://docs.jboss.org/author/display/WFLY8/Remote+EJB+invocations+via+JNDI+-+EJB+client+API+or+remote-naming+project
http://docs.jboss.org/ejbclient/

Latest WildFly Documentation

JBoss Community Documentation Page of 905 2293

As a first step, you'll have to deploy your application containing the EJBs on the Wildfly server. If you want

those EJBs to be remotely invocable, then you'll have to expose at least one remote view for that bean. In

this example, let's consider a simple Calculator stateless bean which exposes a RemoteCalculator remote

business interface. We'll also have a simple stateful CounterBean which exposes a RemoteCounter remote

business interface. Here's the code:

package org.jboss.as.quickstarts.ejb.remote.stateless;

/**

 * @author Jaikiran Pai

 */

public interface RemoteCalculator {

 int add(int a, int b);

 int subtract(int a, int b);

}

package org.jboss.as.quickstarts.ejb.remote.stateless;

import javax.ejb.Remote;

import javax.ejb.Stateless;

/**

 * @author Jaikiran Pai

 */

@Stateless

@Remote(RemoteCalculator.class)

public class CalculatorBean implements RemoteCalculator {

 @Override

 public int add(int a, int b) {

 return a + b;

 }

 @Override

 public int subtract(int a, int b) {

 return a - b;

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 906 2293

package org.jboss.as.quickstarts.ejb.remote.stateful;

/**

 * @author Jaikiran Pai

 */

public interface RemoteCounter {

 void increment();

 void decrement();

 int getCount();

}

package org.jboss.as.quickstarts.ejb.remote.stateful;

import javax.ejb.Remote;

import javax.ejb.Stateful;

/**

 * @author Jaikiran Pai

 */

@Stateful

@Remote(RemoteCounter.class)

public class CounterBean implements RemoteCounter {

 private int count = 0;

 @Override

 public void increment() {

 this.count++;

 }

 @Override

 public void decrement() {

 this.count--;

 }

 @Override

 public int getCount() {

 return this.count;

 }

}

Let's package this in a jar (how you package it in a jar is out of scope of this chapter) named

"jboss-as-ejb-remote-app.jar" and deploy it to the server. Make sure that your deployment has been

processed successfully and there aren't any errors.

Latest WildFly Documentation

JBoss Community Documentation Page of 907 2293

6.5.2 Writing a remote client application for accessing and

invoking the EJBs deployed on the server

The next step is to write an application which will invoke the EJBs that you deployed on the server. In

WildFly, you can either choose to use the WildFly specific EJB client API to do the invocation or use JNDI to

lookup a proxy for your bean and invoke on that returned proxy. In this chapter we will concentrate on the

JNDI lookup and invocation and will leave the EJB client API for a separate chapter.

So let's take a look at what the client code looks like for looking up the JNDI proxy and invoking on it. Here's

the entire client code which invokes on a stateless bean:

package org.jboss.as.quickstarts.ejb.remote.client;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import java.security.Security;

import java.util.Hashtable;

import org.jboss.as.quickstarts.ejb.remote.stateful.CounterBean;

import org.jboss.as.quickstarts.ejb.remote.stateful.RemoteCounter;

import org.jboss.as.quickstarts.ejb.remote.stateless.CalculatorBean;

import org.jboss.as.quickstarts.ejb.remote.stateless.RemoteCalculator;

import org.jboss.sasl.JBossSaslProvider;

/**

 * A sample program which acts a remote client for a EJB deployed on Wildfly 10 server.

 * This program shows how to lookup stateful and stateless beans via JNDI and then invoke on

them

 *

 * @author Jaikiran Pai

 */

public class RemoteEJBClient {

 public static void main(String[] args) throws Exception {

 // Invoke a stateless bean

 invokeStatelessBean();

 // Invoke a stateful bean

 invokeStatefulBean();

 }

 /**

 * Looks up a stateless bean and invokes on it

 *

 * @throws NamingException

 */

 private static void invokeStatelessBean() throws NamingException {

 // Let's lookup the remote stateless calculator

 final RemoteCalculator statelessRemoteCalculator = lookupRemoteStatelessCalculator();

 System.out.println("Obtained a remote stateless calculator for invocation");

 // invoke on the remote calculator

Latest WildFly Documentation

JBoss Community Documentation Page of 908 2293

 int a = 204;

 int b = 340;

 System.out.println("Adding " + a + " and " + b + " via the remote stateless calculator

deployed on the server");

 int sum = statelessRemoteCalculator.add(a, b);

 System.out.println("Remote calculator returned sum = " + sum);

 if (sum != a + b) {

 throw new RuntimeException("Remote stateless calculator returned an incorrect sum "

+ sum + " ,expected sum was " + (a + b));

 }

 // try one more invocation, this time for subtraction

 int num1 = 3434;

 int num2 = 2332;

 System.out.println("Subtracting " + num2 + " from " + num1 + " via the remote stateless

calculator deployed on the server");

 int difference = statelessRemoteCalculator.subtract(num1, num2);

 System.out.println("Remote calculator returned difference = " + difference);

 if (difference != num1 - num2) {

 throw new RuntimeException("Remote stateless calculator returned an incorrect

difference " + difference + " ,expected difference was " + (num1 - num2));

 }

 }

 /**

 * Looks up a stateful bean and invokes on it

 *

 * @throws NamingException

 */

 private static void invokeStatefulBean() throws NamingException {

 // Let's lookup the remote stateful counter

 final RemoteCounter statefulRemoteCounter = lookupRemoteStatefulCounter();

 System.out.println("Obtained a remote stateful counter for invocation");

 // invoke on the remote counter bean

 final int NUM_TIMES = 20;

 System.out.println("Counter will now be incremented " + NUM_TIMES + " times");

 for (int i = 0; i < NUM_TIMES; i++) {

 System.out.println("Incrementing counter");

 statefulRemoteCounter.increment();

 System.out.println("Count after increment is " + statefulRemoteCounter.getCount());

 }

 // now decrementing

 System.out.println("Counter will now be decremented " + NUM_TIMES + " times");

 for (int i = NUM_TIMES; i > 0; i--) {

 System.out.println("Decrementing counter");

 statefulRemoteCounter.decrement();

 System.out.println("Count after decrement is " + statefulRemoteCounter.getCount());

 }

 }

 /**

 * Looks up and returns the proxy to remote stateless calculator bean

 *

 * @return

 * @throws NamingException

 */

 private static RemoteCalculator lookupRemoteStatelessCalculator() throws NamingException {

 final Hashtable jndiProperties = new Hashtable();

 jndiProperties.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");

Latest WildFly Documentation

JBoss Community Documentation Page of 909 2293

 final Context context = new InitialContext(jndiProperties);

 // The app name is the application name of the deployed EJBs. This is typically the ear

name

 // without the .ear suffix. However, the application name could be overridden in the

application.xml of the

 // EJB deployment on the server.

 // Since we haven't deployed the application as a .ear, the app name for us will be an

empty string

 final String appName = "";

 // This is the module name of the deployed EJBs on the server. This is typically the jar

name of the

 // EJB deployment, without the .jar suffix, but can be overridden via the ejb-jar.xml

 // In this example, we have deployed the EJBs in a jboss-as-ejb-remote-app.jar, so the

module name is

 // jboss-as-ejb-remote-app

 final String moduleName = "jboss-as-ejb-remote-app";

 // AS7 allows each deployment to have an (optional) distinct name. We haven't specified

a distinct name for

 // our EJB deployment, so this is an empty string

 final String distinctName = "";

 // The EJB name which by default is the simple class name of the bean implementation

class

 final String beanName = CalculatorBean.class.getSimpleName();

 // the remote view fully qualified class name

 final String viewClassName = RemoteCalculator.class.getName();

 // let's do the lookup

 return (RemoteCalculator) context.lookup("ejb:" + appName + "/" + moduleName + "/" +

distinctName + "/" + beanName + "!" + viewClassName);

 }

 /**

 * Looks up and returns the proxy to remote stateful counter bean

 *

 * @return

 * @throws NamingException

 */

 private static RemoteCounter lookupRemoteStatefulCounter() throws NamingException {

 final Hashtable jndiProperties = new Hashtable();

 jndiProperties.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");

 final Context context = new InitialContext(jndiProperties);

 // The app name is the application name of the deployed EJBs. This is typically the ear

name

 // without the .ear suffix. However, the application name could be overridden in the

application.xml of the

 // EJB deployment on the server.

 // Since we haven't deployed the application as a .ear, the app name for us will be an

empty string

 final String appName = "";

 // This is the module name of the deployed EJBs on the server. This is typically the jar

name of the

 // EJB deployment, without the .jar suffix, but can be overridden via the ejb-jar.xml

 // In this example, we have deployed the EJBs in a jboss-as-ejb-remote-app.jar, so the

module name is

 // jboss-as-ejb-remote-app

 final String moduleName = "jboss-as-ejb-remote-app";

 // AS7 allows each deployment to have an (optional) distinct name. We haven't specified

a distinct name for

 // our EJB deployment, so this is an empty string

Latest WildFly Documentation

JBoss Community Documentation Page of 910 2293

 final String distinctName = "";

 // The EJB name which by default is the simple class name of the bean implementation

class

 final String beanName = CounterBean.class.getSimpleName();

 // the remote view fully qualified class name

 final String viewClassName = RemoteCounter.class.getName();

 // let's do the lookup (notice the ?stateful string as the last part of the jndi name

for stateful bean lookup)

 return (RemoteCounter) context.lookup("ejb:" + appName + "/" + moduleName + "/" +

distinctName + "/" + beanName + "!" + viewClassName + "?stateful");

 }

}

The entire server side and client side code is hosted at the github repo here ejb-remote

The code has some comments which will help you understand each of those lines. But we'll explain here in

more detail what the code does. As a first step in the client code, we'll do a lookup of the EJB using a JNDI

name. In AS7, for remote access to EJBs, you use the ejb: namespace with the following syntax:

For stateless beans:

ejb:<app-name>/<module-name>/<distinct-name>/<bean-name>!<fully-qualified-classname-of-the-remote-interface>

For stateful beans:

ejb:<app-name>/<module-name>/<distinct-name>/<bean-name>!<fully-qualified-classname-of-the-remote-interface>?stateful

The ejb: namespace identifies it as a EJB lookup and is a constant (i.e. doesn't change) for doing EJB

lookups. The rest of the parts in the jndi name are as follows:

 : This is the name of the .ear (without the .ear suffix) that you have deployed on the server andapp-name

contains your EJBs.

Java EE 6 allows you to override the application name, to a name of your choice by setting it in the

application.xml. If the deployment uses uses such an override then the app-name used in the JNDI

name should match that name.

EJBs can also be deployed in a .war or a plain .jar (like we did in step 1). In such cases where the

deployment isn't an .ear file, then the app-name must be an empty string, while doing the lookup.

 : This is the name of the .jar (without the .jar suffix) that you have deployed on the server andmodule-name

the contains your EJBs. If the EJBs are deployed in a .war then the module name is the .war name (without

the .war suffix).

Java EE 6 allows you to override the module name, by setting it in the ejb-jar.xml/web.xml of your

deployment. If the deployment uses such an override then the module-name used in the JNDI name

should match that name.

Module name part cannot be an empty string in the JNDI name

https://github.com/wildfly/quickstart/tree/master/ejb-remote

Latest WildFly Documentation

JBoss Community Documentation Page of 911 2293

 : This is a WildFly-specific name which can be optionally assigned to the deployments thatdistinct-name

are deployed on the server. More about the purpose and usage of this will be explained in a separate

chapter. If a deployment doesn't use distinct-name then, use an empty string in the JNDI name, for

distinct-name

 : This is the name of the bean for which you are doing the lookup. The bean name is typicallybean-name

the unqualified classname of the bean implementation class, but can be overriden through either ejb-jar.xml

or via annotations. The bean name part cannot be an empty string in the JNDI name.

 : This is the fully qualified class name of the interfacefully-qualified-classname-of-the-remote-interface

for which you are doing the lookup. The interface should be one of the remote interfaces exposed by the

bean on the server. The fully qualified class name part cannot be an empty string in the JNDI name.

For stateful beans, the JNDI name expects an additional "?stateful" to be appended after the fully qualified

interface name part. This is because for stateful beans, a new session gets created on JNDI lookup and the

EJB client API implementation doesn't contact the server during the JNDI lookup to know what kind of a

bean the JNDI name represents (we'll come to this in a while). So the JNDI name itself is expected to

indicate that the client is looking up a stateful bean, so that an appropriate session can be created.

Now that we know the syntax, let's see our code and check what JNDI name it uses. Since our stateless

EJB named CalculatorBean is deployed in a jboss-as-ejb-remote-app.jar (without any ear) and since we are

looking up the org.jboss.as.quickstarts.ejb.remote.stateless.RemoteCalculator remote interface, our JNDI

name will be:

ejb:/jboss-as-ejb-remote-app//CalculatorBean!org.jboss.as.quickstarts.ejb.remote.stateless.RemoteCalculator

That's what the lookupRemoteStatelessCalculator() method in the above client code uses.

For the stateful EJB named CounterBean which is deployed in hte same jboss-as-ejb-remote-app.jar and

which exposes the org.jboss.as.quickstarts.ejb.remote.stateful.RemoteCounter, the JNDI name will be:

ejb:/jboss-as-ejb-remote-app//CounterBean!org.jboss.as.quickstarts.ejb.remote.stateful.RemoteCounter?stateful

That's what the lookupRemoteStatefulCounter() method in the above client code uses.

Now that we know of the JNDI name, let's take a look at the following piece of code in the

lookupRemoteStatelessCalculator():

final Hashtable jndiProperties = new Hashtable();

jndiProperties.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");

final Context context = new InitialContext(jndiProperties);

Latest WildFly Documentation

JBoss Community Documentation Page of 912 2293

Here we are creating a JNDI InitialContext object by passing it some JNDI properties. The

Context.URL_PKG_PREFIXES is set to org.jboss.ejb.client.naming. This is necessary because we should

let the JNDI API know what handles the ejb: namespace that we use in our JNDI names for lookup. The

"org.jboss.ejb.client.naming" has a URLContextFactory implementation which will be used by the JNDI APIs

to parse and return an object for ejb: namespace lookups. You can either pass these properties to the

constructor of the InitialContext class or have a jndi.properites file in the classpath of the client application,

which (atleast) contains the following property:

java.naming.factory.url.pkgs=org.jboss.ejb.client.naming

So at this point, we have setup the InitialContext and also have the JNDI name ready to do the lookup. You

can now do the lookup and the appropriate proxy which will be castable to the remote interface that you

used as the fully qualified class name in the JNDI name, will be returned. Some of you might be wondering,

how the JNDI implementation knew which server address to look, for your deployed EJBs. The answer is in

AS7, the proxies returned via JNDI name lookup for ejb: namespace do not connect to the server unless an

invocation on those proxies is done.

Now let's get to the point where we invoke on this returned proxy:

// Let's lookup the remote stateless calculator

 final RemoteCalculator statelessRemoteCalculator = lookupRemoteStatelessCalculator();

 System.out.println("Obtained a remote stateless calculator for invocation");

 // invoke on the remote calculator

 int a = 204;

 int b = 340;

 System.out.println("Adding " + a + " and " + b + " via the remote stateless calculator

deployed on the server");

 int sum = statelessRemoteCalculator.add(a, b);

We can see here that the proxy returned after the lookup is used to invoke the add(...) method of the bean.

It's at this point that the JNDI implementation (which is backed by the EJB client API) needs to know the

server details. So let's now get to the important part of setting up the EJB client context properties.

Latest WildFly Documentation

JBoss Community Documentation Page of 913 2293

6.5.3 Setting up EJB client context properties

A EJB client context is a context which contains contextual information for carrying out remote invocations

on EJBs. This is a WildFly-specific API. The EJB client context can be associated with multiple EJB

receivers. Each EJB receiver is capable of handling invocations on different EJBs. For example, an EJB

receiver "Foo" might be able to handle invocation on a bean identified by

app-A/module-A/distinctinctName-A/Bar!RemoteBar, whereas a EJB receiver named "Blah" might be able to

handle invocation on a bean identified by app-B/module-B/distinctName-B/BeanB!RemoteBean. Each such

EJB receiver knows about what set of EJBs it can handle and each of the EJB receiver knows which server

target to use for handling the invocations on the bean. For example, if you have a AS7 server at 10.20.30.40

IP address which has its remoting port opened at 4447 and if that's the server on which you deployed that

CalculatorBean, then you can setup a EJB receiver which knows its target address is 10.20.30.40:4447.

Such an EJB receiver will be capable enough to communicate to the server via the JBoss specific EJB

remote client protocol (details of which will be explained in-depth in a separate chapter).

Now that we know what a EJB client context is and what a EJB receiver is, let's see how we can setup a

client context with 1 EJB receiver which can connect to 10.20.30.40 IP address at port 4447. That EJB client

context will then be used (internally) by the JNDI implementation to handle invocations on the bean proxy.

The client will have to place a jboss-ejb-client.properties file in the classpath of the application. The

jboss-ejb-client.properties can contain the following properties:

endpoint.name=client-endpoint

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false

remote.connections=default

remote.connection.default.host=10.20.30.40

remote.connection.default.port = 8080

remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

remote.connection.default.username=appuser

remote.connection.default.password=apppassword

This file includes a reference to a default password. Be sure to change this as soon as possible.

The above properties file is just an example. The actual file that was used for this sample program is

available here for reference jboss-ejb-client.properties

We'll see what each of it means.

https://github.com/wildfly/quickstart/blob/master/ejb-remote/client/src/main/resources/jboss-ejb-client.properties

Latest WildFly Documentation

JBoss Community Documentation Page of 914 2293

First the endpoint.name property. We mentioned earlier that the EJB receivers will communicate

with the server for EJB invocations. Internally, they use JBoss Remoting project to carry out the

communication. The endpoint.name property represents the name that will be used to create the

client side of the enpdoint. The endpoint.name property is optional and if not specified in the

jboss-ejb-client.properties file, it will default to "config-based-ejb-client-endpoint" name.

Next is the remote.connectionprovider.create.options.<....> properties:

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false

The "remote.connectionprovider.create.options." property prefix can be used to pass the options

that will be used while create the connection provider which will handle the "remote:" protocol. In

this example we use the "remote.connectionprovider.create.options." property prefix to pass the

"org.xnio.Options.SSL_ENABLED" property value as false. That property will then be used during

the connection provider creation. Similarly other properties can be passed too, just append it to the

"remote.connectionprovider.create.options." prefix

Next we'll see:

remote.connections=default

This is where you define the connections that you want to setup for communication with the remote

server. The "remote.connections" property uses a comma separated value of connection "names".

The connection names are just logical and are used grouping together the connection configuration

properties later on in the properties file. The example above sets up a single remote connection

named "default". There can be more than one connections that are configured. For example:

remote.connections=one, two

Here we are listing 2 connections named "one" and "two". Ultimately, each of the connections will

map to a EJB receiver. So if you have 2 connections, that will setup 2 EJB receivers that will be

added to the EJB client context. Each of these connections will be configured with the connection

specific properties as follows:

remote.connection.default.host=10.20.30.40

remote.connection.default.port = 8080

remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

As you can see we are using the "remote.connection.<connection-name>." prefix for specifying the

connection specific property. The connection name here is "default" and we are setting the "host"

property of that connection to point to 10.20.30.40. Similarly we set the "port" for that connection to

4447.

Latest WildFly Documentation

JBoss Community Documentation Page of 915 2293

By default WildFly uses 8080 as the remoting port. The EJB client API uses the http port, with the

http-upgrade functionality, for communicating with the server for remote invocations, so that's the port we

use in our client programs (unless the server is configured for some other http port)

remote.connection.default.username=appuser

remote.connection.default.password=apppassword

The given user/password must be set by using the command bin/add-user.sh (or.bat).

The user and password must be set because the security-realm is enabled for the subsystem

remoting (see standalone*.xml or domain.xml) by default.

If you do not need the security for remoting you might remove the attribute security-realm in the

configuration.

security-realm is enabled by default.

Latest WildFly Documentation

JBoss Community Documentation Page of 916 2293

We then use the "remote.connection.<connection-name>.connect.options." property prefix to setup

options that will be used during the connection creation.

Here's an example of setting up multiple connections with different properties for each of those:

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false

remote.connections=one, two

remote.connection.one.host=localhost

remote.connection.one.port=6999

remote.connection.one.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

remote.connection.two.host=localhost

remote.connection.two.port=7999

remote.connection.two.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

As you can see we setup 2 connections "one" and "two" which both point to "localhost" as the

"host" but different ports. Each of these connections will internally be used to create the EJB

receivers in the EJB client context.

So that's how the jboss-ejb-client.properties file can be setup and placed in the classpath.

Using a different file for setting up EJB client context
The EJB client code will by default look for jboss-ejb-client.properties in the classpath. However,

you can specify a different file of your choice by setting the "jboss.ejb.client.properties.file.path"

system property which points to a properties file on your filesystem, containing the client context

configurations. An example for that would be

"-Djboss.ejb.client.properties.file.path=/home/me/my-client/custom-jboss-ejb-client.properties"

Setting up the client classpath with the jars that are required to

run the client application
A jboss-client jar is shipped in the distribution. It's available at

WILDFLY_HOME/bin/client/jboss-client.jar. Place this jar in the classpath of your client application.

If you are using Maven to build the client application, then please follow the instructions in the

WILDFLY_HOME/bin/client/README.txt to add this jar as a Maven dependency.

Latest WildFly Documentation

JBoss Community Documentation Page of 917 2293

6.5.4 Summary

In the above examples, we saw what it takes to invoke a EJB from a remote client. To summarize:

On the server side you need to deploy EJBs which expose the remote views.

On the client side you need a client program which:

Has a jboss-ejb-client.properties in its classpath to setup the server connection information

Either has a jndi.properties to specify the java.naming.factory.url.pkgs property or passes that

as a property to the InitialContext constructor

Setup the client classpath to include the jboss-client jar that's required for remote invocation of

the EJBs. The location of the jar is mentioned above. You'll also need to have your

application's bean interface jars and other jars that are required by your application, in the

client classpath

6.6 EJB invocations from a remote server

The purpose of this chapter is to demonstrate how to lookup and invoke on EJBs deployed on an

WildFly server instance WildFly server instance. This is different from invoking the EJBs from another from

a remote standalone client

Let's call the server, from which the invocation happens to the EJB, as "Client Server" and the server on

which the bean is deployed as the "Destination Server".

Note that this chapter deals with the case where the bean is deployed on the "Destination Server"

but on the "Client Server".not

6.6.1 Application packaging

In this example, we'll consider a EJB which is packaged in a myejb.jar which is within a myapp.ear. Here's

how it would look like:

myapp.ear

|

|---- myejb.jar

| |

| |---- <org.myapp.ejb.*> // EJB classes

Note that packaging itself isn't really important in the context of this article. You can deploy the

EJBs in any standard way (.ear, .war or .jar).

https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI
https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI

Latest WildFly Documentation

JBoss Community Documentation Page of 918 2293

6.6.2 Beans

In our example, we'll consider a simple stateless session bean which is as follows:

package org.myapp.ejb;

public interface Greeter {

 String greet(String user);

}

package org.myapp.ejb;

import javax.ejb.Remote;

import javax.ejb.Stateless;

@Stateless

@Remote (Greeter.class)

public class GreeterBean implements Greeter {

 @Override

 public String greet(String user) {

 return "Hello " + user + ", have a pleasant day!";

 }

}

6.6.3 Security

WildFly 8 is secure by default. What this means is that no communication can happen with an

WildFly instance from a remote client (irrespective of whether it is a standalone client or another server

instance) without passing the appropriate credentials. Remember that in this example, our "client server" will

be communicating with the "destination server". So in order to allow this communication to happen

successfully, we'll have to configure user credentials which we will be using during this communication. So

let's start with the necessary configurations for this.

Latest WildFly Documentation

JBoss Community Documentation Page of 919 2293

6.6.4 Configuring a user on the "Destination Server"

As a first step we'll configure a user on the destination server who will be allowed to access the destination

server. We create the user using the script that's available in the JBOSS_HOME/bin folder. Inadd-user

this example, we'll be configuring a named and with a password in the Application User ejb test

. Running the script is an interactive process and you will seeApplicationRealm add-user

questions/output as follows:

add-user

jpai@jpai-laptop:bin$./add-user.sh

What type of user do you wish to add?

 a) Management User (mgmt-users.properties)

 b) Application User (application-users.properties)

(a): b

Enter the details of the new user to add.

Realm (ApplicationRealm) :

Username : ejb

Password :

Re-enter Password :

What roles do you want this user to belong to? (Please enter a comma separated list, or leave

blank for none)\[\]:

About to add user 'ejb' for realm 'ApplicationRealm'

Is this correct yes/no? yes

Added user 'ejb' to file

'/jboss-as-7.1.1.Final/standalone/configuration/application-users.properties'

Added user 'ejb' to file

'/jboss-as-7.1.1.Final/domain/configuration/application-users.properties'

Added user 'ejb' with roles to file

'/jboss-as-7.1.1.Final/standalone/configuration/application-roles.properties'

Added user 'ejb' with roles to file

'/jboss-as-7.1.1.Final/domain/configuration/application-roles.properties'

As you can see in the output above we have now configured a user on the destination server who'll be

allowed to access this server. We'll use this user credentials later on in the client server for communicating

with this server. The important bits to remember are the user we have created in this example is and theejb

password is test.

Note that you can use any username and password combination you want to.

You do require the server to be started to add a user using the add-user script.not

Latest WildFly Documentation

JBoss Community Documentation Page of 920 2293

6.6.5 Start the "Destination Server"

As a next step towards running this example, we'll start the "Destination Server". In this example, we'll use

the standalone server and use the configuration. The startup command will look like:standalone-full.xml

./standalone.sh -server-config=standalone-full.xml

Ensure that the server has started without any errors.

It's very important to note that if you are starting both the server instances on the same machine,

then each of those server instances have a unique system property.must jboss.node.name

You can do that by passing an appropriate value for system property to the-Djboss.node.name

startup script:

./standalone.sh -server-config=standalone-full.xml -Djboss.node.name=<add appropriate

value here>

6.6.6 Deploying the application

The application (in our case) will be deployed to "Destination Server". The process of deployingmyapp.ear

the application is out of scope of this chapter. You can either use the Command Line Interface or the Admin

console or any IDE or manually copy it to JBOSS_HOME/standalone/deployments folder (for standalone

server). Just ensure that the application has been deployed successfully.

So far, we have built a EJB application and deployed it on the "Destination Server". Now let's move to the

"Client Server" which acts as the client for the deployed EJBs on the "Destination Server".

6.6.7 Configuring the "Client Server" to point to the EJB

remoting connector on the "Destination Server"

As a first step on the "Client Server", we need to let the server know about the "Destination Server"'s EJB

remoting connector, over which it can communicate during the EJB invocations. To do that, we'll have to add

a " " to the remoting subsystem on the "Client Server". The "remote-outbound-connection

" configuration indicates that a outbound connection will be created to a remoteremote-outbound-connection

server instance from that server. The " " will be backed by a "remote-outbound-connection

" which will point to a remote host and a remote port (of the "Destination Server").outbound-socket-binding

So let's see how we create these configurations.

Latest WildFly Documentation

JBoss Community Documentation Page of 921 2293

6.6.8 Start the "Client Server"

In this example, we'll start the "Client Server" on the same machine as the "Destination Server". We have

copied the entire server installation to a different folder and while starting the "Client Server" we'll use a

port-offset (of 100 in this example) to avoid port conflicts:

./standalone.sh -server-config=standalone-full.xml -Djboss.socket.binding.port-offset=100

6.6.9 Create a security realm on the client server

Remember that we need to communicate with a secure destination server. In order to do that the client

server has to pass the user credentials to the destination server. Earlier we created a user on the destination

server who'll be allowed to communicate with that server. Now on the "client server" we'll create a

security-realm which will be used to pass the user information.

In this example we'll use a security realm which stores a Base64 encoded password and then passes on

that credentials when asked for. Earlier we created a user named and password . So our first taskejb test

here would be to create the base64 encoded version of the password . You can use any utility whichtest

generates you a base64 version for a string. I used which generates the base64 encodedthis online site

string. So for the password, the base64 encoded version is test dGVzdA==

While generating the base64 encoded string make sure that you don't have any trailing or leading

spaces for the original password. That can lead to incorrect encoded versions being generated.

With new versions the add-user script will show the base64 password if you type 'y' if you've been

ask

Is this new user going to be used for one AS process to connect to another AS process

e.g. slave domain controller?

Now that we have generated that base64 encoded password, let's use in the in the security realm that we

are going to configure on the "client server". I'll first shutdown the client server and edit the

standalone-full.xml file to add the following in the section<management>

Now let's create a " " for the base64 encoded password.security-realm

/core-service=management/security-realm=ejb-security-realm:add()

/core-service=management/security-realm=ejb-security-realm/server-identity=secret:add(value=dGVzdA==)

http://www.base64encode.org/

Latest WildFly Documentation

JBoss Community Documentation Page of 922 2293

Notice that the CLI show the message , so you have to restart"process-state" => "reload-required"

the server before you can use this change.

upon successful invocation of this command, the following configuration will be created in the management

section:

standalone-full.xml

<management>

 <security-realms>

 ...

 <security-realm name="ejb-security-realm">

 <server-identities>

 <secret value="dGVzdA=="/>

 </server-identities>

 </security-realm>

 </security-realms>

...

As you can see I have created a security realm named "ejb-security-realm" (you can name it anything) with

the base64 encoded password. So that completes the security realm configuration for the client server. Now

let's move on to the next step.

Latest WildFly Documentation

JBoss Community Documentation Page of 923 2293

6.6.10 Create a outbound-socket-binding on the "Client Server"

Let's first create a which points the "Destination Server"'s host and port. We'll useoutbound-socket-binding

the CLI to create this configuration:

/socket-binding-group=standard-sockets/remote-destination-outbound-socket-binding=remote-ejb:add(host=localhost,

port=8080)

The above command will create a outbound-socket-binding named " " (we can name it anything)remote-ejb

which points to "localhost" as the host and port 8080 as the destination port. Note that the host information

should match the host/IP of the "Destination Server" (in this example we are running on the same machine

so we use "localhost") and the port information should match the http-remoting connector port used by the

EJB subsystem (by default it's 8080). When this command is run successfully, we'll see that the

standalone-full.xml (the file which we used to start the server) was updated with the following

outbound-socket-binding in the socket-binding-group:

<socket-binding-group name="standard-sockets" default-interface="public"

port-offset="${jboss.socket.binding.port-offset:0}">

 ...

 <outbound-socket-binding name="remote-ejb">

 <remote-destination host="localhost" port="8080"/>

 </outbound-socket-binding>

 </socket-binding-group>

6.6.11 Create a "remote-outbound-connection" which uses this

newly created "outbound-socket-binding"

Now let's create a " " which will use the newly created outbound-socket-bindingremote-outbound-connection

(pointing to the EJB remoting connector of the "Destination Server"). We'll continue to use the CLI to create

this configuration:

/subsystem=remoting/remote-outbound-connection=remote-ejb-connection:add(outbound-socket-binding-ref=remote-ejb,

protocol=http-remoting, security-realm=ejb-security-realm, username=ejb)

The above command creates a remote-outbound-connection, named " " (we can nameremote-ejb-connection

it anything), in the remoting subsystem and uses the previously created " "remote-ejb

outbound-socket-binding (notice the outbound-socket-binding-ref in that command) with the http-remoting

protocol. Furthermore, we also set the security-realm attribute to point to the security-realm that we created

in the previous step. Also notice that we have set the username attribute to use the user name who is

allowed to communicate with the destination server.

Latest WildFly Documentation

JBoss Community Documentation Page of 924 2293

What this step does is, it creates a outbound connection, on the client server, to the remote destination

server and sets up the username to the user who allowed to communicate with that destination server and

also sets up the security-realm to a pre-configured security-realm capable of passing along the user

credentials (in this case the password). This way when a connection has to be established from the client

server to the destination server, the connection creation logic will have the necessary security credentials to

pass along and setup a successful secured connection.

Now let's run the following two operations to set some default connection creation options for the outbound

connection:

/subsystem=remoting/remote-outbound-connection=remote-ejb-connection/property=SASL_POLICY_NOANONYMOUS:add(value=false)

/subsystem=remoting/remote-outbound-connection=remote-ejb-connection/property=SSL_ENABLED:add(value=false)

Ultimately, upon successful invocation of this command, the following configuration will be created in the

remoting subsystem:

<subsystem xmlns="urn:jboss:domain:remoting:1.1">

....

 <outbound-connections>

 <remote-outbound-connection name="remote-ejb-connection"

outbound-socket-binding-ref="remote-ejb" protocol="http-remoting"

security-realm="ejb-security-realm" username="ejb">

 <properties>

 <property name="SASL_POLICY_NOANONYMOUS" value="false"/>

 <property name="SSL_ENABLED" value="false"/>

 </properties>

 </remote-outbound-connection>

 </outbound-connections>

 </subsystem>

From a server configuration point of view, that's all we need on the "Client Server". Our next step is to deploy

an application on the "Client Server" which will invoke on the bean deployed on the "Destination Server".

Latest WildFly Documentation

JBoss Community Documentation Page of 925 2293

6.6.12 Packaging the client application on the "Client Server"

Like on the "Destination Server", we'll use .ear packaging for the client application too. But like previously

mentioned, that's not mandatory. You can even use a .war or .jar deployments. Here's how our client

application packaging will look like:

client-app.ear

|

|--- META-INF

| |

| |--- jboss-ejb-client.xml

|

|--- web.war

| |

| |--- WEB-INF/classes

| | |

| | |---- <org.myapp.FooServlet> // classes in the web app

In the client application we'll use a servlet which invokes on the bean deployed on the "Destination Server".

We can even invoke the bean on the "Destination Server" from a EJB on the "Client Server". The code

remains the same (JNDI lookup, followed by invocation on the proxy). The important part to notice in this

client application is the file which is packaged in the META-INF folder of a top leveljboss-ejb-client.xml

deployment (in this case our client-app.ear). This contains the EJB client configurationsjboss-ejb-client.xml

which will be used during the EJB invocations for finding the appropriate destinations (also known as, EJB

receivers). The contents of the jboss-ejb-client.xml are explained next.

If your application is deployed as a top level .war deployment, then the jboss-ejb-client.xml is

expected to be placed in .war/WEB-INF/ folder (i.e. the same location where you place any

web.xml file).

Latest WildFly Documentation

JBoss Community Documentation Page of 926 2293

6.6.13 Contents on jboss-ejb-client.xml

The jboss-ejb-client.xml will look like:

<jboss-ejb-client xmlns="urn:jboss:ejb-client:1.0">

 <client-context>

 <ejb-receivers>

 <remoting-ejb-receiver outbound-connection-ref="remote-ejb-connection"/>

 </ejb-receivers>

 </client-context>

</jboss-ejb-client>

You'll notice that we have configured the EJB client context (for this application) to use a

remoting-ejb-receiver which points to our earlier created " " named "remote-outbound-connection

". This links the EJB client context to use the " " which ultimatelyremote-ejb-connection remote-ejb-connection

points to the EJB remoting connector on the "Destination Server".

6.6.14 Deploy the client application

Let's deploy the client application on the "Client Server". The process of deploying the application is out of

scope, of this chapter. You can use either the CLI or the admin console or a IDE or deploy manually to

JBOSS_HOME/standalone/deployments folder. Just ensure that the application is deployed successfully.

Latest WildFly Documentation

JBoss Community Documentation Page of 927 2293

6.6.15 Client code invoking the bean

We mentioned that we'll be using a servlet to invoke on the bean, but the code to invoke the bean isn't

servlet specific and can be used in other components (like EJB) too. So let's see how it looks like:

import javax.naming.Context;

import java.util.Hashtable;

import javax.naming.InitialContext;

...

public void invokeOnBean() {

 try {

 final Hashtable props = new Hashtable();

 // setup the ejb: namespace URL factory

 props.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");

 // create the InitialContext

 final Context context = new javax.naming.InitialContext(props);

 // Lookup the Greeter bean using the ejb: namespace syntax which is explained here

https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI

 final Greeter bean = (Greeter) context.lookup("ejb:" + "myapp" + "/" + "myejb" + "/"

+ "" + "/" + "GreeterBean" + "!" + org.myapp.ejb.Greeter.class.getName());

 // invoke on the bean

 final String greeting = bean.greet("Tom");

 System.out.println("Received greeting: " + greeting);

 } catch (Exception e) {

 throw new RuntimeException(e);

 }

}

That's it! The above code will invoke on the bean deployed on the "Destination Server" and return the result.

6.7 Remote EJB invocations via JNDI - Which approach

to use?

Couldn't find a page to include called: Remote EJB invocations via JNDI - EJB client API or remote-naming

project?

6.8 JBoss EJB 3 reference guide

This chapter details the extensions that are available when developing Enterprise Java Beans on WildFlytm

8.

Currently there is no support for configuring the extensions using an implementation specific descriptor file.

Latest WildFly Documentation

JBoss Community Documentation Page of 928 2293

6.8.1 Resource Adapter for Message Driven Beans

Each Message Driven Bean must be connected to a resource adapter.

Specification of Resource Adapter using Metadata Annotations
The annotation is used to specify the resource adapter with which the MDB shouldResourceAdapter

connect.

The of the annotation is the name of the deployment unit containing the resource adapter. Forvalue

example .jms-ra.rar

For example:

@MessageDriven(messageListenerInterface = PostmanPat.class)

@ResourceAdapter("ejb3-rar.rar")

6.8.2 as Principal

Whenever a run-as role is specified for a given method invocation the default anonymous principal is used

as the caller principal. This principal can be overridden by specifying a run-as principal.

Specification of Run-as Principal using Metadata Annotations
The annotation is used to specify the run-as principal to use for a given methodRunAsPrincipal

invocation.

The of the annotation specifies the name of the principal to use. The actual type of the principal isvalue

undefined and should not be relied upon.

Using this annotation without specifying a run-as role is considered an error.

For example:

@RunAs("admin")

@RunAsPrincipal("MyBean")

Latest WildFly Documentation

JBoss Community Documentation Page of 929 2293

6.8.3 Security Domain

Each Enterprise Java Bean can be associated with a security domain. Only when an EJB is associatedtm

with a security domain will authentication and authorization be enforced.

Specification of Security Domain using Metadata Annotations
The annotation is used to specify the security domain to associate with the EJB.SecurityDomain

The of the annotation is the name of the security domain to be used.value

For example:

@SecurityDomain("other")

6.8.4 Transaction Timeout

For any newly started transaction a transaction timeout can be specified in seconds.

When a transaction timeout of is used, then the actual transaction timeout will default to the domain0

configured default.

TODO: add link to tx subsystem

Although this is only applicable when using transaction attribute or theREQUIRED REQUIRES_NEW

application server will not detect invalid setups.

New Transactions

Take care that even when transaction attribute is specified, the timeout will only beREQUIRED

applicable if a transaction is started.new

Specification of Transaction Timeout with Metadata Annotations
The annotation is used to specify the transaction timeout for a given method.TransactionTimeout

The of the annotation is the timeout used in the given granularity. It must be a positive integervalue unit

or 0. Whenever 0 is specified the default domain configured timeout is used.

The specifies the granularity of the . The actual value used is converted to seconds. Specifyingunit value

a granularity lower than is considered an error, even when the computed value will result in anSECONDS

even amount of seconds.

For example:@TransactionTimeout(value = 10, unit = TimeUnit.SECONDS)

Latest WildFly Documentation

JBoss Community Documentation Page of 930 2293

Specification of Transaction Timeout in the Deployment Descriptor
The element is used to define the transaction timeout for business, home, component, andtrans-timeout

message-listener interface methods; no-interface view methods; web service endpoint methods; and timeout

callback methods.

The element resides in the namespace and is part of the standard trans-timeout urn:trans-timeout

 element as defined in the jboss namespace.container-transaction

For the rules when a is applicable please refer to EJB 3.1 FR 13.3.7.2.1.container-transaction

Example of trans-timeout

jboss-ejb3.xml

<jboss:ejb-jar xmlns:jboss="http://www.jboss.com/xml/ns/javaee"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:tx="urn:trans-timeout"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee

http://www.jboss.org/j2ee/schema/jboss-ejb3-2_0.xsd

http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd

urn:trans-timeout http://www.jboss.org/j2ee/schema/trans-timeout-1_0.xsd"

 version="3.1"

 impl-version="2.0">

 <assembly-descriptor>

 <container-transaction>

 <method>

 <ejb-name>BeanWithTimeoutValue</ejb-name>

 <method-name>*</method-name>

 <method-intf>Local</method-intf>

 </method>

 <tx:trans-timeout>

 <tx:timeout>10</tx:timeout>

 <tx:unit>Seconds</tx:unit>

 </tx:trans-timeout>

 </container-transaction>

 </assembly-descriptor>

</jboss:ejb-jar>

6.8.5 Timer service

The service is responsible to call the registered timeout methods of the different session beans.

Latest WildFly Documentation

JBoss Community Documentation Page of 931 2293

A persistent timer will be identified by the name of the EAR, the name of the sub-deployment JAR

and the Bean's name.

If one of those names are changed (e.g. EAR name contain a version) the timer entry became

orphaned and the timer event will not longer be fired.

Single event timer
The timer is will be started once at the specified time.

In case of a server restart the timeout method of a persistent timer will only be called directly if the specified

time is elapsed.

If the timer is not persistent (since EJB3.1 see 18.2.3) it will be not longer available if JBoss is restarted or

the application is redeployed.

Recurring timer
The timer will be started at the specified first occurrence and after that point at each time if the interval is

elapsed.

If the timer will be started during the last execution is not finished the execution will be suppressed with a

warning to avoid concurrent execution.

In case of server downtime for a persistent timer, the timeout method will be called only once if one, or more

than one, interval is elapsed.

If the timer is not persistent (since EJB3.1 see 18.2.3) it will not longer be active after the server is restarted

or the application is redeployed.

Latest WildFly Documentation

JBoss Community Documentation Page of 932 2293

Calendar timer
The timer will be started if the schedule expression match. It will be automatically deactivated and removed if

there will be no next expiration possible, i.e. If you set a specific year.

For example:

@Schedule(... dayOfMonth="1", month="1", year="2012")

// start once at 01-01-2012 00:00:00

Programmatic calendar timer
If the timer is persistent it will be fetched at server start and the missed timeouts are called concurrent.

If a persistent timer contains an end date it will be executed once nevertheless how many times the

execution was missed. Also a retry will be suppressed if the timeout method throw an Exception.

In case of such expired timer access to the given Timer object might throw a NoMoreTimeoutExcption or

NoSuchObjectException.

If the timer is non persistent it will not longer be active after the server is restarted or the application is

redeployed.

: clarify whether this should happen concurrently/blocked or even fired only once like a recurring timer!TODO

Annotated calendar timer
If the timer is non persistent it will not activated for missed events during the server is down. In case of

server start the timer is scheduled based on the @Schedule annotation.

If the timer is persistent (default if not deactivated by annotation) all missed events are fetched at server start

and the annotated timeout method is called concurrent.

: clarify whether this should happen concurrently/blocked or even fired only once like a recurring timer!TODO

Latest WildFly Documentation

JBoss Community Documentation Page of 933 2293

6.9 JPA reference guide

Introduction

Update your Persistence.xml for Hibernate 5.1

Entity manager

Container-managed entity manager

Application-managed entity manager

Persistence Context

Transaction-scoped Persistence Context

Extended Persistence Context

Extended Persistence Context Inheritance

Entities

Deployment

Troubleshooting

Using the Infinispan second level cache

Replacing the current Hibernate 5.x jars with a newer version

Using Hibernate Search

Packaging the Hibernate JPA persistence provider with your application

Migrating from OpenJPA

Migrating from EclipseLink

Migrating from DataNucleus

Native Hibernate use

Injection of Hibernate Session and SessionFactoryInjection of Hibernate Session and SessionFactory

Hibernate properties

Persistence unit properties

Determine the persistence provider module

Binding EntityManagerFactory/EntityManager to JNDI

Community

People who have contributed to the WildFly JPA layer:

Latest WildFly Documentation

JBoss Community Documentation Page of 934 2293

6.9.1 Introduction

The WildFly JPA subsystem implements the JPA 2.1 container-managed requirements. Deploys the

persistence unit definitions, the persistence unit/context annotations and persistence unit/context references

in the deployment descriptor. JPA Applications use the Hibernate (version 5.1) persistence provider, which is

included with WildFly. The JPA subsystem uses the standard SPI

(javax.persistence.spi.PersistenceProvider) to access the Hibernate persistence provider and some

additional extensions as well.

During application deployment, JPA use is detected (e.g. persistence.xml or @PersistenceContext/Unit

annotations) and injects Hibernate dependencies into the application deployment. This makes it easy to

deploy JPA applications.

In the remainder of this documentation, ”entity manager” refers to an instance of the

 class. and .javax.persistence.EntityManager Javadoc for the JPA interfaces JPA 2.1 specification

The index of the Hibernate documentation is at .http://hibernate.org/orm/documentation/5.1/

6.9.2 Update your Persistence.xml for Hibernate 5.1

The persistence provider class name in Hibernate 4.3.0 (and greater) is

.org.hibernate.jpa.HibernatePersistenceProvider

Instead of specifying:

<provider>org.hibernate.ejb.HibernatePersistence</provider>

Switch to:

<provider>org.hibernate.jpa.HibernatePersistenceProvider</provider>

Or remove the persistence provider class name from your persistence.xml (so the default provider will be

used).

6.9.3 Entity manager

The entity manager (javax.persistence.EntityManager class) is similar to the Hibernate Session class;

applications use it to create/read/update/delete data (and related operations). Applications can use

application-managed or container-managed entity managers. Keep in mind that the entity manager is not

thread safe, don't share the same entity manager instance with multiple threads.

Internally, the entity manager, has a persistence context for managing entities. You can think of the

persistence context as being closely associated with the entity manager.

http://download.oracle.com/javaee/7/api/javax/persistence/package-summary.html
https://jcp.org/en/jsr/detail?id=338
http://hibernate.org/orm/documentation/5.1/

Latest WildFly Documentation

JBoss Community Documentation Page of 935 2293

6.9.4 Container-managed entity manager

When you inject a container-managed entity managers into an application variable, it is treated like an (EE

container controlled) Java proxy object, that will be associated with an underlying EntityManager instance,

for each started JTA transaction and is flushed/closed when the JTA transaction commits. Such that when

your application code invokes EntityManager.anyMethod(), the current JTA transaction is searched (using

persistence unit name as key) for the underlying EntityManager instance, if not found, a new EntityManager

instance is created and associated with the current JTA transaction, to be reused for the next EntityManager

invocation. Use the @PersistenceContext annotation, to inject a container-managed entity manager into a

javax.persistence.EntityManager variable.

6.9.5 Application-managed entity manager

An application-managed entity manager is kept around until the application closes it. The scope of the

application-managed entity manager is from when the application creates it and lasts until the application

closes it. Use the annotation, to inject a persistence unit into a @PersistenceUnit

. The EntityManagerFactory can return anjavax.persistence.EntityManagerFactory variable

application-managed entity manager.

6.9.6 Persistence Context

The JPA persistence context contains the entities managed by the entity manager (via the JPA persistence

provider). The underlying entity manager maintains the persistence context. The persistence context acts

like a first level (transactional) cache for interacting with the datasource. Loaded entities are placed into the

persistence context before being returned to the application. Entities changes are also placed into the

persistence context (to be saved in the database when the transaction commits).

Latest WildFly Documentation

JBoss Community Documentation Page of 936 2293

6.9.7 Transaction-scoped Persistence Context

The transaction-scoped persistence context coordinates with the (active) JTA transaction. When the

transaction commits, the persistence context is flushed to the datasource (entity objects are detached but

may still be referenced by application code). All entity changes that are expected to be saved to the

datasource, must be made during a transaction. Entities read outside of a transaction will be detached when

the entity manager invocation completes. Example transaction-scoped persistence context is below.

@Stateful // will use container managed transactions

public class CustomerManager {

 @PersistenceContext(unitName = "customerPU") // default type is

PersistenceContextType.TRANSACTION

 EntityManager em;

 public customer createCustomer(String name, String address) {

 Customer customer = new Customer(name, address);

 em.persist(customer); // persist new Customer when JTA transaction completes (when method

ends).

 // internally:

 // 1. Look for existing "customerPU" persistence context in active

JTA transaction and use if found.

 // 2. Else create new "customerPU" persistence context (e.g.

instance of org.hibernate.ejb.HibernatePersistence)

 // and put in current active JTA transaction.

 return customer; // return Customer entity (will be detached from the persistence

context when caller gets control)

 } // Transaction.commit will be called, Customer entity will be persisted to the database and

"customerPU" persistence context closed

6.9.8 Extended Persistence Context

The (ee container managed) extended persistence context can span multiple transactions and allows data

modifications to be queued up (like a shopping cart), without an active JTA transaction (to be applied during

the next JTA TX). The Container-managed extended persistence context can only be injected into a stateful

session bean. You can also think of the extended persistence context, as being an entity manager.

@PersistenceContext(type = PersistenceContextType.EXTENDED, unitName = "inventoryPU")

EntityManager em;

Latest WildFly Documentation

JBoss Community Documentation Page of 937 2293

Extended Persistence Context Inheritance

JPA 2.0 specification section 7.6.2.1

If a stateful session bean instantiates a stateful session bean (executing in the same EJB

container instance) which also has such an extended persistence context, the extended

persistence context of the first stateful session bean is inherited by the second stateful

session bean and bound to it, and this rule recursively applies—independently of whether

transactions are active or not at the point of the creation of the stateful session beans.

By default, the current stateful session bean being created, will () inherit the extended persistencedeeply

context from any stateful session bean executing in the current Java thread. The inheritance ofdeep

extended persistence context includes walking multiple levels up the stateful bean call stack (inheriting from

parent beans). The inheritance of extended persistence context includes sibling beans. For example,deep

parentA references child beans beanBwithXPC & beanCwithXPC. Even though parentA doesn't have an

extended persistence context, beanBwithXPC & beanCwithXPC will share the same extended persistence

context.

Some other EE application servers, use inheritance, where stateful session bean only inherit fromshallow

the parent stateful session bean (if there is a parent bean). Sibling beans do not share the same extended

persistence context unless their (common) parent bean also has the same extended persistence context.

Applications can include a (top-level) deployment descriptor that specifies either the (default) jboss-all.xml

 extended persistence context inheritance or .DEEP SHALLOW

The WF/docs/schema/jboss-jpa_1_0.xsd describes the deployment descriptor that may bejboss-jpa

included in the . Below is an example of using extended persistence contextjboss-all.xml SHALLOW

inheritance:

<jboss>

 <jboss-jpa xmlns="http://www.jboss.com/xml/ns/javaee">

 <extended-persistence inheritance="SHALLOW"/>

 </jboss-jpa>

</jboss>

Below is an example of using extended persistence inheritance:DEEP

<jboss>

 <jboss-jpa xmlns="http://www.jboss.com/xml/ns/javaee">

 <extended-persistence inheritance="DEEP"/>

 </jboss-jpa>

</jboss>

The AS console/cli can change the extended persistence context setting (DEEP or SHALLOW). Thedefault

following cli commands will read the current JPA settings and enable SHALLOW extended persistence

context inheritance for applications that do not include the deployment descriptor:jboss-jpa

Latest WildFly Documentation

JBoss Community Documentation Page of 938 2293

./jboss-cli.sh

cd subsystem=jpa

:read-resource

:write-attribute(name=default-extended-persistence-inheritance,value="SHALLOW")

6.9.9 Entities

JPA allows use of your (pojo) plain old Java class to represent a database table row.

@PersistenceContext EntityManager em;

Integer bomPk = getIndexKeyValue();

BillOfMaterials bom = em.find(BillOfMaterials.class, bomPk); // read existing table row into

BillOfMaterials class

BillOfMaterials createdBom = new BillOfMaterials("..."); // create new entity

em.persist(createdBom); // createdBom is now managed and will be saved to database when the

current JTA transaction completes

The entity lifecycle is managed by the underlying persistence provider.

New (transient): an entity is new if it has just been instantiated using the new operator, and it is not

associated with a persistence context. It has no persistent representation in the database and no

identifier value has been assigned.

Managed (persistent): a managed entity instance is an instance with a persistent identity that is

currently associated with a persistence context.

Detached: the entity instance is an instance with a persistent identity that is no longer associated with

a persistence context, usually because the persistence context was closed or the instance was

evicted from the context.

Removed: a removed entity instance is an instance with a persistent identity, associated with a

persistence context, but scheduled for removal from the database.

Latest WildFly Documentation

JBoss Community Documentation Page of 939 2293

6.9.10 Deployment

The persistence.xml contains the persistence unit configuration (e.g. datasource name) and as described in

the JPA 2.0 spec (section 8.2), the jar file or directory whose META-INF directory contains the

persistence.xml file is termed the root of the persistence unit. In Java EE environments, the root of a

persistence unit must be one of the following (quoted directly from the JPA 2.0 specification):

"

an EJB-JAR file

the WEB-INF/classes directory of a WAR file

a jar file in the WEB-INF/lib directory of a WAR file

a jar file in the EAR library directory

an application client jar file

The persistence.xml can specify either a JTA datasource or a non-JTA datasource. The JTA datasource is

expected to be used within the EE environment (even when reading data without an active transaction). If a

datasource is not specified, the default-datasource will instead be used (must be configured).

NOTE: Java Persistence 1.0 supported use of a jar file in the root of the EAR as the root of a persistence

unit. This use is no longer supported. Portable applications should use the EAR library directory for this case

instead.

"

Question: Can you have a EAR/META-INF/persistence.xml?

Answer: No, the above may deploy but it could include other archives also in the EAR, so you may have

deployment issues for other reasons. Better to put the persistence.xml in an EAR/lib/somePuJar.jar.

6.9.11 Troubleshooting

The logging can be enabled to get the following information:org.jboss.as.jpa

INFO - when persistence.xml has been parsed, starting of persistence unit service (per deployed

persistence.xml), stopping of persistence unit service

DEBUG - informs about entity managers being injected, creating/reusing transaction scoped entity

manager for active transaction

TRACE - shows how long each entity manager operation took in milliseconds, application searches

for a persistence unit, parsing of persistence.xml

To enable TRACE, open the as/standalone/configuration/standalone.xml (or

as/domain/configuration/domain.xml) file. Search for <subsystem

 and add the category. You need to changexmlns="urn:jboss:domain:logging:1.0"> org.jboss.as.jpa

the console-handler level from to . INFO TRACE

Latest WildFly Documentation

JBoss Community Documentation Page of 940 2293

<subsystem xmlns="urn:jboss:domain:logging:1.0">

 <console-handler name="CONSOLE">

 <level name="TRACE" />

 ...

 </console-handler>

 </periodic-rotating-file-handler>

 <logger category="com.arjuna">

 <level name="WARN" />

 </logger>

 <logger category="org.jboss.as.jpa">

 <level name="TRACE" />

 </logger>

 <logger category="org.apache.tomcat.util.modeler">

 <level name="WARN" />

 </logger>

 ...

To see what is going on at the JDBC level, enable TRACE and add spy="true" to thejboss.jdbc.spy

datasource.

<datasource jndi-name="java:jboss/datasources/..." pool-name="..." enabled="true" spy="true">

<logger category="jboss.jdbc.spy">

 <level name="TRACE"/>

</logger>

To troubleshoot issues with the Hibernate second level cache, try enabling trace for org.hibernate.SQL +

org.hibernate.cache.infinispan + org.infinispan:

Latest WildFly Documentation

JBoss Community Documentation Page of 941 2293

<subsystem xmlns="urn:jboss:domain:logging:1.0">

 <console-handler name="CONSOLE">

 <level name="TRACE" />

 ...

 </console-handler>

 </periodic-rotating-file-handler>

 <logger category="com.arjuna">

 <level name="WARN" />

 </logger>

 <logger category="org.hibernate.SQL">

 <level name="TRACE" />

 </logger>

 <logger category="org.hibernate">

 <level name="TRACE" />

 </logger>

 <logger category="org.infinispan">

 <level name="TRACE" />

 </logger>

 <logger category="org.apache.tomcat.util.modeler">

 <level name="WARN" />

 </logger>

 ...

6.9.12 Using the Infinispan second level cache

To enable the second level cache with Hibernate 5.1, just set the

 property to true, as is done in the following example (also sethibernate.cache.use_second_level_cache

the accordingly). By default the application server uses Infinispan as the cache providershared-cache-mode

for , so you don't need specify anything on top of that. The Infinispan version that isJPA applications

included in WildFly is expected to work with the Hibernate version that is included with WildFly. Example

persistence.xml settings:

<?xml version="1.0" encoding="UTF-8"?><persistence

xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">

<persistence-unit name="2lc_example_pu">

 <description>example of enabling the second level cache.</description>

 <jta-data-source>java:jboss/datasources/mydatasource</jta-data-source>

 <shared-cache-mode>ENABLE_SELECTIVE</shared-cache-mode>

 <properties>

 <property name="hibernate.cache.use_second_level_cache" value="true"/>

 </properties>

</persistence-unit>

</persistence>

Here is an example of enabling the second level cache for a Hibernate native API hibernate.cfg.xml file:

http://docs.oracle.com/javaee/6/api/javax/persistence/SharedCacheMode.html

Latest WildFly Documentation

JBoss Community Documentation Page of 942 2293

<property name="hibernate.cache.region.factory_class"

value="org.jboss.as.jpa.hibernate5.infinispan.InfinispanRegionFactory"/>

<property name="hibernate.cache.infinispan.cachemanager"

value="java:jboss/infinispan/container/hibernate"/>

<property name="hibernate.transaction.manager_lookup_class"

value="org.hibernate.transaction.JBossTransactionManagerLookup"/>

<property name="hibernate.cache.use_second_level_cache" value="true"/>

The Hibernate native API application will also need a MANIFEST.MF:

Dependencies: org.infinispan,org.hibernate

 contains advanced configurationInfinispan Hibernate/JPA second level cache provider documentation

information but you should bear in mind that when Hibernate runs within WildFly 8, some of those

configuration options, such as region factory, are not needed. Moreover, the application server providers you

with option of selecting a different cache container for Infinispan via hibernate.cache.infinispan.container

persistence property. To reiterate, this property is not mandatory and a default container is already deployed

for by the application server to host the second level cache.

Here is an example of what the Hibernate cache settings may currently be in your standalone.xml:

<cache-container name="hibernate" default-cache="local-query" module="org.hibernate.infinispan">

 <local-cache name="entity">

 <transaction mode="NON_XA"/>

 <eviction strategy="LRU" max-entries="10000"/>

 <expiration max-idle="100000"/>

 </local-cache>

 <local-cache name="local-query">

 <eviction strategy="LRU" max-entries="10000"/>

 <expiration max-idle="100000"/>

 </local-cache>

 <local-cache name="timestamps"/>

</cache-container>

Below is an example of customizing the "entity", "immutable-entity", "local-query", "pending-puts",

"timestamps" cache configuration may look like:

http://infinispan.org/docs/8.0.x/user_guide/user_guide.html#_using_infinispan_as_jpa_hibernate_second_level_cache_provider

Latest WildFly Documentation

JBoss Community Documentation Page of 943 2293

<cache-container name="hibernate" module="org.hibernate.infinispan"

default-cache="immutable-entity">

 <local-cache name="entity">

 <transaction mode="NONE"/>

 <eviction max-entries="-1"/>

 <expiration max-idle="120000"/>

 </local-cache>

 <local-cache name="immutable-entity">

 <transaction mode="NONE"/>

 <eviction max-entries="-1"/>

 <expiration max-idle="120000"/>

 </local-cache>

 <local-cache name="local-query">

 <eviction max-entries="-1"/>

 <expiration max-idle="300000"/>

 </local-cache>

 <local-cache name="pending-puts">

 <transaction mode="NONE"/>

 <eviction strategy="NONE"/>

 <expiration max-idle="60000"/>

 </local-cache>

 <local-cache name="timestamps">

 <transaction mode="NONE"/>

 <eviction strategy="NONE"/>

 </local-cache>

</cache-container>

Persistence.xml to use the above custom settings:

<properties>

 <property name="hibernate.cache.use_second_level_cache" value="true"/>

 <property name="hibernate.cache.use_query_cache" value="true"/>

 <property name="hibernate.cache.infinispan.immutable-entity.cfg" value="immutable-entity"/>

 <property name="hibernate.cache.infinispan.timestamps.cfg" value="timestamps"/>

 <property name="hibernate.cache.infinispan.pending-puts.cfg" value="pending-puts"/>

</properties>

Latest WildFly Documentation

JBoss Community Documentation Page of 944 2293

1.

2.

3.

4.

5.

6.9.13 Replacing the current Hibernate 5.x jars with a newer

version

Just update the current wildfly/modules/system/layers/base/org/hibernate/main folder to contain the newer

version (after stopping your WildFly server instance).

Delete *.index files in wildfly/modules/system/layers/base/org/hibernate/main and

wildfly/modules/system/layers/base/org/hibernate/envers/main folders.

Backup the current contents of wildfly/modules/system/layers/base/org/hibernate in case you make a

mistake.

Remove the older jars and copy new Hibernate jars into

wildfly/modules/system/layers/base/org/hibernate/main +

wildfly/modules/system/layers/base/org/hibernate/envers/main.

Update the wildfly/modules/system/layers/base/org/hibernate/main/module.xml +

wildfly/modules/system/layers/base/org/hibernate/envers/main/module.xml to name the jars that you

copied in.

Also update the hibernate-infinispan jars in

wildfly/modules/system/layers/base/org/hibernate/infinispan.

6.9.14 Using Hibernate Search

WildFly includes Hibernate Search. If you want to use the bundled version of Hibernate Search - which

requires to use the default Hibernate ORM 5.1 persistence provider - this will be automatically enabled.

Having this enabled means that, provided your application includes any entity which is annotated with

, the module will be madeorg.hibernate.search.annotations.Indexed org.hibernate.search.orm:main

available to your deployment; this will also include the required version of Apache Lucene.

If you do not want this module to be exposed to your deployment, set the persistence property

 to either to not automatically inject any Hibernate Searchwildfly.jpa.hibernate.search.module none

module, or to any other module identifier to inject a different module.

For example you could set wildfly.jpa.hibernate.search.module=org.hibernate.search.orm:5.4.0.Alpha1

to use the experimental version 5.4.0.Alpha1 instead of the provided module; in this case you'll have to

download and add the custom modules to the application server as other versions are not included.

When setting you might also opt to include Hibernate Searchwildfly.jpa.hibernate.search.module=none

and its dependencies within your application but we highly recommend the modules approach.

Latest WildFly Documentation

JBoss Community Documentation Page of 945 2293

6.9.15 Packaging the Hibernate JPA persistence provider with

your application

WildFly allows the packaging of Hibernate persistence provider jars with the application. The JPA deployer

will detect the presence of a persistence provider in the application and jboss.as.jpa.providerModule

needs to be set to .<?xml version="1.0" encoding="UTF-8"?>application

<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">

<persistence-unit name="myOwnORMVersion_pu">

<description>Hibernate Persistence Unit.</description>

<jta-data-source>java:jboss/datasources/PlannerDS</jta-data-source>

<properties>

 <property name="jboss.as.jpa.providerModule" value="application" />

</properties>

</persistence-unit>

</persistence>

Latest WildFly Documentation

JBoss Community Documentation Page of 946 2293

6.9.16 Migrating from OpenJPA

You need to copy the OpenJPA jars (e.g. openjpa-all.jar serp.jar) into the WildFly

modules/org/apache/openjpa/main folder and update modules/org/apache/openjpa/main/module.xml to

include the same jar file names that you copied in. This will help you get your application that depends on

OpenJPA, to deploy on WildFly.

<module xmlns="urn:jboss:module:1.1" name="org.apache.openjpa">

 <resources>

 <resource-root path="jipijapa-openjpa-1.0.1.Final.jar"/>

 <resource-root path="openjpa-all.jar">

 <filter>

 <exclude path="javax/**" />

 </filter>

 </resource-root>

 <resource-root path="serp.jar"/>

 </resources>

 <dependencies>

 <module name="javax.api"/>

 <module name="javax.annotation.api"/>

 <module name="javax.enterprise.api"/>

 <module name="javax.persistence.api"/>

 <module name="javax.transaction.api"/>

 <module name="javax.validation.api"/>

 <module name="javax.xml.bind.api"/>

 <module name="org.apache.commons.collections"/>

 <module name="org.apache.commons.lang"/>

 <module name="org.jboss.as.jpa.spi"/>

 <module name="org.jboss.logging"/>

 <module name="org.jboss.vfs"/>

 <module name="org.jboss.jandex"/>

 </dependencies>

</module>

6.9.17 Migrating from EclipseLink

You need to copy the EclipseLink jar (e.g. eclipselink-2.6.0.jar or eclipselink.jar as in the example below) into

the WildFly modules/org/eclipse/persistence/main folder and update

modules/org/eclipse/persistence/main/module.xml to include the EclipseLink jar (take care to use the jar

name that you copied in). If you happen to leave the EclipseLink version number in the jar name, the

module.xml should reflect that. This will help you get your application that depends on EclipseLink, to deploy

on WildFly.

Latest WildFly Documentation

JBoss Community Documentation Page of 947 2293

<module xmlns="urn:jboss:module:1.1" name="org.eclipse.persistence">

 <resources>

 <resource-root path="jipijapa-eclipselink-10.0.0.Final.jar"/>

 <resource-root path="eclipselink.jar"> <filter>

 <exclude path="javax/**" />

 </filter>

 </resource-root>

 </resources>

 <dependencies>

 <module name="asm.asm"/>

 <module name="javax.api"/>

 <module name="javax.annotation.api"/>

 <module name="javax.enterprise.api"/>

 <module name="javax.persistence.api"/>

 <module name="javax.transaction.api"/>

 <module name="javax.validation.api"/>

 <module name="javax.xml.bind.api"/>

 <module name="org.antlr"/>

 <module name="org.apache.commons.collections"/>

 <module name="org.dom4j"/>

 <module name="org.jboss.as.jpa.spi"/>

 <module name="org.jboss.logging"/>

 <module name="org.jboss.vfs"/>

 </dependencies>

</module>

As a workaround for issue , set (WildFly) system property "eclipselink.archive.factory" to valueid=414974

"org.jipijapa.eclipselink.JBossArchiveFactoryImpl" via jboss-cli.sh command (WildFly server needs to be

running when this command is issued):

jboss-cli.sh --connect

'/system-property=eclipselink.archive.factory:add(value=org.jipijapa.eclipselink.JBossArchiveFactoryImpl)'

. The following shows what the standalone.xml (or your WildFly configuration you are using) file might look

like after updating the system properties:

<system-properties>

 ...

 <property name="eclipselink.archive.factory"

value="org.jipijapa.eclipselink.JBossArchiveFactoryImpl"/>

</system-properties>

You should then be able to deploy applications with persistence.xml that include;

<provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>

Also refer to page .how to use EclipseLink with WildFly guide here

https://bugs.eclipse.org/bugs/show_bug.cgi?id=414974
https://community.jboss.org/wiki/HowToUseEclipseLinkWithAS7

Latest WildFly Documentation

JBoss Community Documentation Page of 948 2293

6.9.18 Migrating from DataNucleus

Read the .how to use DataNucleus with WildFly guide here

6.9.19 Native Hibernate use

Applications that use the Hibernate API directly, are referred to here as native Hibernate applications. Native

Hibernate applications, can choose to use the Hibernate jars included with WildFly or they can package their

own copy of the Hibernate jars. Applications that utilize JPA will automatically have the Hibernate classes

injected onto the application deployment classpath. Meaning that JPA applications, should expect to use the

Hibernate jars included in WildFly.

Example MANIFEST.MF entry to add dependency for Hibernate native applications:

Manifest-Version: 1.0

...

Dependencies: org.hibernate

If you use the Hibernate native api in your application and also use the JPA api to access the same entities

(from the same Hibernate session/EntityManager), you could get surprising results (e.g.

HibernateSession.saveOrUpdate(entity) is different than EntityManager.merge(entity). Each entity should be

managed by either Hibernate native API or JPA code.

6.9.20 Injection of Hibernate Session and

SessionFactoryInjection of Hibernate Session and

SessionFactory

You can inject a org.hibernate.Session and org.hibernate.SessionFactory directly, just as you can do with

EntityManagers and EntityManagerFactorys.

import org.hibernate.Session;

import org.hibernate.SessionFactory;

@Stateful public class MyStatefulBean ... {

 @PersistenceContext(unitName="crm") Session session1;

 @PersistenceContext(unitName="crm2", type=EXTENDED) Session extendedpc;

 @PersistenceUnit(unitName="crm") SessionFactory factory;

}

http://www.datanucleus.org/products/accessplatform_5_0/jpa/javaee.html

Latest WildFly Documentation

JBoss Community Documentation Page of 949 2293

6.9.21 Hibernate properties

WildFly automatically sets the following Hibernate (5.x) properties (if not already set in persistence unit

definition):

Property Purpose

 hibernate.id.new_generator_mappings =true New applications should let this

default to true, older applications

with existing data might need to

set to false (see note below). It

really depends on whether your

application uses the

@GeneratedValue(AUTO) which

will generates new key values for

newly created entities. The

application can override this

value (in the persistence.xml).

= instance ofhibernate.transaction.jta.platform

org.hibernate.service.jta.platform.spi.JtaPlatform interface

The transaction manager, user

transaction and transaction

synchronization registry is

passed into Hibernate via this

class.

 = instance ofhibernate.ejb.resource_scanner

org.hibernate.ejb.packaging.Scanner interface

Instance of entity scanning class

is passed in that knows how to

use the AS annotation indexer

(for faster deployment).

hibernate.transaction.manager_lookup_class This property is removed if found

in the persistence.xml (could

conflict with JtaPlatform)

 = qualified persistence unit namehibernate.session_factory_name Is set to the application name +

persistence unit name

(application can specify a

different value but it needs to be

unique across all application

deployments on the AS

instance).

 = falsehibernate.session_factory_name_is_jndi only set if the application didn't

specify a value for

hibernate.session_factory_name.

Latest WildFly Documentation

JBoss Community Documentation Page of 950 2293

 qualified persistence unithibernate.ejb.entitymanager_factory_name =

name

Is set to the application name +

persistence unit name

(application can specify a

different value but it needs to be

unique across all application

deployments on the AS

instance).

=truehibernate.query.jpaql_strict_compliance

=falsehibernate.auto_quote_keyword

hibernate.implicit_naming_strategy

=org.hibernate.boot.model.naming.ImplicitNamingStrategyJpaCompliantImpl

In Hibernate 4.x (and greater), if is :new_generator_mappings true

@GeneratedValue(AUTO) maps to org.hibernate.id.enhanced.SequenceStyleGenerator

@GeneratedValue(TABLE) maps to org.hibernate.id.enhanced.TableGenerator

@GeneratedValue(SEQUENCE) maps to org.hibernate.id.enhanced.SequenceStyleGenerator

In Hibernate 4.x (and greater), if is :new_generator_mappings false

@GeneratedValue(AUTO) maps to Hibernate "native"

@GeneratedValue(TABLE) maps to org.hibernate.id.MultipleHiLoPerTableGenerator

@GeneratedValue(SEQUENCE) to Hibernate "seqhilo"

6.9.22 Persistence unit properties

The following properties are supported in the persistence unit definition (in the persistence.xml file):

Property Purpose

jboss.as.jpa.providerModule name of the persistence provider module (default is

). Should be , if a persistenceorg.hibernate application

provider is packaged with the application. See note below

about some module names that are built in (based on the

).provider

jboss.as.jpa.adapterModule name of the integration classes that help WildFly to work with

the persistence provider.

jboss.as.jpa.adapterClass class name of the integration adapter.

jboss.as.jpa.managed set to to disable container managed JPA access to thefalse

persistence unit. The default is , which enables containertrue

managed JPA access to the persistence unit. This is typically

set to for Spring applications.false

Latest WildFly Documentation

JBoss Community Documentation Page of 951 2293

jboss.as.jpa.classtransformer set to to disable class transformers for the persistencefalse

unit. Set to , to allow entity class enhancing/rewriting. true

wildfly.jpa.default-unit set to to choose the default persistence unit in antrue

application. This is useful if you inject a persistence context

without specifying the unitName (@PersistenceContext

EntityManager em) but have multiple persistence units

specified in your persistence.xml.

wildfly.jpa.twophasebootstrap persistence providers (like Hibernate ORM 4.3+ via

EntityManagerFactoryBuilder), allow a two phase persistence

unit bootstrap, which improves JPA integration with CDI.

Setting the hint to false,wildfly.jpa.twophasebootstrap

disables the two phase bootstrap (for the persistence unit that

contains the hint).

wildfly.jpa.allowdefaultdatasourceuse set to false to prevent persistence unit from using the default

data source. Defaults to true. This is only important for

persistence units that do not specify a datasource.

jboss.as.jpa.deferdetach Controls whether transaction scoped persistence context used

in non-JTA transaction thread, will detach loaded entities after

each EntityManager invocation or when the persistence

context is closed (e.g. business method ends). Defaults to

false (entities are cleared after EntityManager invocation) and

if set to true, the detach is deferred until the context is closed.

wildfly.jpa.hibernate.search.module Controls which version of Hibernate Search to include on

classpath. Only makes sense when using Hibernate as JPA

implementation. The default is ; other valid values are auto

 or a full module identifier to use an alternative version.none

jboss.as.jpa.scopedname Specify the qualified (application scoped) persistence unit

name to be used. By default, this is internally set to the

application name + persistence unit name. The

hibernate.cache.region_prefix will default to whatever you set

jboss.as.jpa.scopedname to. Make sure you set the

jboss.as.jpa.scopedname value to a value not already in use

by other applications deployed on the same application server

instance.

Latest WildFly Documentation

JBoss Community Documentation Page of 952 2293

wildfly.jpa.allowjoinedunsync If set to true, allows an

SynchronizationType.UNSYNCHRONIZED persistence

context that has been joined to the active JTA transaction, to

be propagated into a SynchronizationType.SYNCHRONIZED

persistence context. Otherwise, an IllegalStateException

exception would of been thrown that complains that an

unsychronized persistence context cannot be propagated into

a synchronized persistence context. Defaults to false.

wildfly.jpa.skipmixedsynctypechecking Set to true to disable the throwing of an IllegalStateException

exception when propagating an

SynchronizationType.UNSYNCHRONIZED persistence

context into a SynchronizationType.SYNCHRONIZED

persistence context. This is a workaround intended to allow

applications that used to incorrectly not get

IllegalStateException exception with extended persistence

contexts, to avoid the IllegalStateException, so they don't have

to change their application right away (for compatibility

purposes). This hint may be deprecated in a future release.

See for more details. Defaults to false.WFLY-7108

6.9.23 Determine the persistence provider module

As mentioned above, if the property is not specified, the provider modulejboss.as.jpa.providerModule

name is determined by the name specified in the persistence.xml. The mapping is:provider

Provider Name Module name

blank org.hibernate

org.hibernate.ejb.HibernatePersistence org.hibernate

org.hibernate.ogm.jpa.HibernateOgmPersistence org.hibernate.ogm

oracle.toplink.essentials.PersistenceProvider oracle.toplink

oracle.toplink.essentials.ejb.cmp3.EntityManagerFactoryProvider oracle.toplink

org.eclipse.persistence.jpa.PersistenceProvider org.eclipse.persistence

org.datanucleus.api.jpa.PersistenceProviderImpl org.datanucleus

org.datanucleus.store.appengine.jpa.DatastorePersistenceProvider org.datanucleus:appengine

org.apache.openjpa.persistence.PersistenceProviderImpl org.apache.openjpa

https://issues.jboss.org/browse/WFLY-7108

Latest WildFly Documentation

JBoss Community Documentation Page of 953 2293

6.9.24 Binding EntityManagerFactory/EntityManager to JNDI

By default WildFly does bind the entity manager factory to JNDI. However, you can explicitly configurenot

this in the persistence.xml of your application by setting the

 jboss.entity.manager.factory.jndi.name hint. The value of that property should

be the JNDI name to which the entity manager factory should be bound.

You can also bind a container managed (transaction scoped) entity manager to

 {JNDI as well, }}via hint jboss.entity.manager.jndi.name }{{. As a reminder, a

transaction scoped entity manager (persistence context), acts as a proxy that

always gets an unique underlying entity manager (at the persistence provider

level).

Here's an example:

persistence.xml

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="2.0"

 xmlns="http://java.sun.com/xml/ns/persistence"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">

 <persistence-unit name="myPU">

 <!-- If you are running in a production environment, add a managed

 data source, the example data source is just for proofs of concept! -->

 <jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>

 <properties>

 <!-- Bind entity manager factory to JNDI at java:jboss/myEntityManagerFactory -->

 <property name="jboss.entity.manager.factory.jndi.name"

value="java:jboss/myEntityManagerFactory" />

 <property name="jboss.entity.manager.jndi.name" value="java:/myEntityManager"/>

 </properties>

 </persistence-unit>

</persistence>

@Stateful

public class ExampleSFSB {

 public void createSomeEntityWithTransactionScopedEM(String name) {

 Context context = new InitialContext();

 javax.persistence.EntityManager entityManager = (javax.persistence.EntityManager)

context.lookup("java:/myEntityManager");

 SomeEntity someEntity = new SomeEntity();

 someEntity.setName(name); entityManager.persist(name);

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 954 2293

6.9.25 Community

Many thanks to the community, for reporting issues, solutions and code changes. A number of people have

been answering Wildfly forum questions related to JPA usage. I would like to thank them for this, as well as

those reporting issues. For those of you that haven't downloaded the AS source code and started hacking

patches together. I would like to encourage you to start by reading . You will find that itHacking on WildFly

easy very easy to find your way around the WildFly/JPA/* source tree and make changes. Also, new for

WildFly, is the JipiJapa project that contains additional integration code that makes EE JPA application

deployments work better. The following list of contributors should grow over time, I hope to see more of you

listed here.

People who have contributed to the WildFly JPA layer:

 (lead of the EJB3 project)Carlo de Wolf

 (lead of the Hibernate ORM project)Steve Ebersole

 (lead of the Seam Persistence project, WildFly project team member/committer)Stuart Douglas

 (Active member of JBoss forums and JBoss EJB3 project team member)Jaikiran Pai

 (leads the productization effort of Hibernate in the EAP product)Strong Liu

 (lead of the WildFly container JPA sub-project)Scott Marlow

 Antti Laisi (OpenJPA integration changes)

 (Infinispan 2lc documentation)Galder Zamarreño

 (lead of the Hibernate Search project)Sanne Grinovero

 (Infinispan 2lc integration)Paul Ferraro

6.10 OSGi developer guide

Couldn't find a page to include called: OSGi Developer Guide

https://community.jboss.org/wiki/HackingOnWildFly
https://community.jboss.org/people/wolfc
http://in.relation.to/Bloggers/Steve
https://community.jboss.org/people/swd847
https://community.jboss.org/people/jaikiran
http://relation.to/Bloggers/StrongLiu
https://community.jboss.org/people/smarlow
https://community.jboss.org/people/alaisi
https://docs.jboss.org/author/display/~galder.zamarreno
https://docs.jboss.org/author/display/~sannegrinovero
https://issues.jboss.org/secure/ViewProfile.jspa?name=pferraro

Latest WildFly Documentation

JBoss Community Documentation Page of 955 2293

6.11 JNDI reference guide

6.11.1 Overview

WildFly offers several mechanisms to retrieve components by name. Every WildFly instance has it's own

local JNDI namespace () which is unique per JVM. The layout of this namespace is primarilyjava:

governed by the Java EE specification. Applications which share the same WildFly instance can use this

namespace to intercommunicate. In addition to local JNDI, a variety of mechanisms exist to access remote

components.

Client JNDI - This is a mechanism by which remote components can be accessed using the JNDI

APIs, but . This approach is the most efficient, and without network round-trips removes a

. For this reason, it is highly recommended to use Client JNDI overpotential single point of failure

traditional remote JNDI access. However, to make this possible, it does require that all names follow a

strict layout, so user customizations are not possible. Currently only access to remote EJBs is

supported via the namespace. Future revisions will likely add a JMS client JNDI namespace.ejb:

Traditional Remote JNDI - This is a more familiar approach to EE application developers, where the

client performs a remote component name lookup against a server, and a proxy/stub to the

component is serialized as part of the name lookup and returned to the client. The client then invokes

a method on the proxy which results in another remote network call to the underlying service. In a

nutshell, traditional remote JNDI involves two calls to invoke an EE component, whereas Client JNDI

requires one. It does however allow for customized names, and for a centralised directory for multiple

application servers. This centralized directory is, however, . a single point of failure

EE Application Client / Server-To-Server Delegation - This approach is where local names are bound

as an to a remote name using one of the above mechanisms. This is useful in that it allowsalias

applications to only ever reference standard portable Java EE names in both code and deployment

descriptors. It also allows for the application to be unaware of network topology details/ This can even

work with Java SE clients by using the little known EE Application Client feature. This feature allows

you to run an extremely minimal AS server around your application, so that you can take advantage of

certain core services such as naming and injection.

6.11.2 Local JNDI

The Java EE platform specification defines the following JNDI contexts:

 - The namespace is scoped to the current component (i.e. EJB)java:comp

 - Scoped to the current modulejava:module

 - Scoped to the current applicationjava:app

 - Scoped to the application serverjava:global

In addition to the standard namespaces, WildFly also provides the following two global namespaces:

Latest WildFly Documentation

JBoss Community Documentation Page of 956 2293

java:jboss

java:/

Only entries within the context are accessible over remote JNDI.java:jboss/exported

For web deployments is aliased to , so EJB's deployed in a war do notjava:comp java:module

have their own comp namespace.

Binding entries to JNDI
There are several methods that can be used to bind entries into JNDI in WildFly.

Using a deployment descriptor
For Java EE applications the recommended way is to use a to create the binding. Fordeployment descriptor

example the following binds the string to and theweb.xml "Hello World" java:global/mystring

string to (any non absolute JNDI name is relative to "Hello Module" java:comp/env/hello

 context).java:comp/env

<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"

 version="3.1">

 <env-entry>

 <env-entry-name>java:global/mystring</env-entry-name>

 <env-entry-type>java.lang.String</env-entry-type>

 <env-entry-value>Hello World</env-entry-value>

 </env-entry>

 <env-entry>

 <env-entry-name>hello</env-entry-name>

 <env-entry-type>java.lang.String</env-entry-type>

 <env-entry-value>Hello Module</env-entry-value>

 </env-entry>

</web-app>

For more details, see the .Java EE Platform Specification

https://docs.jboss.org/author/display/AS71/Deployment+Descriptors+used+In+AS7.1
http://jcp.org/en/jsr/detail?id=342

Latest WildFly Documentation

JBoss Community Documentation Page of 957 2293

Programatically

Java EE Applications

Standard Java EE applications may use the standard JNDI API, included with Java SE, to bind entries in the

global namespaces (the standard , and namespaces are read-only,java:comp java:module java:app

as mandated by the Java EE Platform Specification).

InitialContext initialContext = new InitialContext();

 initialContext.bind("java:global/a", 100);

There is no need to unbind entries created programatically, since WildFly tracks which bindings

belong to a deployment, and the bindings are automatically removed when the deployment is

undeployed.

WildFly Modules and Extensions

With respect to code in WildFly Modules/Extensions, which is executed out of a Java EE application context,

using the standard JNDI API may result in a UnsupportedOperationException if the target namespace uses

a WritableServiceBasedNamingStore. To work around that, the bind() invocation needs to be wrapped using

WildFly proprietary APIs:

InitialContext initialContext = new InitialContext();

 WritableServiceBasedNamingStore.pushOwner(serviceTarget);

 try {

 initialContext.bind("java:global/a", 100);

 } finally {

 WritableServiceBasedNamingStore.popOwner();

 }

The ServiceTarget removes the bind when uninstalled, thus using one out of the module/extension

domain usage should be avoided, unless entries are removed using unbind().

Latest WildFly Documentation

JBoss Community Documentation Page of 958 2293

Naming Subsystem Configuration
It is also possible to bind to one of the three global namespaces using configuration in the naming

subsystem. This can be done by either editing the file directly, or throughstandalone.xml/domain.xml

the management API.

Four different types of bindings are supported:

Simple - A primitive or java.net.URL entry (default is).java.lang.String

Object Factory - This allows to to specify the that is used tojavax.naming.spi.ObjectFactory

create the looked up value.

External Context - An external context to federate, such as an LDAP Directory Service

Lookup - The allows to create JNDI aliases, when this entry is looked up it will lookup the target and

return the result.

An example standalone.xml might look like:

<subsystem xmlns="urn:jboss:domain:naming:2.0" >

 <bindings>

 <simple name="java:global/a" value="100" type="int" />

 <simple name="java:global/jbossDocs" value="https://docs.jboss.org" type="java.net.URL" />

 <object-factory name="java:global/b" module="com.acme" class="org.acme.MyObjectFactory" />

 <external-context name="java:global/federation/ldap/example”

class="javax.naming.directory.InitialDirContext" cache="true">

 <environment>

 <property name="java.naming.factory.initial" value=“com.sun.jndi.ldap.LdapCtxFactory” />

 <property name="java.naming.provider.url" value=“ldap://ldap.example.com:389” />

 <property name="java.naming.security.authentication" value=“simple” />

 <property name="java.naming.security.principal" value=“uid=admin,ou=system” />

 <property name="java.naming.security.credentials" value=“secret” />

 </environment>

 </external-context>

 <lookup name="java:global/c" lookup="java:global/b" />

 </bindings>

</subsystem>

The CLI may also be used to bind an entry. As an example:

/subsystem=naming/binding=java\:global\/mybinding:add(binding-type=simple, type=long,

value=1000)

WildFly's Administrator Guide includes a section describing in detail the Naming subsystem

configuration.

Latest WildFly Documentation

JBoss Community Documentation Page of 959 2293

Retrieving entries from JNDI

Resource Injection
For Java EE applications the recommended way to lookup a JNDI entry is to use injection:@Resource

@Resource(lookup = "java:global/mystring")

 private String myString;

 @Resource(name = "hello")

 private String hello;

 @Resource

 ManagedExecutorService executor;

Note that is more than a JNDI lookup, it also binds an entry in the component's JNDI@Resource

environment. The new bind JNDI name is defined by 's attribute, which value, if@Resource name

unspecified, is the Java type concatenated with and the field's name, for instance /

. More, similar to when using deployment descriptors to bind JNDI entries.java.lang.String/myString

unless the name is an absolute JNDI name, it is considered relative to . For instance, withjava:comp/env

respect to the field named above, the 's attribute instructs WildFly to lookupmyString @Resource lookup

the value in , bind it in , andjava:global/mystring java:comp/env/java.lang.String/myString

then inject such value into the field.

With respect to the field named , there is no attribute value defined, so the responsibility tohello lookup

provide the entry's value is delegated to the deployment descriptor. Considering that the deployment

descriptor was the previously shown, which defines an environment entry with same name,web.xml hello

then WildFly inject the valued defined in the deployment descriptor into the field.

The field has no attributes specified, so the bind's name would default to executor

, butjava:comp/env/javax.enterprise.concurrent.ManagedExecutorService/executor

there is no such entry in the deployment descriptor, and when that happens it's up to WildFly to provide a

default value or null, depending on the field's Java type. In this particular case WildFly would inject the

default instance of a managed executor service, the value in

, as mandated by the EE Concurrency Utilities 1.0java:comp/DefaultManagedExecutorService

Specification (JSR 236).

Latest WildFly Documentation

JBoss Community Documentation Page of 960 2293

Standard Java SE JNDI API
Java EE applications may use, without any additional configuration needed, the standard JNDI API to lookup

an entry from JNDI:

String myString = (String) new InitialContext().lookup("java:global/mystring");

or simply

String myString = InitialContext.doLookup("java:global/mystring");

6.11.3 Remote JNDI

WildFly supports two different types of remote JNDI. The old jnp based JNDI implementation used in JBoss

AS versions prior to 7.x is no longer supported.

remote:
The protocol uses the WildFly remoting protocol to lookup items from the servers local JNDI. Toremote:

use it, you must have the appropriate jars on the class path, if you are maven user can be done simply by

adding the following to your :pom.xml

<dependency>

 <groupId>org.wildfly</groupId>

 <artifactId>wildfly-ejb-client-bom</artifactId>

 <version>8.0.0.Final</version>

 <type>pom</type>

 <scope>compile</scope>

</dependency>

If you are not using maven a shaded jar that contains all required classes

can be found in the directory of WildFly's distribution.bin/client

final Properties env = new Properties();

env.put(Context.INITIAL_CONTEXT_FACTORY,

org.jboss.naming.remote.client.InitialContextFactory.class.getName());

env.put(Context.PROVIDER_URL, "remote://localhost:4447");

remoteContext = new InitialContext(env);

Latest WildFly Documentation

JBoss Community Documentation Page of 961 2293

ejb:
The ejb: namespace is provided by the jboss-ejb-client library. This protocol allows you to look up EJB's,

using their application name, module name, ejb name and interface type.

This is a client side JNDI implementation. Instead of looking up an EJB on the server the lookup name

contains enough information for the client side library to generate a proxy with the EJB information. When

you invoke a method on this proxy it will use the current EJB client context to perform the invocation. If the

current context does not have a connection to a server with the specified EJB deployed then an error will

occur. Using this protocol it is possible to look up EJB's that do not actually exist, and no error will be thrown

until the proxy is actually used. The exception to this is stateful session beans, which need to connect to a

server when they are created in order to create the session bean instance on the server.

Some examples are:

ejb:myapp/myejbjar/MyEjbName!com.test.MyRemoteInterface

ejb:myapp/myejbjar/MyStatefulName!comp.test.MyStatefulRemoteInterface?stateful

The first example is a lookup of a singleton, stateless or EJB 2.x home interface. This lookup will not hit the

server, instead a proxy will be generated for the remote interface specified in the name. The second

example is for a stateful session bean, in this case the JNDI lookup will hit the server, in order to tell the

server to create the SFSB session.

For more details on how the server connections are configured, please see EJB invocations from a remote

.client using JNDI

6.12 Spring applications development and migration

guide

This document details the main points that need to be considered by Spring developers that wish to develop

new applications or to migrate existing applications to be run into WildFly 8.

6.12.1 Dependencies and Modularity

WildFly 8 has a modular class loading strategy, different from previous versions of JBoss AS, which enforces

a better class loading isolation between deployments and the application server itself. A detailed description

can be found in the documentation dedicated to .class loading in WildFly 8

This reduces significantly the risk of running into a class loading conflict and allows applications to package

their own dependencies if they choose to do so. This makes it easier for Spring applications that package

their own dependencies - such as logging frameworks or persistence providers to run on WildFly 8.

At the same time, this does not mean that duplications and conflicts cannot exist on the classpath. Some

module dependencies are implicit, depending on the type of deployment as shown . here

https://docs.jboss.org/author/display/AS7/Class+Loading+in+AS7
https://docs.jboss.org/author/display/AS7/Implicit+module+dependencies+for+deployments

Latest WildFly Documentation

JBoss Community Documentation Page of 962 2293

6.12.2 Persistence usage guide

Depending on the strategy being used, Spring applications can be:

native Hibernate applications;

JPA-based applications;

native JDBC applications;

6.12.3 Native Spring/Hibernate applications

Applications that use the Hibernate API directly with Spring (i.e. through either one of

LocalSessionFactoryBean or AnnotationSessionFactoryBean) may use a version of Hibernate 3 packaged

inside the application. Hibernate 4 (which is provided through the 'org.hibernate' module of WildFly 8) is not

supported by Spring 3.0 and Spring 3.1 (and may be supported by Spring 3.2 as described in), soSPR-8096

adding this module as a dependency is not a solution.

6.12.4 based applications

Spring applications using JPA may choose between:

using a server-deployed persistence unit;

using a Spring-managed persistence unit.

https://jira.springsource.org/browse/SPR-8096

Latest WildFly Documentation

JBoss Community Documentation Page of 963 2293

Using server-deployed persistence units
Applications that use a server-deployed persistence unit must observe the typical Java EE rules in what

concerns dependency management, i.e. the javax.persistence classes and persistence provider (Hibernate)

are contained in modules which are added automatically by the application when the persistence unit is

deployed.

In order to use the server-deployed persistence units from within Spring, either the persistence context or the

persistence unit need to be registered in JNDI via web.xml as follows:

<persistence-context-ref>

 <persistence-context-ref-name>persistence/petclinic-em</persistence-unit-ref-name>

 <persistence-unit-name>petclinic</persistence-unit-name>

</persistence-context-ref>

or, respectively:

<persistence-unit-ref>

 <persistence-unit-ref-name>persistence/petclinic-emf</persistence-unit-ref-name>

 <persistence-unit-name>petclinic</persistence-unit-name>

</persistence-unit-ref>

When doing so, the persistence context or persistence unit are available to be looked up in JNDI, as follows:

<jee:jndi-lookup id="entityManager" jndi-name="java:comp/env/persistence/petclinic-em"

 expected-type="javax.persistence.EntityManager"/>

or

<jee:jndi-lookup id="entityManagerFactory" jndi-name="java:comp/env/persistence/petclinic-emf"

 expected-type="javax.persistence.EntityManagerFactory"/>

JNDI binding

JNDI binding via persistence.xml properties is not supported in WildFly 8.

Latest WildFly Documentation

JBoss Community Documentation Page of 964 2293

Using Spring-managed persistence units
Spring applications running in WildFly 8 may also create persistence units on their own, using the

LocalContainerEntityManagerFactoryBean. This is what these applications need to consider:

Placement of the persistence unit definitions
When the application server encounters a deployment that has a file named META-INF/persistence.xml (or,

for that matter, WEB-INF/classes/META-INF/persistence.xml), it will attempt to create a persistence unit

based on what is provided in the file. In most cases, such definition files are not compliant with the Java EE

requirements, mostly because required elements such as the datasource of the persistence unit are

supposed to be provided by the Spring context definitions, which will fail the deployment of the persistence

unit, and consequently of the entire deployment.

Spring applications can easily avoid this type of conflict, by using a feature of the

LocalContainerEntityManagerFactoryBean which is designed for this purpose. Persistence unit definition

files can exist in other locations than META-INF/persistence.xml and the location can be indicated through

the persistenceXmlLocation property of the factory bean class.

Assuming that the persistence unit is in the META-INF/jpa-persistence.xml, the corresponding definition can

be:

<bean id="entityManagerFactory"

class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">

 <property name="persistenceXmlLocation"

value="classpath*:META-INF/jpa-persistence.xml"/>

 <!-- other definitions -->

</bean>

Managing dependencies
Since the LocalContainerEntityManagerFactoryBean and the corresponding HibernateJpaVendorAdapter

are based on Hibernate 3, it is required to use that version with the application. Therefore, the Hibernate 3

jars must be included in the deployment. At the same time, due the presence of @PersistenceUnit or

@PersistenceContext annotations on the application classes, the application server will automatically add

the 'org.hibernate' module as a dependency.

This can be avoided by instructing the server to exclude the module from the deployment's list of

dependencies. In order to do so, include a META-INF/jboss-deployment-structure.xml or, for web

applications, WEB-INF/jboss-deployment-structure.xml with the following content:

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">

 <deployment>

 <exclusions>

 <module name="org.hibernate"/>

 </exclusions>

 </deployment>

</jboss-deployment-structure>

Latest WildFly Documentation

JBoss Community Documentation Page of 965 2293

6.13 All WildFly documentation

Couldn't find a page to include called: All JBoss AS 7 documentation

6.14 Application Client Reference

As a Java EE6 compliant server, WildFly 8 contains an application client. An application client is essentially

a cut down server instance, that allow you to use EE features such as injection in a client side program.

This article is not a tutorial on application client development, rather it covers the specifics of the

WildFly application client. There are tutorials available elsewhere that cover application client

basics, such as .this one

Note that the application client is different to the EJB client libraries, it is perfectly possible to write

client application that do not use the application client, but instead use the jboss-ejb-client library

directly.

6.14.1 Getting Started

To launch the application client use the or script in the bin directory. Forappclient.sh appclient.bat

example:

./appclient.sh --host=10.0.0.1 myear.ear#appClient.jar arg1

The argument tells the appclient the server to connect to. The next argument is the application--host

client deployment to use, application clients can only run a single deployment, and this deployment must

also be deployed on the full server instance that the client is connecting too.

Any arguments after the deployment to use are passed directly through to the application clients main

function.

6.14.2 Connecting to more than one host

If you want to connect to more than one host or make use of the clustering functionality then you need to

specify a jboss-ejb-client.properties file rather than a host:

./appclient.sh --ejb-client-properties=my-jboss-ejb-client.properties myear.ear#appClient.jar

arg1

http://blogs.steeplesoft.com/2011/02/java-ees-buried-treasure-the-application-client-container/

Latest WildFly Documentation

JBoss Community Documentation Page of 966 2293

6.14.3 Example

A simple example how to package an application client and use it with WildFly can be within the quickstart

 which is located on Github .appclient

6.15 CDI Reference

WildFly uses , the CDI reference implementation as its CDI provider. To activate CDI for a deploymentWeld

simply add a file in any archive in the deployment.beans.xml

This document is not intended to be a CDI tutorial, it only covers CDI usage that is specific to WildFly. For

some general information on CDI see the below links:

CDI Specification

Weld Reference Guide

The AS7 Quickstarts

https://github.com/wildfly/quickstart/tree/master/app-client
http://weld.cdi-spec.org/
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html
http://docs.jboss.org/weld/reference/latest/en-US/html/
http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/

Latest WildFly Documentation

JBoss Community Documentation Page of 967 2293

6.15.1 Using CDI Beans from outside the deployment

For WildFly 8 onwards, it is now possible have classes outside the deployment be picked up as CDI beans.

In order for this to work you must add a dependency on the external deployment that your beans are coming

from, and make sure the META-INF directory of this deployment is imported, so that your deployment has

visibility to the file (To import beans from outside the deployment they must be in an archivebeans.xml

with a file).beans.xml

There are two ways to do this, either using the or using MANIFEST.MF

.jboss-deployment-structure.xml

Using you need to add a entry, with meta-inf specified after the entry, e.g.MANIFEST.MF Dependencies

Dependencies: com.my-cdi-module meta-inf, com.my-other-cdi-module meta-inf

Using you need to add a dependency entry with jboss-deployment-structure.xml

, e.g.meta-inf="import"

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.2">

 <deployment>

 <dependencies>

 <module name="deployment.d1.jar" meta-inf="import"/>

 </dependencies>

 </deployment>

</jboss-deployment-structure>

Note that this can be used to create beans from both modules in the directory, and from othermodules

deployments.

For more information on class loading and adding dependencies to your deployment please see the Class

Loading Guide

Latest WildFly Documentation

JBoss Community Documentation Page of 968 2293

6.15.2 Suppressing implicit bean archives

CDI 1.1 brings new options to packaging of CDI-enabled applications. In addition to well-known explicit

bean archives (basically any archive containing the file) the specification introduces beans.xml implicit

.bean archives

An implicit bean archive is any archive that contains one or more classes annotated with a bean defining

annotation (scope annotation) or one or more session beans. As a result, the beans.xml file is no longer

required for CDI to work in your application.

In an implicit bean archive that are either annotated with bean defining annotations oronly those classes

are session beans are recognized by CDI as beans (other classes cannot be injected).

This has a side-effect, though. Libraries exist that make use of scope annotation (bean defining annotations)

for their own convenience but are not designed to run with CDI support. Guava would be an example of such

library. If your application bundles such library it will be recognized as a CDI archive and may fail the

.deployment

Fortunately, WildFly makes it possible to suppress implicit bean archives and only enable CDI in archives

that bundle the beans.xml file. There are two ways to achieve this:

deployment configuration
You can either set this up for your deployment only by adding the following content to the

 file of your application:META-INF/jboss-all.xml

<jboss xmlns="urn:jboss:1.0">

 <weld xmlns="urn:jboss:weld:1.0" require-bean-descriptor="true"/>

</jboss>

Global configuration
Alternatively, you may configure this for all deployments in your WildFly instance by executing the following

command:

/subsystem=weld:write-attribute(name=require-bean-descriptor,value=true)

https://code.google.com/p/guava-libraries/issues/detail?id=1433
https://code.google.com/p/guava-libraries/issues/detail?id=1433

Latest WildFly Documentation

JBoss Community Documentation Page of 969 2293

6.15.3 Development mode

WildFly 10 introduces a special mode for application development which allows you to inspect and monitor

your CDI deployments. This mode is turned off by default and note that some features of the development

.mode may have negative impact on the performance and/or functionality of the application

deployment configuration
 You can enable it locally in your application by setting the Servlet initialization parameter web.xml

 to org.jboss.weld.development true:

<context-param>

 <param-name>org.jboss.weld.development</param-name>

 <param-value>true</param-value>

 </context-param>

Global configuration
Alternatively, you can enable it globally in Weld subsystem by setting attribute to development-mode

true:

/subsystem=weld:write-attribute(name=development-mode,value=true)

For more details and example you can check .Weld development mode

Once the development mode is enabled you can check your applications CDI information using Weld Probe

- .Weld Probe

http://docs.jboss.org/weld/reference/latest/en-US/html_single/#devmode
http://docs.jboss.org/weld/reference/latest/en-US/html_single/#probe

Latest WildFly Documentation

JBoss Community Documentation Page of 970 2293

6.15.4 portable mode

CDI 1.1 clarifies some aspects of how CDI protable extensions work. As a result, some extensions that do

not use the API properly (but were tolerated in CDI 1.0 environment) may stop working with CDI 1.1.If this is

the case of your application you will see an exception like this:

org.jboss.weld.exceptions.IllegalStateException: WELD-001332: BeanManager method getBeans() is

not available during application initialization

Fortunatelly, there is a non-portable mode available in WildFly which skips some of the API usage checks

and therefore allows the legacy extensions to work as before.

Again, there are two ways to enable the non-portable mode:

deployment configuration
You can either set this up for your deployment only by adding the following content to the

 file of your application:META-INF/jboss-all.xml

<jboss xmlns="urn:jboss:1.0">

 <weld xmlns="urn:jboss:weld:1.0" non-portable-mode="true" />

</jboss>

Global configuration
Alternatively, you may configure this for all deployments in your WildFly instance by executing the following

command:

/subsystem=weld:write-attribute(name=non-portable-mode,value=true)

 Note that new portable extensions should always use the BeanManager API properly and thus never

required the non-portable mode. The non-portable mode only exists to preserve compatibility with

legacy extensions!

6.16 Class Loading in WildFly

Since JBoss AS 7, Class loading is considerably different to previous versions of JBoss AS. Class loading is

based on the project. Instead of the more familiar hierarchical class loading environment,JBoss Modules

WildFly's class loading is based on modules that have to define explicit dependencies on other modules.

Deployments in WildFly are also modules, and do not have access to classes that are defined in jars in the

application server unless an explicit dependency on those classes is defined.

http://docs.jboss.org/cdi/api/1.1/javax/enterprise/inject/spi/BeanManager.html
https://docs.jboss.org/author/display/MODULES

Latest WildFly Documentation

JBoss Community Documentation Page of 971 2293

1.

2.

3.

4.

6.16.1 Deployment Module Names

Module names for top level deployments follow the format while subdeployment.myarchive.war

deployments are named like . deployment.myear.ear.mywar.war

This means that it is possible for a deployment to import classes from another deployment using the other

deployments module name, the details of how to add an explicit module dependency are explained below.

6.16.2 Automatic Dependencies

Even though in WildFly modules are isolated by default, as part of the deployment process some

dependencies on modules defined by the application server are set up for you automatically. For instance, if

you are deploying a Java EE application a dependency on the Java EE API's will be added to your module

automatically. Similarly if your module contains a beans.xml file a dependency on will be addedWeld

automatically, along with any supporting modules that weld needs to operate.

For a complete list of the automatic dependencies that are added, please see Implicit module dependencies

.for deployments

Automatic dependencies can be excluded through the use of .jboss-deployment-structure.xml

6.16.3 Class Loading Precedence

A common source of errors in Java applications is including API classes in a deployment that are also

provided by the container. This can result in multiple versions of the class being created and the deployment

failing to deploy properly. To prevent this in WildFly, module dependencies are added in a specific order that

should prevent this situation from occurring.

In order of highest priority to lowest priority

System Dependencies - These are dependencies that are added to the module automatically by the

container, including the Java EE api's.

User Dependencies - These are dependencies that are added through

 or through the manifest entry.jboss-deployment-structure.xml Dependencies:

Local Resource - Class files packaged up inside the deployment itself, e.g. class files from

 or of a war.WEB-INF/classes WEB-INF/lib

Inter deployment dependencies - These are dependencies on other deployments in an ear

deployment. This can include classes in an ear's lib directory, or classes defined in other ejb jars.

6.16.4 WAR Class Loading

The war is considered to be a single module, so classes defined in are treated the same asWEB-INF/lib

classes in . All classes packaged in the war will be loaded with the same class loader.WEB-INF/classes

http://seamframework.org/Weld
https://docs.jboss.org/author/display/WFLY10/Implicit+module+dependencies+for+deployments
https://docs.jboss.org/author/display/WFLY10/Implicit+module+dependencies+for+deployments

Latest WildFly Documentation

JBoss Community Documentation Page of 972 2293

6.16.5 EAR Class Loading

Ear deployments are multi-module deployments. This means that not all classes inside an ear will

necessarily have access to all other classes in the ear, unless explicit dependencies have been defined. By

default the directory is a single module, and every WAR or EJB jar deployment is also a separateEAR/lib

module. Sub deployments (wars and ejb-jars) always have a dependency on the parent module, which gives

them access to classes in , however they do not always have an automatic dependency on eachEAR/lib

other. This behaviour is controlled via the setting in the ee subsystemear-subdeployments-isolated

configuration:

<subsystem xmlns="urn:jboss:domain:ee:1.0" >

 <ear-subdeployments-isolated>false</ear-subdeployments-isolated>

</subsystem>

By default this is set to false, which allows the sub-deployments to see classes belonging to other

sub-deployments within the .ear.

For example, consider the following .ear deployment:

myapp.ear

 |

 |--- web.war

 |

 |--- ejb1.jar

 |

 |--- ejb2.jar

If the ear-subdeployments-isolated is set to false, then the classes in web.war can access classes belonging

to ejb1.jar and ejb2.jar. Similarly, classes from ejb1.jar can access classes from ejb2.jar (and vice-versa).

The ear-subdeployments-isolated element value has no effect on the isolated classloader of the

.war file(s). i.e. irrespective of whether this flag is set to true or false, the .war within a .ear will have

a isolated classloader and other sub-deployments within that .ear will not be able to access classes

from that .war. This is as per spec.

If the ear-subdeployments-isolated is set to true then no automatic module dependencies between the

sub-deployments are set up. User must manually setup the dependency with entries, or byClass-Path

setting up explicit module dependencies.

Latest WildFly Documentation

JBoss Community Documentation Page of 973 2293

Portability

The Java EE specification says that portable applications should not rely on sub deployments

having access to other sub deployments unless an explicit Class-Path entry is set in the

MANIFEST.MF. So portable applications should always use Class-Path entry to explicitly state their

dependencies.

It is also possible to override the ear-subdeployments-isolated element value at a per deployment

level. See the section on jboss-deployment-structure.xml below.

Dependencies: Manifest Entries

Deployments (or more correctly modules within a deployment) may set up dependencies on other modules

by adding a manifest entry. This entry consists of a comma separated list of moduleDependencies:

names that the deployment requires. The available modules can be seen under the directory in themodules

application server distribution. For example to add a dependency on javassist and apache velocity you can

add a manifest entry as follows:

Dependencies: org.javassist export,org.apache.velocity export services,org.antlr

Each dependency entry may also specify some of the following parameters by adding them after the module

name:

 This means that the dependencies will be exported, so any module that depends on thisexport

module will also get access to the dependency.

 By default items in META-INF of a dependency are not accessible, this makes items from services

 accessible so in the modules can be loaded.META-INF/services services

 If this is specified the deployment will not fail if the module is not available.optional

 This will make the contents of the directory available (unlike , whichmeta-inf META-INF services

just makes available). In general this will not cause any deploymentMETA-INF/services

descriptors in META-INF to be processed, with the exception of . If a file isbeans.xml beans.xml

present this module will be scanned by Weld and any resulting beans will be available to the

application.

 If a jandex index has be created for the module these annotations will be merged intoannotations

the deployments annotation index. The index can be generated using the ,Jandex Jandex ant task

and must be named . Note that it is not necessary to break open the jarMETA-INF/jandex.idx

being indexed to add this to the modules class path, a better approach is to create a jar containing

just this index, and adding it as an additional resource root in the file.module.xml

http://download.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html
https://github.com/jbossas/jandex
https://github.com/jbossas/jandex/blob/master/src/main/java/org/jboss/jandex/JandexAntTask.java

Latest WildFly Documentation

JBoss Community Documentation Page of 974 2293

Adding a dependency to all modules in an EAR

Using the parameter it is possible to add a dependency to all sub deployments in an ear. Ifexport

a module is exported from a entry in the top level of the ear (or by a jar in the Dependencies:

 directory) it will be available to all sub deployments as well.ear/lib

To generate a MANIFEST.MF entry when using maven put the following in your pom.xml:

pom.xml

<build>

 ...

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-war-plugin</artifactId>

 <configuration>

 <archive>

 <manifestEntries>

 <Dependencies>org.slf4j</Dependencies>

 </manifestEntries>

 </archive>

 </configuration>

 </plugin>

 </plugins>

</build>

If your deployment is a jar you must use the rather than the maven-jar-plugin

.maven-war-plugin

Class Path Entries
It is also possible to add module dependencies on other modules inside the deployment using the

 manifest entry. This can be used within an ear to set up dependencies between subClass-Path

deployments, and also to allow modules access to additional jars deployed in an ear that are not sub

deployments and are not in the directory. If a jar in the directory references a jar via EAR/lib EAR/lib

 then this additional jar is merged into the parent ear's module, and is accessible to all subClass-Path:

deployments in the ear.

Latest WildFly Documentation

JBoss Community Documentation Page of 975 2293

6.16.6 Global Modules

It is also possible to set up global modules, that are accessible to all deployments. This is done by modifying

the configuration file (standalone/domain.xml).

For example, to add javassist to all deployments you can use the following XML:

standalone.xml/domain.xml

<subsystem xmlns="urn:jboss:domain:ee:1.0" >

 <global-modules>

 <module name="org.javassist" slot="main" />

 </global-modules>

</subsystem>

Note that the field is optional and defaults to .slot main

6.16.7 JBoss Deployment Structure File

 is a JBoss specific deployment descriptor that can be used tojboss-deployment-structure.xml

control class loading in a fine grained manner. It should be placed in the top level deployment, in META-INF

(or for web deployments). It can do the following:WEB-INF

Prevent automatic dependencies from being added

Add additional dependencies

Define additional modules

Change an EAR deployments isolated class loading behaviour

Add additional resource roots to a module

An example of a complete file for an ear deployment is as follows:jboss-deployment-structure.xml

jboss-deployment-structure.xml

<jboss-deployment-structure>

 <!-- Make sub deployments isolated by default, so they cannot see each others classes without

a Class-Path entry -->

 <ear-subdeployments-isolated>true</ear-subdeployments-isolated>

 <!-- This corresponds to the top level deployment. For a war this is the war's module, for an

ear -->

 <!-- This is the top level ear module, which contains all the classes in the EAR's lib folder

-->

 <deployment>

 <!-- exclude-subsystem prevents a subsystems deployment unit processors running on a

deployment -->

 <!-- which gives basically the same effect as removing the subsystem, but it only affects

single deployment -->

 <exclude-subsystems>

 <subsystem name="resteasy" />

Latest WildFly Documentation

JBoss Community Documentation Page of 976 2293

 </exclude-subsystems>

 <!-- Exclusions allow you to prevent the server from automatically adding some dependencies

-->

 <exclusions>

 <module name="org.javassist" />

 </exclusions>

 <!-- This allows you to define additional dependencies, it is the same as using the

Dependencies: manifest attribute -->

 <dependencies>

 <module name="deployment.javassist.proxy" />

 <module name="deployment.myjavassist" />

 <!-- Import META-INF/services for ServiceLoader impls as well -->

 <module name="myservicemodule" services="import"/>

 </dependencies>

 <!-- These add additional classes to the module. In this case it is the same as including

the jar in the EAR's lib directory -->

 <resources>

 <resource-root path="my-library.jar" />

 </resources>

 </deployment>

 <sub-deployment name="myapp.war">

 <!-- This corresponds to the module for a web deployment -->

 <!-- it can use all the same tags as the <deployment> entry above -->

 <dependencies>

 <!-- Adds a dependency on a ejb jar. This could also be done with a Class-Path entry -->

 <module name="deployment.myear.ear.myejbjar.jar" />

 </dependencies>

 <!-- Set's local resources to have the lowest priority -->

 <!-- If the same class is both in the sub deployment and in another sub deployment that -->

 <!-- is visible to the war, then the Class from the other deployment will be loaded, -->

 <!-- rather than the class actually packaged in the war. -->

 <!-- This can be used to resolve ClassCastExceptions if the same class is in multiple sub

deployments-->

 <local-last value="true" />

 </sub-deployment>

 <!-- Now we are going to define two additional modules -->

 <!-- This one is a different version of javassist that we have packaged -->

 <module name="deployment.myjavassist" >

 <resources>

 <resource-root path="javassist.jar" >

 <!-- We want to use the servers version of javassist.util.proxy.* so we filter it out-->

 <filter>

 <exclude path="javassist/util/proxy" />

 </filter>

 </resource-root>

 </resources>

 </module>

 <!-- This is a module that re-exports the containers version of javassist.util.proxy -->

 <!-- This means that there is only one version of the Proxy classes defined -->

 <module name="deployment.javassist.proxy" >

 <dependencies>

 <module name="org.javassist" >

 <imports>

 <include path="javassist/util/proxy" />

 <exclude path="/**" />

 </imports>

 </module>

 </dependencies>

Latest WildFly Documentation

JBoss Community Documentation Page of 977 2293

 </module>

</jboss-deployment-structure>

The xsd for jboss-deployment-structure.xml is available at

https://github.com/wildfly/wildfly/blob/master/build/src/main/resources/docs/schema/jboss-deployment-structure-1_2.xsd

6.16.8 Accessing JDK classes

Not all JDK classes are exposed to a deployment by default. If your deployment uses JDK classes that are

not exposed you can get access to them using jboss-deployment-structure.xml with system dependencies:

Using jboss-deployment-structure.xml to access JDK classes

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.1">

 <deployment>

 <dependencies>

 <system export="true">

 <paths>

 <path name="com/sun/corba/se/spi/legacy/connection"/>

 </paths>

 </system>

 </dependencies>

 </deployment>

</jboss-deployment-structure>

6.16.9 The "jboss.api" property and application use of modules

shipped with WildFly

The WildFly distribution includes a large number of modules, a great many of which are included for use by

WildFly internals, with no testing of the appropriateness of their direct use by applications or any

commitment to continue to ship those modules in future releases if they are no longer needed by the

internals. So how can a user know whether it is advisable for their application to specify an explicit

dependency on a module WildFly ships? The "jboss.api" property specified in the module's module.xml file

can tell you:

Example declaration of the jboss.api property

<module xmlns="urn:jboss:module:1.3" name="com.google.guava">

 <properties>

 <property name="jboss.api" value="private"/>

 </properties>

If a module does not have a property element like the above, then it's equivalent to one with a value of

"public".

https://github.com/wildfly/wildfly-core/blob/e737eff554ee433ca54835154fd67725fd52f63e/server/src/main/resources/schema/jboss-deployment-structure-1_2.xsd

Latest WildFly Documentation

JBoss Community Documentation Page of 978 2293

Following are the meanings of the various values you may see for the jboss.api property:

Value Meaning

public May be explicitly depended upon by end user applications. Will continue to be available in

future releases within the same major series and should not have incompatible API changes

in future releases within the same minor series, and ideally not within the same major series.

private Intended for internal use only. Only tested according to internal usage. May not be safe for

end user applications to use directly.

Could change significantly or be removed in a future release without notice.

unsupported If you see this value in a module.xml in a WildFly release, please file a bug report, as it is

not applicable in WildFly. In EAP it has a meaning equivalent to "private" but that does not

mean the module is "private" in WildFly; it could very easily be "public".

preview May be explicitly depended upon by end user applications, but there are no guarantees of

continued availability in future releases or that there will not be incompatible API changes.

This is not a common classification in WildFly. It is not used in WildFly 10.

deprecated May be explicitly depended upon by end user applications. Stable and reliable but an

alternative should be sought. Will be removed in a future major release.

Note that these definitions are only applicable to WildFly. In EAP and other Red Hat products based on

WildFly the same classifiers are used, with generally similar meaning, but the precise meaning is per the

definitions on the Red Hat customer support portal.

If an application declares a direct dependency on a module marked "private", "unsupported" or "deprecated",

during deployment a WARN message will be logged. The logging will be in log categories

"org.jboss.as.dependency.private", "org.jboss.as.dependency.unsupported" and

"org.jboss.as.dependency.deprecated" respectively. These categories are not used for other purposes, so

once you feel sufficiently warned the logging can be safely suppressed by turning the log level for the

relevant category to ERROR or higher.

Other than the WARN messages noted above, declaring a direct dependency on a non-public module has

no impact on how WildFly processes the deployment.

6.17 Deployment Descriptors used In WildFly

This page gives a list and a description of all the valid deployment descriptors that a WildFly deployment can

use. This document is a work in progress.

Descriptor Location Specification Description Info

jboss-deployment-structure.xml or META-INF

 of theWEB-INF

top level

deployment

 This file can be

used to control

class loading

for the

deployment

Class Loading in

WildFly

https://docs.jboss.org/author/display/AS71/Class+Loading+in+AS7
https://docs.jboss.org/author/display/AS71/Class+Loading+in+AS7

Latest WildFly Documentation

JBoss Community Documentation Page of 979 2293

beans.xml or WEB-INF

META-INF

CDI The presence

of this

descriptor

(even if empty)

activates CDI

Weld Reference

Guide

web.xml WEB-INF Servlet Web

deployment

descriptor

jboss-web.xml WEB-INF JBoss Web

deployment

descriptor. This

can be use to

override

settings from

web.xml, and

to set

WildFly specific

options

ejb-jar.xml of aWEB-INF

war, or

 of anMETA-INF

EJB jar

EJB The EJB spec

deployment

descriptor

ejb-jar.xml schema

jboss-ejb3.xml of aWEB-INF

war, or

 of anMETA-INF

EJB jar

 The JBoss EJB

deployment

descriptor, this

can be used to

override

settings from

,ejb-jar.xml

and to set

WildFly specific

settings

application.xml of anMETA-INF

EAR

Java EE

Platform

Specification

 application.xml

schema

http://docs.jboss.org/weld/reference/1.0.0/en-US/html_single/
http://docs.jboss.org/weld/reference/1.0.0/en-US/html_single/
http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd
http://java.sun.com/xml/ns/javaee/application_6.xsd
http://java.sun.com/xml/ns/javaee/application_6.xsd

Latest WildFly Documentation

JBoss Community Documentation Page of 980 2293

jboss-app.xml of anMETA-INF

EAR

 JBoss

application

deployment

descriptor, can

be used to

override

settings

application.xml,

and to set

WildFly specific

settings

persistence.xml META-INF JPA JPA descriptor

used for

defining

persistence

units

Hibernate Reference

Guide

jboss-ejb-client.xml of aWEB-INF

war, or

 of anMETA-INF

EJB jar

 Remote EJB

settings. This

file is used to

setup the EJB

client context

for a

deployment

that is used for

remote EJB

invocations

EJB invocations

from a remote

server instance

jbosscmp-jdbc.xml of anMETA-INF

EJB jar

 CMP

deployment

descriptor.

Used to map

CMP entity

beans to a

database. The

format is

largely

unchanged

from previous

versions.

http://docs.jboss.org/hibernate/entitymanager/3.5/reference/en/html/configuration.html
http://docs.jboss.org/hibernate/entitymanager/3.5/reference/en/html/configuration.html
https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+server+instance
https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+server+instance
https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+server+instance

Latest WildFly Documentation

JBoss Community Documentation Page of 981 2293

ra.xml of aMETA-INF

rar archive

 Spec

deployment

descriptor for

resource

adaptor

deployments

IronJacamar

 Reference Guide

Schema

ironjacamar.xml of aMETA-INF

rar archive

 JBoss

deployment

descriptor for

resource

adaptor

deployments

IronJacamar

Reference Guide

*-jms.xml or META-INF

WEB-INF

 JMS message

destination

deployment

descriptor,

used to deploy

message

destinations

with a

deployment

*-ds.xml or META-INF

WEB-INF

 Datasource

deployment

descriptor, use

to bundle

datasources

with a

deployment

DataSource

Configuration

application-client.xml of anMETA-INF

application client

jar

Java EE6

Platform

Specification

The spec

deployment

descriptor for

application

client

deployments

application-client.xml

schema

jboss-client.xml of anMETA-INF

application client

jar

 The

WildFly specific

deployment

descriptor for

application

client

deployments

http://docs.jboss.org/ironjacamar/userguide/1.0/en-US/html_single/
http://docs.jboss.org/ironjacamar/userguide/1.0/en-US/html_single/
http://java.sun.com/xml/ns/javaee/connector_1_6.xsd
http://docs.jboss.org/ironjacamar/userguide/1.0/en-US/html_single/
http://docs.jboss.org/ironjacamar/userguide/1.0/en-US/html_single/
https://docs.jboss.org/author/display/WFLY8/DataSource+configuration
https://docs.jboss.org/author/display/WFLY8/DataSource+configuration
http://java.sun.com/xml/ns/javaee/application-client_6.xsd
http://java.sun.com/xml/ns/javaee/application-client_6.xsd

Latest WildFly Documentation

JBoss Community Documentation Page of 982 2293

jboss-webservices.xml forMETA-INF

EJB webservice

deployments or

 forWEB-INF

POJO

webservice

deployments/EJB

webservice

endpoints

bundled in .war

 The JBossWS

4.0.x specific

deployment

descriptor for

webservice

endpoints

6.18 Development Guidelines and Recommended

Practices

The purpose of this page is to document tips and techniques that will assist developers in creating fast,

secure, and reliable applications. It is also a place to note what you should doing when developingavoid

applications.

6.19 EE Concurrency Utilities

6.19.1 Overview

EE Concurrency Utilities (JSR 236) is a technology introduced with Java EE 7, which adapts well known

Java SE concurrency utilities to the Java EE application environment specifics. The Java EE application

server is responsible for the creation (and shutdown) of every instance of the EE Concurrency Utilities, and

provide these to the applications, ready to use.

The EE Concurrency Utilities support the propagation of the invocation context, capturing the existent

context in the application threads to use in their own threads, the same way a logged-in user principal is

propagated when a servlet invokes an EJB asynchronously. The propagation of the invocation context

includes, by default, the class loading, JNDI and security contexts.

WildFly creates a single default instance of each EE Concurrency Utility type in all configurations within the

distribution, as mandated by the specification, but additional instances, perhaps customised to better serve a

specific usage, may be created through WildFly's EE Subsystem Configuration. To learn how to configure

EE Concurrency Utilities please refer to . Additionally, the EEEE Concurrency Utilities Configuration

subsystem configuration also includes the configuration of which instance should be considered the default

instance mandated by the Java EE specification, and such configuration is covered by Default EE Bindings

.Configuration

Latest WildFly Documentation

JBoss Community Documentation Page of 983 2293

6.19.2 Context Service

The Context Service () is a brand new concurrencyjavax.enterprise.concurrent.ContextService

utility, which applications may use to build contextual proxies from existing objects.

A contextual proxy is an object that sets a invocation context, captured when created, whenever is invoked,

before delegating the invocation to the original object.

Usage example:

public void onGet(...) {

 Runnable task = ...;

 Runnable contextualTask = contextService.createContextualProxy(task, Runnable.class);

 // ...

}

WildFly default configurations creates a single default instance of a Context Service, which may be retrieved

through injection:@Resource

@Resource

private ContextService contextService;

To retrieve instead a non default Context Service instance, 's attribute needs@Resource lookup

to specify the JNDI name used in the wanted instance configuration. WildFly will always inject the

default instance, no matter what's the attribute value, if the attribute is not defined.name lookup

Applications may alternatively use instead the standard JNDI API:

ContextService contextService = InitialContext.doLookup("java:comp/DefaultContextService");

As mandated by the Java EE specification, the default Context Service instance's JNDI name is

.java:comp/DefaultContextService

6.19.3 Managed Thread Factory

The Managed Thread Factory () allowsjavax.enterprise.concurrent.ManagedThreadFactory

Java EE applications to create Java threads. It is an extension of Java SE's Thread Factory (

) adapted to the Java EE platform specifics.java.util.concurrent.ThreadFactory

Latest WildFly Documentation

JBoss Community Documentation Page of 984 2293

Managed Thread Factory instances are managed by the application server, thus Java EE applications are

forbidden to invoke any lifecycle related method.

In case the Managed Thread Factory is configured to use a Context Service, the application's thread context

is captured when a thread creation is requested, and such context is propagated to the thread's Runnable

execution.

Managed Thread Factory threads implement ,javax.enterprise.concurrent.ManageableThread

which allows an application to learn about termination status.

Usage example:

public void onGet(...) {

 Runnable task = ...;

 Thread thread = managedThreadFactory.newThread(task);

 thread.start();

 // ...

}

WildFly default configurations creates a single default instance of a Managed Thread Factory, which may be

retrieved through injection:@Resource

@Resource

private ManagedThreadFactory managedThreadFactory;

To retrieve instead a non default Managed Thread Factory instance, 's @Resource lookup

attribute needs to specify the JNDI name used in the wanted instance configuration. WildFly will

always inject the default instance, no matter what's the attribute value, in case the name lookup

attribute is not defined.

Applications may alternatively use instead the standard JNDI API:

ManagedThreadFactory managedThreadFactory =

InitialContext.doLookup("java:comp/DefaultManagedThreadFactory");

As mandated by the Java EE specification, the default Managed Thread Factory instance's JNDI

name is .java:comp/DefaultManagedThreadFactory

Latest WildFly Documentation

JBoss Community Documentation Page of 985 2293

6.19.4 Managed Executor Service

The Managed Executor Service () allowsjavax.enterprise.concurrent.ManagedExecutorService

Java EE applications to submit tasks for asynchronous execution. It is an extension of Java SE's Executor

Service () adapted to the Java EE platform requirements.java.util.concurrent.ExecutorService

Managed Executor Service instances are managed by the application server, thus Java EE applications are

forbidden to invoke any lifecycle related method.

In case the Managed Executor Service is configured to use a Context Service, the application's thread

context is captured when the task is submitted, and propagated to the executor thread responsible for the

task execution.

Usage example:

public void onGet(...) {

 Runnable task = ...;

 Future future = managedExecutorService.submit(task);

 // ...

}

WildFly default configurations creates a single default instance of a Managed Executor Service, which may

be retrieved through injection:@Resource

@Resource

private ManagedExecutorService managedExecutorService;

To retrieve instead a non default Managed Executor Service instance, 's @Resource lookup

attribute needs to specify the JNDI name used in the wanted instance configuration. WildFly will

always inject the default instance, no matter what's the attribute value, in case the name lookup

attribute is not defined.

Applications may alternatively use instead the standard JNDI API:

ManagedExecutorService managedExecutorService =

InitialContext.doLookup("java:comp/DefaultManagedExecutorService");

As mandated by the Java EE specification, the default Managed Executor Service instance's JNDI

name is .java:comp/DefaultManagedExecutorService

Latest WildFly Documentation

JBoss Community Documentation Page of 986 2293

6.19.5 Managed Scheduled Executor Service

The Managed Scheduled Executor Service (

) allows Java EEjavax.enterprise.concurrent.ManagedScheduledExecutorService

applications to schedule tasks for asynchronous execution. It is an extension of Java SE's Executor Service (

) adapted to the Java EE platformjava.util.concurrent.ScheduledExecutorService

requirements.

Managed Scheduled Executor Service instances are managed by the application server, thus Java EE

applications are forbidden to invoke any lifecycle related method.

In case the Managed Scheduled Executor Service is configured to use a Context Service, the application's

thread context is captured when the task is scheduled, and propagated to the executor thread responsible

for the task execution.

Usage example:

public void onGet(...) {

 Runnable task = ...;

 ScheduledFuture future = managedScheduledExecutorService.schedule(task, 60,

TimeUnit.SECONDS);

 // ...

}

WildFly default configurations creates a single default instance of a Managed Scheduled Executor Service,

which may be retrieved through injection:@Resource

@Resource

private ManagedScheduledExecutorService managedScheduledExecutorService;

To retrieve instead a non default Managed Scheduled Executor Service instance, 's @Resource

 attribute needs to specify the JNDI name used in the wanted instance configuration.lookup

WildFly will always inject the default instance, no matter what's the attribute value, in casename

the attribute is not defined.lookup

Applications may alternatively use instead the standard JNDI API:

ManagedScheduledExecutorService managedScheduledExecutorService =

InitialContext.doLookup("java:comp/DefaultManagedScheduledExecutorService");

Latest WildFly Documentation

JBoss Community Documentation Page of 987 2293

As mandated by the Java EE specification, the default Managed Scheduled Executor Service

instance's JNDI name is .java:comp/DefaultManagedScheduledExecutorService

6.20 EJB 3 Reference Guide

This chapter details the extensions that are available when developing Enterprise Java Beans on WildFlytm

8.

Currently there is no support for configuring the extensions using an implementation specific descriptor file.

6.20.1 Resource Adapter for Message Driven Beans

Each Message Driven Bean must be connected to a resource adapter.

Specification of Resource Adapter using Metadata Annotations
The annotation is used to specify the resource adapter with which the MDB shouldResourceAdapter

connect.

The of the annotation is the name of the deployment unit containing the resource adapter. Forvalue

example .jms-ra.rar

For example:

@MessageDriven(messageListenerInterface = PostmanPat.class)

@ResourceAdapter("ejb3-rar.rar")

Latest WildFly Documentation

JBoss Community Documentation Page of 988 2293

6.20.2 as Principal

Whenever a run-as role is specified for a given method invocation the default anonymous principal is used

as the caller principal. This principal can be overridden by specifying a run-as principal.

Specification of Run-as Principal using Metadata Annotations
The annotation is used to specify the run-as principal to use for a given methodRunAsPrincipal

invocation.

The of the annotation specifies the name of the principal to use. The actual type of the principal isvalue

undefined and should not be relied upon.

Using this annotation without specifying a run-as role is considered an error.

For example:

@RunAs("admin")

@RunAsPrincipal("MyBean")

6.20.3 Security Domain

Each Enterprise Java Bean can be associated with a security domain. Only when an EJB is associatedtm

with a security domain will authentication and authorization be enforced.

Specification of Security Domain using Metadata Annotations
The annotation is used to specify the security domain to associate with the EJB.SecurityDomain

The of the annotation is the name of the security domain to be used.value

For example:

@SecurityDomain("other")

6.20.4 Transaction Timeout

For any newly started transaction a transaction timeout can be specified in seconds.

When a transaction timeout of is used, then the actual transaction timeout will default to the domain0

configured default.

TODO: add link to tx subsystem

Latest WildFly Documentation

JBoss Community Documentation Page of 989 2293

Although this is only applicable when using transaction attribute or theREQUIRED REQUIRES_NEW

application server will not detect invalid setups.

New Transactions

Take care that even when transaction attribute is specified, the timeout will only beREQUIRED

applicable if a transaction is started.new

Specification of Transaction Timeout with Metadata Annotations
The annotation is used to specify the transaction timeout for a given method.TransactionTimeout

The of the annotation is the timeout used in the given granularity. It must be a positive integervalue unit

or 0. Whenever 0 is specified the default domain configured timeout is used.

The specifies the granularity of the . The actual value used is converted to seconds. Specifyingunit value

a granularity lower than is considered an error, even when the computed value will result in anSECONDS

even amount of seconds.

For example:@TransactionTimeout(value = 10, unit = TimeUnit.SECONDS)

Latest WildFly Documentation

JBoss Community Documentation Page of 990 2293

Specification of Transaction Timeout in the Deployment Descriptor
The element is used to define the transaction timeout for business, home, component, andtrans-timeout

message-listener interface methods; no-interface view methods; web service endpoint methods; and timeout

callback methods.

The element resides in the namespace and is part of the standard trans-timeout urn:trans-timeout

 element as defined in the jboss namespace.container-transaction

For the rules when a is applicable please refer to EJB 3.1 FR 13.3.7.2.1.container-transaction

Example of trans-timeout

jboss-ejb3.xml

<jboss:ejb-jar xmlns:jboss="http://www.jboss.com/xml/ns/javaee"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:tx="urn:trans-timeout"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee

http://www.jboss.org/j2ee/schema/jboss-ejb3-2_0.xsd

http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd

urn:trans-timeout http://www.jboss.org/j2ee/schema/trans-timeout-1_0.xsd"

 version="3.1"

 impl-version="2.0">

 <assembly-descriptor>

 <container-transaction>

 <method>

 <ejb-name>BeanWithTimeoutValue</ejb-name>

 <method-name>*</method-name>

 <method-intf>Local</method-intf>

 </method>

 <tx:trans-timeout>

 <tx:timeout>10</tx:timeout>

 <tx:unit>Seconds</tx:unit>

 </tx:trans-timeout>

 </container-transaction>

 </assembly-descriptor>

</jboss:ejb-jar>

6.20.5 Timer service

The service is responsible to call the registered timeout methods of the different session beans.

Latest WildFly Documentation

JBoss Community Documentation Page of 991 2293

A persistent timer will be identified by the name of the EAR, the name of the sub-deployment JAR

and the Bean's name.

If one of those names are changed (e.g. EAR name contain a version) the timer entry became

orphaned and the timer event will not longer be fired.

Single event timer
The timer is will be started once at the specified time.

In case of a server restart the timeout method of a persistent timer will only be called directly if the specified

time is elapsed.

If the timer is not persistent (since EJB3.1 see 18.2.3) it will be not longer available if JBoss is restarted or

the application is redeployed.

Recurring timer
The timer will be started at the specified first occurrence and after that point at each time if the interval is

elapsed.

If the timer will be started during the last execution is not finished the execution will be suppressed with a

warning to avoid concurrent execution.

In case of server downtime for a persistent timer, the timeout method will be called only once if one, or more

than one, interval is elapsed.

If the timer is not persistent (since EJB3.1 see 18.2.3) it will not longer be active after the server is restarted

or the application is redeployed.

Latest WildFly Documentation

JBoss Community Documentation Page of 992 2293

Calendar timer
The timer will be started if the schedule expression match. It will be automatically deactivated and removed if

there will be no next expiration possible, i.e. If you set a specific year.

For example:

@Schedule(... dayOfMonth="1", month="1", year="2012")

// start once at 01-01-2012 00:00:00

Programmatic calendar timer
If the timer is persistent it will be fetched at server start and the missed timeouts are called concurrent.

If a persistent timer contains an end date it will be executed once nevertheless how many times the

execution was missed. Also a retry will be suppressed if the timeout method throw an Exception.

In case of such expired timer access to the given Timer object might throw a NoMoreTimeoutExcption or

NoSuchObjectException.

If the timer is non persistent it will not longer be active after the server is restarted or the application is

redeployed.

: clarify whether this should happen concurrently/blocked or even fired only once like a recurring timer!TODO

Annotated calendar timer
If the timer is non persistent it will not activated for missed events during the server is down. In case of

server start the timer is scheduled based on the @Schedule annotation.

If the timer is persistent (default if not deactivated by annotation) all missed events are fetched at server start

and the annotated timeout method is called concurrent.

: clarify whether this should happen concurrently/blocked or even fired only once like a recurring timer!TODO

6.20.6 Container interceptors

Overview
JBoss AS versions prior to WildFly8 allowed a JBoss specific way to plug-in user application specific

interceptors on the server side so that those interceptors get invoked during an EJB invocation. Such

interceptors differed from the typical (portable) spec provided Java EE interceptors. The Java EE

interceptors are expected to run after the container has done necessary invocation processing which

involves security context propagation, transaction management and other such duties. As a result, these

Java EE interceptors come too late into the picture, if the user applications have to intercept the call before

certain container specific interceptor(s) are run.

Latest WildFly Documentation

JBoss Community Documentation Page of 993 2293

1.

2.

3.

4.

5.

6.

Typical EJB invocation call path on the server
A typical EJB invocation looks like this:

Client application

MyBeanInterface bean = lookupBean();

bean.doSomething();

The invocation on the bean.doSomething() triggers the following (only relevant portion of the flow shown

below):

WildFly specific interceptor (a.k.a container interceptor) 1

WildFly specific interceptor (a.k.a container interceptor) 2

....

WildFly specific interceptor (a.k.a container interceptor) N

User application specific Java EE interceptor(s) (if any)

Invocation on the EJB instance's method

The WildFly specific interceptors include the security context propagation, transaction management and

other container provided services. In some cases, the " " (let's call them that)container interceptors

might even decide break the invocation flow and not let the invocation proceed (for example: due to the

invoking caller not being among the allowed user roles who can invoke the method on the bean).

Previous versions of JBoss AS allowed a way to plug-in the user application specific interceptors (which

relied on JBoss AS specific libraries) into this invocation flow so that they do run some application specific

logic before the control reaches step#5 above. For example, AS5 allowed the use of JBoss AOP interceptors

to do this.

WildFly 8 doesn't have such a feature.

Feature request for WildFly
There were many community users who requested for this feature to be made available in WildFly. As a

result, JIRA was raised. This feature is now implemented.https://issues.jboss.org/browse/AS7-5897

Configuring container interceptors
As you can see from the JIRA , one of the goals of this featurehttps://issues.jboss.org/browse/AS7-5897

implementation was to make sure that we don't introduce any new WildFly specific library dependencies for

the container interceptors. So we decided to allow the Java EE interceptors (which are just POJO classes

with lifecycle callback annotations) to be used as container interceptors. As such you won't need any

dependency on any WildFly specific libraries. That will allow us to support this feature for a longer time in

future versions of WildFly.

https://issues.jboss.org/browse/AS7-5897
https://issues.jboss.org/browse/AS7-5897

Latest WildFly Documentation

JBoss Community Documentation Page of 994 2293

Furthermore, configuring these container interceptors is similar to configuring the Java EE interceptors for

EJBs. In fact, it uses the same xsd elements that are allowed in ejb-jar.xml for 3.1 version of ejb-jar

deployment descriptor.

Container interceptors can only be configured via deployment descriptors. There's no annotation

based way to configure container interceptors. This was an intentional decision, taken to avoid

introducing any WildFly specific library dependency for the annotation.

Configuring the container interceptors can be done in jboss-ejb3.xml file, which then gets placed under the

META-INF folder of the EJB deployment, just like the ejb-jar.xml. Here's an example of how the container

interceptor(s) can be configured in jboss-ejb3.xml:

Latest WildFly Documentation

JBoss Community Documentation Page of 995 2293

jboss-ejb3.xml

<jboss xmlns="http://www.jboss.com/xml/ns/javaee"

 xmlns:jee="http://java.sun.com/xml/ns/javaee"

 xmlns:ci ="urn:container-interceptors:1.0">

 <jee:assembly-descriptor>

 <ci:container-interceptors>

 <!-- Default interceptor -->

 <jee:interceptor-binding>

 <ejb-name>*</ejb-name>

<interceptor-class>org.jboss.as.test.integration.ejb.container.interceptor.ContainerInterceptorOne</interceptor-class>

</jee:interceptor-binding>

 <!-- Class level container-interceptor -->

 <jee:interceptor-binding>

 <ejb-name>AnotherFlowTrackingBean</ejb-name>

<interceptor-class>org.jboss.as.test.integration.ejb.container.interceptor.ClassLevelContainerInterceptor</interceptor-class>

</jee:interceptor-binding>

 <!-- Method specific container-interceptor -->

 <jee:interceptor-binding>

 <ejb-name>AnotherFlowTrackingBean</ejb-name>

<interceptor-class>org.jboss.as.test.integration.ejb.container.interceptor.MethodSpecificContainerInterceptor</interceptor-class>

<method>

 <method-name>echoWithMethodSpecificContainerInterceptor</method-name>

 </method>

 </jee:interceptor-binding>

 <!-- container interceptors in a specific order -->

 <jee:interceptor-binding>

 <ejb-name>AnotherFlowTrackingBean</ejb-name>

 <interceptor-order>

<interceptor-class>org.jboss.as.test.integration.ejb.container.interceptor.ClassLevelContainerInterceptor</interceptor-class>

<interceptor-class>org.jboss.as.test.integration.ejb.container.interceptor.MethodSpecificContainerInterceptor</interceptor-class>

<interceptor-class>org.jboss.as.test.integration.ejb.container.interceptor.ContainerInterceptorOne</interceptor-class>

</interceptor-order>

 <method>

 <method-name>echoInSpecificOrderOfContainerInterceptors</method-name>

 </method>

 </jee:interceptor-binding>

 </ci:container-interceptors>

 </jee:assembly-descriptor>

</jboss>

The usage of urn:container-interceptors:1.0 namespace which allows the container-interceptors

elements to be configured

The container-interceptors element which contain the interceptor bindings

The interceptor bindings themselves are the same elements as what the EJB3.1 xsd allows for

standard Java EE interceptors

The interceptors can be bound either to all EJBs in the deployment (using the the * wildcard) or

individual bean level (using the specific EJB name) or at specific method level for the EJBs.

Latest WildFly Documentation

JBoss Community Documentation Page of 996 2293

The xsd for the urn:container-interceptors:1.0 namespace is available here

https://github.com/jbossas/jboss-as/blob/master/ejb3/src/main/resources/jboss-ejb-container-interceptors_1_0.xsd

The interceptor classes themselves are simple POJOs and use the @javax.annotation.AroundInvoke

to mark the around invoke method which will get invoked during the invocation on the bean. Here's an

example of the interceptor:

Example of container interceptor

public class ClassLevelContainerInterceptor {

 @AroundInvoke

 private Object iAmAround(final InvocationContext invocationContext) throws Exception {

 return this.getClass().getName() + " " + invocationContext.proceed();

 }

}

Container interceptor positioning in the interceptor chain
The container interceptors configured for a EJB are guaranteed to be run before the WildFly provided

security interceptors, transaction management interceptors and other such interceptors thus allowing the

user application specific container interceptors to setup any relevant context data before the invocation

proceeds.

Semantic difference between container interceptor(s) and Java EE

interceptor(s) API
Although the container interceptors are modeled to be similar to the Java EE interceptors, there are some

differences in the API semantics. One such difference is that invoking on

javax.interceptor.InvocationContext.getTarget() method is illegal for container interceptors since these

interceptors are invoked way before the EJB components are setup or instantiated.

Testcase
This testcase in the WildFly codebase can be used for reference for implementing container interceptors in

user applications

https://github.com/jbossas/jboss-as/blob/master/testsuite/integration/basic/src/test/java/org/jboss/as/test/integration/ejb/container/interceptor/ContainerInterceptorsTestCase.java

https://github.com/jbossas/jboss-as/blob/master/ejb3/src/main/resources/jboss-ejb-container-interceptors_1_0.xsd
https://github.com/jbossas/jboss-as/blob/master/testsuite/integration/basic/src/test/java/org/jboss/as/test/integration/ejb/container/interceptor/ContainerInterceptorsTestCase.java

Latest WildFly Documentation

JBoss Community Documentation Page of 997 2293

6.20.7 EJB3 Clustered Database Timers

Overview
Wildfly now supports clustered database backed timers. The clustering support is provided through the

database, and as a result it is not intended to be a super high performance solution that supports thousands

of timers going off a second, however properly tuned it should provide sufficient performance for most use

cases.

Note that database timers can also be used in non-clustered mode.

Note that for this to work correctly the underlying database must support the READ_COMMITTED

or SERIALIZABLE isolation mode and the datasource must be configured accordingly

Latest WildFly Documentation

JBoss Community Documentation Page of 998 2293

Setup
In order to use clustered timers it is necessary to add a database backed timer store. This can be done from

the CLI with the following command:

/subsystem=ejb3/service=timer-service/database-data-store=my-clustered-store:add(allow-execution=true,

datasource-jndi-name='java:/MyDatasource', refresh-interval=60000, database='postgresql',

partition='mypartition')

An explanation of the parameters is below:

 - If this node is allowed to execute timers. If this is false then timers added on thisallow-execution

node will be added to the database for another node to execute. This allows you to limit timer

execution to a few nodes in a cluster, which can greatly reduce database load for large clusters.

 - The datasource to usedatasource-jndi-name

 - The refresh interval in milliseconds. This is the period of time that must elapserefresh-interval

before this node will check the database for new timers added by other nodes. A smaller value means

that timers will be picked up more quickly, however it will result in more load on the database. This is

most important to tune if you are adding timers that will expire quickly. If the node that added the timer

cannot execute it (e.g. because it has failed or because allow-execution is false), this timer may not

be executed until a node has refreshed.

 - Define the type of database that is in use. Some SQL statements are customised bydatabase

database, and this tells the data store which version of the SQL to use.

Without this attribute the server try to detected the type automatically, current supported types are

 and .postgresql, mysql, oracle, db2, hsql h2

Note that this SQL resides in the file

modules/system/layers/base/org/jboss/as/ejb3/main/timers/timer-sql.properties

And as such is it possible to modify the SQL that is executed or add support for new databases by

adding new DB specific SQL to this file (if you do add support for a new database it would be greatly

appreciated if you could contribute the SQL back to the project).

 - A node will only see timers from other nodes that have the same partition name. Thispartition

allows you to break a large cluster up into several smaller clusters, which should improve

performance. e.g. instead of having a cluster of 100 nodes, where all hundred are trying to execute

and refresh the same timers, you can create 20 clusters of 5 nodes by giving ever group of 5 a

different partition name.

Non clustered timers
Note that you can still use the database data store for non-clustered timers, in which case set the refresh

interval to zero and make sure that every node has a unique partition name (or uses a different database).

Latest WildFly Documentation

JBoss Community Documentation Page of 999 2293

Using clustered timers in a deployment
It is possible to use the data store as default for all applications by changing the default-data-store within the

ejb3 subsystem:

<timer-service thread-pool-name="timer" default-data-store="clustered-store">

 <data-stores>

 <database-data-store name="clustered-store"

datasource-jndi-name="java:jboss/datasources/ExampleDS" partition="timer"/>

 </data-stores>

 </timer-service>

Another option is to use a separate data store for specific applications, all that is required is to set the timer

data store name in jboss-ejb3.xml:

<?xml version="1.1" encoding="UTF-8"?>

<jboss:ejb-jar xmlns:jboss="http://www.jboss.com/xml/ns/javaee"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:timer="urn:timer-service:1.0"

 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee

http://www.jboss.org/j2ee/schema/jboss-ejb3-2_0.xsd

 http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd"

 version="3.1"

 impl-version="2.0">

 <assembly-descriptor>

 <timer:timer>

 <ejb-name>*</ejb-name>

 <timer:persistence-store-name>my-clustered-store</timer:persistence-store-name>

 </timer:timer>

 </assembly-descriptor>

</jboss:ejb-jar>

Technical details
Internally every node that is allowed to execute timers schedules a timeout for every timer is knows about.

When this timeout expires then this node attempts to 'lock' the timer, by updating its state to running. The

query this executes looks like:

UPDATE JBOSS_EJB_TIMER SET TIMER_STATE=? WHERE ID=? AND TIMER_STATE<>? AND NEXT_DATE=?;

Due to the use of a transaction and READ_COMMITTED or SERIALIZABLE isolation mode only one node

will succeed in updating the row, and this is the node that the timer will run on.

Latest WildFly Documentation

JBoss Community Documentation Page of 1000 2293

6.20.8 EJB3 subsystem configuration guide

This page lists the options that are available for configuring the EJB subsystem.

A complete example of the config is shown below, with a full explanation of each

Latest WildFly Documentation

JBoss Community Documentation Page of 1001 2293

<subsystem xmlns="urn:jboss:domain:ejb3:1.2">

 <session-bean>

 <stateless>

 <bean-instance-pool-ref pool-name="slsb-strict-max-pool"/>

 </stateless>

 <stateful default-access-timeout="5000" cache-ref="simple" clustered-cache-ref="clustered"/>

 <singleton default-access-timeout="5000"/>

 </session-bean>

 <mdb>

 <resource-adapter-ref resource-adapter-name="hornetq-ra"/>

 <bean-instance-pool-ref pool-name="mdb-strict-max-pool"/>

 </mdb>

 <entity-bean>

 <bean-instance-pool-ref pool-name="entity-strict-max-pool"/>

 </entity-bean>

 <pools>

 <bean-instance-pools>

 <strict-max-pool name="slsb-strict-max-pool" max-pool-size="20"

instance-acquisition-timeout="5" instance-acquisition-timeout-unit="MINUTES"/>

 <strict-max-pool name="mdb-strict-max-pool" max-pool-size="20"

instance-acquisition-timeout="5" instance-acquisition-timeout-unit="MINUTES"/>

 <strict-max-pool name="entity-strict-max-pool" max-pool-size="100"

instance-acquisition-timeout="5" instance-acquisition-timeout-unit="MINUTES"/>

 </bean-instance-pools>

 </pools>

 <caches>

 <cache name="simple" aliases="NoPassivationCache"/>

 <cache name="passivating" passivation-store-ref="file" aliases="SimpleStatefulCache"/>

 <cache name="clustered" passivation-store-ref="infinispan" aliases="StatefulTreeCache"/>

 </caches>

 <passivation-stores>

 <file-passivation-store name="file"/>

 <cluster-passivation-store name="infinispan" cache-container="ejb"/>

 </passivation-stores>

 <async thread-pool-name="default"/>

 <timer-service thread-pool-name="default">

 <data-store path="timer-service-data" relative-to="jboss.server.data.dir"/>

 </timer-service>

 <remote connector-ref="remoting-connector" thread-pool-name="default"/>

 <thread-pools>

 <thread-pool name="default">

 <max-threads count="10"/>

 <keepalive-time time="100" unit="milliseconds"/>

 </thread-pool>

 </thread-pools>

 <iiop enable-by-default="false" use-qualified-name="false"/>

 <in-vm-remote-interface-invocation pass-by-value="false"/> <!-- Warning see notes below about

possible issues -->

</subsystem>

Latest WildFly Documentation

JBoss Community Documentation Page of 1002 2293

<session-bean>

<stateless>
This element is used to configure the instance pool that is used by default for stateless session beans. If it is

not present stateless session beans are not pooled, but are instead created on demand for every invocation.

The instance pool can be overridden on a per deployment or per bean level using or the jboss-ejb3.xml

 annotation. The instance pools themselves are configured in the org.jboss.ejb3.annotation.Pool

 element.<pools>

<stateful>
This element is used to configure Stateful Session Beans.

 This attribute specifies the default time concurrent invocations on thedefault-access-timeout

same bean instance will wait to acquire the instance lock. It can be overridden via the deployment

descriptor or via the annotation.javax.ejb.AccessTimeout

 This attribute is used to set the default cache for non-clustered beans. It can becache-ref

overridden by , or via the annotation.jboss-ejb3.xml org.jboss.ejb3.annotation.Cache

 This attribute is used to set the default cache for clustered beans.clustered-cache-ref

<singleton>
This element is used to configure Singleton Session Beans.

 This attribute specifies the default time concurrent invocations will waitdefault-access-timeout

to acquire the instance lock. It can be overridden via the deployment descriptor or via the

 annotation.javax.ejb.AccessTimeout

<mdb>

<resource-adaptor-ref>
This element sets the default resource adaptor for Message Driven Beans.

<bean-instance-pool-ref>
This element is used to configure the instance pool that is used by default for Message Driven Beans. If it is

not present they are not pooled, but are instead created on demand for every invocation. The instance pool

can be overridden on a per deployment or per bean level using or the jboss-ejb3.xml

 annotation. The instance pools themselves are configured in the org.jboss.ejb3.annotation.Pool

 element.<pools>

Latest WildFly Documentation

JBoss Community Documentation Page of 1003 2293

<entity-bean>
This element is used to configure the behavior for EJB2 EntityBeans.

<bean-instance-pool-ref>
This element is used to configure the instance pool that is used by default for Entity Beans. If it is not present

they are not pooled, but are instead created on demand for every invocation. The instance pool can be

overridden on a per deployment or per bean level using or the jboss-ejb3.xml

 annotation. The instance pools themselves are configured in the org.jboss.ejb3.annotation.Pool

 element.<pools>

<pools>

<caches>

<passivation-stores>

<async>
This element enables async EJB invocations. It is also used to specify the thread pool that these invocations

will use.

<timer-service>
This element enables the EJB timer service. It is also used to specify the thread pool that these invocations

will use.

<data-store>
This is used to configure the directory that persistent timer information is saved to.

<remote>
This is used to enable remote EJB invocations. It specifies the remoting connector to use (as defined in the

remoting subsystem configuration), and the thread pool to use for remote invocations.

<thread-pools>
This is used to configure the thread pools used by async, timer and remote invocations.

Latest WildFly Documentation

JBoss Community Documentation Page of 1004 2293

<iiop>
This is used to enable IIOP (i.e. CORBA) invocation of EJB's. If this element is present then the JacORB

subsystem must also be installed. It supports the following two attributes:

 If this is true then all EJB's with EJB2.x home interfaces are exposed via IIOP,enable-by-default

otherwise they must be explicitly enabled via .jboss-ejb3.xml

 If this is true then EJB's are bound to the corba naming context with ause-qualified-name

binding name that contains the application and modules name of the deployment (e.g.

myear/myejbjar/MyBean), if this is false the default binding name is simply the bean name.

<in-vm-remote-interface-invocation>
By default remote interface invocations use pass by value, as required by the EJB spec. This element can

use used to enable pass by reference, which can give you a performance boost. Note WildFly will do a

shallow check to see if the caller and the EJB have access to the same class definitions, which means if you

are passing something such as a List<MyObject>, WildFly only checks the List to see if it is the same class

definition on the call & EJB side. If the top level class definition is the same, JBoss will make the call using

pass by reference, which means that if MyObject or any objects beneath it are loaded from different

classloaders, you would get a ClassCastException. If the top level class definitions are loaded from different

classloaders, JBoss will use pass by value. JBoss cannot do a deep check of all of the classes to ensure no

ClassCastExceptions will occur because doing a deep check would eliminate any performance boost you

would have received by using call by reference. It is recommended that you configure pass by reference

only on callers that you are sure will use the same class definitions and not globally. This can be done via a

configuration in the jboss-ejb-client.xml as shown below.

To configure a caller/client use pass by reference, you configure your top level deployment with a

META-INF/jboss-ejb-client.xml containing:

<jboss-ejb-client xmlns="urn:jboss:ejb-client:1.0">

 <client-context>

 <ejb-receivers local-receiver-pass-by-value="false"/>

 </client-context>

</jboss-ejb-client>

Latest WildFly Documentation

JBoss Community Documentation Page of 1005 2293

6.20.9 EJB IIOP Guide

Enabling IIOP
To enable IIOP you must have the JacORB subsystem installed, and the element present in the<iiop/>

ejb3 subsystem configuration. The configuration that comes with the distributionstandalone-full.xml

has both of these enabled.

The element takes two attributes that control the default behaviour of the server, for full details see<iiop/>

.EJB3 subsystem configuration guide

Enabling JTS
To enable JTS simply add a element to the transactions subsystem configuration.<jts/>

It is also necessary to enable the JacORB transactions interceptor as shown below.

<subsystem xmlns="urn:jboss:domain:jacorb:1.1">

 <orb>

 <initializers transactions="on"/>

 </orb>

</subsystem>

Dynamic Stub's
Downloading stubs directly from the server is no longer supported. If you do not wish to pre-generate your

stub classes JDK Dynamic stubs can be used instead. The enable JDK dynamic stubs simply set the

 system property to .com.sun.CORBA.ORBUseDynamicStub true

Configuring EJB IIOP settings via jboss-ejb3.xml
TODO

https://docs.jboss.org/author/display/AS71/EJB3+subsystem+configuration+guide

Latest WildFly Documentation

JBoss Community Documentation Page of 1006 2293

6.20.10 EJB over HTTP

Beginning with Wildfly 11 it is now possible to use HTTP as the transport (instead of remoting) for remote

EJB and JNDI invocations.

Everything mentioned below is applicable for both JNDI and EJB functionality.

Server Configuration
In order to configure the server the http-invoker needs to be enabled on each virtual host you wish to use in

the Undertow subsystem. This is enabled by default in standard configs, but if it has been removed it can be

added via:

/subsystem=undertow/server=default-server/host=default-host/setting=http-invoker:add(http-authentication-factory=myfactory,

path='/wildfly-services')

The Hhttp-invoker takes two parameters, a path (which defaults to /wildfly-services) and a

http-authentication-factory which must be a reference to an Elytron http-authentication-factory.

Note that any deployment that wishes to use this must use Elytron security with the same security domain

that corresponds to the HTTP authentication factory.

Performing Invocations
The mechanism for performing invocations is exactly the same as for the remoting based EJB client, the only

difference is that instead of a 'remote+http' URI you use a 'http' URI (which must include the path that was

configured in the invoker). For example if you are currently using 'remote+ ' as the targethttp://localhost:8080

URI, you would change this to 'http://localhost:8080/wildfly-services'.

Implementation details
The wire protocol is detailed at

https://github.com/wildfly/wildfly-http-client/blob/master/docs/src/main/asciidoc/wire-spec-v1.asciidoc

6.20.11 jboss-ejb3.xml Reference

 is a custom deployment descriptor that can be placed in either ejb-jar or war archives. Ifjboss-ejb3.xml

it is placed in an ejb-jar then it must be placed in the folder, in a web archive it must be placed inMETA-INF

the folder.WEB-INF

The contents of are merged with the contents of , with the jboss-ejb3.xml ejb-jar.xml

 items taking precedence.jboss-ejb3.xml

http://localhost:8080
https://github.com/wildfly/wildfly-http-client/blob/master/docs/src/main/asciidoc/wire-spec-v1.asciidoc

Latest WildFly Documentation

JBoss Community Documentation Page of 1007 2293

Example File
A simple example is shown below:

<?xml version="1.1" encoding="UTF-8"?>

<jboss:ejb-jar xmlns:jboss="http://www.jboss.com/xml/ns/javaee"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:s="urn:security:1.1"

 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee

http://www.jboss.org/j2ee/schema/jboss-ejb3-2_0.xsd http://java.sun.com/xml/ns/javaee

http://www.jboss.org/j2ee/schema/jboss-ejb3-spec-2_0.xsd"

 version="3.1"

 impl-version="2.0">

 <enterprise-beans>

 <message-driven>

 <ejb-name>ReplyingMDB</ejb-name>

<ejb-class>org.jboss.as.test.integration.ejb.mdb.messagedestination.ReplyingMDB</ejb-class>

 <activation-config>

 <activation-config-property>

<activation-config-property-name>destination</activation-config-property-name>

 <activation-config-property-value>java:jboss/mdbtest/messageDestinationQueue

 </activation-config-property-value>

 </activation-config-property>

 </activation-config>

 </message-driven>

 </enterprise-beans>

 <assembly-descriptor>

 <s:security>

 <ejb-name>DDMyDomainSFSB</ejb-name>

 <s:security-domain>myDomain</s:security-domain>

 <s:run-as-principal>myPrincipal</s:run-as-principal>

 </s:security>

 </assembly-descriptor>

</jboss:ejb-jar>

As you can see the format is largely similar to , in fact they even use the same namespaces,ejb-jar.xml

however adds some additional namespaces of its own to allow for configuring non-specjboss-ejb3.xml

info. The format of the standard is well documented elsewhere,http://java.sun.com/xml/ns/javaee

this document will cover the non-standard namespaces.

Note that the namespace "http://www.jboss.com/xml/ns/javaee" is bound to "jboss-ejb3-spec-2_0.xsd": this

file redefines some elements of "ejb-jar_3_1.xml"

The root namespace http://www.jboss.com/xml/ns/javaee

Assembly descriptor namespaces
The following namespaces can all be used in the element. They can be used to<assembly-descriptor>

apply their configuration to a single bean, or to all beans in the deployment by using as the .* ejb-name

Latest WildFly Documentation

JBoss Community Documentation Page of 1008 2293

The security namespace urn:security
This allows you to set the security domain and the run-as principal for an EJB.

<s:security>

 <ejb-name>*</ejb-name>

 <s:security-domain>myDomain</s:security-domain>

 <s:run-as-principal>myPrincipal</s:run-as-principal>

</s:security>

The resource adaptor namespace urn:resource-adapter-binding
This allows you to set the resource adaptor for an MDB.

<r:resource-adapter-binding>

 <ejb-name>*</ejb-name>

 <r:resource-adapter-name>myResourceAdaptor</r:resource-adapter-name>

</r:resource-adapter-binding>

The IIOP namespace urn:iiop
The IIOP namespace is where IIOP settings are configured. As there are quite a large number of options

these are covered in the .IIOP guide

The pool namespace urn:ejb-pool:1.0
This allows you to select the pool that is used by the SLSB or MDB. Pools are defined in the server

configuration (i.e. or)standalone.xml domain.xml

<p:pool>

 <ejb-name>*</ejb-name>

 <p:bean-instance-pool-ref>my-pool</p:bean-instance-pool-ref>

</p:pool>

The cache namespace urn:ejb-cache:1.0
This allows you to select the cache that is used by the SFSB. Caches are defined in the server configuration

(i.e. or)standalone.xml domain.xml

<c:cache>

 <ejb-name>*</ejb-name>

 <c:cache-ref>my-cache</c:cache-ref>

</c:cache>

The clustering namespace urn:clustering:1.0
This namespace is deprecated and as of WildFly 8 its use has no effect. The clustering behavior of EJBs is

determined by the profile in use on the server.

https://docs.jboss.org/author/display/AS71/EJB+IIOP+Guide

Latest WildFly Documentation

JBoss Community Documentation Page of 1009 2293

6.20.12 Message Driven Beans Controlled Delivery

There are three mechanisms in Wildfly that allow controlling if a specific MDB is actively receiving or not

messages:

delivery active

delivery groups

clustered singleton

We will see each one of them in the following sections.

Delivery Active
Delivery active is simply an attribute associated with the MDB that indicates if the MDB is receiving

messages or not. If an MDB is not currently receiving messages, the messages will be saved in the queue or

topic for later, according to the rules of the topic/queue.

You can configure delivery active using xml or annotations, and you can change its value after deployment

using the cli.

jboss-ejb3.xml:

In the jboss-ejb3 xml file, configure the value of active as false to mark that the MDB will not be receiving

messages as soon as it is deployed:

<?xml version="1.1" encoding="UTF-8"?>

<jboss:ejb-jar xmlns:jboss="http://www.jboss.com/xml/ns/javaee"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:d="urn:delivery-active:1.1"

 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee

http://www.jboss.org/j2ee/schema/jboss-ejb3-2_0.xsd http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd" version="3.1"

 impl-version="2.0">

 <assembly-descriptor>

 <d:delivery>

 <ejb-name>HelloWorldQueueMDB</ejb-name>

 <d:active>false</d:active>

 </d:delivery>

 </assembly-descriptor>

</jboss:ejb-jar>

You can use a wildcard “*” in the place of ejb-name if you want to apply that active value to all MDBs in your

application.

annotation

Alternatively, you can use the org.jboss.ejb3.annotation.DeliveryActive annotation, as in the example below:

Latest WildFly Documentation

JBoss Community Documentation Page of 1010 2293

@MessageDriven(name = "HelloWorldMDB", activationConfig = {

 @ActivationConfigProperty(propertyName = "destinationType", propertyValue = "javax.jms.Queue"),

 @ActivationConfigProperty(propertyName = "destination", propertyValue =

"queue/HELLOWORLDMDBQueue"),

 @ActivationConfigProperty(propertyName = "acknowledgeMode", propertyValue = "Auto-acknowledge")

})

@DeliveryActive(false)

public class HelloWorldMDB implements MessageListener {

 public void onMessage(Message rcvMessage) {

 // ...

 }

}

Start-delivery and Stop-Delivery
These management operations dynamically change the value of the active attribute, enabling or disabling

delivery for the MDB. at runtime To use them, connect to the Wildfly instance you want to manage, then

enter the path of the MDB you want to manage delivery for:

[standalone@localhost:9990 /] cd

deployment=jboss-helloworld-mdb.war/subsystem=ejb3/message-driven-bean=HelloWorldMDB

[standalone@localhost:9990 message-driven-bean=HelloWorldMDB] :stop-delivery

{"outcome" => "success"}

[standalone@localhost:9990 message-driven-bean=HelloWorldMDB] :start-delivery

{"outcome" => "success"}

Delivery Groups
Delivery groups provide a straightforward way to manage delivery for a group of MDBs. Every MDB

belonging to a delivery group has delivery active if and only if that group is active, and has delivery inactive

whenever the group is not active.

You can add a delivery group to the ejb3 subsystem using either the subsystem xml or cli. Next, we will see

examples of each case. In those examples we will add only a single delivery group, but keep in mind that

you can add as many delivery groups as you need to a Wildfly instance.

 the ejb3 subsystem xml (located in your configuration xml, such as standalone.xml)

Latest WildFly Documentation

JBoss Community Documentation Page of 1011 2293

<subsystem xmlns="urn:jboss:domain:ejb3:4.0">

 ...

 <mdb>

 ...

 <delivery-groups>

 <delivery-group name="mdb-group-name" active="true"/>

 </delivery-groups>

 </mdb>

 ...

</subsystem>

The example above adds a delivery group named “mdb-group-name” (you can use whatever name suits you

best as the group name). The “true” active attribute indicates that all MDBs belonging to that group will have

delivery active right after deployment. If you mark that attribute as false, you are indicating that every MDB

belonging to the group will not start receiving messages after deployment, a condition that will remain until

the group becomes active.

jboss-cli

You can add a mdb-delivery-group using the add command as below:

[standalone@localhost:9990 /] ./subsystem=ejb3/mdb-delivery-group=mdb-group-name:add

{"outcome" => "success"}

Latest WildFly Documentation

JBoss Community Documentation Page of 1012 2293

Reading and Writing the Delivery State of a Delivery Group
You can check whether delivery is active for a group by reading the active attribute, which defaults to true:

[standalone@localhost:9990 /]

./subsystem=ejb3/mdb-delivery-group=mdb-group-name:read-attribute(name=active)

{ "outcome" => "success", "result" => true }

To make the the delivery-group inactive, just write the active attribute with a false value:

[standalone@localhost:9990 /]

./subsystem=ejb3/mdb-delivery-group=mdb-group-name:write-attribute(name=active,value=false)

{"outcome" => "success"}

[standalone@localhost:9990 /]

./subsystem=ejb3/mdb-delivery-group=mdb-group-name:read-attribute(name=active)

{ "outcome" => "success", "result" => false }

To make it active again, write the attribute with a true value:

[standalone@localhost:9990 /]

./subsystem=ejb3/mdb-delivery-group=mdb-group-name:write-attribute(name=active,value=true)

{"outcome" => "success"}

[standalone@localhost:9990 /]

./subsystem=ejb3/mdb-delivery-group=mdb-group-name:read-attribute(name=active)

{ "outcome" => "success", "result" => true }

Using Delivery Groups
To mark that an MDB belongs to a delivery-group, declare so in the jboss-ejb3.xml file:

<?xml version="1.1" encoding="UTF-8"?>

<jboss:ejb-jar xmlns:jboss="http://www.jboss.com/xml/ns/javaee"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:d="urn:delivery-active:1.1"

 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee

http://www.jboss.org/j2ee/schema/jboss-ejb3-2_0.xsd http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd"

 version="3.1"

 impl-version="2.0">

 <assembly-descriptor>

 <d:delivery>

 <ejb-name>HelloWorldMDB</ejb-name>

 <d:group>mdb-delivery-group</d:group>

 </d:delivery>

 </assembly-descriptor>

</jboss:ejb-jar>

Latest WildFly Documentation

JBoss Community Documentation Page of 1013 2293

You can also use a wildcard to mark that all MDBs in your application belong to a delivery-group. In the

following example, we add all MDBs in the application to group1, except for HelloWorldMDB, that is added to

group2:

<?xml version="1.1" encoding="UTF-8"?>

<jboss:ejb-jar xmlns:jboss="http://www.jboss.com/xml/ns/javaee"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:d="urn:delivery-active:1.1"

 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee

http://www.jboss.org/j2ee/schema/jboss-ejb3-2_0.xsd http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd"

 version="3.1"

 impl-version="2.0">

 <assembly-descriptor>

 <d:delivery>

 <ejb-name>*</ejb-name>

 <d:group>group1</d:group>

 </d:delivery>

 <d:delivery>

 <ejb-name>HelloWorldMDB</ejb-name>

 <d:group>group2</d:group>

 </d:delivery>

 </assembly-descriptor>

</jboss:ejb-jar>

Another option is to use org.jboss.ejb3.annotation.DeliveryGroup annotation on each MDB class belonging

to a group:

@MessageDriven(name = "HelloWorldQueueMDB", activationConfig = {

 @ActivationConfigProperty(propertyName = "destinationType", propertyValue = "javax.jms.Queue"),

 @ActivationConfigProperty(propertyName = "destination", propertyValue =

"queue/HELLOWORLDMDBQueue"),

 @ActivationConfigProperty(propertyName = "acknowledgeMode", propertyValue = "Auto-acknowledge")

})

@DeliveryGroup(“group2”)

public class HelloWorldMDB implements MessageListener {

 ...

}

A MDB cannot belong to more than one delivery group. Also, all the delivery-groups used by an application

must be installed in the Wildfly server upon deployment, or the deployment will fail with a message stating

that the delivery-group is missing.

Latest WildFly Documentation

JBoss Community Documentation Page of 1014 2293

Clustered Singleton Delivery
Delivery can be marked as singleton in a clustered environment. In this case, only one node in the cluster

will have delivery active for that MDB, whereas in all other nodes, delivery will be inactive. This option can be

used for applications that are deployed in all nodes of the cluster. Such applications will be active in all

nodes of the cluster, except for the MDBs that are marked as clustered singleton. For those MDBs, only one

cluster node will be processing their messages. In case that node stops, another node will have delivery

activated, guaranteeing that there is always one node processing the messages. This node is what we call

the MDB clustered singleton master node.

Notice that applications using clustered singleton delivery can only be deployed in clustered Wildfly servers

(i.e., servers that are using the ha configuration).

To mark delivery as clustered singleton, you can use the jboss-ejb3.xml or the @ClusteredSingleton

annotation:

 jboss-ejb3.xml:

<?xml version="1.1" encoding="UTF-8"?>

<jboss:ejb-jar xmlns:jboss="http://www.jboss.com/xml/ns/javaee"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:c="urn:clustering:1.1"

 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee

http://www.jboss.org/j2ee/schema/jboss-ejb3-2_0.xsd http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd"

 version="3.1"

 impl-version="2.0">

 <assembly-descriptor>

 <c:clustering>

 <ejb-name>HelloWorldMDB</ejb-name>

 <c:clustered-singleton>true</c:clustered-singleton>

 </c:clustering>

 </assembly-descriptor>

</jboss:ejb-jar>

As in the previous jboss-ejb3.xml examples, a wildcard can be used in the place of the ejb-name to indicate

that all MDBs in the application are singleton clustered.

 annotation

You can use the org.jboss.ejb3.annotation.ClusteredSingleton annotation to mark an MDB as clustered

singleton:

Latest WildFly Documentation

JBoss Community Documentation Page of 1015 2293

@MessageDriven(name = "HelloWorldQueueMDB", activationConfig = {

 @ActivationConfigProperty(propertyName = "destinationType", propertyValue = "javax.jms.Queue"),

 @ActivationConfigProperty(propertyName = "destination", propertyValue =

"queue/HELLOWORLDMDBQueue"),

 @ActivationConfigProperty(propertyName = "acknowledgeMode", propertyValue = "Auto-acknowledge")

})

@ClusteredSingleton

public class HelloWorldMDB implements MessageListener { ... }

Using Multiple MDB Delivery Control Mechanisms
The previous d y control mechanisms can be used together in a single MDB. In this case, they work aseliver

a set of restrictions for delivery to be active in a MDB.

For example, if an MDB belongs to a delivery group and is also a clustered singleton MDB, the delivery will

be active for that MDB only if the delivery group is active in the cluster node that was elected as the

singleton master.

Also, if you use jboss-cli to stopDelivery on a MDB that belongs to a delivery group, the MDB will stop

receiving messages in case that group was active. If that group was not active, the MDB will continue in the

same, inactive state. But, once that group is active, the MDB will not receive messages, unless a

startDelivery operation is executed to revert the previously exectued stopDelivery operation.

Invoking stopDelivery on an MDB that is marked as clustered singleton will work in a similar way: no visible

effect if the current node is not the clustered singleton master; but it will stop delivery of messages for that

MDB if the current node is the clustered singleton master. If the current node is not the master, but

eventually becomes so, the delivery of messages will not be active for that MDB, unless a startDelivery

operation is invoked.

In other words, when more than one delivery control mechanism is used in conjunction, they act as a set of

restrictions that need all to be true in order for the MDB to receive messages:

: the delivery group needs to be active and the delivery needs to bedelivery-group + stop-delivery

started in order for that MDB to start receiving messages;

 : the delivery group needs to be active and the current nodedelivery-group + clustered singleton

needs to be the clustered singleton master node in order for that MDB to start receiving messages;

: as above, delivery-group active, currentdelivery-group + clustered singleton + stop-delivery

node equals the clustered singleton master node, plus, start-delivery needs to be invoked on that

MDB, only with these three factors being true the MDB will start receiving messages.

Latest WildFly Documentation

JBoss Community Documentation Page of 1016 2293

6.20.13 Securing EJBs

Overview
The Java EE spec specifies certain annotations (like @RolesAllowed, @PermitAll, @DenyAll) which can be

used on EJB implementation classes and/or the business method implementations of the beans. Like with all

other configurations, these security related configurations can also be done via the deployment descriptor

(ejb-jar.xml). We be going into the details of Java EE specific annotations/deployment descriptorwon't

configurations in this chapter but instead will be looking at the vendor specific extensions to the security

configurations.

Security Domain
The Java EE spec doesn't mandate a specific way to configure security domain for a bean. It leaves it to the

vendor implementations to allow such configurations, the way they wish. In WildFly 8, the use of

 annotation allows the developer to configure the@org.jboss.ejb3.annotation.SecurityDomain

security domain for a bean. Here's an example:

import org.jboss.ejb3.annotation.SecurityDomain;

import javax.ejb.Stateless;

@Stateless

@SecurityDomain("other")

public class MyBean ...

{

....

The use of @SecurityDomain annotation lets the developer to point the container to the name of the security

domain which is configured in the EJB3 subsystem in the standalone/domain configuration. The

configuration of the security domain in the EJB3 subsystem is out of the scope of this chapter.

An alternate way of configuring a security domain, instead of using annotation, is to use jboss-ejb3.xml

deployment descriptor. Here's an example of how the configuration will look like:

Latest WildFly Documentation

JBoss Community Documentation Page of 1017 2293

<?xml version="1.0" encoding="UTF-8"?>

<jboss:jboss

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:jboss="http://www.jboss.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:s="urn:security:1.1"

 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee

http://www.jboss.org/j2ee/schema/jboss-ejb3-2_0.xsd http://java.sun.com/xml/ns/javaee

http://www.jboss.org/j2ee/schema/jboss-ejb3-spec-2_0.xsd"

 version="3.1" impl-version="2.0">

 <assembly-descriptor>

 <s:security>

 <!-- Even wildcard * is supported -->

 <ejb-name>MyBean</ejb-name>

 <!-- Name of the security domain which is configured in the EJB3 subsystem -->

 <s:security-domain>other</s:security-domain>

 </s:security>

 </assembly-descriptor>

</jboss:jboss>

As you can see we use the security-domain element to configure the security domain.

The jboss-ejb3.xml is expected to be placed in the .jar/META-INF folder of a .jar deployment or

.war/WEB-INF folder of a .war deployment.

Latest WildFly Documentation

JBoss Community Documentation Page of 1018 2293

Absence of security domain configuration but presence of other

security metadata
Let's consider the following example bean:

@Stateless

public class FooBean {

 @RolesAllowed("bar")

 public void doSomething() {

 ..

 }

...

}

As you can see the method is configured to be accessible for users with role "bar". However,doSomething

the bean isn't configured for any specific security domain. Prior to WildFly 8, the absence of an explicitly

configured security domain on the bean would leave the bean unsecured, which meant that even if the

 method was configured with anyone even without the "bar" roledoSomething @RolesAllowed("bar")

could invoke on the bean.

In WildFly 8, the presence of any security metadata (like @RolesAllowed, @PermitAll, @DenyAll, @RunAs,

@RunAsPrincipal) on the bean or any business method of the bean, makes the bean secure, even in the

absence of an explicitly configured security domain. In such cases, the security domain name is default to

"other". Users can explicitly configure an security domain for the bean if they want to using either the

annotation or deployment descriptor approach explained earlier.

Access to methods without explicit security metadata, on a secured

bean
Consider this example bean:

@Stateless

public class FooBean {

 @RolesAllowed("bar")

 public void doSomething() {

 ..

 }

 public void helloWorld() {

 ...

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1019 2293

As you can see the method is marked for access for only users with role "bar". That enablesdoSomething

security on the bean (with security domain defaulted to "other"). However, notice that the method

 doesn't have any specific security configurations.helloWorld

In WildFly 8, such methods which have no explicit security configurations, in a secured bean, will be treated

similar to a method with configuration. What that means is, no one is allowed access to the @DenyAll

 method. This behaviour can be controlled via the jboss-ejb3.xml deployment descriptor at ahelloWorld

per bean level or a per deployment level as follows:

<?xml version="1.0" encoding="UTF-8"?>

<jboss:jboss

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:jboss="http://www.jboss.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:s="urn:security:1.1"

 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee

http://www.jboss.org/j2ee/schema/jboss-ejb3-2_0.xsd http://java.sun.com/xml/ns/javaee

http://www.jboss.org/j2ee/schema/jboss-ejb3-spec-2_0.xsd"

 version="3.1" impl-version="2.0">

 <assembly-descriptor>

 <s:security>

 <!-- Even wildcard * is supported where * is equivalent to all EJBs in the

deployment -->

 <ejb-name>FooBean</ejb-name>

<s:missing-method-permissions-deny-access>false</s:missing-method-permissions-deny-access>

 </s:security>

 </assembly-descriptor>

</jboss:jboss>

Notice the use of element. The value for this element<missing-method-permissions-deny-access>

can either be true or false. If this element isn't configured then it is equivalent to a value of true i.e. no one is

allowed access to methods, which have no explicit security configurations, on secured beans. Setting this to

false allows access to such methods for all users i.e. the behaviour will be switched to be similar to

.@PermitAll

This behaviour can also be configured at the EJB3 subsystem level so that it applies to all EJB3

deployments on the server, as follows:

<subsystem xmlns="urn:jboss:domain:ejb3:1.4">

...

 <default-missing-method-permissions-deny-access value="true"/>

...

</subsystem>

Again, the element accepts either a true ordefault-missing-method-permissions-deny-access

false value. A value of true makes the behaviour similar to and a value of false makes it behave@DenyAll

like @PermitAll

Latest WildFly Documentation

JBoss Community Documentation Page of 1020 2293

6.21 EJB invocations from a remote client using JNDI

This chapter explains how to invoke EJBs from a remote client by using the JNDI API to first lookup the bean

proxy and then invoke on that proxy.

After you have read this article, do remember to take a look at Remote EJB invocations via JNDI -

EJB client API or remote-naming project

Before getting into the details, we would like the users to know that we have introduced a new EJB client

API, which is a WildFly-specific API and allows invocation on remote EJBs. This client API isn't based on

JNDI. So remote clients need not rely on JNDI API to invoke on EJBs. A separate document covering the

EJB remote client API will be made available. For now, you can refer to the javadocs of the EJB client

project at . In this document, we'll just concentrate on the traditional JNDIhttp://docs.jboss.org/ejbclient/

based invocation on EJBs. So let's get started:

6.21.1 Deploying your EJBs on the server side:

Users who already have EJBs deployed on the server side can just skip to the next section.

As a first step, you'll have to deploy your application containing the EJBs on the Wildfly server. If you want

those EJBs to be remotely invocable, then you'll have to expose at least one remote view for that bean. In

this example, let's consider a simple Calculator stateless bean which exposes a RemoteCalculator remote

business interface. We'll also have a simple stateful CounterBean which exposes a RemoteCounter remote

business interface. Here's the code:

package org.jboss.as.quickstarts.ejb.remote.stateless;

/**

 * @author Jaikiran Pai

 */

public interface RemoteCalculator {

 int add(int a, int b);

 int subtract(int a, int b);

}

https://docs.jboss.org/author/display/WFLY8/Remote+EJB+invocations+via+JNDI+-+EJB+client+API+or+remote-naming+project
https://docs.jboss.org/author/display/WFLY8/Remote+EJB+invocations+via+JNDI+-+EJB+client+API+or+remote-naming+project
http://docs.jboss.org/ejbclient/

Latest WildFly Documentation

JBoss Community Documentation Page of 1021 2293

package org.jboss.as.quickstarts.ejb.remote.stateless;

import javax.ejb.Remote;

import javax.ejb.Stateless;

/**

 * @author Jaikiran Pai

 */

@Stateless

@Remote(RemoteCalculator.class)

public class CalculatorBean implements RemoteCalculator {

 @Override

 public int add(int a, int b) {

 return a + b;

 }

 @Override

 public int subtract(int a, int b) {

 return a - b;

 }

}

package org.jboss.as.quickstarts.ejb.remote.stateful;

/**

 * @author Jaikiran Pai

 */

public interface RemoteCounter {

 void increment();

 void decrement();

 int getCount();

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1022 2293

package org.jboss.as.quickstarts.ejb.remote.stateful;

import javax.ejb.Remote;

import javax.ejb.Stateful;

/**

 * @author Jaikiran Pai

 */

@Stateful

@Remote(RemoteCounter.class)

public class CounterBean implements RemoteCounter {

 private int count = 0;

 @Override

 public void increment() {

 this.count++;

 }

 @Override

 public void decrement() {

 this.count--;

 }

 @Override

 public int getCount() {

 return this.count;

 }

}

Let's package this in a jar (how you package it in a jar is out of scope of this chapter) named

"jboss-as-ejb-remote-app.jar" and deploy it to the server. Make sure that your deployment has been

processed successfully and there aren't any errors.

6.21.2 Writing a remote client application for accessing and

invoking the EJBs deployed on the server

The next step is to write an application which will invoke the EJBs that you deployed on the server. In

WildFly, you can either choose to use the WildFly specific EJB client API to do the invocation or use JNDI to

lookup a proxy for your bean and invoke on that returned proxy. In this chapter we will concentrate on the

JNDI lookup and invocation and will leave the EJB client API for a separate chapter.

So let's take a look at what the client code looks like for looking up the JNDI proxy and invoking on it. Here's

the entire client code which invokes on a stateless bean:

package org.jboss.as.quickstarts.ejb.remote.client;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

Latest WildFly Documentation

JBoss Community Documentation Page of 1023 2293

import java.security.Security;

import java.util.Hashtable;

import org.jboss.as.quickstarts.ejb.remote.stateful.CounterBean;

import org.jboss.as.quickstarts.ejb.remote.stateful.RemoteCounter;

import org.jboss.as.quickstarts.ejb.remote.stateless.CalculatorBean;

import org.jboss.as.quickstarts.ejb.remote.stateless.RemoteCalculator;

import org.jboss.sasl.JBossSaslProvider;

/**

 * A sample program which acts a remote client for a EJB deployed on Wildfly 10 server.

 * This program shows how to lookup stateful and stateless beans via JNDI and then invoke on

them

 *

 * @author Jaikiran Pai

 */

public class RemoteEJBClient {

 public static void main(String[] args) throws Exception {

 // Invoke a stateless bean

 invokeStatelessBean();

 // Invoke a stateful bean

 invokeStatefulBean();

 }

 /**

 * Looks up a stateless bean and invokes on it

 *

 * @throws NamingException

 */

 private static void invokeStatelessBean() throws NamingException {

 // Let's lookup the remote stateless calculator

 final RemoteCalculator statelessRemoteCalculator = lookupRemoteStatelessCalculator();

 System.out.println("Obtained a remote stateless calculator for invocation");

 // invoke on the remote calculator

 int a = 204;

 int b = 340;

 System.out.println("Adding " + a + " and " + b + " via the remote stateless calculator

deployed on the server");

 int sum = statelessRemoteCalculator.add(a, b);

 System.out.println("Remote calculator returned sum = " + sum);

 if (sum != a + b) {

 throw new RuntimeException("Remote stateless calculator returned an incorrect sum "

+ sum + " ,expected sum was " + (a + b));

 }

 // try one more invocation, this time for subtraction

 int num1 = 3434;

 int num2 = 2332;

 System.out.println("Subtracting " + num2 + " from " + num1 + " via the remote stateless

calculator deployed on the server");

 int difference = statelessRemoteCalculator.subtract(num1, num2);

 System.out.println("Remote calculator returned difference = " + difference);

 if (difference != num1 - num2) {

 throw new RuntimeException("Remote stateless calculator returned an incorrect

difference " + difference + " ,expected difference was " + (num1 - num2));

 }

 }

Latest WildFly Documentation

JBoss Community Documentation Page of 1024 2293

 /**

 * Looks up a stateful bean and invokes on it

 *

 * @throws NamingException

 */

 private static void invokeStatefulBean() throws NamingException {

 // Let's lookup the remote stateful counter

 final RemoteCounter statefulRemoteCounter = lookupRemoteStatefulCounter();

 System.out.println("Obtained a remote stateful counter for invocation");

 // invoke on the remote counter bean

 final int NUM_TIMES = 20;

 System.out.println("Counter will now be incremented " + NUM_TIMES + " times");

 for (int i = 0; i < NUM_TIMES; i++) {

 System.out.println("Incrementing counter");

 statefulRemoteCounter.increment();

 System.out.println("Count after increment is " + statefulRemoteCounter.getCount());

 }

 // now decrementing

 System.out.println("Counter will now be decremented " + NUM_TIMES + " times");

 for (int i = NUM_TIMES; i > 0; i--) {

 System.out.println("Decrementing counter");

 statefulRemoteCounter.decrement();

 System.out.println("Count after decrement is " + statefulRemoteCounter.getCount());

 }

 }

 /**

 * Looks up and returns the proxy to remote stateless calculator bean

 *

 * @return

 * @throws NamingException

 */

 private static RemoteCalculator lookupRemoteStatelessCalculator() throws NamingException {

 final Hashtable jndiProperties = new Hashtable();

 jndiProperties.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");

 final Context context = new InitialContext(jndiProperties);

 // The app name is the application name of the deployed EJBs. This is typically the ear

name

 // without the .ear suffix. However, the application name could be overridden in the

application.xml of the

 // EJB deployment on the server.

 // Since we haven't deployed the application as a .ear, the app name for us will be an

empty string

 final String appName = "";

 // This is the module name of the deployed EJBs on the server. This is typically the jar

name of the

 // EJB deployment, without the .jar suffix, but can be overridden via the ejb-jar.xml

 // In this example, we have deployed the EJBs in a jboss-as-ejb-remote-app.jar, so the

module name is

 // jboss-as-ejb-remote-app

 final String moduleName = "jboss-as-ejb-remote-app";

 // AS7 allows each deployment to have an (optional) distinct name. We haven't specified

a distinct name for

 // our EJB deployment, so this is an empty string

 final String distinctName = "";

 // The EJB name which by default is the simple class name of the bean implementation

class

Latest WildFly Documentation

JBoss Community Documentation Page of 1025 2293

 final String beanName = CalculatorBean.class.getSimpleName();

 // the remote view fully qualified class name

 final String viewClassName = RemoteCalculator.class.getName();

 // let's do the lookup

 return (RemoteCalculator) context.lookup("ejb:" + appName + "/" + moduleName + "/" +

distinctName + "/" + beanName + "!" + viewClassName);

 }

 /**

 * Looks up and returns the proxy to remote stateful counter bean

 *

 * @return

 * @throws NamingException

 */

 private static RemoteCounter lookupRemoteStatefulCounter() throws NamingException {

 final Hashtable jndiProperties = new Hashtable();

 jndiProperties.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");

 final Context context = new InitialContext(jndiProperties);

 // The app name is the application name of the deployed EJBs. This is typically the ear

name

 // without the .ear suffix. However, the application name could be overridden in the

application.xml of the

 // EJB deployment on the server.

 // Since we haven't deployed the application as a .ear, the app name for us will be an

empty string

 final String appName = "";

 // This is the module name of the deployed EJBs on the server. This is typically the jar

name of the

 // EJB deployment, without the .jar suffix, but can be overridden via the ejb-jar.xml

 // In this example, we have deployed the EJBs in a jboss-as-ejb-remote-app.jar, so the

module name is

 // jboss-as-ejb-remote-app

 final String moduleName = "jboss-as-ejb-remote-app";

 // AS7 allows each deployment to have an (optional) distinct name. We haven't specified

a distinct name for

 // our EJB deployment, so this is an empty string

 final String distinctName = "";

 // The EJB name which by default is the simple class name of the bean implementation

class

 final String beanName = CounterBean.class.getSimpleName();

 // the remote view fully qualified class name

 final String viewClassName = RemoteCounter.class.getName();

 // let's do the lookup (notice the ?stateful string as the last part of the jndi name

for stateful bean lookup)

 return (RemoteCounter) context.lookup("ejb:" + appName + "/" + moduleName + "/" +

distinctName + "/" + beanName + "!" + viewClassName + "?stateful");

 }

}

The entire server side and client side code is hosted at the github repo here ejb-remote

The code has some comments which will help you understand each of those lines. But we'll explain here in

more detail what the code does. As a first step in the client code, we'll do a lookup of the EJB using a JNDI

name. In AS7, for remote access to EJBs, you use the ejb: namespace with the following syntax:

https://github.com/wildfly/quickstart/tree/master/ejb-remote

Latest WildFly Documentation

JBoss Community Documentation Page of 1026 2293

For stateless beans:

ejb:<app-name>/<module-name>/<distinct-name>/<bean-name>!<fully-qualified-classname-of-the-remote-interface>

For stateful beans:

ejb:<app-name>/<module-name>/<distinct-name>/<bean-name>!<fully-qualified-classname-of-the-remote-interface>?stateful

The ejb: namespace identifies it as a EJB lookup and is a constant (i.e. doesn't change) for doing EJB

lookups. The rest of the parts in the jndi name are as follows:

 : This is the name of the .ear (without the .ear suffix) that you have deployed on the server andapp-name

contains your EJBs.

Java EE 6 allows you to override the application name, to a name of your choice by setting it in the

application.xml. If the deployment uses uses such an override then the app-name used in the JNDI

name should match that name.

EJBs can also be deployed in a .war or a plain .jar (like we did in step 1). In such cases where the

deployment isn't an .ear file, then the app-name must be an empty string, while doing the lookup.

 : This is the name of the .jar (without the .jar suffix) that you have deployed on the server andmodule-name

the contains your EJBs. If the EJBs are deployed in a .war then the module name is the .war name (without

the .war suffix).

Java EE 6 allows you to override the module name, by setting it in the ejb-jar.xml/web.xml of your

deployment. If the deployment uses such an override then the module-name used in the JNDI name

should match that name.

Module name part cannot be an empty string in the JNDI name

 : This is a WildFly-specific name which can be optionally assigned to the deployments thatdistinct-name

are deployed on the server. More about the purpose and usage of this will be explained in a separate

chapter. If a deployment doesn't use distinct-name then, use an empty string in the JNDI name, for

distinct-name

 : This is the name of the bean for which you are doing the lookup. The bean name is typicallybean-name

the unqualified classname of the bean implementation class, but can be overriden through either ejb-jar.xml

or via annotations. The bean name part cannot be an empty string in the JNDI name.

 : This is the fully qualified class name of the interfacefully-qualified-classname-of-the-remote-interface

for which you are doing the lookup. The interface should be one of the remote interfaces exposed by the

bean on the server. The fully qualified class name part cannot be an empty string in the JNDI name.

For stateful beans, the JNDI name expects an additional "?stateful" to be appended after the fully qualified

interface name part. This is because for stateful beans, a new session gets created on JNDI lookup and the

EJB client API implementation doesn't contact the server during the JNDI lookup to know what kind of a

bean the JNDI name represents (we'll come to this in a while). So the JNDI name itself is expected to

indicate that the client is looking up a stateful bean, so that an appropriate session can be created.

Latest WildFly Documentation

JBoss Community Documentation Page of 1027 2293

Now that we know the syntax, let's see our code and check what JNDI name it uses. Since our stateless

EJB named CalculatorBean is deployed in a jboss-as-ejb-remote-app.jar (without any ear) and since we are

looking up the org.jboss.as.quickstarts.ejb.remote.stateless.RemoteCalculator remote interface, our JNDI

name will be:

ejb:/jboss-as-ejb-remote-app//CalculatorBean!org.jboss.as.quickstarts.ejb.remote.stateless.RemoteCalculator

That's what the lookupRemoteStatelessCalculator() method in the above client code uses.

For the stateful EJB named CounterBean which is deployed in hte same jboss-as-ejb-remote-app.jar and

which exposes the org.jboss.as.quickstarts.ejb.remote.stateful.RemoteCounter, the JNDI name will be:

ejb:/jboss-as-ejb-remote-app//CounterBean!org.jboss.as.quickstarts.ejb.remote.stateful.RemoteCounter?stateful

That's what the lookupRemoteStatefulCounter() method in the above client code uses.

Now that we know of the JNDI name, let's take a look at the following piece of code in the

lookupRemoteStatelessCalculator():

final Hashtable jndiProperties = new Hashtable();

jndiProperties.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");

final Context context = new InitialContext(jndiProperties);

Here we are creating a JNDI InitialContext object by passing it some JNDI properties. The

Context.URL_PKG_PREFIXES is set to org.jboss.ejb.client.naming. This is necessary because we should

let the JNDI API know what handles the ejb: namespace that we use in our JNDI names for lookup. The

"org.jboss.ejb.client.naming" has a URLContextFactory implementation which will be used by the JNDI APIs

to parse and return an object for ejb: namespace lookups. You can either pass these properties to the

constructor of the InitialContext class or have a jndi.properites file in the classpath of the client application,

which (atleast) contains the following property:

java.naming.factory.url.pkgs=org.jboss.ejb.client.naming

So at this point, we have setup the InitialContext and also have the JNDI name ready to do the lookup. You

can now do the lookup and the appropriate proxy which will be castable to the remote interface that you

used as the fully qualified class name in the JNDI name, will be returned. Some of you might be wondering,

how the JNDI implementation knew which server address to look, for your deployed EJBs. The answer is in

AS7, the proxies returned via JNDI name lookup for ejb: namespace do not connect to the server unless an

invocation on those proxies is done.

Now let's get to the point where we invoke on this returned proxy:

Latest WildFly Documentation

JBoss Community Documentation Page of 1028 2293

// Let's lookup the remote stateless calculator

 final RemoteCalculator statelessRemoteCalculator = lookupRemoteStatelessCalculator();

 System.out.println("Obtained a remote stateless calculator for invocation");

 // invoke on the remote calculator

 int a = 204;

 int b = 340;

 System.out.println("Adding " + a + " and " + b + " via the remote stateless calculator

deployed on the server");

 int sum = statelessRemoteCalculator.add(a, b);

We can see here that the proxy returned after the lookup is used to invoke the add(...) method of the bean.

It's at this point that the JNDI implementation (which is backed by the EJB client API) needs to know the

server details. So let's now get to the important part of setting up the EJB client context properties.

6.21.3 Setting up EJB client context properties

A EJB client context is a context which contains contextual information for carrying out remote invocations

on EJBs. This is a WildFly-specific API. The EJB client context can be associated with multiple EJB

receivers. Each EJB receiver is capable of handling invocations on different EJBs. For example, an EJB

receiver "Foo" might be able to handle invocation on a bean identified by

app-A/module-A/distinctinctName-A/Bar!RemoteBar, whereas a EJB receiver named "Blah" might be able to

handle invocation on a bean identified by app-B/module-B/distinctName-B/BeanB!RemoteBean. Each such

EJB receiver knows about what set of EJBs it can handle and each of the EJB receiver knows which server

target to use for handling the invocations on the bean. For example, if you have a AS7 server at 10.20.30.40

IP address which has its remoting port opened at 4447 and if that's the server on which you deployed that

CalculatorBean, then you can setup a EJB receiver which knows its target address is 10.20.30.40:4447.

Such an EJB receiver will be capable enough to communicate to the server via the JBoss specific EJB

remote client protocol (details of which will be explained in-depth in a separate chapter).

Now that we know what a EJB client context is and what a EJB receiver is, let's see how we can setup a

client context with 1 EJB receiver which can connect to 10.20.30.40 IP address at port 4447. That EJB client

context will then be used (internally) by the JNDI implementation to handle invocations on the bean proxy.

The client will have to place a jboss-ejb-client.properties file in the classpath of the application. The

jboss-ejb-client.properties can contain the following properties:

endpoint.name=client-endpoint

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false

remote.connections=default

remote.connection.default.host=10.20.30.40

remote.connection.default.port = 8080

remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

remote.connection.default.username=appuser

remote.connection.default.password=apppassword

Latest WildFly Documentation

JBoss Community Documentation Page of 1029 2293

This file includes a reference to a default password. Be sure to change this as soon as possible.

The above properties file is just an example. The actual file that was used for this sample program is

available here for reference jboss-ejb-client.properties

We'll see what each of it means.

First the endpoint.name property. We mentioned earlier that the EJB receivers will communicate

with the server for EJB invocations. Internally, they use JBoss Remoting project to carry out the

communication. The endpoint.name property represents the name that will be used to create the

client side of the enpdoint. The endpoint.name property is optional and if not specified in the

jboss-ejb-client.properties file, it will default to "config-based-ejb-client-endpoint" name.

Next is the remote.connectionprovider.create.options.<....> properties:

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false

The "remote.connectionprovider.create.options." property prefix can be used to pass the options

that will be used while create the connection provider which will handle the "remote:" protocol. In

this example we use the "remote.connectionprovider.create.options." property prefix to pass the

"org.xnio.Options.SSL_ENABLED" property value as false. That property will then be used during

the connection provider creation. Similarly other properties can be passed too, just append it to the

"remote.connectionprovider.create.options." prefix

Next we'll see:

remote.connections=default

This is where you define the connections that you want to setup for communication with the remote

server. The "remote.connections" property uses a comma separated value of connection "names".

The connection names are just logical and are used grouping together the connection configuration

properties later on in the properties file. The example above sets up a single remote connection

named "default". There can be more than one connections that are configured. For example:

remote.connections=one, two

Here we are listing 2 connections named "one" and "two". Ultimately, each of the connections will

map to a EJB receiver. So if you have 2 connections, that will setup 2 EJB receivers that will be

added to the EJB client context. Each of these connections will be configured with the connection

specific properties as follows:

https://github.com/wildfly/quickstart/blob/master/ejb-remote/client/src/main/resources/jboss-ejb-client.properties

Latest WildFly Documentation

JBoss Community Documentation Page of 1030 2293

remote.connection.default.host=10.20.30.40

remote.connection.default.port = 8080

remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

As you can see we are using the "remote.connection.<connection-name>." prefix for specifying the

connection specific property. The connection name here is "default" and we are setting the "host"

property of that connection to point to 10.20.30.40. Similarly we set the "port" for that connection to

4447.

By default WildFly uses 8080 as the remoting port. The EJB client API uses the http port, with the

http-upgrade functionality, for communicating with the server for remote invocations, so that's the port we

use in our client programs (unless the server is configured for some other http port)

remote.connection.default.username=appuser

remote.connection.default.password=apppassword

The given user/password must be set by using the command bin/add-user.sh (or.bat).

The user and password must be set because the security-realm is enabled for the subsystem

remoting (see standalone*.xml or domain.xml) by default.

If you do not need the security for remoting you might remove the attribute security-realm in the

configuration.

security-realm is enabled by default.

Latest WildFly Documentation

JBoss Community Documentation Page of 1031 2293

We then use the "remote.connection.<connection-name>.connect.options." property prefix to setup

options that will be used during the connection creation.

Here's an example of setting up multiple connections with different properties for each of those:

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false

remote.connections=one, two

remote.connection.one.host=localhost

remote.connection.one.port=6999

remote.connection.one.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

remote.connection.two.host=localhost

remote.connection.two.port=7999

remote.connection.two.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

As you can see we setup 2 connections "one" and "two" which both point to "localhost" as the

"host" but different ports. Each of these connections will internally be used to create the EJB

receivers in the EJB client context.

So that's how the jboss-ejb-client.properties file can be setup and placed in the classpath.

Using a different file for setting up EJB client context
The EJB client code will by default look for jboss-ejb-client.properties in the classpath. However,

you can specify a different file of your choice by setting the "jboss.ejb.client.properties.file.path"

system property which points to a properties file on your filesystem, containing the client context

configurations. An example for that would be

"-Djboss.ejb.client.properties.file.path=/home/me/my-client/custom-jboss-ejb-client.properties"

Setting up the client classpath with the jars that are required to

run the client application
A jboss-client jar is shipped in the distribution. It's available at

WILDFLY_HOME/bin/client/jboss-client.jar. Place this jar in the classpath of your client application.

If you are using Maven to build the client application, then please follow the instructions in the

WILDFLY_HOME/bin/client/README.txt to add this jar as a Maven dependency.

Latest WildFly Documentation

JBoss Community Documentation Page of 1032 2293

6.21.4 Summary

In the above examples, we saw what it takes to invoke a EJB from a remote client. To summarize:

On the server side you need to deploy EJBs which expose the remote views.

On the client side you need a client program which:

Has a jboss-ejb-client.properties in its classpath to setup the server connection information

Either has a jndi.properties to specify the java.naming.factory.url.pkgs property or passes that

as a property to the InitialContext constructor

Setup the client classpath to include the jboss-client jar that's required for remote invocation of

the EJBs. The location of the jar is mentioned above. You'll also need to have your

application's bean interface jars and other jars that are required by your application, in the

client classpath

6.22 EJB invocations from a remote server instance

The purpose of this chapter is to demonstrate how to lookup and invoke on EJBs deployed on an

WildFly server instance WildFly server instance. This is different from invoking the EJBs from another from

a remote standalone client

Let's call the server, from which the invocation happens to the EJB, as "Client Server" and the server on

which the bean is deployed as the "Destination Server".

Note that this chapter deals with the case where the bean is deployed on the "Destination Server"

but on the "Client Server".not

6.22.1 Application packaging

In this example, we'll consider a EJB which is packaged in a myejb.jar which is within a myapp.ear. Here's

how it would look like:

myapp.ear

|

|---- myejb.jar

| |

| |---- <org.myapp.ejb.*> // EJB classes

Note that packaging itself isn't really important in the context of this article. You can deploy the

EJBs in any standard way (.ear, .war or .jar).

https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI
https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI

Latest WildFly Documentation

JBoss Community Documentation Page of 1033 2293

6.22.2 Beans

In our example, we'll consider a simple stateless session bean which is as follows:

package org.myapp.ejb;

public interface Greeter {

 String greet(String user);

}

package org.myapp.ejb;

import javax.ejb.Remote;

import javax.ejb.Stateless;

@Stateless

@Remote (Greeter.class)

public class GreeterBean implements Greeter {

 @Override

 public String greet(String user) {

 return "Hello " + user + ", have a pleasant day!";

 }

}

6.22.3 Security

WildFly 8 is secure by default. What this means is that no communication can happen with an

WildFly instance from a remote client (irrespective of whether it is a standalone client or another server

instance) without passing the appropriate credentials. Remember that in this example, our "client server" will

be communicating with the "destination server". So in order to allow this communication to happen

successfully, we'll have to configure user credentials which we will be using during this communication. So

let's start with the necessary configurations for this.

Latest WildFly Documentation

JBoss Community Documentation Page of 1034 2293

6.22.4 Configuring a user on the "Destination Server"

As a first step we'll configure a user on the destination server who will be allowed to access the destination

server. We create the user using the script that's available in the JBOSS_HOME/bin folder. Inadd-user

this example, we'll be configuring a named and with a password in the Application User ejb test

. Running the script is an interactive process and you will seeApplicationRealm add-user

questions/output as follows:

add-user

jpai@jpai-laptop:bin$./add-user.sh

What type of user do you wish to add?

 a) Management User (mgmt-users.properties)

 b) Application User (application-users.properties)

(a): b

Enter the details of the new user to add.

Realm (ApplicationRealm) :

Username : ejb

Password :

Re-enter Password :

What roles do you want this user to belong to? (Please enter a comma separated list, or leave

blank for none)\[\]:

About to add user 'ejb' for realm 'ApplicationRealm'

Is this correct yes/no? yes

Added user 'ejb' to file

'/jboss-as-7.1.1.Final/standalone/configuration/application-users.properties'

Added user 'ejb' to file

'/jboss-as-7.1.1.Final/domain/configuration/application-users.properties'

Added user 'ejb' with roles to file

'/jboss-as-7.1.1.Final/standalone/configuration/application-roles.properties'

Added user 'ejb' with roles to file

'/jboss-as-7.1.1.Final/domain/configuration/application-roles.properties'

As you can see in the output above we have now configured a user on the destination server who'll be

allowed to access this server. We'll use this user credentials later on in the client server for communicating

with this server. The important bits to remember are the user we have created in this example is and theejb

password is test.

Note that you can use any username and password combination you want to.

You do require the server to be started to add a user using the add-user script.not

Latest WildFly Documentation

JBoss Community Documentation Page of 1035 2293

6.22.5 Start the "Destination Server"

As a next step towards running this example, we'll start the "Destination Server". In this example, we'll use

the standalone server and use the configuration. The startup command will look like:standalone-full.xml

./standalone.sh -server-config=standalone-full.xml

Ensure that the server has started without any errors.

It's very important to note that if you are starting both the server instances on the same machine,

then each of those server instances have a unique system property.must jboss.node.name

You can do that by passing an appropriate value for system property to the-Djboss.node.name

startup script:

./standalone.sh -server-config=standalone-full.xml -Djboss.node.name=<add appropriate

value here>

6.22.6 Deploying the application

The application (in our case) will be deployed to "Destination Server". The process of deployingmyapp.ear

the application is out of scope of this chapter. You can either use the Command Line Interface or the Admin

console or any IDE or manually copy it to JBOSS_HOME/standalone/deployments folder (for standalone

server). Just ensure that the application has been deployed successfully.

So far, we have built a EJB application and deployed it on the "Destination Server". Now let's move to the

"Client Server" which acts as the client for the deployed EJBs on the "Destination Server".

6.22.7 Configuring the "Client Server" to point to the EJB

remoting connector on the "Destination Server"

As a first step on the "Client Server", we need to let the server know about the "Destination Server"'s EJB

remoting connector, over which it can communicate during the EJB invocations. To do that, we'll have to add

a " " to the remoting subsystem on the "Client Server". The "remote-outbound-connection

" configuration indicates that a outbound connection will be created to a remoteremote-outbound-connection

server instance from that server. The " " will be backed by a "remote-outbound-connection

" which will point to a remote host and a remote port (of the "Destination Server").outbound-socket-binding

So let's see how we create these configurations.

Latest WildFly Documentation

JBoss Community Documentation Page of 1036 2293

6.22.8 Start the "Client Server"

In this example, we'll start the "Client Server" on the same machine as the "Destination Server". We have

copied the entire server installation to a different folder and while starting the "Client Server" we'll use a

port-offset (of 100 in this example) to avoid port conflicts:

./standalone.sh -server-config=standalone-full.xml -Djboss.socket.binding.port-offset=100

6.22.9 Create a security realm on the client server

Remember that we need to communicate with a secure destination server. In order to do that the client

server has to pass the user credentials to the destination server. Earlier we created a user on the destination

server who'll be allowed to communicate with that server. Now on the "client server" we'll create a

security-realm which will be used to pass the user information.

In this example we'll use a security realm which stores a Base64 encoded password and then passes on

that credentials when asked for. Earlier we created a user named and password . So our first taskejb test

here would be to create the base64 encoded version of the password . You can use any utility whichtest

generates you a base64 version for a string. I used which generates the base64 encodedthis online site

string. So for the password, the base64 encoded version is test dGVzdA==

While generating the base64 encoded string make sure that you don't have any trailing or leading

spaces for the original password. That can lead to incorrect encoded versions being generated.

With new versions the add-user script will show the base64 password if you type 'y' if you've been

ask

Is this new user going to be used for one AS process to connect to another AS process

e.g. slave domain controller?

Now that we have generated that base64 encoded password, let's use in the in the security realm that we

are going to configure on the "client server". I'll first shutdown the client server and edit the

standalone-full.xml file to add the following in the section<management>

Now let's create a " " for the base64 encoded password.security-realm

/core-service=management/security-realm=ejb-security-realm:add()

/core-service=management/security-realm=ejb-security-realm/server-identity=secret:add(value=dGVzdA==)

http://www.base64encode.org/

Latest WildFly Documentation

JBoss Community Documentation Page of 1037 2293

Notice that the CLI show the message , so you have to restart"process-state" => "reload-required"

the server before you can use this change.

upon successful invocation of this command, the following configuration will be created in the management

section:

standalone-full.xml

<management>

 <security-realms>

 ...

 <security-realm name="ejb-security-realm">

 <server-identities>

 <secret value="dGVzdA=="/>

 </server-identities>

 </security-realm>

 </security-realms>

...

As you can see I have created a security realm named "ejb-security-realm" (you can name it anything) with

the base64 encoded password. So that completes the security realm configuration for the client server. Now

let's move on to the next step.

Latest WildFly Documentation

JBoss Community Documentation Page of 1038 2293

6.22.10 Create a outbound-socket-binding on the "Client

Server"

Let's first create a which points the "Destination Server"'s host and port. We'll useoutbound-socket-binding

the CLI to create this configuration:

/socket-binding-group=standard-sockets/remote-destination-outbound-socket-binding=remote-ejb:add(host=localhost,

port=8080)

The above command will create a outbound-socket-binding named " " (we can name it anything)remote-ejb

which points to "localhost" as the host and port 8080 as the destination port. Note that the host information

should match the host/IP of the "Destination Server" (in this example we are running on the same machine

so we use "localhost") and the port information should match the http-remoting connector port used by the

EJB subsystem (by default it's 8080). When this command is run successfully, we'll see that the

standalone-full.xml (the file which we used to start the server) was updated with the following

outbound-socket-binding in the socket-binding-group:

<socket-binding-group name="standard-sockets" default-interface="public"

port-offset="${jboss.socket.binding.port-offset:0}">

 ...

 <outbound-socket-binding name="remote-ejb">

 <remote-destination host="localhost" port="8080"/>

 </outbound-socket-binding>

 </socket-binding-group>

6.22.11 Create a "remote-outbound-connection" which uses

this newly created "outbound-socket-binding"

Now let's create a " " which will use the newly created outbound-socket-bindingremote-outbound-connection

(pointing to the EJB remoting connector of the "Destination Server"). We'll continue to use the CLI to create

this configuration:

/subsystem=remoting/remote-outbound-connection=remote-ejb-connection:add(outbound-socket-binding-ref=remote-ejb,

protocol=http-remoting, security-realm=ejb-security-realm, username=ejb)

The above command creates a remote-outbound-connection, named " " (we can nameremote-ejb-connection

it anything), in the remoting subsystem and uses the previously created " "remote-ejb

outbound-socket-binding (notice the outbound-socket-binding-ref in that command) with the http-remoting

protocol. Furthermore, we also set the security-realm attribute to point to the security-realm that we created

in the previous step. Also notice that we have set the username attribute to use the user name who is

allowed to communicate with the destination server.

Latest WildFly Documentation

JBoss Community Documentation Page of 1039 2293

What this step does is, it creates a outbound connection, on the client server, to the remote destination

server and sets up the username to the user who allowed to communicate with that destination server and

also sets up the security-realm to a pre-configured security-realm capable of passing along the user

credentials (in this case the password). This way when a connection has to be established from the client

server to the destination server, the connection creation logic will have the necessary security credentials to

pass along and setup a successful secured connection.

Now let's run the following two operations to set some default connection creation options for the outbound

connection:

/subsystem=remoting/remote-outbound-connection=remote-ejb-connection/property=SASL_POLICY_NOANONYMOUS:add(value=false)

/subsystem=remoting/remote-outbound-connection=remote-ejb-connection/property=SSL_ENABLED:add(value=false)

Ultimately, upon successful invocation of this command, the following configuration will be created in the

remoting subsystem:

<subsystem xmlns="urn:jboss:domain:remoting:1.1">

....

 <outbound-connections>

 <remote-outbound-connection name="remote-ejb-connection"

outbound-socket-binding-ref="remote-ejb" protocol="http-remoting"

security-realm="ejb-security-realm" username="ejb">

 <properties>

 <property name="SASL_POLICY_NOANONYMOUS" value="false"/>

 <property name="SSL_ENABLED" value="false"/>

 </properties>

 </remote-outbound-connection>

 </outbound-connections>

 </subsystem>

From a server configuration point of view, that's all we need on the "Client Server". Our next step is to deploy

an application on the "Client Server" which will invoke on the bean deployed on the "Destination Server".

Latest WildFly Documentation

JBoss Community Documentation Page of 1040 2293

6.22.12 Packaging the client application on the "Client Server"

Like on the "Destination Server", we'll use .ear packaging for the client application too. But like previously

mentioned, that's not mandatory. You can even use a .war or .jar deployments. Here's how our client

application packaging will look like:

client-app.ear

|

|--- META-INF

| |

| |--- jboss-ejb-client.xml

|

|--- web.war

| |

| |--- WEB-INF/classes

| | |

| | |---- <org.myapp.FooServlet> // classes in the web app

In the client application we'll use a servlet which invokes on the bean deployed on the "Destination Server".

We can even invoke the bean on the "Destination Server" from a EJB on the "Client Server". The code

remains the same (JNDI lookup, followed by invocation on the proxy). The important part to notice in this

client application is the file which is packaged in the META-INF folder of a top leveljboss-ejb-client.xml

deployment (in this case our client-app.ear). This contains the EJB client configurationsjboss-ejb-client.xml

which will be used during the EJB invocations for finding the appropriate destinations (also known as, EJB

receivers). The contents of the jboss-ejb-client.xml are explained next.

If your application is deployed as a top level .war deployment, then the jboss-ejb-client.xml is

expected to be placed in .war/WEB-INF/ folder (i.e. the same location where you place any

web.xml file).

Latest WildFly Documentation

JBoss Community Documentation Page of 1041 2293

6.22.13 Contents on jboss-ejb-client.xml

The jboss-ejb-client.xml will look like:

<jboss-ejb-client xmlns="urn:jboss:ejb-client:1.0">

 <client-context>

 <ejb-receivers>

 <remoting-ejb-receiver outbound-connection-ref="remote-ejb-connection"/>

 </ejb-receivers>

 </client-context>

</jboss-ejb-client>

You'll notice that we have configured the EJB client context (for this application) to use a

remoting-ejb-receiver which points to our earlier created " " named "remote-outbound-connection

". This links the EJB client context to use the " " which ultimatelyremote-ejb-connection remote-ejb-connection

points to the EJB remoting connector on the "Destination Server".

6.22.14 Deploy the client application

Let's deploy the client application on the "Client Server". The process of deploying the application is out of

scope, of this chapter. You can use either the CLI or the admin console or a IDE or deploy manually to

JBOSS_HOME/standalone/deployments folder. Just ensure that the application is deployed successfully.

Latest WildFly Documentation

JBoss Community Documentation Page of 1042 2293

6.22.15 Client code invoking the bean

We mentioned that we'll be using a servlet to invoke on the bean, but the code to invoke the bean isn't

servlet specific and can be used in other components (like EJB) too. So let's see how it looks like:

import javax.naming.Context;

import java.util.Hashtable;

import javax.naming.InitialContext;

...

public void invokeOnBean() {

 try {

 final Hashtable props = new Hashtable();

 // setup the ejb: namespace URL factory

 props.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");

 // create the InitialContext

 final Context context = new javax.naming.InitialContext(props);

 // Lookup the Greeter bean using the ejb: namespace syntax which is explained here

https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI

 final Greeter bean = (Greeter) context.lookup("ejb:" + "myapp" + "/" + "myejb" + "/"

+ "" + "/" + "GreeterBean" + "!" + org.myapp.ejb.Greeter.class.getName());

 // invoke on the bean

 final String greeting = bean.greet("Tom");

 System.out.println("Received greeting: " + greeting);

 } catch (Exception e) {

 throw new RuntimeException(e);

 }

}

That's it! The above code will invoke on the bean deployed on the "Destination Server" and return the result.

Latest WildFly Documentation

JBoss Community Documentation Page of 1043 2293

6.23 Example Applications - Migrated to WildFly

6.23.1 Example Applications Migrated from Previous Releases

The applications in this section were written for a previous version of the server but have been modified to

run on WildFly 8. Changes were made to resolve issues that arose during deployment and runtime or to fix

problems with application behaviour. Each example below documents the changes that were made to get

the application to run successfully on WildFly.

Seam 2 JPA example
To see details on changes required to run this application on WildFly, see Seam 2 JPA example deployment

.on WildFly 8

Seam 2 DVD Store example
For details on how to migrate this demo application, see on MarekSeam 2 DVD Store example on WildFly 8

Novotny's Blog.

Seam 2 Booking example
For details on how to migrate this demo application, see on MarekSeam 2 Booking example on WildFly 8

Novotny's Blog.

Seam 2 Booking - step-by-step migration of binaries
This document takes a somewhat different "brute force" approach. The idea is to deploy the binaries to

WildFly, then see what issues you hit and learn how debug and resolve them. See Seam 2 Booking EAR

.Migration of Binaries - Step by Step

jBPM-Console application
Kris Verlaenen migrated this application from AS 5 to WildFly 8. For details about this migration, see jBPM5

 on his Kris's Blog.on WildFly

Order application used for performance testing
Andy Miller migrated this application from AS 5 to WildFly. For details about this migration, see Order

.Application Migration from EAP5.1 to WildFly

Migrate example application
A step by step work through of issues, and their solutions, that might crop up when migrating applications to

WildFly 8. See the following for details.github project

https://docs.jboss.org/author/display/AS7/How+do+I+migrate+my+application+from+AS5+or+AS6+to+AS7#HowdoImigratemyapplicationfromAS5orAS6toAS7-Seam2JPAexampledeploymentonJBossAS7
https://docs.jboss.org/author/display/AS7/How+do+I+migrate+my+application+from+AS5+or+AS6+to+AS7#HowdoImigratemyapplicationfromAS5orAS6toAS7-Seam2JPAexampledeploymentonJBossAS7
https://community.jboss.org/blogs/marek-novotny/2011/12/16/dvdstore-migration-for-jboss-as-710beta
http://community.jboss.org/blogs/marek-novotny/2011/07/29/seam-2-booking-example-on-jboss-as-7
https://docs.jboss.org/author/display/AS7/Seam+2+Booking+EAR+Migration+of+Binaries+-+Step+by+Step
https://docs.jboss.org/author/display/AS7/Seam+2+Booking+EAR+Migration+of+Binaries+-+Step+by+Step
http://kverlaen.blogspot.com/2011/07/jbpm5-on-as7-lightning.html
http://kverlaen.blogspot.com/2011/07/jbpm5-on-as7-lightning.html
https://docs.jboss.org/author/display/AS7/Order+Application+Migration+from+EAP5.1+to+AS7
https://docs.jboss.org/author/display/AS7/Order+Application+Migration+from+EAP5.1+to+AS7
https://github.com/danbev/migrate

Latest WildFly Documentation

JBoss Community Documentation Page of 1044 2293

6.23.2 Example Applications Based on EE6

Applications in this section were designed and written specifically to use the features and functions of EE6.

Quickstarts: A number of quickstart applications were written to demonstrate Java EE 6 and a few

additional technologies. They provide small, specific, working examples that can be used as a

reference for your own project. For more information about the quickstarts, see Get Started

Developing Applications

6.23.3 Porting the Order Application from EAP 5.1 to WildFly 8

Andy Miller ported an example Order application that was used for performance testing from EAP 5.1 to

WildFly 8. These are the notes he made during the migration process.

Overview of the application
The application is relatively simple. it contains three servlets, some stateless session beans, a stateful

session bean, and some entities.

In addition to application code changes, modifications were made to the way the EAR was packaged. This is

because WildFly removed support of some proprietary features that were available in EAP 5.1.

Summary of changes

Code Changes

Modify JNDI lookup code
Since this application was first written for EAP 4.2/4.3, which did not support EJB reference injection, the

servlets were using pre-EE 5 methods for looking up stateless and stateful session bean interfaces. While

migrating to WildFly, it seemed a good time to change the code to use the @EJB annotation, although this

was not a required change.

The real difference is in the lookup name. WildFly only supports the new EE 6 portable JNDI names rather

than the old EAR structure based names. The JNDI lookup code changed as follows:

Example of code in the EAP 5.1 version:

http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/Introduction/
http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/Introduction/

Latest WildFly Documentation

JBoss Community Documentation Page of 1045 2293

try {

 context = new InitialContext();

 distributionCenterManager = (DistributionCenterManager)

context.lookup("OrderManagerApp/DistributionCenterManagerBean/local");

} catch(Exception lookupError) {

 throw new ServletException("Couldn't find DistributionCenterManager bean", lookupError);

}

try {

 customerManager = (CustomerManager)

context.lookup("OrderManagerApp/CustomerManagerBean/local");

} catch(Exception lookupError) {

 throw new ServletException("Couldn't find CustomerManager bean", lookupError);

}

try {

 productManager = (ProductManager)

context.lookup("OrderManagerApp/ProductManagerBean/local");

} catch(Exception lookupError) {

 throw new ServletException("Couldn't find the ProductManager bean", lookupError);

}

Example of how this is now coded in WildFly:

@EJB(lookup="java:app/OrderManagerEJB/DistributionCenterManagerBean!services.ejb.DistributionCenterManager")
private

DistributionCenterManager distributionCenterManager;

@EJB(lookup="java:app/OrderManagerEJB/CustomerManagerBean!services.ejb.CustomerManager")

private CustomerManager customerManager;

@EJB(lookup="java:app/OrderManagerEJB/ProductManagerBean!services.ejb.ProductManager")

private ProductManager productManager;

In addition to the change to injection, which was supported in EAP 5.1.0, the lookup name changed from:

OrderManagerApp/DistributionCenterManagerBean/local

to:

java:app/OrderManagerEJB/DistributionCenterManagerBean!services.ejb.DistributionCenterManager

All the other beans were changed in a similar manner. They are now based on the portable JNDI names

described in EE 6.

Latest WildFly Documentation

JBoss Community Documentation Page of 1046 2293

Modify logging code
The next major change was to logging within the application. The old version was using the commons

logging infrastructure and Log4J that is bundled in the application server. Rather than bundling third-party

logging, the application was modified to use the new WildFly Logging infrastructure.

The code changes themselves are rather trivial, as this example illustrates:

Old JBoss Commons Logging/Log4J:

private static Log log = LogFactory.getLog(CustomerManagerBean.class);

New WildFly Logging

private static Logger logger = Logger.getLogger(CustomerManagerBean.class.toString());

Old JBoss Commons Logging/Log4J:

if(log.isTraceEnabled()) {

 log.trace("Just flushed " + batchSize + " rows to the database.");

 log.trace("Total rows flushed is " + (i+1));

}

New WildFly Logging:

if(logger.isLoggable(Level.TRACE)) {

 logger.log(Level.TRACE, "Just flushed " + batchSize + " rows to the database.");

 logger.log(Level.TRACE, "Total rows flushed is " + (i+1));

}

In addition to the code changes made to use the new AS7 JBoss log manager module, you must add this

dependency to the file as follows:MANIFEST.MF

Manifest-Version: 1.0

Dependencies: org.jboss.logmanager

Latest WildFly Documentation

JBoss Community Documentation Page of 1047 2293

Modify the code to use Infinispan for 2nd level cache
Jboss Cache has been replaced by Infinispan for 2nd level cache. This requires modification of the

 file.persistence.xml

This is what the file looked like in EAP 5.1:

<properties>

<property name="hibernate.cache.region.factory_class"

value="org.hibernate.cache.jbc2.JndiMultiplexedJBossCacheRegionFactory"/>

<property name="hibernate.cache.region.jbc2.cachefactory" value="java:CacheManager"/>

<property name="hibernate.cache.use_second_level_cache" value="true"/>

<property name="hibernate.cache.use_query_cache" value="false"/>

<property name="hibernate.cache.use_minimal_puts" value="true"/>

<property name="hibernate.cache.region.jbc2.cfg.entity" value="mvcc-entity"/>

<property name="hibernate.cache.region_prefix" value="services"/>

</properties>

This is how it was modified to use Infinispan for the same configuration:

<properties>

<property name="hibernate.cache.use_second_level_cache" value="true"/>

<property name="hibernate.cache.use_minimal_puts" value="true"/>

</properties>

<shared-cache-mode>ENABLE_SELECTIVE</shared-cache-mode>

Most of the properties are removed since they will default to the correct values for the second level cache.

See for more details."Using the Infinispan second level cache"

That was the extent of the code changes required to migrate the application to AS7.

https://docs.jboss.org/author/display/AS71/JPA+Reference+Guide#JPAReferenceGuide-UsingtheInfinispansecondlevelcache

Latest WildFly Documentation

JBoss Community Documentation Page of 1048 2293

1.

2.

EAR Packaging Changes
Due to modular class loading changes, the structure of the existing EAR failed to deploy successfully in

WildFly.

The old structure of the EAR was as follows:

$ jar tf OrderManagerApp.ear

META-INF/MANIFEST.MF

META-INF/application.xml

OrderManagerWeb.war

OrderManagerEntities.jar

OrderManagerEJB.jar

META-INF/

In this structure, the entities and the were in one jar file, persistence.xml

, and the stateless and stateful session beans were in another jar file, OrderManagerEntities.jar

. This did not work due to modular class loading changes in WildFly. There are aOrderManagerEJB.jar

couple of ways to resolve this issue:

Modify the class path in the MANIFEST.MF

Flatten the code and put all the beans in one JAR file.

The second approach was selected because it simplified the EAR structure:

$ jar tf OrderManagerApp.ear

META-INF/application.xml

OrderManagerWeb.war

OrderManagerEJB.jar

META-INF/

Since there is no longer an file, the file was modified toOrderManagerEntities.jar applcation.xml

remove the entry.

An entry was added to the file in the to resolve another classMANIFEST.MF OrderManagerWeb.war

loading issue resulting from the modification to use EJB reference injection in the servlets.

Manifest-Version: 1.0

Dependencies: org.jboss.logmanager

Class-Path: OrderManagerEJB.jar

The entry tells the application to look in the file for the injectedClass-Path OrderManagerEJB.jar

beans.

Latest WildFly Documentation

JBoss Community Documentation Page of 1049 2293

Summary
Although the existing EAR structure could have worked with additional modifications to the MANIFEST.MF

file, this approach seemed more appealing because it simplified the structure while maintaining the web tier

in its own WAR.

The source files for both versions is attached so you can view the changes that were made to the

application.

6.23.4 Seam 2 Booking Application - Migration of Binaries from

EAP5.1 to WildFly

This is a step-by-step how-to guide on porting the Seam Booking application binaries from EAP5.1 to

WildFly 8. Although there are better approaches for migrating applications, the purpose of this document is

to show the types of issues you might encounter when migrating an application and how to debug and

resolve those issues.

For this example, the application EAR is deployed to the JBOSS_HOME/standalone/deployments directory

with no changes other than extracting the archives so we can modify the XML files contained within them.

Latest WildFly Documentation

JBoss Community Documentation Page of 1050 2293

1.

2.

3.

4.

Step 1: Build and deploy the EAP5.1 version of the Seam Booking

application

Build the EAR

cd /EAP5_HOME/jboss-eap5.1/seam/examples/booking

 ~/tools/apache-ant-1.8.2/bin/ant explode

Copy the EAR to the JBOSS_HOME deployments directory:

cp -r

EAP5_HOME/jboss-eap-5.1/seam/examples/booking/exploded-archives/jboss-seam-booking.ear

AS7_HOME/standalone/deployments/

 cp -r

EAP5_HOME/jboss-eap-5.1/seam/examples/booking/exploded-archives/jboss-seam-booking.war

AS7_HOME/standalone/deployments/jboss-seam.ear

 cp -r

EAP5_HOME/jboss-eap-5.1/seam/examples/booking/exploded-archives/jboss-seam-booking.jar

AS7_HOME/standalone/deployments/jboss-seam.ear

Start the WildFly server and check the log. You will see:

INFO [org.jboss.as.deployment] (DeploymentScanner-threads - 1) Found

jboss-seam-booking.ear in deployment directory. To trigger deployment create a file called

jboss-seam-booking.ear.dodeploy

Create an empty file with the name and copy it into thejboss-seam-booking.ear.dodeploy

deployments directory. In the log, you will now see the following, indicating that it is deploying:

INFO [org.jboss.as.server.deployment] (MSC service thread 1-1) Starting deployment of

"jboss-seam-booking.ear"

 INFO [org.jboss.as.server.deployment] (MSC service thread 1-3) Starting deployment of

"jboss-seam-booking.jar"

 INFO [org.jboss.as.server.deployment] (MSC service thread 1-6) Starting deployment of

"jboss-seam.jar"

 INFO [org.jboss.as.server.deployment] (MSC service thread 1-2) Starting deployment of

"jboss-seam-booking.war"

At this point, you will first encounter your first deployment error. In the next section, we will step through each

issue and how to debug and resolve it.

Step 2: Debug and resolve deployment errors and exceptions

First Issue: java.lang.ClassNotFoundException: javax.faces.FacesException
When you deploy the application, the log contains the following error:

Latest WildFly Documentation

JBoss Community Documentation Page of 1051 2293

ERROR \[org.jboss.msc.service.fail\] (MSC service thread 1-1) MSC00001: Failed to start service

jboss.deployment.subunit."jboss-seam-booking.ear"."jboss-seam-booking.war".POST_MODULE:

org.jboss.msc.service.StartException in service

jboss.deployment.subunit."jboss-seam-booking.ear"."jboss-seam-booking.war".POST_MODULE:

Failed to process phase POST_MODULE of subdeployment "jboss-seam-booking.war" of deployment

"jboss-seam-booking.ear"

 (.. additional logs removed ...)

Caused by: java.lang.ClassNotFoundException: javax.faces.FacesException from \[Module

"deployment.jboss-seam-booking.ear:main" from Service Module Loader\]

 at org.jboss.modules.ModuleClassLoader.findClass(ModuleClassLoader.java:191)

What it means:
The ClassNotFoundException indicates a missing dependency. In this case, it can not find the class

 and you need to explicitly add the dependency.javax.faces.FacesException

Latest WildFly Documentation

JBoss Community Documentation Page of 1052 2293

How to resolve it:
Find the module name for that class in the directory by looking for a path that matchesAS7_HOME/modules

the missing class. In this case, you will find 2 modules that match:

javax/faces/api/main

 javax/faces/api/1.2

Both modules have the same module name: “javax.faces.api” but one in the main directory is for JSF 2.0

and the one located in the 1.2 directory is for JSF 1.2. If there was only one module available, we could

simply create a file and added the module dependency. But in this case, we want to use theMANIFEST.MF

JSF 1.2 version and not the 2.0 version in main, so we need to be able to specify one and exclude the other.

To do this, we create a file in the EAR directory thatjboss-deployment-structure.xml META-INF/

contains the following data:

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">

 <deployment>

 <dependencies>

 <module name="javax.faces.api" slot="1.2" export="true"/>

 </dependencies>

 </deployment>

 <sub-deployment name="jboss-seam-booking.war">

 <exclusions>

 <module name="javax.faces.api" slot="main"/>

 </exclusions>

 <dependencies>

 <module name="javax.faces.api" slot="1.2"/>

 </dependencies>

 </sub-deployment>

</jboss-deployment-structure>

In the "deployment" section, we add the dependency for the for the JSF 1.2 module.javax.faces.api

We also add the dependency for the JSF 1.2 module in the sub-deployment section for the WAR and

exclude the module for JSF 2.0.

Redeploy the application by deleting the

 file and creating a blank standalone/deployments/jboss-seam-booking.ear.failed

 file in the same directory.jboss-seam-booking.ear.dodeploy

Next Issue: java.lang.ClassNotFoundException: org.apache.commons.logging.Log
When you deploy the application, the log contains the following error:

Latest WildFly Documentation

JBoss Community Documentation Page of 1053 2293

ERROR [org.jboss.msc.service.fail] (MSC service thread 1-8) MSC00001: Failed to start service

jboss.deployment.unit."jboss-seam-booking.ear".INSTALL:

org.jboss.msc.service.StartException in service

jboss.deployment.unit."jboss-seam-booking.ear".INSTALL:

Failed to process phase INSTALL of deployment "jboss-seam-booking.ear"

 (.. additional logs removed ...)

Caused by: java.lang.ClassNotFoundException: org.apache.commons.logging.Log from [Module

"deployment.jboss-seam-booking.ear.jboss-seam-booking.war:main" from Service Module Loader]

What it means:
The ClassNotFoundException indicates a missing dependency. In this case, it can not find the class

 and you need to explicitly add the dependency.org.apache.commons.logging.Log

How to resolve it:
Find the module name for that class in the directory by looking for a path thatJBOSS_HOME/modules/

matches the missing class. In this case, you will find one module that matches the path

. The module name is “org.apache.commons.logging”.org/apache/commons/logging/

Modify the to add the module dependency to the deploymentjboss-deployment-structure.xml

section of the file.

<module name="org.apache.commons.logging" export="true"/>

The should now look like this:jboss-deployment-structure.xml

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">

 <deployment>

 <dependencies>

 <module name="javax.faces.api" slot="1.2" export="true"/>

 <module name="org.apache.commons.logging" export="true"/>

 </dependencies>

 </deployment>

 <sub-deployment name="jboss-seam-booking.war">

 <exclusions>

 <module name="javax.faces.api" slot="main"/>

 </exclusions>

 <dependencies>

 <module name="javax.faces.api" slot="1.2"/>

 </dependencies>

 </sub-deployment>

</jboss-deployment-structure>

Redeploy the application by deleting the

 file and creating a blank standalone/deployments/jboss-seam-booking.ear.failed

 in the same directory.jboss-seam-booking.ear.dodeploy file

Latest WildFly Documentation

JBoss Community Documentation Page of 1054 2293

Next Issue: java.lang.ClassNotFoundException: org.dom4j.DocumentException
When you deploy the application, the log contains the following error:

ERROR [org.apache.catalina.core.ContainerBase.[jboss.web].[default-host].[/seam-booking]] (MSC

service thread 1-3) Exception sending context initialized event to listener instance of class

org.jboss.seam.servlet.SeamListener: java.lang.NoClassDefFoundError: org/dom4j/DocumentException

 (... additional logs removed ...)

Caused by: java.lang.ClassNotFoundException: org.dom4j.DocumentException from [Module

"deployment.jboss-seam-booking.ear.jboss-seam.jar:main" from Service Module Loader]

What it means:
Again, the ClassNotFoundException indicates a missing dependency. In this case, it can not find the class

.org.dom4j.DocumentException

How to resolve it:
Find the module name in the directory by looking for the JBOSS_HOME/modules/

. The module name is “org.dom4j”.org/dom4j/DocumentException

Modify the to add the module dependency to the deploymentjboss-deployment-structure.xml

section of the file.

<module name="org.dom4j" export="true"/>

The file should now look like this:jboss-deployment-structure.xml

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">

 <deployment>

 <dependencies>

 <module name="javax.faces.api" slot="1.2" export="true"/>

 <module name="org.apache.commons.logging" export="true"/>

 <module name="org.dom4j" export="true"/>

 </dependencies>

 </deployment>

 <sub-deployment name="jboss-seam-booking.war">

 <exclusions>

 <module name="javax.faces.api" slot="main"/>

 </exclusions>

 <dependencies>

 <module name="javax.faces.api" slot="1.2"/>

 </dependencies>

 </sub-deployment>

</jboss-deployment-structure>

Redeploy the application by deleting the

 file and creating a blank standalone/deployments/jboss-seam-booking.ear.failed

 in the same directory.jboss-seam-booking.ear.dodeploy file

Latest WildFly Documentation

JBoss Community Documentation Page of 1055 2293

Next Issue: java.lang.ClassNotFoundException: org.hibernate.validator.InvalidValue
When you deploy the application, the log contains the following error:

ERROR [org.apache.catalina.core.ContainerBase.[jboss.web].[default-host].[/seam-booking]] (MSC

service thread 1-6) Exception sending context initialized event to listener instance of class

org.jboss.seam.servlet.SeamListener: java.lang.RuntimeException: Could not create Component:

org.jboss.seam.international.statusMessages

 (... additional logs removed ...)

Caused by: java.lang.ClassNotFoundException: org.hibernate.validator.InvalidValue from [Module

"deployment.jboss-seam-booking.ear.jboss-seam.jar:main" from Service Module Loader]

What it means:
Again, the ClassNotFoundException indicates a missing dependency. In this case, it can not find the class

.org.hibernate.validator.InvalidValue

How to resolve it:
There is a module “org.hibernate.validator”, but the JAR does not contain the

 class, so adding the module dependency will not resolveorg.hibernate.validator.InvalidValue

this issue.

In this case, the JAR containing the class was part of the EAP 5.1 deployment. We will look for the JAR that

contains the missing class in the directory. To do this, open aEAP5_HOME/jboss-eap-5.1/seam/lib/

console and type the following:

cd EAP5_HOME/jboss-eap-5.1/seam/lib

grep 'org.hibernate.validator.InvalidValue' `find . -name '*.jar'`

The result shows:

Binary file ./hibernate-validator.jar matches

Binary file ./test/hibernate-all.jar matches

In this case, we need to copy the to the hibernate-validator.jar jboss-seam-booking.ear/lib/

directory:

cp EAP5_HOME/jboss-eap-5.1/seam/lib/hibernate-validator.jar jboss-seam-booking.ear/lib

Redeploy the application by deleting the

 file and creating a blank standalone/deployments/jboss-seam-booking.ear.failed

 in the same directory.jboss-seam-booking.ear.dodeploy file

Next Issue: java.lang.InstantiationException:

org.jboss.seam.jsf.SeamApplicationFactory
When you deploy the application, the log contains the following error:

Latest WildFly Documentation

JBoss Community Documentation Page of 1056 2293

INFO [javax.enterprise.resource.webcontainer.jsf.config] (MSC service thread 1-7) Unsanitized

stacktrace from failed start...: com.sun.faces.config.ConfigurationException: Factory

'javax.faces.application.ApplicationFactory' was not configured properly.

 at

com.sun.faces.config.processor.FactoryConfigProcessor.verifyFactoriesExist(FactoryConfigProcessor.java:296)

[jsf-impl-2.0.4-b09-jbossorg-4.jar:2.0.4-b09-jbossorg-4]

 (... additional logs removed ...)

Caused by: javax.faces.FacesException: org.jboss.seam.jsf.SeamApplicationFactory

 at javax.faces.FactoryFinder.getImplGivenPreviousImpl(FactoryFinder.java:606)

[jsf-api-1.2_13.jar:1.2_13-b01-FCS]

 (... additional logs removed ...)

 at

com.sun.faces.config.processor.FactoryConfigProcessor.verifyFactoriesExist(FactoryConfigProcessor.java:294)

[jsf-impl-2.0.4-b09-jbossorg-4.jar:2.0.4-b09-jbossorg-4]

 ... 11 more

Caused by: java.lang.InstantiationException: org.jboss.seam.jsf.SeamApplicationFactory

 at java.lang.Class.newInstance0(Class.java:340) [:1.6.0_25]

 at java.lang.Class.newInstance(Class.java:308) [:1.6.0_25]

 at javax.faces.FactoryFinder.getImplGivenPreviousImpl(FactoryFinder.java:604)

[jsf-api-1.2_13.jar:1.2_13-b01-FCS]

 ... 16 more

What it means:
The com.sun.faces.config.ConfigurationException and java.lang.InstantiationException indicate a

dependency issue. In this case, it is not as obvious.

Latest WildFly Documentation

JBoss Community Documentation Page of 1057 2293

How to resolve it:
We need to find the module that contains the com.sun.faces classes. While there is no com.sun.faces

module, there are are two com.sun.jsf-impl modules. A quick check of the jsf-impl-1.2_13.jar in the 1.2

directory shows it contains the com.sun.faces classes.

As we did with the javax.faces.FacesException ClassNotFoundException, we want to use the JSF 1.2

version and not the JSF 2.0 version in main, so we need to be able to specify one and exclude the other. We

need to modify the jboss-deployment-structure.xml to add the module dependency to the deployment section

of the file. We also need to add it to the WAR subdeployment and exclude the JSF 2.0 module. The file

should now look like this:

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">

 <deployment>

 <dependencies>

 <module name="javax.faces.api" slot="1.2" export="true"/>

 <module name="com.sun.jsf-impl" slot="1.2" export="true"/>

 <module name="org.apache.commons.logging" export="true"/>

 <module name="org.dom4j" export="true"/>

 </dependencies>

 </deployment>

 <sub-deployment name="jboss-seam-booking.war">

 <exclusions>

 <module name="javax.faces.api" slot="main"/>

 <module name="com.sun.jsf-impl" slot="main"/>

 </exclusions>

 <dependencies>

 <module name="javax.faces.api" slot="1.2"/>

 <module name="com.sun.jsf-impl" slot="1.2"/>

 </dependencies>

 </sub-deployment>

</jboss-deployment-structure>

Redeploy the application by deleting the

 file and creating a blank standalone/deployments/jboss-seam-booking.ear.failed

 in the same directory.jboss-seam-booking.ear.dodeploy file

Next Issue: java.lang.ClassNotFoundException:

org.apache.commons.collections.ArrayStack
When you deploy the application, the log contains the following error:

ERROR [org.apache.catalina.core.ContainerBase.[jboss.web].[default-host].[/seam-booking]] (MSC

service thread 1-1) Exception sending context initialized event to listener instance of class

com.sun.faces.config.ConfigureListener: java.lang.RuntimeException:

com.sun.faces.config.ConfigurationException: CONFIGURATION FAILED!

org.apache.commons.collections.ArrayStack from [Module "deployment.jboss-seam-booking.ear:main"

from Service Module Loader]

 (... additional logs removed ...)

Caused by: java.lang.ClassNotFoundException: org.apache.commons.collections.ArrayStack from

[Module "deployment.jboss-seam-booking.ear:main" from Service Module Loader]

Latest WildFly Documentation

JBoss Community Documentation Page of 1058 2293

What it means:
Again, the ClassNotFoundException indicates a missing dependency. In this case, it can not find the class

.org.apache.commons.collections.ArrayStack

How to resolve it:
Find the module name in the directory by looking for the JBOSS_HOME/modules/

 path. The module name is “org.apache.commons.collections”.org/apache/commons/collections

Modify the to add the module dependency to the deploymentjboss-deployment-structure.xml

section of the file.

<module name="org.apache.commons.collections" export="true"/>

The file should now look like this:jboss-deployment-structure.xml

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">

 <deployment>

 <dependencies>

 <module name="javax.faces.api" slot="1.2" export="true"/>

 <module name="com.sun.jsf-impl" slot="1.2" export="true"/>

 <module name="org.apache.commons.logging" export="true"/>

 <module name="org.dom4j" export="true"/>

 <module name="org.apache.commons.collections" export="true"/>

 </dependencies>

 </deployment>

 <sub-deployment name="jboss-seam-booking.war">

 <exclusions>

 <module name="javax.faces.api" slot="main"/>

 <module name="com.sun.jsf-impl" slot="main"/>

 </exclusions>

 <dependencies>

 <module name="javax.faces.api" slot="1.2"/>

 <module name="com.sun.jsf-impl" slot="1.2"/>

 </dependencies>

 </sub-deployment>

</jboss-deployment-structure>

Redeploy the application by deleting the

 file and creating a blank standalone/deployments/jboss-seam-booking.ear.failed

 in the same directory.jboss-seam-booking.ear.dodeploy file

Next Issue: Services with missing/unavailable dependencies
When you deploy the application, the log contains the following error:

Latest WildFly Documentation

JBoss Community Documentation Page of 1059 2293

ERROR [org.jboss.as.deployment] (DeploymentScanner-threads - 2) {"Composite operation failed and

was rolled back. Steps that failed:" => {"Operation step-2" => {"Services with

missing/unavailable dependencies" =>

["jboss.deployment.subunit.\"jboss-seam-booking.ear\".\"jboss-seam-booking.jar\".component.AuthenticatorAction.START

missing [

jboss.naming.context.java.comp.jboss-seam-booking.\"jboss-seam-booking.jar\".AuthenticatorAction.\"env/org.jboss.seam.example.booking.AuthenticatorAction/em\"

]","jboss.deployment.subunit.\"jboss-seam-booking.ear\".\"jboss-seam-booking.jar\".component.HotelSearchingAction.START

missing [

jboss.naming.context.java.comp.jboss-seam-booking.\"jboss-seam-booking.jar\".HotelSearchingAction.\"env/org.jboss.seam.example.booking.HotelSearchingAction/em\"

]","

<... additional logs removed ...>

"jboss.deployment.subunit.\"jboss-seam-booking.ear\".\"jboss-seam-booking.jar\".component.BookingListAction.START

missing [

jboss.naming.context.java.comp.jboss-seam-booking.\"jboss-seam-booking.jar\".BookingListAction.\"env/org.jboss.seam.example.booking.BookingListAction/em\"

]","jboss.persistenceunit.\"jboss-seam-booking.ear/jboss-seam-booking.jar#bookingDatabase\"

missing [jboss.naming.context.java.bookingDatasource]"]}}}

What it means:
When you get a “Services with missing/unavailable dependencies” error, look that the text within the

brackets after “missing”.

In this case you see:

missing [

jboss.naming.context.java.comp.jboss-seam-booking.\"jboss-seam-booking.jar\".AuthenticatorAction.\"env/org.jboss.seam.example.booking.AuthenticatorAction/em\"

]

The “/em” indicates an Entity Manager and datasource issue.

How to resolve it:
In WildFly 8, datasource configuration has changed and needs to be defined in the

 file. Since WildFly ships with an example database thatstandalone/configuration/standalone.xml

is already defined in the standalone.xml file, we will modify the file to use that examplepersistence.xml

database. Looking in the file, you can see that the jndi-name for the example database isstandalone.xml

"java:jboss/datasources/ExampleDS".

Modify the file to comment the existingjboss-seam-booking.jar/META-INF/persistence.xml

jta-data-source element and replace it as follows:

<!-- <jta-data-source>java:/bookingDatasource</jta-data-source> -->

<jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>

Redeploy the application by deleting the

 file and creating a blank standalone/deployments/jboss-seam-booking.ear.failed

 in the same directory.jboss-seam-booking.ear.dodeploy file

Latest WildFly Documentation

JBoss Community Documentation Page of 1060 2293

Next Issue: java.lang.ClassNotFoundException:

org.hibernate.cache.HashtableCacheProvider
When you deploy the application, the log contains the following error:

ERROR [org.jboss.msc.service.fail] (MSC service thread 1-4) MSC00001: Failed to start service

jboss.persistenceunit."jboss-seam-booking.ear/jboss-seam-booking.jar#bookingDatabase":

org.jboss.msc.service.StartException in service

jboss.persistenceunit."jboss-seam-booking.ear/jboss-seam-booking.jar#bookingDatabase": Failed to

start service

 at org.jboss.msc.service.ServiceControllerImpl$StartTask.run(ServiceControllerImpl.java:1786)

 (... log messages removed ...)

Caused by: javax.persistence.PersistenceException: [PersistenceUnit: bookingDatabase] Unable to

build EntityManagerFactory

 at org.hibernate.ejb.Ejb3Configuration.buildEntityManagerFactory(Ejb3Configuration.java:903)

 {... log messages removed ...)

Caused by: org.hibernate.HibernateException: could not instantiate RegionFactory

[org.hibernate.cache.internal.bridge.RegionFactoryCacheProviderBridge]

 at org.hibernate.cfg.SettingsFactory.createRegionFactory(SettingsFactory.java:355)

 (... log messages removed ...)

Caused by: java.lang.reflect.InvocationTargetException

 at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) [:1.6.0_25]

 (... log messages removed ...)

Caused by: org.hibernate.cache.CacheException: could not instantiate CacheProvider

[org.hibernate.cache.HashtableCacheProvider]

 at

org.hibernate.cache.internal.bridge.RegionFactoryCacheProviderBridge.<init>(RegionFactoryCacheProviderBridge.java:68)

... 20 more

Caused by: java.lang.ClassNotFoundException: org.hibernate.cache.HashtableCacheProvider from

[Module "org.hibernate:main" from local module loader @12a3793 (roots:

/home/sgilda/tools/jboss7/modules)]

 at org.jboss.modules.ModuleClassLoader.findClass(ModuleClassLoader.java:191)

 (... log messages removed ...)

What it means:
The ClassNotFoundException indicates a missing dependency. In this case, it can not find the class

org.hibernate.cache.HashtableCacheProvider.

Latest WildFly Documentation

JBoss Community Documentation Page of 1061 2293

How to resolve it:
There is no module for “org.hibernate.cache”. In this case, the JAR containing the class was part of the EAP

5.1 deployment. We will look for the JAR that contains the missing class in the

 directory.EAP5_HOME/jboss-eap-5.1/seam/lib/

To do this, open a console and type the following:

cd EAP5_HOME/jboss-eap-5.1/seam/lib

grep 'org.hibernate.validator.InvalidValue' `find . -name '*.jar'`

The result shows:

Binary file ./hibernate-core.jar matches

Binary file ./test/hibernate-all.jar matches

In this case, we need to copy the to the hibernate-core.jar jboss-seam-booking.ear/lib/

directory:

cp EAP5_HOME/jboss-eap-5.1/seam/lib/hibernate-core.jar jboss-seam-booking.ear/lib

Redeploy the application by deleting the

 file and creating a blank standalone/deployments/jboss-seam-booking.ear.failed

 in the same directory.jboss-seam-booking.ear.dodeploy file

Next Issue: java.lang.ClassCastException:

org.hibernate.cache.HashtableCacheProvider
When you deploy the application, the log contains the following error:

Latest WildFly Documentation

JBoss Community Documentation Page of 1062 2293

ERROR [org.jboss.msc.service.fail] (MSC service thread 1-2) MSC00001: Failed to start service

jboss.persistenceunit."jboss-seam-booking.ear/jboss-seam-booking.jar#bookingDatabase":

org.jboss.msc.service.StartException in service

jboss.persistenceunit."jboss-seam-booking.ear/jboss-seam-booking.jar#bookingDatabase": Failed to

start service

 at org.jboss.msc.service.ServiceControllerImpl$StartTask.run(ServiceControllerImpl.java:1786)

 (... log messages removed ...)

Caused by: javax.persistence.PersistenceException: [PersistenceUnit: bookingDatabase] Unable to

build EntityManagerFactory

 at org.hibernate.ejb.Ejb3Configuration.buildEntityManagerFactory(Ejb3Configuration.java:903)

 (... log messages removed ...)

Caused by: org.hibernate.HibernateException: could not instantiate RegionFactory

[org.hibernate.cache.internal.bridge.RegionFactoryCacheProviderBridge]

 at org.hibernate.cfg.SettingsFactory.createRegionFactory(SettingsFactory.java:355)

 (... log messages removed ...)

Caused by: java.lang.reflect.InvocationTargetException

 at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) [:1.6.0_25]

 (... log messages removed ...)

Caused by: org.hibernate.cache.CacheException: could not instantiate CacheProvider

[org.hibernate.cache.HashtableCacheProvider]

 at

org.hibernate.cache.internal.bridge.RegionFactoryCacheProviderBridge.<init>(RegionFactoryCacheProviderBridge.java:68)

... 20 more

Caused by: java.lang.ClassCastException: org.hibernate.cache.HashtableCacheProvider cannot be

cast to org.hibernate.cache.spi.CacheProvider

 at

org.hibernate.cache.internal.bridge.RegionFactoryCacheProviderBridge.<init>(RegionFactoryCacheProviderBridge.java:65)

... 20 more

What it means:
A ClassCastException can be a result of many problems. If you look at this exception in the log, it appears

the class org.hibernate.cache.HashtableCacheProvider extends org.hibernate.cache.spi.CacheProvider and

is being loaded by a different class loader than the class it extends. The

org.hibernate.cache.HashtableCacheProvider class is in in the hibernate-core.jar and is being loaded by the

application class loader. The class it extends, org.hibernate.cache.spi.CacheProvider, is in the

org/hibernate/main/hibernate-core-4.0.0.Beta1.jar and is implicitly loaded by that module.

This is not obvious, but due to changes in Hibernate 4, this problem is caused by a backward compatibility

issue due moving the HashtableCacheProvider class into another package. This class was moved from the

org.hibernate.cache package to the org.hibernate.cache.internal package. If you don't remove the

hibernate.cache.provider_class property from the persistence.xml file, it will force the Seam application to

bundle the old Hibernate libraries, resulting in ClassCastExceptions, In WildFly, you should move away from

using HashtableCacheProvider and use Infinispan instead.

Latest WildFly Documentation

JBoss Community Documentation Page of 1063 2293

How to resolve it:
In WildFly, you need to comment out the hibernate.cache.provider_class property in the

 file as follows:jboss-seam-booking.jar/META-INF persistence.xml

<!-- <property name="hibernate.cache.provider_class"

value="org.hibernate.cache.HashtableCacheProvider"/> -->

Redeploy the application by deleting the

 file and creating a blank standalone/deployments/jboss-seam-booking.ear.failed

 in the same directory.jboss-seam-booking.ear.dodeploy file

No more issues: Deployment errors should be resolved
At this point, the application should deploy without errors, but when you access the URL “

” in a browser and attempt "Account Login", you will get a runtime errorhttp://localhost:8080/seam-booking/

“The page isn't redirecting properly”. In the next section, we will step through each runtime issue and how to

debug and resolve it.

Step 3: Debug and resolve runtime errors and exceptions

First Issue: javax.naming.NameNotFoundException: Name 'jboss-seam-booking' not

found in context ''
The application deploys successfully, but when you access the URL “ ” inhttp://localhost:8080/seam-booking/

a browser, you get “The page isn't redirecting properly” and the log contains the following error:

SEVERE [org.jboss.seam.jsf.SeamPhaseListener] (http--127.0.0.1-8080-1) swallowing exception:

java.lang.IllegalStateException: Could not start transaction

 at org.jboss.seam.jsf.SeamPhaseListener.begin(SeamPhaseListener.java:598) [jboss-seam.jar:]

 (... log messages removed ...)

Caused by: org.jboss.seam.InstantiationException: Could not instantiate Seam component:

org.jboss.seam.transaction.synchronizations

 at org.jboss.seam.Component.newInstance(Component.java:2170) [jboss-seam.jar:]

 (... log messages removed ...)

Caused by: javax.naming.NameNotFoundException: Name 'jboss-seam-booking' not found in context ''

 at org.jboss.as.naming.util.NamingUtils.nameNotFoundException(NamingUtils.java:109)

 (... log messages removed ...)

What it means:
A NameNotFoundException indications a JNDI naming issue. JNDI naming rules have changed in

WildFly and we need to modify the lookup names to follow the new rules.

How to resolve it:
To debug this, look earlier in the server log trace to what JNDI binding were used. Looking at the server log

we see this:

15:01:16,138 INFO

http://localhost:8080/seam-booking/
http://localhost:8080/seam-booking/

Latest WildFly Documentation

JBoss Community Documentation Page of 1064 2293

[org.jboss.as.ejb3.deployment.processors.EjbJndiBindingsDeploymentUnitProcessor] (MSC service

thread 1-1) JNDI bindings for session bean named RegisterAction in deployment unit subdeployment

"jboss-seam-booking.jar" of deployment "jboss-seam-booking.ear" are as follows:

 java:global/jboss-seam-booking/jboss-seam-booking.jar/RegisterAction!org.jboss.seam.example.booking.Register

java:app/jboss-seam-booking.jar/RegisterAction!org.jboss.seam.example.booking.Register

 java:module/RegisterAction!org.jboss.seam.example.booking.Register

 java:global/jboss-seam-booking/jboss-seam-booking.jar/RegisterAction

 java:app/jboss-seam-booking.jar/RegisterAction

 java:module/RegisterAction

15:01:16,138 INFO

[org.jboss.as.ejb3.deployment.processors.EjbJndiBindingsDeploymentUnitProcessor] (MSC service

thread 1-1) JNDI bindings for session bean named BookingListAction in deployment unit

subdeployment "jboss-seam-booking.jar" of deployment "jboss-seam-booking.ear" are as follows:

 java:global/jboss-seam-booking/jboss-seam-booking.jar/BookingListAction!org.jboss.seam.example.booking.BookingList

java:app/jboss-seam-booking.jar/BookingListAction!org.jboss.seam.example.booking.BookingList

 java:module/BookingListAction!org.jboss.seam.example.booking.BookingList

 java:global/jboss-seam-booking/jboss-seam-booking.jar/BookingListAction

 java:app/jboss-seam-booking.jar/BookingListAction

 java:module/BookingListAction

15:01:16,138 INFO

[org.jboss.as.ejb3.deployment.processors.EjbJndiBindingsDeploymentUnitProcessor] (MSC service

thread 1-1) JNDI bindings for session bean named HotelBookingAction in deployment unit

subdeployment "jboss-seam-booking.jar" of deployment "jboss-seam-booking.ear" are as follows:

 java:global/jboss-seam-booking/jboss-seam-booking.jar/HotelBookingAction!org.jboss.seam.example.booking.HotelBooking

java:app/jboss-seam-booking.jar/HotelBookingAction!org.jboss.seam.example.booking.HotelBooking

 java:module/HotelBookingAction!org.jboss.seam.example.booking.HotelBooking

 java:global/jboss-seam-booking/jboss-seam-booking.jar/HotelBookingAction

 java:app/jboss-seam-booking.jar/HotelBookingAction

 java:module/HotelBookingAction

15:01:16,138 INFO

[org.jboss.as.ejb3.deployment.processors.EjbJndiBindingsDeploymentUnitProcessor] (MSC service

thread 1-1) JNDI bindings for session bean named AuthenticatorAction in deployment unit

subdeployment "jboss-seam-booking.jar" of deployment "jboss-seam-booking.ear" are as follows:

 java:global/jboss-seam-booking/jboss-seam-booking.jar/AuthenticatorAction!org.jboss.seam.example.booking.Authenticator

java:app/jboss-seam-booking.jar/AuthenticatorAction!org.jboss.seam.example.booking.Authenticator

 java:module/AuthenticatorAction!org.jboss.seam.example.booking.Authenticator

 java:global/jboss-seam-booking/jboss-seam-booking.jar/AuthenticatorAction

 java:app/jboss-seam-booking.jar/AuthenticatorAction

 java:module/AuthenticatorAction

15:01:16,139 INFO

[org.jboss.as.ejb3.deployment.processors.EjbJndiBindingsDeploymentUnitProcessor] (MSC service

thread 1-1) JNDI bindings for session bean named ChangePasswordAction in deployment unit

subdeployment "jboss-seam-booking.jar" of deployment "jboss-seam-booking.ear" are as follows:

 java:global/jboss-seam-booking/jboss-seam-booking.jar/ChangePasswordAction!org.jboss.seam.example.booking.ChangePassword

java:app/jboss-seam-booking.jar/ChangePasswordAction!org.jboss.seam.example.booking.ChangePassword

java:module/ChangePasswordAction!org.jboss.seam.example.booking.ChangePassword

 java:global/jboss-seam-booking/jboss-seam-booking.jar/ChangePasswordAction

 java:app/jboss-seam-booking.jar/ChangePasswordAction

 java:module/ChangePasswordAction

Latest WildFly Documentation

JBoss Community Documentation Page of 1065 2293

15:01:16,139 INFO

[org.jboss.as.ejb3.deployment.processors.EjbJndiBindingsDeploymentUnitProcessor] (MSC service

thread 1-1) JNDI bindings for session bean named HotelSearchingAction in deployment unit

subdeployment "jboss-seam-booking.jar" of deployment "jboss-seam-booking.ear" are as follows:

 java:global/jboss-seam-booking/jboss-seam-booking.jar/HotelSearchingAction!org.jboss.seam.example.booking.HotelSearching

java:app/jboss-seam-booking.jar/HotelSearchingAction!org.jboss.seam.example.booking.HotelSearching

java:module/HotelSearchingAction!org.jboss.seam.example.booking.HotelSearching

 java:global/jboss-seam-booking/jboss-seam-booking.jar/HotelSearchingAction

 java:app/jboss-seam-booking.jar/HotelSearchingAction

 java:module/HotelSearchingAction

15:01:16,140 INFO

[org.jboss.as.ejb3.deployment.processors.EjbJndiBindingsDeploymentUnitProcessor] (MSC service

thread 1-6) JNDI bindings for session bean named EjbSynchronizations in deployment unit

subdeployment "jboss-seam.jar" of deployment "jboss-seam-booking.ear" are as follows:

 java:global/jboss-seam-booking/jboss-seam/EjbSynchronizations!org.jboss.seam.transaction.LocalEjbSynchronizations

java:app/jboss-seam/EjbSynchronizations!org.jboss.seam.transaction.LocalEjbSynchronizations

 java:module/EjbSynchronizations!org.jboss.seam.transaction.LocalEjbSynchronizations

 java:global/jboss-seam-booking/jboss-seam/EjbSynchronizations

 java:app/jboss-seam/EjbSynchronizations

 java:module/EjbSynchronizations

15:01:16,140 INFO

[org.jboss.as.ejb3.deployment.processors.EjbJndiBindingsDeploymentUnitProcessor] (MSC service

thread 1-6) JNDI bindings for session bean named TimerServiceDispatcher in deployment unit

subdeployment "jboss-seam.jar" of deployment "jboss-seam-booking.ear" are as follows:

 java:global/jboss-seam-booking/jboss-seam/TimerServiceDispatcher!org.jboss.seam.async.LocalTimerServiceDispatcher

java:app/jboss-seam/TimerServiceDispatcher!org.jboss.seam.async.LocalTimerServiceDispatcher

 java:module/TimerServiceDispatcher!org.jboss.seam.async.LocalTimerServiceDispatcher

 java:global/jboss-seam-booking/jboss-seam/TimerServiceDispatcher

 java:app/jboss-seam/TimerServiceDispatcher

 java:module/TimerServiceDispatcher

We need to modify the WAR's lib/components.xml file to use the new JNDI bindings. In the log, note the EJB

JNDI bindings all start with "java:app/jboss-seam-booking.jar"

Replace the <core:init> element as follows:

<!-- <core:init jndi-pattern="jboss-seam-booking/#{ejbName}/local" debug="true"

distributable="false"/> -->

<core:init jndi-pattern="java:app/jboss-seam-booking.jar/#{ejbName}" debug="true"

distributable="false"/>

Next, we need to add the EjbSynchronizations and TimerServiceDispatcher JNDI bindings. Add the following

component elements to the file:

Latest WildFly Documentation

JBoss Community Documentation Page of 1066 2293

<component class="org.jboss.seam.transaction.EjbSynchronizations"

jndi-name="java:app/jboss-seam/EjbSynchronizations"/>

<component class="org.jboss.seam.async.TimerServiceDispatcher"

jndi-name="java:app/jboss-seam/TimerServiceDispatcher"/>

The components.xml file should now look like this:

<?xml version="1.0" encoding="UTF-8"?>

<components xmlns="http://jboss.com/products/seam/components"

 xmlns:core="http://jboss.com/products/seam/core"

 xmlns:security="http://jboss.com/products/seam/security"

 xmlns:transaction="http://jboss.com/products/seam/transaction"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation=

 "http://jboss.com/products/seam/core http://jboss.com/products/seam/core-2.2.xsd

 http://jboss.com/products/seam/transaction

http://jboss.com/products/seam/transaction-2.2.xsd

 http://jboss.com/products/seam/security

http://jboss.com/products/seam/security-2.2.xsd

 http://jboss.com/products/seam/components

http://jboss.com/products/seam/components-2.2.xsd">

 <!-- <core:init jndi-pattern="jboss-seam-booking/#{ejbName}/local" debug="true"

distributable="false"/> -->

 <core:init jndi-pattern="java:app/jboss-seam-booking.jar/#{ejbName}" debug="true"

distributable="false"/>

 <core:manager conversation-timeout="120000"

 concurrent-request-timeout="500"

 conversation-id-parameter="cid"/>

 <transaction:ejb-transaction/>

 <security:identity authenticate-method="#{authenticator.authenticate}"/>

 <component class="org.jboss.seam.transaction.EjbSynchronizations"

 jndi-name="java:app/jboss-seam/EjbSynchronizations"/>

 <component class="org.jboss.seam.async.TimerServiceDispatcher"

 jndi-name="java:app/jboss-seam/TimerServiceDispatcher"/>

</components>

Redeploy the application by deleting the

 file and creating a blank standalone/deployments/jboss-seam-booking.ear.failed

 file in the same directory.jboss-seam-booking.ear.dodeploy

At this point, the application should deploy and run without error. When you access the URL “

” in a browser, you will be able to login successfully.http://localhost:8080/seam-booking/

http://localhost:8080/seam-booking/

Latest WildFly Documentation

JBoss Community Documentation Page of 1067 2293

1.

2.

Step 4: Access the application
Access the URL “ ” in a browser and login with demo/demo. You shouldhttp://localhost:8080/seam-booking/

the Booking welcome page.

Summary of Changes
Although it would be much more efficient to determine dependencies in advance and add the implicit

dependencies in one step, this exercise shows how problems appear in the log and provides some

information on how to debug and resolve them.

The following is a summary of changes made to the application when migrating it to WildFly:

We created a file in the EAR's directory. Wejboss-deployment-structure.xml META-INF/

added "dependencies" and "exclusions" to resolve ClassNotFoundExceptions. This file contains the

following data:

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">

 <deployment>

 <dependencies>

 <module name="javax.faces.api" slot="1.2" export="true"/>

 <module name="com.sun.jsf-impl" slot="1.2" export="true"/>

 <module name="org.apache.commons.logging" export="true"/>

 <module name="org.dom4j" export="true"/>

 <module name="org.apache.commons.collections" export="true"/>

 </dependencies>

 </deployment>

 <sub-deployment name="jboss-seam-booking.war">

 <exclusions>

 <module name="javax.faces.api" slot="main"/>

 <module name="com.sun.jsf-impl" slot="main"/>

 </exclusions>

 <dependencies>

 <module name="javax.faces.api" slot="1.2"/>

 <module name="com.sun.jsf-impl" slot="1.2"/>

 </dependencies>

 </sub-deployment>

</jboss-deployment-structure>

We copied the following JARs from the directory to the EAP5_HOME/jboss-eap-5.1/seam/lib/

 directory to resolve ClassNotFoundExceptions:jboss-seam-booking.ear/lib/

hibernate-core.jar

hibernate-validator.jar

http://localhost:8080/seam-booking/

Latest WildFly Documentation

JBoss Community Documentation Page of 1068 2293

3.

1.

2.

4.

1.

2.

We modified the {{jboss-seam-booking.jar/META-INF/persistence.xml} file as follows.

First, we changed the jta-data-source element to use the Example database that ships with

AS7:

<!-- <jta-data-source>java:/bookingDatasource</jta-data-source> -->

<jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>

Next, we commented out the hibernate.cache.provider_class property:

<!-- <property name="hibernate.cache.provider_class"

value="org.hibernate.cache.HashtableCacheProvider"/> -->

We modified the WAR's lib/components.xml file to use the new JNDI bindings

We replaced the <core:init> existing element as follows:

<!-- <core:init jndi-pattern="jboss-seam-booking/#{ejbName}/local" debug="true"

distributable="false"/> -->

<core:init jndi-pattern="java:app/jboss-seam-booking.jar/#{ejbName}" debug="true"

distributable="false"/>

We added component elements for the "EjbSynchronizations" and "TimerServiceDispatcher"

JNDI bindings

<component class="org.jboss.seam.transaction.EjbSynchronizations"

jndi-name="java:app/jboss-seam/EjbSynchronizations"/>

 <component class="org.jboss.seam.async.TimerServiceDispatcher"

jndi-name="java:app/jboss-seam/TimerServiceDispatcher"/>

The unmodified EAR from EAP 5.1 (jboss-seam-booking-eap51.ear.tar.gz) and the EAR as modified to run

on AS7 (jboss-seam-booking-as7.ear.tar.gz) are attached to this document.

Latest WildFly Documentation

JBoss Community Documentation Page of 1069 2293

6.24 How do I migrate my application from AS7 to

WildFly

Latest WildFly Documentation

JBoss Community Documentation Page of 1070 2293

About this Document

Overview of WildFly

Server Migration

JacORB Subsystem

JacORB Subsystem Configuration

JBoss Web Subsystem

JBoss Web Subsystem Configuration

WebSockets

Messaging Subsystem

Messaging Subsystem Configuration

Management model

XML Configuration

Messaging Interceptors

JMS Destinations

Messaging Logging

Messaging Data

Application Migration

EJBs

CMP Entity EJBs

EJB Client

Default Remote Connection Port

Default Connector

JMS

Proprietary JMS Resource Definitions

External JMS Clients

JPA (and Hibernate)

Applications That Plan to Use Hibernate ORM 5.0

Applications that currently use Hibernate ORM 4.0 - 4.3

Applications that currently use Hibernate 3

Web Applications

JBoss Web Valves

Web Services

CXF Spring Webservices

JAX-RPC

JAX-RS 2.0

REST Client API

Application Clustering

HA Singleton

Stateful Session EJB Clustering

Web Session Clustering

Other Specifications and Frameworks

Remote JNDI Clients

JSR-88

Module Dependencies

Latest WildFly Documentation

JBoss Community Documentation Page of 1071 2293

6.24.1 About this Document

The purpose of this guide is to document changes that are needed to successfully run and deploy AS 7

applications on WildFly. It provides information on to resolve deployment and runtime problems and how to

prevent changes in application behavior. This is the first step in moving to the new platform. Once the

application is successfully deployed and running on the new platform, plans can be made to upgrade

individual components to use the new functions and features of WildFly.

Latest WildFly Documentation

JBoss Community Documentation Page of 1072 2293

6.24.2 Overview of WildFly

The list of WildFly new functionality is extensive, being the most relevant, with respect to server and

application migrations:

Java EE7 - WildFly is a certified implementation of Java EE7, meeting both the Web and the Full

profiles, and already includes support for the latest iterations of CDI (1.2) and Web Sockets (1.1).

Undertow - A new cutting-edge web server in WildFly, designed for maximum throughput and

scalability, including environments with over a million connections. And the latest web technologies,

such as the new HTTP/2 standard, are already onboard.

Apache ActiveMQ Artemis - WildFly's new JMS broker. Based on an code donation from HornetQ,

this Apache subproject provides outstanding performance based on a proven non-blocking

architecture.

IronJacamar 1.2 - The latest IronJacamar provides a stable and feature rich JCA & Datasources

support.

JBossWS 5 - The fifth generation of JBossWS, a major leap forward, brings new features and

performances improvements to WildFly Web Services

RESTEasy 3 - WildFly includes the latest generation of RESTEasy, which goes beyond the standard

Java EE REST APIs (JAX-RS 2.0), by also providing a number of useful extensions, such as JSON

Web Encryption, Jackson, Yaml, JSON-P, and Jettison.

OpenJDK ORB - WildFly switched the IIOP implementation from JacORB, to a downstream branch of

the OpenJDK Orb, leading to better interoperability with the JVM ORB and the Java EE RI.

Feature Rich Clustering - Clustering support was heavily refactored in WildFly, and includes several

APIs for applications

Port Reduction - By utilising HTTP upgrade, WildFly has moved nearly all of its protocols to be

multiplexed over just two HTTP ports: a management port (9990), and an application port (8080).

Enhanced Logging - The management API now supports the ability to list and view the available log

files on a server, or even define custom formatters other than the default pattern

formatter. Deployment's logging setup is also greatly enhanced.

The support for some technologies was removed, due to the high maintenance cost, low community interest,

and much better alternative solutions:

CMP EJB - JPA offers a much more performant and flexible API

JAX-RPC - JAX-WS offers a much more accurate and complete solution

JSR-88 - With very little adoption, the more complete deployment APIs provided by vendors are

preferred

6.24.3 Server Migration

Migrating an AS7 server to WildFly consists of migrating custom configuration files, and some persisted data

that may exist.

Latest WildFly Documentation

JBoss Community Documentation Page of 1073 2293

JacORB Subsystem
WildFly ORB support is provided by the JDK itself, instead of relying on JacORB. A subsystem configuration

migration is required.

JacORB Subsystem Configuration
The extension's module , while theorg.jboss.as.jacorb *is replaced by module *org.wildfly.iiop-openjdk

subsystem configuration namespace is replaced by urn:jboss:domain:jacorb:2.0

.urn:jboss:domain:iiop-openjdk:1.0

The XML configuration of the new subsystem accepts only a subset of the legacy elements/attributes.

Consider the following example of the JacORB subsystem configuration, containing all valid elements and

attributes:

<subsystem xmlns="urn:jboss:domain:jacorb:1.3">

 <orb name="JBoss" print-version="off" use-imr="off" use-bom="off" cache-typecodes="off"

 cache-poa-names="off" giop-minor-version ="2" socket-binding="jacorb"

ssl-socket-binding="jacorb-ssl">

 <connection retries="5" retry-interval="500" client-timeout="0" server-timeout="0"

 max-server-connections="500" max-managed-buf-size="24" outbuf-size="2048"

 outbuf-cache-timeout="-1"/>

 <initializers security="off" transactions="spec"/>

 </orb>

 <poa monitoring="off" queue-wait="on" queue-min="10" queue-max="100">

 <request-processors pool-size="10" max-threads="32"/>

 </poa>

 <naming root-context="JBoss/Naming/root" export-corbaloc="on"/>

 <interop sun="on" comet="off" iona="off" chunk-custom-rmi-valuetypes="on"

 lax-boolean-encoding="off" indirection-encoding-disable="off"

strict-check-on-tc-creation="off"/>

 <security support-ssl="off" add-component-via-interceptor="on" client-supports="MutualAuth"

 client-requires="None" server-supports="MutualAuth" server-requires="None"/>

 <properties>

 <property name="some_property" value="some_value"/>

 </properties>

</subsystem>

Properties that are not supported and have to be removed:

<orb/>: client-timeout, max-managed-buf-size, max-server-connections, outbuf-cache-timeout,

outbuf-size, connection retries, retry-interval, name,server-timeout

<poa/>: queue-min, queue-max, pool-size, max-threads

On-off properties: have to either be removed or in off mode:

<orb/>: cache-poa-names, cache-typecodes, print-version, use-bom, use-imr

<interop/>: all except sun

<poa/>: monitoring, queue-wait

Latest WildFly Documentation

JBoss Community Documentation Page of 1074 2293

In case the legacy subsystem configuration is available, such configuration may be migrated to the new

subsystem by invoking its operation, using the CLI management client:migrate

/subsystem=jacorb:migrate

There is also a operation that returns a list of all the management operations thatdescribe-migration

are performed to migrate from the legacy subsystem to the new one:

/subsystem=jacorb:describe-migration

Both and will also display a list of migration-warnings if there are somemigrate describe-migration

resource or attributes that can not be migrated automatically. The following is a list of these warnings:

Properties X cannot be emulated using OpenJDK ORB and are not supported

This warning means that mentioned properties are not supported and won't be included in the new

subsystem configuration. As a result of that admin must be aware that any behaviour implied by those

properties would be inexistent. Admin has to check whether subsystem is able to operate correctly

without that behaviour on the new server.Unsupported properties: cache-poa-names,

cache-typecodes, chunk-custom-rmi-valuetypes, client-timeout, comet, indirection-encoding-disable,

iona, lax-boolean-encoding, max-managed-buf-size, max-server-connections, max-threads,

outbuf-cache-timeout, outbuf-size, queue-max, queue-min, poa-monitoring, print-version, retries,

retry-interval, queue-wait, server-timeout, strict-check-on-tc-creation, use-bom, use-imr.

The properties X use expressions. Configuration properties that are used to resolve those

expressions should be transformed manually to the new iiop-openjdk subsystem format

Admin has to transform all the configuration files to work correctly with the jacorb subsystem. f.e.

jacorb has a property giop-minor-version whereas openjdk uses property giop-version. Let's suppose

we use '1' minor version in jacorb and have it configured in standalone.conf file as system variable:

-Diiop-giop-minor-version=1. Admin is responsible for changing this variable to 1.1 after the migration

to make sure that the new subsystem will work correctly.

JBoss Web Subsystem
JBoss Web is replaced by Undertow in WildFly, which means that the legacy subsystem configuration

should be migrated to WildFly's Undertow subsystem configuration.

JBoss Web Subsystem Configuration
The extension's module ,org.jboss.as.web *is replaced by module *org.wildfly.extension.undertow

while the subsystem configuration namespace is replaced by urn:jboss:domain:web:*

.urn:jboss:domain:undertow:3.0

The XML configuration of the new subsystem is relatively different. Consider the following example of the

JBoss Web subsystem configuration, containing all valid elements and attributes:

<?xml version="1.0" encoding="UTF-8"?>

Latest WildFly Documentation

JBoss Community Documentation Page of 1075 2293

<subsystem xmlns="urn:jboss:domain:web:2.2" default-virtual-server="default-host" native="true"

default-session-timeout="30" instance-id="foo">

 <configuration>

 <static-resources listings="true"

 sendfile="1000"

 file-encoding="utf-8"

 read-only="true"

 webdav="false"

 secret="secret"

 max-depth="5"

 disabled="false"

 />

 <jsp-configuration development="true"

 disabled="false"

 keep-generated="true"

 trim-spaces="true"

 tag-pooling="true"

 mapped-file="true"

 check-interval="20"

 modification-test-interval="1000"

 recompile-on-fail="true"

 smap="true"

 dump-smap="true"

 generate-strings-as-char-arrays="true"

 error-on-use-bean-invalid-class-attribute="true"

 scratch-dir="/some/dir"

 source-vm="1.7"

 target-vm="1.7"

 java-encoding="utf-8"

 x-powered-by="true"

 display-source-fragment="true" />

 <mime-mapping name="ogx" value="application/ogg" />

 <welcome-file>titi</welcome-file>

 </configuration>

 <connector name="http" scheme="http"

 protocol="HTTP/1.1"

 socket-binding="http"

 enabled="true"

 enable-lookups="false"

 proxy-binding="reverse-proxy"

 max-post-size="2097153"

 max-save-post-size="512"

 redirect-binding="https"

 max-connections="300"

 secure="false"

 executor="some-executor"

 />

 <connector name="https" scheme="https" protocol="HTTP/1.1" secure="true"

socket-binding="https">

 <ssl certificate-key-file="${file-base}/server.keystore"

 ca-certificate-file="${file-base}/jsse.keystore"

 key-alias="test"

 password="changeit"

 cipher-suite="SSL_RSA_WITH_3DES_EDE_CBC_SHA"

 protocol="SSLv3"

 verify-client="true"

 verify-depth="3"

 certificate-file="certificate-file.ext"

Latest WildFly Documentation

JBoss Community Documentation Page of 1076 2293

 ca-revocation-url="https://example.org/some/url"

 ca-certificate-password="changeit"

 keystore-type="JKS"

 truststore-type="JKS"

 session-cache-size="512"

 session-timeout="3000"

 ssl-protocol="RFC4279"

 />

 </connector>

 <connector name="http-vs" scheme="http" protocol="HTTP/1.1" socket-binding="http" >

 <virtual-server name="vs1" />

 <virtual-server name="vs2" />

 </connector>

 <virtual-server name="default-host" enable-welcome-root="true" default-web-module="foo.war">

 <alias name="localhost" />

 <alias name="example.com" />

 <access-log resolve-hosts="true" extended="true" pattern="extended" prefix="prefix"

rotate="true" >

 <directory relative-to="jboss.server.base.dir" path="toto" />

 </access-log>

 <rewrite name="myrewrite" pattern="^/helloworld(.*)" substitution="/helloworld/test.jsp"

flags="L" />

 <rewrite name="with-conditions" pattern="^/helloworld(.*)"

substitution="/helloworld/test.jsp" flags="L" >

 <condition name="https" pattern="off" test="%{HTTPS}" flags="NC"/>

 <condition name="user" test="%{USER}" pattern="toto" flags="NC"/>

 <condition name="no-flags" test="%{USER}" pattern="toto"/>

 </rewrite>

 <sso reauthenticate="true" domain="myDomain" cache-name="myCache"

 cache-container="cache-container" http-only="true"/>

 </virtual-server>

 <virtual-server name="vs1" />

 <virtual-server name="vs2" />

 <valve name="myvalve" module="org.jboss.some.module" class-name="org.jboss.some.class"

enabled="true">

 <param param-name="param-name" param-value="some-value"/>

 </valve>

 <valve name="accessLog" module="org.jboss.as.web"

class-name="org.apache.catalina.valves.AccessLogValve">

 <param param-name="prefix" param-value="myapp_access_log." />

 <param param-name="suffix" param-value=".log" />

 <param param-name="rotatable" param-value="true" />

 <param param-name="fileDateFormat" param-value="yyyy-MM-dd" />

 <param param-name="pattern" param-value="common" />

 <param param-name="directory" param-value="${jboss.server.log.dir}" />

 <param param-name="resolveHosts" param-value="false"/>

 <param param-name="conditionIf" param-value="log-enabled"/>

 </valve>

 <valve name="request-dumper" module="org.jboss.as.web"

class-name="org.apache.catalina.valves.RequestDumperValve"/>

 <valve name="remote-addr" module="org.jboss.as.web"

class-name="org.apache.catalina.valves.RemoteAddrValve">

 <param param-name="allow" param-value="127.0.0.1,127.0.0.2" />

 <param param-name="deny" param-value="192.168.1.20" />

 </valve>

 <valve name="crawler" class-name="org.apache.catalina.valves.CrawlerSessionManagerValve"

module="org.jboss.as.web" >

 <param param-name="sessionInactiveInterval" param-value="1" />

Latest WildFly Documentation

JBoss Community Documentation Page of 1077 2293

 <param param-name="crawlerUserAgents" param-value="Google" />

 </valve>

 <valve name="proxy" class-name="org.apache.catalina.valves.RemoteIpValve"

module="org.jboss.as.web" >

 <param param-name="internalProxies" param-value="192\.168\.0\.10|192\.168\.0\.11" />

 <param param-name="remoteIpHeader" param-value="x-forwarded-for" />

 <param param-name="proxiesHeader" param-value="x-forwarded-by" />

 <param param-name="trustedProxies" param-value="proxy1|proxy2" />

 </valve>

</subsystem>

FIXME compare with Undertow, list unsupported features

It's possible to do a migration of the legacy subsystem configuration, and related persisted data. , by

invoking the legacy’s subsystem’s operation, using the CLI management client:migrate

/subsystem=web:migrate

There is also a operation that returns a list of all the management operations thatdescribe-migration

are performed to migrate from the legacy subsystem to the new one:

/subsystem=web:describe-migration

Both and will also display a list of migration-warnings if there are somemigrate describe-migration

resource or attributes that can not be migrated automatically. The following is a list of these warnings:

Latest WildFly Documentation

JBoss Community Documentation Page of 1078 2293

Could not migrate resource X

This warning means that mentioned resource configuration is not supported and won't be included in

the new subsystem configuration. As a result of that admin must be aware that any behaviour implied

by those resources would be inexistent. Admin has to check whether subsystem is able to operate

correctly without that behaviour on the new server.

FIXME must document which are the resources that trigger this

Could not migrate attribute X from resource Y.

This warning means that mentioned resource configuration property is not supported and won't be

included in the new subsystem configuration. As a result of that admin must be aware that any

behaviour implied by those properties would be inexistent. Admin has to check whether subsystem is

able to operate correctly without that behaviour on the new server.

FIXME must document which are the properties that trigger this

Could not migrate SSL connector as no SSL config is defined

Could not migrate verify-client attribute %s to the Undertow equivalent

Could not migrate verify-client expression %s

Could not migrate valve X

This warning means that mentioned valve configuration is not supported and won't be included in the

new subsystem configuration. As a result of that admin must be aware that any behaviour implied by

those resources would be inexistent. Admin has to check whether subsystem is able to operate

correctly without that behaviour on the new server. This warning may happen for :

org.apache.catalina.valves.RemoteAddrValve : must have at least one allowed or denied

value.

org.apache.catalina.valves.RemoteHostValve : must have at least one allowed or denied

value.

org.apache.catalina.authenticator.BasicAuthenticator

org.apache.catalina.authenticator.DigestAuthenticator

org.apache.catalina.authenticator.FormAuthenticator

org.apache.catalina.authenticator.SSLAuthenticator

org.apache.catalina.authenticator.SpnegoAuthenticator

custom valves

Could not migrate attribute X from valve Y

This warning means that mentioned valve configuration property is not supported and won't be

included in the new subsystem configuration. As a result of that admin must be aware that any

behaviour implied by those properties would be inexistent. Admin has to check whether subsystem is

able to operate correctly without that behaviour on the new server. This warning may happen for :

org.apache.catalina.valves.AccessLogValve : if you use the following parameters resolveHosts

, , , , , , .fileDateFormat renameOnRotate encoding locale requestAttributesEnabled buffered

org.apache.catalina.valves.ExtendedAccessLogValve : if you use the following parameters

, , , , , , resolveHosts fileDateFormat renameOnRotate encoding locale requestAttributesEnabled

.buffered

org.apache.catalina.valves.RemoteIpValve:

if is defined and isn't set to "x-forwarded-for".remoteIpHeader

if is defined and isn't set to "x-forwarded-proto".protocolHeader

if you use the following parameters and .httpServerPort httpsServerPort

Latest WildFly Documentation

JBoss Community Documentation Page of 1079 2293

1.

2.

3.

Also, please note that Undertow doesn't support JBoss Web , but some of these may be migrated tovalves

Undertow handlers, and JBoss Web subsystem’s operation do that too.migrate

Here is a list of those valves and their corresponding Undertow handler:

Valve Handler

org.apache.catalina.valves.AccessLogValve io.undertow.server.handlers.accesslog.AccessLogHandler

org.apache.catalina.valves.ExtendedAccessLogValve io.undertow.server.handlers.accesslog.AccessLogHandler

org.apache.catalina.valves.RequestDumperValve io.undertow.server.handlers.RequestDumpingHandler

org.apache.catalina.valves.RewriteValve io.undertow.server.handlers.SetAttributeHandler

org.apache.catalina.valves.RemoteHostValve io.undertow.server.handlers.AccessControlListHandler

org.apache.catalina.valves.RemoteAddrValve io.undertow.server.handlers.IPAddressAccessControlHandler

org.apache.catalina.valves.RemoteIpValve io.undertow.server.handlers.ProxyPeerAddressHandler

org.apache.catalina.valves.StuckThreadDetectionValve io.undertow.server.handlers.StuckThreadDetectionHandler

org.apache.catalina.valves.CrawlerSessionManagerValve io.undertow.servlet.handlers.CrawlerSessionManagerHandler

The can't be automatically migrated to org.apache.catalina.valves.JDBCAccessLogValve

 as the expectations differ.io.undertow.server.handlers.JDBCLogHandler

The migration can be done manually thought :

create the driver module and add the driver to the list of available drivers

create a datasource pointing to the database where the log entries are going to be stored

add an definition with the following expression:expression-filter

"jdbc-access-log(datasource='datasource-jndi-name')

<valve name="jdbc" module="org.jboss.as.web"

class-name="org.apache.catalina.valves.JDBCAccessLogValve">

 <param param-name="driverName" param-value="com.mysql.jdbc.Driver" />

 <param param-name="connectionName" param-value="root" />

 <param param-name="connectionPassword" param-value="password" />

 <param param-name="connectionURL"

param-value="jdbc:mysql://localhost:3306/wildfly?zeroDateTimeBehavior=convertToNull" />

 <param param-name="format" param-value="combined" />

</valve>

should become:

Latest WildFly Documentation

JBoss Community Documentation Page of 1080 2293

3.

<subsystem xmlns="urn:jboss:domain:datasources:1.2">

 <datasources>

 <datasource jndi-name="java:jboss/datasources/accessLogDS" pool-name="ccessLogDS"

enabled="true" use-java-context="true">

<connection-url>jdbc:mysql://localhost:3306/wildfly?zeroDateTimeBehavior=convertToNull</connection-url>

<driver>mysql</driver>

 <security>

 <user-name>root</user-name>

 <password>password</password>

 </security>

 </datasource>

...

 <drivers>

 <driver name="mysql" module="com.mysql">

 <driver-class>com.mysql.jdbc.Driver</driver-class>

 </driver>

...

 </drivers>

 </datasources>

</subsystem>

...

<subsystem xmlns="urn:jboss:domain:undertow:3.1"

default-virtual-host="default-virtual-host" default-servlet-container="myContainer"

 default-server="some-server" instance-id="some-id" statistics-enabled="true">

...

 <server name="some-server" default-host="other-host" servlet-container="myContainer">

...

 <host name="other-host" alias="www.mysite.com, ${prop.value:default-alias}"

default-web-module="something.war" disable-console-redirect="true">

 <location name="/" handler="welcome-content" />

 <filter-ref name="jdbc-access"/>

 </host>

 </server>

...

 <filters>

 <expression-filter name="jdbc-access"

expression="jdbc-access-log(datasource='java:jboss/datasources/accessLogDS')" />

...

 </filters>

</subsystem>

Please note that any custom valve won't be migrated at all and will just be removed from the configuration.

Also the authentication related valves are to be replaced by Undertow authentication mechanisms, and this

have to be done manually.

FIXME how this last “manual” replacement is done? Need whole process documented and concrete

example

Latest WildFly Documentation

JBoss Community Documentation Page of 1081 2293

WebSockets
In AS7, to use WebSockets, you had to configure the 'http' in the subsystem of the serverconnector web

configuration file to use the NIO2 protocol. The following is an example of the Management CLI command to

configure WebSockets in the previous releases.

/subsystem=web/connector=http/:write-attribute(name=protocol,value=org.apache.coyote.http11.Http11NioProtocol)

WebSockets are a requirement of the Java EE 7 specification and the default configuration is included in

WildFly. More complex WebSocket configuration is done in the of the servlet-container undertow

 subsystem of the server configuration file.

You no longer need to configure the server for default WebSocket support.

FIXME isn’t <websockets /> required for that?

Messaging Subsystem
WildFly JMS support is provided by ActiveMQ Artemis, instead of HornetQ. It's possible to do a migration of

the legacy subsystem configuration, and related persisted data.

Messaging Subsystem Configuration
The extension's module is replaced by module org.jboss.as.messaging

, while the subsystem configuration namespace org.wildfly.extension.messaging-activemq

 is replaced by .urn:jboss:domain:messaging:3.0 urn:jboss:domain:messaging-activemq:1.0

Management model
In most cases, an effort was made to keep resource and attribute names as similar as possible to those

used in previous releases. The following table lists some of the changes.

HornetQ name ActiveMQ name

hornetq-server server

hornetq-serverType serverType

connectors connector

discovery-group-name discovery-group

The management operations invoked on the new messaging-subsystem starts with

 while the legacy messaging subsystem was at /subsystem=messaging-activemq/server=X

./subsystem=messaging/hornetq-server=X

In case the legacy subsystem configuration is available, such configuration may be migrated to the new

subsystem by invoking its operation, using the CLI management client:migrate

/subsystem=messaging:migrate

Latest WildFly Documentation

JBoss Community Documentation Page of 1082 2293

There is also a operation that returns a list of all the management operations thatdescribe-migration

are performed to migrate from the legacy subsystem to the new one:

/subsystem=messaging:describe-migration

Both and will also display a list of migration-warnings if there are somemigrate describe-migration

resource or attributes that can not be migrated automatically. The following is a list of these warnings:

The migrate operation can not be performed: the server must be in admin-only mode

The operation requires starting the server in admin-only mode, which is done by addingmigrate

parameter to the server start command, e.g.--admin-only

./standalone.sh --admin-only

Can not migrate attribute local-bind-address from resource X. Use instead the socket-attribute to

configure this broadcast-group.

Can not migrate attribute local-bind-port from resource X. Use instead the socket-binding attribute to

configure this broadcast-group.

Can not migrate attribute group-address from resource X. Use instead the socket-binding attribute to

configure this broadcast-group.

Can not migrate attribute group-port from resource X. Use instead the socket-binding attribute to

configure this broadcast-group.

Broadcast-group resources no longer accept local-bind-address, local-bind-port, group-address,

group-port attributes. It only accepts a socket-binding. The warning notifies that resource X has an

unsupported attribute. The user will have to set the socket-binding attribute on the resource and

ensures it corresponds to a defined socket-binding resource.

Classes providing the %s are discarded during the migration. To use them in the new

messaging-activemq subsystem, you will have to extend the Artemis-based Interceptor.

Messaging interceptors support is significantly different in WildFly 10, any interceptors configured in

the legacy subsystem are discarded during migration. Please refer to the Messaging Interceptors

section to learn how to migrate legacy Messaging interceptors.

Can not migrate the HA configuration of X. Its shared-store and backup attributes holds expressions

and it is not possible to determine unambiguously how to create the corresponding ha-policy for the

messaging-activemq's server.

If the hornetq-server X’s shared-store or backup attributes hold an expression, such as ${xxx}, then

it’s not possible to determine the actual ha-policy of the migrated server. In that case, we discard it

and the user will have to add the correct ha-policy afterwards (ha-policy is a single resource

underneath the messaging-activemq's server resource).

Latest WildFly Documentation

JBoss Community Documentation Page of 1083 2293

Can not migrate attribute local-bind-address from resource X. Use instead the socket-binding attribute

to configure this discovery-group.Can not migrate attribute local-bind-port from resource X. Use

instead the socket-binding attribute to configure this discovery-group.

Can not migrate attribute group-address from resource X. Use instead the socket-binding attribute to

configure this discovery-group.

Can not migrate attribute group-port from resource X. Use instead the socket-binding attribute to

configure this discovery-group.

discovery-group resources no longer accept local-bind-address, local-bind-port, group-address,

group-port attributes. It only accepts a socket-binding. The warning notifies that resource X has an

unsupported attribute.

The user will have to set the socket-binding attribute on the resource and ensures it corresponds to a

defined socket-binding resource.

Can not create a legacy-connection-factory based on connection-factory X. It uses a HornetQ in-vm

connector that is not compatible with Artemis in-vm connector

Legacy subsystem’s remote connection-factory resources are migrated into legacy-connection-factory

resources, to allow old EAP6 clients to connect to EAP7. However a connection-factory using in-vm

will not be migrated, because a in-vm client will be based on EAP7, not EAP 6. In other words,

legacy-connection-factory are created only when the CF is using remote connectors, and this warning

notifies about in-vm connection-factory X not migrated.

Can not migrate attribute X from resource Y. The attribute uses an expression that can be resolved

differently depending on system properties. After migration, this attribute must be added back with an

actual value instead of the expression.

This warning appears when the migration logic needs to know the concrete value of attribute X during

migration, but instead such value includes an expression that’s can’t be resolved, so the actual value

can not be determined, and the attribute is discarded. It happens in several cases, for instance:

cluster-connection forward-when-no-consumers. This boolean attribute has been replaced by

the message-load-balancing-type attribute (which is an enum of OFF, STRICT, ON_DEMAND)

broadcast-group and discovery-group’s jgroups-stack and jgroups-channel attributes. They

reference other resources and we no longer accept expressions for them.

Can not migrate attribute X from resource Y. This attribute is not supported by the new

messaging-activemq subsystem.

Some attributes are no longer supported in the new messaging-activemq subsystem and are simply

discarded:

hornetq-server’s failback-delay

http-connector’s use-nio attribute

http-acceptor’s use-nio attribute

remote-connector’s use-nio attribute

remote-acceptor’s use-nio attribute

Latest WildFly Documentation

JBoss Community Documentation Page of 1084 2293

XML Configuration
The XML configuration has changed significantly with the new messaging-activemq subsystem to provide a

XML scheme more consistent with other WildFly subsystems.

It is not advised to change the XML configuration of the legacy messaging subsystem to conform to the new

messaging-activemq subsystem. Instead, invoke the legacy subsystem operation. This operationmigrate

will write the XML configuration of the new subsystem as a part of its execution.messaging-activemq

Messaging Interceptors
Messaging Interceptors are significantly different in EAP 7, requiring both code and configuration changes by

the user. In concrete the interceptor base Java class is now

, and the user interceptor implementationorg.apache.artemis.activemq.api.core.interceptor.Interceptor

classes may now be loaded by any server module. Note that prior to EAP 7 the interceptor classes could

only be installed by adding these to the HornetQ module, thus requiring the user to change such module

XML descriptor, its .module.xml

With respect to the server XML configuration, the user must now specify the module to load its interceptors

in the new subsystem XML config, e.g:messaging-activemq

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">

 <server name=“default”>

 ...

 <incoming-interceptors>

 <class name="org.foo.incoming.myInterceptor" module="org.foo" />

 <class name="org.bar.incoming.myOtherInterceptor" module="org.bar" />

 </incoming-interceptors>

 <outgoing-interceptors>

 <class name="org.foo.outgoing.myInterceptor" module="org.foo" />

 <class name="org.bar.outgoing.myOtherInterceptor" module="org.bar" />

 </outgoing-interceptors>

 </server>

</subsystem>

JMS Destinations
In previous releases, JMS destination queues were configured in the <jms-destinations> element under the

hornetq-server section of the subsystem.messaging

<jms-destinations>

<jms-queue name="testQueue">

<entry name="queue/test"/>

<entry name="java:jboss/exported/jms/queue/test"/>

</jms-queue>

</jms-destinations>

In WildFly, the JMS destination queue is configured in the default server of

the messaging-activemq subsystem.

<jms-queue name="testQueue" entries="queue/test java:jboss/exported/jms/queue/test"/>

Latest WildFly Documentation

JBoss Community Documentation Page of 1085 2293

Messaging Logging
The prefix of messaging log messages in WildFly is , instead of .WFLYMSGAMQ WFLYMSG

Messaging Data
The location of the messaging data has been changed in the new messaging-activemq subsystem:

messagingbindings/ -> activemq/bindings/

messagingjournal/ -> activemq/journal/

messaginglargemessages/ -> activemq/largemessages/

messagingpaging/ -> activemq/paging/

To migrate legacy messaging data, you will have to export the directories used by the legacy messaging

subsystem and import them into the new subsystem's server by using its import-journal operation:

/subsystem=messaging-activemq/server=default:import-journal(file=<path to XML dump>)

The XML dump is a XML file generated by HornetQ util class.XmlDataExporter

6.24.4 Application Migration

Before you migrate your application, you should be aware that some features that were available in previous

releases are now deprecated or missing.

Latest WildFly Documentation

JBoss Community Documentation Page of 1086 2293

EJBs

CMP Entity EJBs
Container-Managed Persistence entity beans support is optional in Java EE 7, and WildFly does not provide

support for these.

CMP entity beans are defined in the descriptor, in concrete an entity bean is CMP only if the ejb-jar.xml

's child element named is included and has a value of . An example:<entity/> persistence-type Container

<?xml version="1.1" encoding="UTF-8"?>

<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd"

 version="3.1">

 <enterprise-beans>

 <entity>

 <ejb-name>SimpleBMP</ejb-name>

 <local-home>org.jboss.as.test.integration.ejb.entity.bmp.BMPLocalHome</local-home>

 <local>org.jboss.as.test.integration.ejb.entity.bmp.BMPLocalInterface</local>

 <ejb-class>org.jboss.as.test.integration.ejb.entity.bmp.SimpleBMPBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>true</reentrant>

 </entity>

 </enterprise-beans>

</ejb-jar>

CMP entity beans should be replaced by JPA entities.

Latest WildFly Documentation

JBoss Community Documentation Page of 1087 2293

EJB Client

Default Remote Connection Port
The default remote connection port has changed from '4447' to '8080'.

In JBoss AS7, the file looked similar to the following:jboss-ejb-client.properties

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false

remote.connections=default

remote.connection.default.host=localhost

remote.connection.default.port=4447

remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

In WildFly, the properties file looks like this:

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false

remote.connections=default

remote.connection.default.host=localhost

remote.connection.default.port=8080

remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

Default Connector
In WildFly, the default connector has changed from "remoting" to "http-remoting". This change impacts

clients that use libraries from one release of JBoss and to connect to server in a different release.

If a client application uses the EJB client library from JBoss AS 7 and wants to connect to WildFly 10

server, the server must be configured to expose a remoting connector on a port other than "8080".

The client must then connect using that newly configured connector.

A client application that uses the EJB client library from WildFly 10 and wants to connect to a JBoss

AS 7 server must be aware that the server instance does not use the http-remoting connector and

instead uses a remoting connector. This is achieved by defining a new client-side connection

property.

remote.connection.default.protocol=remote

External applications using JNDI, to remotely lookup up EJBs in a WildFly 10 server, may also need to be

migrated, please refer to section for further information.Remote JNDI Clients

Latest WildFly Documentation

JBoss Community Documentation Page of 1088 2293

JMS

Proprietary JMS Resource Definitions
The proprietary XML descriptors, previously used to setup JMS resources, are deprecated in WildFly. Java

EE 7 (section EE.5.18) standardised such functionality.

The deprecated descriptors are files bundled in the application package, which name ends with .-jms.xml

Their namespace has been changed to .urn:jboss:messaging-activemq-deployment:1.0

External JMS Clients
JMS Resources are remotely looked up using JNDI, and looking up resources in a WildFly 10 server may

require changes in the application code, please refer to section for further information.Remote JNDI Clients

JPA (and Hibernate)

Applications That Plan to Use Hibernate ORM 5.0
WildFly ships with Hibernate ORM 5.0 and those libraries are implicitly added to the application classpath

when a persistence.xml is detected during deployment. If your application uses JPA, it will default to using

the Hibernate ORM 5.0 libraries.

Hibernate ORM 5.0 introduces:

Redesigned metamodel - Complete replacement for the current org.hibernate.mapping code

Query parser - Improved query parser based on Antlr 3/4

Multi-tenancy improvements - Discriminator-based multi-tenancy

Follow-on fetches - Two-phase loading via LoadPlans/EntityGraphs

Applications that currently use Hibernate ORM 4.0 - 4.3
If your application needs second-level cache enabled, you should migrate to Hibernate ORM 5.0, which is

integrated with Infinispan 8.0. Applications written with Hibernate ORM 4.x can still use Hibernate 4.x if you

define a custom JBoss module with Hibernate 4.x JARs and exclude the Hibernate 5 classes from your

application. It is recommended that you migrate your application to use Hibernate 5.

For information about the changes implemented between Hibernate 4 and Hibernate 5, see

https://github.com/hibernate/hibernate-orm/blob/master/migration-guide.adoc

Applications that currently use Hibernate 3
The integration classes that made it easier to use Hibernate 3 in AS 7 were removed from WildFly 10. If your

application still uses Hibernate 3 libraries, it is strongly recommended that you migrate your application to

use Hibernate 5 as Hibernate 3 will no longer work in WildFly without a lot of effort. If you can not migrate to

Hibernate 5, you must define a custom JBoss Module for the Hibernate 3 classes and exclude the Hibernate

5 classes from your application.

https://github.com/hibernate/hibernate-orm/blob/master/migration-guide.adoc

Latest WildFly Documentation

JBoss Community Documentation Page of 1089 2293

Web Applications

JBoss Web Valves
Undertow does not support the JBoss Web Valve functionality. This can be replaced by Undertow Handlers

(see forhttp://undertow.io/undertow-docs/undertow-docs-1.3.0/index.html#undertow-handler-authors-guide

more).

List of valves that were provided with JBoss Web, together with a corresponding Undertow handler, is

provided above, in the section on the JBoss Web subsystem.

JBoss Web Valves are specified in the proprietary jboss-web.xml descriptor, through <valve /> element(s).

These can be replaced using the element(s). For example:<http-handler />

<jboss-web>

 <valve>

 <class-name>org.apache.catalina.valves.RequestDumperValve</class-name>

 <module>org.jboss.as.web</module>

 </valve>

</jboss-web>

can be replaced by

<jboss-web>

 <http-handler>

 <class-name>io.undertow.server.handlers.RequestDumpingHandler</class-name>

 <module>io.undertow.core</module>

 </http-handler>

</jboss-web>

Web Services

CXF Spring Webservices
The setup of web service's endpoints and clients, through a Spring XML descriptor, driving a CXF bus

creation, is no longer supported in WildFly.

Any application containing a jbossws-cxf.xml must migrate all functionality specified in such XML descriptor,

mostly already supported by the JAX-WS specification, included in Java EE 7. It is still possible to rely on

direct Apache CXF API usage, loosing the Java EE portability of the application, for instance when specific

Apache CXF functionalities are needed. Please refer to the Apache CXF Integration document for further

information.

http://undertow.io/undertow-docs/undertow-docs-1.3.0/index.html#undertow-handler-authors-guide

Latest WildFly Documentation

JBoss Community Documentation Page of 1090 2293

RPC
JAX-RPC is an API for building Web services and clients that used remote procedure calls (RPC) and XML,

which was deprecated in Java EE 6, and is no longer supported by WildFly.

JAX-RPC Web Services may be identified by the presence of the XML descriptor named web services.xml,

containing a element that includes a child element named <webservice-description/>

. An example:<jaxrpc-mapping-file/>

<webservices xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://www.ibm.com/webservices/xsd/j2ee_web_services_1_1.xsd" version="1.1">

 <webservice-description>

 <webservice-description-name>HelloService</webservice-description-name>

 <wsdl-file>WEB-INF/wsdl/HelloService.wsdl</wsdl-file>

 <jaxrpc-mapping-file>WEB-INF/mapping.xml</jaxrpc-mapping-file>

 <port-component>

 <port-component-name>Hello</port-component-name>

 <wsdl-port>HelloPort</wsdl-port>

<service-endpoint-interface>org.jboss.chap12.hello.Hello</service-endpoint-interface>

 <service-impl-bean>

 <servlet-link>HelloWorldServlet</servlet-link>

 </service-impl-bean>

 </port-component>

 </webservice-description>

</webservices>

Applications using JAX-RPC should be migrated to use JAX-WS, the current Java EE standard web service

framework.

RS 2.0
JSR 339: JAX-RS 2.0: The Java API for RESTful Web Services specification is located here:

https://jcp.org/en/jsr/detail?id=339

Some changes to the `MessageBodyWriter` interface may represent a backward incompatible change with

respect to JAX-RS 1.X.

Be sure to define an @Produces or @Consumes for your endpoints. Failure to do so may result in an error

similar to the following.

org.jboss.resteasy.core.NoMessageBodyWriterFoundFailure: Could not find MessageBodyWriter for

response object of type: <OBJECT> of media type: <CONTENT_TYPE>

https://jcp.org/en/jsr/detail?id=339

Latest WildFly Documentation

JBoss Community Documentation Page of 1091 2293

REST Client API
Some REST Client API classes and methods are deprecated, for example:

org.jboss.resteasy.client.ClientRequest and org.jboss.resteasy.client.ClientResponse. Instead, use

 and javax.ws.rs.core.Response. See the `resteasy-jaxrs-clientorg.jboss.resteasy.client.jaxrs.ResteasyClient

quickstart` for an example of an external JAX-RS RestEasy client that interacts with a JAX-RS Web service.

Application Clustering

HA Singleton
JBoss AS7 introduced singleton services - a mechanism for installing an service such that it would only start

on one node in the cluster at a time, a HA Singleton. Such mechanism required usage of a private JBoss

EAP Clustering API, designed around the class , andorg.jboss.as.clustering.singleton.SingletonService

was documented in detail at

https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html/Development_Guide/Implement_an_HA_Singleton.html

, and while not difficult to implement, the installation process suffered from a couple shortcomings:

Installing multiple singleton services within a single deployment caused the deployer to hang.

Installing a singleton service required the user to specify several private module dependencies in

/META-INF/MANIFEST.MF

WildFly 10 introduces a new public API for building such services, which significantly simplifies the process,

and solves the issues found in the legacy solution. The JBoss EAP 7 Quickstart application named

 examples a HA Singleton implementation using the new API, and may be found at cluster-ha-singleton

 .https://github.com/jboss-developer/jboss-eap-quickstarts/tree/7.0.x-develop/cluster-ha-singleton

FIXME: community URLs instead

Stateful Session EJB Clustering
WildFly 10 no longer requires Stateful Session EJBs to use the org.jboss.ejb3.annotation.Clustered

annotation to enable clustering behaviour. By default, if the server is started using an HA profile, the state of

your SFSBs will be replicated automatically. Disabling this behaviour is achievable on a per-EJB basis, by

annotating your bean using , which is new to the EJB 3.2@Stateful(passivationCapable=false)

specification; or globally through the configuration of the EJB3 subsystem, in the server configuration.

Note that the annotation, if used by an application, is simply ignored, the application@Clustered

deployment will not fail.

Web Session Clustering
WildFly 10 introduces a new web session clustering implementation, replacing the one found in AS7, which

has been around for ages (since JBoss AS 3.2!), and was tightly coupled to the legacy JBoss Web

subsystem source code. The most relevant changes in the new implementation are:

https://docs.jboss.org/resteasy/docs/3.0-rc-1/javadocs/index.html?org/jboss/resteasy/client/jaxrs/ResteasyClient.html
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html/Development_Guide/Implement_an_HA_Singleton.html
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html/Development_Guide/Implement_an_HA_Singleton.html
https://github.com/jboss-developer/jboss-eap-quickstarts/tree/7.0.x-develop/cluster-ha-singleton

Latest WildFly Documentation

JBoss Community Documentation Page of 1092 2293

Introduction of a proper session manager SPI, and an Infinispan implementation of it, decoupled from

the web subsystem implementation

Sessions are implemented as a facade over one or more cache entries, which means that the

container’s session manager itself does not retain a separate reference to each HttpSession

Pessimistic locking of cache entries effectively ensures that only a single client on a single node ever

accesses a given session at any given time

Usage of cache entry grouping, instead of atomic maps, to ensure that multiple cache entries

belonging to the same session are co-located.

Session operations within a request only ever use a single batch/transaction. This results in fewer

RPCs per request.

Support for write-through cache stores, as well as passivation-only cache stores.

With respect to applications, the new web session clustering implementation deprecates/reinterprets much of

the related configuration, which is included in JBoss’s proprietary web application XML descriptor,

:jboss-web.xml

<max-active-sessions/>

Previously, session creation would fail if an additional session would cause the number of active

sessions to exceed the value specified by < .max-active-sessions/>

In the new implementation, is used to enable session passivation. If session<max-active-sessions/>

creation would cause the number of active sessions to exceed , then the<max-active-sessions/>

oldest session known to the session manager will passivate to make room for the new session.

<passivation-config/>

This configuration element and its sub-elements are no longer used in WildFly.

<use-session-passivation/>

Previously, passivation was enabled via this attribute, yet in the new implementation, passivation is

enabled by specifying a non-negative value for .<max-active-sessions/>

<passivation-min-idle-time/>

Previously, sessions needed to be active for at least a specific amount of time before becoming a

candidate for passivation. This could cause session creation to fail, even when passivation was

enabled.

The new implementation does not support this logic and thus avoids this DoS vulnerability.

<passivation-max-idle-time/>

Previously, a session would be passivated after it was idle for a specific amount of time.

The new implementation does not support eager passivation - only lazy passivation. Sessions are

only passivated when necessary to comply with .<max-active-sessions/>

<replication-config/>

The new implementation deprecates a number of sub-elements:

Latest WildFly Documentation

JBoss Community Documentation Page of 1093 2293

<replication-trigger/>

Previously, session attributes could be treated as either mutable or immutable depending on the

values specified by :<replication-trigger/>

SET treated all attributes as immutable, requiring a separate HttpSession.setAttribute(...) to

indicate that the value changed.

SET_AND_GET treated all session attributes as mutable.

SET_AND_NON_PRIMITIVE_GET recognised a small set of types (i.e. strings and boxed

primitives) as immutable, and assumed that any other attribute was mutable.

The new implementation replaces this configuration option with a single, robust strategy.

Session attributes are assumed to be mutable unless one of the following is true:

The value is a known immutable value:

null

java.util.Collections.EMPTY_LIST, EMPTY_MAP, EMPTY_SET

The value type is or implements a known immutable type:

Boolean, Byte, Character, Double, Float, Integer, Long, Short

java.lang.Enum, StackTraceElement, String

java.io.File, java.nio.file.Path

java.math.BigDecimal, BigInteger, MathContext

java.net.InetAddress, InetSocketAddress, URI, URL

java.security.Permission

java.util.Currency, Locale, TimeZone, UUID

The value type is annotated with @org.wildfly.clustering.web.annotation.Immutable

<use-jk/>

Previously, the instance-id of the node handling a given request was appended to the jsessionid (for

use by load balancers such as mod_jk, mod_proxy_balancer, mod_cluster, etc.) depending on the

value specified for . In the new implementation, the instance-id, if defined, is always<use-jk/>

appended to the jsessionid.

<max-unreplicated-interval/>

Previously, this configuration option was an optimization that would prevent the replicate of a

session’s timestamp if no session attribute was changed. While this sounds nice, in practice it doesn't

prevent any RPCs, since session access requires cache transaction RPCs regardless of whether any

session attributes changed. In the new implementation, the timestamp of a session is replicated on

every request. This prevents stale session meta data following failover.

<snapshot-mode/>

Previously, one could configure as INSTANT or INTERVAL. Infinispan’s<snapshot-mode/>

replication queue renders this configuration option obsolete.

<snapshot-interval/>

Only relevant for . See above.<snapshot-mode>INTERVAL</snapshot-mode>

<session-notification-policy/>

Previously, the value defined by this attribute defined a policy for triggering session events. In the new

implementation, this behaviour is spec-driven and not configurable.

Latest WildFly Documentation

JBoss Community Documentation Page of 1094 2293

Other Specifications and Frameworks

Remote JNDI Clients
WildFly 10's default JNDI Provider URL has changed, which means that external applications, using JNDI to

lookup remote resources, for instance an EJB or a JMS Queue, may need to change the value for the JNDI

 environment's property named . The default URL scheme is now InitialContext java.naming.provider.url

, and the default URL port is now .http-remoting 8080

As an example, considering the application server host is , then clients previously accessing JBosslocalhost

AS7 would use

java.naming.factory.initial=org.jboss.naming.remote.client.InitialContextFactory

java.naming.provider.url=remote://localhost:4447

while clients now accessing WildFly should use instead

java.naming.factory.initial=org.jboss.naming.remote.client.InitialContextFactory

java.naming.provider.url=http-remoting://localhost:8080

88
The specification which aimed to standardise deployment tasks got very little adoption, due to much more

"feature rich" proprietary solutions already included in every vendor application server. It was no surprise

that JSR-88 support was dropped from Java EE 7, and WildFly followed that and dropped support too.

A JSR-88 deployment plan is identified by a XML descriptor named , bundled in adeployment-plan.xml

zip/jar archive.

Module Dependencies
Applications defining dependencies to WildFly modules, through the application's package MANIFEST.MF or

jboss-deployment-structure.xml, may be referencing missing modules. When migrating an application,

relying on such functionality, the presence of the referenced modules should be validated in advance.

6.25 How do I migrate my application to WildFly from

other application servers

6.25.1 Choose from the list below:

How do I migrate my application from WebLogic to WildFly

How do I migrate my application from WebSphere to WildFly

Latest WildFly Documentation

JBoss Community Documentation Page of 1095 2293

6.25.2 How do I migrate my application from WebLogic to

WildFly

The purpose of this guide is to document the application changes that are needed to successfully run and

deploy WebLogic applications on WildFly.

Feel free to add content in any way you prefer. You do not need to follow the template below. This

is a work in progress.

Introduction

About this Guide

Introduction

About this Guide
The purpose of this document is to guide you through the planning process and migration of fairly simple and

standard Oracle WebLogic applications to WildFly. O

6.25.3 How do I migrate my application from WebSphere to

WildFly

The purpose of this guide is to document the application changes that are needed to successfully run and

deploy WebLogic applications on WildFly.

Feel free to add content in any way you prefer. You do not need to follow the template below. This

is a work in progress.

Introduction

About this Guide

Introduction

About this Guide
The purpose of this document is to guide you through the planning process and migration of fairly simple and

standard Oracle WebLogic applications to WildFly.

Latest WildFly Documentation

JBoss Community Documentation Page of 1096 2293

6.26 Implicit module dependencies for deployments

As explained in the article, WildFly 8 is based on module classloading. A classClass Loading in WildFly

within a module B isn't visible to a class within a module A, unless module B adds a dependency on module

A. Module dependencies can be explicitly (as explained in that classloading article) or can be "implicit". This

article will explain what implicit module dependencies mean and how, when and which modules are added

as implicit dependencies.

6.26.1 What's an implicit module dependency?

Consider an application deployment which contains EJBs. EJBs typically need access to classes from the

javax.ejb.* package and other Java EE API packages. The jars containing these packages are already

shipped in WildFly and are available as "modules". The module which contains the javax.ejb.* classes has a

specific name and so does the module which contains all the Java EE API classes. For an application to be

able to use these classes, it has to add a dependency on the relevant modules. Forcing the application

developers to add module dependencies like these (i.e. dependencies which can be "inferred") isn't a

productive approach. Hence, whenever an application is being deployed, the deployers within the server,

which are processing this deployment "implicitly" add these module dependencies to the deployment so that

these classes are visible to the deployment at runtime. This way the application developer doesn't have to

worry about adding them explicitly. How and when these implicit dependencies are added is explained in the

next section.

https://docs.jboss.org/author/display/WFLY8/Class+Loading+in+WildFly

Latest WildFly Documentation

JBoss Community Documentation Page of 1097 2293

6.26.2 How and when is an implicit module dependency

added?

When a deployment is being processed by the server, it goes through a chain of "deployment processors".

Each of these processors will have a way to check if the deployment meets a certain criteria and if it does,

the deployment processor adds a implicit module dependency to that deployment. Let's take an example -

Consider (again) an EJB3 deployment which has the following class:

MySuperDuperBean.java

@Stateless

public class MySuperDuperBean {

...

}

As can be seen, we have a simple @Stateless EJB. When the deployment containing this class is being

processed, the EJB deployment processor will see that the deployment contains a class with the @Stateless

annotation and thus identifies this as a EJB deployment. This is just one of the several ways, various

 The EJB deploymentdeployment processors can identify a deployment of some specific type.

processor will then add an implicit dependency on the Java EE API module, so that all the Java EE API

classes are visible to the deployment.

Some subsystems will always add a API classes, even if the trigger condition is not met. These are

listed separately below.

In the next section, we'll list down the implicit module dependencies that are added to a deployment, by

various deployers within WildFly.

6.26.3 Which are the implicit module dependencies?

Subsystem

responsible

for adding

the implicit

dependency

Dependencies that are always

added

Dependencies that are added if a trigger

condition is met

Core Server
javax.api

sun.jdk

org.jboss.vfs

Latest WildFly Documentation

JBoss Community Documentation Page of 1098 2293

Batch

Subsystem javax.batch.api

EE

Subsystem javaee.api

EJB3

subsystem

javaee.api

JAX-RS

(Resteasy)

subsystem

javax.xml.bind.api org.jboss.resteasy.resteasy-atom-provider

org.jboss.resteasy.resteasy-cdi

org.jboss.resteasy.resteasy-jaxrs

org.jboss.resteasy.resteasy-jaxb-provider

org.jboss.resteasy.resteasy-jackson-provider

org.jboss.resteasy.resteasy-jsapi

org.jboss.resteasy.resteasy-multipart-provider

org.jboss.resteasy.async-http-servlet-30

JCA

subsystem javax.resource.api javax.jms.api

javax.validation.api

org.jboss.logging

org.jboss.ironjacamar.api

org.jboss.ironjacamar.impl

org.hibernate.validator

JPA

(Hibernate)

subsystem

javax.persistence.api javaee.api

org.jboss.as.jpa

org.hibernate

Latest WildFly Documentation

JBoss Community Documentation Page of 1099 2293

Logging

Subsystem org.jboss.logging

org.apache.commons.logging

org.apache.log4j

org.slf4j

org.jboss.logging.jul-to-slf4j-stub

SAR

Subsystem

org.jboss.logging

org.jboss.modules

Security

Subsystem org.picketbox

Web

Subsystem

javaee.api

com.sun.jsf-impl

org.hibernate.validator

org.jboss.as.web

org.jboss.logging

Web

Services

Subsystem

org.jboss.ws.api

org.jboss.ws.spi

Weld (CDI)

Subsystem

javax.persistence.api

javaee.api

org.javassist

org.jboss.interceptor

org.jboss.as.weld

org.jboss.logging

org.jboss.weld.core

org.jboss.weld.api

org.jboss.weld.spi

6.27 RS Reference Guide

This page outlines the three options you have for deploying JAX-RS applications in WildFly 8. These three

methods are specified in the JAX-RS 1.1 specification in section 2.3.2.

Latest WildFly Documentation

JBoss Community Documentation Page of 1100 2293

6.27.1 Subclassing javax.ws.rs.core.Application and using

@ApplicationPath

This is the easiest way and does not require any xml configuration. Simply include a subclass of

 in your application, and annotate it with the path that you want yourjavax.ws.rs.core.Application

JAX-RS classes to be available. For example:

@ApplicationPath("/mypath")

public class MyApplication extends Application {

}

This will make your JAX-RS resources available under ./mywebappcontext/mypath

Note that that the path is not /mypath /mypath/*

6.27.2 Subclassing javax.ws.rs.core.Application and using

web.xml

If you do not wish to use but still need to subclass you can set up the@ApplicationPath Application

JAX-RS mapping in web.xml:

public class MyApplication extends Application {

}

<servlet-mapping>

 <servlet-name>com.acme.MyApplication</servlet-name>

 <url-pattern>/hello/*</url-pattern>

</servlet-mapping>

This will make your JAX-RS resources available under ./mywebappcontext/hello

You can also use this approach to override an application path set with the @ApplicationPath

annotation.

Latest WildFly Documentation

JBoss Community Documentation Page of 1101 2293

6.27.3 Using web.xml

If you don't wan't to subclass you can set the JAX-RS mapping in web.xml as follows:Application

<servlet-mapping>

 <servlet-name>javax.ws.rs.core.Application</servlet-name>

 <url-pattern>/hello/*</url-pattern>

</servlet-mapping>

This will make your JAX-RS resources available under ./mywebappcontext/hello

Note that you only have to add the mapping, not the corresponding servlet. The server is

responsible for adding the corresponding servlet automatically.

Latest WildFly Documentation

JBoss Community Documentation Page of 1102 2293

6.28 JNDI Reference

6.28.1 Overview

WildFly offers several mechanisms to retrieve components by name. Every WildFly instance has it's own

local JNDI namespace () which is unique per JVM. The layout of this namespace is primarilyjava:

governed by the Java EE specification. Applications which share the same WildFly instance can use this

namespace to intercommunicate. In addition to local JNDI, a variety of mechanisms exist to access remote

components.

Client JNDI - This is a mechanism by which remote components can be accessed using the JNDI

APIs, but . This approach is the most efficient, and without network round-trips removes a

. For this reason, it is highly recommended to use Client JNDI overpotential single point of failure

traditional remote JNDI access. However, to make this possible, it does require that all names follow a

strict layout, so user customizations are not possible. Currently only access to remote EJBs is

supported via the namespace. Future revisions will likely add a JMS client JNDI namespace.ejb:

Traditional Remote JNDI - This is a more familiar approach to EE application developers, where the

client performs a remote component name lookup against a server, and a proxy/stub to the

component is serialized as part of the name lookup and returned to the client. The client then invokes

a method on the proxy which results in another remote network call to the underlying service. In a

nutshell, traditional remote JNDI involves two calls to invoke an EE component, whereas Client JNDI

requires one. It does however allow for customized names, and for a centralised directory for multiple

application servers. This centralized directory is, however, . a single point of failure

EE Application Client / Server-To-Server Delegation - This approach is where local names are bound

as an to a remote name using one of the above mechanisms. This is useful in that it allowsalias

applications to only ever reference standard portable Java EE names in both code and deployment

descriptors. It also allows for the application to be unaware of network topology details/ This can even

work with Java SE clients by using the little known EE Application Client feature. This feature allows

you to run an extremely minimal AS server around your application, so that you can take advantage of

certain core services such as naming and injection.

6.28.2 Local JNDI

The Java EE platform specification defines the following JNDI contexts:

 - The namespace is scoped to the current component (i.e. EJB)java:comp

 - Scoped to the current modulejava:module

 - Scoped to the current applicationjava:app

 - Scoped to the application serverjava:global

In addition to the standard namespaces, WildFly also provides the following two global namespaces:

Latest WildFly Documentation

JBoss Community Documentation Page of 1103 2293

java:jboss

java:/

Only entries within the context are accessible over remote JNDI.java:jboss/exported

For web deployments is aliased to , so EJB's deployed in a war do notjava:comp java:module

have their own comp namespace.

Binding entries to JNDI
There are several methods that can be used to bind entries into JNDI in WildFly.

Using a deployment descriptor
For Java EE applications the recommended way is to use a to create the binding. Fordeployment descriptor

example the following binds the string to and theweb.xml "Hello World" java:global/mystring

string to (any non absolute JNDI name is relative to "Hello Module" java:comp/env/hello

 context).java:comp/env

<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"

 version="3.1">

 <env-entry>

 <env-entry-name>java:global/mystring</env-entry-name>

 <env-entry-type>java.lang.String</env-entry-type>

 <env-entry-value>Hello World</env-entry-value>

 </env-entry>

 <env-entry>

 <env-entry-name>hello</env-entry-name>

 <env-entry-type>java.lang.String</env-entry-type>

 <env-entry-value>Hello Module</env-entry-value>

 </env-entry>

</web-app>

For more details, see the .Java EE Platform Specification

https://docs.jboss.org/author/display/AS71/Deployment+Descriptors+used+In+AS7.1
http://jcp.org/en/jsr/detail?id=342

Latest WildFly Documentation

JBoss Community Documentation Page of 1104 2293

Programatically

Java EE Applications

Standard Java EE applications may use the standard JNDI API, included with Java SE, to bind entries in the

global namespaces (the standard , and namespaces are read-only,java:comp java:module java:app

as mandated by the Java EE Platform Specification).

InitialContext initialContext = new InitialContext();

 initialContext.bind("java:global/a", 100);

There is no need to unbind entries created programatically, since WildFly tracks which bindings

belong to a deployment, and the bindings are automatically removed when the deployment is

undeployed.

WildFly Modules and Extensions

With respect to code in WildFly Modules/Extensions, which is executed out of a Java EE application context,

using the standard JNDI API may result in a UnsupportedOperationException if the target namespace uses

a WritableServiceBasedNamingStore. To work around that, the bind() invocation needs to be wrapped using

WildFly proprietary APIs:

InitialContext initialContext = new InitialContext();

 WritableServiceBasedNamingStore.pushOwner(serviceTarget);

 try {

 initialContext.bind("java:global/a", 100);

 } finally {

 WritableServiceBasedNamingStore.popOwner();

 }

The ServiceTarget removes the bind when uninstalled, thus using one out of the module/extension

domain usage should be avoided, unless entries are removed using unbind().

Latest WildFly Documentation

JBoss Community Documentation Page of 1105 2293

Naming Subsystem Configuration
It is also possible to bind to one of the three global namespaces using configuration in the naming

subsystem. This can be done by either editing the file directly, or throughstandalone.xml/domain.xml

the management API.

Four different types of bindings are supported:

Simple - A primitive or java.net.URL entry (default is).java.lang.String

Object Factory - This allows to to specify the that is used tojavax.naming.spi.ObjectFactory

create the looked up value.

External Context - An external context to federate, such as an LDAP Directory Service

Lookup - The allows to create JNDI aliases, when this entry is looked up it will lookup the target and

return the result.

An example standalone.xml might look like:

<subsystem xmlns="urn:jboss:domain:naming:2.0" >

 <bindings>

 <simple name="java:global/a" value="100" type="int" />

 <simple name="java:global/jbossDocs" value="https://docs.jboss.org" type="java.net.URL" />

 <object-factory name="java:global/b" module="com.acme" class="org.acme.MyObjectFactory" />

 <external-context name="java:global/federation/ldap/example”

class="javax.naming.directory.InitialDirContext" cache="true">

 <environment>

 <property name="java.naming.factory.initial" value=“com.sun.jndi.ldap.LdapCtxFactory” />

 <property name="java.naming.provider.url" value=“ldap://ldap.example.com:389” />

 <property name="java.naming.security.authentication" value=“simple” />

 <property name="java.naming.security.principal" value=“uid=admin,ou=system” />

 <property name="java.naming.security.credentials" value=“secret” />

 </environment>

 </external-context>

 <lookup name="java:global/c" lookup="java:global/b" />

 </bindings>

</subsystem>

The CLI may also be used to bind an entry. As an example:

/subsystem=naming/binding=java\:global\/mybinding:add(binding-type=simple, type=long,

value=1000)

WildFly's Administrator Guide includes a section describing in detail the Naming subsystem

configuration.

Latest WildFly Documentation

JBoss Community Documentation Page of 1106 2293

Retrieving entries from JNDI

Resource Injection
For Java EE applications the recommended way to lookup a JNDI entry is to use injection:@Resource

@Resource(lookup = "java:global/mystring")

 private String myString;

 @Resource(name = "hello")

 private String hello;

 @Resource

 ManagedExecutorService executor;

Note that is more than a JNDI lookup, it also binds an entry in the component's JNDI@Resource

environment. The new bind JNDI name is defined by 's attribute, which value, if@Resource name

unspecified, is the Java type concatenated with and the field's name, for instance /

. More, similar to when using deployment descriptors to bind JNDI entries.java.lang.String/myString

unless the name is an absolute JNDI name, it is considered relative to . For instance, withjava:comp/env

respect to the field named above, the 's attribute instructs WildFly to lookupmyString @Resource lookup

the value in , bind it in , andjava:global/mystring java:comp/env/java.lang.String/myString

then inject such value into the field.

With respect to the field named , there is no attribute value defined, so the responsibility tohello lookup

provide the entry's value is delegated to the deployment descriptor. Considering that the deployment

descriptor was the previously shown, which defines an environment entry with same name,web.xml hello

then WildFly inject the valued defined in the deployment descriptor into the field.

The field has no attributes specified, so the bind's name would default to executor

, butjava:comp/env/javax.enterprise.concurrent.ManagedExecutorService/executor

there is no such entry in the deployment descriptor, and when that happens it's up to WildFly to provide a

default value or null, depending on the field's Java type. In this particular case WildFly would inject the

default instance of a managed executor service, the value in

, as mandated by the EE Concurrency Utilities 1.0java:comp/DefaultManagedExecutorService

Specification (JSR 236).

Latest WildFly Documentation

JBoss Community Documentation Page of 1107 2293

Standard Java SE JNDI API
Java EE applications may use, without any additional configuration needed, the standard JNDI API to lookup

an entry from JNDI:

String myString = (String) new InitialContext().lookup("java:global/mystring");

or simply

String myString = InitialContext.doLookup("java:global/mystring");

6.28.3 Remote JNDI

WildFly supports two different types of remote JNDI. The old jnp based JNDI implementation used in JBoss

AS versions prior to 7.x is no longer supported.

remote:
The protocol uses the WildFly remoting protocol to lookup items from the servers local JNDI. Toremote:

use it, you must have the appropriate jars on the class path, if you are maven user can be done simply by

adding the following to your :pom.xml

<dependency>

 <groupId>org.wildfly</groupId>

 <artifactId>wildfly-ejb-client-bom</artifactId>

 <version>8.0.0.Final</version>

 <type>pom</type>

 <scope>compile</scope>

</dependency>

If you are not using maven a shaded jar that contains all required classes

can be found in the directory of WildFly's distribution.bin/client

final Properties env = new Properties();

env.put(Context.INITIAL_CONTEXT_FACTORY,

org.jboss.naming.remote.client.InitialContextFactory.class.getName());

env.put(Context.PROVIDER_URL, "remote://localhost:4447");

remoteContext = new InitialContext(env);

Latest WildFly Documentation

JBoss Community Documentation Page of 1108 2293

ejb:
The ejb: namespace is provided by the jboss-ejb-client library. This protocol allows you to look up EJB's,

using their application name, module name, ejb name and interface type.

This is a client side JNDI implementation. Instead of looking up an EJB on the server the lookup name

contains enough information for the client side library to generate a proxy with the EJB information. When

you invoke a method on this proxy it will use the current EJB client context to perform the invocation. If the

current context does not have a connection to a server with the specified EJB deployed then an error will

occur. Using this protocol it is possible to look up EJB's that do not actually exist, and no error will be thrown

until the proxy is actually used. The exception to this is stateful session beans, which need to connect to a

server when they are created in order to create the session bean instance on the server.

Some examples are:

ejb:myapp/myejbjar/MyEjbName!com.test.MyRemoteInterface

ejb:myapp/myejbjar/MyStatefulName!comp.test.MyStatefulRemoteInterface?stateful

The first example is a lookup of a singleton, stateless or EJB 2.x home interface. This lookup will not hit the

server, instead a proxy will be generated for the remote interface specified in the name. The second

example is for a stateful session bean, in this case the JNDI lookup will hit the server, in order to tell the

server to create the SFSB session.

For more details on how the server connections are configured, please see EJB invocations from a remote

.client using JNDI

6.28.4 Local JNDI

The Java EE platform specification defines the following JNDI contexts:

 - The namespace is scoped to the current component (i.e. EJB)java:comp

 - Scoped to the current modulejava:module

 - Scoped to the current applicationjava:app

 - Scoped to the application serverjava:global

In addition to the standard namespaces, WildFly also provides the following two global namespaces:

java:jboss

java:/

Only entries within the context are accessible over remote JNDI.java:jboss/exported

For web deployments is aliased to , so EJB's deployed in a war do notjava:comp java:module

have their own comp namespace.

Latest WildFly Documentation

JBoss Community Documentation Page of 1109 2293

Binding entries to JNDI
There are several methods that can be used to bind entries into JNDI in WildFly.

Using a deployment descriptor
For Java EE applications the recommended way is to use a to create the binding. Fordeployment descriptor

example the following binds the string to and theweb.xml "Hello World" java:global/mystring

string to (any non absolute JNDI name is relative to "Hello Module" java:comp/env/hello

 context).java:comp/env

<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"

 version="3.1">

 <env-entry>

 <env-entry-name>java:global/mystring</env-entry-name>

 <env-entry-type>java.lang.String</env-entry-type>

 <env-entry-value>Hello World</env-entry-value>

 </env-entry>

 <env-entry>

 <env-entry-name>hello</env-entry-name>

 <env-entry-type>java.lang.String</env-entry-type>

 <env-entry-value>Hello Module</env-entry-value>

 </env-entry>

</web-app>

For more details, see the .Java EE Platform Specification

https://docs.jboss.org/author/display/AS71/Deployment+Descriptors+used+In+AS7.1
http://jcp.org/en/jsr/detail?id=342

Latest WildFly Documentation

JBoss Community Documentation Page of 1110 2293

Programatically

Java EE Applications

Standard Java EE applications may use the standard JNDI API, included with Java SE, to bind entries in the

global namespaces (the standard , and namespaces are read-only,java:comp java:module java:app

as mandated by the Java EE Platform Specification).

InitialContext initialContext = new InitialContext();

 initialContext.bind("java:global/a", 100);

There is no need to unbind entries created programatically, since WildFly tracks which bindings

belong to a deployment, and the bindings are automatically removed when the deployment is

undeployed.

WildFly Modules and Extensions

With respect to code in WildFly Modules/Extensions, which is executed out of a Java EE application context,

using the standard JNDI API may result in a UnsupportedOperationException if the target namespace uses

a WritableServiceBasedNamingStore. To work around that, the bind() invocation needs to be wrapped using

WildFly proprietary APIs:

InitialContext initialContext = new InitialContext();

 WritableServiceBasedNamingStore.pushOwner(serviceTarget);

 try {

 initialContext.bind("java:global/a", 100);

 } finally {

 WritableServiceBasedNamingStore.popOwner();

 }

The ServiceTarget removes the bind when uninstalled, thus using one out of the module/extension

domain usage should be avoided, unless entries are removed using unbind().

Latest WildFly Documentation

JBoss Community Documentation Page of 1111 2293

Naming Subsystem Configuration
It is also possible to bind to one of the three global namespaces using configuration in the naming

subsystem. This can be done by either editing the file directly, or throughstandalone.xml/domain.xml

the management API.

Four different types of bindings are supported:

Simple - A primitive or java.net.URL entry (default is).java.lang.String

Object Factory - This allows to to specify the that is used tojavax.naming.spi.ObjectFactory

create the looked up value.

External Context - An external context to federate, such as an LDAP Directory Service

Lookup - The allows to create JNDI aliases, when this entry is looked up it will lookup the target and

return the result.

An example standalone.xml might look like:

<subsystem xmlns="urn:jboss:domain:naming:2.0" >

 <bindings>

 <simple name="java:global/a" value="100" type="int" />

 <simple name="java:global/jbossDocs" value="https://docs.jboss.org" type="java.net.URL" />

 <object-factory name="java:global/b" module="com.acme" class="org.acme.MyObjectFactory" />

 <external-context name="java:global/federation/ldap/example”

class="javax.naming.directory.InitialDirContext" cache="true">

 <environment>

 <property name="java.naming.factory.initial" value=“com.sun.jndi.ldap.LdapCtxFactory” />

 <property name="java.naming.provider.url" value=“ldap://ldap.example.com:389” />

 <property name="java.naming.security.authentication" value=“simple” />

 <property name="java.naming.security.principal" value=“uid=admin,ou=system” />

 <property name="java.naming.security.credentials" value=“secret” />

 </environment>

 </external-context>

 <lookup name="java:global/c" lookup="java:global/b" />

 </bindings>

</subsystem>

The CLI may also be used to bind an entry. As an example:

/subsystem=naming/binding=java\:global\/mybinding:add(binding-type=simple, type=long,

value=1000)

WildFly's Administrator Guide includes a section describing in detail the Naming subsystem

configuration.

Latest WildFly Documentation

JBoss Community Documentation Page of 1112 2293

Retrieving entries from JNDI

Resource Injection
For Java EE applications the recommended way to lookup a JNDI entry is to use injection:@Resource

@Resource(lookup = "java:global/mystring")

 private String myString;

 @Resource(name = "hello")

 private String hello;

 @Resource

 ManagedExecutorService executor;

Note that is more than a JNDI lookup, it also binds an entry in the component's JNDI@Resource

environment. The new bind JNDI name is defined by 's attribute, which value, if@Resource name

unspecified, is the Java type concatenated with and the field's name, for instance /

. More, similar to when using deployment descriptors to bind JNDI entries.java.lang.String/myString

unless the name is an absolute JNDI name, it is considered relative to . For instance, withjava:comp/env

respect to the field named above, the 's attribute instructs WildFly to lookupmyString @Resource lookup

the value in , bind it in , andjava:global/mystring java:comp/env/java.lang.String/myString

then inject such value into the field.

With respect to the field named , there is no attribute value defined, so the responsibility tohello lookup

provide the entry's value is delegated to the deployment descriptor. Considering that the deployment

descriptor was the previously shown, which defines an environment entry with same name,web.xml hello

then WildFly inject the valued defined in the deployment descriptor into the field.

The field has no attributes specified, so the bind's name would default to executor

, butjava:comp/env/javax.enterprise.concurrent.ManagedExecutorService/executor

there is no such entry in the deployment descriptor, and when that happens it's up to WildFly to provide a

default value or null, depending on the field's Java type. In this particular case WildFly would inject the

default instance of a managed executor service, the value in

, as mandated by the EE Concurrency Utilities 1.0java:comp/DefaultManagedExecutorService

Specification (JSR 236).

Latest WildFly Documentation

JBoss Community Documentation Page of 1113 2293

Standard Java SE JNDI API
Java EE applications may use, without any additional configuration needed, the standard JNDI API to lookup

an entry from JNDI:

String myString = (String) new InitialContext().lookup("java:global/mystring");

or simply

String myString = InitialContext.doLookup("java:global/mystring");

6.28.5 Remote JNDI Reference

Remote JNDI
WildFly supports two different types of remote JNDI. The old jnp based JNDI implementation used in JBoss

AS versions prior to 7.x is no longer supported.

remote:
The protocol uses the WildFly remoting protocol to lookup items from the servers local JNDI. Toremote:

use it, you must have the appropriate jars on the class path, if you are maven user can be done simply by

adding the following to your :pom.xml

<dependency>

 <groupId>org.wildfly</groupId>

 <artifactId>wildfly-ejb-client-bom</artifactId>

 <version>8.0.0.Final</version>

 <type>pom</type>

 <scope>compile</scope>

</dependency>

If you are not using maven a shaded jar that contains all required classes

can be found in the directory of WildFly's distribution.bin/client

final Properties env = new Properties();

env.put(Context.INITIAL_CONTEXT_FACTORY,

org.jboss.naming.remote.client.InitialContextFactory.class.getName());

env.put(Context.PROVIDER_URL, "remote://localhost:4447");

remoteContext = new InitialContext(env);

Latest WildFly Documentation

JBoss Community Documentation Page of 1114 2293

ejb:
The ejb: namespace is provided by the jboss-ejb-client library. This protocol allows you to look up EJB's,

using their application name, module name, ejb name and interface type.

This is a client side JNDI implementation. Instead of looking up an EJB on the server the lookup name

contains enough information for the client side library to generate a proxy with the EJB information. When

you invoke a method on this proxy it will use the current EJB client context to perform the invocation. If the

current context does not have a connection to a server with the specified EJB deployed then an error will

occur. Using this protocol it is possible to look up EJB's that do not actually exist, and no error will be thrown

until the proxy is actually used. The exception to this is stateful session beans, which need to connect to a

server when they are created in order to create the session bean instance on the server.

Some examples are:

ejb:myapp/myejbjar/MyEjbName!com.test.MyRemoteInterface

ejb:myapp/myejbjar/MyStatefulName!comp.test.MyStatefulRemoteInterface?stateful

The first example is a lookup of a singleton, stateless or EJB 2.x home interface. This lookup will not hit the

server, instead a proxy will be generated for the remote interface specified in the name. The second

example is for a stateful session bean, in this case the JNDI lookup will hit the server, in order to tell the

server to create the SFSB session.

For more details on how the server connections are configured, please see EJB invocations from a remote

.client using JNDI

Remote JNDI Access
WildFly supports two different types of remote JNDI.

Latest WildFly Documentation

JBoss Community Documentation Page of 1115 2293

http-remoting:
The protocol implementation is provided by JBoss Remote Naming project, and uses httphttp-remoting:

upgrade to lookup items from the servers local JNDI. To use it, you must have the appropriate jars on the

class path, if you are maven user can be done simply by adding the following to your pom.xml

dependencies:

<dependency>

 <groupId>org.wildfly</groupId>

 <artifactId>wildfly-ejb-client-bom</artifactId>

 <version>8.0.0.Final</version>

 <type>pom</type>

</dependency>

If you are not using maven a shaded jar that contains all required classes

can be found in the directory of WildFly's distribution.bin/client

final Properties env = new Properties();

env.put(Context.INITIAL_CONTEXT_FACTORY,

"org.jboss.naming.remote.client.InitialContextFactory");

env.put(Context.PROVIDER_URL, "http-remoting://localhost:8080");

// the property below is required ONLY if there is no ejb client configuration loaded (such as a

// jboss-ejb-client.properties in the class path) and the context will be used to lookup EJBs

env.put("jboss.naming.client.ejb.context", true);

InitialContext remoteContext = new InitialContext(env);

RemoteCalculator ejb = (RemoteCalculator)

remoteContext.lookup("wildfly-http-remoting-ejb/CalculatorBean!"

 + RemoteCalculator.class.getName());

The http-remoting client assumes JNDI names in remote lookups are relative to

java:jboss/exported namespace, a lookup of an absolute JNDI name will fail.

Latest WildFly Documentation

JBoss Community Documentation Page of 1116 2293

ejb:
The ejb: namespace implementation is provided by the jboss-ejb-client library, and allows the lookup of

EJB's using their application name, module name, ejb name and interface type. To use it, you must have the

appropriate jars on the class path, if you are maven user can be done simply by adding the following to your

 dependencies:pom.xml

<dependency>

 <groupId>org.wildfly</groupId>

 <artifactId>wildfly-ejb-client-bom</artifactId>

 <version>8.0.0.Final</version>

 <type>pom</type>

</dependency>

If you are not using maven a shaded jar that contains all required classes

can be found in the directory of WildFly's distribution.bin/client

This is a client side JNDI implementation. Instead of looking up an EJB on the server the lookup name

contains enough information for the client side library to generate a proxy with the EJB information. When

you invoke a method on this proxy it will use the current EJB client context to perform the invocation. If the

current context does not have a connection to a server with the specified EJB deployed then an error will

occur. Using this protocol it is possible to look up EJB's that do not actually exist, and no error will be thrown

until the proxy is actually used. The exception to this is stateful session beans, which need to connect to a

server when they are created in order to create the session bean instance on the server.

final Properties env = new Properties();

env.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");

InitialContext remoteContext = new InitialContext(env);

MyRemoteInterface myRemote = (MyRemoteInterface)

remoteContext.lookup("ejb:myapp/myejbjar/MyEjbName\!com.test.MyRemoteInterface");

MyStatefulRemoteInterface myStatefulRemote = (MyStatefulRemoteInterface)

remoteContext.lookup("ejb:myapp/myejbjar/MyStatefulName\!comp.test.MyStatefulRemoteInterface?stateful");

The first example is a lookup of a singleton, stateless or EJB 2.x home interface. This lookup will not hit the

server, instead a proxy will be generated for the remote interface specified in the name. The second

example is for a stateful session bean, in this case the JNDI lookup will hit the server, in order to tell the

server to create the SFSB session.

For more details on how the server connections are configured, including the jboss ejbrequired

client setup, please see .EJB invocations from a remote client using JNDI

Latest WildFly Documentation

JBoss Community Documentation Page of 1117 2293

6.29 JPA Reference Guide

Introduction

Update your Persistence.xml for Hibernate 5.1

Entity manager

Container-managed entity manager

Application-managed entity manager

Persistence Context

Transaction-scoped Persistence Context

Extended Persistence Context

Extended Persistence Context Inheritance

Entities

Deployment

Troubleshooting

Using the Infinispan second level cache

Replacing the current Hibernate 5.x jars with a newer version

Using Hibernate Search

Packaging the Hibernate JPA persistence provider with your application

Migrating from OpenJPA

Migrating from EclipseLink

Migrating from DataNucleus

Native Hibernate use

Injection of Hibernate Session and SessionFactoryInjection of Hibernate Session and SessionFactory

Hibernate properties

Persistence unit properties

Determine the persistence provider module

Binding EntityManagerFactory/EntityManager to JNDI

Community

People who have contributed to the WildFly JPA layer:

Latest WildFly Documentation

JBoss Community Documentation Page of 1118 2293

6.29.1 Introduction

The WildFly JPA subsystem implements the JPA 2.1 container-managed requirements. Deploys the

persistence unit definitions, the persistence unit/context annotations and persistence unit/context references

in the deployment descriptor. JPA Applications use the Hibernate (version 5.1) persistence provider, which is

included with WildFly. The JPA subsystem uses the standard SPI

(javax.persistence.spi.PersistenceProvider) to access the Hibernate persistence provider and some

additional extensions as well.

During application deployment, JPA use is detected (e.g. persistence.xml or @PersistenceContext/Unit

annotations) and injects Hibernate dependencies into the application deployment. This makes it easy to

deploy JPA applications.

In the remainder of this documentation, ”entity manager” refers to an instance of the

 class. and .javax.persistence.EntityManager Javadoc for the JPA interfaces JPA 2.1 specification

The index of the Hibernate documentation is at .http://hibernate.org/orm/documentation/5.1/

6.29.2 Update your Persistence.xml for Hibernate 5.1

The persistence provider class name in Hibernate 4.3.0 (and greater) is

.org.hibernate.jpa.HibernatePersistenceProvider

Instead of specifying:

<provider>org.hibernate.ejb.HibernatePersistence</provider>

Switch to:

<provider>org.hibernate.jpa.HibernatePersistenceProvider</provider>

Or remove the persistence provider class name from your persistence.xml (so the default provider will be

used).

6.29.3 Entity manager

The entity manager (javax.persistence.EntityManager class) is similar to the Hibernate Session class;

applications use it to create/read/update/delete data (and related operations). Applications can use

application-managed or container-managed entity managers. Keep in mind that the entity manager is not

thread safe, don't share the same entity manager instance with multiple threads.

Internally, the entity manager, has a persistence context for managing entities. You can think of the

persistence context as being closely associated with the entity manager.

http://download.oracle.com/javaee/7/api/javax/persistence/package-summary.html
https://jcp.org/en/jsr/detail?id=338
http://hibernate.org/orm/documentation/5.1/

Latest WildFly Documentation

JBoss Community Documentation Page of 1119 2293

6.29.4 Container-managed entity manager

When you inject a container-managed entity managers into an application variable, it is treated like an (EE

container controlled) Java proxy object, that will be associated with an underlying EntityManager instance,

for each started JTA transaction and is flushed/closed when the JTA transaction commits. Such that when

your application code invokes EntityManager.anyMethod(), the current JTA transaction is searched (using

persistence unit name as key) for the underlying EntityManager instance, if not found, a new EntityManager

instance is created and associated with the current JTA transaction, to be reused for the next EntityManager

invocation. Use the @PersistenceContext annotation, to inject a container-managed entity manager into a

javax.persistence.EntityManager variable.

6.29.5 Application-managed entity manager

An application-managed entity manager is kept around until the application closes it. The scope of the

application-managed entity manager is from when the application creates it and lasts until the application

closes it. Use the annotation, to inject a persistence unit into a @PersistenceUnit

. The EntityManagerFactory can return anjavax.persistence.EntityManagerFactory variable

application-managed entity manager.

6.29.6 Persistence Context

The JPA persistence context contains the entities managed by the entity manager (via the JPA persistence

provider). The underlying entity manager maintains the persistence context. The persistence context acts

like a first level (transactional) cache for interacting with the datasource. Loaded entities are placed into the

persistence context before being returned to the application. Entities changes are also placed into the

persistence context (to be saved in the database when the transaction commits).

Latest WildFly Documentation

JBoss Community Documentation Page of 1120 2293

6.29.7 Transaction-scoped Persistence Context

The transaction-scoped persistence context coordinates with the (active) JTA transaction. When the

transaction commits, the persistence context is flushed to the datasource (entity objects are detached but

may still be referenced by application code). All entity changes that are expected to be saved to the

datasource, must be made during a transaction. Entities read outside of a transaction will be detached when

the entity manager invocation completes. Example transaction-scoped persistence context is below.

@Stateful // will use container managed transactions

public class CustomerManager {

 @PersistenceContext(unitName = "customerPU") // default type is

PersistenceContextType.TRANSACTION

 EntityManager em;

 public customer createCustomer(String name, String address) {

 Customer customer = new Customer(name, address);

 em.persist(customer); // persist new Customer when JTA transaction completes (when method

ends).

 // internally:

 // 1. Look for existing "customerPU" persistence context in active

JTA transaction and use if found.

 // 2. Else create new "customerPU" persistence context (e.g.

instance of org.hibernate.ejb.HibernatePersistence)

 // and put in current active JTA transaction.

 return customer; // return Customer entity (will be detached from the persistence

context when caller gets control)

 } // Transaction.commit will be called, Customer entity will be persisted to the database and

"customerPU" persistence context closed

6.29.8 Extended Persistence Context

The (ee container managed) extended persistence context can span multiple transactions and allows data

modifications to be queued up (like a shopping cart), without an active JTA transaction (to be applied during

the next JTA TX). The Container-managed extended persistence context can only be injected into a stateful

session bean. You can also think of the extended persistence context, as being an entity manager.

@PersistenceContext(type = PersistenceContextType.EXTENDED, unitName = "inventoryPU")

EntityManager em;

Latest WildFly Documentation

JBoss Community Documentation Page of 1121 2293

Extended Persistence Context Inheritance

JPA 2.0 specification section 7.6.2.1

If a stateful session bean instantiates a stateful session bean (executing in the same EJB

container instance) which also has such an extended persistence context, the extended

persistence context of the first stateful session bean is inherited by the second stateful

session bean and bound to it, and this rule recursively applies—independently of whether

transactions are active or not at the point of the creation of the stateful session beans.

By default, the current stateful session bean being created, will () inherit the extended persistencedeeply

context from any stateful session bean executing in the current Java thread. The inheritance ofdeep

extended persistence context includes walking multiple levels up the stateful bean call stack (inheriting from

parent beans). The inheritance of extended persistence context includes sibling beans. For example,deep

parentA references child beans beanBwithXPC & beanCwithXPC. Even though parentA doesn't have an

extended persistence context, beanBwithXPC & beanCwithXPC will share the same extended persistence

context.

Some other EE application servers, use inheritance, where stateful session bean only inherit fromshallow

the parent stateful session bean (if there is a parent bean). Sibling beans do not share the same extended

persistence context unless their (common) parent bean also has the same extended persistence context.

Applications can include a (top-level) deployment descriptor that specifies either the (default) jboss-all.xml

 extended persistence context inheritance or .DEEP SHALLOW

The WF/docs/schema/jboss-jpa_1_0.xsd describes the deployment descriptor that may bejboss-jpa

included in the . Below is an example of using extended persistence contextjboss-all.xml SHALLOW

inheritance:

<jboss>

 <jboss-jpa xmlns="http://www.jboss.com/xml/ns/javaee">

 <extended-persistence inheritance="SHALLOW"/>

 </jboss-jpa>

</jboss>

Below is an example of using extended persistence inheritance:DEEP

<jboss>

 <jboss-jpa xmlns="http://www.jboss.com/xml/ns/javaee">

 <extended-persistence inheritance="DEEP"/>

 </jboss-jpa>

</jboss>

The AS console/cli can change the extended persistence context setting (DEEP or SHALLOW). Thedefault

following cli commands will read the current JPA settings and enable SHALLOW extended persistence

context inheritance for applications that do not include the deployment descriptor:jboss-jpa

Latest WildFly Documentation

JBoss Community Documentation Page of 1122 2293

./jboss-cli.sh

cd subsystem=jpa

:read-resource

:write-attribute(name=default-extended-persistence-inheritance,value="SHALLOW")

6.29.9 Entities

JPA allows use of your (pojo) plain old Java class to represent a database table row.

@PersistenceContext EntityManager em;

Integer bomPk = getIndexKeyValue();

BillOfMaterials bom = em.find(BillOfMaterials.class, bomPk); // read existing table row into

BillOfMaterials class

BillOfMaterials createdBom = new BillOfMaterials("..."); // create new entity

em.persist(createdBom); // createdBom is now managed and will be saved to database when the

current JTA transaction completes

The entity lifecycle is managed by the underlying persistence provider.

New (transient): an entity is new if it has just been instantiated using the new operator, and it is not

associated with a persistence context. It has no persistent representation in the database and no

identifier value has been assigned.

Managed (persistent): a managed entity instance is an instance with a persistent identity that is

currently associated with a persistence context.

Detached: the entity instance is an instance with a persistent identity that is no longer associated with

a persistence context, usually because the persistence context was closed or the instance was

evicted from the context.

Removed: a removed entity instance is an instance with a persistent identity, associated with a

persistence context, but scheduled for removal from the database.

Latest WildFly Documentation

JBoss Community Documentation Page of 1123 2293

6.29.10 Deployment

The persistence.xml contains the persistence unit configuration (e.g. datasource name) and as described in

the JPA 2.0 spec (section 8.2), the jar file or directory whose META-INF directory contains the

persistence.xml file is termed the root of the persistence unit. In Java EE environments, the root of a

persistence unit must be one of the following (quoted directly from the JPA 2.0 specification):

"

an EJB-JAR file

the WEB-INF/classes directory of a WAR file

a jar file in the WEB-INF/lib directory of a WAR file

a jar file in the EAR library directory

an application client jar file

The persistence.xml can specify either a JTA datasource or a non-JTA datasource. The JTA datasource is

expected to be used within the EE environment (even when reading data without an active transaction). If a

datasource is not specified, the default-datasource will instead be used (must be configured).

NOTE: Java Persistence 1.0 supported use of a jar file in the root of the EAR as the root of a persistence

unit. This use is no longer supported. Portable applications should use the EAR library directory for this case

instead.

"

Question: Can you have a EAR/META-INF/persistence.xml?

Answer: No, the above may deploy but it could include other archives also in the EAR, so you may have

deployment issues for other reasons. Better to put the persistence.xml in an EAR/lib/somePuJar.jar.

6.29.11 Troubleshooting

The logging can be enabled to get the following information:org.jboss.as.jpa

INFO - when persistence.xml has been parsed, starting of persistence unit service (per deployed

persistence.xml), stopping of persistence unit service

DEBUG - informs about entity managers being injected, creating/reusing transaction scoped entity

manager for active transaction

TRACE - shows how long each entity manager operation took in milliseconds, application searches

for a persistence unit, parsing of persistence.xml

To enable TRACE, open the as/standalone/configuration/standalone.xml (or

as/domain/configuration/domain.xml) file. Search for <subsystem

 and add the category. You need to changexmlns="urn:jboss:domain:logging:1.0"> org.jboss.as.jpa

the console-handler level from to . INFO TRACE

Latest WildFly Documentation

JBoss Community Documentation Page of 1124 2293

<subsystem xmlns="urn:jboss:domain:logging:1.0">

 <console-handler name="CONSOLE">

 <level name="TRACE" />

 ...

 </console-handler>

 </periodic-rotating-file-handler>

 <logger category="com.arjuna">

 <level name="WARN" />

 </logger>

 <logger category="org.jboss.as.jpa">

 <level name="TRACE" />

 </logger>

 <logger category="org.apache.tomcat.util.modeler">

 <level name="WARN" />

 </logger>

 ...

To see what is going on at the JDBC level, enable TRACE and add spy="true" to thejboss.jdbc.spy

datasource.

<datasource jndi-name="java:jboss/datasources/..." pool-name="..." enabled="true" spy="true">

<logger category="jboss.jdbc.spy">

 <level name="TRACE"/>

</logger>

To troubleshoot issues with the Hibernate second level cache, try enabling trace for org.hibernate.SQL +

org.hibernate.cache.infinispan + org.infinispan:

Latest WildFly Documentation

JBoss Community Documentation Page of 1125 2293

<subsystem xmlns="urn:jboss:domain:logging:1.0">

 <console-handler name="CONSOLE">

 <level name="TRACE" />

 ...

 </console-handler>

 </periodic-rotating-file-handler>

 <logger category="com.arjuna">

 <level name="WARN" />

 </logger>

 <logger category="org.hibernate.SQL">

 <level name="TRACE" />

 </logger>

 <logger category="org.hibernate">

 <level name="TRACE" />

 </logger>

 <logger category="org.infinispan">

 <level name="TRACE" />

 </logger>

 <logger category="org.apache.tomcat.util.modeler">

 <level name="WARN" />

 </logger>

 ...

6.29.12 Using the Infinispan second level cache

To enable the second level cache with Hibernate 5.1, just set the

 property to true, as is done in the following example (also sethibernate.cache.use_second_level_cache

the accordingly). By default the application server uses Infinispan as the cache providershared-cache-mode

for , so you don't need specify anything on top of that. The Infinispan version that isJPA applications

included in WildFly is expected to work with the Hibernate version that is included with WildFly. Example

persistence.xml settings:

<?xml version="1.0" encoding="UTF-8"?><persistence

xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">

<persistence-unit name="2lc_example_pu">

 <description>example of enabling the second level cache.</description>

 <jta-data-source>java:jboss/datasources/mydatasource</jta-data-source>

 <shared-cache-mode>ENABLE_SELECTIVE</shared-cache-mode>

 <properties>

 <property name="hibernate.cache.use_second_level_cache" value="true"/>

 </properties>

</persistence-unit>

</persistence>

Here is an example of enabling the second level cache for a Hibernate native API hibernate.cfg.xml file:

http://docs.oracle.com/javaee/6/api/javax/persistence/SharedCacheMode.html

Latest WildFly Documentation

JBoss Community Documentation Page of 1126 2293

<property name="hibernate.cache.region.factory_class"

value="org.jboss.as.jpa.hibernate5.infinispan.InfinispanRegionFactory"/>

<property name="hibernate.cache.infinispan.cachemanager"

value="java:jboss/infinispan/container/hibernate"/>

<property name="hibernate.transaction.manager_lookup_class"

value="org.hibernate.transaction.JBossTransactionManagerLookup"/>

<property name="hibernate.cache.use_second_level_cache" value="true"/>

The Hibernate native API application will also need a MANIFEST.MF:

Dependencies: org.infinispan,org.hibernate

 contains advanced configurationInfinispan Hibernate/JPA second level cache provider documentation

information but you should bear in mind that when Hibernate runs within WildFly 8, some of those

configuration options, such as region factory, are not needed. Moreover, the application server providers you

with option of selecting a different cache container for Infinispan via hibernate.cache.infinispan.container

persistence property. To reiterate, this property is not mandatory and a default container is already deployed

for by the application server to host the second level cache.

Here is an example of what the Hibernate cache settings may currently be in your standalone.xml:

<cache-container name="hibernate" default-cache="local-query" module="org.hibernate.infinispan">

 <local-cache name="entity">

 <transaction mode="NON_XA"/>

 <eviction strategy="LRU" max-entries="10000"/>

 <expiration max-idle="100000"/>

 </local-cache>

 <local-cache name="local-query">

 <eviction strategy="LRU" max-entries="10000"/>

 <expiration max-idle="100000"/>

 </local-cache>

 <local-cache name="timestamps"/>

</cache-container>

Below is an example of customizing the "entity", "immutable-entity", "local-query", "pending-puts",

"timestamps" cache configuration may look like:

http://infinispan.org/docs/8.0.x/user_guide/user_guide.html#_using_infinispan_as_jpa_hibernate_second_level_cache_provider

Latest WildFly Documentation

JBoss Community Documentation Page of 1127 2293

<cache-container name="hibernate" module="org.hibernate.infinispan"

default-cache="immutable-entity">

 <local-cache name="entity">

 <transaction mode="NONE"/>

 <eviction max-entries="-1"/>

 <expiration max-idle="120000"/>

 </local-cache>

 <local-cache name="immutable-entity">

 <transaction mode="NONE"/>

 <eviction max-entries="-1"/>

 <expiration max-idle="120000"/>

 </local-cache>

 <local-cache name="local-query">

 <eviction max-entries="-1"/>

 <expiration max-idle="300000"/>

 </local-cache>

 <local-cache name="pending-puts">

 <transaction mode="NONE"/>

 <eviction strategy="NONE"/>

 <expiration max-idle="60000"/>

 </local-cache>

 <local-cache name="timestamps">

 <transaction mode="NONE"/>

 <eviction strategy="NONE"/>

 </local-cache>

</cache-container>

Persistence.xml to use the above custom settings:

<properties>

 <property name="hibernate.cache.use_second_level_cache" value="true"/>

 <property name="hibernate.cache.use_query_cache" value="true"/>

 <property name="hibernate.cache.infinispan.immutable-entity.cfg" value="immutable-entity"/>

 <property name="hibernate.cache.infinispan.timestamps.cfg" value="timestamps"/>

 <property name="hibernate.cache.infinispan.pending-puts.cfg" value="pending-puts"/>

</properties>

Latest WildFly Documentation

JBoss Community Documentation Page of 1128 2293

1.

2.

3.

4.

5.

6.29.13 Replacing the current Hibernate 5.x jars with a newer

version

Just update the current wildfly/modules/system/layers/base/org/hibernate/main folder to contain the newer

version (after stopping your WildFly server instance).

Delete *.index files in wildfly/modules/system/layers/base/org/hibernate/main and

wildfly/modules/system/layers/base/org/hibernate/envers/main folders.

Backup the current contents of wildfly/modules/system/layers/base/org/hibernate in case you make a

mistake.

Remove the older jars and copy new Hibernate jars into

wildfly/modules/system/layers/base/org/hibernate/main +

wildfly/modules/system/layers/base/org/hibernate/envers/main.

Update the wildfly/modules/system/layers/base/org/hibernate/main/module.xml +

wildfly/modules/system/layers/base/org/hibernate/envers/main/module.xml to name the jars that you

copied in.

Also update the hibernate-infinispan jars in

wildfly/modules/system/layers/base/org/hibernate/infinispan.

6.29.14 Using Hibernate Search

WildFly includes Hibernate Search. If you want to use the bundled version of Hibernate Search - which

requires to use the default Hibernate ORM 5.1 persistence provider - this will be automatically enabled.

Having this enabled means that, provided your application includes any entity which is annotated with

, the module will be madeorg.hibernate.search.annotations.Indexed org.hibernate.search.orm:main

available to your deployment; this will also include the required version of Apache Lucene.

If you do not want this module to be exposed to your deployment, set the persistence property

 to either to not automatically inject any Hibernate Searchwildfly.jpa.hibernate.search.module none

module, or to any other module identifier to inject a different module.

For example you could set wildfly.jpa.hibernate.search.module=org.hibernate.search.orm:5.4.0.Alpha1

to use the experimental version 5.4.0.Alpha1 instead of the provided module; in this case you'll have to

download and add the custom modules to the application server as other versions are not included.

When setting you might also opt to include Hibernate Searchwildfly.jpa.hibernate.search.module=none

and its dependencies within your application but we highly recommend the modules approach.

Latest WildFly Documentation

JBoss Community Documentation Page of 1129 2293

6.29.15 Packaging the Hibernate JPA persistence provider with

your application

WildFly allows the packaging of Hibernate persistence provider jars with the application. The JPA deployer

will detect the presence of a persistence provider in the application and jboss.as.jpa.providerModule

needs to be set to .<?xml version="1.0" encoding="UTF-8"?>application

<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">

<persistence-unit name="myOwnORMVersion_pu">

<description>Hibernate Persistence Unit.</description>

<jta-data-source>java:jboss/datasources/PlannerDS</jta-data-source>

<properties>

 <property name="jboss.as.jpa.providerModule" value="application" />

</properties>

</persistence-unit>

</persistence>

Latest WildFly Documentation

JBoss Community Documentation Page of 1130 2293

6.29.16 Migrating from OpenJPA

You need to copy the OpenJPA jars (e.g. openjpa-all.jar serp.jar) into the WildFly

modules/org/apache/openjpa/main folder and update modules/org/apache/openjpa/main/module.xml to

include the same jar file names that you copied in. This will help you get your application that depends on

OpenJPA, to deploy on WildFly.

<module xmlns="urn:jboss:module:1.1" name="org.apache.openjpa">

 <resources>

 <resource-root path="jipijapa-openjpa-1.0.1.Final.jar"/>

 <resource-root path="openjpa-all.jar">

 <filter>

 <exclude path="javax/**" />

 </filter>

 </resource-root>

 <resource-root path="serp.jar"/>

 </resources>

 <dependencies>

 <module name="javax.api"/>

 <module name="javax.annotation.api"/>

 <module name="javax.enterprise.api"/>

 <module name="javax.persistence.api"/>

 <module name="javax.transaction.api"/>

 <module name="javax.validation.api"/>

 <module name="javax.xml.bind.api"/>

 <module name="org.apache.commons.collections"/>

 <module name="org.apache.commons.lang"/>

 <module name="org.jboss.as.jpa.spi"/>

 <module name="org.jboss.logging"/>

 <module name="org.jboss.vfs"/>

 <module name="org.jboss.jandex"/>

 </dependencies>

</module>

6.29.17 Migrating from EclipseLink

You need to copy the EclipseLink jar (e.g. eclipselink-2.6.0.jar or eclipselink.jar as in the example below) into

the WildFly modules/org/eclipse/persistence/main folder and update

modules/org/eclipse/persistence/main/module.xml to include the EclipseLink jar (take care to use the jar

name that you copied in). If you happen to leave the EclipseLink version number in the jar name, the

module.xml should reflect that. This will help you get your application that depends on EclipseLink, to deploy

on WildFly.

Latest WildFly Documentation

JBoss Community Documentation Page of 1131 2293

<module xmlns="urn:jboss:module:1.1" name="org.eclipse.persistence">

 <resources>

 <resource-root path="jipijapa-eclipselink-10.0.0.Final.jar"/>

 <resource-root path="eclipselink.jar"> <filter>

 <exclude path="javax/**" />

 </filter>

 </resource-root>

 </resources>

 <dependencies>

 <module name="asm.asm"/>

 <module name="javax.api"/>

 <module name="javax.annotation.api"/>

 <module name="javax.enterprise.api"/>

 <module name="javax.persistence.api"/>

 <module name="javax.transaction.api"/>

 <module name="javax.validation.api"/>

 <module name="javax.xml.bind.api"/>

 <module name="org.antlr"/>

 <module name="org.apache.commons.collections"/>

 <module name="org.dom4j"/>

 <module name="org.jboss.as.jpa.spi"/>

 <module name="org.jboss.logging"/>

 <module name="org.jboss.vfs"/>

 </dependencies>

</module>

As a workaround for issue , set (WildFly) system property "eclipselink.archive.factory" to valueid=414974

"org.jipijapa.eclipselink.JBossArchiveFactoryImpl" via jboss-cli.sh command (WildFly server needs to be

running when this command is issued):

jboss-cli.sh --connect

'/system-property=eclipselink.archive.factory:add(value=org.jipijapa.eclipselink.JBossArchiveFactoryImpl)'

. The following shows what the standalone.xml (or your WildFly configuration you are using) file might look

like after updating the system properties:

<system-properties>

 ...

 <property name="eclipselink.archive.factory"

value="org.jipijapa.eclipselink.JBossArchiveFactoryImpl"/>

</system-properties>

You should then be able to deploy applications with persistence.xml that include;

<provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>

Also refer to page .how to use EclipseLink with WildFly guide here

https://bugs.eclipse.org/bugs/show_bug.cgi?id=414974
https://community.jboss.org/wiki/HowToUseEclipseLinkWithAS7

Latest WildFly Documentation

JBoss Community Documentation Page of 1132 2293

6.29.18 Migrating from DataNucleus

Read the .how to use DataNucleus with WildFly guide here

6.29.19 Native Hibernate use

Applications that use the Hibernate API directly, are referred to here as native Hibernate applications. Native

Hibernate applications, can choose to use the Hibernate jars included with WildFly or they can package their

own copy of the Hibernate jars. Applications that utilize JPA will automatically have the Hibernate classes

injected onto the application deployment classpath. Meaning that JPA applications, should expect to use the

Hibernate jars included in WildFly.

Example MANIFEST.MF entry to add dependency for Hibernate native applications:

Manifest-Version: 1.0

...

Dependencies: org.hibernate

If you use the Hibernate native api in your application and also use the JPA api to access the same entities

(from the same Hibernate session/EntityManager), you could get surprising results (e.g.

HibernateSession.saveOrUpdate(entity) is different than EntityManager.merge(entity). Each entity should be

managed by either Hibernate native API or JPA code.

6.29.20 Injection of Hibernate Session and

SessionFactoryInjection of Hibernate Session and

SessionFactory

You can inject a org.hibernate.Session and org.hibernate.SessionFactory directly, just as you can do with

EntityManagers and EntityManagerFactorys.

import org.hibernate.Session;

import org.hibernate.SessionFactory;

@Stateful public class MyStatefulBean ... {

 @PersistenceContext(unitName="crm") Session session1;

 @PersistenceContext(unitName="crm2", type=EXTENDED) Session extendedpc;

 @PersistenceUnit(unitName="crm") SessionFactory factory;

}

http://www.datanucleus.org/products/accessplatform_5_0/jpa/javaee.html

Latest WildFly Documentation

JBoss Community Documentation Page of 1133 2293

6.29.21 Hibernate properties

WildFly automatically sets the following Hibernate (5.x) properties (if not already set in persistence unit

definition):

Property Purpose

 hibernate.id.new_generator_mappings =true New applications should let this

default to true, older applications

with existing data might need to

set to false (see note below). It

really depends on whether your

application uses the

@GeneratedValue(AUTO) which

will generates new key values for

newly created entities. The

application can override this

value (in the persistence.xml).

= instance ofhibernate.transaction.jta.platform

org.hibernate.service.jta.platform.spi.JtaPlatform interface

The transaction manager, user

transaction and transaction

synchronization registry is

passed into Hibernate via this

class.

 = instance ofhibernate.ejb.resource_scanner

org.hibernate.ejb.packaging.Scanner interface

Instance of entity scanning class

is passed in that knows how to

use the AS annotation indexer

(for faster deployment).

hibernate.transaction.manager_lookup_class This property is removed if found

in the persistence.xml (could

conflict with JtaPlatform)

 = qualified persistence unit namehibernate.session_factory_name Is set to the application name +

persistence unit name

(application can specify a

different value but it needs to be

unique across all application

deployments on the AS

instance).

 = falsehibernate.session_factory_name_is_jndi only set if the application didn't

specify a value for

hibernate.session_factory_name.

Latest WildFly Documentation

JBoss Community Documentation Page of 1134 2293

 qualified persistence unithibernate.ejb.entitymanager_factory_name =

name

Is set to the application name +

persistence unit name

(application can specify a

different value but it needs to be

unique across all application

deployments on the AS

instance).

=truehibernate.query.jpaql_strict_compliance

=falsehibernate.auto_quote_keyword

hibernate.implicit_naming_strategy

=org.hibernate.boot.model.naming.ImplicitNamingStrategyJpaCompliantImpl

In Hibernate 4.x (and greater), if is :new_generator_mappings true

@GeneratedValue(AUTO) maps to org.hibernate.id.enhanced.SequenceStyleGenerator

@GeneratedValue(TABLE) maps to org.hibernate.id.enhanced.TableGenerator

@GeneratedValue(SEQUENCE) maps to org.hibernate.id.enhanced.SequenceStyleGenerator

In Hibernate 4.x (and greater), if is :new_generator_mappings false

@GeneratedValue(AUTO) maps to Hibernate "native"

@GeneratedValue(TABLE) maps to org.hibernate.id.MultipleHiLoPerTableGenerator

@GeneratedValue(SEQUENCE) to Hibernate "seqhilo"

6.29.22 Persistence unit properties

The following properties are supported in the persistence unit definition (in the persistence.xml file):

Property Purpose

jboss.as.jpa.providerModule name of the persistence provider module (default is

). Should be , if a persistenceorg.hibernate application

provider is packaged with the application. See note below

about some module names that are built in (based on the

).provider

jboss.as.jpa.adapterModule name of the integration classes that help WildFly to work with

the persistence provider.

jboss.as.jpa.adapterClass class name of the integration adapter.

jboss.as.jpa.managed set to to disable container managed JPA access to thefalse

persistence unit. The default is , which enables containertrue

managed JPA access to the persistence unit. This is typically

set to for Spring applications.false

Latest WildFly Documentation

JBoss Community Documentation Page of 1135 2293

jboss.as.jpa.classtransformer set to to disable class transformers for the persistencefalse

unit. Set to , to allow entity class enhancing/rewriting. true

wildfly.jpa.default-unit set to to choose the default persistence unit in antrue

application. This is useful if you inject a persistence context

without specifying the unitName (@PersistenceContext

EntityManager em) but have multiple persistence units

specified in your persistence.xml.

wildfly.jpa.twophasebootstrap persistence providers (like Hibernate ORM 4.3+ via

EntityManagerFactoryBuilder), allow a two phase persistence

unit bootstrap, which improves JPA integration with CDI.

Setting the hint to false,wildfly.jpa.twophasebootstrap

disables the two phase bootstrap (for the persistence unit that

contains the hint).

wildfly.jpa.allowdefaultdatasourceuse set to false to prevent persistence unit from using the default

data source. Defaults to true. This is only important for

persistence units that do not specify a datasource.

jboss.as.jpa.deferdetach Controls whether transaction scoped persistence context used

in non-JTA transaction thread, will detach loaded entities after

each EntityManager invocation or when the persistence

context is closed (e.g. business method ends). Defaults to

false (entities are cleared after EntityManager invocation) and

if set to true, the detach is deferred until the context is closed.

wildfly.jpa.hibernate.search.module Controls which version of Hibernate Search to include on

classpath. Only makes sense when using Hibernate as JPA

implementation. The default is ; other valid values are auto

 or a full module identifier to use an alternative version.none

jboss.as.jpa.scopedname Specify the qualified (application scoped) persistence unit

name to be used. By default, this is internally set to the

application name + persistence unit name. The

hibernate.cache.region_prefix will default to whatever you set

jboss.as.jpa.scopedname to. Make sure you set the

jboss.as.jpa.scopedname value to a value not already in use

by other applications deployed on the same application server

instance.

Latest WildFly Documentation

JBoss Community Documentation Page of 1136 2293

wildfly.jpa.allowjoinedunsync If set to true, allows an

SynchronizationType.UNSYNCHRONIZED persistence

context that has been joined to the active JTA transaction, to

be propagated into a SynchronizationType.SYNCHRONIZED

persistence context. Otherwise, an IllegalStateException

exception would of been thrown that complains that an

unsychronized persistence context cannot be propagated into

a synchronized persistence context. Defaults to false.

wildfly.jpa.skipmixedsynctypechecking Set to true to disable the throwing of an IllegalStateException

exception when propagating an

SynchronizationType.UNSYNCHRONIZED persistence

context into a SynchronizationType.SYNCHRONIZED

persistence context. This is a workaround intended to allow

applications that used to incorrectly not get

IllegalStateException exception with extended persistence

contexts, to avoid the IllegalStateException, so they don't have

to change their application right away (for compatibility

purposes). This hint may be deprecated in a future release.

See for more details. Defaults to false.WFLY-7108

6.29.23 Determine the persistence provider module

As mentioned above, if the property is not specified, the provider modulejboss.as.jpa.providerModule

name is determined by the name specified in the persistence.xml. The mapping is:provider

Provider Name Module name

blank org.hibernate

org.hibernate.ejb.HibernatePersistence org.hibernate

org.hibernate.ogm.jpa.HibernateOgmPersistence org.hibernate.ogm

oracle.toplink.essentials.PersistenceProvider oracle.toplink

oracle.toplink.essentials.ejb.cmp3.EntityManagerFactoryProvider oracle.toplink

org.eclipse.persistence.jpa.PersistenceProvider org.eclipse.persistence

org.datanucleus.api.jpa.PersistenceProviderImpl org.datanucleus

org.datanucleus.store.appengine.jpa.DatastorePersistenceProvider org.datanucleus:appengine

org.apache.openjpa.persistence.PersistenceProviderImpl org.apache.openjpa

https://issues.jboss.org/browse/WFLY-7108

Latest WildFly Documentation

JBoss Community Documentation Page of 1137 2293

6.29.24 Binding EntityManagerFactory/EntityManager to JNDI

By default WildFly does bind the entity manager factory to JNDI. However, you can explicitly configurenot

this in the persistence.xml of your application by setting the

 jboss.entity.manager.factory.jndi.name hint. The value of that property should

be the JNDI name to which the entity manager factory should be bound.

You can also bind a container managed (transaction scoped) entity manager to

 {JNDI as well, }}via hint jboss.entity.manager.jndi.name }{{. As a reminder, a

transaction scoped entity manager (persistence context), acts as a proxy that

always gets an unique underlying entity manager (at the persistence provider

level).

Here's an example:

persistence.xml

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="2.0"

 xmlns="http://java.sun.com/xml/ns/persistence"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">

 <persistence-unit name="myPU">

 <!-- If you are running in a production environment, add a managed

 data source, the example data source is just for proofs of concept! -->

 <jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>

 <properties>

 <!-- Bind entity manager factory to JNDI at java:jboss/myEntityManagerFactory -->

 <property name="jboss.entity.manager.factory.jndi.name"

value="java:jboss/myEntityManagerFactory" />

 <property name="jboss.entity.manager.jndi.name" value="java:/myEntityManager"/>

 </properties>

 </persistence-unit>

</persistence>

@Stateful

public class ExampleSFSB {

 public void createSomeEntityWithTransactionScopedEM(String name) {

 Context context = new InitialContext();

 javax.persistence.EntityManager entityManager = (javax.persistence.EntityManager)

context.lookup("java:/myEntityManager");

 SomeEntity someEntity = new SomeEntity();

 someEntity.setName(name); entityManager.persist(name);

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1138 2293

6.29.25 Community

Many thanks to the community, for reporting issues, solutions and code changes. A number of people have

been answering Wildfly forum questions related to JPA usage. I would like to thank them for this, as well as

those reporting issues. For those of you that haven't downloaded the AS source code and started hacking

patches together. I would like to encourage you to start by reading . You will find that itHacking on WildFly

easy very easy to find your way around the WildFly/JPA/* source tree and make changes. Also, new for

WildFly, is the JipiJapa project that contains additional integration code that makes EE JPA application

deployments work better. The following list of contributors should grow over time, I hope to see more of you

listed here.

People who have contributed to the WildFly JPA layer:

 (lead of the EJB3 project)Carlo de Wolf

 (lead of the Hibernate ORM project)Steve Ebersole

 (lead of the Seam Persistence project, WildFly project team member/committer)Stuart Douglas

 (Active member of JBoss forums and JBoss EJB3 project team member)Jaikiran Pai

 (leads the productization effort of Hibernate in the EAP product)Strong Liu

 (lead of the WildFly container JPA sub-project)Scott Marlow

 Antti Laisi (OpenJPA integration changes)

 (Infinispan 2lc documentation)Galder Zamarreño

 (lead of the Hibernate Search project)Sanne Grinovero

 (Infinispan 2lc integration)Paul Ferraro

6.30 OSGi

WildFly does not include support for OSGi, such functionality is now responsibility of JBoss OSGi project.

JBoss OSGi 2.5.0.Final will provide OSGi support for WildFly 10.

Release progress can be tracked via .JBOSGI-786

6.31 Remote EJB invocations via JNDI - EJB client API

or remote-naming project

6.31.1 Purpose

WildFly provides EJB client API project as well as remote-naming project for invoking on remote objects

exposed via JNDI. This article explains which approach to use when and what the differences and scope of

each of these projects is.

https://community.jboss.org/wiki/HackingOnWildFly
https://community.jboss.org/people/wolfc
http://in.relation.to/Bloggers/Steve
https://community.jboss.org/people/swd847
https://community.jboss.org/people/jaikiran
http://relation.to/Bloggers/StrongLiu
https://community.jboss.org/people/smarlow
https://community.jboss.org/people/alaisi
https://docs.jboss.org/author/display/~galder.zamarreno
https://docs.jboss.org/author/display/~sannegrinovero
https://issues.jboss.org/secure/ViewProfile.jspa?name=pferraro
https://issues.jboss.org/browse/JBOSGI-786

Latest WildFly Documentation

JBoss Community Documentation Page of 1139 2293

6.31.2 History

Previous versions of JBoss AS (versions < WildFly 8) used JNP project (

) as the JNDI naming implementation. Developers ofhttp://anonsvn.jboss.org/repos/jbossas/projects/naming/

client applications of previous versions of JBoss AS will be familiar with the URLjnp:// PROVIDER_URL

they used to use in their applications for communicating with the JNDI server on the JBoss server.

Starting WildFly 8, the JNP project is used. Neither on the server side nor on the client side. The clientnot

side of the JNP project has now been replaced by jboss-remote-naming project (

). There were various reasons why the JNP client washttps://github.com/jbossas/jboss-remote-naming

replaced by jboss-remote-naming project. One of them was the JNP project did not allow fine grained

security configurations while communicating with the JNDI server. The jboss-remote-naming project is

backed by the jboss-remoting project () which allows muchhttps://github.com/jboss-remoting/jboss-remoting

more and better control over security.

6.31.3 Overview

Now that we know that for remote client JNDI communication with WildFly 8 requires jboss-remote-naming

project, let's quickly see what the code looks like.

Client code relying on jndi.properties in classpath

void doLookup() {

 // Create an InitialContext using the javax.naming.* API

 Context ctx = new InitialContext();

 ctx.lookup("foo/bar");

 ...

}

As you can see, there's not much here in terms of code. We first create a InitialContext (

) which as per the API will lookhttp://download.oracle.com/javase/6/docs/api/javax/naming/InitialContext.html

for a jndi.properties in the classpath of the application. We'll see what our jndi.properties looks like, later.

Once the InitialContext is created, we just use it to do a lookup on a JNDI name which we know is bound on

the server side. We'll come back to the details of this lookup string in a while.

Let's now see what the jndi.properties in our client classpath looks like:

java.naming.factory.initial=org.jboss.naming.remote.client.InitialContextFactory

java.naming.provider.url=http-remoting://localhost:8080

http://anonsvn.jboss.org/repos/jbossas/projects/naming/
https://github.com/jbossas/jboss-remote-naming
https://github.com/jboss-remoting/jboss-remoting
http://download.oracle.com/javase/6/docs/api/javax/naming/InitialContext.html

Latest WildFly Documentation

JBoss Community Documentation Page of 1140 2293

Those 2 properties are important for jboss-remote-naming project to be used for communicating with the

WildFly server. The first property tells the JNDI API which initial context factory to use. In this case we are

pointing it to the InitailContextFactory class supplied by the jboss-remote-naming project. The other property

is the PROVIDER_URL. Developers familiar with previous JBoss AS versions would remember that they

used (just an example). In WildFly, the URI protocol scheme forjnp://localhost:1099

jboss-remote-naming project is . The rest of the PROVIDER_URL part is the server hostname orremote://

IP and the port on which the remoting connector is exposed on the server side. By default the http-remoting

connector port in WildFly 8 is 8080. That's what we have used in our example. The hostname we have used

is localhost but that should point to the server IP or hostname where the server is running.

JNP client project in previous AS versions allowed a comma separated list for PROVIDER_URL

value, so that if one of the server isn't accessible then the JNDI API would use the next available

server. The jboss-remote-naming project has similar support starting 1.0.3.Final version of that

project (which is available in a WildFly release 7.1.1.Final).after

WildFly 8 can use the PROVIDER_URL like:

java.naming.provider.url=http-remoting://server1:8080,http-remoting://server2:8080

So we saw how to setup the JNDI properties in the jndi.properties file. The JNDI API also allows you to pass

these properties to the constructor of the InitialContext class (please check the javadoc of that class for more

details). Let's quickly see what the code would look like:

void doLookup() {

 Properties jndiProps = new Properties();

 jndiProps.put(Context.INITIAL_CONTEXT_FACTORY,

"org.jboss.naming.remote.client.InitialContextFactory");

 jndiProps.put(Context.PROVIDER_URL,"http-remoting://localhost:8080");

 // create a context passing these properties

 Context ctx = new InitialContext(jndiProps);

 // lookup

 ctx.lookup("foo/bar");

 ...

}

That's it! You can see that the values that we pass to those properties are the same as what we did via the

jndi.properties. It's upto the client application to decide which approach they want to follow.

How does remoting naming work
We have so far had an overview of how the client code looks like when using the jboss-remote-naming

(henceforth referred to as remote-naming - too tired of typing jboss-remote-naming everytime) project.

Let's now have a brief look at how the remote-naming project internally establishes the communication with

the server and allows JNDI operations from the client side.

Latest WildFly Documentation

JBoss Community Documentation Page of 1141 2293

Like previously mentioned, remote-naming internally uses jboss-remoting project. When the client code

creates an InitialContext backed by the org.jboss.naming.remote.client.InitialContextFactory class, the

 internally looks for theorg.jboss.naming.remote.client.InitialContextFactory

PROVIDER_URL (and other) properties that are applicable for that context (matter whether it comesdoesn't

from the jndi.properties file or whether passed explicitly to the constructor of the InitialContext). Once it

identifies the server and port to connect to, the remote-naming project internally sets up a connection using

the jboss-remoting APIs with the remoting connector which is exposed on that port.

We previously mentioned that remote-naming, backed by jboss-remoting project, has increased support for

security configurations. Starting WildFly 8, every service including the http remoting connector (which listens

by default on port 8080), is secured (see

 for details). This means that whenhttps://community.jboss.org/wiki/AS710Beta1-SecurityEnabledByDefault

trying to do JNDI operations like a lookup, the client has to pass appropriate user credentials. In our

examples so far we haven't passed any username/pass or any other credentials while creating the

InitialContext. That was just to keep the examples simple. But let's now take the code a step further and see

one of the ways how we pass the user credentials. Let's at the moment just assume that the remoting

connector on port 8080 is accessible to a user named " " whose password is expected to be " ".peter lois

Note: The server side configurations for the remoting connector to allow "peter" to access the

connector, is out of the scope of this documentation. The WildFly 8 documentation already has

chapters on how to set that up.

void doLookup() {

 Properties jndiProps = new Properties();

 jndiProps.put(Context.INITIAL_CONTEXT_FACTORY,

"org.jboss.naming.remote.client.InitialContextFactory");

 jndiProps.put(Context.PROVIDER_URL,"http-remoting://localhost:8080");

 // username

 jndiProps.put(Context.SECURITY_PRINCIPAL, "peter");

 // password

 jndiProps.put(Context.SECURITY_CREDENTIALS, "lois");

 // create a context passing these properties

 Context ctx = new InitialContext(jndiProps);

 // lookup

 ctx.lookup("foo/bar");

 ...

}

https://community.jboss.org/wiki/AS710Beta1-SecurityEnabledByDefault

Latest WildFly Documentation

JBoss Community Documentation Page of 1142 2293

The code is similar to our previous example, except that we now have added 2 additional properties that are

passed to the InitialContext constructor. The first is

 which passeshttp://docs.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_PRINCIPAL

the username (peter in this case) and the second is

 whichhttp://docs.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_CREDENTIALS

passes the password (lois in this case). Of course the same properties can be configured in the

jndi.properties file (read the javadoc of the Context class for appropriate properties to be used in the

jndi.properties). This is one way of passing the security credentials for JNDI communication with WildFly.

There are some other ways to do this too. But we won't go into those details here for two reasons. One, it's

outside the scope of this article and two (which is kind of the real reason) I haven't looked fully at the

remote-naming implementation details to see what other ways are allowed.

JNDI operations allowed using remote-naming project
So far we have mainly concentrated on how the naming context is created and what it internally does when

an instance is created. Let's now take this one step further and see what kind of operations are allowed for a

JNDI context backed by the remote-naming project.

The JNDI Context has various methods http://docs.oracle.com/javase/6/docs/api/javax/naming/Context.html

that are exposed for JNDI operations. One important thing to note in case of remote-naming project is that,

the project's scope is to allow a client to communicate with the JNDI backend exposed by the server. As

such, the remote-naming project does support many of the methods that are exposed by thenot

javax.naming.Context class. The remote-naming project only supports the read-only kind of methods (like

the lookup() method) and does not support any write kind of methods (like the bind() method). The client

applications are expected to use the remote-naming project mainly for lookups of JNDI objects. Neither

WildFly 8 nor remote-naming project allows writing/binding to the JNDI server from a remote application.

requisites of remotely accessible JNDI objects
On the server side, the JNDI can contain numerous objects that are bound to it. However, all of those arenot

exposed remotely. The two conditions that are to be satisfied by the objects bound to JNDI, to be remotely

accessible are:

1) Such objects should be bound under the namespace. For example, java:jboss/exported/

java:jboss/exported/foo/bar

2) Objects bound to the namespace are expected to be serializable. This allowsjava:jboss/exported/

the objects to be sent over the wire to the remote clients

Both these conditions are important and are required for the objects to be remotely accessible via JNDI.

http://docs.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_PRINCIPAL
http://docs.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_CREDENTIALS
http://docs.oracle.com/javase/6/docs/api/javax/naming/Context.html

Latest WildFly Documentation

JBoss Community Documentation Page of 1143 2293

JNDI lookup strings for remote clients backed by the remote-naming

project
In our examples, so far, we have been consistently using " " as the JNDI name to lookup from afoo/bar

remote client using the remote-naming project. There's a bit more to understand about the JNDI name and

how it maps to the JNDI name that's bound on the server side.

First of all, the JNDI names used while using the remote-naming project are relative to thealways

java:jboss/exported/ namespace. So in our examples, we are using " " JNDI name for the lookup,foo/bar

that actually is (internally) " ". The remote-naming project expects it to java:jboss/exported/foo/bar

 be relative to the " " namespace. Once connected with the server side, thealways java:jboss/exported/

remote-naming project will lookup for "foo/bar" JNDI name under the " "java:jboss/exported/

namespace of the server.

Note: Since the JNDI name that you use on the client side is relative to java:jboss/exportedalways

namespace, you be prefixing the java:jboss/exported/ string to the JNDI name. Forshouldn't

example, if you use the following JNDI name:

ctx.lookup("java:jboss/exported/helloworld");

then remote-naming will translate it to

ctx.lookup("java:jboss/exported/java:jboss/exported/helloworld");

and as a result, will fail during lookup.

The remote-naming implementation perhaps should be smart enough to strip off the

java:jboss/exported/ namespace prefix if supplied. But let's not go into that here.

Latest WildFly Documentation

JBoss Community Documentation Page of 1144 2293

How does remote-naming project implementation transfer the JNDI

objects to the clients
When a lookup is done on a JNDI string, the remote-naming implementation internally uses the connection

to the remoting connector (which it has established based on the properties that were passed to the

InitialContext) to communicate with the server. On the server side, the implementation then looks for the

JNDI name under the namespace. Assuming that the JNDI name is available,java:jboss/exported/

under that namespace, the remote-naming implementation then passes over the object bound at that

address to the client. This is where the requirement about the JNDI object being serializable comes into

picture. remote-naming project internally uses jboss-marshalling project to marshal the JNDI object over to

the client. On the client side the remote-naming implementation then unmarshalles the object and returns it

to the client application.

So literally, each lookup backed by the remote-naming project entails a server side

communication/interaction and then marshalling/unmarshalling of the object graph. This is very important to

remember. We'll come back to this later, to see why this is important when it comes to using EJB client API

project for doing EJB lookups () as against usingEJB invocations from a remote client using JNDI

remote-naming project for doing the same thing.

6.31.4 Summary

That pretty much covers whatever is important to know, in the remote-naming project, for a typical client

application. Don't close the browser yet though, since we haven't yet come to the part of EJB invocations

from a remote client using the remote-naming project. In fact, the motivation behind writing this article was to

explain why to use remote-naming project (in most cases) for doing EJB invocations againstnot

WildFly server.

Those of you who don't have client applications doing remote EJB invocations, can just skip the rest of this

article if you aren't interested in those details.

6.31.5 Remote EJB invocations backed by the remote-naming

project

In previous sections of this article we saw that whatever is exposed in the java:jboss/exported/ namespace is

accessible remotely to the client applications under the relative JNDI name. Some of you might already have

started thinking about exposing remote views of EJBs under that namespace.

It's important to note that WildFly server side already by default exposes the remote views of a EJB under

the namespace (although it isn't logged in the server logs). So assuming yourjava:jboss/exported/

server side application has the following stateless bean:

https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI

Latest WildFly Documentation

JBoss Community Documentation Page of 1145 2293

package org.myapp.ejb;

@Stateless

@Remote(Foo.class)

public class FooBean implements Foo {

...

 public String sayBar() {

 return "Baaaaaaaar";

 }

}

Then the " " remote view is exposed under the namespace under theFoo java:jboss/exported/

following JNDI name scheme (which is similar to that mandated by EJB3.1 spec for java:global/

namespace):[app-name]

app-name/module-name/bean-name!bean-interface

where,

 = the name of the .ear (without the .ear suffix) or the application name configured viaapp-name

application.xml deployment descriptor. If the application isn't packaged in a .ear then there will be no

app-name part to the JNDI string.

 = the name of the .jar or .war (without the .jar/.war suffix) in which the bean is deployed ormodule-name

the module-name configured in web.xml/ejb-jar.xml of the deployment. The module name is mandatory part

in the JNDI string.

 = the name of the bean which by default is the simple name of the bean implementation class.bean-name

Of course it can be overridden either by using the "name" attribute of the bean definining annotation

(@Stateless(name="blah") in this case) or even the ejb-jar.xml deployment descriptor.

 = the fully qualified class name of the interface being exposed by the bean.bean-interface

So in our example above, let's assume the bean is packaged in a myejbmodule.jar which is within a

myapp.ear. So the JNDI name for the Foo remote view under the namespacejava:jboss/exported/

would be:

java:jboss/exported/myapp/myejbmodule/FooBean!org.myapp.ejb.Foo

That's where WildFly will expose the remote views of the EJBs under the automatically

 namespace, the java:global/ java:app/ java:module/ namespacesjava:jboss/exported/ in addition to

mandated by the EJB 3.1 spec.

Note that only the java:jboss/exported/ namespace is available to remote clients.

So the next logical question would be, are these remote views of EJBs accessible and invokable using the

remote-naming project on the client application. The answer is ! Let's quickly see the client code foryes

invoking our . Again, let's just use " " and " " as username/pass for connecting to theFooBean peter lois

remoting connector.

Latest WildFly Documentation

JBoss Community Documentation Page of 1146 2293

void doBeanLookup() {

 ...

 Properties jndiProps = new Properties();

 jndiProps.put(Context.INITIAL_CONTEXT_FACTORY,

"org.jboss.naming.remote.client.InitialContextFactory");

 jndiProps.put(Context.PROVIDER_URL,"http-remoting://localhost:8080");

 // username

 jndiProps.put(Context.SECURITY_PRINCIPAL, "peter");

 // password

 jndiProps.put(Context.SECURITY_CREDENTIALS, "lois");

 // This is an important property to set if you want to do EJB invocations via the

remote-naming project

 jndiProps.put("jboss.naming.client.ejb.context", true);

 // create a context passing these properties

 Context ctx = new InitialContext(jndiProps);

 // lookup the bean Foo

 beanRemoteInterface = (Foo) ctx.lookup("myapp/myejbmodule/FooBean!org.myapp.ejb.Foo");

 String bar = beanRemoteInterface.sayBar();

 System.out.println("Remote Foo bean returned " + bar);

 ctx.close();

 // after this point the beanRemoteInterface is not longer valid!

}

As you can see, most of the code is similar to what we have been seeing so far for setting up a JNDI context

backed by the remote-naming project. The only parts that change are:

1) An additional " " property that is added to the properties passedjboss.naming.client.ejb.context

to the InitialContext constructor.

2) The JNDI name used for the lookup

3) And subsequently the invocation on the bean interface returned by the lookup.

Let's see what the " " does. In WildFly, remote access/invocationsjboss.naming.client.ejb.context

on EJBs is facilitated by the JBoss specific EJB client API, which is a project on its own

. So no matter, what mechanism you use (remote-naming or corehttps://github.com/jbossas/jboss-ejb-client

EJB client API), the invocations are ultimately routed through the EJB client API project. In this case too, the

remote-naming internally uses EJB client API to handle EJB invocations. From a EJB client API project

perspective, for successful communication with the server, the project expects a EJBClientContext

backed by (atleast one) (s). The is responsible for handling the EJBEJBReceiver EJBReceiver

invocations. One type of a is a which internally usesEJBReceiver RemotingConnectionEJBReceiver

jboss-remoting project to communicate with the remote server to handle the EJB invocations. Such a

 expects a connection backed by the jboss-remoting project. Of course to be able to connectEJBReceiver

to the server, such a would have to know the server address, port, security credentials andEJBReceiver

other similar parameters. If you were using the core EJB client API, then you would have configured all these

properties via the jboss-ejb-client.properties or via programatic API usage as explained here EJB invocations

. But in the example above, we are using remote-naming project and are from a remote client using JNDI not

directly interacting with the EJB client API project.

https://github.com/jbossas/jboss-ejb-client
https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI
https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI

Latest WildFly Documentation

JBoss Community Documentation Page of 1147 2293

If you look closely at what's being passed, via the JNDI properties, to the remote-naming project and if you

remember the details that we explained in a previous section about how the remote-naming project

establishes a connection to the remote server, you'll realize that these properties are indeed the same as

what the would expect to be able to establish the connection to theRemotingConnectionEJBReceiver

server. Now this is where the " " property comes into picture. Whenjboss.naming.client.ejb.context

this is set to true and passed to the InitialContext creation (either via jndi.properties or via the constructor of

that class), the remote-naming project internally will do whatever is necessary to setup a

, containing a which is created using the EJBClientContext RemotingConnectionEJBReceiver same

remoting connection that is created by and being used by remote-naming project for its own JNDI

communication usage. So effectively, the InitialContext creation via the remote-naming project has now

internally triggered the creation of a containing a capable of handlingEJBClientContext EJBReceiver

the EJB invocations (remember, no remote EJB invocations are possible without the presence of a

 containing a which can handle the EJB).EJBClientContext EJBReceiver

So we now know the importance of the " " property and its usage.jboss.naming.client.ejb.context

Let's move on the next part in that code, the JNDI name. Notice that we have used the JNDI name relative to

the namespace while doing the lookup. And since we know that the Foo view isjava:jboss/exported/

exposed on that JNDI name, we cast the returned object back to the Foo interface. Remember that we

earlier explained how each lookup via remote-naming triggers a server side communication and a

marshalling/unmarshalling process. This applies for EJB views too. In fact, the remote-naming project has no

clue (since that's not in the scope of that project to know) whether it's an EJB or some random object.

Once the unmarshalled object is returned (which actually is a proxy to the bean), the rest is straightforward,

we just invoke on that returned object. Now since the remote-naming implementation has done the

necessary setup for the EJBClientContext (due to the presence of "

" property), the invocation on that proxy will internally use the jboss.naming.client.ejb.context

 (the proxy is smart enough to do that) to interact with the server and return back theEJBClientContext

result. We won't go into the details of how the EJB client API handles the communication/invocation.

Long story short, using the remote-naming project for doing remote EJB invocations against WildFly is

possible!

6.31.6 Why use the EJB client API approach then?

I can guess that some of you might already question why/when would one use the EJB client API style

lookups as explained in the article instead of just usingEJB invocations from a remote client using JNDI

(what appears to be a simpler) remote-naming style lookups.

Before we answer that, let's understand a bit about the EJB client project. The EJB client project was

implemented keeping in mind various optimizations and features that would be possible for handling remote

invocations. One such optimization was to avoid doing unnecessary server side communication(s) which

would typically involve network calls, marshalling/unmarshalling etc... The easiest place where this

optimization can be applied, is to the EJB lookup. Consider the following code (let's ignore how the context is

created):

https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI

Latest WildFly Documentation

JBoss Community Documentation Page of 1148 2293

ctx.lookup("foo/bar");

Now JNDI name could potentially point to type of object on the server side. The jndi namefoo/bar any

itself won't have the type/semantic information of the object bound to that name on the server side. If the

context was setup using the remote-naming project (like we have seen earlier in our examples), then the

only way for remote-naming to return an object for that lookup operation is to communicate with the server

and marshal/unmarshal the object bound on the server side. And that's exactly what it does (remember, we

explained this earlier).

The EJB client API project on the other hand optimizes this lookup. In order to do so, it expects the client

application to let it know that a EJB is being looked up. It does this, by expecting the client application to use

the JNDI name of the format " " namespace and also expecting the client application to setup the JNDIejb:

context by passing the " " value for the org.jboss.ejb.client.naming Context.URL_PKG_PREFIXES

property.

Example:

final Properties jndiProperties = new Properties();

jndiProperties.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");

// create the context

final Context context = new InitialContext(jndiProperties);

// lookup

Foo beanProxy = context.lookup("ejb:myapp/myejbmodule//FooBean!org.myapp.ejb.Foo");

String bar = beanProxy.sayBar();

More details about such code can be found here EJB invocations from a remote client using JNDI

When a client application looks up anything under the " " namespace, it is a clear indication (for the EJBejb:

client API project) to know that the client is looking up an EJB. That's where it steps in to do the necessary

optimizations that might be applicable. So unlike, in the case of remote-naming project (which has no clue

about the semantics of the object being looked up), the EJB client API project does trigger a server sidenot

communication or a marshal/unmarshal process when you do lookup for a remote view of a stateless bean

(it's important to note that we have specifically mentioned stateless bean here, we'll come to that later).

Instead, the EJB client API just returns a java.lang.reflect.Proxy instance of the remote view type that's being

looked up. This not just saves a network call, marshalling/unmarshalling step but it also means that you can

create an EJB proxy even when the server isn't up yet. Later on, when the invocation on the proxy happens,

the EJB client API communicate with the server to carry out the invocation.does

https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI

Latest WildFly Documentation

JBoss Community Documentation Page of 1149 2293

Is the lookup optimization applicable for all bean types?
In the previous section we (intentionally) mentioned that the lookup optimization by the EJB client API project

happens for stateless beans. This kind of optimization is possible for stateful beans because in case ofnot

stateful beans, a lookup is expected to create a session for that stateful bean and for session creation we do

have to communicate with the server since the server is responsible for creating that session.

That's exactly why the EJB client API project expects the JNDI name lookup string for stateful beans to

include the " " string at the end of the JNDI name:?stateful

context.lookup("ejb:myapp/myejbmodule//StatefulBean!org.myapp.ejb.Counter?stateful");

Notice the use of " in that JNDI name. See for"?stateful EJB invocations from a remote client using JNDI

more details about such lookup.

The presence of " " in the JNDI name lookup string is a directive to the EJB client API to let it?stateful

know that a stateful bean is being looked up and it's necessary to communicate with the server and create a

session during that lookup.

So as you can see, we have managed to optimize certain operations by using the EJB client API for EJB

lookup/invocation as against using the remote-naming project. There are other EJB client API

implementation details (and probably more might be added) which are superior when it is used for remote

EJB invocations in client applications as against remote-naming project which doesn't have the intelligence

to carry out such optimizations for EJB invocations. That's why the remote-naming project for remote EJB

 . Note that if you want to use remote-naming for looking up andinvocations is considered "deprecated"

invoking on non-EJB remote objects then you are free to do so. In fact, that's why that project has been

provided. You can even use the remote-naming project for EJB invocations (like we just saw), if you are fine

with wanting the optimizations that the EJB client API can do for you or if you have other restrictions thatnot

force you to use that project.

https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI

Latest WildFly Documentation

JBoss Community Documentation Page of 1150 2293

Restrictions for EJB's
If the remote-naming is used there are some restrictions as there is no full support of the ejb-client features.

No loadbalancing, if the URL conatains multiple "remote://" servers there is no loadbalancing, the first

available server will be used and only in case it is not longer available there will be a failover to the

next available one.

No cluster support. As a cluster needs to be defined in the jboss-ejb-client.properties this feature can

not be used and there is no cluster node added

No client side interceptor. The EJBContext.getCurrent() can not be used and it is not possible to add

a client interceptor

No UserTransaction support

All proxies become invalid if .close() for the related Initalcontext is invoked, or the InitialContext is not

longer referenced and gets garbage-collected. In this case the underlying EJBContext is destroyed

and the conections are closed.

It is not possible to use remote-naming if the client is an application deployed on another JBoss

instance

6.32 Scoped EJB client contexts

6.32.1 Overview

WildFly 8 introduced the EJB client API for managing remote EJB invocations. The EJB client API works off

EJBClientContext(s). An EJBClientContext can potentially contain any number of EJB receivers. An EJB

receiver is a component which knows how to communicate with a server which is capable of handling the

EJB invocation. Typically EJB remote applications can be classified into:

A remote client which runs as a standalone Java application

A remote client which runs within another WildFly 8 instance

Depending on the kind of remote client, from an EJB client API point of view, there can potentially be more

than 1 EJBClientContext(s) within a JVM.

In case of standalone applications, typically a single EJBClientContext (backed by any number of EJB

receivers) exists. However this isn't mandatory. Certain standalone applications can potentially have more

than one EJBClientContext(s) and a EJB client context selector will be responsible for returning the

appropriate context.

In case of remote clients which run within another WildFly 8 instance, each deployed application will have a

corresponding EJB client context. Whenever that application invokes on another EJB, the corresponding

EJB client context will be used for finding the right EJB receiver and letting it handle the invocation.

Latest WildFly Documentation

JBoss Community Documentation Page of 1151 2293

6.32.2 Potential shortcomings of a single EJB client context

In the Overview section we briefly looked at the different types of remote clients. Let's focus on the

standalone remote clients (the ones that don't run within another WildFly 8 instance) for some of the next

sections. Like mentioned earlier, typically a remote standalone client has just one EJB client context backed

by any number of EJB receivers. Consider this example:

public class MyApplication {

 public static void main(String args[]) {

 final javax.naming.Context ctxOne = new javax.naming.InitialContext();

 final MyBeanInterface beanOne = ctxOne.lookup("ejb:app/module/distinct/bean!interface");

 beanOne.doSomething();

 ...

 }

}

Now, we have seen in this other chapter that the JNDIEJB invocations from a remote client using JNDI

lookups are (typically) backed by jboss-ejb-client.properties file which is used to setup the EJB client context

and the EJB receivers. Let's assume we have a jboss-ejb-client.properties with the relevant receivers

configurations. These configurations include the security credentials that will be used to create a EJB

receiver which connects to the AS7 server. Now when the above code is invoked, the EJB client API looks

for the EJB client context to pick a EJB receiver, to pass on the EJB invocation request. Since we just have a

single EJB client context, that context is used by the above code to invoke the bean.

Now let's consider a case where the user application wants to invoke on the bean more than once, but wants

to connect to the WildFly 8 server using different security credentials. Let's take a look at the following code:

public class MyApplication {

 public static void main(String args[]) {

 // let's say we want to use "foo" security credential while connecting to the AS7 server

for invoking on this bean instance

 final javax.naming.Context ctxOne = new javax.naming.InitialContext();

 final MyBeanInterface beanOne = ctxOne.lookup("ejb:app/module/distinct/bean!interface");

 beanOne.doSomething();

 ...

 // let's say we want to use "bar" security credential while connecting to the AS7 server

for invoking on this bean instance

 final javax.naming.Context ctxTwo = new javax.naming.InitialContext();

 final MyBeanInterface beanTwo = ctxTwo.lookup("ejb:app/module/distinct/bean!interface");

 beanTwo.doSomething();

 ...

 }

}

https://docs.jboss.org/author/display/WFLY8/EJB+invocations+from+a+remote+client+using+JNDI

Latest WildFly Documentation

JBoss Community Documentation Page of 1152 2293

So we have the same application, which wants to connect to the same server instance for invoking the

EJB(s) hosted on that server, but wants to use two different credentials while connecting to the server.

Remember, the client application has a single EJB client context which can have atmost 1 EJB recevier for

each server instance. Which effectively means that the above code will end up using just one credential to

connect to the server. So there was no easy way to have the above code working.

That was one of the use cases which prompted the featurehttps://issues.jboss.org/browse/EJBCLIENT-34

request. The proposal was to introduce a way, where you can have more control over the EJB client

contexts and their association with JNDI contexts which are typically used for EJB invocations.

6.32.3 Scoped EJB client contexts

Developers familiar with earlier versions of JBoss AS would remember that for invoking an EJB, you would

typically create a JNDI context passing it the PROVIDER_URL which would point to the target server. That

way any invocation done on EJB proxies looked up using that JNDI context, would end up on that server. If

we look back at the example above, we'll realize that, we are ultimately aiming for a similar functionality

through . We want the user applications to have more controlhttps://issues.jboss.org/browse/EJBCLIENT-34

over which EJB receiver gets used for a specific invocation.

Before we introduced feature, the EJB client context washttps://issues.jboss.org/browse/EJBCLIENT-34

typically scoped to the client application. As part of we nowhttps://issues.jboss.org/browse/EJBCLIENT-34

allow the EJB client contexts to be scoped with the JNDI contexts. Consider the following example:

public class MyApplication {

 public static void main(String args[]) {

 // let's say we want to use "foo" security credential while connecting to the AS7 server

for invoking on this bean instance

 final Properties ejbClientContextPropsOne = getPropsForEJBClientContextOne():

 final javax.naming.Context ctxOne = new

javax.naming.InitialContext(ejbClientContextPropsOne);

 final MyBeanInterface beanOne = ctxOne.lookup("ejb:app/module/distinct/bean!interface");

 beanOne.doSomething();

 ...

 closeContext(ctxOne); // read on the entire article to understand more about closing

scoped EJB client contexts

 // let's say we want to use "bar" security credential while connecting to the AS7 server

for invoking on this bean instance

 final Properties ejbClientContextPropsTwo = getPropsForEJBClientContextTwo():

 final javax.naming.Context ctxTwo = new

javax.naming.InitialContext(ejbClientContextPropsTwo);

 final MyBeanInterface beanTwo = ctxTwo.lookup("ejb:app/module/distinct/bean!interface");

 beanTwo.doSomething();

 ...

 closeContext(ctxTwo); // read on the entire article to understand more about closing

scoped EJB client contexts

 }

}

https://issues.jboss.org/browse/EJBCLIENT-34
https://issues.jboss.org/browse/EJBCLIENT-34
https://issues.jboss.org/browse/EJBCLIENT-34
https://issues.jboss.org/browse/EJBCLIENT-34

Latest WildFly Documentation

JBoss Community Documentation Page of 1153 2293

Notice any difference between this code and the earlier one? We now create and pass EJB client context

specific properties to the JNDI context. So what do the EJB client context properties look like? The

properties are the same that you would pass through the jboss-ejb-client.properties file, except for one

additional property which is required to scope the EJB client context to the JNDI context. The name of the

property is:

org.jboss.ejb.client.scoped.context

which is expected to have a value true. This property lets the EJB client API know that it has to created a

EJB client context (backed by EJB receiver(s)) and that created context is then scoped/visible to only that

JNDI context which created it. Lookup and invocation on any EJB proxies looked up using this JNDI context

will only know of the EJB client context associated with this JNDI context. This effectively means that the

other JNDI contexts which the application uses to lookup and invoke on EJBs will know about the othernot

scoped EJB client contexts at all.

JNDI contexts which aren't scoped to a EJB client context (for example, not passing the

org.jboss.ejb.client.scoped.context property) will fallback to the default behaviour of using the "current" EJB

client context which typically is the one tied to the entire application.

This scoping of the EJB client context helps the user applications to have more control over which JNDI

context "talks to" which server and connects to that server in "what way". This gives the user applications the

flexibility that was associated with the JNP based JNDI invocations prior to WildFly 8 versions.

 IMPORTANT: It is very important to remember that scoped EJB client contexts which are

scoped to the JNDI contexts are NOT fire and forget kind of contexts. What that means is

the application program which is using these contexts is solely responsible for managing

their lifecycle and the application itself is responsible for closing the context at the right

moment. After closing the context the proxies which are bound to this context are no longer

valid and any invocation will throw an Exception. Not closing the context will end in

resource problems as the underlying physical connection will stay open.

Read the rest of the sections in this article to understand more about the lifecycle

management of such scoped contexts.

6.32.4 Lifecycle management of scoped EJB client contexts

Like you saw in the previous sections, in case of scoped EJB client contexts, the EJB client context is tied to

the JNDI context. It's very important to understand how the lifecycle of the EJB client context works in such

cases. Especially since any EJB client context is almost always backed by connections to the server. Not

managing the EJB client context lifecycle correctly can lead to connection leaks in some cases.

When you create a scoped EJB client context, the EJB client context connects to the server(s) listed in the

JNDI properties. An internal implementation detail of this logic includes the ability of the EJB client context to

cache connections based on certain internal algorithm it uses. The algorithm itself isn't publicly documented

(yet) since the chances of it changing or even removal shouldn't really affect the client application and

instead it's supposed to be transparent to the client application.

Latest WildFly Documentation

JBoss Community Documentation Page of 1154 2293

The connections thus created for a EJB client context are kept open as long as the EJB client context is

open. This allows the EJB client context to be usable for EJB invocations. The connections associated with

the EJB client context are closed when the EJB client context itself is closed.

The connections that were manually added by the application to the EJB client context are not

managed by the EJB client context. i.e. they won't be opened (obviously) nor closed by the EJB

client API when the EJB client context is closed.

How to close EJB client contexts?
The answer to that is simple. Use the close() method on the appropriate EJB client context.

How to close scoped EJB client contexts?
The answer is the same, use the close() method on the EJB client context. But the real question is how do

you get the relevant scoped EJB client context which is associated with a JNDI context. Before we get to

that, it's important to understand how the ejb: JNDI namespace that's used for EJB lookups and how the

JNDI context (typically the InitialContext that you see in the client code) are related. The JNDI API provided

by Java language allows "URL context factory" to be registered in the JNDI framework (see this for details

). Like that documentation states, the URLhttp://docs.oracle.com/javase/jndi/tutorial/provider/url/factory.html

context factory can be used to resolve URL strings during JNDI lookup. That's what the ejb: prefix is when

you do a remote EJB lookup. The ejb: URL string is backed by a URL context factory.

Internally, when a lookup happens for a ejb: URL string, a relevant javax.naming.Context is created for that

ejb: lookup. Let's see some code for better understanding:

// JNDI context "A"

Context jndiCtx = new InitialContext(props);

// Now let's lookup a EJB

MyBean bean = jndiCtx.lookup("ejb:app/module/distinct/bean!interface");

So we first create a JNDI context and then use it to lookup an EJB. The bean lookup using the ejb: JNDI

name, although, is just one statement, involves a few more things under the hood. What's actually

happening when you lookup that string is that a separate javax.naming.Context gets created for the ejb: URL

string. This new javax.naming.Context is then used to lookup the rest of the string in that JNDI name.

Let's break up that one line into multiple statements to understand better:

// Remember, the ejb: is backed by a URL context factory which returns a Context for the ejb:

URL (that's why it's called a context factory)

final Context ejbNamingContext = (Context) jndiCtx.lookup("ejb:");

// Use the returned EJB naming context to lookup the rest of the JNDI string for EJB

final MyBean bean = ejbNamingContext.lookup("app/module/distinct/bean!interface");

http://docs.oracle.com/javase/jndi/tutorial/provider/url/factory.html

Latest WildFly Documentation

JBoss Community Documentation Page of 1155 2293

As you see above, we split up that single statement into a couple of statements for explaining the details

better. So as you can see when the ejb: URL string is parsed in a JNDI name, it gets hold of a

javax.naming.Context instance. This instance is different from the one which was used to do the lookup

(jndiCtx in this example). This is an important detail to understand (for reasons explained later). Now this

returned instance is used to lookup the rest of the JNDI string ("app/module/distinct/bean!interface"), which

then returns the EJB proxy. Irrespective of whether the lookup is done in a single statement or multiple parts,

the code works the same. i.e. an instance of javax.naming.Context gets created for the ejb: URL string.

So why am I explaining all this when the section is titled "How to close scoped EJB client

? The reason is because client applications dealing with scoped EJB client contexts which arecontexts"

associated with a JNDI context would expect the following code to close the associated EJB client context,

but will be surprised that it won't:

final Properties props = new Properties();

// mark it for scoped EJB client context

props.put("org.jboss.ejb.client.scoped.context","true");

// add other properties

props.put(....);

...

Context jndiCtx = new InitialContext(props);

try {

 final MyBean bean = jndiCtx.lookup("ejb:app/module/distinct/bean!interface");

 bean.doSomething();

} finally {

 jndiCtx.close();

}

Applications expect that the call to jndiCtx.close() will effectively close the EJB client context associated with

the JNDI context. That doesn't happen because as explained previously, the javax.naming.Context backing

the ejb: URL string is a different instance than the one the code is closing. The JNDI implementation in Java,

only just closes the context on which the close was called. As a result, the other javax.naming.Context that

backs the ejb: URL string is still not closed, which effectively means that the scoped EJB client context is not

closed too which then ultimately means that the connection to the server(s) in the EJB client context are not

closed too.

So now let's see how this can be done properly. We know that the ejb: URL string lookup returns us a

javax.naming.Context. All we have to do is keep a reference to this instance and close it when we are done

with the EJB invocations. So here's how it's going to look:

Latest WildFly Documentation

JBoss Community Documentation Page of 1156 2293

final Properties props = new Properties();

// mark it for scoped EJB client context

props.put("org.jboss.ejb.client.scoped.context","true");

// add other properties

props.put(....);

...

Context jndiCtx = new InitialContext(props);

Context ejbRootNamingContext = (Context) jndiCtx.lookup("ejb:");

try {

 final MyBean bean = ejbRootNamingContext.lookup("app/module/distinct/bean!interface"); //

the rest of the EJB jndi string

 bean.doSomething();

} finally {

 try {

 // close the EJB naming JNDI context

 ejbRootNamingContext.close();

 } catch (Throwable t) {

 // log and ignore

 }

 try {

 // also close our other JNDI context since we are done with it too

 jndiCtx.close();

 } catch (Throwable t) {

 // log and ignore

 }

}

As you see, we changed the code to first do a lookup on just the "ejb:" string to get hold of the EJB naming

context and then used that ejbRootNamingContext instance to lookup the rest of the EJB JNDI name to get

hold of the EJB proxy. Then when it was time to close the context, we closed the ejbRootNamingContext (as

well as the other JNDI context). Closing the ejbRootNamingContext ensures that the scoped EJB client

context associated with that JNDI context is closed too. Effectively, this closes the connection(s) to the

server(s) within that EJB client context.

Latest WildFly Documentation

JBoss Community Documentation Page of 1157 2293

Can that code be simplified a bit?
If you are using that JNDI context only for EJB invocations, then yes you can get rid of some instances and

code from the above code. You can change that code to:

final Properties props = new Properties();

// mark it for scoped EJB client context

props.put("org.jboss.ejb.client.scoped.context","true");

// add other properties

props.put(....);

...

Context ejbRootNamingContext = (Context) new InitialContext(props).lookup("ejb:");

try {

 final MyBean bean = ejbRootNamingContext.lookup("app/module/distinct/bean!interface"); //

the rest of the EJB jndi string

 bean.doSomething();

} finally {

 try {

 // close the EJB naming JNDI context

 ejbRootNamingContext.close();

 } catch (Throwable t) {

 // log and ignore

 }

}

Notice that we no longer hold a reference to 2 JNDI contexts and instead just keep track of the

ejbRootNamingContext which is actually the root JNDI context for our "ejb:" URL string. Of course, this

means that you can only use this context for EJB lookups or any other EJB related JNDI lookups. So it

depends on your application and how it's coded.

Latest WildFly Documentation

JBoss Community Documentation Page of 1158 2293

Can't the scoped EJB client context be automatically closed by the EJB

client API when the JNDI context is no longer in scope (i.e. on GC)?
That's one of the common questions that gets asked. No, the EJB client API can't take that decision. i.e. it

cannot automatically go ahead and close the scoped EJB client context by itself when the associated JNDI

context is eligible for GC. The reason is simple as illustrated by the following code:

void doEJBInvocation() {

 final MyBean bean = lookupEJB();

 bean.doSomething();

 bean.doSomeOtherThing();

 ... // do some other work

 bean.keepDoingSomething();

}

MyBean lookupEJB() {

 final Properties props = new Properties();

 // mark it for scoped EJB client context

 props.put("org.jboss.ejb.client.scoped.context","true");

 // add other properties

 props.put(....);

 ...

 Context ejbRootNamingContext = (Context) new InitialContext(props).lookup("ejb:");

 final MyBean bean = ejbRootNamingContext.lookup("app/module/distinct/bean!interface"); //

rest of the EJB jndi string

 return bean;

}

As you can see, the doEJBInvocation() method first calls a lookupEJB() method which does a lookup of the

bean using a JNDI context and then returns the bean (proxy). The doEJBInvocation() then uses that

returned proxy and keeps doing the invocations on the bean. As you might have noticed, the JNDI context

that was used for lookup (i.e. the ejbRootNamingContext) is eligible for GC. If the EJB client API had closed

the scoped EJB client context associated with that JNDI context, when that JNDI context was garbage

collected, then the subsequent EJB invocations on the returned EJB (proxy) would start failing in

doEJBInvocation() since the EJB client context is no longer available.

That's the reason why the EJB client API doesn't automatically close the EJB client context.

6.33 Spring applications development and migration

guide

This document details the main points that need to be considered by Spring developers that wish to develop

new applications or to migrate existing applications to be run into WildFly 8.

Latest WildFly Documentation

JBoss Community Documentation Page of 1159 2293

6.33.1 Dependencies and Modularity

WildFly 8 has a modular class loading strategy, different from previous versions of JBoss AS, which enforces

a better class loading isolation between deployments and the application server itself. A detailed description

can be found in the documentation dedicated to .class loading in WildFly 8

This reduces significantly the risk of running into a class loading conflict and allows applications to package

their own dependencies if they choose to do so. This makes it easier for Spring applications that package

their own dependencies - such as logging frameworks or persistence providers to run on WildFly 8.

At the same time, this does not mean that duplications and conflicts cannot exist on the classpath. Some

module dependencies are implicit, depending on the type of deployment as shown . here

6.33.2 Persistence usage guide

Depending on the strategy being used, Spring applications can be:

native Hibernate applications;

JPA-based applications;

native JDBC applications;

6.33.3 Native Spring/Hibernate applications

Applications that use the Hibernate API directly with Spring (i.e. through either one of

LocalSessionFactoryBean or AnnotationSessionFactoryBean) may use a version of Hibernate 3 packaged

inside the application. Hibernate 4 (which is provided through the 'org.hibernate' module of WildFly 8) is not

supported by Spring 3.0 and Spring 3.1 (and may be supported by Spring 3.2 as described in), soSPR-8096

adding this module as a dependency is not a solution.

6.33.4 based applications

Spring applications using JPA may choose between:

using a server-deployed persistence unit;

using a Spring-managed persistence unit.

https://docs.jboss.org/author/display/AS7/Class+Loading+in+AS7
https://docs.jboss.org/author/display/AS7/Implicit+module+dependencies+for+deployments
https://jira.springsource.org/browse/SPR-8096

Latest WildFly Documentation

JBoss Community Documentation Page of 1160 2293

Using server-deployed persistence units
Applications that use a server-deployed persistence unit must observe the typical Java EE rules in what

concerns dependency management, i.e. the javax.persistence classes and persistence provider (Hibernate)

are contained in modules which are added automatically by the application when the persistence unit is

deployed.

In order to use the server-deployed persistence units from within Spring, either the persistence context or the

persistence unit need to be registered in JNDI via web.xml as follows:

<persistence-context-ref>

 <persistence-context-ref-name>persistence/petclinic-em</persistence-unit-ref-name>

 <persistence-unit-name>petclinic</persistence-unit-name>

</persistence-context-ref>

or, respectively:

<persistence-unit-ref>

 <persistence-unit-ref-name>persistence/petclinic-emf</persistence-unit-ref-name>

 <persistence-unit-name>petclinic</persistence-unit-name>

</persistence-unit-ref>

When doing so, the persistence context or persistence unit are available to be looked up in JNDI, as follows:

<jee:jndi-lookup id="entityManager" jndi-name="java:comp/env/persistence/petclinic-em"

 expected-type="javax.persistence.EntityManager"/>

or

<jee:jndi-lookup id="entityManagerFactory" jndi-name="java:comp/env/persistence/petclinic-emf"

 expected-type="javax.persistence.EntityManagerFactory"/>

JNDI binding

JNDI binding via persistence.xml properties is not supported in WildFly 8.

Latest WildFly Documentation

JBoss Community Documentation Page of 1161 2293

Using Spring-managed persistence units
Spring applications running in WildFly 8 may also create persistence units on their own, using the

LocalContainerEntityManagerFactoryBean. This is what these applications need to consider:

Placement of the persistence unit definitions
When the application server encounters a deployment that has a file named META-INF/persistence.xml (or,

for that matter, WEB-INF/classes/META-INF/persistence.xml), it will attempt to create a persistence unit

based on what is provided in the file. In most cases, such definition files are not compliant with the Java EE

requirements, mostly because required elements such as the datasource of the persistence unit are

supposed to be provided by the Spring context definitions, which will fail the deployment of the persistence

unit, and consequently of the entire deployment.

Spring applications can easily avoid this type of conflict, by using a feature of the

LocalContainerEntityManagerFactoryBean which is designed for this purpose. Persistence unit definition

files can exist in other locations than META-INF/persistence.xml and the location can be indicated through

the persistenceXmlLocation property of the factory bean class.

Assuming that the persistence unit is in the META-INF/jpa-persistence.xml, the corresponding definition can

be:

<bean id="entityManagerFactory"

class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">

 <property name="persistenceXmlLocation"

value="classpath*:META-INF/jpa-persistence.xml"/>

 <!-- other definitions -->

</bean>

Managing dependencies
Since the LocalContainerEntityManagerFactoryBean and the corresponding HibernateJpaVendorAdapter

are based on Hibernate 3, it is required to use that version with the application. Therefore, the Hibernate 3

jars must be included in the deployment. At the same time, due the presence of @PersistenceUnit or

@PersistenceContext annotations on the application classes, the application server will automatically add

the 'org.hibernate' module as a dependency.

This can be avoided by instructing the server to exclude the module from the deployment's list of

dependencies. In order to do so, include a META-INF/jboss-deployment-structure.xml or, for web

applications, WEB-INF/jboss-deployment-structure.xml with the following content:

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">

 <deployment>

 <exclusions>

 <module name="org.hibernate"/>

 </exclusions>

 </deployment>

</jboss-deployment-structure>

Latest WildFly Documentation

JBoss Community Documentation Page of 1162 2293

6.34 Sharing sessions between wars in an ear

Undertow allows you to share sessions between wars in an ear, if it is explicitly configured to do so. Note

that if you use this feature your applications may not be portable, as this is not a standard servlet feature.

In order to enable this you must include a element in the fileshared-session-config jboss-all.xml

in the META-INF directory of the ear:

<jboss umlns="urn:jboss:1.0">

 <shared-session-config xmlns="urn:jboss:shared-session-config:1.0">

 <session-config>

 <cookie-config>

 <path>/</path>

 </cookie-config>

 </session-config>

 </shared-session-config>

</jboss>

This element is used to configure the shared session manager that will be used by all wars in the ear. For full

details of all the options provided by this file please see the schema at

https://github.com/wildfly/wildfly/blob/master/undertow/src/main/resources/schema/shared-session-config_1_0.xsd

, however in general it mimics the options that are available in jboss-web.xml for configuring the session.

6.35 Webservices reference guide

The Web Services functionalities of WildFly are provided by the JBossWS project integration.

The latest project documentation is available .here

This section covers the most relevant topics for the JBossWS version available on WildFly 9.

https://github.com/wildfly/wildfly/blob/master/undertow/src/main/resources/schema/shared-session-config_1_0.xsd
https://github.com/wildfly/wildfly/blob/master/undertow/src/main/resources/schema/shared-session-config_1_0.xsd
https://docs.jboss.org/author/display/JBWS

Latest WildFly Documentation

JBoss Community Documentation Page of 1163 2293

JAX-WS User Guide

JAX-WS Tools

wsconsume

wsprovide

Advanced User Guide

Predefined client and endpoint configurations

Authentication

Apache CXF integration

WS-Addressing

WS-Security

WS-Trust and STS

ActAs WS-Trust Scenario

OnBehalfOf WS-Trust Scenario

SAML Bearer Assertion Scenario

SAML Holder-Of-Key Assertion Scenario

WS-Reliable Messaging

SOAP over JMS

HTTP Proxy

WS-Discovery

WS-Policy

Published WSDL customization

JBoss Modules and WS applications

6.35.1 WS User Guide

The defines the mapping between WSDL andJava API for XML-Based Web Services (JAX-WS / JSR-224)

Java as well as the classes to be used for accessing webservices and publishing them. JBossWS

implements the latest JAX-WS specification, hence users can reference it for any vendor agnostic

webservice usage need. Below is a brief overview of the most basic functionalities.

Web Service Endpoints
JAX-WS simplifies the development model for a web service endpoint a great deal. In short, an endpoint

implementation bean is annotated with JAX-WS annotations and deployed to the server. The server

automatically generates and publishes the abstract contract (i.e. wsdl+schema) for client consumption. All

marshalling/unmarshalling is delegated to .JAXB

Plain old Java Object (POJO)
Let's take a look at simple POJO endpoint implementation. All endpoint associated metadata is provided via

 annotationsJSR-181

http://www.jcp.org/en/jsr/detail?id=224
http://www.jcp.org/en/jsr/summary?id=jaxb
http://www.jcp.org/en/jsr/summary?id=181

Latest WildFly Documentation

JBoss Community Documentation Page of 1164 2293

@WebService

@SOAPBinding(style = SOAPBinding.Style.RPC)

public class JSEBean01

{

 @WebMethod

 public String echo(String input)

 {

 ...

 }

}

The endpoint as a web application
A JAX-WS java service endpoint (JSE) is deployed as a web application. Here is a sample web.xml

descriptor:

<web-app ...>

 <servlet>

 <servlet-name>TestService</servlet-name>

 <servlet-class>org.jboss.test.ws.jaxws.samples.jsr181pojo.JSEBean01</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>TestService</servlet-name>

 <url-pattern>/*</url-pattern>

 </servlet-mapping>

</web-app>

Packaging the endpoint
A JSR-181 java service endpoint (JSE) is packaged as a web application in a file.war

<war warfile="${build.dir}/libs/jbossws-samples-jsr181pojo.war"

webxml="${build.resources.dir}/samples/jsr181pojo/WEB-INF/web.xml">

 <classes dir="${build.dir}/classes">

 <include name="org/jboss/test/ws/samples/jsr181pojo/JSEBean01.class"/>

 </classes>

</war>

Note, only the endpoint implementation bean and web.xml are required.

Accessing the generated WSDL
A successfully deployed service endpoint will show up in the WildFly managent console. You can get the

deployed endpoint wsdl address there too.

Note, it is also possible to generate the abstract contract off line using JBossWS tools. For details

of that please see Bottom-Up (Java to WSDL).

Latest WildFly Documentation

JBoss Community Documentation Page of 1165 2293

EJB3 Stateless Session Bean (SLSB)
The JAX-WS programming model supports the same set of annotations on EJB3 stateless session beans as

on POJO endpoints.

@Stateless

@Remote(EJB3RemoteInterface.class)

@RemoteBinding(jndiBinding = "/ejb3/EJB3EndpointInterface")

@WebService

@SOAPBinding(style = SOAPBinding.Style.RPC)

public class EJB3Bean01 implements EJB3RemoteInterface

{

 @WebMethod

 public String echo(String input)

 {

 ...

 }

}

Above you see an EJB-3.0 stateless session bean that exposes one method both on the remote interface

and as an endpoint operation.

Packaging the endpoint
A JSR-181 EJB service endpoint is packaged as an ordinary ejb deployment.

<jar jarfile="${build.dir}/libs/jbossws-samples-jsr181ejb.jar">

 <fileset dir="${build.dir}/classes">

 <include name="org/jboss/test/ws/samples/jsr181ejb/EJB3Bean01.class"/>

 <include name="org/jboss/test/ws/samples/jsr181ejb/EJB3RemoteInterface.class"/>

 </fileset>

</jar>

Accessing the generated WSDL
A successfully deployed service endpoint will show up in the WildFly managent console. You can get the

deployed endpoint wsdl address there too.

Note, it is also possible to generate the abstract contract off line using JBossWS tools. For details

of that please see Bottom-Up (Java to WSDL).

Latest WildFly Documentation

JBoss Community Documentation Page of 1166 2293

Endpoint Provider
JAX-WS services typically implement a native Java service endpoint interface (SEI), perhaps mapped from a

WSDL port type, either directly or via the use of annotations.

Java SEIs provide a high level Java-centric abstraction that hides the details of converting between Java

objects and their XML representations for use in XML-based messages. However, in some cases it is

desirable for services to be able to operate at the XML message level. The Provider interface offers an

alternative to SEIs and may be implemented by services wishing to work at the XML message level.

A Provider based service instances invoke method is called for each message received for the service.

@WebServiceProvider(wsdlLocation = "WEB-INF/wsdl/Provider.wsdl")

@ServiceMode(value = Service.Mode.PAYLOAD)

public class ProviderBeanPayload implements Provider<Source>

{

 public Source invoke(Source req)

 {

 // Access the entire request PAYLOAD and return the response PAYLOAD

 }

}

Note, is the default and does not have to be declared explicitly. You can also useService.Mode.PAYLOAD

 to access the entire SOAP message (i.e. with the Provider can alsoService.Mode.MESSAGE MESSAGE

see SOAP Headers)

The abstract contract for a provider endpoint cannot be derived/generated automatically. Therefore it is

necessary to specify the with the annotation.wsdlLocation @WebServiceProvider

Web Service Clients

Service
 is an abstraction that represents a WSDL service. A WSDL service is a collection of related ports,Service

each of which consists of a port type bound to a particular protocol and available at a particular endpoint

address.

For most clients, you will start with a set of stubs generated from the WSDL. One of these will be the service,

and you will create objects of that class in order to work with the service (see "static case" below).

Latest WildFly Documentation

JBoss Community Documentation Page of 1167 2293

Service Usage
Static case

Most clients will start with a WSDL file, and generate some stubs using JBossWS tools like . wsconsume

This usually gives a mass of files, one of which is the top of the tree. This is the service implementation

class.

The generated implementation class can be recognised as it will have two public constructors, one with no

arguments and one with two arguments, representing the wsdl location (a) and the servicejava.net.URL

name (a) respectively.javax.xml.namespace.QName

Usually you will use the no-argument constructor. In this case the WSDL location and service name are

those found in the WSDL. These are set implicitly from the annotation that decorates@WebServiceClient

the generated class.

The following code snippet shows the generated constructors from the generated class:

// Generated Service Class

@WebServiceClient(name="StockQuoteService", targetNamespace="http://example.com/stocks",

wsdlLocation="http://example.com/stocks.wsdl")

public class StockQuoteService extends javax.xml.ws.Service

{

 public StockQuoteService()

 {

 super(new URL("http://example.com/stocks.wsdl"), new QName("http://example.com/stocks",

"StockQuoteService"));

 }

 public StockQuoteService(String wsdlLocation, QName serviceName)

 {

 super(wsdlLocation, serviceName);

 }

 ...

}

Section Dynamic Proxy explains how to obtain a port from the service and how to invoke an operation on the

port. If you need to work with the XML payload directly or with the XML representation of the entire SOAP

message, have a look at .Dispatch

Dynamic case

In the dynamic case, when nothing is generated, a web service client uses to createService.create

Service instances, the following code illustrates this process.

URL wsdlLocation = new URL("http://example.org/my.wsdl");

QName serviceName = new QName("http://example.org/sample", "MyService");

Service service = Service.create(wsdlLocation, serviceName);

Latest WildFly Documentation

JBoss Community Documentation Page of 1168 2293

Handler Resolver
JAX-WS provides a flexible plug-in framework for message processing modules, known as handlers, that

may be used to extend the capabilities of a JAX-WS runtime system. Handler Framework describes the

handler framework in detail. A Service instance provides access to a via a pair of HandlerResolver

 / methods that may be used to configure a set of handlersgetHandlerResolver setHandlerResolver

on a per-service, per-port or per-protocol binding basis.

When a Service instance is used to create a proxy or a Dispatch instance then the handler resolver currently

registered with the service is used to create the required handler chain. Subsequent changes to the handler

resolver configured for a Service instance do not affect the handlers on previously created proxies, or

Dispatch instances.

Executor
Service instances can be configured with a . The executor will thenjava.util.concurrent.Executor

be used to invoke any asynchronous callbacks requested by the application. The and setExecutor

 methods of can be used to modify and retrieve the executor configured for agetExecutor Service

service.

Dynamic Proxy
You can create an instance of a client proxy using one of methods on the .getPort Service

/**

 * The getPort method returns a proxy. A service client

 * uses this proxy to invoke operations on the target

 * service endpoint. The <code>serviceEndpointInterface</code>

 * specifies the service endpoint interface that is supported by

 * the created dynamic proxy instance.

 **/

public <T> T getPort(QName portName, Class<T> serviceEndpointInterface)

{

 ...

}

/**

 * The getPort method returns a proxy. The parameter

 * <code>serviceEndpointInterface</code> specifies the service

 * endpoint interface that is supported by the returned proxy.

 * In the implementation of this method, the JAX-WS

 * runtime system takes the responsibility of selecting a protocol

 * binding (and a port) and configuring the proxy accordingly.

 * The returned proxy should not be reconfigured by the client.

 *

 **/

public <T> T getPort(Class<T> serviceEndpointInterface)

{

 ...

}

The service endpoint interface (SEI) is usually generated using tools. For details see Top Down (WSDL to

Java)

Latest WildFly Documentation

JBoss Community Documentation Page of 1169 2293

1.

2.

A generated static Service usually also offers typed methods to get ports. These methods also return

dynamic proxies that implement the SEI.

@WebServiceClient(name = "TestEndpointService", targetNamespace = "http://org.jboss.ws/wsref",

 wsdlLocation = "http://localhost.localdomain:8080/jaxws-samples-webserviceref?wsdl")

public class TestEndpointService extends Service

{

 ...

 public TestEndpointService(URL wsdlLocation, QName serviceName) {

 super(wsdlLocation, serviceName);

 }

 @WebEndpoint(name = "TestEndpointPort")

 public TestEndpoint getTestEndpointPort()

 {

 return (TestEndpoint)super.getPort(TESTENDPOINTPORT, TestEndpoint.class);

 }

}

WebServiceRef
The annotation is used to declare a reference to a Web service. It follows the resource@WebServiceRef

pattern exemplified by the annotation in .javax.annotation.Resource JSR-250

There are two uses to the WebServiceRef annotation:

To define a reference whose type is a generated service class. In this case, the type and value

element will both refer to the generated service class type. Moreover, if the reference type can be

inferred by the field/method declaration the annotation is applied to, the type and value elements MAY

have the default value (Object.class, that is). If the type cannot be inferred, then at least the type

element MUST be present with a non-default value.

To define a reference whose type is a SEI. In this case, the type element MAY be present with its

default value if the type of the reference can be inferred from the annotated field/method declaration,

but the value element MUST always be present and refer to a generated service class type (a

subtype of javax.xml.ws.Service). The wsdlLocation element, if present, overrides theWSDL location

information specified in the WebService annotation of the referenced generated service class.

public class EJB3Client implements EJB3Remote

{

 @WebServiceRef

 public TestEndpointService service4;

 @WebServiceRef

 public TestEndpoint port3;

http://www.jcp.org/en/jsr/summary?id=250

Latest WildFly Documentation

JBoss Community Documentation Page of 1170 2293

Dispatch
XMLWeb Services use XML messages for communication between services and service clients. The higher

level JAX-WS APIs are designed to hide the details of converting between Java method invocations and the

corresponding XML messages, but in some cases operating at the XML message level is desirable. The

Dispatch interface provides support for this mode of interaction.

 supports two usage modes, identified by the constants Dispatch

 and respectively:javax.xml.ws.Service.Mode.MESSAGE javax.xml.ws.Service.Mode.PAYLOAD

 In this mode, client applications work directly with protocol-specific message structures. E.g., whenMessage

used with a SOAP protocol binding, a client application would work directly with a SOAP message.

 In this mode, client applications work with the payload of messages rather than theMessage Payload

messages themselves. E.g., when used with a SOAP protocol binding, a client application would work with

the contents of the SOAP Body rather than the SOAP message as a whole.

Dispatch is a low level API that requires clients to construct messages or message payloads as XML and

requires an intimate knowledge of the desired message or payload structure. Dispatch is a generic class that

supports input and output of messages or message payloads of any type.

Service service = Service.create(wsdlURL, serviceName);

Dispatch dispatch = service.createDispatch(portName, StreamSource.class, Mode.PAYLOAD);

String payload = "<ns1:ping xmlns:ns1='http://oneway.samples.jaxws.ws.test.jboss.org/'/>";

dispatch.invokeOneWay(new StreamSource(new StringReader(payload)));

payload = "<ns1:feedback xmlns:ns1='http://oneway.samples.jaxws.ws.test.jboss.org/'/>";

Source retObj = (Source)dispatch.invoke(new StreamSource(new StringReader(payload)));

Latest WildFly Documentation

JBoss Community Documentation Page of 1171 2293

Asynchronous Invocations
The interface represents a component that provides a protocol binding for use byBindingProvider

clients, it is implemented by proxies and is extended by the interface.Dispatch

 instances may provide asynchronous operation capabilities. When used, asynchronousBindingProvider

operation invocations are decoupled from the instance at invocation time such that theBindingProvider

response context is not updated when the operation completes. Instead a separate response context is

made available using the interface.Response

public void testInvokeAsync() throws Exception

{

 URL wsdlURL = new URL("http://" + getServerHost() + ":8080/jaxws-samples-asynchronous?wsdl");

 QName serviceName = new QName(targetNS, "TestEndpointService");

 Service service = Service.create(wsdlURL, serviceName);

 TestEndpoint port = service.getPort(TestEndpoint.class);

 Response response = port.echoAsync("Async");

 // access future

 String retStr = (String) response.get();

 assertEquals("Async", retStr);

}

Oneway Invocations
 indicates that the given web method has only an input message and no output. Typically, a@Oneway

oneway method returns the thread of control to the calling application prior to executing the actual business

method.

@WebService (name="PingEndpoint")

@SOAPBinding(style = SOAPBinding.Style.RPC)

public class PingEndpointImpl

{

 private static String feedback;

 @WebMethod

 @Oneway

 publicvoid ping()

 {

 log.info("ping");

 feedback = "ok";

 }

 @WebMethod

 public String feedback()

 {

 log.info("feedback");

 return feedback;

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1172 2293

Timeout Configuration
There are two properties to configure the http connection timeout and client receive time out:

public void testConfigureTimeout() throws Exception

{

 //Set timeout until a connection is established

 ((BindingProvider)port).getRequestContext().put("javax.xml.ws.client.connectionTimeout",

"6000");

 //Set timeout until the response is received

 ((BindingProvider) port).getRequestContext().put("javax.xml.ws.client.receiveTimeout",

"1000");

 port.echo("testTimeout");

}

Common API
This sections describes concepts that apply equally to Web Service Endpoints and Web Service Clients.

Handler Framework
The handler framework is implemented by a JAX-WS protocol binding in both client and server side

runtimes. Proxies, and Dispatch instances, known collectively as binding providers, each use protocol

bindings to bind their abstract functionality to specific protocols.

Client and server-side handlers are organized into an ordered list known as a handler chain. The handlers

within a handler chain are invoked each time a message is sent or received. Inbound messages are

processed by handlers prior to binding provider processing. Outbound messages are processed by handlers

after any binding provider processing.

Handlers are invoked with a message context that provides methods to access and modify inbound and

outbound messages and to manage a set of properties. Message context properties may be used to

facilitate communication between individual handlers and between handlers and client and service

implementations. Different types of handlers are invoked with different types of message context.

Logical Handler
Handlers that only operate on message context properties and message payloads. Logical handlers are

protocol agnostic and are unable to affect protocol specific parts of a message. Logical handlers are

handlers that implement .javax.xml.ws.handler.LogicalHandler

Protocol Handler
Handlers that operate on message context properties and protocol specific messages. Protocol handlers are

specific to a particular protocol and may access and change protocol specific aspects of a message.

Protocol handlers are handlers that implement any interface derived from

 except .javax.xml.ws.handler.Handler javax.xml.ws.handler.LogicalHandler

Latest WildFly Documentation

JBoss Community Documentation Page of 1173 2293

Service endpoint handlers
On the service endpoint, handlers are defined using the annotation.@HandlerChain

@WebService

@HandlerChain(file = "jaxws-server-source-handlers.xml")

public class SOAPEndpointSourceImpl

{

 ...

}

The location of the handler chain file supports 2 formats

1. An absolute java.net.URL in externalForm. (ex:)http://myhandlers.foo.com/handlerfile1.xml

2. A relative path from the source file or class file. (ex: bar/handlerfile1.xml)

Service client handlers
On the client side, handler can be configured using the annotation on the SEI or@HandlerChain

dynamically using the API.

Service service = Service.create(wsdlURL, serviceName);

Endpoint port = (Endpoint)service.getPort(Endpoint.class);

BindingProvider bindingProvider = (BindingProvider)port;

List<Handler> handlerChain = new ArrayList<Handler>();

handlerChain.add(new LogHandler());

handlerChain.add(new AuthorizationHandler());

handlerChain.add(new RoutingHandler());

bindingProvider.getBinding().setHandlerChain(handlerChain); // important!

http://myhandlers.foo.com/handlerfile1.xml

Latest WildFly Documentation

JBoss Community Documentation Page of 1174 2293

Message Context
 is the super interface for all JAX-WS message contexts. It extends MessageContext

 with additional methods and constants to manage a set of properties that enableMap<String,Object>

handlers in a handler chain to share processing related state. For example, a handler may use the put

method to insert a property in the message context that one or more other handlers in the handler chain may

subsequently obtain via the get method.

Properties are scoped as either APPLICATION or HANDLER. All properties are available to all handlers for

an instance of an MEP on a particular endpoint. E.g., if a logical handler puts a property in the message

context, that property will also be available to any protocol handlers in the chain during the execution of an

MEP instance. APPLICATION scoped properties are also made available to client applications (see section

4.2.1) and service endpoint implementations. The defaultscope for a property is HANDLER.

Logical Message Context
Logical Handlers are passed a message context of type when invoked. LogicalMessageContext

 extends with methods to obtain and modify the messageLogicalMessageContext MessageContext

payload, it does not provide access to the protocol specific aspects of amessage. A protocol binding defines

what component of a message are available via a logical message context. The SOAP binding defines that a

logical handler deployed in a SOAP binding can access the contents of the SOAP body but not the SOAP

headers whereas the XML/HTTP binding defines that a logical handler can access the entire XML payload of

a message.

SOAP Message Context
SOAP handlers are passed a when invoked. extends SOAPMessageContext SOAPMessageContext

 with methods to obtain and modify the SOAP message payload.MessageContext

Latest WildFly Documentation

JBoss Community Documentation Page of 1175 2293

Fault Handling
An implementation may thow a SOAPFaultException

public void throwSoapFaultException()

{

 SOAPFactory factory = SOAPFactory.newInstance();

 SOAPFault fault = factory.createFault("this is a fault string!", new QName("http://foo",

"FooCode"));

 fault.setFaultActor("mr.actor");

 fault.addDetail().addChildElement("test");

 thrownew SOAPFaultException(fault);

}

or an application specific user exception

public void throwApplicationException() throws UserException

{

 thrownew UserException("validation", 123, "Some validation error");

}

In case of the latter, JBossWS generates the required fault wrapper beans at runtime if they are not

part of the deployment

WS Annotations
For details, see JSR-224 - Java API for XML-Based Web Services (JAX-WS) 2.2

javax.xml.ws.ServiceMode
The annotation is used to specify the mode for a provider class, i.e. whether a provider wantsServiceMode

to have access to protocol message payloads (e.g. a SOAP body) or the entire protocol messages (e.g. a

SOAP envelope).

javax.xml.ws.WebFault
The annotation is used when mapping WSDL faults to Java exceptions, see section 2.5. It isWebFault

used to capture the name of the fault element used when marshalling the JAXB type generated from the

global element referenced by the WSDL fault message. It can also be used to customize the mapping of

service specific exceptions to WSDL faults.

http://www.jcp.org/en/jsr/detail?id=224

Latest WildFly Documentation

JBoss Community Documentation Page of 1176 2293

javax.xml.ws.RequestWrapper
The annotation is applied to the methods of an SEI. It is used to capture the JAXBRequestWrapper

generated request wrapper bean and the element name and namespace for marshalling / unmarshalling the

bean. The default value of localName element is the operationName as defined in annotationWebMethod

and the default value for the targetNamespace element is the target namespace of the SEI.When starting

from Java, this annotation is used to resolve overloading conflicts in document literal mode. Only the

className element is required in this case.

javax.xml.ws.ResponseWrapper
The annotation is applied to the methods of an SEI. It is used to capture the JAXBResponseWrapper

generated response wrapper bean and the element name and namespace for marshalling / unmarshalling

the bean. The default value of the localName element is the operationName as defined in the WebMethod

appended with ”Response” and the default value of the targetNamespace element is the target namespace

of the SEI. When starting from Java, this annotation is used to resolve overloading conflicts in document

literal mode. Only the className element is required in this case.

javax.xml.ws.WebServiceClient
The annotation is specified on a generated service class (see 2.7). It is used toWebServiceClient

associate a class with a specific Web service, identify by a URL to a WSDL document and the qualified

name of a wsdl:service element.

javax.xml.ws.WebEndpoint
The annotation is specified on the getPortName() methods of a generated service class (seeWebEndpoint

2.7). It is used to associate a get method with a specific wsdl:port, identified by its local name (a NCName).

javax.xml.ws.WebServiceProvider
The annotation is specified on classes that implement a strongly typed WebServiceProvider

. It is used to declare that a class that satisfies the requirements for a providerjavax.xml.ws.Provider

(see 5.1) does indeed define a Web service endpoint, much like the annotation does forWebService

SEI-based endpoints.

The and annotations are mutually exclusive.WebServiceProvider WebService

javax.xml.ws.BindingType
The annotation is applied to an endpoint implementation class. It specifies the binding to useBindingType

when publishing an endpoint of this type.

The default binding for an endpoint is the SOAP 1.1/HTTP one.

javax.xml.ws.WebServiceRef
The annotation is used to declare a reference to a Web service. It follows the resourceWebServiceRef

pattern exemplified by the annotation in JSR-250 [JBWS:32]. The javax.annotation.Resource

 annotation is required to be honored when running on the Java EE 5 platform, where it isWebServiceRef

subject to the common resource injection rules described by the platform specification [JBWS:33].

Latest WildFly Documentation

JBoss Community Documentation Page of 1177 2293

javax.xml.ws.WebServiceRefs
The annotation is used to declare multiple references to Web services on a single class.WebServiceRefs

It is necessary to work around the limition against specifying repeated annotations of the same type on any

given class, which prevents listing multiple annotations one after the other.javax.ws.WebServiceRef

This annotation follows the resource pattern exemplified by the javax.annotation.Resources

annotation in JSR-250.

Since no name and type can be inferred in this case, each annotation inside aWebServiceRef

WebServiceRefs MUST contain name and type elements with non-default values. The WebServiceRef

annotation is required to be honored when running on the Java EE 5 platform, where it is subject to the

common resource injection rules described by the platform specification.

javax.xml.ws.Action
The annotation is applied to the methods of a SEI. It used to generate the wsa:Action on wsdl:inputAction

and wsdl:output of each wsdl:operation mapped from the annotated methods.

javax.xml.ws.FaultAction
The annotation is used within the annotation to generate the wsa:Action element onFaultAction Action

the wsdl:fault element of each wsdl:operation mapped from the annotated methods.

Latest WildFly Documentation

JBoss Community Documentation Page of 1178 2293

181 Annotations
JSR-181 defines the syntax and semantics of Java Web Service (JWS) metadata and default values.

For details, see .JSR 181 - Web Services Metadata for the Java Platform

javax.jws.WebService
Marks a Java class as implementing a Web Service, or a Java interface as defining a Web Service interface.

javax.jws.WebMethod
Customizes a method that is exposed as a Web Service operation.

javax.jws.OneWay
Indicates that the given web method has only an input message and no output. Typically, a oneway method

returns the thread of control to the calling application prior to executing the actual business method. A

JSR-181 processor is REQUIRED to report an error if an operation marked has a return value,@Oneway

declares any checked exceptions or has any INOUT or OUT parameters.

javax.jws.WebParam
Customizes the mapping of an individual parameter to a Web Service message part and XML element.

javax.jws.WebResult
Customizes the mapping of the return value to a WSDL part and XML element.

javax.jws.SOAPBinding
Specifies the mapping of the Web Service onto the SOAP message protocol.

The annotation has a target of and . The annotation may be placed on aSOAPBinding TYPE METHOD

method if and only if the is . Implementations MUST report an error if the SOAPBinding.style DOCUMENT

 annotation is placed on a method with a of . Methods that do notSOAPBinding SOAPBinding.style RPC

have a annotation accept the behavior defined on the type.SOAPBinding SOAPBinding

javax.jws.HandlerChain
The annotation associates the Web Service with an externally defined handler chain.@HandlerChain

It is an error to combine this annotation with the annotation.@SOAPMessageHandlers

The annotation MAY be present on the endpoint interface and service implementation@HandlerChain

bean. The service implementation bean's is used if is present on both.@HandlerChain @HandlerChain

The annotation MAY be specified on the type only. The annotation target includes @HandlerChain METHOD

and for use by JAX-WS-2.x.FIELD

http://www.jcp.org/en/jsr/detail?id=181

Latest WildFly Documentation

JBoss Community Documentation Page of 1179 2293

6.35.2 WS Tools

The JAX-WS tools provided by JBossWS can be used in a variety of ways. First we will look at server-side

development strategies, and then proceed to the client.

Server side
When developing a Web Service Endpoint (the server-side) you have the option of starting from Java (

), or from the abstact contract (WSDL) that defines your service (bottom-up development top-down

). If this is a new service (no existing contract), the bottom-up approach is the fastest route; youdevelopment

only need to add a few annotations to your classes to get a service up and running. However, if you are

developing a service with an already defined contract, it is far simpler to use the top-down approach, since

the provided tool will generate the annotated code for you.

Bottom-up use cases:

Exposing an already existing EJB3 bean as a Web Service

Providing a new service, and you want the contract to be generated for you

Top-down use cases:

Replacing the implementation of an existing Web Service, and you can't break compatibility with older

clients

Exposing a service that conforms to a contract specified by a third party (e.g. a vender that calls you

back using an already defined protocol).

Creating a service that adheres to the XML Schema and WSDL you developed by hand up front

The following JAX-WS command line tools are included in JBossWS:

Command Description

wsprovide Generates JAX-WS portable artifacts, and provides the abstract contract. Used for bottom-up

development.

wsconsume Consumes the abstract contract (WSDL and Schema files), and produces artifacts for both a

server and client. Used for top-down and client development

Bottom-Up (Using wsprovide)
The bottom-up strategy involves developing the Java code for your service, and then annotating it using

JAX-WS annotations. These annotations can be used to customize the contract that is generated for your

service. For example, you can change the operation name to map to anything you like. However, all of the

annotations have sensible defaults, so only the @WebService annotation is required.

This can be as simple as creating a single class:

Latest WildFly Documentation

JBoss Community Documentation Page of 1180 2293

package echo;

@javax.jws.WebService

public class Echo

{

 public String echo(String input)

 {

 return input;

 }

}

A JSE or EJB3 deployment can be built using this class, and it is the only Java code needed to deploy on

JBossWS. The WSDL, and all other Java artifacts called "wrapper classes" will be generated for you at

deploy time. This actually goes beyond the JAX-WS specification, which requires that wrapper classes be

generated using an offline tool. The reason for this requirement is purely a vender implementation problem,

and since we do not believe in burdening a developer with a bunch of additional steps, we generate these as

well. However, if you want your deployment to be portable to other application servers, you will unfortunately

need to use a tool and add the generated classes to your deployment.

This is the primary purpose of the tool, to generate portable JAX-WS artifacts. Additionally, it canwsprovide

be used to "provide" the abstract contract (WSDL file) for your service. This can be obtained by invoking

 using the "-w" option:wsprovide

$ javac -d . -classpath jboss-jaxws.jar Echo.java

$ wsprovide -w echo.Echo

Generating WSDL:

EchoService.wsdl

Writing Classes:

echo/jaxws/Echo.class

echo/jaxws/EchoResponse.class

Inspecting the WSDL reveals a service called :EchoService

<service name='EchoService'>

 <port binding='tns:EchoBinding' name='EchoPort'>

 <soap:address location='REPLACE_WITH_ACTUAL_URL'/>

 </port>

</service>

As expected, this service defines one operation, " ":echo

<portType name='Echo'>

 <operation name='echo' parameterOrder='echo'>

 <input message='tns:Echo_echo'/>

 <output message='tns:Echo_echoResponse'/>

 </operation>

</portType>

Latest WildFly Documentation

JBoss Community Documentation Page of 1181 2293

Remember that when deploying on JBossWS you do not need to run this tool. You only need it for

generating portable artifacts and/or the abstract contract for your service.

Let's create a POJO endpoint for deployment on WildFly. A simple needs to be created:web.xml

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"

 version="2.4">

 <servlet>

 <servlet-name>Echo</servlet-name>

 <servlet-class>echo.Echo</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>Echo</servlet-name>

 <url-pattern>/Echo</url-pattern>

 </servlet-mapping>

</web-app>

The and the single class can now be used to create a war:web.xml

$ mkdir -p WEB-INF/classes

$ cp -rp echo WEB-INF/classes/

$ cp web.xml WEB-INF

$ jar cvf echo.war WEB-INF

added manifest

adding: WEB-INF/(in = 0) (out= 0)(stored 0%)

adding: WEB-INF/classes/(in = 0) (out= 0)(stored 0%)

adding: WEB-INF/classes/echo/(in = 0) (out= 0)(stored 0%)

adding: WEB-INF/classes/echo/Echo.class(in = 340) (out= 247)(deflated 27%)

adding: WEB-INF/web.xml(in = 576) (out= 271)(deflated 52%)

The war can then be deployed to the JBoss Application Server.The war can then be deployed to the JBoss

Application Server; this will internally invoke wsprovide, which will generate the WSDL. If deployment was

successful, and you are using the default settings, it should be available in the server management console.

For a portable JAX-WS deployment, the wrapper classes generated earlier could be added to the

deployment.

Down (Using wsconsume)
The top-down development strategy begins with the abstract contract for the service, which includes the

WSDL file and zero or more schema files. The tool is then used to consume this contract, andwsconsume

produce annotated Java classes (and optionally sources) that define it.

Latest WildFly Documentation

JBoss Community Documentation Page of 1182 2293

wsconsume may have problems with symlinks on Unix systems

Using the WSDL file from the bottom-up example, a new Java implementation that adheres to this service

can be generated. The "-k" option is passed to to preserve the Java source files that arewsconsume

generated, instead of providing just classes:

$ wsconsume -k EchoService.wsdl

echo/Echo.java

echo/EchoResponse.java

echo/EchoService.java

echo/Echo_Type.java

echo/ObjectFactory.java

echo/package-info.java

echo/Echo.java

echo/EchoResponse.java

echo/EchoService.java

echo/Echo_Type.java

echo/ObjectFactory.java

echo/package-info.java

The following table shows the purpose of each generated file:

File Purpose

Echo.java Service Endpoint Interface

Echo_Type.java Wrapper bean for request message

EchoResponse.java Wrapper bean for response message

ObjectFactory.java JAXB XML Registry

package-info.java Holder for JAXB package annotations

EchoService.java Used only by JAX-WS clients

Examining the Service Endpoint Interface reveals annotations that are more explicit than in the class written

by hand in the bottom-up example, however, these evaluate to the same contract:

Latest WildFly Documentation

JBoss Community Documentation Page of 1183 2293

@WebService(name = "Echo", targetNamespace = "http://echo/")

public interface Echo {

 @WebMethod

 @WebResult(targetNamespace = "")

 @RequestWrapper(localName = "echo", targetNamespace = "http://echo/", className =

"echo.Echo_Type")

 @ResponseWrapper(localName = "echoResponse", targetNamespace = "http://echo/", className =

"echo.EchoResponse")

 public String echo(

 @WebParam(name = "arg0", targetNamespace = "")

 String arg0);

}

The only missing piece (besides for packaging) is the implementation class, which can now be written, using

the above interface.

package echo;

@javax.jws.WebService(endpointInterface="echo.Echo")

public class EchoImpl implements Echo

{

 public String echo(String arg0)

 {

 return arg0;

 }

}

Client Side
Before going to detail on the client-side it is important to understand the decoupling concept that is central to

Web Services. Web Services are not the best fit for internal RPC, even though they can be used in this way.

There are much better technologies for this (CORBA, and RMI for example). Web Services were designed

specifically for interoperable coarse-grained correspondence. There is no expectation or guarantee that any

party participating in a Web Service interaction will be at any particular location, running on any particular

OS, or written in any particular programming language. So because of this, it is important to clearly separate

client and server implementations. The only thing they should have in common is the abstract contract

definition. If, for whatever reason, your software does not adhere to this principal, then you should not be

using Web Services. For the above reasons, the recommended methodology for developing a client is

to follow , even if the client is running on the same server.the top-down approach

Let's repeat the process of the top-down section, although using the deployed WSDL, instead of the one

generated offline by . The reason why we do this is just to get the right value for soap:address.wsprovide

This value must be computed at deploy time, since it is based on container configuration specifics. You

could of course edit the WSDL file yourself, although you need to ensure that the path is correct.

Offline version:

Latest WildFly Documentation

JBoss Community Documentation Page of 1184 2293

<service name='EchoService'>

 <port binding='tns:EchoBinding' name='EchoPort'>

 <soap:address location='REPLACE_WITH_ACTUAL_URL'/>

 </port>

</service>

Online version:

<service name="EchoService">

 <port binding="tns:EchoBinding" name="EchoPort">

 <soap:address location="http://localhost.localdomain:8080/echo/Echo"/>

 </port>

</service>

Using the online deployed version with :wsconsume

$ wsconsume -k http://localhost:8080/echo/Echo?wsdl

echo/Echo.java

echo/EchoResponse.java

echo/EchoService.java

echo/Echo_Type.java

echo/ObjectFactory.java

echo/package-info.java

echo/Echo.java

echo/EchoResponse.java

echo/EchoService.java

echo/Echo_Type.java

echo/ObjectFactory.java

echo/package-info.java

The one class that was not examined in the top-down section, was . Notice how itEchoService.java

stores the location the WSDL was obtained from.

Latest WildFly Documentation

JBoss Community Documentation Page of 1185 2293

@WebServiceClient(name = "EchoService", targetNamespace = "http://echo/", wsdlLocation =

"http://localhost:8080/echo/Echo?wsdl")

public class EchoService extends Service

{

 private final static URL ECHOSERVICE_WSDL_LOCATION;

 static {

 URL url = null;

 try

 {

 url = new URL("http://localhost:8080/echo/Echo?wsdl");

 }

 catch (MalformedURLException e)

 {

 e.printStackTrace();

 }

 ECHOSERVICE_WSDL_LOCATION = url;

 }

 public EchoService(URL wsdlLocation, QName serviceName)

 {

 super(wsdlLocation, serviceName);

 }

 public EchoService()

 {

 super(ECHOSERVICE_WSDL_LOCATION, new QName("http://echo/", "EchoService"));

 }

 @WebEndpoint(name = "EchoPort")

 public Echo getEchoPort()

 {

 return (Echo)super.getPort(new QName("http://echo/", "EchoPort"), Echo.class);

 }

}

As you can see, this generated class extends the main client entry point in JAX-WS,

. While you can use directly, this is far simpler since it provides thejavax.xml.ws.Service Service

configuration info for you. The only method we really care about is the method, whichgetEchoPort()

returns an instance of our Service Endpoint Interface. Any WS operation can then be called by just invoking

a method on the returned interface.

It's not recommended to refer to a remote WSDL URL in a production application. This causes

network I/O every time you instantiate the Service Object. Instead, use the tool on a saved local

copy, or use the URL version of the constructor to provide a new WSDL location.

All that is left to do, is write and compile the client:

Latest WildFly Documentation

JBoss Community Documentation Page of 1186 2293

import echo.*;

public class EchoClient

{

 public static void main(String args[])

 {

 if (args.length != 1)

 {

 System.err.println("usage: EchoClient <message>");

 System.exit(1);

 }

 EchoService service = new EchoService();

 Echo echo = service.getEchoPort();

 System.out.println("Server said: " + echo.echo(args0));

 }

}

It is easy to change the endpoint address of your operation at runtime, setting the

 as shown below:ENDPOINT_ADDRESS_PROPERTY

EchoService service = new EchoService();

 Echo echo = service.getEchoPort();

 /* Set NEW Endpoint Location */

 String endpointURL = "http://NEW_ENDPOINT_URL";

 BindingProvider bp = (BindingProvider)echo;

 bp.getRequestContext().put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, endpointURL);

 System.out.println("Server said: " + echo.echo(args0));

wsconsume
 is a command line tool and ant task that "consumes" the abstract contract (WSDL file) andwsconsume

produces portable JAX-WS service and client artifacts.

Command Line Tool
The command line tool has the following usage:

Latest WildFly Documentation

JBoss Community Documentation Page of 1187 2293

usage: wsconsume [options] <wsdl-url>

options:

 -h, --help Show this help message

 -b, --binding=<file> One or more JAX-WS or JAXB binding files

 -k, --keep Keep/Generate Java source

 -c --catalog=<file> Oasis XML Catalog file for entity resolution

 -j --clientjar=<name> Create a jar file of the generated artifacts for calling the

webservice

 -p --package=<name> The target package for generated source

 -w --wsdlLocation=<loc> Value to use for @WebServiceClient.wsdlLocation

 -o, --output=<directory> The directory to put generated artifacts

 -s, --source=<directory> The directory to put Java source

 -t, --target=<2.0|2.1|2.2> The JAX-WS specification target

 -q, --quiet Be somewhat more quiet

 -v, --verbose Show full exception stack traces

 -l, --load-consumer Load the consumer and exit (debug utility)

 -e, --extension Enable SOAP 1.2 binding extension

 -a, --additionalHeaders Enables processing of implicit SOAP headers

 -n, --nocompile Do not compile generated sources

The wsdlLocation is used when creating the Service to be used by clients and will be added to the

@WebServiceClient annotation, for an endpoint implementation based on the generated service

endpoint interface you will need to manually add the wsdlLocation to the @WebService annotation

on your web service implementation and not the service endpoint interface.

Latest WildFly Documentation

JBoss Community Documentation Page of 1188 2293

Examples
Generate artifacts in Java class form only:

wsconsume Example.wsdl

Generate source and class files:

wsconsume -k Example.wsdl

Generate source and class files in a custom directory:

wsconsume -k -o custom Example.wsdl

Generate source and class files in the org.foo package:

wsconsume -k -p org.foo Example.wsdl

Generate source and class files using multiple binding files:

wsconsume -k -b wsdl-binding.xml -b schema1-binding.xml -b schema2-binding.xml

Maven Plugin
The wsconsume tools is included in the plugin. Theorg.jboss.ws.plugins:jaxws-tools-maven-plugin

plugin has two goals for running the tool, and , which basically do the samewsconsume wsconsume-test

during different maven build phases (the former triggers the sources generation during generate-sources

phase, the latter during the one).generate-test-sources

The plugin has the following parameters:wsconsume

Latest WildFly Documentation

JBoss Community Documentation Page of 1189 2293

Attribute Description Default

bindingFiles JAXWS or JAXB binding file true

classpathElements Each classpathElement provides a

library file to be added to classpath

${project.compileClasspathElements}

or

${project.testClasspathElements}

catalog Oasis XML Catalog file for entity resolution none

targetPackage The target Java package for generated code. generated

bindingFiles One or more JAX-WS or JAXB binding file none

wsdlLocation Value to use for @WebServiceClient.wsdlLocation generated

outputDirectory The output directory for generated artifacts. ${project.build.outputDirectory}

or

${project.build.testOutputDirectory}

sourceDirectory The output directory for Java source. ${project.build.directory}/wsconsume/java

verbose Enables more informational output about command

progress.

false

wsdls The WSDL files or URLs to consume n/a

extension Enable SOAP 1.2 binding extension. false

encoding The charset encoding to use for generated sources. ${project.build.sourceEncoding}

argLine An optional additional argline to be used when running in

fork mode;

can be used to set endorse dir, enable debugging, etc.

Example

<argLine>-Djava.endorsed.dirs=...</argLine>

none

fork Whether or not to run the generation task in a separate

VM.

false

target A preference for the JAX-WS specification target Depends on the underlying stack and

endorsed dirs if any

Examples
You can use in your own project build simply referencing the in thewsconsume jaxws-tools-maven-plugin

configured plugins in your pom.xml file.

The following example makes the plugin consume the test.wsdl file and generate SEI and wrappers' java

sources. The generated sources are then compiled together with the other project classes.

Latest WildFly Documentation

JBoss Community Documentation Page of 1190 2293

<build>

 <plugins>

 <plugin>

 <groupId>org.jboss.ws.plugins</groupId>

 <artifactId>jaxws-tools-maven-plugin</artifactId>

 <version>1.2.0.Beta1</version>

 <configuration>

 <wsdls>

 <wsdl>${basedir}/test.wsdl</wsdl>

 </wsdls>

 </configuration>

 <executions>

 <execution>

 <goals>

 <goal>wsconsume</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

</build>

You can also specify multiple wsdl files, as well as force the target package, enable SOAP 1.2 binding and

turn the tool's verbose mode on:

<build>

 <plugins>

 <plugin>

 <groupId>org.jboss.ws.plugins</groupId>

 <artifactId>jaxws-tools-maven-plugin</artifactId>

 <version>1.2.0.Beta1</version>

 <configuration>

 <wsdls>

 <wsdl>${basedir}/test.wsdl</wsdl>

 <wsdl>${basedir}/test2.wsdl</wsdl>

 </wsdls>

 <targetPackage>foo.bar</targetPackage>

 <extension>true</extension>

 <verbose>true</verbose>

 </configuration>

 <executions>

 <execution>

 <goals>

 <goal>wsconsume</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

</build>

Finally, if the wsconsume invocation is required for consuming a wsdl to be used in your testsuite only, you

might want to use the goal as follows:wsconsume-test

Latest WildFly Documentation

JBoss Community Documentation Page of 1191 2293

<build>

 <plugins>

 <plugin>

 <groupId>org.jboss.ws.plugins</groupId>

 <artifactId>jaxws-tools-maven-plugin</artifactId>

 <version>1.2.0.Beta1</version>

 <configuration>

 <wsdls>

 <wsdl>${basedir}/test.wsdl</wsdl>

 </wsdls>

 </configuration>

 <executions>

 <execution>

 <goals>

 <goal>wsconsume-test</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

</build>

Plugin stack dependencyThe plugin itself does not have an explicit dependency to a JBossWS stack, as it's

meant for being used with implementations of any supported version of the . So the user isJBossWS SPI

expected to set a dependency in his own to the desired stack version. The plugin willpom.xml JBossWS

rely on the that for using the proper tooling.

<dependencies>

 <dependency>

 <groupId>org.jboss.ws.cxf</groupId>

 <artifactId>jbossws-cxf-client</artifactId>

 <version>4.0.0.GA</version>

 </dependency>

</dependencies>

Be careful when using this plugin with the Maven War Plugin as that include any project

dependency into the generated application war archive. You might want to set

 for the stack dependency to avoid that.<scope>provided</scope> JBossWS

Up to version 1.1.2.Final, the of the plugin was .artifactId maven-jaxws-tools-plugin

Ant Task
 The Ant task () has the following attributes:wsconsume org.jboss.ws.tools.ant.WSConsumeTask

Latest WildFly Documentation

JBoss Community Documentation Page of 1192 2293

Attribute Description Default

fork Whether or not to run the generation task in a separate VM. true

keep Keep/Enable Java source code generation. false

catalog Oasis XML Catalog file for entity resolution none

package The target Java package for generated code. generated

binding A JAX-WS or JAXB binding file none

wsdlLocation Value to use for @WebServiceClient.wsdlLocation generated

encoding The charset encoding to use for generated sources n/a

destdir The output directory for generated artifacts. "output"

sourcedestdir The output directory for Java source. value of destdir

target The JAX-WS specification target. Allowed values are 2.0, 2.1 and 2.2

verbose Enables more informational output about command progress. false

wsdl The WSDL file or URL n/a

extension Enable SOAP 1.2 binding extension. false

additionalHeaders Enables processing of implicit SOAP headers false

Users also need to put streamBuffer.jar and stax-ex.jar to the classpath of the ant task to generate

the appropriate artefacts.

The wsdlLocation is used when creating the Service to be used by clients and will be added to the

@WebServiceClient annotation, for an endpoint implementation based on the generated service

endpoint interface you will need to manually add the wsdlLocation to the @WebService annotation

on your web service implementation and not the service endpoint interface.

Also, the following nested elements are supported:

Element Description Default

binding A JAXWS or JAXB binding file none

jvmarg Allows setting of custom jvm arguments

Latest WildFly Documentation

JBoss Community Documentation Page of 1193 2293

Examples
Generate JAX-WS source and classes in a separate JVM with separate directories, a custom wsdl location

attribute, and a list of binding files from foo.wsdl:

<wsconsume

 fork="true"

 verbose="true"

 destdir="output"

 sourcedestdir="gen-src"

 keep="true"

 wsdllocation="handEdited.wsdl"

 wsdl="foo.wsdl">

 <binding dir="binding-files" includes="*.xml" excludes="bad.xml"/>

</wsconsume>

wsprovide
 is a command line tool, Maven plugin and Ant task that generates portable JAX-WS artifacts for awsprovide

service endpoint implementation. It also has the option to "provide" the abstract contract for offline usage.

Latest WildFly Documentation

JBoss Community Documentation Page of 1194 2293

Command Line Tool
The command line tool has the following usage:

usage: wsprovide [options] <endpoint class name>

options:

 -h, --help Show this help message

 -k, --keep Keep/Generate Java source

 -w, --wsdl Enable WSDL file generation

 -a, --address The generated port soap:address in wsdl

 -c. --classpath=<path> The classpath that contains the endpoint

 -o, --output=<directory> The directory to put generated artifacts

 -r, --resource=<directory> The directory to put resource artifacts

 -s, --source=<directory> The directory to put Java source

 -e, --extension Enable SOAP 1.2 binding extension

 -q, --quiet Be somewhat more quiet

 -t, --show-traces Show full exception stack traces

Examples
Generating wrapper classes for portable artifacts in the "generated" directory:

wsprovide -o generated foo.Endpoint

Generating wrapper classes and WSDL in the "generated" directory

wsprovide -o generated -w foo.Endpoint

Using an endpoint that references other jars

wsprovide -o generated -c application1.jar:application2.jar foo.Endpoint

Maven Plugin
The tools is included in the plugin. The pluginwsprovide org.jboss.ws.plugins:jaxws-tools-maven-plugin

has two goals for running the tool, and , which basically do the same duringwsprovide wsprovide-test

different Maven build phases (the former triggers the sources generation during phase, theprocess-classes

latter during the one).process-test-classes

The plugin has the following parameters:wsprovide

Latest WildFly Documentation

JBoss Community Documentation Page of 1195 2293

Attribute Description Default

testClasspathElements Each classpathElement provides

a

library file to be added to

classpath

${project.compileClasspathElements}

or

${project.testClasspathElements}

outputDirectory The output directory for generated

artifacts.

${project.build.outputDirectory}

or

${project.build.testOutputDirectory}

resourceDirectory The output directory for resource

artifacts (WSDL/XSD).

${project.build.directory}/wsprovide/resources

sourceDirectory The output directory for Java

source.

${project.build.directory}/wsprovide/java

extension Enable SOAP 1.2 binding

extension.

false

generateWsdl Whether or not to generate

WSDL.

false

verbose Enables more informational output

about command progress.

false

portSoapAddress The generated port soap:address

in the WSDL

endpointClass Service Endpoint

Implementation.

Examples
You can use in your own project build simply referencing the in thewsprovide maven-jaxws-tools-plugin

configured plugins in your file.pom.xml

The following example makes the plugin provide the wsdl file and artifact sources for the specified endpoint

class:

Latest WildFly Documentation

JBoss Community Documentation Page of 1196 2293

<build>

 <plugins>

 <plugin>

 <groupId>org.jboss.ws.plugins</groupId>

 <artifactId>jaxws-tools-maven-plugin</artifactId>

 <version>1.2.0.Beta1</version>

 <configuration>

 <verbose>true</verbose>

 <endpointClass>org.jboss.test.ws.plugins.tools.wsprovide.TestEndpoint</endpointClass>

 <generateWsdl>true</generateWsdl>

 </configuration>

 <executions>

 <execution>

 <goals>

 <goal>wsprovide</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

</build>

The following example does the same, but is meant for use in your own testsuite:

<build>

 <plugins>

 <plugin>

 <groupId>org.jboss.ws.plugins</groupId>

 <artifactId>jaxws-tools-maven-plugin</artifactId>

 <version>1.2.0.Beta1</version>

 <configuration>

 <verbose>true</verbose>

 <endpointClass>org.jboss.test.ws.plugins.tools.wsprovide.TestEndpoint2</endpointClass>

 <generateWsdl>true</generateWsdl>

 </configuration>

 <executions>

 <execution>

 <goals>

 <goal>wsprovide-test</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

</build>

Plugin stack dependencyThe plugin itself does not have an explicit dependency to a JBossWS stack, as it's

meant for being used with implementations of any supported version of the . So the user isJBossWS SPI

expected to set a dependency in his own to the desired stack version. The plugin willpom.xml JBossWS

rely on the that for using the proper tooling.

Latest WildFly Documentation

JBoss Community Documentation Page of 1197 2293

<dependencies>

 <dependency>

 <groupId>org.jboss.ws.cxf</groupId>

 <artifactId>jbossws-cxf-client</artifactId>

 <version>5.0.0.CR1</version>

 </dependency>

</dependencies>

Be careful when using this plugin with the Maven War Plugin as that include any project

dependency into the generated application war archive. You might want to set

 for the stack dependency to avoid that.<scope>provided</scope> JBossWS

Up to version 1.1.2.Final, the of the plugin was .artifactId maven-jaxws-tools-plugin

Latest WildFly Documentation

JBoss Community Documentation Page of 1198 2293

Ant Task
The wsprovide ant task () has the following attributes:org.jboss.ws.tools.ant.WSProvideTask

Attribute Description Default

fork Whether or not to run the generation task in a separate VM. true

keep Keep/Enable Java source code generation. false

destdir The output directory for generated artifacts. "output"

resourcedestdir The output directory for resource artifacts (WSDL/XSD). value of destdir

sourcedestdir The output directory for Java source. value of destdir

extension Enable SOAP 1.2 binding extension. false

genwsdl Whether or not to generate WSDL. false

address The generated port soap:address in wsdl.

verbose Enables more informational output about command progress. false

sei Service Endpoint Implementation.

classpath The classpath that contains the service endpoint implementation. "."

Examples
Executing wsprovide in verbose mode with separate output directories for source, resources, and classes:

<target name="test-wsproivde" depends="init">

 <taskdef name="wsprovide" classname="org.jboss.ws.tools.ant.WSProvideTask">

 <classpath refid="core.classpath"/>

 </taskdef>

 <wsprovide

 fork="false"

 keep="true"

 destdir="out"

 resourcedestdir="out-resource"

 sourcedestdir="out-source"

 genwsdl="true"

 verbose="true"

 sei="org.jboss.test.ws.jaxws.jsr181.soapbinding.DocWrappedServiceImpl">

 <classpath>

 <pathelement path="${tests.output.dir}/classes"/>

 </classpath>

 </wsprovide>

</target>

Latest WildFly Documentation

JBoss Community Documentation Page of 1199 2293

6.35.3 Advanced User Guide

Logging

JAX-WS Handler approach

Apache CXF approach

System property

Manual interceptor addition and logging feature

WS-* support

Address rewrite

Server configuration options

Dynamic rewrite

Configuration through deployment descriptor

context-root element

config-name and config-file elements

property element

port-component element

webservice-description element

Schema validation of SOAP messages

JAXB Introductions

WSDL system properties expansion

Latest WildFly Documentation

JBoss Community Documentation Page of 1200 2293

Logging
Logging of inbound and outbound messages is a common need. Different approaches are available for

achieving that:

WS Handler approach
A portable way of performing logging is writing a simple JAX-WS handler dumping the messages that are

passed in it; the handler can be added to the desired client/endpoints (programmatically / using

 JAX-WS annotation).@HandlerChain

The mechanism allows user to add the logging handler to anypredefined client and endpoint configuration

client/endpoint or to some of them only (in which case the annotation / JBossWS API is@EndpointConfig

required though).

Apache CXF approach
Apache CXF also comes with logging interceptors that can be easily used to log messages to the console or

configured client/server log files. Those interceptors can be added to client, endpoint and buses in multiple

ways:

System property
Setting the system property to true causes the logging interceptorsorg.apache.cxf.logging.enabled

to be added to any instance being created on the JVM.Bus

On WildFly, the system property is easily set by adding what follows to the standalone / domain

server configuration just after the extensions section:

<system-properties>

 <property name="org.apache.cxf.logging.enabled" value="true"/>

</system-properties>

Manual interceptor addition and logging feature
Logging interceptors can be selectively added to endpoints using the Apache CXF annotations

 and @org.apache.cxf.interceptor.InInterceptors

. The same is achieved on client side by@org.apache.cxf.interceptor.OutInterceptors

programmatically adding new instances of the logging interceptors to the client or the bus.

Alternatively, Apache CXF also comes with a that can beorg.apache.cxf.feature.LoggingFeature

used on clients and endpoints (either annotating them with or@org.apache.cxf.feature.Features

directly with).@org.apache.cxf.annotations.Logging

Please refer to the for more details.Apache CXF documentation

https://docs.jboss.org/author/display/WFLY8/Predefined+client+and+endpoint+configurations
http://cxf.apache.org/docs/debugging-and-logging.html#DebuggingandLogging-LoggingMessages

Latest WildFly Documentation

JBoss Community Documentation Page of 1201 2293

* support
JBossWS includes most of the WS-* specification functionalities through the integration with Apache CXF. In

particular, the whole WS-Security Policy framework is fully supported, enabling full contract driven

configuration of complex features like WS-Security.

In details information available further down in this documentation book.

Latest WildFly Documentation

JBoss Community Documentation Page of 1202 2293

Address rewrite
JBossWS allows users to configure the attribute in the wsdl contract of deployed services.soap:address

Server configuration options
The configuration options are part of the of the application server domainwebservices subsystem section

model.

<subsystem xmlns="urn:jboss:domain:webservices:1.1"

xmlns:javaee="http://java.sun.com/xml/ns/javaee"

 xmlns:jaxwsconfig="urn:jboss:jbossws-jaxws-config:4.0">

 <wsdl-host>localhost</wsdl-host>

 <modify-wsdl-address>true</modify-wsdl-address>

<!--

 <wsdl-port>8080</wsdl-port>

 <wsdl-secure-port>8443</wsdl-secure-port>

-->

</subsystem>

If the content of in the wsdl is a valid URL, JBossWS will not rewrite it unless <soap:address>

 is true. If the content of is not a valid URL instead, JBossWS willmodify-wsdl-address <soap:address>

always rewrite it using the attribute values given below. Please note that the variable ${jboss.bind.address}

can be used to set the address which the application is bound to at each startup.

The wsdl-secure-port and wsdl-port attributes are used to explicitly define the ports to be used for rewriting

the SOAP address. If these attributes are not set, the ports will be identified by querying the list of installed

connectors. If multiple connectors are found the port of the first connector is used.

Dynamic rewrite
When the application server is bound to multiple addresses or non-trivial real-world network architectures

cause request for different external addresses to hit the same endpoint, a static rewrite of the soap:address

may not be enough. JBossWS allows for both the soap:address in the wsdl and the wsdl address in the

console to be rewritten with the host use in the client request. This way, users always get the right wsdl

address assuming they're connecting to an instance having the endpoint they're looking for. To trigger this

behaviour, the value has to be specified for the element.jbossws.undefined.host wsdl-host

<wsdl-host>jbossws.undefined.host</wsdl-host>

<modify-wsdl-address>true</modify-wsdl-address>

Of course, when a confidential transport address is required, the addresses are always rewritten using https

protocol and the port currently configured for the https/ssl connector.

Configuration through deployment descriptor
The deployment descriptor can be used to provide additional configuration for ajboss-webservices.xml

given deployment. The expected location of it is:

https://docs.jboss.org/author/display/WFLY8/Web+services+configuration

Latest WildFly Documentation

JBoss Community Documentation Page of 1203 2293

 for EJB webservice deploymentsMETA-INF/jboss-webservices.xml

 for POJO webservice deployments and EJB webserviceWEB-INF/jboss-webservices.xml

endpoints bundled in archiveswar

The structure of file is the following (schemas are available):here

<webservices>

 <context-root/>?

 <config-name/>?

 <config-file/>?

 <property>*

 <name/>

 <value/>

 </property>

 <port-component>*

 <ejb-name/>

 <port-component-name/>

 <port-component-uri/>?

 <auth-method/>?

 <transport-guarantee/>?

 <secure-wsdl-access/>?

 </port-component>

 <webservice-description>*

 <webservice-description-name/>

 <wsdl-publish-location/>?

 </webservice-description>

</webservices>

context-root element
Element can be used to customize context root of webservices deployment.<context-root>

<webservices>

 <context-root>foo</context-root>

</webservices>

config-name and config-file elements
Elements and can be used to associate any endpoint provided in the<config-name> <config-file>

deployment with a given . Endpoint configuration are either specified in the referencedendpoint configuration

config file or in the WildFly domain model (webservices subsystem). For further details on the endpoint

configurations and their management in the domain model, please see the related .documentation

<webservices>

 <config-name>Standard WSSecurity Endpoint</config-name>

 <config-file>META-INF/custom.xml</config-file>

</webservices>

http://anonsvn.jboss.org/repos/jbossws/spi/trunk/src/main/resources/schema/
https://docs.jboss.org/author/display/WFLY8/Predefined+client+and+endpoint+configurations
https://docs.jboss.org/author/display/WFLY8/Web+services+configuration

Latest WildFly Documentation

JBoss Community Documentation Page of 1204 2293

property element
 elements can be used to setup simple property values to configure the ws stack behavior.<property>

Allowed property names and values are mentioned in the guide under related topics.

<property>

 <name>prop.name</name>

 <value>prop.value</value>

</property>

port-component element
Element can be used to customize EJB endpoint target URI or to configure security<port-component>

related properties.

<webservices>

 <port-component>

 <ejb-name>TestService</ejb-name>

 <port-component-name>TestServicePort</port-component-name>

 <port-component-uri>/*</port-component-uri>

 <auth-method>BASIC</auth-method>

 <transport-guarantee>NONE</transport-guarantee>

 <secure-wsdl-access>true</secure-wsdl-access>

 </port-component>

</webservices>

webservice-description element
Element can be used to customize (override) webservice WSDL publish<webservice-description>

location.

<webservices>

 <webservice-description>

 <webservice-description-name>TestService</webservice-description-name>

 <wsdl-publish-location>file:///bar/foo.wsdl</wsdl-publish-location>

 </webservice-description>

</webservices>

Latest WildFly Documentation

JBoss Community Documentation Page of 1205 2293

Schema validation of SOAP messages
Apache CXF has a feature for validating incoming and outgoing SOAP messages on both client and server

side. The validation is performed against the relevant schema in the endpoint wsdl contract (server side) or

the wsdl contract used for building up the service proxy (client side).

Schema validation can be turned on programmatically on client side

((BindingProvider)proxy).getRequestContext().put("schema-validation-enabled", true);

or using the annotation on server side@org.apache.cxf.annotations.SchemaValidation

import javax.jws.WebService;

import org.apache.cxf.annotations.SchemaValidation;

@WebService(...)

@SchemaValidation

public class ValidatingHelloImpl implements Hello {

 ...

}

Alternatively, any endpoint and client running in-container can be associated to a JBossWS predefined

 having the property set to in the referenced config file.configuration schema-validation-enabled true

Finally, JBossWS also allows for server-wide (default) setup of schema validation by using the

 and special configurations (which apply to any client /Standard-Endpoint-Config Standard-Client-Config

endpoint unless a different configuration is specified for them)

<subsystem xmlns="urn:jboss:domain:webservices:1.2">

 ...

 <endpoint-config name="Standard-Endpoint-Config">

 <property name="schema-validation-enabled" value="true"/>

 </endpoint-config>

 ...

 <client-config name="Standard-Client-Config">

 <property name="schema-validation-enabled" value="true"/>

 </client-config>

</subsystem>

https://docs.jboss.org/author/display/WFLY8/Predefined+client+and+endpoint+configurations
https://docs.jboss.org/author/display/WFLY8/Predefined+client+and+endpoint+configurations

Latest WildFly Documentation

JBoss Community Documentation Page of 1206 2293

JAXB Introductions
As Kohsuke Kawaguchi wrote on , one common complaint from the JAXB users is the lack ofhis blog

support for binding 3rd party classes. The scenario is this: you are trying to annotate your classes with JAXB

annotations to make it XML bindable, but some of the classes are coming from libraries and JDK, and thus

you cannot put necessary JAXB annotations on it.

To solve this JAXB has been designed to provide hooks for programmatic introduction of annotations to the

runtime.

This is currently leveraged by the JBoss JAXB Introductions project, using which users can define

annotations in XML and make JAXB see those as if those were in the class files (perhaps coming from 3rd

party libraries).

Take a look at the on the wiki and at the examples in the sources.JAXB Introductions page

WSDL system properties expansion
See Published WSDL customization

Predefined client and endpoint configurations

Overview

Assigning configurations

Endpoint configuration assignment

Endpoint Configuration Deployment Descriptor

Application server configurations

Standard configurations

Handlers classloading

Examples

EndpointConfig annotation

JAXWS Feature

Explicit setup through API

Automatic configuration from default descriptors

Automatic configuration assignment from container setup

http://weblogs.java.net/blog/kohsuke/archive/2007/07/binding_3rd_par.html
http://community.jboss.org/docs/DOC-10075
https://docs.jboss.org/author/display/WFLY9/Published+WSDL+customization

Latest WildFly Documentation

JBoss Community Documentation Page of 1207 2293

Overview
JBossWS permits extra setup configuration data to be predefined and associated with an endpoint or a

client. Configurations can include JAX-WS handlers and key/value property declarations that control

JBossWS and Apache CXF internals. Predefined configurations can be used for JAX-WS client and JAX-WS

endpoint setup.

Configurations can be defined in the webservice subsystem and in an application's deployment descriptor

file. There can be many configuration definitions in the webservice subsystem and in an application. Each

configuration must have a name that is unique within the server. Configurations defined in an application are

local to the application. Endpoint implementations declare the use of a specific configuration through the use

of the annotation. An endpoint configurationorg.jboss.ws.api.annotation.EndpointConfig

defined in the webservices subsystem is available to all deployed applications on the server container and

can be referenced by name in the annotation. An endpoint configuration defined in an application must be

referenced by both deployment descriptor file name and configuration name by the annotation.

Handlers

Each endpoint configuration may be associated with zero or more PRE and POST handler chains. Each

handler chain may include JAXWS handlers. For outbound messages the PRE handler chains are executed

before any handler that is attached to the endpoint using the standard means, such as with annotation

@HandlerChain, and POST handler chains are executed after those objects have executed. For inbound

messages the POST handler chains are executed before any handler that is attached to the endpoint using

the standard means and the PRE handler chains are executed after those objects have executed.

* Server inbound messages

Client --> ... --> POST HANDLER --> ENDPOINT HANDLERS --> PRE HANDLERS --> Endpoint

* Server outbound messages

Endpoint --> PRE HANDLER --> ENDPOINT HANDLERS --> POST HANDLERS --> ... --> Client

The same applies for client configurations.

Properties

Key/value properties are used for controlling both some Apache CXF internals and some JBossWS options.

Specific supported values are mentioned where relevant in the rest of the documentation.

Assigning configurations
Endpoints and clients are assigned configuration through different means. Users can explicitly require a

given configuration or rely on container defaults. The assignment process can be split up as follows:

Explicit assignment through annotations (for endpoints) or API programmatic usage (for clients)

Automatic assignment of configurations from default descriptors

Automatic assignment of configurations from container

Latest WildFly Documentation

JBoss Community Documentation Page of 1208 2293

Endpoint configuration assignment
The explicit configuration assignment is meant for developer that know in advance their endpoint or client

has to be setup according to a specified configuration. The configuration is either coming from a descriptor

that is included in the application deployment, or is included in the application server webservices subsystem

management model.

Endpoint Configuration Deployment Descriptor
Java EE archives that can contain JAX-WS client and endpoint implementations can also contain predefined

client and endpoint configuration declarations. All endpoint/client configuration definitions for a given archive

must be provided in a single deployment descriptor file, which must be an implementation of schema

. Many endpoint/client configurations can be defined in the deployment descriptor file.jbossws-jaxws-config

Each configuration must have a name that is unique within the server on which the application is deployed.

The configuration name can't be referred to by endpoint/client implementations outside the application. Here

is an example of a descriptor, containing two endpoint configurations:

<?xml version="1.0" encoding="UTF-8"?>

<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:javaee="http://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="urn:jboss:jbossws-jaxws-config:4.0 schema/jbossws-jaxws-config_4_0.xsd">

<endpoint-config>

<config-name>org.jboss.test.ws.jaxws.jbws3282.Endpoint4Impl</config-name>

<pre-handler-chains>

<javaee:handler-chain>

<javaee:handler>

<javaee:handler-name>Log Handler</javaee:handler-name>

<javaee:handler-class>org.jboss.test.ws.jaxws.jbws3282.LogHandler</javaee:handler-class>

</javaee:handler>

</javaee:handler-chain>

</pre-handler-chains>

<post-handler-chains>

<javaee:handler-chain>

<javaee:handler>

<javaee:handler-name>Routing Handler</javaee:handler-name>

<javaee:handler-class>org.jboss.test.ws.jaxws.jbws3282.RoutingHandler</javaee:handler-class>

</javaee:handler>

</javaee:handler-chain>

</post-handler-chains>

</endpoint-config>

<endpoint-config>

<config-name>EP6-config</config-name>

<post-handler-chains>

<javaee:handler-chain>

<javaee:handler>

<javaee:handler-name>Authorization Handler</javaee:handler-name>

<javaee:handler-class>org.jboss.test.ws.jaxws.jbws3282.AuthorizationHandler</javaee:handler-class>
</javaee:handler>
</javaee:handler-chain>
</post-handler-chains>
</endpoint-config>
</jaxws-config>

Similarly, client configurations can be specified in descriptors (still implementing the schema mentioned

above):

http://anonsvn.jboss.org/repos/jbossws/spi/tags/jbossws-spi-2.1.0.Final/src/main/resources/schema/jbossws-jaxws-config_4_0.xsd

Latest WildFly Documentation

JBoss Community Documentation Page of 1209 2293

<?xml version="1.0" encoding="UTF-8"?>

<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:javaee="http://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="urn:jboss:jbossws-jaxws-config:4.0 schema/jbossws-jaxws-config_4_0.xsd">

<client-config>

<config-name>Custom Client Config</config-name>

<pre-handler-chains>

<javaee:handler-chain>

<javaee:handler>

<javaee:handler-name>Routing Handler</javaee:handler-name>

<javaee:handler-class>org.jboss.test.ws.jaxws.clientConfig.RoutingHandler</javaee:handler-class>

</javaee:handler>

<javaee:handler>

<javaee:handler-name>Custom Handler</javaee:handler-name>

<javaee:handler-class>org.jboss.test.ws.jaxws.clientConfig.CustomHandler</javaee:handler-class>

</javaee:handler>

</javaee:handler-chain>

</pre-handler-chains>

</client-config>

<client-config>

<config-name>Another Client Config</config-name>

<post-handler-chains>

<javaee:handler-chain>

<javaee:handler>

<javaee:handler-name>Routing Handler</javaee:handler-name>

<javaee:handler-class>org.jboss.test.ws.jaxws.clientConfig.RoutingHandler</javaee:handler-class>

</javaee:handler>

</javaee:handler-chain>

</post-handler-chains>

</client-config>

</jaxws-config>

Application server configurations

WildFly allows declaring JBossWS client and server predefined configurations in the subsystemwebservices

section of the server model. As a consequence it is possible to declare server-wide handlers to be added to

the chain of each endpoint or client assigned to a given configuration.

Please refer to the for details on managing the subsystem such asWildFly documentation webservices

adding, removing and modifying handlers and properties.

The allowed contents in the subsystem are defined by the included in the applicationwebservices schema

server.

Standard configurations

Clients running in-container as well as endpoints are assigned standard configurations by default. The

defaults are used unless different configurations are set as described on this page. This enables

administrators to tune the default handler chains for client and endpoint configurations. The names of the

default client and endpoint configurations, used in the webservices subsystem are

 and respectively.Standard-Client-Config Standard-Endpoint-Config

https://docs.jboss.org/author/display/WFLY9/Web+services+configuration
https://github.com/jbossas/jboss-as/blob/7.2.0.Final/build/src/main/resources/docs/schema/jboss-as-webservices_1_2.xsd

Latest WildFly Documentation

JBoss Community Documentation Page of 1210 2293

Handlers classloading

When setting a server-wide handler, please note the handler class needs to be available through each ws

deployment classloader. As a consequence proper module dependencies might need to be specified in the

deployments that are going to leverage a given predefined configuration. A shortcut is to add a dependency

to the module containing the handler class in one of the modules which are already automatically set as

dependencies to any deployment, for instance .org.jboss.ws.spi

Examples

JBoss AS 7.2 default configurations

<subsystem xmlns="urn:jboss:domain:webservices:2.0">

<!-- ... -->

<endpoint-config name="Standard-Endpoint-Config"/>

<endpoint-config name="Recording-Endpoint-Config">

<pre-handler-chain name="recording-handlers" protocol-bindings="##SOAP11_HTTP ##SOAP11_HTTP_MTOM

##SOAP12_HTTP ##SOAP12_HTTP_MTOM">

<handler name="RecordingHandler" class="org.jboss.ws.common.invocation.RecordingServerHandler"/>

</pre-handler-chain>

</endpoint-config>

<client-config name="Standard-Client-Config"/>

</subsystem>

A configuration file for a deployment specific ws-security endpoint setup

<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:javaee="http://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="urn:jboss:jbossws-jaxws-config:4.0 schema/jbossws-jaxws-config_4_0.xsd">

<endpoint-config>

<config-name>Custom WS-Security Endpoint</config-name>

<property>

<property-name>ws-security.signature.properties</property-name>

<property-value>bob.properties</property-value>

</property>

<property>

<property-name>ws-security.encryption.properties</property-name>

<property-value>bob.properties</property-value>

</property>

<property>

<property-name>ws-security.signature.username</property-name>

<property-value>bob</property-value>

</property>

<property>

<property-name>ws-security.encryption.username</property-name>

<property-value>alice</property-value>

</property>

<property>

<property-name>ws-security.callback-handler</property-name>

<property-value>org.jboss.test.ws.jaxws.samples.wsse.policy.basic.KeystorePasswordCallback</property-value>
</property>
</endpoint-config>
</jaxws-config>

Latest WildFly Documentation

JBoss Community Documentation Page of 1211 2293

JBoss AS 7.2 default configurations modified to default to SOAP messages schema-validation on

<subsystem xmlns="urn:jboss:domain:webservices:2.0">

<!-- ... -->

<endpoint-config name="Standard-Endpoint-Config">

<property name="schema-validation-enabled" value="true"/>

</endpoint-config>

<!-- ... -->

<client-config name="Standard-Client-Config">

<property name="schema-validation-enabled" value="true"/>

</client-config>

</subsystem>

EndpointConfig annotation

Once a configuration is available to a given application, the

 annotation is used to assign an endpointorg.jboss.ws.api.annotation.EndpointConfig

configuration to a JAX-WS endpoint implementation. When assigning a configuration that is defined in the

webservices subsystem only the configuration name is specified. When assigning a configuration that is

defined in the application, the relative path to the deployment descriptor and the configuration name must be

specified.

@EndpointConfig(configFile = "WEB-INF/my-endpoint-config.xml", configName = "Custom WS-Security

Endpoint")

public class ServiceImpl implements ServiceIface

{

public String sayHello()

{

return "Secure Hello World!";

}

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1212 2293

JAXWS Feature

The most practical way of setting a configuration is using

, a JAXWS extension providedorg.jboss.ws.api.configuration.ClientConfigFeature Feature

by JBossWS:

import org.jboss.ws.api.configuration.ClientConfigFeature;

...

Service service = Service.create(wsdlURL, serviceName);

Endpoint port = service.getPort(Endpoint.class, new

ClientConfigFeature("META-INF/my-client-config.xml", "Custom Client Config"));

port.echo("Kermit");

... or

port = service.getPort(Endpoint.class, new ClientConfigFeature("META-INF/my-client-config.xml",

"Custom Client Config"), true); //setup properties too from the configuration

port.echo("Kermit");

... or ...

port = service.getPort(Endpoint.class, new ClientConfigFeature(null, testConfigName)); //reads

from current container configurations if available

port.echo("Kermit");

JBossWS parses the specified configuration file. The configuration file must be found as a resource by the

classloader of the current thread. The defines the descriptor contents and isjbossws-jaxws-config schema

included in the artifact.jbossws-spi

Explicit setup through API

Alternatively, JBossWS API comes with facility classes that can be used for assigning configurations when

building a client. JAXWS handlers read from client configurations as follows:

http://anonsvn.jboss.org/repos/jbossws/spi/tags/jbossws-spi-2.1.0.Beta1/src/main/resources/schema/jbossws-jaxws-config_4_0.xsd

Latest WildFly Documentation

JBoss Community Documentation Page of 1213 2293

import org.jboss.ws.api.configuration.ClientConfigUtil;

import org.jboss.ws.api.configuration.ClientConfigurer;

...

Service service = Service.create(wsdlURL, serviceName);

Endpoint port = service.getPort(Endpoint.class);

BindingProvider bp = (BindingProvider)port;

ClientConfigUtil.setConfigHandlers(bp, "META-INF/my-client-config.xml", "Custom Client Config

1");

port.echo("Kermit");

...

ClientConfigurer configurer = ClientConfigUtil.resolveClientConfigurer();

configurer.setConfigHandlers(bp, "META-INF/my-client-config.xml", "Custom Client Config 2");

port.echo("Kermit");

...

configurer.setConfigHandlers(bp, "META-INF/my-client-config.xml", "Custom Client Config 3");

port.echo("Kermit");

...

configurer.setConfigHandlers(bp, null, "Container Custom Client Config"); //reads from current

container configurations if available

port.echo("Kermit");

... similarly, properties are read from client configurations as follows:

Latest WildFly Documentation

JBoss Community Documentation Page of 1214 2293

import org.jboss.ws.api.configuration.ClientConfigUtil;

import org.jboss.ws.api.configuration.ClientConfigurer;

...

Service service = Service.create(wsdlURL, serviceName);

Endpoint port = service.getPort(Endpoint.class);

ClientConfigUtil.setConfigProperties(port, "META-INF/my-client-config.xml", "Custom Client

Config 1");

port.echo("Kermit");

...

ClientConfigurer configurer = ClientConfigUtil.resolveClientConfigurer();

configurer.setConfigProperties(port, "META-INF/my-client-config.xml", "Custom Client Config 2");

port.echo("Kermit");

...

configurer.setConfigProperties(port, "META-INF/my-client-config.xml", "Custom Client Config 3");

port.echo("Kermit");

...

configurer.setConfigProperties(port, null, "Container Custom Client Config"); //reads from

current container configurations if available

port.echo("Kermit");

The default implementation parses the specified configuration file, if any, after havingClientConfigurer

resolved it as a resources using the current thread context classloader. The jbossws-jaxws-config schema

 defines the descriptor contents and is included in the artifact.jbossws-spi

http://anonsvn.jboss.org/repos/jbossws/spi/tags/jbossws-spi-2.1.0.Beta1/src/main/resources/schema/jbossws-jaxws-config_4_0.xsd

Latest WildFly Documentation

JBoss Community Documentation Page of 1215 2293

Automatic configuration from default descriptors
In some cases, the application developer might not be aware of the configuration that will need to be used

for its client and endpoint implementation, perhaps because that's a concern of the application deployer. In

other cases, explicit usage (compile time dependency) of JBossWS API might not be accepted. To cope with

such scenarios, JBossWS allows including default client () and endpoint (jaxws-client-config.xml

) descriptor within the application (in its root), which are parsed for gettingjaxws-endpoint-config.xml

configurations any time a configuration file name is not specified.

If the configuration name is also not specified, JBossWS automatically looks for a configuration named the

same as

the endpoint implementation class (full qualified name), in case of JAX-WS endpoints;

the service endpoint interface (full qualified name), in case of JAX-WS clients.

No automatic configuration name is selected for clients.Dispatch

So, for instance, an endpoint implementation class for which no pre-definedorg.foo.bar.EndpointImpl

configuration is explicitly set will cause JBossWS to look for a named configurationorg.foo.bar.EndpointImpl

within a descriptor in the root of the application deployment. Similarly, on clientjaxws-endpoint-config.xml

side, a client proxy implementing interface (SEI) will have the setup read from a org.foo.bar.Endpoint

 named configuration in descriptor.org.foo.bar.Endpoint jaxws-client-config.xml

Automatic configuration assignment from container setup
JBossWS fall-backs to getting predefined configurations from the container setup whenever no explicit

configuration has been provided and the default descriptors are either not available or do not contain

relevant configurations. This gives additional control on the JAX-WS client and endpoint setup to

administrators, as the container setup can be managed independently from the deployed applications.

JBossWS hence accesses the webservices subsystem the same as explained above for explicitly named

configuration; the default configuration names used for look are

the endpoint implementation class (full qualified name), in case of JAX-WS endpoints;

the service endpoint interface (full qualified name), in case of JAX-WS clients.

 clients are not automatically configured. If no configuration is found using namesDispatch

computed as above, the and Standard-Client-Config Standard-Endpoint-Config

configurations are used for clients and endpoints respectively

Authentication

Authentication

Specify the security domain

Use BindingProvider to set principal/credential

Using HTTP Basic Auth for security

JASPI Authentication

Latest WildFly Documentation

JBoss Community Documentation Page of 1216 2293

Authentication
Here the simplest way to authenticate a web service user with JBossWS is explained.

First we secure the access to the SLSB as we would do for normal (non web service) invocations: this can

be easily done through the @RolesAllowed, @PermitAll, @DenyAll annotation. The allowed user roles can

be set with these annotations both on the bean class and on any of its business methods.

@Stateless

@RolesAllowed("friend")

public class EndpointEJB implements EndpointInterface

{

 ...

}

Similarly POJO endpoints are secured the same way as we do for normal web applications in web.xml:

<security-constraint>

 <web-resource-collection>

 <web-resource-name>All resources</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>friend</role-name>

 </auth-constraint>

</security-constraint>

<security-role>

 <role-name>friend</role-name>

</security-role>

Latest WildFly Documentation

JBoss Community Documentation Page of 1217 2293

Specify the security domain
Next, specify the security domain for this deployment. This is performed using the @SecurityDomain

annotation for EJB3 endpoints

@Stateless

@SecurityDomain("JBossWS")

@RolesAllowed("friend")

public class EndpointEJB implements EndpointInterface

{

 ...

}

or modifying the jboss-web.xml for POJO endpoints

<jboss-web>

<security-domain>JBossWS</security-domain>

</jboss-web>

The security domain as well as its the authentication and authorization mechanisms are defined differently

depending on the application server version in use.

Use BindingProvider to set principal/credential
A web service client may use the interface to set thejavax.xml.ws.BindingProvider

username/password combination

URL wsdlURL = new

File("resources/jaxws/samples/context/WEB-INF/wsdl/TestEndpoint.wsdl").toURL();

QName qname = new QName("http://org.jboss.ws/jaxws/context", "TestEndpointService");

Service service = Service.create(wsdlURL, qname);

port = (TestEndpoint)service.getPort(TestEndpoint.class);

BindingProvider bp = (BindingProvider)port;

bp.getRequestContext().put(BindingProvider.USERNAME_PROPERTY, "kermit");

bp.getRequestContext().put(BindingProvider.PASSWORD_PROPERTY, "thefrog");

Latest WildFly Documentation

JBoss Community Documentation Page of 1218 2293

Using HTTP Basic Auth for security
To enable HTTP Basic authentication you use the annotation on the bean class@WebContext

@Stateless

@SecurityDomain("JBossWS")

@RolesAllowed("friend")

@WebContext(contextRoot="/my-cxt", urlPattern="/*", authMethod="BASIC",

transportGuarantee="NONE", secureWSDLAccess=false)

public class EndpointEJB implements EndpointInterface

{

 ...

}

For POJO endpoints, we modify the adding the auth-method element:web.xml

<login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>Test Realm</realm-name>

</login-config>

JASPI Authentication
A Java Authentication SPI (JASPI) provider can be configured in WildFly security subsystem to authenticate

SOAP messages:

<security-domain name="jaspi">

<authentication-jaspi>

<login-module-stack name="jaas-lm-stack">

<login-module code="UsersRoles" flag="required">

<module-option name="usersProperties" value="jbossws-users.properties"/>

<module-option name="rolesProperties" value="jbossws-roles.properties"/>

</login-module>

</login-module-stack>

<auth-module code="org.jboss.wsf.stack.cxf.jaspi.module.UsernameTokenServerAuthModule"

login-module-stack-ref="jaas-lm-stack"/>

</authentication-jaspi>

</security-domain>

For further information on configuring security domains in WildFly, please refer to .here

Here is the classorg.jboss.wsf.stack.cxf.jaspi.module.UsernameTokenServerAuthModule

implementing , which delegates to thejavax.security.auth.message.module.ServerAuthModule

proper login module to perform authentication using the credentials from WS-Security UsernameToken in

the incoming SOAP message. Alternative implementations of can be implementedServerAuthModule

and configured.

https://docs.jboss.org/author/display/WFLY9/Security+subsystem+configuration

Latest WildFly Documentation

JBoss Community Documentation Page of 1219 2293

To enable JASPI authentication, the endpoint deployment needs to specify the security domain to use; that

can be done in two different ways:

Setting the property in the descriptorjaspi.security.domain jboss-webservices.xml

<?xml version="1.1" encoding="UTF-8"?>

<webservices

xmlns="http://www.jboss.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

version="1.2"

xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee">

<property>

<name>jaspi.security.domain</name>

<value>jaspi</value>

</property>

</webservices>

Referencing (through annotation) an endpoint config that sets the @EndpointConfig

 propertyjaspi.security.domain

@EndpointConfig(configFile = "WEB-INF/jaxws-endpoint-config.xml", configName =

"jaspiSecurityDomain")

public class ServiceEndpointImpl implements ServiceIface {

The property is specified as follows in the referenced descriptor:jaspi.security.domain

<?xml version="1.0" encoding="UTF-8"?>

<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:javaee="http://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="urn:jboss:jbossws-jaxws-config:4.0 schema/jbossws-jaxws-config_4_0.xsd">

<endpoint-config>

<config-name>jaspiSecurityDomain</config-name>

<property>

<property-name>jaspi.security.domain</property-name>

<property-value>jaspi</property-value>

</property>

</endpoint-config>

</jaxws-config>

If the JASPI security domain is specified in both and config filejboss-webservices.xml

referenced by annotation, the JASPI security domain specified in @EndpointConfig

 will take precedence. jboss-webservices.xml

Latest WildFly Documentation

JBoss Community Documentation Page of 1220 2293

Apache CXF integration

JBossWS integration layer with Apache CXF

Building WS applications the JBoss way

Portable applications

Direct Apache CXF API usage

Bus usage

Creating a Bus instance

Using existing Bus instances

Bus selection strategies for JAXWS clients

Thread bus strategy (THREAD_BUS)

New bus strategy (NEW_BUS)

Thread context classloader bus strategy (TCCL_BUS)

Strategy configuration

Server Side Integration Customization

Deployment descriptor properties

WorkQueue configuration

Policy alternative selector

MBean management

Schema validation

Interceptors

Features

WS-Discovery enablement

Apache CXF interceptors

Apache CXF features

Properties driven bean creation

HTTPConduit configuration

Latest WildFly Documentation

JBoss Community Documentation Page of 1221 2293

JBossWS integration layer with Apache CXF
All JAX-WS functionalities provided by JBossWS on top of WildFly are currently served through a proper

integration of the JBoss Web Services stack with most of the project modules.Apache CXF

Apache CXF is an open source services framework. It allows building and developing services using

frontend programming APIs (including JAX-WS), with services speaking a variety of protocols such as SOAP

and XML/HTTP over a variety of transports such as HTTP and JMS.

The integration layer (in short hereafter) is mainly meant for:JBossWS-CXF

allowing using standard webservices APIs (including JAX-WS) on WildFly; this is performed internally

leveraging Apache CXF without requiring the user to deal with it;

allowing using Apache CXF advanced features (including WS-*) on top of WildFly without requiring

the user to deal with / setup / care about the required integration steps for running in such a container.

In order for achieving the goals above, the JBossWS-CXF integration supports the JBoss ws endpoint

deployment mechanism and comes with many internal customizations on top of Apache CXF.

In the next sections a list of technical suggestions and notes on the integration is provided; please also refer

to the for in-depth details on the CXF architecture.Apache CXF official documentation

http://cxf.apache.org/
http://cxf.apache.org/docs/index.html

Latest WildFly Documentation

JBoss Community Documentation Page of 1222 2293

Building WS applications the JBoss way
The Apache CXF client and endpoint configuration as explained in the isApache CXF official user guide

heavily based on Spring. Apache CXF basically parses Spring descriptors; those may contain anycxf.xml

basic bean plus specific ws client and endpoint beans which CXF has custom parsers for. Apache CXF can

be used to deploy webservice endpoints on any servlet container by including its libraries in the deployment;

in such a scenario Spring basically serves as a convenient configuration option, given direct Apache CXF

API usage won't be very handy. Similar reasoning applies on client side, where a Spring based descriptor

offers a shortcut for setting up Apache CXF internals.

This said, nowadays almost any Apache CXF functionality can be configured and used through direct API

usage, without Spring. As a consequence of that and given the considerations in the sections below, the

JBossWS integration with Apache CXF does not rely on Spring descriptors.

Portable applications
WildFly is much more then a servlet container; it actually provides users with a fully compliant target platform

for Java EE applications.

Generally speaking, by relying only on users are encouraged to write portable applications JAX-WS

 whenever possible. That would by the way ensure easy migrations to and from other compliantspecification

platforms. Being a Java EE container, WildFly already comes with a JAX-WS compliant implementation,

which is basically Apache CXF plus the JBossWS-CXF integration layer. So users just need to write their

JAX-WS application; no need for embedding any Apache CXF or any ws related dependency library in user

. Please refer to the section of the documentation for getting started.deployments JAX-WS User Guide

WS-* usage (including WS-Security, WS-Addressing, WS-ReliableMessaging, ...) should also be configured

in the most portable way; that is by on the endpoint WSDL contracts,relying on proper WS-Policy assertions

so that client and endpoint configuration is basically a matter of setting few ws context properties. The WS-*

related sections of this documentation cover all the details on configuring applications making use of WS-*

through policies.

As a consequence of the reasoning above, the JBossWS-CXF integration is currently built directly on the

Apache CXF API and aims at allowing users to configure webservice clients and endpoints without Spring

.descriptors

Direct Apache CXF API usage
Whenever users can't really meet their application requirements with JAX-WS plus WS-Policy, it is of course

still possible to rely on direct Apache CXF API usage (given that's included in the AS), loosing the Java EE

portability of the application. That could be the case of a user needing specific Apache CXF functionalities,

or having to consume WS-* enabled endpoints advertised through legacy wsdl contracts without WS-Policy

assertions.

On server side, direct Apache CXF API usage might not be always possible or end up being not very easy.

For this reason, the JBossWS integration comes with a convenient alternative through customization options

in the descriptor described below on this page. Properties can be declared in jboss-webservices.xml

 to control Apache CXF internals like , , etc.jboss-webservices.xml interceptors features

http://cxf.apache.org/docs/index.html
https://docs.jboss.org/author/display/WFLY8/JAX-WS+User+Guide

Latest WildFly Documentation

JBoss Community Documentation Page of 1223 2293

Bus usage

Creating a Bus instance
Most of the Apache CXF features are configurable using the class. While for basicorg.apache.cxf.Bus

JAX-WS usage the user might never need to explicitly deal with Bus, using Apache CXF specific features

generally requires getting a handle to a instance. This can happen on client side asorg.apache.cxf.Bus

well as in a ws endpoint or handler business code.

New Bus instances are produced by the currently configured org.apache.cxf.BusFactory

implementation the following way:

Bus bus = BusFactory.newInstance().createBus();

The algorithm for selecting the actual implementation of to be used leverages the Service API,BusFactory

basically looking for optional configurations in location using the current threadMETA-INF/services/...

context classloader. JBossWS-CXF integration comes with its own implementation of , BusFactory

, that allows fororg.jboss.wsf.stack.cxf.client.configuration.JBossWSBusFactory

seamless setup of JBossWS customizations on top of Apache CXF. So, assuming the JBossWS-CXF

libraries are available in the current thread context classloader, the is JBossWSBusFactory automatically

retrieved by the call above.BusFactory.newInstance()

JBossWS users willing to explicitly use functionalities of get theorg.apache.cxf.bus.CXFBusFactory,

same API with JBossWS additions through :JBossWSBusFactory

Map<Class, Object> myExtensions = new HashMap<Class, Object>();

myExtensions.put(...);

Bus bus = new JBossWSBusFactory().createBus(myExtensions);

Latest WildFly Documentation

JBoss Community Documentation Page of 1224 2293

Using existing Bus instances
Apache CXF keeps reference to a global default instance as well as to a thread default bus for eachBus

thread. That is performed through static members in which also comesorg.apache.cxf.BusFactory,

with the following methods in the public API:

public static synchronized Bus getDefaultBus()

public static synchronized Bus getDefaultBus(boolean createIfNeeded)

public static synchronized void setDefaultBus(Bus bus)

public static Bus getThreadDefaultBus()

public static Bus getThreadDefaultBus(boolean createIfNeeded)

public static void setThreadDefaultBus(Bus bus)

Please note that the default behaviour of getDefaultBus() / getDefaultBus(true) /

 is to create a new Bus instance if that's notgetThreadDefaultBus() / getThreadDefaultBus(true)

set yet. Moreover and first fallback to retrieving thegetThreadDefaultBus() getThreadDefaultBus(true)

configured global default bus before actually trying creating a new instance (and the created new instance is

set as global default bus if that was not set there yet).

The drawback of this mechanism (which is basically fine in JSE environment) is that when running in WildFly

container you need to be careful in order not to (mis)use a bus over multiple applications (assuming the

Apache CXF classes are loaded by the same classloader, which is currently the case with WildFly).

Here is a list of general suggestions to avoid problems when running in-container:

forget about the global default bus; you don't need that, so don't do getDefaultBus() /

 in your code;getDefaultBus(true) / setDefaultBus()

avoid unless you already know forgetThreadDefaultBus() / getThreadDefaultBus(true)

sure the default bus is already set;

keep in mind thread pooling whenever you customize a thread default bus instance (for instance

adding bus scope interceptors, ...), as that thread and bus might be later reused; so either shutdown

the bus when you're done or explicitly remove it from the BusFactory thread association.

Finally, remember that each time you explictly create a new Bus instance (factory.createBus()) that is set as

thread default bus and global default bus if those are not set yet. The JAXWS implementationProvider

also creates instances internally, in particular the JBossWS version of JAXWS makes sureBus Provider

the default bus is never internally used and instead a new is created if required (more details on this inBus

the next paragraph).

Bus selection strategies for JAXWS clients
JAXWS clients require an Apache CXF Bus to be available; the client is registered within the Bus and the

Bus affects the client behavior (e.g. through the configured CXF interceptors). The way a bus is internally

selected for serving a given JAXWS client is very important, especially for in-container clients; for this

reason, JBossWS users can choose the preferred Bus selection strategy. The strategy is enforced in the

 implementation from the JBossWS integration, being that called wheneverjavax.xml.ws.spi.Provider

a JAXWS (client) is requested.Service

Latest WildFly Documentation

JBoss Community Documentation Page of 1225 2293

Thread bus strategy (THREAD_BUS)

Each time the vanilla JAXWS api is used to create a Bus, the JBossWS-CXF integration will automatically

make sure a Bus is currently associated to the current thread in the BusFactory. If that's not the case, a new

Bus is created and linked to the current thread (to prevent the user from relying on the default Bus). The

Apache CXF engine will then create the client using the current thread Bus.

This is the default strategy, and the most straightforward one in Java SE environments; it lets users

automatically reuse a previously created Bus instance and allows using customized Bus that can possibly be

created and associated to the thread before building up a JAXWS client.

The drawback of the strategy is that the link between the Bus instance and the thread needs to be eventually

cleaned up (when not needed anymore). This is really evident in a Java EE environment (hence when

running in-container), as threads from pools (e.g. serving web requests) are re-used.

When relying on this strategy, the safest approach to be sure of cleaning up the link is to surround the

JAXWS client with a block as below:try/finally

try {

Service service = Service.create(wsdlURL, serviceQName);

MyEndpoint port = service.getPort(MyEndpoint.class);

//...

} finally {

BusFactory.setThreadDefaultBus(null);

// OR (if you don't need the bus and the client anymore)

 Bus bus = BusFactory.getThreadDefaultBus(false);

bus.shutdown(true);

}

New bus strategy (NEW_BUS)

Another strategy is to have the JAXWS Provider from the JBossWS integration create a new Bus each time

a JAXWS client is built. The main benefit of this approach is that a fresh bus won't rely on any formerly

cached information (e.g. cached WSDL / schemas) which might have changed after the previous client

creation. The main drawback is of course worse performance as the Bus creation takes time.

If there's a bus already associated to the current thread before the JAXWS client creation, that is

automatically restored when returning control to the user; in other words, the newly created bus will be used

only for the created JAXWS client but won't stay associated to the current thread at the end of the process.

Similarly, if the thread was not associated to any bus before the client creation, no bus will be associated to

the thread at the end of the client creation.

Latest WildFly Documentation

JBoss Community Documentation Page of 1226 2293

Thread context classloader bus strategy (TCCL_BUS)

The last strategy is to have the bus created for serving the client be associated to the current thread context

classloader (TCCL). That basically means the same Bus instance is shared by JAXWS clients running when

the same TCCL is set. This is particularly interesting as each web application deployment usually has its

own context classloader, so this strategy is possibly a way to keep the number of created Bus instances

bound to the application number in WildFly container.

If there's a bus already associated to the current thread before the JAXWS client creation, that is

automatically restored when returning control to the user; in other words, the bus corresponding to the

current thread context classloader will be used only for the created JAXWS client but won't stay associated

to the current thread at the end of the process. If the thread was not associated to any bus before the client

creation, a new bus will be created (and later user for any other client built with this strategy and the same

TCCL in place); no bus will be associated to the thread at the end of the client creation.

Strategy configuration

Users can request a given Bus selection strategy to be used for the client being built by specifying one of the

following JBossWS features (which extend):javax.xml.ws.WebServiceFeature

Feature Strategy

org.jboss.wsf.stack.cxf.client.UseThreadBusFeature THREAD_BUS

org.jboss.wsf.stack.cxf.client.UseNewBusFeature NEW_BUS

org.jboss.wsf.stack.cxf.client.UseTCCLBusFeature TCCL_BUS

The feature is specified as follows:

Service service = Service.create(wsdlURL, serviceQName, new UseThreadBusFeature());

If no feature is explicitly specified, the system default strategy is used, which can be modified through the

 system property when starting the JVM. The validorg.jboss.ws.cxf.jaxws-client.bus.strategy

values for the property are , and . The default is .THREAD_BUS NEW_BUS TCCL_BUS THREAD_BUS

Server Side Integration Customization
The JBossWS-CXF server side integration takes care of internally creating proper Apache CXF structures

(including a instance, of course) for the provided ws deployment. Should the deployment includeBus

multiple endpoints, those would all live within the same Apache CXF Bus, which would of course be

completely separated by the other deployments' bus instances.

While JBossWS sets sensible defaults for most of the Apache CXF configuration options on server side,

users might want to fine tune the instance that's created for their deployment; a Bus

 descriptor can be used for deployment level customizations.jboss-webservices.xml

Deployment descriptor properties
The descriptor can be used to .jboss-webservices.xml provide property values

https://docs.jboss.org/author/display/WFLY8/Advanced+User+Guide

Latest WildFly Documentation

JBoss Community Documentation Page of 1227 2293

<webservices xmlns="http://www.jboss.com/xml/ns/javaee" version="1.2">

 ...

 <property>

 <name>...</name>

 <value>...</value>

 </property>

 ...

</webservices>

JBossWS-CXF integration comes with a set of allowed property names to control Apache CXF internals.

WorkQueue configuration

Apache CXF uses WorkQueue instances for dealing with some operations (e.g. @Oneway requests

processing). A is installed in the Bus as an extension and allows for adding / removingWorkQueueManager

queues as well as controlling the existing ones.

On server side, queues can be provided by using the properties in cxf.queue.<queue-name>.*

 (e.g. for controlling the max queuejboss-webservices.xml cxf.queue.default.maxQueueSize

size of the workqueue). At deployment time, the JBossWS integration can add new instances of default

 to the currently configured WorkQueueManager; the properties below are used toAutomaticWorkQueueImpl

fill in parameter into the :AutomaticWorkQueueImpl constructor

Property Default value

cxf.queue.<queue-name>.maxQueueSize 256

cxf.queue.<queue-name>.initialThreads 0

cxf.queue.<queue-name>.highWaterMark 25

cxf.queue.<queue-name>.lowWaterMark 5

cxf.queue.<queue-name>.dequeueTimeout 120000

Policy alternative selector

The Apache CXF policy engine supports different strategies to deal with policy alternatives. JBossWS-CXF

integration currently defaults to the , but still allows for setting different selectorMaximalAlternativeSelector

implementation using the property in .cxf.policy.alternativeSelector jboss-webservices.xml

http://cxf.apache.org/javadoc/latest-2.5.x/org/apache/cxf/workqueue/WorkQueueManager.html
http://cxf.apache.org/javadoc/latest-2.5.x/org/apache/cxf/workqueue/AutomaticWorkQueueImpl.html
http://cxf.apache.org/javadoc/latest-2.5.x/org/apache/cxf/workqueue/AutomaticWorkQueueImpl.html#AutomaticWorkQueueImpl(int,%20int,%20int,%20int,%20long,%20java.lang.String)
http://cxf.apache.org/javadoc/latest-2.5.x/org/apache/cxf/ws/policy/selector/MaximalAlternativeSelector.html

Latest WildFly Documentation

JBoss Community Documentation Page of 1228 2293

MBean management

Apache CXF allows managing its MBean objects that are installed into the WildFly MBean server. The

feature is enabled on a deployment basis through the property in cxf.management.enabled

. The propertyjboss-webservices.xml cxf.management.installResponseTimeInterceptors

can also be used to control installation of CXF response time interceptors, which are added by default when

enabling MBean management, but might not be desired in some cases. Here is an example:

<webservices xmlns="http://www.jboss.com/xml/ns/javaee" version="1.2">

<property>

<name>cxf.management.enabled</name>

<value>true</value>

</property>

<property>

<name>cxf.management.installResponseTimeInterceptors</name>

<value>false</value>

</property>

</webservices>

Schema validation

Schema validation of exchanged messages can also be enabled in . Furtherjboss-webservices.xml

details available .here

Interceptors

The descriptor also allows specifying the and jboss-webservices.xml cxf.interceptors.in

 properties; those allows declaring interceptors to be attached to the Bus instancecxf.interceptors.out

that's created for serving the deployment.

<?xml version="1.1" encoding="UTF-8"?>

<webservices

xmlns="http://www.jboss.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

version="1.2"

xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee">

<property>

<name>cxf.interceptors.in</name>

<value>org.jboss.test.ws.jaxws.cxf.interceptors.BusInterceptor</value>

</property>

<property>

<name>cxf.interceptors.out</name>

<value>org.jboss.test.ws.jaxws.cxf.interceptors.BusCounterInterceptor</value>

</property>

</webservices>

https://docs.jboss.org/author/display/WFLY9/Advanced+User+Guide

Latest WildFly Documentation

JBoss Community Documentation Page of 1229 2293

Features

The descriptor also allows specifying the property; that allowsjboss-webservices.xml cxf.features

declaring features to be attached to any endpoint belonging to the Bus instance that's created for serving the

deployment.

<?xml version="1.1" encoding="UTF-8"?>

<webservices

xmlns="http://www.jboss.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

version="1.2"

xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee">

<property>

<name>cxf.features</name>

<value>org.apache.cxf.feature.FastInfosetFeature</value>

</property>

</webservices>

Discovery enablement

WS-Discovery support can be turned on in for the current deployment. Furtherjboss-webservices

details available .here

Apache CXF interceptors
Apache CXF supports declaring interceptors using one of the following approaches:

Annotation usage on endpoint classes (, @org.apache.cxf.interceptor.InInterceptor

)@org.apache.cxf.interceptor.OutInterceptor

Direct API usage on client side (through the

 interface)org.apache.cxf.interceptor.InterceptorProvider

Spring descriptor usage ()cxf.xml

As the Spring descriptor usage is not supported, the JBossWS integration adds an additional descriptor

based approach to avoid requiring modifications to the actual client/endpoint code. Users can declare

interceptors within by specifying a list of interceptor classpredefined client and endpoint configurations

names for the and properties.cxf.interceptors.in cxf.interceptors.out

<?xml version="1.0" encoding="UTF-8"?>

<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:javaee="http://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="urn:jboss:jbossws-jaxws-config:4.0 schema/jbossws-jaxws-config_4_0.xsd">

<endpoint-config>

<config-name>org.jboss.test.ws.jaxws.cxf.interceptors.EndpointImpl</config-name>

<property>

<property-name>cxf.interceptors.in</property-name>

<property-value>org.jboss.test.ws.jaxws.cxf.interceptors.EndpointInterceptor,org.jboss.test.ws.jaxws.cxf.interceptors.FooInterceptor</property-value>
</property>
<property>
<property-name>cxf.interceptors.out</property-name>
<property-value>org.jboss.test.ws.jaxws.cxf.interceptors.EndpointCounterInterceptor</property-value>
</property>
</endpoint-config>
</jaxws-config>

A new instance of each specified interceptor class will be added to the client or endpoint the configuration is

assigned to. The interceptor classes must have a no-argument constructor.

https://docs.jboss.org/author/display/WFLY9/WS-Discovery
https://docs.jboss.org/author/display/JBWS/Predefined+client+and+endpoint+configurations

Latest WildFly Documentation

JBoss Community Documentation Page of 1230 2293

Apache CXF features
Apache CXF supports declaring features using one of the following approaches:

Annotation usage on endpoint classes ()@org.apache.cxf.feature.Features

Direct API usage on client side (through extensions of the

 class)org.apache.cxf.feature.AbstractFeature

Spring descriptor usage ()cxf.xml

As the Spring descriptor usage is not supported, the JBossWS integration adds an additional descriptor

based approach to avoid requiring modifications to the actual client/endpoint code. Users can declare

features within by specifying a list of feature class names forpredefined client and endpoint configurations

the property.cxf.features

<?xml version="1.0" encoding="UTF-8"?>

<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:javaee="http://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="urn:jboss:jbossws-jaxws-config:4.0 schema/jbossws-jaxws-config_4_0.xsd">

<endpoint-config>

<config-name>Custom FI Config</config-name>

<property>

<property-name>cxf.features</property-name>

<property-value>org.apache.cxf.feature.FastInfosetFeature</property-value>

</property>

</endpoint-config>

</jaxws-config>

A new instance of each specified feature class will be added to the client or endpoint the configuration is

assigned to. The feature classes must have a no-argument constructor.

https://docs.jboss.org/author/display/JBWS/Predefined+client+and+endpoint+configurations

Latest WildFly Documentation

JBoss Community Documentation Page of 1231 2293

Properties driven bean creation
Sections above explain how to declare CXF interceptors and features through properties either in a

client/endpoint predefined configuration or in a descriptor. By getting thejboss-webservices.xml

feature/interceptor class name only specified, the container simply tries to create a bean instance using the

class default constructor. This sets a limitation on the feature/interceptor configuration, unless custom

extensions of vanilla CXF classes are provided, with the default constructor setting properties before

eventually using the super constructor.

To cope with this issue, JBossWS integration comes with a mechanism for configuring simple bean

hierarchies when building them up from properties. Properties can have bean reference values, that is

strings starting with . Property reference keys are used to specify the bean class name and the value for##

for each attribute. So for instance the following properties:

Key Value

cxf.features ##foo, ##bar

##foo org.jboss.Foo

##foo.par 34

##bar org.jboss.Bar

##bar.color blue

would result into the stack installing two feature instances, the same that would have been created by

import org.Bar;

import org.Foo;

...

Foo foo = new Foo();

foo.setPar(34);

Bar bar = new Bar();

bar.setColor("blue");

The mechanism assumes that the classes are valid beans with proper getter and setter methods; value

objects are cast to the correct primitive type by inspecting the class definition. Nested beans can of course

be configured.

Latest WildFly Documentation

JBoss Community Documentation Page of 1232 2293

HTTPConduit configuration
HTTP transport setup in Apache CXF is achieved through

 . When running on top of theorg.apache.cxf.transport.http.HTTPConduit configurations

JBossWS integration, conduits can be programmatically modified using the Apache CXF API as follows:

import org.apache.cxf.frontend.ClientProxy;

import org.apache.cxf.transport.http.HTTPConduit;

import org.apache.cxf.transports.http.configuration.HTTPClientPolicy;

//set chunking threshold before using a JAX-WS port client

...

HTTPConduit conduit = (HTTPConduit)ClientProxy.getClient(port).getConduit();

HTTPClientPolicy client = conduit.getClient();

client.setChunkingThreshold(8192);

...

Users can also control the default values for the most common HTTPConduit parameters by setting specific

system properties; the provided values will override Apache CXF defaut values.

Property Description

cxf.client.allowChunking A boolean to tell Apache CXF whether to allow send messages using

chunking.

cxf.client.chunkingThreshold An integer value to tell Apache CXF the threshold at which switching from

non-chunking to chunking mode.

cxf.client.connectionTimeout A long value to tell Apache CXF how many milliseconds to set the

connection timeout to

cxf.client.receiveTimeout A long value to tell Apache CXF how many milliseconds to set the receive

timeout to

cxf.client.connection A string to tell Apache CXF to use or connection typeKeep-Alive close

cxf.tls-client.disableCNCheck A boolean to tell Apache CXF whether disabling CN host name check or

not

The vanilla Apache CXF defaults apply when the system properties above are not set.

Addressing
JBoss Web Services inherits full WS-Addressing capabilities from the underlying Apache CXF

implementation. Apache CXF provides support for 2004-08 and versions of WS-Addressing.1.0

http://cxf.apache.org/docs/client-http-transport-including-ssl-support.html
http://www.w3.org/TR/ws-addr-core/

Latest WildFly Documentation

JBoss Community Documentation Page of 1233 2293

Enabling WS-Addressing
WS-Addressing can be turned on in multiple standard ways:

consuming a WSDL contract that specifies a WS-Addressing assertion / policy

using the annotation@javax.xml.ws.soap.Addressing

using the featurejavax.xml.ws.soap.AddressingFeature

The supported addressing policy elements are:

[http://www.w3.org/2005/02/addressing/wsdl]UsingAddressing

[http://schemas.xmlsoap.org/ws/2004/08/addressing/policy]UsingAddressing

[http://www.w3.org/2006/05/addressing/wsdl]UsingAddressing

[http://www.w3.org/2007/05/addressing/metadata]Addressing

Alternatively, Apache CXF proprietary ways are also available:

specifying the feature for a given client/endpoint[http://cxf.apache.org/ws/addressing]addressing

using the feature through the APIorg.apache.cxf.ws.addressing.WSAddressingFeature

manually configuring the Apache CXF addressing interceptors (

 and org.apache.cxf.ws.addressing.MAPAggregator

)org.apache.cxf.ws.addressing.soap.MAPCodec

setting the property in the message contextorg.apache.cxf.ws.addressing.using

Please refer to the the Apache CXF documentation for further information on the proprietary WS-Addressing

 and .setup configuration details

Addressing Policy
The WS-Addressing support is also perfectly integrated with the Apache CXF WS-Policy engine.

This basically means that the WSDL contract generation for code-first endpoint deployment is policy-aware:

users can annotate endpoints with the annotation and expect the@javax.xml.ws.soap.Addressing

published WSDL contract to contain proper WS-Addressing policy (assuming no is specifiedwsdlLocation

in the endpoint's annotation).@WebService

Similarly, on client side users do not need to manually specify the

 feature, as the policy engine is able to properly process thejavax.xml.ws.soap.AddressingFeature

WS-Addressing policy in the consumed WSDL and turn on addressing as requested.

Example
Here is an example showing how to simply enable WS-Addressing through WS-Policy.

Endpoint

http://cxf.apache.org/docs/ws-addressing.html
http://cxf.apache.org/docs/ws-addressing.html
http://cxf.apache.org/docs/wsaconfiguration.html

Latest WildFly Documentation

JBoss Community Documentation Page of 1234 2293

A simple JAX-WS endpoint is prepared using a java-first approach; WS-Addressing is enforced through

 annotation and no is provided in :@Addressing wsdlLocation @WebService

package org.jboss.test.ws.jaxws.samples.wsa;

import javax.jws.WebService;

import javax.xml.ws.soap.Addressing;

import org.jboss.logging.Logger;

@WebService

(

 portName = "AddressingServicePort",

 serviceName = "AddressingService",

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/wsaddressing",

 endpointInterface = "org.jboss.test.ws.jaxws.samples.wsa.ServiceIface"

)

@Addressing(enabled=true, required=true)

public class ServiceImpl implements ServiceIface

{

 private Logger log = Logger.getLogger(this.getClass());

 public String sayHello(String name)

 {

 return "Hello " + name + "!";

 }

}

The WSDL contract that's generated at deploy time and published looks like this:

Latest WildFly Documentation

JBoss Community Documentation Page of 1235 2293

<wsdl:definitions>

...

 <wsdl:binding name="AddressingServiceSoapBinding" type="tns:ServiceIface">

 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsaw:UsingAddressing wsdl:required="true"/>

 <wsp:PolicyReference URI="#AddressingServiceSoapBinding_WSAM_Addressing_Policy"/>

 <wsdl:operation name="sayHello">

 <soap:operation soapAction="" style="document"/>

 <wsdl:input name="sayHello">

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="sayHelloResponse">

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="AddressingService">

 <wsdl:port binding="tns:AddressingServiceSoapBinding" name="AddressingServicePort">

 <soap:address location="http://localhost:8080/jaxws-samples-wsa"/>

 </wsdl:port>

 </wsdl:service>

 <wsp:Policy wsu:Id="AddressingServiceSoapBinding_WSAM_Addressing_Policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">

 <wsam:Addressing xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata">

 <wsp:Policy/>

 </wsam:Addressing>

 </wsp:Policy>

</wsdl:definitions>

Client
Since the WS-Policy engine is on by default, the client side code is basically a pure JAX-WS client app:

QName serviceName = new QName("http://www.jboss.org/jbossws/ws-extensions/wsaddressing",

"AddressingService");

URL wsdlURL = new URL("http://localhost:8080/jaxws-samples-wsa?wsdl");

Service service = Service.create(wsdlURL, serviceName);

ServiceIface proxy = (ServiceIface)service.getPort(ServiceIface.class);

proxy.sayHello("World");

Latest WildFly Documentation

JBoss Community Documentation Page of 1236 2293

Security

WS-Security overview

JBoss WS-Security support

Apache CXF WS-Security implementation

WS-Security Policy support

JBossWS configuration additions

Apache CXF annotations

Examples

Signature and encryption

Endpoint

Client

Endpoint serving multiple clients

Authentication and authorization

Endpoint

Client

Secure transport

Secure conversation

Security overview
WS-Security provides the means to secure your services beyond transport level protocols such as .HTTPS

Through a number of standards such as , and headers defined in the standard,XML-Encryption WS-Security

it allows you to:

Pass authentication tokens between services.

Encrypt messages or parts of messages.

Sign messages.

Timestamp messages.

WS-Security makes heavy use of public and private key cryptography. It is helpful to understand these

basics to really understand how to configure WS-Security. With public key cryptography, a user has a pair of

public and private keys. These are generated using a large prime number and a key function.

The keys are related mathematically, but cannot be derived from one another. With these keys we can

encrypt messages. For example, if Bob wants to send a message to Alice, he can encrypt a message using

her public key. Alice can then decrypt this message using her private key. Only Alice can decrypt this

message as she is the only one with the private key.

http://www.w3.org/TR/xmlenc-core/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

Latest WildFly Documentation

JBoss Community Documentation Page of 1237 2293

Messages can also be signed. This allows you to ensure the authenticity of the message. If Alice wants to

send a message to Bob, and Bob wants to be sure that it is from Alice, Alice can sign the message using her

private key. Bob can then verify that the message is from Alice by using her public key.

JBoss WS-Security support
JBoss Web Services supports many real world scenarios requiring WS-Security functionalities. This includes

signature and encryption support through X509 certificates, authentication and authorization through

username tokens as well as all ws-security configurations covered by WS- specification.SecurityPolicy

, the core of WS-Security functionalities is provided through the ApacheAs well as for other WS-* features

CXF engine. On top of that the JBossWS integration adds few configuration enhancements to simplify the

setup of WS-Security enabled endpoints.

Apache CXF WS-Security implementation
Apache CXF features a top class WS-Security module supporting multiple configurations and easily

extendible.

The system is based on that delegate to for the low level security operations.interceptors Apache WSS4J

Interceptors can be configured in different ways, either through Spring configuration files or directly using

Apache CXF client API. Please refer to the if you're looking for more details.Apache CXF documentation

Recent versions of Apache CXF, however, introduced support for WS-Security Policy, which aims at moving

most of the security configuration into the service contract (through policies), so that clients can easily be

configured almost completely automatically from that. This way users do not need to manually deal with

configuring / installing the required interceptors; the Apache CXF WS-Policy engine internally takes care of

that instead.

Security Policy support

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/ws-securitypolicy.html
https://docs.jboss.org/author/display/WFLY8/Apache+CXF+integration
http://ws.apache.org/wss4j
http://cxf.apache.org/docs/ws-security.html

Latest WildFly Documentation

JBoss Community Documentation Page of 1238 2293

WS-SecurityPolicy describes the actions that are required to securely communicate with a service advertised

in a given WSDL contract. The WSDL bindings / operations reference WS-Policy fragments with the security

requirements to interact with the service. The allows for specifying thingsWS-SecurityPolicy specification

like asymmetric/symmetric keys, using transports (https) for encryption, which parts/headers to encrypt or

sign, whether to sign then encrypt or encrypt then sign, whether to include timestamps, whether to use

derived keys, etc.

However some mandatory configuration elements are not covered by WS-SecurityPolicy, basically because

they're not meant to be public / part of the published endpoint contract; those include things such as

keystore locations, usernames and passwords, etc. Apache CXF allows configuring these elements either

through Spring xml descriptors or using the client API / annotations. Below is the list of supported

configuration properties:

ws-security.username The username used for UsernameToken policy assertions

ws-security.password The password used for UsernameToken policy assertions. If not

specified, the callback handler will be called.

ws-security.callback-handler The WSS4J security CallbackHandler that will be used to retrieve

passwords for keystores and UsernameTokens.

ws-security.signature.properties The properties file/object that contains the WSS4J properties for

configuring the signature keystore and crypto objects

ws-security.encryption.properties The properties file/object that contains the WSS4J properties for

configuring the encryption keystore and crypto objects

ws-security.signature.username The username or alias for the key in the signature keystore that will be

used. If not specified, it uses the the default alias set in the properties

file. If that's also not set, and the keystore only contains a single key,

that key will be used.

ws-security.encryption.username The username or alias for the key in the encryption keystore that will be

used. If not specified, it uses the the default alias set in the properties

file. If that's also not set, and the keystore only contains a single key,

that key will be used. For the web service provider, the useReqSigCert

keyword can be used to accept (encrypt to) any client whose public key

is in the service's truststore (defined in

ws-security.encryption.properties.)

ws-security.signature.crypto Instead of specifying the signature properties, this can point to the full

 object. This can allow easier "programmatic"WSS4J Crypto

configuration of the Crypto information."

ws-security.encryption.crypto Instead of specifying the encryption properties, this can point to the full

 object. This can allow easier "programmatic"WSS4J Crypto

configuration of the Crypto information."

ws-security.enable.streaming Enable (StAX based) processing of WS-Security messagesstreaming

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/ws-securitypolicy.html
http://ws.apache.org/wss4j/apidocs/org/apache/ws/security/components/crypto/Crypto.html
http://ws.apache.org/wss4j/apidocs/org/apache/ws/security/components/crypto/Crypto.html
http://ws.apache.org/wss4j/streaming.html

Latest WildFly Documentation

JBoss Community Documentation Page of 1239 2293

Here is an example of configuration using the client API:

Map<String, Object> ctx = ((BindingProvider)port).getRequestContext();

ctx.put("ws-security.encryption.properties", properties);

port.echoString("hello");

Please refer to the for additional configuration details.Apache CXF documentation

JBossWS configuration additions
In order for removing the need of Spring on server side for setting up WS-Security configuration properties

not covered by policies, the JBossWS integration allows for getting those pieces of information from a

defined . can include property declarations and endpointendpoint configuration Endpoint configurations

implementations can be associated with a given endpoint configuration using the @EndpointConfig

annotation.

<?xml version="1.0" encoding="UTF-8"?>

<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:javaee="http://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="urn:jboss:jbossws-jaxws-config:4.0 schema/jbossws-jaxws-config_4_0.xsd">

 <endpoint-config>

 <config-name>Custom WS-Security Endpoint</config-name>

 <property>

 <property-name>ws-security.signature.properties</property-name>

 <property-value>bob.properties</property-value>

 </property>

 <property>

 <property-name>ws-security.encryption.properties</property-name>

 <property-value>bob.properties</property-value>

 </property>

 <property>

 <property-name>ws-security.signature.username</property-name>

 <property-value>bob</property-value>

 </property>

 <property>

 <property-name>ws-security.encryption.username</property-name>

 <property-value>alice</property-value>

 </property>

 <property>

 <property-name>ws-security.callback-handler</property-name>

<property-value>org.jboss.test.ws.jaxws.samples.wsse.policy.basic.KeystorePasswordCallback</property-value>

</property>

 </endpoint-config>

</jaxws-config>

http://cxf.apache.org/docs/ws-securitypolicy.html
https://docs.jboss.org/author/display/WFLY8/Predefined+client+and+endpoint+configurations

Latest WildFly Documentation

JBoss Community Documentation Page of 1240 2293

import javax.jws.WebService;

import org.jboss.ws.api.annotation.EndpointConfig;

@WebService

(

 portName = "SecurityServicePort",

 serviceName = "SecurityService",

 wsdlLocation = "WEB-INF/wsdl/SecurityService.wsdl",

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy",

 endpointInterface = "org.jboss.test.ws.jaxws.samples.wsse.policy.basic.ServiceIface"

)

@EndpointConfig(configFile = "WEB-INF/jaxws-endpoint-config.xml", configName = "Custom

WS-Security Endpoint")

public class ServiceImpl implements ServiceIface

{

 public String sayHello()

 {

 return "Secure Hello World!";

 }

}

Apache CXF annotations
The JBossWS configuration additions allow for a descriptor approach to the WS-Security Policy engine

configuration. If you prefer to provide the same information through an annotation approach, you can

leverage the Apache CXF annotation:@org.apache.cxf.annotations.EndpointProperties

@WebService(

 ...

)

@EndpointProperties(value = {

 @EndpointProperty(key = "ws-security.signature.properties", value = "bob.properties"),

 @EndpointProperty(key = "ws-security.encryption.properties", value = "bob.properties"),

 @EndpointProperty(key = "ws-security.signature.username", value = "bob"),

 @EndpointProperty(key = "ws-security.encryption.username", value = "alice"),

 @EndpointProperty(key = "ws-security.callback-handler", value =

"org.jboss.test.ws.jaxws.samples.wsse.policy.basic.KeystorePasswordCallback")

 }

)

public class ServiceImpl implements ServiceIface {

 ...

}

Examples
In this section some sample of WS-Security service endpoints and clients are provided. Please note they're

only meant as tutorials; you should really careful isolate the ws-security policies / assertion that best suite

your security needs before going to production environment.

Latest WildFly Documentation

JBoss Community Documentation Page of 1241 2293

The following sections provide directions and examples on understanding some of the

configuration options for WS-Security engine. Please note the implementor remains responsible for

assessing the application requirements and choosing the most suitable security policy for them.

Signature and encryption
Endpoint

First of all you need to create the web service endpoint using JAX-WS. While this can generally be achieved

in different ways, it's required to use a contract-first approach when using WS-Security, as the policies

declared in the wsdl are parsed by the Apache CXF engine on both server and client sides. So, here is an

example of WSDL contract enforcing signature and encryption using X 509 certificates (the referenced

schema is omitted):

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<definitions targetNamespace="http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy"

name="SecurityService"

 xmlns:tns="http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsp="http://www.w3.org/ns/ws-policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

 xmlns:wsaws="http://www.w3.org/2005/08/addressing"

 xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">

 <types>

 <xsd:schema>

 <xsd:import namespace="http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy"

schemaLocation="SecurityService_schema1.xsd"/>

 </xsd:schema>

 </types>

 <message name="sayHello">

 <part name="parameters" element="tns:sayHello"/>

 </message>

 <message name="sayHelloResponse">

 <part name="parameters" element="tns:sayHelloResponse"/>

 </message>

 <portType name="ServiceIface">

 <operation name="sayHello">

 <input message="tns:sayHello"/>

 <output message="tns:sayHelloResponse"/>

 </operation>

 </portType>

 <binding name="SecurityServicePortBinding" type="tns:ServiceIface">

 <wsp:PolicyReference URI="#SecurityServiceSignThenEncryptPolicy"/>

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <operation name="sayHello">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal"/>

 </input>

 <output>

Latest WildFly Documentation

JBoss Community Documentation Page of 1242 2293

 <soap:body use="literal"/>

 </output>

 </operation>

 </binding>

 <service name="SecurityService">

 <port name="SecurityServicePort" binding="tns:SecurityServicePortBinding">

 <soap:address location="http://localhost:8080/jaxws-samples-wssePolicy-sign-encrypt"/>

 </port>

 </service>

 <wsp:Policy wsu:Id="SecurityServiceSignThenEncryptPolicy"

xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:AsymmetricBinding xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">

 <wsp:Policy>

 <sp:InitiatorToken>

 <wsp:Policy>

 <sp:X509Token

sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/AlwaysToRecipient">

<wsp:Policy>

 <sp:WssX509V1Token11/>

 </wsp:Policy>

 </sp:X509Token>

 </wsp:Policy>

 </sp:InitiatorToken>

 <sp:RecipientToken>

 <wsp:Policy>

 <sp:X509Token

sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/Never">

 <wsp:Policy>

 <sp:WssX509V1Token11/>

 </wsp:Policy>

 </sp:X509Token>

 </wsp:Policy>

 </sp:RecipientToken>

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:TripleDesRsa15/>

 </wsp:Policy>

 </sp:AlgorithmSuite>

 <sp:Layout>

 <wsp:Policy>

 <sp:Lax/>

 </wsp:Policy>

 </sp:Layout>

 <sp:IncludeTimestamp/>

 <sp:EncryptSignature/>

 <sp:OnlySignEntireHeadersAndBody/>

 <sp:SignBeforeEncrypting/>

 </wsp:Policy>

 </sp:AsymmetricBinding>

 <sp:SignedParts xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">

 <sp:Body/>

 </sp:SignedParts>

 <sp:EncryptedParts xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">

 <sp:Body/>

 </sp:EncryptedParts>

Latest WildFly Documentation

JBoss Community Documentation Page of 1243 2293

 <sp:Wss10 xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">

 <wsp:Policy>

 <sp:MustSupportRefIssuerSerial/>

 </wsp:Policy>

 </sp:Wss10>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

</definitions>

The service endpoint can be generated using the tool and then enriched with a wsconsume

 annotation:@EndpointConfig

package org.jboss.test.ws.jaxws.samples.wsse.policy.basic;

import javax.jws.WebService;

import org.jboss.ws.api.annotation.EndpointConfig;

@WebService

(

 portName = "SecurityServicePort",

 serviceName = "SecurityService",

 wsdlLocation = "WEB-INF/wsdl/SecurityService.wsdl",

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy",

 endpointInterface = "org.jboss.test.ws.jaxws.samples.wsse.policy.basic.ServiceIface"

)

@EndpointConfig(configFile = "WEB-INF/jaxws-endpoint-config.xml", configName = "Custom

WS-Security Endpoint")

public class ServiceImpl implements ServiceIface

{

 public String sayHello()

 {

 return "Secure Hello World!";

 }

}

The referenced descriptor is used to provide a custom endpoint configuration withjaxws-endpoint-config.xml

the required server side configuration properties; this tells the engine which certificate / key to use for

signature / signature verification and for encryption / decryption:

Latest WildFly Documentation

JBoss Community Documentation Page of 1244 2293

<?xml version="1.0" encoding="UTF-8"?>

<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:javaee="http://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="urn:jboss:jbossws-jaxws-config:4.0 schema/jbossws-jaxws-config_4_0.xsd">

 <endpoint-config>

 <config-name>Custom WS-Security Endpoint</config-name>

 <property>

 <property-name>ws-security.signature.properties</property-name>

 <property-value>bob.properties</property-value>

 </property>

 <property>

 <property-name>ws-security.encryption.properties</property-name>

 <property-value>bob.properties</property-value>

 </property>

 <property>

 <property-name>ws-security.signature.username</property-name>

 <property-value>bob</property-value>

 </property>

 <property>

 <property-name>ws-security.encryption.username</property-name>

 <property-value>alice</property-value>

 </property>

 <property>

 <property-name>ws-security.callback-handler</property-name>

<property-value>org.jboss.test.ws.jaxws.samples.wsse.policy.basic.KeystorePasswordCallback</property-value>

</property>

 </endpoint-config>

</jaxws-config>

... the configuration file is also referenced above; it includes the WSS4J Crypto propertiesbob.properties

which in turn link to the keystore file, type and the alias/password to use for accessing it:

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=jks

org.apache.ws.security.crypto.merlin.keystore.password=password

org.apache.ws.security.crypto.merlin.keystore.alias=bob

org.apache.ws.security.crypto.merlin.keystore.file=bob.jks

A callback handler for the letting Apache CXF access the keystore is also provided:

Latest WildFly Documentation

JBoss Community Documentation Page of 1245 2293

package org.jboss.test.ws.jaxws.samples.wsse.policy.basic;

import java.io.IOException;

import java.util.HashMap;

import java.util.Map;

import javax.security.auth.callback.Callback;

import javax.security.auth.callback.CallbackHandler;

import javax.security.auth.callback.UnsupportedCallbackException;

import org.apache.ws.security.WSPasswordCallback;

public class KeystorePasswordCallback implements CallbackHandler {

 private Map<String, String> passwords = new HashMap<String, String>();

 public KeystorePasswordCallback() {

 passwords.put("alice", "password");

 passwords.put("bob", "password");

 }

 /**

 * It attempts to get the password from the private

 * alias/passwords map.

 */

 public void handle(Callback[] callbacks) throws IOException, UnsupportedCallbackException {

 for (int i = 0; i < callbacks.length; i++) {

 WSPasswordCallback pc = (WSPasswordCallback)callbacks[i];

 String pass = passwords.get(pc.getIdentifier());

 if (pass != null) {

 pc.setPassword(pass);

 return;

 }

 }

 }

 /**

 * Add an alias/password pair to the callback mechanism.

 */

 public void setAliasPassword(String alias, String password) {

 passwords.put(alias, password);

 }

}

Assuming the keystore has been properly generated and contains Bob's (server) full keybob.jks

(private/certificate + public key) as well as Alice's (client) public key, we can proceed to packaging the

endpoint. Here is the expected content (the endpoint is a one in a archive, but endpoints in POJO war EJB3

 archives are of course also supported):jar

Latest WildFly Documentation

JBoss Community Documentation Page of 1246 2293

alessio@inuyasha /dati/jbossws/stack/cxf/trunk $ jar -tvf

./modules/testsuite/cxf-tests/target/test-libs/jaxws-samples-wsse-policy-sign-encrypt.war

 0 Thu Jun 16 18:50:48 CEST 2011 META-INF/

 140 Thu Jun 16 18:50:46 CEST 2011 META-INF/MANIFEST.MF

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/

 586 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/web.xml

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/ws/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/ws/jaxws/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/ws/jaxws/samples/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/

 0 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/

 0 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/basic/

 1687 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/basic/KeystorePasswordCallback.class

 383 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/basic/ServiceIface.class

 1070 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/basic/ServiceImpl.class

 0 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaxws/

 705 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaxws/SayHello.class

 1069 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaxws/SayHelloResponse.class

 1225 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/jaxws-endpoint-config.xml

 0 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/wsdl/

 4086 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/wsdl/SecurityService.wsdl

 653 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/wsdl/SecurityService_schema1.xsd

 1820 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/classes/bob.jks

 311 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/classes/bob.properties

As you can see, the jaxws classes generated by the tools are of course also included, as well as a basic

 referencing the endpoint bean:web.xml

Latest WildFly Documentation

JBoss Community Documentation Page of 1247 2293

<?xml version="1.0" encoding="UTF-8"?>

<web-app

 version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

 <servlet>

 <servlet-name>TestService</servlet-name>

<servlet-class>org.jboss.test.ws.jaxws.samples.wsse.policy.basic.ServiceImpl</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>TestService</servlet-name>

 <url-pattern>/*</url-pattern>

 </servlet-mapping>

</web-app>

If you're deploying the endpoint archive on WildFly, remember to add a dependency to

 module in the MANIFEST.MF file.org.apache.ws.security

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.7.1

Created-By: 17.0-b16 (Sun Microsystems Inc.)

Dependencies: org.apache.ws.security

Latest WildFly Documentation

JBoss Community Documentation Page of 1248 2293

Client

You start by consuming the published WSDL contract using the tool on client side too. Then youwsconsume

simply invoke the the endpoint as a standard JAX-WS one:

QName serviceName = new QName("http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy",

"SecurityService");

URL wsdlURL = new URL(serviceURL + "?wsdl");

Service service = Service.create(wsdlURL, serviceName);

ServiceIface proxy = (ServiceIface)service.getPort(ServiceIface.class);

((BindingProvider)proxy).getRequestContext().put(SecurityConstants.CALLBACK_HANDLER, new

KeystorePasswordCallback());

((BindingProvider)proxy).getRequestContext().put(SecurityConstants.SIGNATURE_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource("META-INF/alice.properties"));

((BindingProvider)proxy).getRequestContext().put(SecurityConstants.ENCRYPT_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource("META-INF/alice.properties"));

((BindingProvider)proxy).getRequestContext().put(SecurityConstants.SIGNATURE_USERNAME, "alice");

((BindingProvider)proxy).getRequestContext().put(SecurityConstants.ENCRYPT_USERNAME, "bob");

proxy.sayHello();

As you can see, the WS-Security properties are set in the request context. Here the

 is the same as on server side above, you might want/need differentKeystorePasswordCallback

implementation in real world scenarios, of course.

The file is the client side equivalent of the server side and references the alice.properties bob.properties

 keystore file, which has been populated with Alice's (client) full key (private/certificate + public key)alice.jks

as well as Bob's (server) public key.

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=jks

org.apache.ws.security.crypto.merlin.keystore.password=password

org.apache.ws.security.crypto.merlin.keystore.alias=alice

org.apache.ws.security.crypto.merlin.keystore.file=META-INF/alice.jks

The Apache CXF WS-Policy engine will digest the security requirements in the contract and ensure a valid

secure communication is in place for interacting with the server endpoint.

Endpoint serving multiple clients

The server side configuration described above implies the endpoint is configured for serving a given client

which a service agreement has been established for. In some real world scenarios though, the same server

might be expected to be able to deal with (including decrypting and encrypting) messages coming from and

being sent to multiple clients. Apache CXF supports that through the value for the useReqSigCert

 configuration parameter.ws-security.encryption.username

Of course the referenced server side keystore then needs to contain the public key of all the clients that are

expected to be served.

Authentication and authorization
The Username Token Profile can be used to provide client's credentials to a WS-Security enabled target

endpoint.

Latest WildFly Documentation

JBoss Community Documentation Page of 1249 2293

Apache CXF provides means for setting basic on both client and server sides topassword callback handlers

set/check passwords; the and properties can be usedws-security.username ws-security.callback-handler

similarly as shown in the signature and encryption example. Things become more interesting when requiring

a given user to be authenticated (and authorized) against a security domain on the target application server.

On server side, you need to install two additional interceptors that act as bridges towards the application

server authentication layer:

an interceptor for performing authentication and populating a valid SecurityContext; the provided

interceptor should extend

org.apache.cxf.ws.interceptor.security.AbstractUsernameTokenInInterceptor, in particular JBossWS

integration comes with fororg.jboss.wsf.stack.cxf.security.authentication.SubjectCreatingInterceptor

this;

an interceptor for performing authorization; CXF requires that to extend

org.apache.cxf.interceptor.security.AbstractAuthorizingInInterceptor, for instance the

 can be used for simply mapping endpoint operations to allowed roles.SimpleAuthorizingInterceptor

So, here follows an example of WS-SecurityPolicy endpoint using Username Token Profile for authenticating

through the application server security domain system.

Endpoint

As in the other example, we start with a wsdl contract containing the proper WS-Security Policy:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<definitions targetNamespace="http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy"

name="SecurityService"

 xmlns:tns="http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

 xmlns:wsaws="http://www.w3.org/2005/08/addressing">

 <types>

 <xsd:schema>

 <xsd:import namespace="http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy"

schemaLocation="SecurityService_schema1.xsd"/>

 </xsd:schema>

 </types>

 <message name="sayHello">

 <part name="parameters" element="tns:sayHello"/>

 </message>

 <message name="sayHelloResponse">

 <part name="parameters" element="tns:sayHelloResponse"/>

 </message>

 <message name="greetMe">

 <part name="parameters" element="tns:greetMe"/>

 </message>

 <message name="greetMeResponse">

 <part name="parameters" element="tns:greetMeResponse"/>

 </message>

 <portType name="ServiceIface">

Latest WildFly Documentation

JBoss Community Documentation Page of 1250 2293

 <operation name="sayHello">

 <input message="tns:sayHello"/>

 <output message="tns:sayHelloResponse"/>

 </operation>

 <operation name="greetMe">

 <input message="tns:greetMe"/>

 <output message="tns:greetMeResponse"/>

 </operation>

 </portType>

 <binding name="SecurityServicePortBinding" type="tns:ServiceIface">

 <wsp:PolicyReference URI="#SecurityServiceUsernameUnsecureTransportPolicy"/>

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <operation name="sayHello">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal"/>

 </input>

 <output>

 <soap:body use="literal"/>

 </output>

 </operation>

 <operation name="greetMe">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal"/>

 </input>

 <output>

 <soap:body use="literal"/>

 </output>

 </operation>

 </binding>

 <service name="SecurityService">

 <port name="SecurityServicePort" binding="tns:SecurityServicePortBinding">

 <soap:address location="http://localhost:8080/jaxws-samples-wsse-username-jaas"/>

 </port>

 </service>

 <wsp:Policy wsu:Id="SecurityServiceUsernameUnsecureTransportPolicy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:SupportingTokens

xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:UsernameToken

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">

<wsp:Policy>

 <sp:WssUsernameToken10/>

 </wsp:Policy>

 </sp:UsernameToken>

 </wsp:Policy>

 </sp:SupportingTokens>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

</definitions>

Latest WildFly Documentation

JBoss Community Documentation Page of 1251 2293

If you want to send hash / digest passwords, you can use a policy such as what follows:

<wsp:Policy wsu:Id="SecurityServiceUsernameHashPasswordPolicy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:SupportingTokens

xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:UsernameToken

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">

<wsp:Policy>

 <sp:HashPassword/>

 </wsp:Policy>

 </sp:UsernameToken>

 </wsp:Policy>

 </sp:SupportingTokens>

 </wsp:All>

 </wsp:ExactlyOne>

</wsp:Policy>

Please note the specified JBoss security domain needs to be properly configured for computing

digests.

The service endpoint can be generated using the tool and then enriched with a wsconsume

 annotation and annotation to add the two interceptors mentioned@EndpointConfig @InInterceptors

above for JAAS integration:

Latest WildFly Documentation

JBoss Community Documentation Page of 1252 2293

package org.jboss.test.ws.jaxws.samples.wsse.policy.jaas;

import javax.jws.WebService;

import org.apache.cxf.interceptor.InInterceptors;

import org.jboss.ws.api.annotation.EndpointConfig;

@WebService

(

 portName = "SecurityServicePort",

 serviceName = "SecurityService",

 wsdlLocation = "WEB-INF/wsdl/SecurityService.wsdl",

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy",

 endpointInterface = "org.jboss.test.ws.jaxws.samples.wsse.policy.jaas.ServiceIface"

)

@EndpointConfig(configFile = "WEB-INF/jaxws-endpoint-config.xml", configName = "Custom

WS-Security Endpoint")

@InInterceptors(interceptors = {

 "org.jboss.wsf.stack.cxf.security.authentication.SubjectCreatingPolicyInterceptor",

 "org.jboss.test.ws.jaxws.samples.wsse.policy.jaas.POJOEndpointAuthorizationInterceptor"}

)

public class ServiceImpl implements ServiceIface

{

 public String sayHello()

 {

 return "Secure Hello World!";

 }

 public String greetMe()

 {

 return "Greetings!";

 }

}

The is included into the deployment and deals with thePOJOEndpointAuthorizationInterceptor

roles cheks:

Latest WildFly Documentation

JBoss Community Documentation Page of 1253 2293

package org.jboss.test.ws.jaxws.samples.wsse.policy.jaas;

import java.util.HashMap;

import java.util.Map;

import org.apache.cxf.interceptor.security.SimpleAuthorizingInterceptor;

public class POJOEndpointAuthorizationInterceptor extends SimpleAuthorizingInterceptor

{

 public POJOEndpointAuthorizationInterceptor()

 {

 super();

 readRoles();

 }

 private void readRoles()

 {

 //just an example, this might read from a configuration file or such

 Map<String, String> roles = new HashMap<String, String>();

 roles.put("sayHello", "friend");

 roles.put("greetMe", "snoopies");

 setMethodRolesMap(roles);

 }

}

The descriptor is used to provide a custom endpoint configuration with thejaxws-endpoint-config.xml

required server side configuration properties; in particular for this Username Token case that's just a CXF

configuration option for leaving the username token validation to the configured interceptors:

<?xml version="1.0" encoding="UTF-8"?>

<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:javaee="http://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="urn:jboss:jbossws-jaxws-config:4.0 schema/jbossws-jaxws-config_4_0.xsd">

 <endpoint-config>

 <config-name>Custom WS-Security Endpoint</config-name>

 <property>

 <property-name>ws-security.validate.token</property-name>

 <property-value>false</property-value>

 </property>

 </endpoint-config>

</jaxws-config>

In order for requiring a given JBoss security domain to be used to protect access to the endpoint (a POJO

one in this case), we declare that in a descriptor (the security domain is used):jboss-web.xml JBossWS

Latest WildFly Documentation

JBoss Community Documentation Page of 1254 2293

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jboss-web PUBLIC "-//JBoss//DTD Web Application 2.4//EN"

"http://www.jboss.org/j2ee/dtd/jboss-web_4_0.dtd">

<jboss-web>

 <security-domain>java:/jaas/JBossWS</security-domain>

</jboss-web

Finally, the is as simple as usual:web.xml

<?xml version="1.0" encoding="UTF-8"?>

<web-app

 version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

 <servlet>

 <servlet-name>TestService</servlet-name>

<servlet-class>org.jboss.test.ws.jaxws.samples.wsse.policy.jaas.ServiceImpl</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>TestService</servlet-name>

 <url-pattern>/*</url-pattern>

 </servlet-mapping>

</web-app>

The endpoint is packaged into a war archive, including the JAXWS classes generated by wsconsume:

Latest WildFly Documentation

JBoss Community Documentation Page of 1255 2293

alessio@inuyasha /dati/jbossws/stack/cxf/trunk $ jar -tvf

./modules/testsuite/cxf-tests/target/test-libs/jaxws-samples-wsse-policy-username-jaas.war

 0 Thu Jun 16 18:50:48 CEST 2011 META-INF/

 155 Thu Jun 16 18:50:46 CEST 2011 META-INF/MANIFEST.MF

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/

 585 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/web.xml

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/ws/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/ws/jaxws/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/ws/jaxws/samples/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/

 0 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/

 0 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaas/

 982 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaas/POJOEndpointAuthorizationInterceptor.class

412 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaas/ServiceIface.class

 1398 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaas/ServiceImpl.class

 0 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaxws/

 701 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaxws/GreetMe.class

 1065 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaxws/GreetMeResponse.class

 705 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaxws/SayHello.class

 1069 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaxws/SayHelloResponse.class

 556 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/jaxws-endpoint-config.xml

 241 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/jboss-web.xml

 0 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/wsdl/

 3183 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/wsdl/SecurityService.wsdl

 1012 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/wsdl/SecurityService_schema1.xsd

If you're deploying the endpoint archive on WildFly, remember to add a dependency to

 and module (due to the annotation) inorg.apache.ws.security org.apache.cxf @InInterceptor

the MANIFEST.MF file.

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.7.1

Created-By: 17.0-b16 (Sun Microsystems Inc.)

Dependencies: org.apache.ws.security,org.apache.cxf

Latest WildFly Documentation

JBoss Community Documentation Page of 1256 2293

Client

Here too you start by consuming the published WSDL contract using the tool. Then you simplywsconsume

invoke the the endpoint as a standard JAX-WS one:

QName serviceName = new QName("http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy",

"SecurityService");

URL wsdlURL = new URL(serviceURL + "?wsdl");

Service service = Service.create(wsdlURL, serviceName);

ServiceIface proxy = (ServiceIface)service.getPort(ServiceIface.class);

((BindingProvider)proxy).getRequestContext().put(SecurityConstants.USERNAME, "kermit");

((BindingProvider)proxy).getRequestContext().put(SecurityConstants.CALLBACK_HANDLER,

 "org.jboss.test.ws.jaxws.samples.wsse.policy.jaas.UsernamePasswordCallback");

proxy.sayHello();

The class is shown below and is responsible for setting the passwords onUsernamePasswordCallback

client side just before performing the invocations:

package org.jboss.test.ws.jaxws.samples.wsse.policy.jaas;

import java.io.IOException;

import javax.security.auth.callback.Callback;

import javax.security.auth.callback.CallbackHandler;

import javax.security.auth.callback.UnsupportedCallbackException;

import org.apache.ws.security.WSPasswordCallback;

public class UsernamePasswordCallback implements CallbackHandler

{

 public void handle(Callback[] callbacks) throws IOException, UnsupportedCallbackException

 {

 WSPasswordCallback pc = (WSPasswordCallback)callbacks[0];

 if ("kermit".equals(pc.getIdentifier()))

 pc.setPassword("thefrog");

 }

}

If everything has been done properly, you should expect to calls to fail when done with usersayHello()

"snoopy" and pass with user "kermit" (and credential "thefrog"); moreover, you should get an authorization

error when trying to call with user "kermit", as that does not have the "snoopies" role.greetMe()

Secure transport
Another quite common use case is using WS-Security Username Token Profile over a secure transport

(HTTPS). A scenario like this is implemented similarly to what's described in the previous example, except

for few differences explained below.

First of all, here is an excerpt of a wsdl wth a sample security policy for Username Token over HTTPS:

...

Latest WildFly Documentation

JBoss Community Documentation Page of 1257 2293

<binding name="SecurityServicePortBinding" type="tns:ServiceIface">

 <wsp:PolicyReference URI="#SecurityServiceBindingPolicy"/>

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <operation name="sayHello">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal"/>

 </input>

 <output>

 <soap:body use="literal"/>

 </output>

 </operation>

</binding>

<service name="SecurityService">

 <port name="SecurityServicePort" binding="tns:SecurityServicePortBinding">

 <soap:address location="https://localhost:8443/jaxws-samples-wsse-policy-username"/>

 </port>

</service>

<wsp:Policy wsu:Id="SecurityServiceBindingPolicy">

 <wsp:ExactlyOne>

 <wsp:All>

 <foo:unknownPolicy xmlns:foo="http://cxf.apache.org/not/a/policy"/>

 </wsp:All>

 <wsp:All>

 <wsaws:UsingAddressing xmlns:wsaws="http://www.w3.org/2006/05/addressing/wsdl"/>

 <sp:TransportBinding>

 <wsp:Policy>

 <sp:TransportToken>

 <wsp:Policy>

 <sp:HttpsToken RequireClientCertificate="false"/>

 </wsp:Policy>

 </sp:TransportToken>

 <sp:Layout>

 <wsp:Policy>

 <sp:Lax/>

 </wsp:Policy>

 </sp:Layout>

 <sp:IncludeTimestamp/>

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:Basic128/>

 </wsp:Policy>

 </sp:AlgorithmSuite>

 </wsp:Policy>

 </sp:TransportBinding>

 <sp:Wss10>

 <wsp:Policy>

 <sp:MustSupportRefKeyIdentifier/>

 </wsp:Policy>

 </sp:Wss10>

 <sp:SignedSupportingTokens>

 <wsp:Policy>

 <sp:UsernameToken

sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/AlwaysToRecipient">

<wsp:Policy>

 <sp:WssUsernameToken10/>

 </wsp:Policy>

Latest WildFly Documentation

JBoss Community Documentation Page of 1258 2293

 </sp:UsernameToken>

 </wsp:Policy>

 </sp:SignedSupportingTokens>

 </wsp:All>

 </wsp:ExactlyOne>

</wsp:Policy>

The endpoint then needs of course to be actually available on HTTPS only, so we have a settingweb.xml

the such as below:transport-guarantee

<?xml version="1.0" encoding="UTF-8"?>

<web-app

 version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

 <servlet>

 <servlet-name>TestService</servlet-name>

<servlet-class>org.jboss.test.ws.jaxws.samples.wsse.policy.basic.ServiceImpl</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>TestService</servlet-name>

 <url-pattern>/*</url-pattern>

 </servlet-mapping>

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>TestService</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

 </user-data-constraint>

 </security-constraint>

</web-app>

Latest WildFly Documentation

JBoss Community Documentation Page of 1259 2293

Secure conversation
Apache CXF supports specification, which is about improving performance byWS-SecureConversation

allowing client and server to negotiate initial security keys to be used for later communication

encryption/signature. This is done by having two policies in the wsdl contract, an outer one setting the

security requirements to actually communicate with the endpoint and a bootstrap one, related to the

communication for establishing the secure conversation keys. The client will be automatically sending an

initial message to the server for negotiating the keys, then the actual communication to the endpoint takes

place. As a consequence, Apache CXF needs a way to specify which WS-Security configuration properties

are intended for the bootstrap policy and which are intended for the actual service policy. To accomplish this,

properties intended for the bootstrap policy are appended with ..sct

...

((BindingProvider)proxy).getRequestContext().put("ws-security.signature.username.sct", "alice");

((BindingProvider)proxy).getRequestContext().put("ws-security.encryption.username.sct", "bob");

...

@WebService(

 ...

)

@EndpointProperties(value = {

 @EndpointProperty(key = "ws-security.encryption.properties.sct", value =

"bob.properties"),

 @EndpointProperty(key = "ws-security.signature.properties.sct", value = "bob.properties"),

 ...

 }

)

public class ServiceImpl implements ServiceIface {

 ...

}

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html

Latest WildFly Documentation

JBoss Community Documentation Page of 1260 2293

Trust and STS

WS-Trust overview

Security Token Service

Apache CXF support

A Basic WS-Trust Scenario

Web service provider

Web service provider WSDL

Web service provider Interface

Web service provider Implementation

ServerCallbackHandler

Crypto properties and keystore files

MANIFEST.MF

Security Token Service (STS)

STS WSDL

STS Implementation

STSCallbackHandler

Crypto properties and keystore files

MANIFEST.MF

Security Domain

Web service requester

Web service requester Implementation

ClientCallbackHandler

Requester Crypto properties and keystore files

PicketLink STS

Latest WildFly Documentation

JBoss Community Documentation Page of 1261 2293

Trust overview
 is a Web service specification that defines extensions to WS-Security. It is a general frameworkWS-Trust

for implementing security in a distributed system. The standard is based on a centralized Security Token

Service, STS, which is capable of authenticating clients and issuing tokens containing various kinds of

authentication and authorization data. The specification describes a protocol used for issuance, exchange,

and validation of security tokens, however the following specifications play an important role in the WS-Trust

architecture: , , , , WS-SecurityPolicy 1.2 SAML 2.0 Username Token Profile X.509 Token Profile SAML Token

, and .Profile Kerberos Token Profile

The WS-Trust extensions address the needs of applications that span multiple domains and requires the

sharing of security keys by providing a standards based trusted third party web service (STS) to broker trust

relationships between a Web service requester and a Web service provider. This architecture also alleviates

the pain of service updates that require credential changes by providing a common location for this

information. The STS is the common access point from which both the requester and provider retrieves and

verifies security tokens.

There are three main components of the WS-Trust specification.

The Security Token Service (STS), a web service that issues, renews, and validates security tokens.

The message formats for security token requests and responses.

The mechanisms for key exchange

Security Token Service
The Security Token Service, STS, is the core of the WS-Trust specification. It is a standards based

mechanism for authentication and authorization. The STS is an implementation of the WS-Trust

specification's protocol for issuing, exchanging, and validating security tokens, based on token format,

namespace, or trust boundaries. The STS is a web service that acts as a trusted third party to broker trust

relationships between a Web service requester and a Web service provider. It is a common access point

trusted by both requester and provider to provide interoperable security tokens. It removes the need for a

direct relationship between the two. Because the STS is a standards based mechanism for authentication, it

helps ensure interoperability across realms and between different platforms.

The STS's WSDL contract defines how other applications and processes interact with it. In particular the

WSDL defines the WS-Trust and WS-Security policies that a requester must fulfill in order to successfully

communicate with the STS's endpoints. A web service requester consumes the STS's WSDL and with the

aid of an STSClient utility, generates a message request compliant with the stated security policies and

submits it to the STS endpoint. The STS validates the request and returns an appropriate response.

Apache CXF support
Apache CXF is an open-source, fully featured Web services framework. The JBossWS open source project

integrates the JBoss Web Services (JBossWS) stack with the Apache CXF project modules thus providing

WS-Trust and other JAX-WS functionality in WildFly. This integration makes it easy to deploy CXF STS

implementations, however WildFly can run any WS-Trust compliant STS. In addition the Apache CXF API

provides a STSClient utility to facilitate web service requester communication with its STS.

Detailed information about the Apache CXF's WS-Trust implementation can be found .here

https://www.oasis-open.org/standards#wstrustv1.4
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://docs.oasis-open.org/wss-m/wss/v1.1.1/wss-x509TokenProfile-v1.1.1.html
https://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
https://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://coheigea.blogspot.it/2011/10/apache-cxf-sts-documentation-part-i.html

Latest WildFly Documentation

JBoss Community Documentation Page of 1262 2293

1.

2.

3.

4.

5.

6.

7.

A Basic WS-Trust Scenario
Here is an example of a basic WS-Trust scenario. It is comprised of a Web service requester

(ws-requester), a Web service provider (ws-provider), and a Security Token Service (STS). The

ws-provider requires a SAML 2.0 token issued from a designed STS to be presented by the ws-requester

using asymmetric binding. These communication requirements are declared in the ws-provider's WSDL.

The STS requires ws-requester credentials be provided in a WSS UsernameToken format request using

symmetric binding. The STS's response is provided containing a SAML 2.0 token. These communication

requirements are declared in the STS's WSDL.

A ws-requester contacts the ws-provider and consumes its WSDL. Upon finding the security token

issuer requirement, it creates and configures a STSClient with the information it requires to generate

a proper request.

The STSClient contacts the STS and consumes its WSDL. The security policies are discovered. The

STSClient creates and sends an authentication request, with appropriate credentials.

The STS verifies the credentials.

In response, the STS issues a security token that provides proof that the ws-requester has

authenticated with the STS.

The STClient presents a message with the security token to the ws-provider.

The ws-provider verifies the token was issued by the STS, thus proving the ws-requester has

successfully authenticated with the STS.

The ws-provider executes the requested service and returns the results to the the ws-requester.

Web service provider
This section examines the crucial elements in providing endpoint security in the web service provider

described in the basic WS-Trust scenario. The components that will be discussed are.

web service provider's WSDL

web service provider's Interface and Implementation classes.

ServerCallbackHandler class

Crypto properties and keystore files

MANIFEST.MF

Web service provider WSDL

The web service provider is a contract-first endpoint. All the WS-trust and security policies for it are declared

in the WSDL, SecurityService.wsdl. For this scenario a ws-requester is required to present a SAML 2.0

token issued from a designed STS. The address of the STS is provided in the WSDL. An asymmetric

binding policy is used to encrypt and sign the SOAP body of messages that pass back and forth between

ws-requester and ws-provider. X.509 certificates are use for the asymmetric binding. The rules for sharing

the public and private keys in the SOAP request and response messages are declared. A detailed

explanation of the security settings are provided in the comments in the listing below.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<definitions targetNamespace="http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy"

name="SecurityService"

 xmlns:tns="http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

Latest WildFly Documentation

JBoss Community Documentation Page of 1263 2293

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsp="http://www.w3.org/ns/ws-policy"

 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

 xmlns:wsaws="http://www.w3.org/2005/08/addressing"

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"

 xmlns:t="http://docs.oasis-open.org/ws-sx/ws-trust/200512">

 <types>

 <xsd:schema>

 <xsd:import namespace="http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy"

schemaLocation="SecurityService_schema1.xsd"/>

 </xsd:schema>

 </types>

 <message name="sayHello">

 <part name="parameters" element="tns:sayHello"/>

 </message>

 <message name="sayHelloResponse">

 <part name="parameters" element="tns:sayHelloResponse"/>

 </message>

 <portType name="ServiceIface">

 <operation name="sayHello">

 <input message="tns:sayHello"/>

 <output message="tns:sayHelloResponse"/>

 </operation>

 </portType>

 <!--

 The wsp:PolicyReference binds the security requirments on all the STS endpoints.

 The wsp:Policy wsu:Id="#AsymmetricSAML2Policy" element is defined later in this file.

 -->

 <binding name="SecurityServicePortBinding" type="tns:ServiceIface">

 <wsp:PolicyReference URI="#AsymmetricSAML2Policy" />

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <operation name="sayHello">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal"/>

 <wsp:PolicyReference URI="#Input_Policy" />

 </input>

 <output>

 <soap:body use="literal"/>

 <wsp:PolicyReference URI="#Output_Policy" />

 </output>

 </operation>

 </binding>

 <service name="SecurityService">

 <port name="SecurityServicePort" binding="tns:SecurityServicePortBinding">

 <soap:address

location="http://@jboss.bind.address@:8080/jaxws-samples-wsse-policy-trust/SecurityService"/>

 </port>

 </service>

 <wsp:Policy wsu:Id="AsymmetricSAML2Policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <!--

 The wsam:Addressing element, indicates that the endpoints of this

 web service MUST conform to the WS-Addressing specification. The

Latest WildFly Documentation

JBoss Community Documentation Page of 1264 2293

 attribute wsp:Optional="false" enforces this assertion.

 -->

 <wsam:Addressing wsp:Optional="false">

 <wsp:Policy />

 </wsam:Addressing>

 <!--

 The sp:AsymmetricBinding element indicates that security is provided

 at the SOAP layer. A public/private key combinations is required to

 protect the message. The initiator will use it’s private key to sign

 the message and the recipient’s public key is used to encrypt the message.

 The recipient of the message will use it’s private key to decrypt it and

 initiator’s public key to verify the signature.

 -->

 <sp:AsymmetricBinding>

 <wsp:Policy>

 <!--

 The sp:InitiatorToken element specifies the elements required in

 generating the initiator request to the ws-provider's service.

 -->

 <sp:InitiatorToken>

 <wsp:Policy>

 <!--

 The sp:IssuedToken element asserts that a SAML 2.0 security token is

 expected from the STS using a public key type. The

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">

attribute instructs the runtime to include the initiator's public key

 with every message sent to the recipient.

 The sp:RequestSecurityTokenTemplate element directs that all of the

 children of this element will be copied directly into the body of the

 RequestSecurityToken (RST) message that is sent to the STS when the

 initiator asks the STS to issue a token.

 -->

 <sp:IssuedToken

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">

<sp:RequestSecurityTokenTemplate>

<t:TokenType>http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0</t:TokenType>

<t:KeyType>http://docs.oasis-open.org/ws-sx/ws-trust/200512/PublicKey</t:KeyType>

 </sp:RequestSecurityTokenTemplate>

 <wsp:Policy>

 <sp:RequireInternalReference />

 </wsp:Policy>

 <!--

 The sp:Issuer element defines the STS's address and endpoint information

 This information is used by the STSClient.

 -->

 <sp:Issuer>

<wsaws:Address>http://@jboss.bind.address@:8080/jaxws-samples-wsse-policy-trust-sts/SecurityTokenService</wsaws:Address>

<wsaws:Metadata xmlns:wsdli="http://www.w3.org/2006/01/wsdl-instance"

wsdli:wsdlLocation="http://@jboss.bind.address@:8080/jaxws-samples-wsse-policy-trust-sts/SecurityTokenService?wsdl">

<wsaw:ServiceName xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"

xmlns:stsns="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"

Latest WildFly Documentation

JBoss Community Documentation Page of 1265 2293

EndpointName="UT_Port">stsns:SecurityTokenService</wsaw:ServiceName>

 </wsaws:Metadata>

 </sp:Issuer>

 </sp:IssuedToken>

 </wsp:Policy>

 </sp:InitiatorToken>

 <!--

 The sp:RecipientToken element asserts the type of public/private key-pair

 expected from the recipient. The

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Never">

 attribute indicates that the initiator's public key will never be included

 in the reply messages.

 The sp:WssX509V3Token10 element indicates that an X509 Version 3 token

 should be used in the message.

 -->

 <sp:RecipientToken>

 <wsp:Policy>

 <sp:X509Token

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Never">

 <wsp:Policy>

 <sp:WssX509V3Token10 />

 <sp:RequireIssuerSerialReference />

 </wsp:Policy>

 </sp:X509Token>

 </wsp:Policy>

 </sp:RecipientToken>

<!--

 The sp:Layout element, indicates the layout rules to apply when adding

 items to the security header. The sp:Lax sub-element indicates items

 are added to the security header in any order that conforms to

 WSS: SOAP Message Security.

-->

 <sp:Layout>

 <wsp:Policy>

 <sp:Lax />

 </wsp:Policy>

 </sp:Layout>

 <sp:IncludeTimestamp />

 <sp:OnlySignEntireHeadersAndBody />

 <!--

 The sp:AlgorithmSuite element, requires the Basic256 algorithm suite

 be used in performing cryptographic operations.

-->

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:Basic256 />

 </wsp:Policy>

 </sp:AlgorithmSuite>

 </wsp:Policy>

 </sp:AsymmetricBinding>

<!--

 The sp:Wss11 element declares WSS: SOAP Message Security 1.1 options

 to be supported by the STS. These particular elements generally refer

 to how keys are referenced within the SOAP envelope. These are normally

Latest WildFly Documentation

JBoss Community Documentation Page of 1266 2293

 handled by CXF.

-->

 <sp:Wss11>

 <wsp:Policy>

 <sp:MustSupportRefIssuerSerial />

 <sp:MustSupportRefThumbprint />

 <sp:MustSupportRefEncryptedKey />

 </wsp:Policy>

 </sp:Wss11>

<!--

 The sp:Trust13 element declares controls for WS-Trust 1.3 options.

 They are policy assertions related to exchanges specifically with

 client and server challenges and entropy behaviors. Again these are

 normally handled by CXF.

-->

 <sp:Trust13>

 <wsp:Policy>

 <sp:MustSupportIssuedTokens />

 <sp:RequireClientEntropy />

 <sp:RequireServerEntropy />

 </wsp:Policy>

 </sp:Trust13>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 <wsp:Policy wsu:Id="Input_Policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:EncryptedParts>

 <sp:Body />

 </sp:EncryptedParts>

 <sp:SignedParts>

 <sp:Body />

 <sp:Header Name="To" Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="From" Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="FaultTo" Namespace="http://www.w3.org/2005/08/addressing"

/>

 <sp:Header Name="ReplyTo" Namespace="http://www.w3.org/2005/08/addressing"

/>

 <sp:Header Name="MessageID" Namespace="http://www.w3.org/2005/08/addressing"

/>

 <sp:Header Name="RelatesTo" Namespace="http://www.w3.org/2005/08/addressing"

/>

 <sp:Header Name="Action" Namespace="http://www.w3.org/2005/08/addressing" />

 </sp:SignedParts>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 <wsp:Policy wsu:Id="Output_Policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:EncryptedParts>

 <sp:Body />

 </sp:EncryptedParts>

 <sp:SignedParts>

 <sp:Body />

Latest WildFly Documentation

JBoss Community Documentation Page of 1267 2293

 <sp:Header Name="To" Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="From" Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="FaultTo" Namespace="http://www.w3.org/2005/08/addressing"

/>

 <sp:Header Name="ReplyTo" Namespace="http://www.w3.org/2005/08/addressing"

/>

 <sp:Header Name="MessageID" Namespace="http://www.w3.org/2005/08/addressing"

/>

 <sp:Header Name="RelatesTo" Namespace="http://www.w3.org/2005/08/addressing"

/>

 <sp:Header Name="Action" Namespace="http://www.w3.org/2005/08/addressing" />

 </sp:SignedParts>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

</definitions>

Web service provider Interface

The web service provider interface class, ServiceIface, is a simple straight forward web service definition.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.service;

import javax.jws.WebMethod;

import javax.jws.WebService;

@WebService

(

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy"

)

public interface ServiceIface

{

 @WebMethod

 String sayHello();

}

Web service provider Implementation

The web service provider implementation class, ServiceImpl, is a simple POJO. It uses the standard

WebService annotation to define the service endpoint. In addition there are two Apache CXF annotations,

EndpointProperties and EndpointProperty used for configuring the endpoint for the CXF runtime. These

annotations come from the , which provides a Java implementation of the primaryApache WSS4J project

WS-Security standards for Web Services. These annotations are programmatically adding properties to the

endpoint. With plain Apache CXF, these properties are often set via the <jaxws:properties> element on the

<jaxws:endpoint> element in the Spring config; these annotations allow the properties to be configured in the

code.

WSS4J uses the Crypto interface to get keys and certificates for encryption/decryption and for signature

creation/verification. As is asserted by the WSDL, X509 keys and certificates are required for this service.

The WSS4J configuration information being provided by ServiceImpl is for Crypto's Merlin implementation.

More information will be provided about this in the keystore section.

https://ws.apache.org/wss4j/

Latest WildFly Documentation

JBoss Community Documentation Page of 1268 2293

The first EndpointProperty statement in the listing is declaring the user's name to use for the message

signature. It is used as the alias name in the keystore to get the user's cert and private key for signature.

The next two EndpointProperty statements declares the Java properties file that contains the (Merlin) crypto

configuration information. In this case both for signing and encrypting the messages. WSS4J reads this file

and extra required information for message handling. The last EndpointProperty statement declares the

ServerCallbackHandler implementation class. It is used to obtain the user's password for the certificates in

the keystore file.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.service;

import javax.jws.WebService;

import org.apache.cxf.annotations.EndpointProperties;

import org.apache.cxf.annotations.EndpointProperty;

@WebService

(

 portName = "SecurityServicePort",

 serviceName = "SecurityService",

 wsdlLocation = "WEB-INF/wsdl/SecurityService.wsdl",

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy",

 endpointInterface = "org.jboss.test.ws.jaxws.samples.wsse.policy.trust.service.ServiceIface"

)

@EndpointProperties(value = {

 @EndpointProperty(key = "ws-security.signature.username", value = "myservicekey"),

 @EndpointProperty(key = "ws-security.signature.properties", value =

"serviceKeystore.properties"),

 @EndpointProperty(key = "ws-security.encryption.properties", value =

"serviceKeystore.properties"),

 @EndpointProperty(key = "ws-security.callback-handler", value =

"org.jboss.test.ws.jaxws.samples.wsse.policy.trust.service.ServerCallbackHandler")

})

public class ServiceImpl implements ServiceIface

{

 public String sayHello()

 {

 return "WS-Trust Hello World!";

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1269 2293

ServerCallbackHandler

ServerCallbackHandler is a callback handler for the WSS4J Crypto API. It is used to obtain the password for

the private key in the keystore. This class enables CXF to retrieve the password of the user name to use for

the message signature. A certificates' password is not discoverable. The creator of the certificate must

record the password he assigns and provide it when requested through the CallbackHandler. In this

scenario skpass is the password for user myservicekey.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.service;

import java.util.HashMap;

import java.util.Map;

import org.jboss.wsf.stack.cxf.extensions.security.PasswordCallbackHandler;

public class ServerCallbackHandler extends PasswordCallbackHandler

{

 public ServerCallbackHandler()

 {

 super(getInitMap());

 }

 private static Map<String, String> getInitMap()

 {

 Map<String, String> passwords = new HashMap<String, String>();

 passwords.put("myservicekey", "skpass");

 return passwords;

 }

}

Crypto properties and keystore files

WSS4J's Crypto implementation is loaded and configured via a Java properties file that contains Crypto

configuration data. The file contains implementation-specific properties such as a keystore location,

password, default alias and the like. This application is using the Merlin implementation. File

serviceKeystore.properties contains this information.

File servicestore.jks, is a Java KeyStore (JKS) repository. It contains self signed certificates for

myservicekey and mystskey. Self signed certificates are not appropriate for production use.

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=jks

org.apache.ws.security.crypto.merlin.keystore.password=sspass

org.apache.ws.security.crypto.merlin.keystore.alias=myservicekey

org.apache.ws.security.crypto.merlin.keystore.file=servicestore.jks

Latest WildFly Documentation

JBoss Community Documentation Page of 1270 2293

MANIFEST.MF

When deployed on WildFly this application requires access to the JBossWs and CXF APIs provided in

module org.jboss.ws.cxf.jbossws-cxf-client. The dependency statement directs the server to provide them at

deployment.

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.8.2

Created-By: 1.7.0_25-b15 (Oracle Corporation)

Dependencies: org.jboss.ws.cxf.jbossws-cxf-client

Security Token Service (STS)
This section examines the crucial elements in providing the Security Token Service functionality described in

the basic WS-Trust scenario. The components that will be discussed are.

STS's WSDL

STS's implementation class.

STSCallbackHandler class

Crypto properties and keystore files

MANIFEST.MF

Server configuration files

STS WSDL

The STS is a contract-first endpoint. All the WS-trust and security policies for it are declared in the WSDL,

ws-trust-1.4-service.wsdl. A symmetric binding policy is used to encrypt and sign the SOAP body of

messages that pass back and forth between ws-requester and the STS. The ws-requester is required to

authenticate itself by providing WSS UsernameToken credentials. The rules for sharing the public and

private keys in the SOAP request and response messages are declared. A detailed explanation of the

security settings are provided in the comments in the listing below.

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions

 targetNamespace="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"

 xmlns:tns="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"

 xmlns:wstrust="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:wsap10="http://www.w3.org/2006/05/addressing/wsdl"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

 xmlns:wsp="http://www.w3.org/ns/ws-policy"

 xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata">

 <wsdl:types>

 <xs:schema elementFormDefault="qualified"

targetNamespace='http://docs.oasis-open.org/ws-sx/ws-trust/200512'>

 <xs:element name='RequestSecurityToken' type='wst:AbstractRequestSecurityTokenType' />

Latest WildFly Documentation

JBoss Community Documentation Page of 1271 2293

 <xs:element name='RequestSecurityTokenResponse'

type='wst:AbstractRequestSecurityTokenType' />

 <xs:complexType name='AbstractRequestSecurityTokenType' >

 <xs:sequence>

 <xs:any namespace='##any' processContents='lax' minOccurs='0' maxOccurs='unbounded' />

 </xs:sequence>

 <xs:attribute name='Context' type='xs:anyURI' use='optional' />

 <xs:anyAttribute namespace='##other' processContents='lax' />

 </xs:complexType>

 <xs:element name='RequestSecurityTokenCollection'

type='wst:RequestSecurityTokenCollectionType' />

 <xs:complexType name='RequestSecurityTokenCollectionType' >

 <xs:sequence>

 <xs:element name='RequestSecurityToken' type='wst:AbstractRequestSecurityTokenType'

minOccurs='2' maxOccurs='unbounded'/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name='RequestSecurityTokenResponseCollection'

type='wst:RequestSecurityTokenResponseCollectionType' />

 <xs:complexType name='RequestSecurityTokenResponseCollectionType' >

 <xs:sequence>

 <xs:element ref='wst:RequestSecurityTokenResponse' minOccurs='1' maxOccurs='unbounded'

/>

 </xs:sequence>

 <xs:anyAttribute namespace='##other' processContents='lax' />

 </xs:complexType>

 </xs:schema>

 </wsdl:types>

 <!-- WS-Trust defines the following GEDs -->

 <wsdl:message name="RequestSecurityTokenMsg">

 <wsdl:part name="request" element="wst:RequestSecurityToken" />

 </wsdl:message>

 <wsdl:message name="RequestSecurityTokenResponseMsg">

 <wsdl:part name="response"

 element="wst:RequestSecurityTokenResponse" />

 </wsdl:message>

 <wsdl:message name="RequestSecurityTokenCollectionMsg">

 <wsdl:part name="requestCollection"

 element="wst:RequestSecurityTokenCollection"/>

 </wsdl:message>

 <wsdl:message name="RequestSecurityTokenResponseCollectionMsg">

 <wsdl:part name="responseCollection"

 element="wst:RequestSecurityTokenResponseCollection"/>

 </wsdl:message>

 <!-- This portType an example of a Requestor (or other) endpoint that

 Accepts SOAP-based challenges from a Security Token Service -->

 <wsdl:portType name="WSSecurityRequestor">

 <wsdl:operation name="Challenge">

 <wsdl:input message="tns:RequestSecurityTokenResponseMsg"/>

 <wsdl:output message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 </wsdl:portType>

Latest WildFly Documentation

JBoss Community Documentation Page of 1272 2293

 <!-- This portType is an example of an STS supporting full protocol -->

<!--

 The wsdl:portType and data types are XML elements defined by the

 WS_Trust specification. The wsdl:portType defines the endpoints

 supported in the STS implementation. This WSDL defines all operations

 that an STS implementation can support.

-->

 <wsdl:portType name="STS">

 <wsdl:operation name="Cancel">

 <wsdl:input wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Cancel"

message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/CancelFinal"

message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="Issue">

 <wsdl:input wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue"

message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTRC/IssueFinal"

message="tns:RequestSecurityTokenResponseCollectionMsg"/>

 </wsdl:operation>

 <wsdl:operation name="Renew">

 <wsdl:input wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Renew"

message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/RenewFinal"

message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="Validate">

 <wsdl:input wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Validate"

message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/ValidateFinal"

message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="KeyExchangeToken">

 <wsdl:input wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/KET"

message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/KETFinal"

message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="RequestCollection">

 <wsdl:input message="tns:RequestSecurityTokenCollectionMsg"/>

 <wsdl:output message="tns:RequestSecurityTokenResponseCollectionMsg"/>

 </wsdl:operation>

 </wsdl:portType>

 <!-- This portType is an example of an endpoint that accepts

 Unsolicited RequestSecurityTokenResponse messages -->

 <wsdl:portType name="SecurityTokenResponseService">

 <wsdl:operation name="RequestSecurityTokenResponse">

 <wsdl:input message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 </wsdl:portType>

<!--

Latest WildFly Documentation

JBoss Community Documentation Page of 1273 2293

 The wsp:PolicyReference binds the security requirments on all the STS endpoints.

 The wsp:Policy wsu:Id="UT_policy" element is later in this file.

-->

 <wsdl:binding name="UT_Binding" type="wstrust:STS">

 <wsp:PolicyReference URI="#UT_policy" />

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http" />

 <wsdl:operation name="Issue">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue" />

 <wsdl:input>

 <wsp:PolicyReference

 URI="#Input_policy" />

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <wsp:PolicyReference

 URI="#Output_policy" />

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="Validate">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Validate" />

 <wsdl:input>

 <wsp:PolicyReference

 URI="#Input_policy" />

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <wsp:PolicyReference

 URI="#Output_policy" />

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="Cancel">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Cancel" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="Renew">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Renew" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="KeyExchangeToken">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/KeyExchangeToken"

Latest WildFly Documentation

JBoss Community Documentation Page of 1274 2293

/>

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="RequestCollection">

 <soap:operation

soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/RequestCollection" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="SecurityTokenService">

 <wsdl:port name="UT_Port" binding="tns:UT_Binding">

 <soap:address location="http://localhost:8080/SecurityTokenService/UT" />

 </wsdl:port>

 </wsdl:service>

 <wsp:Policy wsu:Id="UT_policy">

 <wsp:ExactlyOne>

 <wsp:All>

<!--

 The sp:UsingAddressing element, indicates that the endpoints of this

 web service conforms to the WS-Addressing specification. More detail

 can be found here: [http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529]

-->

 <wsap10:UsingAddressing/>

<!--

 The sp:SymmetricBinding element indicates that security is provided

 at the SOAP layer and any initiator must authenticate itself by providing

 WSS UsernameToken credentials.

-->

 <sp:SymmetricBinding

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

<!--

 In a symmetric binding, the keys used for encrypting and signing in both

 directions are derived from a single key, the one specified by the

 sp:ProtectionToken element. The sp:X509Token sub-element declares this

 key to be a X.509 certificate and the

 IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Never"

 attribute adds the requirement that the token MUST NOT be included in

 any messages sent between the initiator and the recipient; rather, an

 external reference to the token should be used. Lastly the WssX509V3Token10

 sub-element declares that the Username token presented by the initiator

 should be compliant with Web Services Security UsernameToken Profile

 1.0 specification. [

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf]

-->

Latest WildFly Documentation

JBoss Community Documentation Page of 1275 2293

 <sp:ProtectionToken>

 <wsp:Policy>

 <sp:X509Token

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Never">

 <wsp:Policy>

 <sp:RequireDerivedKeys />

 <sp:RequireThumbprintReference />

 <sp:WssX509V3Token10 />

 </wsp:Policy>

 </sp:X509Token>

 </wsp:Policy>

 </sp:ProtectionToken>

<!--

 The sp:AlgorithmSuite element, requires the Basic256 algorithm suite

 be used in performing cryptographic operations.

-->

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:Basic256 />

 </wsp:Policy>

 </sp:AlgorithmSuite>

<!--

 The sp:Layout element, indicates the layout rules to apply when adding

 items to the security header. The sp:Lax sub-element indicates items

 are added to the security header in any order that conforms to

 WSS: SOAP Message Security.

-->

 <sp:Layout>

 <wsp:Policy>

 <sp:Lax />

 </wsp:Policy>

 </sp:Layout>

 <sp:IncludeTimestamp />

 <sp:EncryptSignature />

 <sp:OnlySignEntireHeadersAndBody />

 </wsp:Policy>

 </sp:SymmetricBinding>

<!--

 The sp:SignedSupportingTokens element declares that the security header

 of messages must contain a sp:UsernameToken and the token must be signed.

 The attribute

IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient"

on sp:UsernameToken indicates that the token MUST be included in all

 messages sent from initiator to the recipient and that the token MUST

 NOT be included in messages sent from the recipient to the initiator.

 And finally the element sp:WssUsernameToken10 is a policy assertion

 indicating the Username token should be as defined in Web Services

 Security UsernameToken Profile 1.0

-->

 <sp:SignedSupportingTokens

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:UsernameToken

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">

<wsp:Policy>

 <sp:WssUsernameToken10 />

Latest WildFly Documentation

JBoss Community Documentation Page of 1276 2293

 </wsp:Policy>

 </sp:UsernameToken>

 </wsp:Policy>

 </sp:SignedSupportingTokens>

<!--

 The sp:Wss11 element declares WSS: SOAP Message Security 1.1 options

 to be supported by the STS. These particular elements generally refer

 to how keys are referenced within the SOAP envelope. These are normally

 handled by CXF.

-->

 <sp:Wss11

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:MustSupportRefKeyIdentifier />

 <sp:MustSupportRefIssuerSerial />

 <sp:MustSupportRefThumbprint />

 <sp:MustSupportRefEncryptedKey />

 </wsp:Policy>

 </sp:Wss11>

<!--

 The sp:Trust13 element declares controls for WS-Trust 1.3 options.

 They are policy assertions related to exchanges specifically with

 client and server challenges and entropy behaviors. Again these are

 normally handled by CXF.

-->

 <sp:Trust13

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:MustSupportIssuedTokens />

 <sp:RequireClientEntropy />

 <sp:RequireServerEntropy />

 </wsp:Policy>

 </sp:Trust13>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 <wsp:Policy wsu:Id="Input_policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:SignedParts

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <sp:Body />

 <sp:Header Name="To"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="From"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="FaultTo"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="ReplyTo"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="MessageID"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="RelatesTo"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="Action"

 Namespace="http://www.w3.org/2005/08/addressing" />

 </sp:SignedParts>

Latest WildFly Documentation

JBoss Community Documentation Page of 1277 2293

 <sp:EncryptedParts

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <sp:Body />

 </sp:EncryptedParts>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 <wsp:Policy wsu:Id="Output_policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:SignedParts

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <sp:Body />

 <sp:Header Name="To"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="From"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="FaultTo"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="ReplyTo"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="MessageID"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="RelatesTo"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="Action"

 Namespace="http://www.w3.org/2005/08/addressing" />

 </sp:SignedParts>

 <sp:EncryptedParts

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <sp:Body />

 </sp:EncryptedParts>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

</wsdl:definitions>

STS Implementation

The Apache CXF's STS, SecurityTokenServiceProvider, is a web service provider that is compliant with the

protocols and functionality defined by the WS-Trust specification. It has a modular architecture. Many of its

components are configurable or replaceable and there are many optional features that are enabled by

implementing and configuring plug-ins. Users can customize their own STS by extending from

SecurityTokenServiceProvider and overriding the default settings. Extensive information about the CXF's

STS configurable and pluggable components can be found .here

http://coheigea.blogspot.com/2011/11/apache-cxf-sts-documentation-part-viii_10.html

Latest WildFly Documentation

JBoss Community Documentation Page of 1278 2293

This STS implementation class, SimpleSTS, is a POJO that extends from SecurityTokenServiceProvider.

Note that the class is defined with a WebServiceProvider annotation and not a WebService annotation. This

annotation defines the service as a Provider-based endpoint, meaning it supports a more

messaging-oriented approach to Web services. In particular, it signals that the exchanged messages will be

XML documents of some type. SecurityTokenServiceProvider is an implementation of the

javax.xml.ws.Provider interface. In comparison the WebService annotation defines a (service endpoint

interface) SEI-based endpoint which supports message exchange via SOAP envelopes.

As was done in the ServiceImpl class, the WSS4J annotations EndpointProperties and EndpointProperty are

providing endpoint configuration for the CXF runtime. This was previous described .here

The InInterceptors annotation is used to specify a JBossWS integration interceptor to be used for

authenticating incoming requests; JAAS integration is used here for authentication, the username/passoword

coming from the UsernameToken in the ws-requester message are used for authenticating the requester

against a security domain on the application server hosting the STS deployment.

In this implementation we are customizing the operations of token issuance, token validation and their static

properties.

StaticSTSProperties is used to set select properties for configuring resources in the STS. You may think this

is a duplication of the settings made with the WSS4J annotations. The values are the same but the

underlaying structures being set are different, thus this information must be declared in both places.

The setIssuer setting is important because it uniquely identifies the issuing STS. The issuer string is

embedded in issued tokens and, when validating tokens, the STS checks the issuer string value.

Consequently, it is important to use the issuer string in a consistent way, so that the STS can recognize the

tokens that it has issued.

The setEndpoints call allows the declaration of a set of allowed token recipients by address. The addresses

are specified as reg-ex patterns.

TokenIssueOperation and TokenValidateOperation have a modular structure. This allows custom behaviors

to be injected into the processing of messages. In this case we are overriding the

SecurityTokenServiceProvider's default behavior and performing SAML token processing and validation.

CXF provides an implementation of a SAMLTokenProvider and SAMLTokenValidator which we are using

rather than writing our own.

Learn more about the SAMLTokenProvider .here

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust;

import java.util.Arrays;

import java.util.LinkedList;

import java.util.List;

import javax.xml.ws.WebServiceProvider;

import org.apache.cxf.annotations.EndpointProperties;

import org.apache.cxf.annotations.EndpointProperty;

import org.apache.cxf.interceptor.InInterceptors;

import org.apache.cxf.sts.StaticSTSProperties;

http://coheigea.blogspot.it/2011/10/apache-cxf-sts-documentation-part-iv.html

Latest WildFly Documentation

JBoss Community Documentation Page of 1279 2293

import org.apache.cxf.sts.operation.TokenIssueOperation;

import org.apache.cxf.sts.operation.TokenValidateOperation;

import org.apache.cxf.sts.service.ServiceMBean;

import org.apache.cxf.sts.service.StaticService;

import org.apache.cxf.sts.token.provider.SAMLTokenProvider;

import org.apache.cxf.sts.token.validator.SAMLTokenValidator;

import org.apache.cxf.ws.security.sts.provider.SecurityTokenServiceProvider;

@WebServiceProvider(serviceName = "SecurityTokenService",

 portName = "UT_Port",

 targetNamespace = "http://docs.oasis-open.org/ws-sx/ws-trust/200512/",

 wsdlLocation = "WEB-INF/wsdl/ws-trust-1.4-service.wsdl")

@EndpointProperties(value = {

 @EndpointProperty(key = "ws-security.signature.username", value = "mystskey"),

 @EndpointProperty(key = "ws-security.signature.properties", value =

"stsKeystore.properties"),

 @EndpointProperty(key = "ws-security.callback-handler", value =

"org.jboss.test.ws.jaxws.samples.wsse.policy.trust.STSCallbackHandler"),

 //to let the JAAS integration deal with validation through the interceptor below

 @EndpointProperty(key = "ws-security.validate.token", value = "false")

})

@InInterceptors(interceptors =

{"org.jboss.wsf.stack.cxf.security.authentication.SubjectCreatingPolicyInterceptor"})

public class SampleSTS extends SecurityTokenServiceProvider

{

 public SampleSTS() throws Exception

 {

 super();

 StaticSTSProperties props = new StaticSTSProperties();

 props.setSignaturePropertiesFile("stsKeystore.properties");

 props.setSignatureUsername("mystskey");

 props.setCallbackHandlerClass(STSCallbackHandler.class.getName());

 props.setIssuer("DoubleItSTSIssuer");

 List<ServiceMBean> services = new LinkedList<ServiceMBean>();

 StaticService service = new StaticService();

 service.setEndpoints(Arrays.asList(

 "http://localhost:(\\d)*/jaxws-samples-wsse-policy-trust/SecurityService",

 "http://\\[::1\\]:(\\d)*/jaxws-samples-wsse-policy-trust/SecurityService",

"http://\\[0:0:0:0:0:0:0:1\\]:(\\d)*/jaxws-samples-wsse-policy-trust/SecurityService"

));

 services.add(service);

 TokenIssueOperation issueOperation = new TokenIssueOperation();

 issueOperation.setServices(services);

 issueOperation.getTokenProviders().add(new SAMLTokenProvider());

 issueOperation.setStsProperties(props);

 TokenValidateOperation validateOperation = new TokenValidateOperation();

 validateOperation.getTokenValidators().add(new SAMLTokenValidator());

 validateOperation.setStsProperties(props);

 this.setIssueOperation(issueOperation);

 this.setValidateOperation(validateOperation);

 }

Latest WildFly Documentation

JBoss Community Documentation Page of 1280 2293

}

STSCallbackHandler

STSCallbackHandler is a callback handler for the WSS4J Crypto API. It is used to obtain the password for

the private key in the keystore. This class enables CXF to retrieve the password of the user name to use for

the message signature.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.sts;

import java.util.HashMap;

import java.util.Map;

import org.jboss.wsf.stack.cxf.extensions.security.PasswordCallbackHandler;

public class STSCallbackHandler extends PasswordCallbackHandler

{

 public STSCallbackHandler()

 {

 super(getInitMap());

 }

 private static Map<String, String> getInitMap()

 {

 Map<String, String> passwords = new HashMap<String, String>();

 passwords.put("mystskey", "stskpass");

 return passwords;

 }

}

Crypto properties and keystore files

WSS4J's Crypto implementation is loaded and configured via a Java properties file that contains Crypto

configuration data. The file contains implementation-specific properties such as a keystore location,

password, default alias and the like. This application is using the Merlin implementation. File

stsKeystore.properties contains this information.

File servicestore.jks, is a Java KeyStore (JKS) repository. It contains self signed certificates for

myservicekey and mystskey. Self signed certificates are not appropriate for production use.

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=jks

org.apache.ws.security.crypto.merlin.keystore.password=stsspass

org.apache.ws.security.crypto.merlin.keystore.file=stsstore.jks

Latest WildFly Documentation

JBoss Community Documentation Page of 1281 2293

MANIFEST.MF

When deployed on WildFly, this application requires access to the JBossWs and CXF APIs provided in

modules org.jboss.ws.cxf.jbossws-cxf-client and org.apache.cxf. The Apache CXF internals,

org.apache.cxf.impl, are needed to build the STS configuration in the constructor. TheSampleSTS

dependency statement directs the server to provide them at deployment.

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.8.2

Created-By: 1.7.0_25-b15 (Oracle Corporation)

Dependencies: org.jboss.ws.cxf.jbossws-cxf-client,org.apache.cxf.impl

Security Domain

The STS requires a JBoss security domain be configured. The jboss-web.xml descriptor declares a named

security domain,"JBossWS-trust-sts" to be used by this service for authentication. This security domain

requires two properties files and the addition of a security-domain declaration in the JBoss server

configuration file.

For this scenario the domain needs to contain user , password , and role . See the listingsalice clarinet friend

below for jbossws-users.properties and jbossws-roles.properties. In addition the following XML must be

added to the JBoss security subsystem in the server configuration file. Replace " " withSOME_PATH

appropriate information.

<security-domain name="JBossWS-trust-sts">

 <authentication>

 <login-module code="UsersRoles" flag="required">

 <module-option name="usersProperties" value="/SOME_PATH/jbossws-users.properties"/>

 <module-option name="unauthenticatedIdentity" value="anonymous"/>

 <module-option name="rolesProperties" value="/SOME_PATH/jbossws-roles.properties"/>

 </login-module>

 </authentication>

</security-domain>

jboss-web.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jboss-web PUBLIC "-//JBoss//DTD Web Application 2.4//EN" ">

<jboss-web>

 <security-domain>java:/jaas/JBossWS-trust-sts</security-domain>

</jboss-web>

jbossws-users.properties

A sample users.properties file for use with the UsersRolesLoginModule

alice=clarinet

jbossws-roles.properties

Latest WildFly Documentation

JBoss Community Documentation Page of 1282 2293

A sample roles.properties file for use with the UsersRolesLoginModule

alice=friend

WS-MetadataExchange and interoperability

To achieve better interoperability, you might consider allowing the STS endpoint to reply to

WS-MetadataExchange messages directed to the URL sub-path (e.g. /mex

). This can behttp://localhost:8080/jaxws-samples-wsse-policy-trust-sts/SecurityTokenService/mex

done by tweaking the for the underlying endpoint servlet, for instance by adding a url-pattern

 descriptor as follows to the deployment:<?xml version="1.0" encoding="UTF-8"?>web.xml

<web-app

version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

">http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd

<servlet>

<servlet-name>TestSecurityTokenService</servlet-name>

<servlet-class>org.jboss.test.ws.jaxws.samples.wsse.policy.trust.SampleSTS</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>TestSecurityTokenService</servlet-name>

<url-pattern>/SecurityTokenService/*</url-pattern>

</servlet-mapping>

</web-app>

As a matter of fact, at the time of writing some webservices implementations (including)Metro

assume the URL as the default choice for directing WS-MetadataExchange requests to and/mex

use that to retrieve STS wsdl contracts.

Web service requester
This section examines the crucial elements in calling a web service that implements endpoint security as

described in the basic WS-Trust scenario. The components that will be discussed are.

web service requester's implementation

ClientCallbackHandler

Crypto properties and keystore files

Web service requester Implementation

The ws-requester, the client, uses standard procedures for creating a reference to the web service in the first

four line. To address the endpoint security requirements, the web service's "Request Context" is configured

with the information needed in message generation. In addition, the STSClient that communicates with the

STS is configured with similar values. Note the key strings ending with a ".it" suffix. This suffix flags these

settings as belonging to the STSClient. The internal CXF code assigns this information to the STSClient that

is auto-generated for this service call.

http://localhost:8080/jaxws-samples-wsse-policy-trust-sts/SecurityTokenService/mex
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd

Latest WildFly Documentation

JBoss Community Documentation Page of 1283 2293

There is an alternate method of setting up the STSCLient. The user may provide their own instance of the

STSClient. The CXF code will use this object and not auto-generate one. This is used in the ActAs and

OnBehalfOf examples. When providing the STSClient in this way, the user must provide a

org.apache.cxf.Bus for it and the configuration keys must not have the ".it" suffix.

QName serviceName = new QName("http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy",

"SecurityService");

URL wsdlURL = new URL(serviceURL + "?wsdl");

Service service = Service.create(wsdlURL, serviceName);

ServiceIface proxy = (ServiceIface) service.getPort(ServiceIface.class);

// set the security related configuration information for the service "request"

Map<String, Object> ctx = ((BindingProvider) proxy).getRequestContext();

ctx.put(SecurityConstants.CALLBACK_HANDLER, new ClientCallbackHandler());

ctx.put(SecurityConstants.SIGNATURE_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

ctx.put(SecurityConstants.ENCRYPT_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

ctx.put(SecurityConstants.SIGNATURE_USERNAME, "myclientkey");

ctx.put(SecurityConstants.ENCRYPT_USERNAME, "myservicekey");

//-- Configuration settings that will be transfered to the STSClient

// "alice" is the name provided for the WSS Username. Her password will

// be retreived from the ClientCallbackHander by the STSClient.

ctx.put(SecurityConstants.USERNAME + ".it", "alice");

ctx.put(SecurityConstants.CALLBACK_HANDLER + ".it", new ClientCallbackHandler());

ctx.put(SecurityConstants.ENCRYPT_PROPERTIES + ".it",

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

ctx.put(SecurityConstants.ENCRYPT_USERNAME + ".it", "mystskey");

// alias name in the keystore to get the user's public key to send to the STS

ctx.put(SecurityConstants.STS_TOKEN_USERNAME + ".it", "myclientkey");

// Crypto property configuration to use for the STS

ctx.put(SecurityConstants.STS_TOKEN_PROPERTIES + ".it",

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

// write out an X509Certificate structure in UseKey/KeyInfo

ctx.put(SecurityConstants.STS_TOKEN_USE_CERT_FOR_KEYINFO + ".it", "true");

// Setting indicates the STSclient should not try using the WS-MetadataExchange

// call using STS EPR WSA address when the endpoint contract does not contain

// WS-MetadataExchange info.

ctx.put("ws-security.sts.disable-wsmex-call-using-epr-address", "true");

proxy.sayHello();

Latest WildFly Documentation

JBoss Community Documentation Page of 1284 2293

ClientCallbackHandler

ClientCallbackHandler is a callback handler for the WSS4J Crypto API. It is used to obtain the password for

the private key in the keystore. This class enables CXF to retrieve the password of the user name to use for

the message signature. Note that "alice" and her password have been provided here. This information is

not in the (JKS) keystore but provided in the WildFly security domain. It was declared in file

jbossws-users.properties.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.shared;

import java.io.IOException;

import javax.security.auth.callback.Callback;

import javax.security.auth.callback.CallbackHandler;

import javax.security.auth.callback.UnsupportedCallbackException;

import org.apache.ws.security.WSPasswordCallback;

public class ClientCallbackHandler implements CallbackHandler {

 public void handle(Callback[] callbacks) throws IOException,

 UnsupportedCallbackException {

 for (int i = 0; i < callbacks.length; i++) {

 if (callbacks[i] instanceof WSPasswordCallback) {

 WSPasswordCallback pc = (WSPasswordCallback) callbacks[i];

 if ("myclientkey".equals(pc.getIdentifier())) {

 pc.setPassword("ckpass");

 break;

 } else if ("alice".equals(pc.getIdentifier())) {

 pc.setPassword("clarinet");

 break;

 }

 }

 }

 }

}

Requester Crypto properties and keystore files

WSS4J's Crypto implementation is loaded and configured via a Java properties file that contains Crypto

configuration data. The file contains implementation-specific properties such as a keystore location,

password, default alias and the like. This application is using the Merlin implementation. File

clientKeystore.properties contains this information.

File clientstore.jks, is a Java KeyStore (JKS) repository. It contains self signed certificates for myservicekey

and mystskey. Self signed certificates are not appropriate for production use.

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=jks

org.apache.ws.security.crypto.merlin.keystore.password=cspass

org.apache.ws.security.crypto.merlin.keystore.alias=myclientkey

org.apache.ws.security.crypto.merlin.keystore.file=META-INF/clientstore.jks

PicketLink STS

Latest WildFly Documentation

JBoss Community Documentation Page of 1285 2293

 provides facilities for building up an alternative to the Apache CXF Security Token ServicePicketLink

implementation.

Similarly to the previous implementation, the STS is served through a WebServiceProvider annotated POJO:

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust;

import javax.annotation.Resource;

import javax.xml.ws.Service;

import javax.xml.ws.ServiceMode;

import javax.xml.ws.WebServiceContext;

import javax.xml.ws.WebServiceProvider;

import org.apache.cxf.annotations.EndpointProperties;

import org.apache.cxf.annotations.EndpointProperty;

import org.apache.cxf.interceptor.InInterceptors;

import org.picketlink.identity.federation.core.wstrust.PicketLinkSTS;

@WebServiceProvider(serviceName = "PicketLinkSTS", portName = "PicketLinkSTSPort",

targetNamespace = "urn:picketlink:identity-federation:sts", wsdlLocation =

"WEB-INF/wsdl/PicketLinkSTS.wsdl")

@ServiceMode(value = Service.Mode.MESSAGE)

//be sure to have dependency on org.apache.cxf module when on AS7, otherwise Apache CXF

annotations are ignored

@EndpointProperties(value = {

@EndpointProperty(key = "ws-security.signature.username", value = "mystskey"),

@EndpointProperty(key = "ws-security.signature.properties", value = "stsKeystore.properties"),

@EndpointProperty(key = "ws-security.callback-handler", value =

"org.jboss.test.ws.jaxws.samples.wsse.policy.trust.STSCallbackHandler"),

@EndpointProperty(key = "ws-security.validate.token", value = "false") //to let the JAAS

integration deal with validation through the interceptor below

})

@InInterceptors(interceptors =

)

public class PicketLinkSTService extends PicketLinkSTS {

@Resource

public void setWSC(WebServiceContext wctx)

Unknown macro: { this.context = wctx; }

}

The annotation references the following WS-Policy enabled wsdl contract; please@WebServiceProvider

note the wsdl operations, messages and such must match the implementation:PicketLinkSTS

<?xml version="1.0"?>

<wsdl:definitions name="PicketLinkSTS" targetNamespace="urn:picketlink:identity-federation:sts"

 xmlns:tns="urn:picketlink:identity-federation:sts"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsap10="http://www.w3.org/2006/05/addressing/wsdl"

 xmlns:wsp="http://www.w3.org/ns/ws-policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

http://www.jboss.org/picketlink

Latest WildFly Documentation

JBoss Community Documentation Page of 1286 2293

 xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512"

 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/">

 <wsdl:types>

 <xs:schema elementFormDefault="qualified"

targetNamespace='http://docs.oasis-open.org/ws-sx/ws-trust/200512'

xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name='RequestSecurityToken' type='wst:AbstractRequestSecurityTokenType' />

 <xs:element name='RequestSecurityTokenResponse'

type='wst:AbstractRequestSecurityTokenType' />

 <xs:complexType name='AbstractRequestSecurityTokenType' >

 <xs:sequence>

 <xs:any namespace='##any' processContents='lax' minOccurs='0' maxOccurs='unbounded' />

 </xs:sequence>

 <xs:attribute name='Context' type='xs:anyURI' use='optional' />

 <xs:anyAttribute namespace='##other' processContents='lax' />

 </xs:complexType>

 <xs:element name='RequestSecurityTokenCollection'

type='wst:RequestSecurityTokenCollectionType' />

 <xs:complexType name='RequestSecurityTokenCollectionType' >

 <xs:sequence>

 <xs:element name='RequestSecurityToken' type='wst:AbstractRequestSecurityTokenType'

minOccurs='2' maxOccurs='unbounded'/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name='RequestSecurityTokenResponseCollection'

type='wst:RequestSecurityTokenResponseCollectionType' />

 <xs:complexType name='RequestSecurityTokenResponseCollectionType' >

 <xs:sequence>

 <xs:element ref='wst:RequestSecurityTokenResponse' minOccurs='1' maxOccurs='unbounded'

/>

 </xs:sequence>

 <xs:anyAttribute namespace='##other' processContents='lax' />

 </xs:complexType>

 </xs:schema>

 </wsdl:types>

 <wsdl:message name="RequestSecurityTokenMsg">

 <wsdl:part name="request" element="wst:RequestSecurityToken" />

 </wsdl:message>

 <wsdl:message name="RequestSecurityTokenResponseCollectionMsg">

 <wsdl:part name="responseCollection"

 element="wst:RequestSecurityTokenResponseCollection"/>

 </wsdl:message>

 <wsdl:portType name="SecureTokenService">

 <wsdl:operation name="IssueToken">

 <wsdl:input wsap10:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue"

message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

wsap10:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTRC/IssueFinal"

message="tns:RequestSecurityTokenResponseCollectionMsg"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="STSBinding" type="tns:SecureTokenService">

 <wsp:PolicyReference URI="#UT_policy" />

 <soap12:binding transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="IssueToken">

 <soap12:operation soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue"

Latest WildFly Documentation

JBoss Community Documentation Page of 1287 2293

style="document"/>

 <wsdl:input>

 <wsp:PolicyReference URI="#Input_policy" />

 <soap12:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <wsp:PolicyReference URI="#Output_policy" />

 <soap12:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="PicketLinkSTS">

 <wsdl:port name="PicketLinkSTSPort" binding="tns:STSBinding">

 <soap12:address location="http://localhost:8080/picketlink-sts/PicketLinkSTS"/>

 </wsdl:port>

 </wsdl:service>

 <wsp:Policy wsu:Id="UT_policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <wsap10:UsingAddressing/>

 <sp:SymmetricBinding

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:ProtectionToken>

 <wsp:Policy>

 <sp:X509Token

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Never">

 <wsp:Policy>

 <sp:RequireDerivedKeys />

 <sp:RequireThumbprintReference />

 <sp:WssX509V3Token10 />

 </wsp:Policy>

 </sp:X509Token>

 </wsp:Policy>

 </sp:ProtectionToken>

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:Basic256 />

 </wsp:Policy>

 </sp:AlgorithmSuite>

 <sp:Layout>

 <wsp:Policy>

 <sp:Lax />

 </wsp:Policy>

 </sp:Layout>

 <sp:IncludeTimestamp />

 <sp:EncryptSignature />

 <sp:OnlySignEntireHeadersAndBody />

 </wsp:Policy>

 </sp:SymmetricBinding>

 <sp:SignedSupportingTokens

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:UsernameToken

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">

Latest WildFly Documentation

JBoss Community Documentation Page of 1288 2293

<wsp:Policy>

 <sp:WssUsernameToken10 />

 </wsp:Policy>

 </sp:UsernameToken>

 </wsp:Policy>

 </sp:SignedSupportingTokens>

 <sp:Wss11

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:MustSupportRefKeyIdentifier />

 <sp:MustSupportRefIssuerSerial />

 <sp:MustSupportRefThumbprint />

 <sp:MustSupportRefEncryptedKey />

 </wsp:Policy>

 </sp:Wss11>

 <sp:Trust13

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:MustSupportIssuedTokens />

 <sp:RequireClientEntropy />

 <sp:RequireServerEntropy />

 </wsp:Policy>

 </sp:Trust13>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 <wsp:Policy wsu:Id="Input_policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:SignedParts

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <sp:Body />

 <sp:Header Name="To"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="From"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="FaultTo"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="ReplyTo"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="MessageID"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="RelatesTo"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="Action"

 Namespace="http://www.w3.org/2005/08/addressing" />

 </sp:SignedParts>

 <sp:EncryptedParts

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <sp:Body />

 </sp:EncryptedParts>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 <wsp:Policy wsu:Id="Output_policy">

 <wsp:ExactlyOne>

Latest WildFly Documentation

JBoss Community Documentation Page of 1289 2293

 <wsp:All>

 <sp:SignedParts

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <sp:Body />

 <sp:Header Name="To"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="From"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="FaultTo"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="ReplyTo"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="MessageID"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="RelatesTo"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="Action"

 Namespace="http://www.w3.org/2005/08/addressing" />

 </sp:SignedParts>

 <sp:EncryptedParts

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <sp:Body />

 </sp:EncryptedParts>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

</wsdl:definitions>

Differently from the Apache CXF STS example described above, the PicketLink based STS gets its

configuration from a picketlink-sts.xml descriptor which must be added in WEB-INF into the deployment;

please refer to the PicketLink documentation for further information:

Latest WildFly Documentation

JBoss Community Documentation Page of 1290 2293

<PicketLinkSTS xmlns="urn:picketlink:identity-federation:config:1.0"

 STSName="PicketLinkSTS" TokenTimeout="7200" EncryptToken="false">

 <KeyProvider ClassName="org.picketlink.identity.federation.core.impl.KeyStoreKeyManager">

 <Auth Key="KeyStoreURL" Value="stsstore.jks"/>

 <Auth Key="KeyStorePass" Value="stsspass"/>

 <Auth Key="SigningKeyAlias" Value="mystskey"/>

 <Auth Key="SigningKeyPass" Value="stskpass"/>

 <ValidatingAlias

Key="http://localhost:8080/jaxws-samples-wsse-policy-trust/SecurityService"

Value="myservicekey"/>

 </KeyProvider>

 <TokenProviders>

 <TokenProvider

ProviderClass="org.picketlink.identity.federation.core.wstrust.plugins.saml.SAML11TokenProvider"

TokenType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1"

 TokenElement="Assertion"

 TokenElementNS="urn:oasis:names:tc:SAML:1.0:assertion"/>

 <TokenProvider

ProviderClass="org.picketlink.identity.federation.core.wstrust.plugins.saml.SAML20TokenProvider"

TokenType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0"

 TokenElement="Assertion"

 TokenElementNS="urn:oasis:names:tc:SAML:2.0:assertion"/>

 </TokenProviders>

</PicketLinkSTS>

Finally, the PicketLink alternative approach of course requires different WildFly module dependencies to be

declared in the MANIFEST.MF:

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.8.2

Created-By: 1.6.0_26-b03 (Sun Microsystems Inc.)

Dependencies: org.apache.ws.security,org.apache.cxf,org.picketlink

Here is how the PicketLink STS endpoint is packaged:

Latest WildFly Documentation

JBoss Community Documentation Page of 1291 2293

alessio@inuyasha /dati/jbossws/stack/cxf/trunk $ jar -tvf

./modules/testsuite/cxf-tests/target/test-libs/jaxws-samples-wsse-policy-trustPicketLink-sts.war

 0 Mon Sep 03 17:38:38 CEST 2012 META-INF/

 174 Mon Sep 03 17:38:36 CEST 2012 META-INF/MANIFEST.MF

 0 Mon Sep 03 17:38:38 CEST 2012 WEB-INF/

 0 Mon Sep 03 17:38:38 CEST 2012 WEB-INF/classes/

 0 Mon Sep 03 16:35:50 CEST 2012 WEB-INF/classes/org/

 0 Mon Sep 03 16:35:50 CEST 2012 WEB-INF/classes/org/jboss/

 0 Mon Sep 03 16:35:50 CEST 2012 WEB-INF/classes/org/jboss/test/

 0 Mon Sep 03 16:35:52 CEST 2012 WEB-INF/classes/org/jboss/test/ws/

 0 Mon Sep 03 16:35:50 CEST 2012 WEB-INF/classes/org/jboss/test/ws/jaxws/

 0 Mon Sep 03 16:35:52 CEST 2012 WEB-INF/classes/org/jboss/test/ws/jaxws/samples/

 0 Mon Sep 03 16:35:50 CEST 2012 WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/

 0 Mon Sep 03 16:35:50 CEST 2012

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/

 0 Mon Sep 03 16:35:52 CEST 2012

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/trust/

 1686 Mon Sep 03 16:35:50 CEST 2012

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/trust/PicketLinkSTService.class

 1148 Mon Sep 03 16:35:52 CEST 2012

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/trust/STSCallbackHandler.class

 251 Mon Sep 03 17:38:34 CEST 2012 WEB-INF/jboss-web.xml

 0 Mon Sep 03 16:35:50 CEST 2012 WEB-INF/wsdl/

 9070 Mon Sep 03 17:38:34 CEST 2012 WEB-INF/wsdl/PicketLinkSTS.wsdl

 1267 Mon Sep 03 17:38:34 CEST 2012 WEB-INF/classes/picketlink-sts.xml

 1054 Mon Sep 03 16:35:50 CEST 2012 WEB-INF/classes/stsKeystore.properties

 3978 Mon Sep 03 16:35:50 CEST 2012 WEB-INF/classes/stsstore.jks

ActAs WS-Trust Scenario

ActAs WS-Trust Scenario

Web service provider

Web service provider WSDL

Web Service Interface

Web Service Implementation

ActAsCallbackHandler

UsernameTokenCallbackHandler

Crypto properties and keystore files

MANIFEST.MF

Security Token Service

STS Implementation class

STSCallbackHandler

Web service requester

Web service requester Implementation

ActAs WS-Trust Scenario

Latest WildFly Documentation

JBoss Community Documentation Page of 1292 2293

The ActAs feature is used in scenarios that require composite delegation. It is commonly used in multi-tiered

systems where an application calls a service on behalf of a logged in user or a service calls another service

on behalf of the original caller.

ActAs is nothing more than a new sub-element in the RequestSecurityToken (RST). It provides additional

information about the original caller when a token is negotiated with the STS. The ActAs element usually

takes the form of a token with identity claims such as name, role, and authorization code, for the client to

access the service.

The ActAs scenario is an extension of . In this example the ActAs service callsthe basic WS-Trust scenario

the ws-service on behalf of a user. There are only a couple of additions to the basic scenario's code. An

ActAs web service provider and callback handler have been added. The ActAs web services' WSDL

imposes the same security policies as the ws-provider. UsernameTokenCallbackHandler is new. It is a utility

that generates the content for the ActAs element. And lastly there are a couple of code additions in the STS

to support the ActAs request.

Web service provider

This section examines the web service elements from the basic WS-Trust scenario that have been changed

to address the needs of the ActAs example. The components are

ActAs web service provider's WSDL

ActAs web service provider's Interface and Implementation classes.

ActAsCallbackHandler class

UsernameTokenCallbackHandler

Crypto properties and keystore files

MANIFEST.MF

Web service provider WSDL

The ActAs web service provider's WSDL is a clone of the ws-provider's WSDL. The wsp:Policy section is

the same. There are changes to the service endpoint, targetNamespace, portType, binding name, and

service.

Latest WildFly Documentation

JBoss Community Documentation Page of 1293 2293

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<definitions targetNamespace="http://www.jboss.org/jbossws/ws-extensions/actaswssecuritypolicy"

name="ActAsService"

 xmlns:tns="http://www.jboss.org/jbossws/ws-extensions/actaswssecuritypolicy"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsp="http://www.w3.org/ns/ws-policy"

 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

 xmlns:wsaws="http://www.w3.org/2005/08/addressing"

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"

 xmlns:t="http://docs.oasis-open.org/ws-sx/ws-trust/200512">

 <types>

 <xsd:schema>

 <xsd:import

namespace="http://www.jboss.org/jbossws/ws-extensions/actaswssecuritypolicy"

 schemaLocation="ActAsService_schema1.xsd"/>

 </xsd:schema>

 </types>

 <message name="sayHello">

 <part name="parameters" element="tns:sayHello"/>

 </message>

 <message name="sayHelloResponse">

 <part name="parameters" element="tns:sayHelloResponse"/>

 </message>

 <portType name="ActAsServiceIface">

 <operation name="sayHello">

 <input message="tns:sayHello"/>

 <output message="tns:sayHelloResponse"/>

 </operation>

 </portType>

 <binding name="ActAsServicePortBinding" type="tns:ActAsServiceIface">

 <wsp:PolicyReference URI="#AsymmetricSAML2Policy" />

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <operation name="sayHello">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal"/>

 <wsp:PolicyReference URI="#Input_Policy" />

 </input>

 <output>

 <soap:body use="literal"/>

 <wsp:PolicyReference URI="#Output_Policy" />

 </output>

 </operation>

 </binding>

 <service name="ActAsService">

 <port name="ActAsServicePort" binding="tns:ActAsServicePortBinding">

 <soap:address

location="http://@jboss.bind.address@:8080/jaxws-samples-wsse-policy-trust-actas/ActAsService"/>

 </port>

 </service>

</definitions>

Latest WildFly Documentation

JBoss Community Documentation Page of 1294 2293

Web Service Interface

The web service provider interface class, ActAsServiceIface, is a simple web service definition.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.actas;

import javax.jws.WebMethod;

import javax.jws.WebService;

@WebService

(

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/actaswssecuritypolicy"

)

public interface ActAsServiceIface

{

 @WebMethod

 String sayHello();

}

Web Service Implementation

The web service provider implementation class, ActAsServiceImpl, is a simple POJO. It uses the standard

WebService annotation to define the service endpoint and two Apache WSS4J annotations,

EndpointProperties and EndpointProperty used for configuring the endpoint for the CXF runtime. The

WSS4J configuration information provided is for WSS4J's Crypto Merlin implementation.

ActAsServiceImpl is calling ServiceImpl acting on behalf of the user. Method setupService performs the

requisite configuration setup.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.actas;

import org.apache.cxf.Bus;

import org.apache.cxf.BusFactory;

import org.apache.cxf.annotations.EndpointProperties;

import org.apache.cxf.annotations.EndpointProperty;

import org.apache.cxf.ws.security.SecurityConstants;

import org.apache.cxf.ws.security.trust.STSClient;

import org.jboss.test.ws.jaxws.samples.wsse.policy.trust.service.ServiceIface;

import org.jboss.test.ws.jaxws.samples.wsse.policy.trust.shared.WSTrustAppUtils;

import javax.jws.WebService;

import javax.xml.namespace.QName;

import javax.xml.ws.BindingProvider;

import javax.xml.ws.Service;

import java.net.MalformedURLException;

import java.net.URL;

import java.util.Map;

@WebService

(

 portName = "ActAsServicePort",

 serviceName = "ActAsService",

 wsdlLocation = "WEB-INF/wsdl/ActAsService.wsdl",

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/actaswssecuritypolicy",

Latest WildFly Documentation

JBoss Community Documentation Page of 1295 2293

 endpointInterface =

"org.jboss.test.ws.jaxws.samples.wsse.policy.trust.actas.ActAsServiceIface"

)

@EndpointProperties(value = {

 @EndpointProperty(key = "ws-security.signature.username", value = "myactaskey"),

 @EndpointProperty(key = "ws-security.signature.properties", value =

"actasKeystore.properties"),

 @EndpointProperty(key = "ws-security.encryption.properties", value =

"actasKeystore.properties"),

 @EndpointProperty(key = "ws-security.callback-handler", value =

"org.jboss.test.ws.jaxws.samples.wsse.policy.trust.actas.ActAsCallbackHandler")

})

public class ActAsServiceImpl implements ActAsServiceIface

{

 public String sayHello() {

 try {

 ServiceIface proxy = setupService();

 return "ActAs " + proxy.sayHello();

 } catch (MalformedURLException e) {

 e.printStackTrace();

 }

 return null;

 }

 private ServiceIface setupService()throws MalformedURLException {

 ServiceIface proxy = null;

 Bus bus = BusFactory.newInstance().createBus();

 try {

 BusFactory.setThreadDefaultBus(bus);

 final String serviceURL = "http://" + WSTrustAppUtils.getServerHost() +

":8080/jaxws-samples-wsse-policy-trust/SecurityService";

 final QName serviceName = new

QName("http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy", "SecurityService");

 final URL wsdlURL = new URL(serviceURL + "?wsdl");

 Service service = Service.create(wsdlURL, serviceName);

 proxy = (ServiceIface) service.getPort(ServiceIface.class);

 Map<String, Object> ctx = ((BindingProvider) proxy).getRequestContext();

 ctx.put(SecurityConstants.CALLBACK_HANDLER, new ActAsCallbackHandler());

 ctx.put(SecurityConstants.SIGNATURE_PROPERTIES,

Thread.currentThread().getContextClassLoader().getResource("actasKeystore.properties"));

 ctx.put(SecurityConstants.SIGNATURE_USERNAME, "myactaskey");

 ctx.put(SecurityConstants.ENCRYPT_PROPERTIES,

Thread.currentThread().getContextClassLoader().getResource("../../META-INF/clientKeystore.properties"

));

 ctx.put(SecurityConstants.ENCRYPT_USERNAME, "myservicekey");

 STSClient stsClient = new STSClient(bus);

 Map<String, Object> props = stsClient.getProperties();

 props.put(SecurityConstants.USERNAME, "alice");

 props.put(SecurityConstants.ENCRYPT_USERNAME, "mystskey");

Latest WildFly Documentation

JBoss Community Documentation Page of 1296 2293

 props.put(SecurityConstants.STS_TOKEN_USERNAME, "myactaskey");

 props.put(SecurityConstants.STS_TOKEN_PROPERTIES,

Thread.currentThread().getContextClassLoader().getResource("actasKeystore.properties"));

 props.put(SecurityConstants.STS_TOKEN_USE_CERT_FOR_KEYINFO, "true");

 ctx.put(SecurityConstants.STS_CLIENT, stsClient);

 } finally {

 bus.shutdown(true);

 }

 return proxy;

 }

}

ActAsCallbackHandler

ActAsCallbackHandler is a callback handler for the WSS4J Crypto API. It is used to obtain the password for

the private key in the keystore. This class enables CXF to retrieve the password of the user name to use for

the message signature. This class has been revised to return the passwords for this service, myactaskey

and the "actas" user, alice.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.actas;

import org.jboss.wsf.stack.cxf.extensions.security.PasswordCallbackHandler;

import java.util.HashMap;

import java.util.Map;

public class ActAsCallbackHandler extends PasswordCallbackHandler {

 public ActAsCallbackHandler()

 {

 super(getInitMap());

 }

 private static Map<String, String> getInitMap()

 {

 Map<String, String> passwords = new HashMap<String, String>();

 passwords.put("myactaskey", "aspass");

 passwords.put("alice", "clarinet");

 return passwords;

 }

}

UsernameTokenCallbackHandler

The ActAs and OnBeholdOf sub-elements of the RequestSecurityToken are required to be defined as WSSE

Username Tokens. This utility generates the properly formated element.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.shared;

import org.apache.cxf.helpers.DOMUtils;

Latest WildFly Documentation

JBoss Community Documentation Page of 1297 2293

import org.apache.cxf.message.Message;

import org.apache.cxf.ws.security.SecurityConstants;

import org.apache.cxf.ws.security.trust.delegation.DelegationCallback;

import org.apache.ws.security.WSConstants;

import org.apache.ws.security.message.token.UsernameToken;

import org.w3c.dom.Document;

import org.w3c.dom.Node;

import org.w3c.dom.Element;

import org.w3c.dom.ls.DOMImplementationLS;

import org.w3c.dom.ls.LSSerializer;

import javax.security.auth.callback.Callback;

import javax.security.auth.callback.CallbackHandler;

import javax.security.auth.callback.UnsupportedCallbackException;

import java.io.IOException;

import java.util.Map;

/**

* A utility to provide the 3 different input parameter types for jaxws property

* "ws-security.sts.token.act-as" and "ws-security.sts.token.on-behalf-of".

* This implementation obtains a username and password via the jaxws property

* "ws-security.username" and "ws-security.password" respectively, as defined

* in SecurityConstants. It creates a wss UsernameToken to be used as the

* delegation token.

*/

public class UsernameTokenCallbackHandler implements CallbackHandler {

 public void handle(Callback[] callbacks)

 throws IOException, UnsupportedCallbackException {

 for (int i = 0; i < callbacks.length; i++) {

 if (callbacks[i] instanceof DelegationCallback) {

 DelegationCallback callback = (DelegationCallback) callbacks[i];

 Message message = callback.getCurrentMessage();

 String username =

 (String)message.getContextualProperty(SecurityConstants.USERNAME);

 String password =

 (String)message.getContextualProperty(SecurityConstants.PASSWORD);

 if (username != null) {

 Node contentNode = message.getContent(Node.class);

 Document doc = null;

 if (contentNode != null) {

 doc = contentNode.getOwnerDocument();

 } else {

 doc = DOMUtils.createDocument();

 }

 UsernameToken usernameToken = createWSSEUsernameToken(username,password, doc);

 callback.setToken(usernameToken.getElement());

 }

 } else {

 throw new UnsupportedCallbackException(callbacks[i], "Unrecognized Callback");

 }

 }

 }

 /**

 * Provide UsernameToken as a string.

Latest WildFly Documentation

JBoss Community Documentation Page of 1298 2293

 * @param ctx

 * @return

 */

 public String getUsernameTokenString(Map<String, Object> ctx){

 Document doc = DOMUtils.createDocument();

 String result = null;

 String username = (String)ctx.get(SecurityConstants.USERNAME);

 String password = (String)ctx.get(SecurityConstants.PASSWORD);

 if (username != null) {

 UsernameToken usernameToken = createWSSEUsernameToken(username,password, doc);

 result = toString(usernameToken.getElement().getFirstChild().getParentNode());

 }

 return result;

 }

 /**

 *

 * @param username

 * @param password

 * @return

 */

 public String getUsernameTokenString(String username, String password){

 Document doc = DOMUtils.createDocument();

 String result = null;

 if (username != null) {

 UsernameToken usernameToken = createWSSEUsernameToken(username,password, doc);

 result = toString(usernameToken.getElement().getFirstChild().getParentNode());

 }

 return result;

 }

 /**

 * Provide UsernameToken as a DOM Element.

 * @param ctx

 * @return

 */

 public Element getUsernameTokenElement(Map<String, Object> ctx){

 Document doc = DOMUtils.createDocument();

 Element result = null;

 UsernameToken usernameToken = null;

 String username = (String)ctx.get(SecurityConstants.USERNAME);

 String password = (String)ctx.get(SecurityConstants.PASSWORD);

 if (username != null) {

 usernameToken = createWSSEUsernameToken(username,password, doc);

 result = usernameToken.getElement();

 }

 return result;

 }

 /**

 *

 * @param username

 * @param password

 * @return

 */

 public Element getUsernameTokenElement(String username, String password){

 Document doc = DOMUtils.createDocument();

 Element result = null;

Latest WildFly Documentation

JBoss Community Documentation Page of 1299 2293

 UsernameToken usernameToken = null;

 if (username != null) {

 usernameToken = createWSSEUsernameToken(username,password, doc);

 result = usernameToken.getElement();

 }

 return result;

 }

 private UsernameToken createWSSEUsernameToken(String username, String password, Document doc)

{

 UsernameToken usernameToken = new UsernameToken(true, doc,

 (password == null)? null: WSConstants.PASSWORD_TEXT);

 usernameToken.setName(username);

 usernameToken.addWSUNamespace();

 usernameToken.addWSSENamespace();

 usernameToken.setID("id-" + username);

 if (password != null){

 usernameToken.setPassword(password);

 }

 return usernameToken;

 }

 private String toString(Node node) {

 String str = null;

 if (node != null) {

 DOMImplementationLS lsImpl = (DOMImplementationLS)

 node.getOwnerDocument().getImplementation().getFeature("LS", "3.0");

 LSSerializer serializer = lsImpl.createLSSerializer();

 serializer.getDomConfig().setParameter("xml-declaration", false); //by default its

true, so set it to false to get String without xml-declaration

 str = serializer.writeToString(node);

 }

 return str;

 }

}

Crypto properties and keystore files

The ActAs service must provide its own credentials. The requisite properties file, actasKeystore.properties,

and keystore, actasstore.jks, were created.

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=jks

org.apache.ws.security.crypto.merlin.keystore.password=aapass

org.apache.ws.security.crypto.merlin.keystore.alias=myactaskey

org.apache.ws.security.crypto.merlin.keystore.file=actasstore.jks

Latest WildFly Documentation

JBoss Community Documentation Page of 1300 2293

MANIFEST.MF

When deployed on WildFly this application requires access to the JBossWs and CXF APIs provided in

modules org.jboss.ws.cxf.jbossws-cxf-client and org.apache.cxf. The Apache CXF internals,

org.apache.cxf.impl, are needed in handling the ActAs and OnBehalfOf extensions. The dependency

statement directs the server to provide them at deployment.

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.8.2

Created-By: 1.7.0_25-b15 (Oracle Corporation)

Dependencies: org.jboss.ws.cxf.jbossws-cxf-client, org.apache.cxf.impl

Security Token Service

This section examines the STS elements from the basic WS-Trust scenario that have been changed to

address the needs of the ActAs example. The components are.

STS's implementation class.

STSCallbackHandler class

STS Implementation class

The initial description of SampleSTS can be found .here

The declaration of the set of allowed token recipients by address has been extended to accept ActAs

addresses and OnBehalfOf addresses. The addresses are specified as reg-ex patterns.

The TokenIssueOperation requires class, UsernameTokenValidator be provided in order to validate the

contents of the OnBehalfOf claims and class, UsernameTokenDelegationHandler to be provided in order to

process the token delegation request of the ActAs on OnBehalfOf user.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.sts;

import java.util.Arrays;

import java.util.LinkedList;

import java.util.List;

import javax.xml.ws.WebServiceProvider;

import org.apache.cxf.annotations.EndpointProperties;

import org.apache.cxf.annotations.EndpointProperty;

import org.apache.cxf.interceptor.InInterceptors;

import org.apache.cxf.sts.StaticSTSProperties;

import org.apache.cxf.sts.operation.TokenIssueOperation;

import org.apache.cxf.sts.operation.TokenValidateOperation;

import org.apache.cxf.sts.service.ServiceMBean;

import org.apache.cxf.sts.service.StaticService;

import org.apache.cxf.sts.token.delegation.UsernameTokenDelegationHandler;

import org.apache.cxf.sts.token.provider.SAMLTokenProvider;

import org.apache.cxf.sts.token.validator.SAMLTokenValidator;

import org.apache.cxf.sts.token.validator.UsernameTokenValidator;

import org.apache.cxf.ws.security.sts.provider.SecurityTokenServiceProvider;

@WebServiceProvider(serviceName = "SecurityTokenService",

Latest WildFly Documentation

JBoss Community Documentation Page of 1301 2293

 portName = "UT_Port",

 targetNamespace = "http://docs.oasis-open.org/ws-sx/ws-trust/200512/",

 wsdlLocation = "WEB-INF/wsdl/ws-trust-1.4-service.wsdl")

//be sure to have dependency on org.apache.cxf module when on AS7, otherwise Apache CXF

annotations are ignored

@EndpointProperties(value = {

 @EndpointProperty(key = "ws-security.signature.username", value = "mystskey"),

 @EndpointProperty(key = "ws-security.signature.properties", value =

"stsKeystore.properties"),

 @EndpointProperty(key = "ws-security.callback-handler", value =

"org.jboss.test.ws.jaxws.samples.wsse.policy.trust.sts.STSCallbackHandler"),

 @EndpointProperty(key = "ws-security.validate.token", value = "false") //to let the JAAS

integration deal with validation through the interceptor below

})

@InInterceptors(interceptors =

{"org.jboss.wsf.stack.cxf.security.authentication.SubjectCreatingPolicyInterceptor"})

public class SampleSTS extends SecurityTokenServiceProvider

{

 public SampleSTS() throws Exception

 {

 super();

 StaticSTSProperties props = new StaticSTSProperties();

 props.setSignatureCryptoProperties("stsKeystore.properties");

 props.setSignatureUsername("mystskey");

 props.setCallbackHandlerClass(STSCallbackHandler.class.getName());

 props.setIssuer("DoubleItSTSIssuer");

 List<ServiceMBean> services = new LinkedList<ServiceMBean>();

 StaticService service = new StaticService();

 service.setEndpoints(Arrays.asList(

 "http://localhost:(\\d)*/jaxws-samples-wsse-policy-trust/SecurityService",

 "http://\\[::1\\]:(\\d)*/jaxws-samples-wsse-policy-trust/SecurityService",

 "http://\\[0:0:0:0:0:0:0:1\\]:(\\d)*/jaxws-samples-wsse-policy-trust/SecurityService",

 "http://localhost:(\\d)*/jaxws-samples-wsse-policy-trust-actas/ActAsService",

 "http://\\[::1\\]:(\\d)*/jaxws-samples-wsse-policy-trust-actas/ActAsService",

"http://\\[0:0:0:0:0:0:0:1\\]:(\\d)*/jaxws-samples-wsse-policy-trust-actas/ActAsService",

 "http://localhost:(\\d)*/jaxws-samples-wsse-policy-trust-onbehalfof/OnBehalfOfService",

 "http://\\[::1\\]:(\\d)*/jaxws-samples-wsse-policy-trust-onbehalfof/OnBehalfOfService",

"http://\\[0:0:0:0:0:0:0:1\\]:(\\d)*/jaxws-samples-wsse-policy-trust-onbehalfof/OnBehalfOfService"

));

 services.add(service);

 TokenIssueOperation issueOperation = new TokenIssueOperation();

 issueOperation.setServices(services);

 issueOperation.getTokenProviders().add(new SAMLTokenProvider());

 // required for OnBehalfOf

 issueOperation.getTokenValidators().add(new UsernameTokenValidator());

 // added for OnBehalfOf and ActAs

 issueOperation.getDelegationHandlers().add(new UsernameTokenDelegationHandler());

 issueOperation.setStsProperties(props);

 TokenValidateOperation validateOperation = new TokenValidateOperation();

 validateOperation.getTokenValidators().add(new SAMLTokenValidator());

Latest WildFly Documentation

JBoss Community Documentation Page of 1302 2293

 validateOperation.setStsProperties(props);

 this.setIssueOperation(issueOperation);

 this.setValidateOperation(validateOperation);

 }

}

STSCallbackHandler

The user, alice, and corresponding password was required to be added for the ActAs example.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.sts;

import java.util.HashMap;

import java.util.Map;

import org.jboss.wsf.stack.cxf.extensions.security.PasswordCallbackHandler;

public class STSCallbackHandler extends PasswordCallbackHandler

{

 public STSCallbackHandler()

 {

 super(getInitMap());

 }

 private static Map<String, String> getInitMap()

 {

 Map<String, String> passwords = new HashMap<String, String>();

 passwords.put("mystskey", "stskpass");

 passwords.put("alice", "clarinet");

 return passwords;

 }

}

Web service requester

This section examines the ws-requester elements from the basic WS-Trust scenario that have been changed

to address the needs of the ActAs example. The component is

ActAs web service requester implementation class

Web service requester Implementation

The ActAs ws-requester, the client, uses standard procedures for creating a reference to the web service in

the first four lines. To address the endpoint security requirements, the web service's "Request Context" is

configured via the BindingProvider. Information needed in the message generation is provided through it.

The ActAs user, myactaskey, is declared in this section and UsernameTokenCallbackHandler is used to

provide the contents of the ActAs element to the STSClient. In this example a STSClient object is created

and provided to the proxy's request context. The alternative is to provide keys tagged with the ".it" suffix as

was done in . The use of ActAs is configured through the props map using thethe Basic Scenario client

SecurityConstants.STS_TOKEN_ACT_AS key. The alternative is to use the STSClient.setActAs method.

https://docs.jboss.org/author/display/JBWS/WS-Trust+and+STS#WS-TrustandSTS-WebservicerequesterImplementation

Latest WildFly Documentation

JBoss Community Documentation Page of 1303 2293

final QName serviceName = new

QName("http://www.jboss.org/jbossws/ws-extensions/actaswssecuritypolicy", "ActAsService");

final URL wsdlURL = new URL(serviceURL + "?wsdl");

Service service = Service.create(wsdlURL, serviceName);

ActAsServiceIface proxy = (ActAsServiceIface) service.getPort(ActAsServiceIface.class);

Bus bus = BusFactory.newInstance().createBus();

try {

 BusFactory.setThreadDefaultBus(bus);

 Map<String, Object> ctx = proxy.getRequestContext();

 ctx.put(SecurityConstants.CALLBACK_HANDLER, new ClientCallbackHandler());

 ctx.put(SecurityConstants.ENCRYPT_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

 ctx.put(SecurityConstants.ENCRYPT_USERNAME, "myactaskey");

 ctx.put(SecurityConstants.SIGNATURE_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

 ctx.put(SecurityConstants.SIGNATURE_USERNAME, "myclientkey");

 // Generate the ActAs element contents and pass to the STSClient as a string

 UsernameTokenCallbackHandler ch = new UsernameTokenCallbackHandler();

 String str = ch.getUsernameTokenString("alice","clarinet");

 ctx.put(SecurityConstants.STS_TOKEN_ACT_AS, str);

 STSClient stsClient = new STSClient(bus);

 Map<String, Object> props = stsClient.getProperties();

 props.put(SecurityConstants.USERNAME, "bob");

 props.put(SecurityConstants.CALLBACK_HANDLER, new ClientCallbackHandler());

 props.put(SecurityConstants.ENCRYPT_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

 props.put(SecurityConstants.ENCRYPT_USERNAME, "mystskey");

 props.put(SecurityConstants.STS_TOKEN_USERNAME, "myclientkey");

 props.put(SecurityConstants.STS_TOKEN_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

 props.put(SecurityConstants.STS_TOKEN_USE_CERT_FOR_KEYINFO, "true");

 ctx.put(SecurityConstants.STS_CLIENT, stsClient);

} finally {

 bus.shutdown(true);

}

proxy.sayHello();

Latest WildFly Documentation

JBoss Community Documentation Page of 1304 2293

OnBehalfOf WS-Trust Scenario

OnBehalfOf WS-Trust Scenario

Web service provider

Web service provider WSDL

Web Service Interface

Web Service Implementation

OnBehalfOfCallbackHandler

Web service requester

Web service requester Implementation

OnBehalfOf WS-Trust Scenario
The OnBehalfOf feature is used in scenarios that use the proxy pattern. In such scenarios, the client cannot

access the STS directly, instead it communicates through a proxy gateway. The proxy gateway

authenticates the caller and puts information about the caller into the OnBehalfOf element of the

RequestSecurityToken (RST) sent to the real STS for processing. The resulting token contains only claims

related to the client of the proxy, making the proxy completely transparent to the receiver of the issued token.

OnBehalfOf is nothing more than a new sub-element in the RST. It provides additional information about the

original caller when a token is negotiated with the STS. The OnBehalfOf element usually takes the form of a

token with identity claims such as name, role, and authorization code, for the client to access the service.

The OnBehalfOf scenario is an extension of . In this example the OnBehalfOfthe basic WS-Trust scenario

service calls the ws-service on behalf of a user. There are only a couple of additions to the basic scenario's

code. An OnBehalfOf web service provider and callback handler have been added. The OnBehalfOf web

services' WSDL imposes the same security policies as the ws-provider. UsernameTokenCallbackHandler is

a utility shared with ActAs. It generates the content for the OnBehalfOf element. And lastly there are code

additions in the STS that both OnBehalfOf and ActAs share in common.

Infor here []Open Source Security: Apache CXF 2.5.1 STS updates

Web service provider

This section examines the web service elements from the basic WS-Trust scenario that have been changed

to address the needs of the OnBehalfOf example. The components are.

web service provider's WSDL

web service provider's Interface and Implementation classes.

OnBehalfOfCallbackHandler class

Web service provider WSDL

The OnBehalfOf web service provider's WSDL is a clone of the ws-provider's WSDL. The wsp:Policy

section is the same. There are changes to the service endpoint, targetNamespace, portType, binding

name, and service.

http://coheigea.blogspot.it/2012/01/apache-cxf-251-sts-updates.html

Latest WildFly Documentation

JBoss Community Documentation Page of 1305 2293

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<definitions

targetNamespace="http://www.jboss.org/jbossws/ws-extensions/onbehalfofwssecuritypolicy"

name="OnBehalfOfService"

 xmlns:tns="http://www.jboss.org/jbossws/ws-extensions/onbehalfofwssecuritypolicy"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsp="http://www.w3.org/ns/ws-policy"

 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

 xmlns:wsaws="http://www.w3.org/2005/08/addressing"

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"

 xmlns:t="http://docs.oasis-open.org/ws-sx/ws-trust/200512">

 <types>

 <xsd:schema>

 <xsd:import

namespace="http://www.jboss.org/jbossws/ws-extensions/onbehalfofwssecuritypolicy"

 schemaLocation="OnBehalfOfService_schema1.xsd"/>

 </xsd:schema>

 </types>

 <message name="sayHello">

 <part name="parameters" element="tns:sayHello"/>

 </message>

 <message name="sayHelloResponse">

 <part name="parameters" element="tns:sayHelloResponse"/>

 </message>

 <portType name="OnBehalfOfServiceIface">

 <operation name="sayHello">

 <input message="tns:sayHello"/>

 <output message="tns:sayHelloResponse"/>

 </operation>

 </portType>

 <binding name="OnBehalfOfServicePortBinding" type="tns:OnBehalfOfServiceIface">

 <wsp:PolicyReference URI="#AsymmetricSAML2Policy" />

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <operation name="sayHello">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal"/>

 <wsp:PolicyReference URI="#Input_Policy" />

 </input>

 <output>

 <soap:body use="literal"/>

 <wsp:PolicyReference URI="#Output_Policy" />

 </output>

 </operation>

 </binding>

 <service name="OnBehalfOfService">

 <port name="OnBehalfOfServicePort" binding="tns:OnBehalfOfServicePortBinding">

 <soap:address

location="http://@jboss.bind.address@:8080/jaxws-samples-wsse-policy-trust-onbehalfof/OnBehalfOfService"/>

</port>

 </service>

</definitions>

Latest WildFly Documentation

JBoss Community Documentation Page of 1306 2293

Web Service Interface

The web service provider interface class, OnBehalfOfServiceIface, is a simple web service definition.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.onbehalfof;

import javax.jws.WebMethod;

import javax.jws.WebService;

@WebService

(

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/onbehalfofwssecuritypolicy"

)

public interface OnBehalfOfServiceIface

{

 @WebMethod

 String sayHello();

}

Web Service Implementation

The web service provider implementation class, OnBehalfOfServiceImpl, is a simple POJO. It uses the

standard WebService annotation to define the service endpoint and two Apache WSS4J annotations,

EndpointProperties and EndpointProperty used for configuring the endpoint for the CXF runtime. The

WSS4J configuration information provided is for WSS4J's Crypto Merlin implementation.

OnBehalfOfServiceImpl is calling the ServiceImpl acting on behalf of the user. Method setupService

performs the requisite configuration setup.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.onbehalfof;

import org.apache.cxf.Bus;

import org.apache.cxf.BusFactory;

import org.apache.cxf.annotations.EndpointProperties;

import org.apache.cxf.annotations.EndpointProperty;

import org.apache.cxf.ws.security.SecurityConstants;

import org.apache.cxf.ws.security.trust.STSClient;

import org.jboss.test.ws.jaxws.samples.wsse.policy.trust.service.ServiceIface;

import org.jboss.test.ws.jaxws.samples.wsse.policy.trust.shared.WSTrustAppUtils;

import javax.jws.WebService;

import javax.xml.namespace.QName;

import javax.xml.ws.BindingProvider;

import javax.xml.ws.Service;

import java.net.*;

import java.util.Map;

@WebService

(

 portName = "OnBehalfOfServicePort",

 serviceName = "OnBehalfOfService",

 wsdlLocation = "WEB-INF/wsdl/OnBehalfOfService.wsdl",

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/onbehalfofwssecuritypolicy",

 endpointInterface =

Latest WildFly Documentation

JBoss Community Documentation Page of 1307 2293

"org.jboss.test.ws.jaxws.samples.wsse.policy.trust.onbehalfof.OnBehalfOfServiceIface"

)

@EndpointProperties(value = {

 @EndpointProperty(key = "ws-security.signature.username", value = "myactaskey"),

 @EndpointProperty(key = "ws-security.signature.properties", value =

"actasKeystore.properties"),

 @EndpointProperty(key = "ws-security.encryption.properties", value =

"actasKeystore.properties"),

 @EndpointProperty(key = "ws-security.callback-handler", value =

"org.jboss.test.ws.jaxws.samples.wsse.policy.trust.onbehalfof.OnBehalfOfCallbackHandler")

})

public class OnBehalfOfServiceImpl implements OnBehalfOfServiceIface

{

 public String sayHello() {

 try {

 ServiceIface proxy = setupService();

 return "OnBehalfOf " + proxy.sayHello();

 } catch (MalformedURLException e) {

 e.printStackTrace();

 }

 return null;

 }

 /**

 *

 * @return

 * @throws MalformedURLException

 */

 private ServiceIface setupService()throws MalformedURLException {

 ServiceIface proxy = null;

 Bus bus = BusFactory.newInstance().createBus();

 try {

 BusFactory.setThreadDefaultBus(bus);

 final String serviceURL = "http://" + WSTrustAppUtils.getServerHost() +

":8080/jaxws-samples-wsse-policy-trust/SecurityService";

 final QName serviceName = new

QName("http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy", "SecurityService");

 final URL wsdlURL = new URL(serviceURL + "?wsdl");

 Service service = Service.create(wsdlURL, serviceName);

 proxy = (ServiceIface) service.getPort(ServiceIface.class);

 Map<String, Object> ctx = ((BindingProvider) proxy).getRequestContext();

 ctx.put(SecurityConstants.CALLBACK_HANDLER, new OnBehalfOfCallbackHandler());

 ctx.put(SecurityConstants.SIGNATURE_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "actasKeystore.properties"));

 ctx.put(SecurityConstants.SIGNATURE_USERNAME, "myactaskey");

 ctx.put(SecurityConstants.ENCRYPT_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "../../META-INF/clientKeystore.properties"));

 ctx.put(SecurityConstants.ENCRYPT_USERNAME, "myservicekey");

Latest WildFly Documentation

JBoss Community Documentation Page of 1308 2293

 STSClient stsClient = new STSClient(bus);

 Map<String, Object> props = stsClient.getProperties();

 props.put(SecurityConstants.USERNAME, "bob");

 props.put(SecurityConstants.ENCRYPT_USERNAME, "mystskey");

 props.put(SecurityConstants.STS_TOKEN_USERNAME, "myactaskey");

 props.put(SecurityConstants.STS_TOKEN_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "actasKeystore.properties"));

 props.put(SecurityConstants.STS_TOKEN_USE_CERT_FOR_KEYINFO, "true");

 ctx.put(SecurityConstants.STS_CLIENT, stsClient);

 } finally {

 bus.shutdown(true);

 }

 return proxy;

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1309 2293

OnBehalfOfCallbackHandler

OnBehalfOfCallbackHandler is a callback handler for the WSS4J Crypto API. It is used to obtain the

password for the private key in the keystore. This class enables CXF to retrieve the password of the user

name to use for the message signature. This class has been revised to return the passwords for this

service, myactaskey and the "OnBehalfOf" user, alice.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.onbehalfof;

import org.jboss.wsf.stack.cxf.extensions.security.PasswordCallbackHandler;

import java.util.HashMap;

import java.util.Map;

public class OnBehalfOfCallbackHandler extends PasswordCallbackHandler {

 public OnBehalfOfCallbackHandler()

 {

 super(getInitMap());

 }

 private static Map<String, String> getInitMap()

 {

 Map<String, String> passwords = new HashMap<String, String>();

 passwords.put("myactaskey", "aspass");

 passwords.put("alice", "clarinet");

 passwords.put("bob", "trombone");

 return passwords;

 }

}

Web service requester

This section examines the ws-requester elements from the basic WS-Trust scenario that have been changed

to address the needs of the OnBehalfOf example. The component is

OnBehalfOf web service requester implementation class

Web service requester Implementation

The OnBehalfOf ws-requester, the client, uses standard procedures for creating a reference to the web

service in the first four lines. To address the endpoint security requirements, the web service's "Request

Context" is configured via the BindingProvider. Information needed in the message generation is provided

through it. The OnBehalfOf user, alice, is declared in this section and the callbackHandler,

UsernameTokenCallbackHandler is provided to the STSClient for generation of the contents for the

OnBehalfOf message element. In this example a STSClient object is created and provided to the proxy's

request context. The alternative is to provide keys tagged with the ".it" suffix as was done in the Basic

. The use of OnBehalfOf is configured by the method call stsClient.setOnBehalfOf. TheScenario client

alternative is to use the key SecurityConstants.STS_TOKEN_ON_BEHALF_OF and a value in the props

map.

Latest WildFly Documentation

JBoss Community Documentation Page of 1310 2293

final QName serviceName = new

QName("http://www.jboss.org/jbossws/ws-extensions/onbehalfofwssecuritypolicy",

"OnBehalfOfService");

final URL wsdlURL = new URL(serviceURL + "?wsdl");

Service service = Service.create(wsdlURL, serviceName);

OnBehalfOfServiceIface proxy = (OnBehalfOfServiceIface)

service.getPort(OnBehalfOfServiceIface.class);

Bus bus = BusFactory.newInstance().createBus();

try {

 BusFactory.setThreadDefaultBus(bus);

 Map<String, Object> ctx = proxy.getRequestContext();

 ctx.put(SecurityConstants.CALLBACK_HANDLER, new ClientCallbackHandler());

 ctx.put(SecurityConstants.ENCRYPT_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

 ctx.put(SecurityConstants.ENCRYPT_USERNAME, "myactaskey");

 ctx.put(SecurityConstants.SIGNATURE_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

 ctx.put(SecurityConstants.SIGNATURE_USERNAME, "myclientkey");

 // user and password OnBehalfOf user

 // UsernameTokenCallbackHandler will extract this information when called

 ctx.put(SecurityConstants.USERNAME,"alice");

 ctx.put(SecurityConstants.PASSWORD, "clarinet");

 STSClient stsClient = new STSClient(bus);

 // Providing the STSClient the mechanism to create the claims contents for OnBehalfOf

 stsClient.setOnBehalfOf(new UsernameTokenCallbackHandler());

 Map<String, Object> props = stsClient.getProperties();

 props.put(SecurityConstants.CALLBACK_HANDLER, new ClientCallbackHandler());

 props.put(SecurityConstants.ENCRYPT_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

 props.put(SecurityConstants.ENCRYPT_USERNAME, "mystskey");

 props.put(SecurityConstants.STS_TOKEN_USERNAME, "myclientkey");

 props.put(SecurityConstants.STS_TOKEN_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

 props.put(SecurityConstants.STS_TOKEN_USE_CERT_FOR_KEYINFO, "true");

 ctx.put(SecurityConstants.STS_CLIENT, stsClient);

} finally {

 bus.shutdown(true);

}

proxy.sayHello();

Latest WildFly Documentation

JBoss Community Documentation Page of 1311 2293

SAML Bearer Assertion Scenario

SAML Bearer Assertion Scenario

Web service Provider

Web service provider WSDL

SSL configuration

Web service Interface

Web service Implementation

Crypto properties and keystore files

MANIFEST.MF

Bearer Security Token Service

Security Domain

STS's WSDL

STS's implementation class

STSBearerCallbackHandler

Crypto properties and keystore files

MANIFEST.MF

Web service requester

Web service requester Implementation

ClientCallbackHandler

Crypto properties and keystore files

SAML Bearer Assertion Scenario
WS-Trust deals with managing software security tokens. A SAML assertion is a type of security token. In

the SAML Bearer scenario, the service provider automatically trusts that the incoming SOAP request came

from the subject defined in the SAML token after the service verifies the tokens signature.

Implementation of this scenario has the following requirements.

SAML tokens with a Bearer subject confirmation method must be protected so the token can not be

snooped. In most cases, a bearer token combined with HTTPS is sufficient to prevent "a man in the

middle" getting possession of the token. This means a security policy that uses a

sp:TransportBinding and sp:HttpsToken.

A bearer token has no encryption or signing keys associated with it, therefore a sp:IssuedToken of

bearer keyType should be used with a sp:SupportingToken or a sp:SignedSupportingTokens.

Web service Provider

This section examines the web service elements for the SAML Bearer scenario. The components are

Bearer web service provider's WSDL

SSL configuration

Bearer web service provider's Interface and Implementation classes.

Crypto properties and keystore files

MANIFEST.MF

Latest WildFly Documentation

JBoss Community Documentation Page of 1312 2293

Web service provider WSDL

The web service provider is a contract-first endpoint. All the WS-trust and security policies for it are declared

in WSDL, BearerService.wsdl. For this scenario a ws-requester is required to present a SAML 2.0 Bearer

token issued from a designed STS. The address of the STS is provided in the WSDL. HTTPS, a

TransportBinding and HttpsToken policy are used to protect the SOAP body of messages that pass back

and forth between ws-requester and ws-provider. A detailed explanation of the security settings are

provided in the comments in the listing below.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<definitions targetNamespace="http://www.jboss.org/jbossws/ws-extensions/bearerwssecuritypolicy"

 name="BearerService"

 xmlns:tns="http://www.jboss.org/jbossws/ws-extensions/bearerwssecuritypolicy"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsp="http://www.w3.org/ns/ws-policy"

 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

 xmlns:wsaws="http://www.w3.org/2005/08/addressing"

 xmlns:wsx="http://schemas.xmlsoap.org/ws/2004/09/mex"

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"

 xmlns:t="http://docs.oasis-open.org/ws-sx/ws-trust/200512">

 <types>

 <xsd:schema>

 <xsd:import namespace="http://www.jboss.org/jbossws/ws-extensions/bearerwssecuritypolicy"

 schemaLocation="BearerService_schema1.xsd"/>

 </xsd:schema>

 </types>

 <message name="sayHello">

 <part name="parameters" element="tns:sayHello"/>

 </message>

 <message name="sayHelloResponse">

 <part name="parameters" element="tns:sayHelloResponse"/>

 </message>

 <portType name="BearerIface">

 <operation name="sayHello">

 <input message="tns:sayHello"/>

 <output message="tns:sayHelloResponse"/>

 </operation>

 </portType>

<!--

 The wsp:PolicyReference binds the security requirments on all the endpoints.

 The wsp:Policy wsu:Id="#TransportSAML2BearerPolicy" element is defined later in this

file.

-->

 <binding name="BearerServicePortBinding" type="tns:BearerIface">

 <wsp:PolicyReference URI="#TransportSAML2BearerPolicy" />

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <operation name="sayHello">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal"/>

Latest WildFly Documentation

JBoss Community Documentation Page of 1313 2293

 </input>

 <output>

 <soap:body use="literal"/>

 </output>

 </operation>

 </binding>

<!--

 The soap:address has been defined to use JBoss's https port, 8443. This is

 set in conjunction with the sp:TransportBinding policy for https.

-->

 <service name="BearerService">

 <port name="BearerServicePort" binding="tns:BearerServicePortBinding">

 <soap:address

location="https://@jboss.bind.address@:8443/jaxws-samples-wsse-policy-trust-bearer/BearerService"/>

</port>

 </service>

 <wsp:Policy wsu:Id="TransportSAML2BearerPolicy">

 <wsp:ExactlyOne>

 <wsp:All>

 <!--

 The wsam:Addressing element, indicates that the endpoints of this

 web service MUST conform to the WS-Addressing specification. The

 attribute wsp:Optional="false" enforces this assertion.

 -->

 <wsam:Addressing wsp:Optional="false">

 <wsp:Policy />

 </wsam:Addressing>

<!--

 The sp:TransportBinding element indicates that security is provided by the

 message exchange transport medium, https. WS-Security policy specification

 defines the sp:HttpsToken for use in exchanging messages transmitted over HTTPS.

-->

 <sp:TransportBinding

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:TransportToken>

 <wsp:Policy>

 <sp:HttpsToken>

 <wsp:Policy/>

 </sp:HttpsToken>

 </wsp:Policy>

 </sp:TransportToken>

<!--

 The sp:AlgorithmSuite element, requires the TripleDes algorithm suite

 be used in performing cryptographic operations.

-->

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:TripleDes />

 </wsp:Policy>

 </sp:AlgorithmSuite>

<!--

 The sp:Layout element, indicates the layout rules to apply when adding

 items to the security header. The sp:Lax sub-element indicates items

Latest WildFly Documentation

JBoss Community Documentation Page of 1314 2293

 are added to the security header in any order that conforms to

 WSS: SOAP Message Security.

-->

 <sp:Layout>

 <wsp:Policy>

 <sp:Lax />

 </wsp:Policy>

 </sp:Layout>

 <sp:IncludeTimestamp />

 </wsp:Policy>

 </sp:TransportBinding>

<!--

 The sp:SignedSupportingTokens element causes the supporting tokens

 to be signed using the primary token that is used to sign the message.

-->

 <sp:SignedSupportingTokens

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

<!--

 The sp:IssuedToken element asserts that a SAML 2.0 security token of type

 Bearer is expected from the STS. The

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">

attribute instructs the runtime to include the initiator's public key

 with every message sent to the recipient.

 The sp:RequestSecurityTokenTemplate element directs that all of the

 children of this element will be copied directly into the body of the

 RequestSecurityToken (RST) message that is sent to the STS when the

 initiator asks the STS to issue a token.

-->

 <sp:IssuedToken

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">

<sp:RequestSecurityTokenTemplate>

<t:TokenType>http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0</t:TokenType>

<t:KeyType>http://docs.oasis-open.org/ws-sx/ws-trust/200512/Bearer</t:KeyType>

 </sp:RequestSecurityTokenTemplate>

 <wsp:Policy>

 <sp:RequireInternalReference />

 </wsp:Policy>

<!--

 The sp:Issuer element defines the STS's address and endpoint information

 This information is used by the STSClient.

-->

 <sp:Issuer>

<wsaws:Address>http://@jboss.bind.address@:8080/jaxws-samples-wsse-policy-trust-sts-bearer/SecurityTokenService</wsaws:Address>

<wsaws:Metadata

 xmlns:wsdli="http://www.w3.org/2006/01/wsdl-instance"

wsdli:wsdlLocation="http://@jboss.bind.address@:8080/jaxws-samples-wsse-policy-trust-sts-bearer/SecurityTokenService?wsdl">

<wsaw:ServiceName

 xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"

 xmlns:stsns="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"

 EndpointName="UT_Port">stsns:SecurityTokenService</wsaw:ServiceName>

Latest WildFly Documentation

JBoss Community Documentation Page of 1315 2293

 </wsaws:Metadata>

 </sp:Issuer>

 </sp:IssuedToken>

 </wsp:Policy>

 </sp:SignedSupportingTokens>

<!--

 The sp:Wss11 element declares WSS: SOAP Message Security 1.1 options

 to be supported by the STS. These particular elements generally refer

 to how keys are referenced within the SOAP envelope. These are normally

 handled by CXF.

-->

 <sp:Wss11>

 <wsp:Policy>

 <sp:MustSupportRefIssuerSerial />

 <sp:MustSupportRefThumbprint />

 <sp:MustSupportRefEncryptedKey />

 </wsp:Policy>

 </sp:Wss11>

<!--

 The sp:Trust13 element declares controls for WS-Trust 1.3 options.

 They are policy assertions related to exchanges specifically with

 client and server challenges and entropy behaviors. Again these are

 normally handled by CXF.

-->

 <sp:Trust13>

 <wsp:Policy>

 <sp:MustSupportIssuedTokens />

 <sp:RequireClientEntropy />

 <sp:RequireServerEntropy />

 </wsp:Policy>

 </sp:Trust13>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

</definitions>

Latest WildFly Documentation

JBoss Community Documentation Page of 1316 2293

SSL configuration

This web service is using https, therefore the JBoss server must be configured to provide SSL support in the

Web subsystem. There are 2 components to SSL configuration.

create a certificate keystore

declare an SSL connector in the Web subsystem of the JBoss server configuration file.

Follow the directions in the, " " section in the Using the pure Java implementation supplied by JSSE SSL

.Setup Guide

Here is an example of an SSL connector declaration.

<subsystem xmlns="urn:jboss:domain:web:1.4" default-virtual-server="default-host"

native="false">

 <connector name="jbws-https-connector" protocol="HTTP/1.1" scheme="https"

socket-binding="https" secure="true" enabled="true">

 <ssl key-alias="tomcat" password="changeit"

certificate-key-file="/myJbossHome/security/test.keystore" verify-client="false"/>

 </connector>

 ...

Web service Interface

The web service provider interface class, BearerIface, is a simple straight forward web service definition.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.bearer;

import javax.jws.WebMethod;

import javax.jws.WebService;

@WebService

(

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/bearerwssecuritypolicy"

)

public interface BearerIface

{

 @WebMethod

 String sayHello();

}

https://docs.jboss.org/author/display/WFLY8/SSL+setup+guide
https://docs.jboss.org/author/display/WFLY8/SSL+setup+guide

Latest WildFly Documentation

JBoss Community Documentation Page of 1317 2293

Web service Implementation

The web service provider implementation class, BearerImpl, is a simple POJO. It uses the standard

WebService annotation to define the service endpoint. In addition there are two Apache CXF annotations,

EndpointProperties and EndpointProperty used for configuring the endpoint for the CXF runtime. These

annotations come from the , which provides a Java implementation of the primaryApache WSS4J project

WS-Security standards for Web Services. These annotations are programmatically adding properties to the

endpoint. With plain Apache CXF, these properties are often set via the <jaxws:properties> element on the

<jaxws:endpoint> element in the Spring config; these annotations allow the properties to be configured in the

code.

WSS4J uses the Crypto interface to get keys and certificates for signature creation/verification, as is

asserted by the WSDL for this service. The WSS4J configuration information being provided by BearerImpl

is for Crypto's Merlin implementation. More information will be provided about this in the keystore section.

Because the web service provider automatically trusts that the incoming SOAP request came from the

subject defined in the SAML token there is no need for a Crypto callbackHandler class or a signature

username, unlike in prior examples, however in order to verify the message signature, the Java properties

file that contains the (Merlin) crypto configuration information is still required.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.bearer;

import org.apache.cxf.annotations.EndpointProperties;

import org.apache.cxf.annotations.EndpointProperty;

import javax.jws.WebService;

@WebService

(

 portName = "BearerServicePort",

 serviceName = "BearerService",

 wsdlLocation = "WEB-INF/wsdl/BearerService.wsdl",

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/bearerwssecuritypolicy",

 endpointInterface = "org.jboss.test.ws.jaxws.samples.wsse.policy.trust.bearer.BearerIface"

)

@EndpointProperties(value = {

 @EndpointProperty(key = "ws-security.signature.properties", value =

"serviceKeystore.properties")

})

public class BearerImpl implements BearerIface

{

 public String sayHello()

 {

 return "Bearer WS-Trust Hello World!";

 }

}

https://ws.apache.org/wss4j/

Latest WildFly Documentation

JBoss Community Documentation Page of 1318 2293

Crypto properties and keystore files

WSS4J's Crypto implementation is loaded and configured via a Java properties file that contains Crypto

configuration data. The file contains implementation-specific properties such as a keystore location,

password, default alias and the like. This application is using the Merlin implementation. File

serviceKeystore.properties contains this information.

File servicestore.jks, is a Java KeyStore (JKS) repository. It contains self signed certificates for

myservicekey and mystskey. Self signed certificates are not appropriate for production use.

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=jks

org.apache.ws.security.crypto.merlin.keystore.password=sspass

org.apache.ws.security.crypto.merlin.keystore.alias=myservicekey

org.apache.ws.security.crypto.merlin.keystore.file=servicestore.jks

MANIFEST.MF

When deployed on WildFly this application requires access to the JBossWs and CXF APIs provided in

module org.jboss.ws.cxf.jbossws-cxf-client. The dependency statement directs the server to provide them at

deployment.

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.8.2

Created-By: 1.7.0_25-b15 (Oracle Corporation)

Dependencies: org.jboss.ws.cxf.jbossws-cxf-client

Bearer Security Token Service

This section examines the crucial elements in providing the Security Token Service functionality for providing

a SAML Bearer token. The components that will be discussed are.

Security Domain

STS's WSDL

STS's implementation class

STSBearerCallbackHandler

Crypto properties and keystore files

MANIFEST.MF

Latest WildFly Documentation

JBoss Community Documentation Page of 1319 2293

Security Domain

The STS requires a JBoss security domain be configured. The jboss-web.xml descriptor declares a named

security domain,"JBossWS-trust-sts" to be used by this service for authentication. This security domain

requires two properties files and the addition of a security-domain declaration in the JBoss server

configuration file.

For this scenario the domain needs to contain user , password , and role . See the listingsalice clarinet friend

below for jbossws-users.properties and jbossws-roles.properties. In addition the following XML must be

added to the JBoss security subsystem in the server configuration file. Replace " " withSOME_PATH

appropriate information.

<security-domain name="JBossWS-trust-sts">

 <authentication>

 <login-module code="UsersRoles" flag="required">

 <module-option name="usersProperties" value="/SOME_PATH/jbossws-users.properties"/>

 <module-option name="unauthenticatedIdentity" value="anonymous"/>

 <module-option name="rolesProperties" value="/SOME_PATH/jbossws-roles.properties"/>

 </login-module>

 </authentication>

</security-domain>

jboss-web.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jboss-web PUBLIC "-//JBoss//DTD Web Application 2.4//EN" ">

<jboss-web>

 <security-domain>java:/jaas/JBossWS-trust-sts</security-domain>

</jboss-web>

jbossws-users.properties

A sample users.properties file for use with the UsersRolesLoginModule

alice=clarinet

jbossws-roles.properties

A sample roles.properties file for use with the UsersRolesLoginModule

alice=friend

STS's WSDL

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions

 targetNamespace="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"

 xmlns:tns="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"

 xmlns:wstrust="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

Latest WildFly Documentation

JBoss Community Documentation Page of 1320 2293

 xmlns:wsap10="http://www.w3.org/2006/05/addressing/wsdl"

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

 xmlns:wsp="http://www.w3.org/ns/ws-policy"

 xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata">

 <wsdl:types>

 <xs:schema elementFormDefault="qualified"

 targetNamespace='http://docs.oasis-open.org/ws-sx/ws-trust/200512'>

 <xs:element name='RequestSecurityToken'

 type='wst:AbstractRequestSecurityTokenType'/>

 <xs:element name='RequestSecurityTokenResponse'

 type='wst:AbstractRequestSecurityTokenType'/>

 <xs:complexType name='AbstractRequestSecurityTokenType'>

 <xs:sequence>

 <xs:any namespace='##any' processContents='lax' minOccurs='0'

 maxOccurs='unbounded'/>

 </xs:sequence>

 <xs:attribute name='Context' type='xs:anyURI' use='optional'/>

 <xs:anyAttribute namespace='##other' processContents='lax'/>

 </xs:complexType>

 <xs:element name='RequestSecurityTokenCollection'

 type='wst:RequestSecurityTokenCollectionType'/>

 <xs:complexType name='RequestSecurityTokenCollectionType'>

 <xs:sequence>

 <xs:element name='RequestSecurityToken'

 type='wst:AbstractRequestSecurityTokenType' minOccurs='2'

 maxOccurs='unbounded'/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name='RequestSecurityTokenResponseCollection'

 type='wst:RequestSecurityTokenResponseCollectionType'/>

 <xs:complexType name='RequestSecurityTokenResponseCollectionType'>

 <xs:sequence>

 <xs:element ref='wst:RequestSecurityTokenResponse' minOccurs='1'

 maxOccurs='unbounded'/>

 </xs:sequence>

 <xs:anyAttribute namespace='##other' processContents='lax'/>

 </xs:complexType>

 </xs:schema>

 </wsdl:types>

 <!-- WS-Trust defines the following GEDs -->

 <wsdl:message name="RequestSecurityTokenMsg">

 <wsdl:part name="request" element="wst:RequestSecurityToken"/>

 </wsdl:message>

 <wsdl:message name="RequestSecurityTokenResponseMsg">

 <wsdl:part name="response"

 element="wst:RequestSecurityTokenResponse"/>

 </wsdl:message>

 <wsdl:message name="RequestSecurityTokenCollectionMsg">

 <wsdl:part name="requestCollection"

 element="wst:RequestSecurityTokenCollection"/>

Latest WildFly Documentation

JBoss Community Documentation Page of 1321 2293

 </wsdl:message>

 <wsdl:message name="RequestSecurityTokenResponseCollectionMsg">

 <wsdl:part name="responseCollection"

 element="wst:RequestSecurityTokenResponseCollection"/>

 </wsdl:message>

 <!-- This portType an example of a Requestor (or other) endpoint that

 Accepts SOAP-based challenges from a Security Token Service -->

 <wsdl:portType name="WSSecurityRequestor">

 <wsdl:operation name="Challenge">

 <wsdl:input message="tns:RequestSecurityTokenResponseMsg"/>

 <wsdl:output message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 </wsdl:portType>

 <!-- This portType is an example of an STS supporting full protocol -->

 <!--

 The wsdl:portType and data types are XML elements defined by the

 WS_Trust specification. The wsdl:portType defines the endpoints

 supported in the STS implementation. This WSDL defines all operations

 that an STS implementation can support.

 -->

 <wsdl:portType name="STS">

 <wsdl:operation name="Cancel">

 <wsdl:input

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Cancel"

 message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/CancelFinal"

 message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="Issue">

 <wsdl:input

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue"

 message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTRC/IssueFinal"

 message="tns:RequestSecurityTokenResponseCollectionMsg"/>

 </wsdl:operation>

 <wsdl:operation name="Renew">

 <wsdl:input

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Renew"

 message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/RenewFinal"

 message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="Validate">

 <wsdl:input

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Validate"

 message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/ValidateFinal"

 message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="KeyExchangeToken">

 <wsdl:input

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/KET"

Latest WildFly Documentation

JBoss Community Documentation Page of 1322 2293

 message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/KETFinal"

 message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="RequestCollection">

 <wsdl:input message="tns:RequestSecurityTokenCollectionMsg"/>

 <wsdl:output message="tns:RequestSecurityTokenResponseCollectionMsg"/>

 </wsdl:operation>

 </wsdl:portType>

 <!-- This portType is an example of an endpoint that accepts

 Unsolicited RequestSecurityTokenResponse messages -->

 <wsdl:portType name="SecurityTokenResponseService">

 <wsdl:operation name="RequestSecurityTokenResponse">

 <wsdl:input message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 </wsdl:portType>

 <!--

 The wsp:PolicyReference binds the security requirments on all the STS endpoints.

 The wsp:Policy wsu:Id="UT_policy" element is later in this file.

 -->

 <wsdl:binding name="UT_Binding" type="wstrust:STS">

 <wsp:PolicyReference URI="#UT_policy"/>

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="Issue">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue"/>

 <wsdl:input>

 <wsp:PolicyReference

 URI="#Input_policy"/>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <wsp:PolicyReference

 URI="#Output_policy"/>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="Validate">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Validate"/>

 <wsdl:input>

 <wsp:PolicyReference

 URI="#Input_policy"/>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <wsp:PolicyReference

 URI="#Output_policy"/>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="Cancel">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Cancel"/>

Latest WildFly Documentation

JBoss Community Documentation Page of 1323 2293

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="Renew">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Renew"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="KeyExchangeToken">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/KeyExchangeToken"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="RequestCollection">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/RequestCollection"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="SecurityTokenService">

 <wsdl:port name="UT_Port" binding="tns:UT_Binding">

 <soap:address location="http://localhost:8080/SecurityTokenService/UT"/>

 </wsdl:port>

 </wsdl:service>

 <wsp:Policy wsu:Id="UT_policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <!--

 The sp:UsingAddressing element, indicates that the endpoints of this

 web service conforms to the WS-Addressing specification. More detail

 can be found here: [http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529]

 -->

 <wsap10:UsingAddressing/>

 <!--

 The sp:SymmetricBinding element indicates that security is provided

 at the SOAP layer and any initiator must authenticate itself by providing

Latest WildFly Documentation

JBoss Community Documentation Page of 1324 2293

 WSS UsernameToken credentials.

 -->

 <sp:SymmetricBinding

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <!--

 In a symmetric binding, the keys used for encrypting and signing in both

 directions are derived from a single key, the one specified by the

 sp:ProtectionToken element. The sp:X509Token sub-element declares this

 key to be a X.509 certificate and the

IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Never"

 attribute adds the requirement that the token MUST NOT be included in

 any messages sent between the initiator and the recipient; rather, an

 external reference to the token should be used. Lastly the WssX509V3Token10

 sub-element declares that the Username token presented by the initiator

 should be compliant with Web Services Security UsernameToken Profile

 1.0 specification. [

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf]

 -->

 <sp:ProtectionToken>

 <wsp:Policy>

 <sp:X509Token

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Never">

 <wsp:Policy>

 <sp:RequireDerivedKeys/>

 <sp:RequireThumbprintReference/>

 <sp:WssX509V3Token10/>

 </wsp:Policy>

 </sp:X509Token>

 </wsp:Policy>

 </sp:ProtectionToken>

 <!--

 The sp:AlgorithmSuite element, requires the Basic256 algorithm suite

 be used in performing cryptographic operations.

 -->

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:Basic256/>

 </wsp:Policy>

 </sp:AlgorithmSuite>

 <!--

 The sp:Layout element, indicates the layout rules to apply when adding

 items to the security header. The sp:Lax sub-element indicates items

 are added to the security header in any order that conforms to

 WSS: SOAP Message Security.

 -->

 <sp:Layout>

 <wsp:Policy>

 <sp:Lax/>

 </wsp:Policy>

 </sp:Layout>

 <sp:IncludeTimestamp/>

 <sp:EncryptSignature/>

 <sp:OnlySignEntireHeadersAndBody/>

 </wsp:Policy>

 </sp:SymmetricBinding>

Latest WildFly Documentation

JBoss Community Documentation Page of 1325 2293

 <!--

 The sp:SignedSupportingTokens element declares that the security header

 of messages must contain a sp:UsernameToken and the token must be signed.

 The attribute

IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient"

on sp:UsernameToken indicates that the token MUST be included in all

 messages sent from initiator to the recipient and that the token MUST

 NOT be included in messages sent from the recipient to the initiator.

 And finally the element sp:WssUsernameToken10 is a policy assertion

 indicating the Username token should be as defined in Web Services

 Security UsernameToken Profile 1.0

 -->

 <sp:SignedSupportingTokens

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:UsernameToken

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">

<wsp:Policy>

 <sp:WssUsernameToken10/>

 </wsp:Policy>

 </sp:UsernameToken>

 </wsp:Policy>

 </sp:SignedSupportingTokens>

 <!--

 The sp:Wss11 element declares WSS: SOAP Message Security 1.1 options

 to be supported by the STS. These particular elements generally refer

 to how keys are referenced within the SOAP envelope. These are normally

 handled by CXF.

 -->

 <sp:Wss11

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:MustSupportRefKeyIdentifier/>

 <sp:MustSupportRefIssuerSerial/>

 <sp:MustSupportRefThumbprint/>

 <sp:MustSupportRefEncryptedKey/>

 </wsp:Policy>

 </sp:Wss11>

 <!--

 The sp:Trust13 element declares controls for WS-Trust 1.3 options.

 They are policy assertions related to exchanges specifically with

 client and server challenges and entropy behaviors. Again these are

 normally handled by CXF.

 -->

 <sp:Trust13

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:MustSupportIssuedTokens/>

 <sp:RequireClientEntropy/>

 <sp:RequireServerEntropy/>

 </wsp:Policy>

 </sp:Trust13>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

Latest WildFly Documentation

JBoss Community Documentation Page of 1326 2293

 <wsp:Policy wsu:Id="Input_policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:SignedParts

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <sp:Body/>

 <sp:Header Name="To"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="From"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="FaultTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="ReplyTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="MessageID"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="RelatesTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="Action"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 </sp:SignedParts>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 <wsp:Policy wsu:Id="Output_policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:SignedParts

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <sp:Body/>

 <sp:Header Name="To"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="From"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="FaultTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="ReplyTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="MessageID"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="RelatesTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="Action"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 </sp:SignedParts>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

</wsdl:definitions>

STS's implementation class

Latest WildFly Documentation

JBoss Community Documentation Page of 1327 2293

The Apache CXF's STS, SecurityTokenServiceProvider, is a web service provider that is compliant with the

protocols and functionality defined by the WS-Trust specification. It has a modular architecture. Many of its

components are configurable or replaceable and there are many optional features that are enabled by

implementing and configuring plug-ins. Users can customize their own STS by extending from

SecurityTokenServiceProvider and overriding the default settings. Extensive information about the CXF's

STS configurable and pluggable components can be found .here

This STS implementation class, SampleSTSBearer, is a POJO that extends from

SecurityTokenServiceProvider. Note that the class is defined with a WebServiceProvider annotation and not

a WebService annotation. This annotation defines the service as a Provider-based endpoint, meaning it

supports a more messaging-oriented approach to Web services. In particular, it signals that the exchanged

messages will be XML documents of some type. SecurityTokenServiceProvider is an implementation of the

javax.xml.ws.Provider interface. In comparison the WebService annotation defines a (service endpoint

interface) SEI-based endpoint which supports message exchange via SOAP envelopes.

As was done in the BearerImpl class, the WSS4J annotations EndpointProperties and EndpointProperty are

providing endpoint configuration for the CXF runtime. The first EndpointProperty statement in the listing is

declaring the user's name to use for the message signature. It is used as the alias name in the keystore to

get the user's cert and private key for signature. The next two EndpointProperty statements declares the

Java properties file that contains the (Merlin) crypto configuration information. In this case both for signing

and encrypting the messages. WSS4J reads this file and extra required information for message handling.

The last EndpointProperty statement declares the STSBearerCallbackHandler implementation class. It is

used to obtain the user's password for the certificates in the keystore file.

In this implementation we are customizing the operations of token issuance, token validation and their static

properties.

StaticSTSProperties is used to set select properties for configuring resources in the STS. You may think this

is a duplication of the settings made with the WSS4J annotations. The values are the same but the

underlaying structures being set are different, thus this information must be declared in both places.

The setIssuer setting is important because it uniquely identifies the issuing STS. The issuer string is

embedded in issued tokens and, when validating tokens, the STS checks the issuer string value.

Consequently, it is important to use the issuer string in a consistent way, so that the STS can recognize the

tokens that it has issued.

The setEndpoints call allows the declaration of a set of allowed token recipients by address. The addresses

are specified as reg-ex patterns.

TokenIssueOperation has a modular structure. This allows custom behaviors to be injected into the

processing of messages. In this case we are overriding the SecurityTokenServiceProvider's default behavior

and performing SAML token processing. CXF provides an implementation of a SAMLTokenProvider which

we are using rather than writing our own.

Learn more about the SAMLTokenProvider .here

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.stsbearer;

import org.apache.cxf.annotations.EndpointProperties;

http://coheigea.blogspot.com/2011/11/apache-cxf-sts-documentation-part-viii_10.html
http://coheigea.blogspot.it/2011/10/apache-cxf-sts-documentation-part-iv.html

Latest WildFly Documentation

JBoss Community Documentation Page of 1328 2293

import org.apache.cxf.annotations.EndpointProperty;

import org.apache.cxf.sts.StaticSTSProperties;

import org.apache.cxf.sts.operation.TokenIssueOperation;

import org.apache.cxf.sts.service.ServiceMBean;

import org.apache.cxf.sts.service.StaticService;

import org.apache.cxf.sts.token.provider.SAMLTokenProvider;

import org.apache.cxf.ws.security.sts.provider.SecurityTokenServiceProvider;

import javax.xml.ws.WebServiceProvider;

import java.util.Arrays;

import java.util.LinkedList;

import java.util.List;

@WebServiceProvider(serviceName = "SecurityTokenService",

 portName = "UT_Port",

 targetNamespace = "http://docs.oasis-open.org/ws-sx/ws-trust/200512/",

 wsdlLocation = "WEB-INF/wsdl/bearer-ws-trust-1.4-service.wsdl")

//be sure to have dependency on org.apache.cxf module when on AS7, otherwise Apache CXF

annotations are ignored

@EndpointProperties(value = {

 @EndpointProperty(key = "ws-security.signature.username", value = "mystskey"),

 @EndpointProperty(key = "ws-security.signature.properties", value =

"stsKeystore.properties"),

 @EndpointProperty(key = "ws-security.callback-handler", value =

"org.jboss.test.ws.jaxws.samples.wsse.policy.trust.stsbearer.STSBearerCallbackHandler")

})

public class SampleSTSBearer extends SecurityTokenServiceProvider

{

 public SampleSTSBearer() throws Exception

 {

 super();

 StaticSTSProperties props = new StaticSTSProperties();

 props.setSignatureCryptoProperties("stsKeystore.properties");

 props.setSignatureUsername("mystskey");

 props.setCallbackHandlerClass(STSBearerCallbackHandler.class.getName());

 props.setEncryptionCryptoProperties("stsKeystore.properties");

 props.setEncryptionUsername("myservicekey");

 props.setIssuer("DoubleItSTSIssuer");

 List<ServiceMBean> services = new LinkedList<ServiceMBean>();

 StaticService service = new StaticService();

 service.setEndpoints(Arrays.asList(

 "https://localhost:(\\d)*/jaxws-samples-wsse-policy-trust-bearer/BearerService",

 "https://\\[::1\\]:(\\d)*/jaxws-samples-wsse-policy-trust-bearer/BearerService",

"https://\\[0:0:0:0:0:0:0:1\\]:(\\d)*/jaxws-samples-wsse-policy-trust-bearer/BearerService"

));

 services.add(service);

 TokenIssueOperation issueOperation = new TokenIssueOperation();

 issueOperation.getTokenProviders().add(new SAMLTokenProvider());

 issueOperation.setServices(services);

 issueOperation.setStsProperties(props);

 this.setIssueOperation(issueOperation);

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1329 2293

STSBearerCallbackHandler

STSBearerCallbackHandler is a callback handler for the WSS4J Crypto API. It is used to obtain the

password for the private key in the keystore. This class enables CXF to retrieve the password of the user

name to use for the message signature.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.stsbearer;

import org.jboss.wsf.stack.cxf.extensions.security.PasswordCallbackHandler;

import java.util.HashMap;

import java.util.Map;

public class STSBearerCallbackHandler extends PasswordCallbackHandler

{

 public STSBearerCallbackHandler()

 {

 super(getInitMap());

 }

 private static Map<String, String> getInitMap()

 {

 Map<String, String> passwords = new HashMap<String, String>();

 passwords.put("mystskey", "stskpass");

 passwords.put("alice", "clarinet");

 return passwords;

 }

}

Crypto properties and keystore files

WSS4J's Crypto implementation is loaded and configured via a Java properties file that contains Crypto

configuration data. The file contains implementation-specific properties such as a keystore location,

password, default alias and the like. This application is using the Merlin implementation. File

stsKeystore.properties contains this information.

File servicestore.jks, is a Java KeyStore (JKS) repository. It contains self signed certificates for

myservicekey and mystskey. Self signed certificates are not appropriate for production use.

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=jks

org.apache.ws.security.crypto.merlin.keystore.password=stsspass

org.apache.ws.security.crypto.merlin.keystore.file=stsstore.jks

Latest WildFly Documentation

JBoss Community Documentation Page of 1330 2293

MANIFEST.MF

When deployed on WildFly, this application requires access to the JBossWs and CXF APIs provided in

modules org.jboss.ws.cxf.jbossws-cxf-client and org.apache.cxf. The Apache CXF internals,

org.apache.cxf.impl, are needed to build the STS configuration in the constructor. TheSampleSTS

dependency statement directs the server to provide them at deployment.

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.8.2

Created-By: 1.7.0_25-b15 (Oracle Corporation)

Dependencies: org.jboss.ws.cxf.jbossws-cxf-client,org.apache.cxf.impl

Web service requester

This section examines the crucial elements in calling a web service that implements endpoint security as

described in the SAML Bearer scenario. The components that will be discussed are.

Web service requester's implementation

ClientCallbackHandler

Crypto properties and keystore files

Latest WildFly Documentation

JBoss Community Documentation Page of 1331 2293

Web service requester Implementation

The ws-requester, the client, uses standard procedures for creating a reference to the web service. To

address the endpoint security requirements, the web service's "Request Context" is configured with the

information needed in message generation. In addition, the STSClient that communicates with the STS is

configured with similar values. Note the key strings ending with a ".it" suffix. This suffix flags these settings

as belonging to the STSClient. The internal CXF code assigns this information to the STSClient that is

auto-generated for this service call.

There is an alternate method of setting up the STSCLient. The user may provide their own instance of the

STSClient. The CXF code will use this object and not auto-generate one. When providing the STSClient in

this way, the user must provide a org.apache.cxf.Bus for it and the configuration keys must not have the ".it"

suffix. This is used in the ActAs and OnBehalfOf examples.

String serviceURL = "https://" + getServerHost() +

":8443/jaxws-samples-wsse-policy-trust-bearer/BearerService";

 final QName serviceName = new

QName("http://www.jboss.org/jbossws/ws-extensions/bearerwssecuritypolicy", "BearerService");

 Service service = Service.create(new URL(serviceURL + "?wsdl"), serviceName);

 BearerIface proxy = (BearerIface) service.getPort(BearerIface.class);

 Map<String, Object> ctx = ((BindingProvider)proxy).getRequestContext();

 // set the security related configuration information for the service "request"

 ctx.put(SecurityConstants.CALLBACK_HANDLER, new ClientCallbackHandler());

 ctx.put(SecurityConstants.SIGNATURE_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

 ctx.put(SecurityConstants.ENCRYPT_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

 ctx.put(SecurityConstants.SIGNATURE_USERNAME, "myclientkey");

 ctx.put(SecurityConstants.ENCRYPT_USERNAME, "myservicekey");

 //-- Configuration settings that will be transfered to the STSClient

 // "alice" is the name provided for the WSS Username. Her password will

 // be retreived from the ClientCallbackHander by the STSClient.

 ctx.put(SecurityConstants.USERNAME + ".it", "alice");

 ctx.put(SecurityConstants.CALLBACK_HANDLER + ".it", new ClientCallbackHandler());

 ctx.put(SecurityConstants.ENCRYPT_PROPERTIES + ".it",

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

 ctx.put(SecurityConstants.ENCRYPT_USERNAME + ".it", "mystskey");

 ctx.put(SecurityConstants.STS_TOKEN_USERNAME + ".it", "myclientkey");

 ctx.put(SecurityConstants.STS_TOKEN_PROPERTIES + ".it",

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

 ctx.put(SecurityConstants.STS_TOKEN_USE_CERT_FOR_KEYINFO + ".it", "true");

 proxy.sayHello();

Latest WildFly Documentation

JBoss Community Documentation Page of 1332 2293

ClientCallbackHandler

https://docs.jboss.org/author/display/JBWS/WS-Trust+and+STS#WS-TrustandSTS-ClientCallbackHandler

ClientCallbackHandler is a callback handler for the WSS4J Crypto API. It is used to obtain the password for

the private key in the keystore. This class enables CXF to retrieve the password of the user name to use for

the message signature. Note that "alice" and her password have been provided here. This information is

not in the (JKS) keystore but provided in the WildFly security domain. It was declared in file

jbossws-users.properties.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.shared;

import java.io.IOException;

import javax.security.auth.callback.Callback;

import javax.security.auth.callback.CallbackHandler;

import javax.security.auth.callback.UnsupportedCallbackException;

import org.apache.ws.security.WSPasswordCallback;

public class ClientCallbackHandler implements CallbackHandler {

 public void handle(Callback[] callbacks) throws IOException,

 UnsupportedCallbackException {

 for (int i = 0; i < callbacks.length; i++) {

 if (callbacks[i] instanceof WSPasswordCallback) {

 WSPasswordCallback pc = (WSPasswordCallback) callbacks[i];

 if ("myclientkey".equals(pc.getIdentifier())) {

 pc.setPassword("ckpass");

 break;

 } else if ("alice".equals(pc.getIdentifier())) {

 pc.setPassword("clarinet");

 break;

 } else if ("bob".equals(pc.getIdentifier())) {

 pc.setPassword("trombone");

 break;

 } else if ("myservicekey".equals(pc.getIdentifier())) { // rls test added for

bearer test

 pc.setPassword("skpass");

 break;

 }

 }

 }

 }

}

https://docs.jboss.org/author/display/JBWS/WS-Trust+and+STS#WS-TrustandSTS-ClientCallbackHandler

Latest WildFly Documentation

JBoss Community Documentation Page of 1333 2293

Crypto properties and keystore files

https://docs.jboss.org/author/display/JBWS/WS-Trust+and+STS#WS-TrustandSTS-RequesterCryptopropertiesandkeystorefiles

WSS4J's Crypto implementation is loaded and configured via a Java properties file that contains Crypto

configuration data. The file contains implementation-specific properties such as a keystore location,

password, default alias and the like. This application is using the Merlin implementation. File

clientKeystore.properties contains this information.

File clientstore.jks, is a Java KeyStore (JKS) repository. It contains self signed certificates for myservicekey

and mystskey. Self signed certificates are not appropriate for production use.

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=jks

org.apache.ws.security.crypto.merlin.keystore.password=cspass

org.apache.ws.security.crypto.merlin.keystore.alias=myclientkey

org.apache.ws.security.crypto.merlin.keystore.file=META-INF/clientstore.jks

SAML Holder-Of-Key Assertion Scenario

SAML Holder-Of-Key Assertion Scenario

Web service Provider

Web service provider WSDL

SSL configuration

Web service Interface

Web service Implementation

Crypto properties and keystore files

MANIFEST.MF

Security Token Service

Security Domain

STS's WSDL

STS's implementation class

HolderOfKeyCallbackHandler

Crypto properties and keystore files

MANIFEST.MF

Web service requester

Web service requester Implementation

ClientCallbackHandler

Crypto properties and keystore files

SAML Holder-Of-Key Assertion Scenario
WS-Trust deals with managing software security tokens. A SAML assertion is a type of security token. In

the Holder-Of-Key method, the STS creates a SAML token containing the client's public key and signs the

SAML token with its private key. The client includes the SAML token and signs the outgoing soap envelope

to the web service with its private key. The web service validates the SOAP message and the SAML token.

https://docs.jboss.org/author/display/JBWS/WS-Trust+and+STS#WS-TrustandSTS-RequesterCryptopropertiesandkeystorefiles

Latest WildFly Documentation

JBoss Community Documentation Page of 1334 2293

Implementation of this scenario has the following requirements.

SAML tokens with a Holder-Of-Key subject confirmation method must be protected so the token can

not be snooped. In most cases, a Holder-Of-Key token combined with HTTPS is sufficient to prevent

"a man in the middle" getting possession of the token. This means a security policy that uses a

sp:TransportBinding and sp:HttpsToken.

A Holder-Of-Key token has no encryption or signing keys associated with it, therefore a

sp:IssuedToken of SymmetricKey or PublicKey keyType should be used with a

sp:SignedEndorsingSupportingTokens.

Web service Provider

This section examines the web service elements for the SAML Holder-Of-Key scenario. The components

are

Web service provider's WSDL

SSL configuration

Web service provider's Interface and Implementation classes.

Crypto properties and keystore files

MANIFEST.MF

Web service provider WSDL

The web service provider is a contract-first endpoint. All the WS-trust and security policies for it are declared

in the WSDL, HolderOfKeyService.wsdl. For this scenario a ws-requester is required to present a SAML 2.0

token of SymmetricKey keyType, issued from a designed STS. The address of the STS is provided in the

WSDL. A transport binding policy is used. The token is declared to be signed and endorsed,

sp:SignedEndorsingSupportingTokens. A detailed explanation of the security settings are provided in the

comments in the listing below.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<definitions

targetNamespace="http://www.jboss.org/jbossws/ws-extensions/holderofkeywssecuritypolicy"

 name="HolderOfKeyService"

 xmlns:tns="http://www.jboss.org/jbossws/ws-extensions/holderofkeywssecuritypolicy"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsp="http://www.w3.org/ns/ws-policy"

 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

 xmlns:wsaws="http://www.w3.org/2005/08/addressing"

 xmlns:wsx="http://schemas.xmlsoap.org/ws/2004/09/mex"

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"

 xmlns:t="http://docs.oasis-open.org/ws-sx/ws-trust/200512">

 <types>

 <xsd:schema>

 <xsd:import

namespace="http://www.jboss.org/jbossws/ws-extensions/holderofkeywssecuritypolicy"

 schemaLocation="HolderOfKeyService_schema1.xsd"/>

 </xsd:schema>

Latest WildFly Documentation

JBoss Community Documentation Page of 1335 2293

 </types>

 <message name="sayHello">

 <part name="parameters" element="tns:sayHello"/>

 </message>

 <message name="sayHelloResponse">

 <part name="parameters" element="tns:sayHelloResponse"/>

 </message>

 <portType name="HolderOfKeyIface">

 <operation name="sayHello">

 <input message="tns:sayHello"/>

 <output message="tns:sayHelloResponse"/>

 </operation>

 </portType>

<!--

 The wsp:PolicyReference binds the security requirments on all the endpoints.

 The wsp:Policy wsu:Id="#TransportSAML2HolderOfKeyPolicy" element is defined later in

this file.

-->

 <binding name="HolderOfKeyServicePortBinding" type="tns:HolderOfKeyIface">

 <wsp:PolicyReference URI="#TransportSAML2HolderOfKeyPolicy" />

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <operation name="sayHello">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal"/>

 </input>

 <output>

 <soap:body use="literal"/>

 </output>

 </operation>

 </binding>

<!--

 The soap:address has been defined to use JBoss's https port, 8443. This is

 set in conjunction with the sp:TransportBinding policy for https.

-->

 <service name="HolderOfKeyService">

 <port name="HolderOfKeyServicePort" binding="tns:HolderOfKeyServicePortBinding">

 <soap:address

location="https://@jboss.bind.address@:8443/jaxws-samples-wsse-policy-trust-holderofkey/HolderOfKeyService"/>

</port>

 </service>

 <wsp:Policy wsu:Id="TransportSAML2HolderOfKeyPolicy">

 <wsp:ExactlyOne>

 <wsp:All>

 <!--

 The wsam:Addressing element, indicates that the endpoints of this

 web service MUST conform to the WS-Addressing specification. The

 attribute wsp:Optional="false" enforces this assertion.

 -->

 <wsam:Addressing wsp:Optional="false">

 <wsp:Policy />

 </wsam:Addressing>

<!--

 The sp:TransportBinding element indicates that security is provided by the

 message exchange transport medium, https. WS-Security policy specification

 defines the sp:HttpsToken for use in exchanging messages transmitted over HTTPS.

Latest WildFly Documentation

JBoss Community Documentation Page of 1336 2293

-->

 <sp:TransportBinding

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:TransportToken>

 <wsp:Policy>

 <sp:HttpsToken>

 <wsp:Policy/>

 </sp:HttpsToken>

 </wsp:Policy>

 </sp:TransportToken>

<!--

 The sp:AlgorithmSuite element, requires the TripleDes algorithm suite

 be used in performing cryptographic operations.

-->

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:TripleDes />

 </wsp:Policy>

 </sp:AlgorithmSuite>

<!--

 The sp:Layout element, indicates the layout rules to apply when adding

 items to the security header. The sp:Lax sub-element indicates items

 are added to the security header in any order that conforms to

 WSS: SOAP Message Security.

-->

 <sp:Layout>

 <wsp:Policy>

 <sp:Lax />

 </wsp:Policy>

 </sp:Layout>

 <sp:IncludeTimestamp />

 </wsp:Policy>

 </sp:TransportBinding>

<!--

 The sp:SignedEndorsingSupportingTokens, when transport level security level is

 used there will be no message signature and the signature generated by the

 supporting token will sign the Timestamp.

-->

 <sp:SignedEndorsingSupportingTokens

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

<!--

 The sp:IssuedToken element asserts that a SAML 2.0 security token of type

 Bearer is expected from the STS. The

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">

attribute instructs the runtime to include the initiator's public key

 with every message sent to the recipient.

 The sp:RequestSecurityTokenTemplate element directs that all of the

 children of this element will be copied directly into the body of the

 RequestSecurityToken (RST) message that is sent to the STS when the

 initiator asks the STS to issue a token.

-->

 <sp:IssuedToken

Latest WildFly Documentation

JBoss Community Documentation Page of 1337 2293

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">

<sp:RequestSecurityTokenTemplate>

<t:TokenType>http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0</t:TokenType>

<!--

 KeyType of "SymmetricKey", the client must prove to the WS service that it

 possesses a particular symmetric session key.

 -->

<t:KeyType>http://docs.oasis-open.org/ws-sx/ws-trust/200512/SymmetricKey</t:KeyType>

 </sp:RequestSecurityTokenTemplate>

 <wsp:Policy>

 <sp:RequireInternalReference />

 </wsp:Policy>

<!--

 The sp:Issuer element defines the STS's address and endpoint information

 This information is used by the STSClient.

-->

 <sp:Issuer>

<wsaws:Address>http://@jboss.bind.address@:8080/jaxws-samples-wsse-policy-trust-sts-holderofkey/SecurityTokenService</wsaws:Address>

<wsaws:Metadata

 xmlns:wsdli="http://www.w3.org/2006/01/wsdl-instance"

wsdli:wsdlLocation="http://@jboss.bind.address@:8080/jaxws-samples-wsse-policy-trust-sts-holderofkey/SecurityTokenService?wsdl">

<wsaw:ServiceName

 xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"

 xmlns:stsns="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"

 EndpointName="UT_Port">stsns:SecurityTokenService</wsaw:ServiceName>

 </wsaws:Metadata>

 </sp:Issuer>

 </sp:IssuedToken>

 </wsp:Policy>

 </sp:SignedEndorsingSupportingTokens>

<!--

 The sp:Wss11 element declares WSS: SOAP Message Security 1.1 options

 to be supported by the STS. These particular elements generally refer

 to how keys are referenced within the SOAP envelope. These are normally

 handled by CXF.

-->

 <sp:Wss11>

 <wsp:Policy>

 <sp:MustSupportRefIssuerSerial />

 <sp:MustSupportRefThumbprint />

 <sp:MustSupportRefEncryptedKey />

 </wsp:Policy>

 </sp:Wss11>

<!--

 The sp:Trust13 element declares controls for WS-Trust 1.3 options.

 They are policy assertions related to exchanges specifically with

 client and server challenges and entropy behaviors. Again these are

 normally handled by CXF.

-->

 <sp:Trust13>

 <wsp:Policy>

 <sp:MustSupportIssuedTokens />

 <sp:RequireClientEntropy />

Latest WildFly Documentation

JBoss Community Documentation Page of 1338 2293

 <sp:RequireServerEntropy />

 </wsp:Policy>

 </sp:Trust13>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

</definitions>

SSL configuration

https://docs.jboss.org/author/display/JBWS/WS-Trust+and+STS#WS-TrustandSTS-SSLconfiguration

This web service is using https, therefore the JBoss server must be configured to provide SSL support in the

Web subsystem. There are 2 components to SSL configuration.

create a certificate keystore

declare an SSL connector in the Web subsystem of the JBoss server configuration file.

Follow the directions in the, " " section in the Using the pure Java implementation supplied by JSSE [SSL

.Setup Guide|../../../../../../../../../../display/WFLY8/SSL+setup+guide|||\||]

Here is an example of an SSL connector declaration.

<subsystem xmlns="urn:jboss:domain:web:1.4" default-virtual-server="default-host"

native="false">

.....

 <connector name="jbws-https-connector" protocol="HTTP/1.1" scheme="https"

socket-binding="https" secure="true" enabled="true">

 <ssl key-alias="tomcat" password="changeit"

certificate-key-file="/myJbossHome/security/test.keystore" verify-client="false"/>

 </connector>

...

Web service Interface

The web service provider interface class, HolderOfKeyIface, is a simple straight forward web service

definition.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.holderofkey;

import javax.jws.WebMethod;

import javax.jws.WebService;

@WebService

(

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/holderofkeywssecuritypolicy"

)

public interface HolderOfKeyIface {

 @WebMethod

 String sayHello();

}

https://docs.jboss.org/author/display/JBWS/WS-Trust+and+STS#WS-TrustandSTS-SSLconfiguration

Latest WildFly Documentation

JBoss Community Documentation Page of 1339 2293

Web service Implementation

The web service provider implementation class, HolderOfKeyImpl, is a simple POJO. It uses the standard

WebService annotation to define the service endpoint. In addition there are two Apache CXF annotations,

EndpointProperties and EndpointProperty used for configuring the endpoint for the CXF runtime. These

annotations come from the , which provides a Java implementation of the primaryApache WSS4J project

WS-Security standards for Web Services. These annotations are programmatically adding properties to the

endpoint. With plain Apache CXF, these properties are often set via the <jaxws:properties> element on the

<jaxws:endpoint> element in the Spring config; these annotations allow the properties to be configured in the

code.

WSS4J uses the Crypto interface to get keys and certificates for signature creation/verification, as is

asserted by the WSDL for this service. The WSS4J configuration information being provided by

HolderOfKeyImpl is for Crypto's Merlin implementation. More information will be provided about this in the

keystore section.

The first EndpointProperty statement in the listing disables ensurance of compliance with the Basic Security

Profile 1.1. The next EndpointProperty statements declares the Java properties file that contains the (Merlin)

crypto configuration information. The last EndpointProperty statement declares the

STSHolderOfKeyCallbackHandler implementation class. It is used to obtain the user's password for the

certificates in the keystore file.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.holderofkey;

import org.apache.cxf.annotations.EndpointProperties;

import org.apache.cxf.annotations.EndpointProperty;

import javax.jws.WebService;

@WebService

 (

 portName = "HolderOfKeyServicePort",

 serviceName = "HolderOfKeyService",

 wsdlLocation = "WEB-INF/wsdl/HolderOfKeyService.wsdl",

 targetNamespace =

"http://www.jboss.org/jbossws/ws-extensions/holderofkeywssecuritypolicy",

 endpointInterface =

"org.jboss.test.ws.jaxws.samples.wsse.policy.trust.holderofkey.HolderOfKeyIface"

)

@EndpointProperties(value = {

 @EndpointProperty(key = "ws-security.is-bsp-compliant", value = "false"),

 @EndpointProperty(key = "ws-security.signature.properties", value =

"serviceKeystore.properties"),

 @EndpointProperty(key = "ws-security.callback-handler", value =

"org.jboss.test.ws.jaxws.samples.wsse.policy.trust.holderofkey.HolderOfKeyCallbackHandler")

})

public class HolderOfKeyImpl implements HolderOfKeyIface

{

 public String sayHello()

 {

 return "Holder-Of-Key WS-Trust Hello World!";

 }

}

https://ws.apache.org/wss4j/

Latest WildFly Documentation

JBoss Community Documentation Page of 1340 2293

Crypto properties and keystore files

WSS4J's Crypto implementation is loaded and configured via a Java properties file that contains Crypto

configuration data. The file contains implementation-specific properties such as a keystore location,

password, default alias and the like. This application is using the Merlin implementation. File

serviceKeystore.properties contains this information.

File servicestore.jks, is a Java KeyStore (JKS) repository. It contains self signed certificates for

myservicekey and mystskey. Self signed certificates are not appropriate for production use.

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=jks

org.apache.ws.security.crypto.merlin.keystore.password=sspass

org.apache.ws.security.crypto.merlin.keystore.alias=myservicekey

org.apache.ws.security.crypto.merlin.keystore.file=servicestore.jks

MANIFEST.MF

https://docs.jboss.org/author/display/JBWS/WS-Trust+and+STS#WS-TrustandSTS-MANIFEST.MF

When deployed on WildFly this application requires access to the JBossWs and CXF APIs provided in

module org.jboss.ws.cxf.jbossws-cxf-client. The dependency statement directs the server to provide them at

deployment.

Manifest-Version:1.0

Ant-Version: Apache Ant1.8.2

Created-By:1.7.0_25-b15 (Oracle Corporation)

Dependencies: org.jboss.ws.cxf.jbossws-cxf-client

Security Token Service

This section examines the crucial elements in providing the Security Token Service functionality for providing

a SAML Holder-Of-Key token. The components that will be discussed are.

Security Domain

STS's WSDL

STS's implementation class

STSBearerCallbackHandler

Crypto properties and keystore files

MANIFEST.MF

https://docs.jboss.org/author/display/JBWS/WS-Trust+and+STS#WS-TrustandSTS-MANIFEST.MF

Latest WildFly Documentation

JBoss Community Documentation Page of 1341 2293

Security Domain

The STS requires a JBoss security domain be configured. The jboss-web.xml descriptor declares a named

security domain,"JBossWS-trust-sts" to be used by this service for authentication. This security domain

requires two properties files and the addition of a security-domain declaration in the JBoss server

configuration file.

For this scenario the domain needs to contain user , password , and role . See the listingsalice clarinet friend

below for jbossws-users.properties and jbossws-roles.properties. In addition the following XML must be

added to the JBoss security subsystem in the server configuration file. Replace " " withSOME_PATH

appropriate information.

<security-domain name="JBossWS-trust-sts">

 <authentication>

 <login-module code="UsersRoles" flag="required">

 <module-option name="usersProperties" value="/SOME_PATH/jbossws-users.properties"/>

 <module-option name="unauthenticatedIdentity" value="anonymous"/>

 <module-option name="rolesProperties" value="/SOME_PATH/jbossws-roles.properties"/>

 </login-module>

 </authentication>

</security-domain>

jboss-web.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jboss-web PUBLIC"-//JBoss//DTD Web Application 2.4//EN" ">

<jboss-web>

 <security-domain>java:/jaas/JBossWS-trust-sts</security-domain>

</jboss-web>

jbossws-users.properties

A sample users.properties filefor use with the UsersRolesLoginModule

alice=clarinet

jbossws-roles.properties

A sample roles.properties filefor use with the UsersRolesLoginModule

alice=friend

STS's WSDL

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions

 targetNamespace="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"

Latest WildFly Documentation

JBoss Community Documentation Page of 1342 2293

 xmlns:tns="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"

 xmlns:wstrust="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:wsap10="http://www.w3.org/2006/05/addressing/wsdl"

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

 xmlns:wsp="http://www.w3.org/ns/ws-policy"

 xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata">

 <wsdl:types>

 <xs:schema elementFormDefault="qualified"

 targetNamespace='http://docs.oasis-open.org/ws-sx/ws-trust/200512'>

 <xs:element name='RequestSecurityToken'

 type='wst:AbstractRequestSecurityTokenType'/>

 <xs:element name='RequestSecurityTokenResponse'

 type='wst:AbstractRequestSecurityTokenType'/>

 <xs:complexType name='AbstractRequestSecurityTokenType'>

 <xs:sequence>

 <xs:any namespace='##any' processContents='lax' minOccurs='0'

 maxOccurs='unbounded'/>

 </xs:sequence>

 <xs:attribute name='Context' type='xs:anyURI' use='optional'/>

 <xs:anyAttribute namespace='##other' processContents='lax'/>

 </xs:complexType>

 <xs:element name='RequestSecurityTokenCollection'

 type='wst:RequestSecurityTokenCollectionType'/>

 <xs:complexType name='RequestSecurityTokenCollectionType'>

 <xs:sequence>

 <xs:element name='RequestSecurityToken'

 type='wst:AbstractRequestSecurityTokenType' minOccurs='2'

 maxOccurs='unbounded'/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name='RequestSecurityTokenResponseCollection'

 type='wst:RequestSecurityTokenResponseCollectionType'/>

 <xs:complexType name='RequestSecurityTokenResponseCollectionType'>

 <xs:sequence>

 <xs:element ref='wst:RequestSecurityTokenResponse' minOccurs='1'

 maxOccurs='unbounded'/>

 </xs:sequence>

 <xs:anyAttribute namespace='##other' processContents='lax'/>

 </xs:complexType>

 </xs:schema>

 </wsdl:types>

 <!-- WS-Trust defines the following GEDs -->

 <wsdl:message name="RequestSecurityTokenMsg">

 <wsdl:part name="request" element="wst:RequestSecurityToken"/>

 </wsdl:message>

 <wsdl:message name="RequestSecurityTokenResponseMsg">

 <wsdl:part name="response"

 element="wst:RequestSecurityTokenResponse"/>

Latest WildFly Documentation

JBoss Community Documentation Page of 1343 2293

 </wsdl:message>

 <wsdl:message name="RequestSecurityTokenCollectionMsg">

 <wsdl:part name="requestCollection"

 element="wst:RequestSecurityTokenCollection"/>

 </wsdl:message>

 <wsdl:message name="RequestSecurityTokenResponseCollectionMsg">

 <wsdl:part name="responseCollection"

 element="wst:RequestSecurityTokenResponseCollection"/>

 </wsdl:message>

 <!-- This portType an example of a Requestor (or other) endpoint that

 Accepts SOAP-based challenges from a Security Token Service -->

 <wsdl:portType name="WSSecurityRequestor">

 <wsdl:operation name="Challenge">

 <wsdl:input message="tns:RequestSecurityTokenResponseMsg"/>

 <wsdl:output message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 </wsdl:portType>

 <!-- This portType is an example of an STS supporting full protocol -->

 <wsdl:portType name="STS">

 <wsdl:operation name="Cancel">

 <wsdl:input

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Cancel"

 message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/CancelFinal"

 message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="Issue">

 <wsdl:input

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue"

 message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTRC/IssueFinal"

 message="tns:RequestSecurityTokenResponseCollectionMsg"/>

 </wsdl:operation>

 <wsdl:operation name="Renew">

 <wsdl:input

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Renew"

 message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/RenewFinal"

 message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="Validate">

 <wsdl:input

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Validate"

 message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/ValidateFinal"

 message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="KeyExchangeToken">

 <wsdl:input

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/KET"

 message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

Latest WildFly Documentation

JBoss Community Documentation Page of 1344 2293

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/KETFinal"

 message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="RequestCollection">

 <wsdl:input message="tns:RequestSecurityTokenCollectionMsg"/>

 <wsdl:output message="tns:RequestSecurityTokenResponseCollectionMsg"/>

 </wsdl:operation>

 </wsdl:portType>

 <!-- This portType is an example of an endpoint that accepts

 Unsolicited RequestSecurityTokenResponse messages -->

 <wsdl:portType name="SecurityTokenResponseService">

 <wsdl:operation name="RequestSecurityTokenResponse">

 <wsdl:input message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="UT_Binding" type="wstrust:STS">

 <wsp:PolicyReference URI="#UT_policy"/>

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="Issue">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue"/>

 <wsdl:input>

 <wsp:PolicyReference

 URI="#Input_policy"/>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <wsp:PolicyReference

 URI="#Output_policy"/>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="Validate">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Validate"/>

 <wsdl:input>

 <wsp:PolicyReference

 URI="#Input_policy"/>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <wsp:PolicyReference

 URI="#Output_policy"/>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="Cancel">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Cancel"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

Latest WildFly Documentation

JBoss Community Documentation Page of 1345 2293

 </wsdl:operation>

 <wsdl:operation name="Renew">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Renew"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="KeyExchangeToken">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/KeyExchangeToken"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="RequestCollection">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/RequestCollection"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="SecurityTokenService">

 <wsdl:port name="UT_Port" binding="tns:UT_Binding">

 <soap:address location="http://localhost:8080/SecurityTokenService/UT"/>

 </wsdl:port>

 </wsdl:service>

 <wsp:Policy wsu:Id="UT_policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <wsap10:UsingAddressing/>

 <sp:SymmetricBinding

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:ProtectionToken>

 <wsp:Policy>

 <sp:X509Token

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Never">

 <wsp:Policy>

 <sp:RequireDerivedKeys/>

 <sp:RequireThumbprintReference/>

 <sp:WssX509V3Token10/>

 </wsp:Policy>

 </sp:X509Token>

 </wsp:Policy>

Latest WildFly Documentation

JBoss Community Documentation Page of 1346 2293

 </sp:ProtectionToken>

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:Basic256/>

 </wsp:Policy>

 </sp:AlgorithmSuite>

 <sp:Layout>

 <wsp:Policy>

 <sp:Lax/>

 </wsp:Policy>

 </sp:Layout>

 <sp:IncludeTimestamp/>

 <sp:EncryptSignature/>

 <sp:OnlySignEntireHeadersAndBody/>

 </wsp:Policy>

 </sp:SymmetricBinding>

 <sp:SignedSupportingTokens

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:UsernameToken

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">

<wsp:Policy>

 <sp:WssUsernameToken10/>

 </wsp:Policy>

 </sp:UsernameToken>

 </wsp:Policy>

 </sp:SignedSupportingTokens>

 <sp:Wss11

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:MustSupportRefKeyIdentifier/>

 <sp:MustSupportRefIssuerSerial/>

 <sp:MustSupportRefThumbprint/>

 <sp:MustSupportRefEncryptedKey/>

 </wsp:Policy>

 </sp:Wss11>

 <sp:Trust13

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:MustSupportIssuedTokens/>

 <sp:RequireClientEntropy/>

 <sp:RequireServerEntropy/>

 </wsp:Policy>

 </sp:Trust13>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 <wsp:Policy wsu:Id="Input_policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:SignedParts

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <sp:Body/>

 <sp:Header Name="To"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="From"

Latest WildFly Documentation

JBoss Community Documentation Page of 1347 2293

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="FaultTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="ReplyTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="MessageID"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="RelatesTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="Action"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 </sp:SignedParts>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 <wsp:Policy wsu:Id="Output_policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:SignedParts

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <sp:Body/>

 <sp:Header Name="To"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="From"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="FaultTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="ReplyTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="MessageID"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="RelatesTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="Action"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 </sp:SignedParts>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

</wsdl:definitions>

STS's implementation class

The Apache CXF's STS, SecurityTokenServiceProvider, is a web service provider that is compliant with the

protocols and functionality defined by the WS-Trust specification. It has a modular architecture. Many of its

components are configurable or replaceable and there are many optional features that are enabled by

implementing and configuring plug-ins. Users can customize their own STS by extending from

SecurityTokenServiceProvider and overriding the default settings. Extensive information about the CXF's

STS configurable and pluggable components can be found .here

http://coheigea.blogspot.com/2011/11/apache-cxf-sts-documentation-part-viii_10.html

Latest WildFly Documentation

JBoss Community Documentation Page of 1348 2293

This STS implementation class, SampleSTSHolderOfKey, is a POJO that extends from

SecurityTokenServiceProvider. Note that the class is defined with a WebServiceProvider annotation and not

a WebService annotation. This annotation defines the service as a Provider-based endpoint, meaning it

supports a more messaging-oriented approach to Web services. In particular, it signals that the exchanged

messages will be XML documents of some type. SecurityTokenServiceProvider is an implementation of the

javax.xml.ws.Provider interface. In comparison the WebService annotation defines a (service endpoint

interface) SEI-based endpoint which supports message exchange via SOAP envelopes.

As was done in the HolderOfKeyImpl class, the WSS4J annotations EndpointProperties and

EndpointProperty are providing endpoint configuration for the CXF runtime. The first EndpointProperty

statements declares the Java properties file that contains the (Merlin) crypto configuration information.

WSS4J reads this file and extra required information for message handling. The last EndpointProperty

statement declares the STSHolderOfKeyCallbackHandler implementation class. It is used to obtain the

user's password for the certificates in the keystore file.

In this implementation we are customizing the operations of token issuance and their static properties.

StaticSTSProperties is used to set select properties for configuring resources in the STS. You may think this

is a duplication of the settings made with the WSS4J annotations. The values are the same but the

underlaying structures being set are different, thus this information must be declared in both places.

The setIssuer setting is important because it uniquely identifies the issuing STS. The issuer string is

embedded in issued tokens and, when validating tokens, the STS checks the issuer string value.

Consequently, it is important to use the issuer string in a consistent way, so that the STS can recognize the

tokens that it has issued.

The setEndpoints call allows the declaration of a set of allowed token recipients by address. The addresses

are specified as reg-ex patterns.

TokenIssueOperation has a modular structure. This allows custom behaviors to be injected into the

processing of messages. In this case we are overriding the SecurityTokenServiceProvider's default behavior

and performing SAML token processing. CXF provides an implementation of a SAMLTokenProvider which

we are using rather than writing our own.

Learn more about the SAMLTokenProvider .here

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.stsholderofkey;

import org.apache.cxf.annotations.EndpointProperties;

import org.apache.cxf.annotations.EndpointProperty;

import org.apache.cxf.sts.StaticSTSProperties;

import org.apache.cxf.sts.operation.TokenIssueOperation;

import org.apache.cxf.sts.service.ServiceMBean;

import org.apache.cxf.sts.service.StaticService;

import org.apache.cxf.sts.token.provider.SAMLTokenProvider;

import org.apache.cxf.ws.security.sts.provider.SecurityTokenServiceProvider;

import javax.xml.ws.WebServiceProvider;

import java.util.Arrays;

import java.util.LinkedList;

import java.util.List;

http://coheigea.blogspot.it/2011/10/apache-cxf-sts-documentation-part-iv.html

Latest WildFly Documentation

JBoss Community Documentation Page of 1349 2293

/**

 * User: rsearls

 * Date: 3/14/14

 */

@WebServiceProvider(serviceName = "SecurityTokenService",

 portName = "UT_Port",

 targetNamespace = "http://docs.oasis-open.org/ws-sx/ws-trust/200512/",

 wsdlLocation = "WEB-INF/wsdl/holderofkey-ws-trust-1.4-service.wsdl")

//be sure to have dependency on org.apache.cxf module when on AS7, otherwise Apache CXF

annotations are ignored

@EndpointProperties(value = {

 @EndpointProperty(key = "ws-security.signature.properties", value =

"stsKeystore.properties"),

 @EndpointProperty(key = "ws-security.callback-handler", value =

"org.jboss.test.ws.jaxws.samples.wsse.policy.trust.stsholderofkey.STSHolderOfKeyCallbackHandler")
})
public

class SampleSTSHolderOfKey extends SecurityTokenServiceProvider

{

 public SampleSTSHolderOfKey() throws Exception

 {

 super();

 StaticSTSProperties props = new StaticSTSProperties();

 props.setSignatureCryptoProperties("stsKeystore.properties");

 props.setSignatureUsername("mystskey");

 props.setCallbackHandlerClass(STSHolderOfKeyCallbackHandler.class.getName());

 props.setEncryptionCryptoProperties("stsKeystore.properties");

 props.setEncryptionUsername("myservicekey");

 props.setIssuer("DoubleItSTSIssuer");

 List<ServiceMBean> services = new LinkedList<ServiceMBean>();

 StaticService service = new StaticService();

 service.setEndpoints(Arrays.asList(

"https://localhost:(\\d)*/jaxws-samples-wsse-policy-trust-holderofkey/HolderOfKeyService",

"https://\\[::1\\]:(\\d)*/jaxws-samples-wsse-policy-trust-holderofkey/HolderOfKeyService",

"https://\\[0:0:0:0:0:0:0:1\\]:(\\d)*/jaxws-samples-wsse-policy-trust-holderofkey/HolderOfKeyService"

));

 services.add(service);

 TokenIssueOperation issueOperation = new TokenIssueOperation();

 issueOperation.getTokenProviders().add(new SAMLTokenProvider());

 issueOperation.setServices(services);

 issueOperation.setStsProperties(props);

 this.setIssueOperation(issueOperation);

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1350 2293

HolderOfKeyCallbackHandler

STSHolderOfKeyCallbackHandler is a callback handler for the WSS4J Crypto API. It is used to obtain the

password for the private key in the keystore. This class enables CXF to retrieve the password of the user

name to use for the message signature.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.stsholderofkey;

import org.jboss.wsf.stack.cxf.extensions.security.PasswordCallbackHandler;

import java.util.HashMap;

import java.util.Map;

/**

 * User: rsearls

 * Date: 3/19/14

 */

public class STSHolderOfKeyCallbackHandler extends PasswordCallbackHandler

{

 public STSHolderOfKeyCallbackHandler()

 {

 super(getInitMap());

 }

 private static Map<String, String> getInitMap()

 {

 Map<String, String> passwords = new HashMap<String, String>();

 passwords.put("mystskey", "stskpass");

 passwords.put("alice", "clarinet");

 return passwords;

 }

}

Crypto properties and keystore files

WSS4J's Crypto implementation is loaded and configured via a Java properties file that contains Crypto

configuration data. The file contains implementation-specific properties such as a keystore location,

password, default alias and the like. This application is using the Merlin implementation. File

stsKeystore.properties contains this information.

File servicestore.jks, is a Java KeyStore (JKS) repository. It contains self signed certificates for

myservicekey and mystskey. Self signed certificates are not appropriate for production use.

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=jks

org.apache.ws.security.crypto.merlin.keystore.password=stsspass

org.apache.ws.security.crypto.merlin.keystore.file=stsstore.jks

Latest WildFly Documentation

JBoss Community Documentation Page of 1351 2293

MANIFEST.MF

When deployed on WildFly, this application requires access to the JBossWs and CXF APIs provided in

modules org.jboss.ws.cxf.jbossws-cxf-client and org.apache.cxf. The Apache CXF internals,

org.apache.cxf.impl, are needed to build the STS configuration in the SampleSTSHolderOfKey constructor.

The dependency statement directs the server to provide them at deployment.

Manifest-Version:1.0

Ant-Version: Apache Ant1.8.2

Created-By:1.7.0_25-b15 (Oracle Corporation)

Dependencies: org.jboss.ws.cxf.jbossws-cxf-client,org.apache.cxf.impl

Web service requester

This section examines the crucial elements in calling a web service that implements endpoint security as

described in the SAML Holder-Of-Key scenario. The components that will be discussed are.

web service requester's implementation

ClientCallbackHandler

Crypto properties and keystore files

Latest WildFly Documentation

JBoss Community Documentation Page of 1352 2293

Web service requester Implementation

The ws-requester, the client, uses standard procedures for creating a reference to the web service. To

address the endpoint security requirements, the web service's "Request Context" is configured with the

information needed in message generation. In addition, the STSClient that communicates with the STS is

configured with similar values. Note the key strings ending with a ".it" suffix. This suffix flags these settings

as belonging to the STSClient. The internal CXF code assigns this information to the STSClient that is

auto-generated for this service call.

There is an alternate method of setting up the STSCLient. The user may provide their own instance of the

STSClient. The CXF code will use this object and not auto-generate one. When providing the STSClient in

this way, the user must provide a org.apache.cxf.Bus for it and the configuration keys must not have the ".it"

suffix. This is used in the ActAs and OnBehalfOf examples.

String serviceURL = "https://" + getServerHost() +

":8443/jaxws-samples-wsse-policy-trust-holderofkey/HolderOfKeyService";

final QName serviceName = new

QName("http://www.jboss.org/jbossws/ws-extensions/holderofkeywssecuritypolicy",

"HolderOfKeyService");

final URL wsdlURL = new URL(serviceURL + "?wsdl");

Service service = Service.create(wsdlURL, serviceName);

HolderOfKeyIface proxy = (HolderOfKeyIface) service.getPort(HolderOfKeyIface.class);

Map<String, Object> ctx = ((BindingProvider)proxy).getRequestContext();

// set the security related configuration information for the service "request"

ctx.put(SecurityConstants.CALLBACK_HANDLER, new ClientCallbackHandler());

ctx.put(SecurityConstants.SIGNATURE_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

ctx.put(SecurityConstants.ENCRYPT_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

ctx.put(SecurityConstants.SIGNATURE_USERNAME, "myclientkey");

ctx.put(SecurityConstants.ENCRYPT_USERNAME, "myservicekey");

//-- Configuration settings that will be transfered to the STSClient

// "alice" is the name provided for the WSS Username. Her password will

// be retreived from the ClientCallbackHander by the STSClient.

ctx.put(SecurityConstants.USERNAME + ".it", "alice");

ctx.put(SecurityConstants.CALLBACK_HANDLER + ".it", new ClientCallbackHandler());

ctx.put(SecurityConstants.ENCRYPT_PROPERTIES + ".it",

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

ctx.put(SecurityConstants.ENCRYPT_USERNAME + ".it", "mystskey");

ctx.put(SecurityConstants.STS_TOKEN_USERNAME + ".it", "myclientkey");

ctx.put(SecurityConstants.STS_TOKEN_PROPERTIES + ".it",

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

ctx.put(SecurityConstants.STS_TOKEN_USE_CERT_FOR_KEYINFO + ".it", "true");

proxy.sayHello();

Latest WildFly Documentation

JBoss Community Documentation Page of 1353 2293

ClientCallbackHandler

ClientCallbackHandler is a callback handler for the WSS4J Crypto API. It is used to obtain the password for

the private key in the keystore. This class enables CXF to retrieve the password of the user name to use for

the message signature. Note that "alice" and her password have been provided here. This information is

not in the (JKS) keystore but provided in the WildFly security domain. It was declared in file

jbossws-users.properties.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.shared;

import java.io.IOException;

import javax.security.auth.callback.Callback;

import javax.security.auth.callback.CallbackHandler;

import javax.security.auth.callback.UnsupportedCallbackException;

import org.apache.ws.security.WSPasswordCallback;

public class ClientCallbackHandler implements CallbackHandler {

 public void handle(Callback[] callbacks) throws IOException,

 UnsupportedCallbackException {

 for (int i = 0; i < callbacks.length; i++) {

 if (callbacks[i] instanceof WSPasswordCallback) {

 WSPasswordCallback pc = (WSPasswordCallback) callbacks[i];

 if ("myclientkey".equals(pc.getIdentifier())) {

 pc.setPassword("ckpass");

 break;

 } else if ("alice".equals(pc.getIdentifier())) {

 pc.setPassword("clarinet");

 break;

 } else if ("bob".equals(pc.getIdentifier())) {

 pc.setPassword("trombone");

 break;

 } else if ("myservicekey".equals(pc.getIdentifier())) { // rls test added for

bearer test

 pc.setPassword("skpass");

 break;

 }

 }

 }

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1354 2293

Crypto properties and keystore files

WSS4J's Crypto implementation is loaded and configured via a Java properties file that contains Crypto

configuration data. The file contains implementation-specific properties such as a keystore location,

password, default alias and the like. This application is using the Merlin implementation. File

clientKeystore.properties contains this information.

File clientstore.jks, is a Java KeyStore (JKS) repository. It contains self signed certificates for myservicekey

and mystskey. Self signed certificates are not appropriate for production use.

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=jks

org.apache.ws.security.crypto.merlin.keystore.password=cspass

org.apache.ws.security.crypto.merlin.keystore.alias=myclientkey

org.apache.ws.security.crypto.merlin.keystore.file=META-INF/clientstore.jks

Reliable Messaging
JBoss Web Services inherits full WS-Reliable Messaging capabilities from the underlying Apache CXF

implementation. At the time of writing, Apache CXF provides support for the WS-Reliable Messaging 1.0

(February 2005) version of the specification.

Enabling WS-Reliable Messaging
WS-Reliable Messaging is implemented internally in Apache CXF through a set of interceptors that deal with

the low level requirements of the reliable messaging protocol. In order for enabling WS-Reliable Messaging,

users need to either:

consume a WSDL contract that specifies proper WS-Reliable Messaging policies / assertions

manually add / configure the reliable messaging interceptors

specify the reliable messaging policies in an optional CXF Spring XML descriptor

specify the Apache CXF reliable messaging feature in an optional CXF Spring XML descriptor

The former approach relies on the Apache CXF WS-Policy engine and is the only portable one. The other

approaches are Apache CXF proprietary ones, however they allow for fine-grained configuration of protocol

aspects that are not covered by the WS-Reliable Messaging Policy. More details are available in the Apache

.CXF documentation

Example
In this example we configure WS-Reliable Messaging endpoint and client through the WS-Policy support.

Endpoint
We go with a contract-first approach, so we start by creating a proper WSDL contract, containing the

WS-Reliable Messaging and WS-Addressing policies (the latter is a requirement of the former):

<?xml version="1.0" encoding="UTF-8"?>

http://schemas.xmlsoap.org/ws/2005/02/rm/
http://cxf.apache.org/docs/wsrmconfiguration.html
http://cxf.apache.org/docs/wsrmconfiguration.html

Latest WildFly Documentation

JBoss Community Documentation Page of 1355 2293

<wsdl:definitions name="SimpleService"

targetNamespace="http://www.jboss.org/jbossws/ws-extensions/wsrm"

 xmlns:tns="http://www.jboss.org/jbossws/ws-extensions/wsrm"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsp="http://www.w3.org/2006/07/ws-policy">

 <wsdl:types>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:tns="http://www.jboss.org/jbossws/ws-extensions/wsrm"

 attributeFormDefault="unqualified" elementFormDefault="unqualified"

 targetNamespace="http://www.jboss.org/jbossws/ws-extensions/wsrm">

<xsd:element name="ping" type="tns:ping"/>

<xsd:complexType name="ping">

<xsd:sequence/>

</xsd:complexType>

<xsd:element name="echo" type="tns:echo"/>

<xsd:complexType name="echo">

<xsd:sequence>

<xsd:element minOccurs="0" name="arg0" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="echoResponse" type="tns:echoResponse"/>

<xsd:complexType name="echoResponse">

<xsd:sequence>

<xsd:element minOccurs="0" name="return" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

 </wsdl:types>

 <wsdl:message name="echoResponse">

 <wsdl:part name="parameters" element="tns:echoResponse">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="echo">

 <wsdl:part name="parameters" element="tns:echo">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="ping">

 <wsdl:part name="parameters" element="tns:ping">

 </wsdl:part>

 </wsdl:message>

 <wsdl:portType name="SimpleService">

 <wsdl:operation name="ping">

 <wsdl:input name="ping" message="tns:ping">

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="echo">

 <wsdl:input name="echo" message="tns:echo">

 </wsdl:input>

 <wsdl:output name="echoResponse" message="tns:echoResponse">

 </wsdl:output>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="SimpleServiceSoapBinding" type="tns:SimpleService">

 <wsp:Policy>

 <!-- WS-Addressing and basic WS-Reliable Messaging policy assertions -->

Latest WildFly Documentation

JBoss Community Documentation Page of 1356 2293

 <wswa:UsingAddressing xmlns:wswa="http://www.w3.org/2006/05/addressing/wsdl"/>

 <wsrmp:RMAssertion xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"/>

 <!-- --- -->

 </wsp:Policy>

 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="ping">

 <soap:operation soapAction="" style="document"/>

 <wsdl:input name="ping">

 <soap:body use="literal"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="echo">

 <soap:operation soapAction="" style="document"/>

 <wsdl:input name="echo">

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="echoResponse">

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="SimpleService">

 <wsdl:port name="SimpleServicePort" binding="tns:SimpleServiceSoapBinding">

 <soap:address location="http://localhost:8080/jaxws-samples-wsrm-api"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

Then we use the tool to generate both standard JAX-WS client and endpoint.wsconsume

We provide a basic JAX-WS implementation for the endpoint, nothing special in it:

Latest WildFly Documentation

JBoss Community Documentation Page of 1357 2293

package org.jboss.test.ws.jaxws.samples.wsrm.service;

import javax.jws.Oneway;

import javax.jws.WebMethod;

import javax.jws.WebService;

@WebService

(

 name = "SimpleService",

 serviceName = "SimpleService",

 wsdlLocation = "WEB-INF/wsdl/SimpleService.wsdl",

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/wsrm"

)

public class SimpleServiceImpl

{

 @Oneway

 @WebMethod

 public void ping()

 {

 System.out.println("ping()");

 }

 @WebMethod

 public String echo(String s)

 {

 System.out.println("echo(" + s + ")");

 return s;

 }

}

Finally we package the generated POJO endpoint together with a basic web.xml the usual way and deploy

to the application server. The webservices stack automatically detects the policies and enables WS-Reliable

Messaging.

Client
The endpoint advertises his RM capabilities (and requirements) through the published WSDL and the client

is required to also enable WS-RM for successfully exchanging messages with the server.

So a regular JAX WS client is enough if the user does not need to tune any specific detail of the RM

subsystem.

QName serviceName = new QName("http://www.jboss.org/jbossws/ws-extensions/wsrm",

"SimpleService");

URL wsdlURL = new URL("http://localhost:8080/jaxws-samples-wsrm-api?wsdl");

Service service = Service.create(wsdlURL, serviceName);

proxy = (SimpleService)service.getPort(SimpleService.class);

proxy.echo("Hello World!");

Additional configuration
Fine-grained tuning of WS-Reliable Messaging engine requires setting up proper RM features and attach

them for instance to the client proxy. Here is an example:

Latest WildFly Documentation

JBoss Community Documentation Page of 1358 2293

package org.jboss.test.ws.jaxws.samples.wsrm.client;

//...

import javax.xml.ws.Service;

import org.apache.cxf.ws.rm.feature.RMFeature;

import org.apache.cxf.ws.rm.manager.AcksPolicyType;

import org.apache.cxf.ws.rm.manager.DestinationPolicyType;

import org.jboss.test.ws.jaxws.samples.wsrm.generated.SimpleService;

// ...

Service service = Service.create(wsdlURL, serviceName);

RMFeature feature = new RMFeature();

RMAssertion rma = new RMAssertion();

RMAssertion.BaseRetransmissionInterval bri = new RMAssertion.BaseRetransmissionInterval();

bri.setMilliseconds(4000L);

rma.setBaseRetransmissionInterval(bri);

AcknowledgementInterval ai = new AcknowledgementInterval();

ai.setMilliseconds(2000L);

rma.setAcknowledgementInterval(ai);

feature.setRMAssertion(rma);

DestinationPolicyType dp = new DestinationPolicyType();

AcksPolicyType ap = new AcksPolicyType();

ap.setIntraMessageThreshold(0);

dp.setAcksPolicy(ap);

feature.setDestinationPolicy(dp);

SimpleService proxy = (SimpleService)service.getPort(SimpleService.class, feature);

proxy.echo("Hello World");

The same can of course be achieved by factoring the feature into a custom pojo extending

 and setting the obtained property in a clientorg.apache.cxf.ws.rm.feature.RMFeature

configuration:

Latest WildFly Documentation

JBoss Community Documentation Page of 1359 2293

package org.jboss.test.ws.jaxws.samples.wsrm.client;

import org.apache.cxf.ws.rm.feature.RMFeature;

import org.apache.cxf.ws.rm.manager.AcksPolicyType;

import org.apache.cxf.ws.rm.manager.DestinationPolicyType;

import org.apache.cxf.ws.rmp.v200502.RMAssertion;

import org.apache.cxf.ws.rmp.v200502.RMAssertion.AcknowledgementInterval;

public class CustomRMFeature extends RMFeature

{

 public CustomRMFeature() {

 super();

 RMAssertion rma = new RMAssertion();

 RMAssertion.BaseRetransmissionInterval bri = new RMAssertion.BaseRetransmissionInterval();

 bri.setMilliseconds(4000L);

 rma.setBaseRetransmissionInterval(bri);

 AcknowledgementInterval ai = new AcknowledgementInterval();

 ai.setMilliseconds(2000L);

 rma.setAcknowledgementInterval(ai);

 super.setRMAssertion(rma);

 DestinationPolicyType dp = new DestinationPolicyType();

 AcksPolicyType ap = new AcksPolicyType();

 ap.setIntraMessageThreshold(0);

 dp.setAcksPolicy(ap);

 super.setDestinationPolicy(dp);

 }

}

... this is how the descriptor would look:jaxws-client-config.xml

<?xml version="1.0" encoding="UTF-8"?>

<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:javaee="http://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="urn:jboss:jbossws-jaxws-config:4.0 schema/jbossws-jaxws-config_4_0.xsd">

<client-config>

<config-name>Custom Client Config</config-name>

<property>

<property-name>cxf.features</property-name>

<property-value>org.jboss.test.ws.jaxws.samples.wsrm.client.CustomRMFeature</property-value>

</property>

</client-config>

</jaxws-config>

... and this is how the client would set the configuration:

Latest WildFly Documentation

JBoss Community Documentation Page of 1360 2293

import org.jboss.ws.api.configuration.ClientConfigUtil;

import org.jboss.ws.api.configuration.ClientConfigurer;

//...

Service service = Service.create(wsdlURL, serviceName);

SimpleService proxy = (SimpleService)service.getPort(SimpleService.class);

ClientConfigurer configurer = ClientConfigUtil.resolveClientConfigurer();

configurer.setConfigProperties(proxy, "META-INF/jaxws-client-config.xml", "Custom Client

Config");

proxy.echo("Hello World!");

SOAP over JMS
JBoss Web Services allows communication over the transport. The functionality comes from ApacheJMS

CXF support for the specification, which is aimed at a set ofSOAP over Java Message Service 1.0

standards for interoperable transport of messages over .SOAP JMS

On top of Apache CXF functionalities, the JBossWS integration allows users to deploy WS archives

containing both and endpoints the same way as they do for basic WS endpoints (in JMS HTTP HTTP war

archives). The webservices layer of WildFly takes care of looking for enpdoints in the deployed archiveJMS

and starts them delegating to the Apache CXF core similarly as with endpoints.HTTP

http://www.w3.org/TR/soapjms/

Latest WildFly Documentation

JBoss Community Documentation Page of 1361 2293

Configuring SOAP over JMS
As per specification, the transport configuration is controlled by proper elements andSOAP over JMS

attributes in the and elements of the WSDL contract. So a endpoint is usuallybinding service JMS

developed using a contract-first approach.

The covers all the details of the supported configurations. The minimumApache CXF documentation

configuration implies:

setting a proper JMS URI in the [1]soap:address location

providing a JNDI connection factory name to be used for connecting to the queues [2]

setting the transport binding [3]

<wsdl:definitions name="HelloWorldService" targetNamespace="http://org.jboss.ws/jaxws/cxf/jms"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:tns="http://org.jboss.ws/jaxws/cxf/jms"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soapjms="http://www.w3.org/2010/soapjms/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

...

<wsdl:binding name="HelloWorldServiceSoapBinding" type="tns:HelloWorld">

 <soap:binding style="document" transport="http://www.w3.org/2010/soapjms/"/> <!-- 3 -->

 <wsdl:operation name="echo">

 <soap:operation soapAction="" style="document"/>

 <wsdl:input name="echo">

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="echoResponse">

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

</wsdl:binding>

<wsdl:service name="HelloWorldService">

 <soapjms:jndiConnectionFactoryName>java:/ConnectionFactory</soapjms:jndiConnectionFactoryName>

<!-- 2 -->

 <wsdl:port binding="tns:HelloWorldServiceSoapBinding" name="HelloWorldImplPort">

 <soap:address location="jms:queue:testQueue"/> <!-- 1 -->

 </wsdl:port>

</wsdl:service>

Apache CXF takes care of setting up the JMS transport for endpoint implementations whose @WebService

annotation points to a port declared for JMS transport as explained above.

JBossWS currently supports POJO endpoints only for JMS transport use. The endpoint classes

can be deployed as part of or archives.jar war

The descriptor in archives doesn't need any entry for JMS endpoints.web.xml war

http://cxf.apache.org/docs/soap-over-jms-10-support.html

Latest WildFly Documentation

JBoss Community Documentation Page of 1362 2293

Examples

JMS endpoint only deployment
In this example we create a simple endpoint relying on and deploy it as part of a jar archive.SOAP over JMS

The endpoint is created using wsconsume tool from a WSDL contract such as:

<?xml version='1.0' encoding='UTF-8'?>

<wsdl:definitions name="HelloWorldService" targetNamespace="http://org.jboss.ws/jaxws/cxf/jms"

 xmlns:ns1="http://schemas.xmlsoap.org/soap/http"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:tns="http://org.jboss.ws/jaxws/cxf/jms"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soapjms="http://www.w3.org/2010/soapjms/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <wsdl:types>

<xs:schema elementFormDefault="unqualified" targetNamespace="http://org.jboss.ws/jaxws/cxf/jms"

version="1.0" xmlns:tns="http://org.jboss.ws/jaxws/cxf/jms"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="echo" type="tns:echo"/>

<xs:element name="echoResponse" type="tns:echoResponse"/>

<xs:complexType name="echo">

 <xs:sequence>

 <xs:element minOccurs="0" name="arg0" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

<xs:complexType name="echoResponse">

 <xs:sequence>

 <xs:element minOccurs="0" name="return" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

 </wsdl:types>

 <wsdl:message name="echoResponse">

 <wsdl:part element="tns:echoResponse" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="echo">

 <wsdl:part element="tns:echo" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:portType name="HelloWorld">

 <wsdl:operation name="echo">

 <wsdl:input message="tns:echo" name="echo">

 </wsdl:input>

 <wsdl:output message="tns:echoResponse" name="echoResponse">

 </wsdl:output>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="HelloWorldServiceSoapBinding" type="tns:HelloWorld">

 <soap:binding style="document" transport="http://www.w3.org/2010/soapjms/"/>

 <wsdl:operation name="echo">

 <soap:operation soapAction="" style="document"/>

 <wsdl:input name="echo">

 <soap:body use="literal"/>

Latest WildFly Documentation

JBoss Community Documentation Page of 1363 2293

 </wsdl:input>

 <wsdl:output name="echoResponse">

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="HelloWorldService">

<soapjms:jndiConnectionFactoryName>java:jms/RemoteConnectionFactory</soapjms:jndiConnectionFactoryName>

<soapjms:jndiInitialContextFactory>org.jboss.naming.remote.client.InitialContextFactory</soapjms:jndiInitialContextFactory>

<soapjms:jndiURL>http-remoting://myhost:8080</soapjms:jndiURL>

 <wsdl:port binding="tns:HelloWorldServiceSoapBinding" name="HelloWorldImplPort">

 <soap:address location="jms:queue:testQueue"/>

 </wsdl:port>

 </wsdl:service>

 <wsdl:service name="HelloWorldServiceLocal">

<soapjms:jndiConnectionFactoryName>java:/ConnectionFactory</soapjms:jndiConnectionFactoryName>

 <wsdl:port binding="tns:HelloWorldServiceSoapBinding" name="HelloWorldImplPort">

 <soap:address location="jms:queue:testQueue"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

The here is meant for using the that has to be created beforeHelloWorldImplPort testQueue

deploying the endpoint.

At the time of writing, is the default connection factory JNDI location on WildFlyjava:/ConnectionFactory

For allowing remote JNDI lookup of the connection factory, a specific service () forHelloWorldService

remote clients is added to the WSDL. The is the JNDI location of thejava:jms/RemoteConnectionFactory

same connection factory mentioned above, except it's exposed for remote lookup. The

 and complete the remote connectionsoapjms:jndiInitialContextFactory soap:jmsjndiURL

configuration, specifying the initial context factory class to use and the JNDI registry address.

Have a look at the application server domain for finding out the configured connection factory JNDI

locations.

The endpoint implementation is a basic JAX-WS POJO using @WebService annotation to refer to the

consumed contract:

Latest WildFly Documentation

JBoss Community Documentation Page of 1364 2293

package org.jboss.test.ws.jaxws.cxf.jms;

import javax.jws.WebService;

@WebService

(

 portName = "HelloWorldImplPort",

 serviceName = "HelloWorldServiceLocal",

 wsdlLocation = "META-INF/wsdl/HelloWorldService.wsdl",

 endpointInterface = "org.jboss.test.ws.jaxws.cxf.jms.HelloWorld",

 targetNamespace = "http://org.jboss.ws/jaxws/cxf/jms"

)

public class HelloWorldImpl implements HelloWorld

{

 public String echo(String input)

 {

 return input;

 }

}

The endpoint implementation references the wsdl service, so thatHelloWorldServiceLocal

the local JNDI connection factory location is used for starting the endpoint on server side.

That's pretty much all. We just need to package the generated service endpoint interface, the endpoint

implementation and the WSDL file in a archive and deploy it:jar

alessio@inuyasha /dati/jbossws/stack/cxf/trunk $ jar -tvf

./modules/testsuite/cxf-tests/target/test-libs/jaxws-cxf-jms-only-deployment.jar

 0 Thu Jun 23 15:18:44 CEST 2011 META-INF/

 129 Thu Jun 23 15:18:42 CEST 2011 META-INF/MANIFEST.MF

 0 Thu Jun 23 15:18:42 CEST 2011 org/

 0 Thu Jun 23 15:18:42 CEST 2011 org/jboss/

 0 Thu Jun 23 15:18:42 CEST 2011 org/jboss/test/

 0 Thu Jun 23 15:18:42 CEST 2011 org/jboss/test/ws/

 0 Thu Jun 23 15:18:42 CEST 2011 org/jboss/test/ws/jaxws/

 0 Thu Jun 23 15:18:42 CEST 2011 org/jboss/test/ws/jaxws/cxf/

 0 Thu Jun 23 15:18:42 CEST 2011 org/jboss/test/ws/jaxws/cxf/jms/

 313 Thu Jun 23 15:18:42 CEST 2011 org/jboss/test/ws/jaxws/cxf/jms/HelloWorld.class

 1173 Thu Jun 23 15:18:42 CEST 2011 org/jboss/test/ws/jaxws/cxf/jms/HelloWorldImpl.class

 0 Thu Jun 23 15:18:40 CEST 2011 META-INF/wsdl/

 3074 Thu Jun 23 15:18:40 CEST 2011 META-INF/wsdl/HelloWorldService.wsdl

Latest WildFly Documentation

JBoss Community Documentation Page of 1365 2293

A dependency on module needs to be added in MANIFEST.MF when deploying toorg.hornetq

WildFly.

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.7.1

Created-By: 17.0-b16 (Sun Microsystems Inc.)

Dependencies: org.hornetq

A JAX-WS client can interact with the JMS endpoint the usual way:

URL wsdlUrl = ...

//start another bus to avoid affecting the one that could already be assigned to the current

thread - optional but highly suggested

Bus bus = BusFactory.newInstance().createBus();

BusFactory.setThreadDefaultBus(bus);

try

{

 QName serviceName = new QName("http://org.jboss.ws/jaxws/cxf/jms", "HelloWorldService");

 Service service = Service.create(wsdlUrl, serviceName);

 HelloWorld proxy = (HelloWorld) service.getPort(new

QName("http://org.jboss.ws/jaxws/cxf/jms", "HelloWorldImplPort"), HelloWorld.class);

 setupProxy(proxy);

 proxy.echo("Hi");

}

finally

{

 bus.shutdown(true);

}

The WSDL location URL needs to be retrieved in a custom way, depending on the client

application. Given the endpoint is JMS only, there's no automatically published WSDL contract.

in order for performing the remote invocation (which internally goes through remote JNDI lookup of the

connection factory), the calling user credentials need to be set into the Apache CXF JMSConduit:

Latest WildFly Documentation

JBoss Community Documentation Page of 1366 2293

private void setupProxy(HelloWorld proxy) {

 JMSConduit conduit = (JMSConduit)ClientProxy.getClient(proxy).getConduit();

 JNDIConfiguration jndiConfig = conduit.getJmsConfig().getJndiConfig();

 jndiConfig.setConnectionUserName("user");

 jndiConfig.setConnectionPassword("password");

 Properties props = conduit.getJmsConfig().getJndiTemplate().getEnvironment();

 props.put(Context.SECURITY_PRINCIPAL, "user");

 props.put(Context.SECURITY_CREDENTIALS, "password");

}

Have a look at the WildFly domain and messaging configuration for finding out the actual security

requirements. At the time of writing, a user with role is required and that's internally checkedguest

using the security domain.other

Of course once the endpoint is exposed over JMS transport, any plain JMS client can also be used to send

messages to the webservice endpoint. You can have a look at the SOAP over JMS spec details and code

the client similarly to

Properties env = new Properties();

env.put(Context.INITIAL_CONTEXT_FACTORY,

"org.jboss.naming.remote.client.InitialContextFactory");

env.put(Context.PROVIDER_URL, "http-remoting://myhost:8080");

env.put(Context.SECURITY_PRINCIPAL, "user");

env.put(Context.SECURITY_CREDENTIALS, "password");

InitialContext context = new InitialContext(env);

QueueConnectionFactory connectionFactory =

(QueueConnectionFactory)context.lookup("jms/RemoteConnectionFactory");

Queue reqQueue = (Queue)context.lookup("jms/queue/test");

Queue resQueue = (Queue)context.lookup("jms/queue/test");

QueueConnection con = connectionFactory.createQueueConnection("user", "password");

QueueSession session = con.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

QueueReceiver receiver = session.createReceiver(resQueue);

ResponseListener responseListener = new ResponseListener(); //a custom response listener...

receiver.setMessageListener(responseListener);

con.start();

TextMessage message = session.createTextMessage(reqMessage);

message.setJMSReplyTo(resQueue);

//setup SOAP-over-JMS properties...

message.setStringProperty("SOAPJMS_contentType", "text/xml");

message.setStringProperty("SOAPJMS_requestURI", "jms:queue:testQueue");

QueueSender sender = session.createSender(reqQueue);

sender.send(message);

sender.close();

...

JMS and HTTP endpoints deployment

Latest WildFly Documentation

JBoss Community Documentation Page of 1367 2293

In this example we create a deployment containing an endpoint that serves over both HTTP and JMS

transports.

We from a WSDL contract such as below (please note we've two / for the same binding portType

):service

<?xml version='1.0' encoding='UTF-8'?>

<wsdl:definitions name="HelloWorldService" targetNamespace="http://org.jboss.ws/jaxws/cxf/jms"

 xmlns:ns1="http://schemas.xmlsoap.org/soap/http"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:tns="http://org.jboss.ws/jaxws/cxf/jms"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soapjms="http://www.w3.org/2010/soapjms/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <wsdl:types>

<xs:schema elementFormDefault="unqualified" targetNamespace="http://org.jboss.ws/jaxws/cxf/jms"

version="1.0"

 xmlns:tns="http://org.jboss.ws/jaxws/cxf/jms" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="echo" type="tns:echo"/>

<xs:element name="echoResponse" type="tns:echoResponse"/>

<xs:complexType name="echo">

 <xs:sequence>

 <xs:element minOccurs="0" name="arg0" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

<xs:complexType name="echoResponse">

 <xs:sequence>

 <xs:element minOccurs="0" name="return" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

 </wsdl:types>

 <wsdl:message name="echoResponse">

 <wsdl:part element="tns:echoResponse" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="echo">

 <wsdl:part element="tns:echo" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:portType name="HelloWorld">

 <wsdl:operation name="echo">

 <wsdl:input message="tns:echo" name="echo">

 </wsdl:input>

 <wsdl:output message="tns:echoResponse" name="echoResponse">

 </wsdl:output>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="HelloWorldServiceSoapBinding" type="tns:HelloWorld">

 <soap:binding style="document" transport="http://www.w3.org/2010/soapjms/"/>

 <wsdl:operation name="echo">

 <soap:operation soapAction="" style="document"/>

 <wsdl:input name="echo">

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="echoResponse">

Latest WildFly Documentation

JBoss Community Documentation Page of 1368 2293

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="HttpHelloWorldServiceSoapBinding" type="tns:HelloWorld">

 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="echo">

 <soap:operation soapAction="" style="document"/>

 <wsdl:input name="echo">

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="echoResponse">

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="HelloWorldService">

<soapjms:jndiConnectionFactoryName>java:jms/RemoteConnectionFactory</soapjms:jndiConnectionFactoryName>

<soapjms:jndiInitialContextFactory>org.jboss.naming.remote.client.InitialContextFactory</soapjms:jndiInitialContextFactory>

<soapjms:jndiURL>http-remoting://localhost:8080</soapjms:jndiURL>

 <wsdl:port binding="tns:HelloWorldServiceSoapBinding" name="HelloWorldImplPort">

 <soap:address location="jms:queue:testQueue"/>

 </wsdl:port>

 <wsdl:port binding="tns:HttpHelloWorldServiceSoapBinding" name="HttpHelloWorldImplPort">

 <soap:address location="http://localhost:8080/jaxws-cxf-jms-http-deployment"/>

 </wsdl:port>

 </wsdl:service>

 <wsdl:service name="HelloWorldServiceLocal">

<soapjms:jndiConnectionFactoryName>java:/ConnectionFactory</soapjms:jndiConnectionFactoryName>

 <wsdl:port binding="tns:HelloWorldServiceSoapBinding" name="HelloWorldImplPort">

 <soap:address location="jms:queue:testQueue"/>

 </wsdl:port>

</wsdl:definitions>

The same considerations of the previous example regarding the JMS queue and JNDI connection factory

still apply.

Here we can implement the endpoint in multiple ways, either with a common implementation class that's

extended by the JMS and HTTP ones, or keep the two implementation classes independent and just have

them implement the same service endpoint interface:

Latest WildFly Documentation

JBoss Community Documentation Page of 1369 2293

package org.jboss.test.ws.jaxws.cxf.jms_http;

import javax.jws.WebService;

@WebService

(

 portName = "HelloWorldImplPort",

 serviceName = "HelloWorldServiceLocal",

 wsdlLocation = "WEB-INF/wsdl/HelloWorldService.wsdl",

 endpointInterface = "org.jboss.test.ws.jaxws.cxf.jms_http.HelloWorld",

 targetNamespace = "http://org.jboss.ws/jaxws/cxf/jms"

)

public class HelloWorldImpl implements HelloWorld

{

 public String echo(String input)

 {

 System.out.println("input: " + input);

 return input;

 }

}

package org.jboss.test.ws.jaxws.cxf.jms_http;

import javax.jws.WebService;

@WebService

(

 portName = "HttpHelloWorldImplPort",

 serviceName = "HelloWorldService",

 wsdlLocation = "WEB-INF/wsdl/HelloWorldService.wsdl",

 endpointInterface = "org.jboss.test.ws.jaxws.cxf.jms_http.HelloWorld",

 targetNamespace = "http://org.jboss.ws/jaxws/cxf/jms"

)

public class HttpHelloWorldImpl implements HelloWorld

{

 public String echo(String input)

 {

 System.out.println("input (http): " + input);

 return "(http) " + input;

 }

}

Both classes are packaged together the service endpoint interface and the WSDL file in a archive:war

Latest WildFly Documentation

JBoss Community Documentation Page of 1370 2293

alessio@inuyasha /dati/jbossws/stack/cxf/trunk $ jar -tvf

./modules/testsuite/cxf-spring-tests/target/test-libs/jaxws-cxf-jms-http-deployment.war

 0 Thu Jun 23 15:18:44 CEST 2011 META-INF/

 129 Thu Jun 23 15:18:42 CEST 2011 META-INF/MANIFEST.MF

 0 Thu Jun 23 15:18:44 CEST 2011 WEB-INF/

 569 Thu Jun 23 15:18:40 CEST 2011 WEB-INF/web.xml

 0 Thu Jun 23 15:18:44 CEST 2011 WEB-INF/classes/

 0 Thu Jun 23 15:18:42 CEST 2011 WEB-INF/classes/org/

 0 Thu Jun 23 15:18:42 CEST 2011 WEB-INF/classes/org/jboss/

 0 Thu Jun 23 15:18:42 CEST 2011 WEB-INF/classes/org/jboss/test/

 0 Thu Jun 23 15:18:42 CEST 2011 WEB-INF/classes/org/jboss/test/ws/

 0 Thu Jun 23 15:18:42 CEST 2011 WEB-INF/classes/org/jboss/test/ws/jaxws/

 0 Thu Jun 23 15:18:42 CEST 2011 WEB-INF/classes/org/jboss/test/ws/jaxws/cxf/

 0 Thu Jun 23 15:18:42 CEST 2011 WEB-INF/classes/org/jboss/test/ws/jaxws/cxf/jms_http/

 318 Thu Jun 23 15:18:42 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/cxf/jms_http/HelloWorld.class

 1192 Thu Jun 23 15:18:42 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/cxf/jms_http/HelloWorldImpl.class

 1246 Thu Jun 23 15:18:42 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/cxf/jms_http/HttpHelloWorldImpl.class

 0 Thu Jun 23 15:18:40 CEST 2011 WEB-INF/wsdl/

 3068 Thu Jun 23 15:18:40 CEST 2011 WEB-INF/wsdl/HelloWorldService.wsdl

A trivial web.xml descriptor is also included to trigger the HTTP endpoint publish:

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"

 version="2.4">

 <servlet>

 <servlet-name>EndpointServlet</servlet-name>

 <servlet-class>org.jboss.test.ws.jaxws.cxf.jms_http.HttpHelloWorldImpl</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>EndpointServlet</servlet-name>

 <url-pattern>/*</url-pattern>

 </servlet-mapping>

</web-app>

Here too the MANIFEST.MF needs to declare a dependency on module whenorg.hornetq

deploying to WildFly.

Finally, the JAX-WS client can ineract with both JMS and HTTP endpoints as usual:

Latest WildFly Documentation

JBoss Community Documentation Page of 1371 2293

//start another bus to avoid affecting the one that could already be assigned to current thread

- optional but highly suggested

Bus bus = BusFactory.newInstance().createBus();

BusFactory.setThreadDefaultBus(bus);

try

{

 QName serviceName = new QName("http://org.jboss.ws/jaxws/cxf/jms", "HelloWorldService");

 Service service = Service.create(wsdlUrl, serviceName);

 //JMS test

 HelloWorld proxy = (HelloWorld) service.getPort(new

QName("http://org.jboss.ws/jaxws/cxf/jms", "HelloWorldImplPort"), HelloWorld.class);

 setupProxy(proxy);

 proxy.echo("Hi");

 //HTTP test

 HelloWorld httpProxy = (HelloWorld) service.getPort(new

QName("http://org.jboss.ws/jaxws/cxf/jms", "HttpHelloWorldImplPort"), HelloWorld.class);

 httpProxy.echo("Hi");

}

finally

{

 bus.shutdown(true);

}

Use of Endpoint.publish() API
An alternative to deploying an archive containing JMS endpoints is in starting them directly using the

JAX-WS API.Endpoint.publish(..)

That's as easy as doing:

Object implementor = new HelloWorldImpl();

Endpoint ep = Endpoint.publish("jms:queue:testQueue", implementor);

try

{

 //use or let others use the endpoint

}

finally

{

 ep.stop();

}

where is a POJO endpoint implementation referencing a JMS in a given WSDLHelloWorldImpl port

contract, as explained in the previous examples.

The main difference among the deployment approach is in the direct control and responsibility over the

endpoint lifecycle (and).start/publish stop

Latest WildFly Documentation

JBoss Community Documentation Page of 1372 2293

HTTP Proxy
The HTTP Proxy related functionalities of JBoss Web Services are provided by the Apache CXF http

transport layer.

The suggested configuration mechanism when running JBoss Web Services is explained below; for further

information please refer to the .Apache CXF documentation

Configuration
The HTTP proxy configuration for a given JAX-WS client can be set in the following ways:

through the and system properties, orhttp.proxyHost http.proxyPort

leveraging the optionsorg.apache.cxf.transport.http.HTTPConduit

The former is a JVM level configuration; for instance, assuming the http proxy is currently running at

, here is the setup:http://localhost:9934

System.getProperties().setProperty("http.proxyHost", "localhost");

System.getProperties().setProperty("http.proxyPort", 9934);

The latter is a client stub/port level configuration: the setup is performed on the object that'sHTTPConduit

part of the Apache CXF abstraction.Client

import org.apache.cxf.configuration.security.ProxyAuthorizationPolicy;

import org.apache.cxf.endpoint.Client;

import org.apache.cxf.frontend.ClientProxy;

import org.apache.cxf.transport.http.HTTPConduit;

import org.apache.cxf.transports.http.configuration.HTTPClientPolicy;

import org.apache.cxf.transports.http.configuration.ProxyServerType;

...

Service service = Service.create(wsdlURL, new QName("http://org.jboss.ws/jaxws/cxf/httpproxy",

"HelloWorldService"));

HelloWorld port = (HelloWorld) service.getPort(new

QName("http://org.jboss.ws/jaxws/cxf/httpproxy", "HelloWorldImplPort"), HelloWorld.class);

Client client = ClientProxy.getClient(port);

HTTPConduit conduit = (HTTPConduit)client.getConduit();

ProxyAuthorizationPolicy policy = new ProxyAuthorizationPolicy();

policy.setAuthorizationType("Basic");

policy.setUserName(PROXY_USER);

policy.setPassword(PROXY_PWD);

conduit.setProxyAuthorization(policy);

port.echo("Foo");

The also allows for setting the authotization type as well as the username /ProxyAuthorizationPolicy

password to be used.

http://cxf.apache.org/docs/client-http-transport-including-ssl-support.html
http://localhost:9934

Latest WildFly Documentation

JBoss Community Documentation Page of 1373 2293

Speaking of authorization and authentication, please note that the JDK already features the

 facility, which is used whenever opening a connection to a given URLjava.net.Authenticator

requiring a http proxy. Users might want to set a custom Authenticator for instance when needing to read

WSDL contracts before actually calling into the JBoss Web Services / Apache CXF code; here is an

example:

import java.net.Authenticator;

import java.net.PasswordAuthentication;

...

public class ProxyAuthenticator extends Authenticator

{

 private String user, password;

 public ProxyAuthenticator(String user, String password)

 {

 this.user = user;

 this.password = password;

 }

 protected PasswordAuthentication getPasswordAuthentication()

 {

 return new PasswordAuthentication(user, password.toCharArray());

 }

}

...

Authenticator.setDefault(new ProxyAuthenticator(PROXY_USER, PROXY_PWD));

Latest WildFly Documentation

JBoss Community Documentation Page of 1374 2293

Discovery
Apache CXF includes support for (), which is a protocol toWeb Services Dynamic Discovery WS-Discovery

enable dynamic discovery of services available on the local network. The protocol implies using a basedUDP

multicast transport to announce new services and probe for existing services. A managed mode where a

discovery proxy is used to reduce the amount of required multicast traffic is also covered by the protocol.

JBossWS integrates the provided by Apache CXF into the application server.WS-Discovery functionalities

Enabling WS-Discovery
Apache CXF enables depending on the availability of its runtime component; given that'sWS-Discovery

always shipped in the application server, JBossWS integration requires using the

 usage for enabling for a given deployment. Bycxf.ws-discovery.enabled property WS-Discovery

default is disabled on the application server. Below is an example of WS-Discovery jboss-webservices.xml

descriptor to be used for enabling :WS-Discovery

<webservices xmlns="http://www.jboss.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 version="1.2" xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee">

 <property>

 <name>cxf.ws-discovery.enabled</name>

 <value>true</value>

 </property>

</webservices>

By default, a service endpoint (SOAP-over-UDP bound) will be started the first time aWS-Discovery

WS-Discovery enabled deployment is processed on the application server. Every ws endpoint belonging to

 enabled deployments will be automatically registered into such a serviceWS-Discovery WS-Discovery

endpoint (messages). The service will reply to and messages received on port Hello Probe Resolve UDP

 (including multicast messages sent to address , as per).3702 IPv4 239.255.255.250 specification

Endpoints will eventually be automatically unregistered using messages upon undeployment.Bye

Probing services
Apache CXF comes with a API that can be used to probe / resolve services. When runningWS-Discovery

in-container, a JBoss module to the module is to be set to havedependency org.apache.cxf.impl

access to client functionalities.WS-Discovery

The class provides the and methods whichorg.apache.cxf.ws.discovery.WSDiscoveryClient probe resolve

also accepts filters on scopes. Users can rely on them for locating available endpoints on the network.

Please have a look at the JBossWS testsuite which includes a on CXF WS-Discovery usage.sample

http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.html
http://cxf.apache.org/docs/ws-discovery.html
https://docs.jboss.org/author/display/WFLY8/Advanced+User+Guide#AdvancedUserGuide-Configurationthroughdeploymentdescriptor
http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.html#_Toc234231816
https://docs.jboss.org/author/display/WFLY8/JBoss+Modules+and+WS+applications
http://svn.apache.org/viewvc/cxf/tags/cxf-2.7.5/services/ws-discovery/ws-discovery-api/src/main/java/org/apache/cxf/ws/discovery/WSDiscoveryClient.java?revision=1481139&view=markup
http://anonsvn.jboss.org/repos/jbossws/stack/cxf/tags/jbossws-cxf-4.2.0.Beta1/modules/testsuite/cxf-tests/src/test/java/org/jboss/test/ws/jaxws/samples/wsdd/WSDiscoveryTestCase.java

Latest WildFly Documentation

JBoss Community Documentation Page of 1375 2293

Policy

Apache CXF WS-Policy support

Contract-first approach

Code-first approach

JBossWS additions

Policy sets

Apache CXF WS-Policy support
JBossWS policy support rely on the Apache CXF WS-Policy framework, which is compliant with the Web

 and specifications.Services Policy 1.5 - Framework Web Services Policy 1.5 - Attachment

Users can work with policies in different ways:

by adding policy assertions to wsdl contracts and letting the runtime consume them and behave

accordingly;

by specifying endpoint policy attachments using either CXF annotations or features.

Of course users can also make direct use of the Apache CXF policy framework, ,defining custom assertions

etc.

Finally, JBossWS provides some additional annotations for simplified policy attachment.

Contract-first approach
WS-Policies can be attached and referenced in wsdl elements (the specifications describe all possible

alternatives). Apache CXF automatically recognizes, reads and uses policies defined in the wsdl.

Users should hence develop endpoints using the approach, that is explicitly providing thecontract-first

contract for their services. Here is a excerpt taken from a wsdl including a WS-Addressing policy:

<wsdl:definitions name="Foo" targetNamespace="http://ws.jboss.org/foo"

...

<wsdl:service name="FooService">

 <wsdl:port binding="tns:FooBinding" name="FooPort">

 <soap:address location="http://localhost:80800/foo"/>

 <wsp:Policy xmlns:wsp="http://www.w3.org/ns/ws-policy">

 <wsam:Addressing xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">

 <wsp:Policy/>

 </wsam:Addressing>

 </wsp:Policy>

 </wsdl:port>

</wsdl:service>

</wsdl:definitions>

Of course, CXF also acts upon policies specified in wsdl documents consumed on client side.

http://www.w3.org/TR/2007/REC-ws-policy-20070904/
http://www.w3.org/TR/2007/REC-ws-policy-20070904/
http://www.w3.org/TR/2007/REC-ws-policy-attach-20070904/
http://cxf.apache.org/docs/developing-assertions.html

Latest WildFly Documentation

JBoss Community Documentation Page of 1376 2293

Code-first approach
For those preferring code-first (java-first) endpoint development, Apache CXF comes with

 and org.apache.cxf.annotations.Policy org.apache.cxf.annotations.Policies

annotations to be used for attaching policy fragments to the wsdl generated at deploy time.

Here is an example of a code-first endpoint including @Policy annotation:

import javax.jws.WebService;

import org.apache.cxf.annotations.Policy;

@WebService(portName = "MyServicePort",

 serviceName = "MyService",

 name = "MyServiceIface",

 targetNamespace = "http://www.jboss.org/jbossws/foo")

@Policy(placement = Policy.Placement.BINDING, uri = "JavaFirstPolicy.xml")

public class MyServiceImpl {

 public String sayHello() {

 return "Hello World!";

 }

}

The referenced descriptor is to be added to the deployment and will include the policy to be attached; the

attachment position in the contracts is defined through the attribute. Here is a descriptorplacement

example:

<?xml version="1.0" encoding="UTF-8" ?>

<wsp:Policy wsu:Id="MyPolicy" xmlns:wsp="http://www.w3.org/ns/ws-policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:SupportingTokens

xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">

 <wsp:Policy>

 <sp:UsernameToken

sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/AlwaysToRecipient">

<wsp:Policy>

 <sp:WssUsernameToken10/>

 </wsp:Policy>

 </sp:UsernameToken>

 </wsp:Policy>

 </sp:SupportingTokens>

 </wsp:All>

 </wsp:ExactlyOne>

</wsp:Policy>

JBossWS additions

Policy sets

Latest WildFly Documentation

JBoss Community Documentation Page of 1377 2293

Both approaches above require users to actually write their policies' assertions; while this offer great

flexibility and control of the actual contract, providing the assertions might end up being quite a challenging

task for complex policies. For this reason, the JBossWS integration provides , which are basicallypolicy sets

pre-defined groups of policy assertions corresponding to well known / common needs. Each set has a label

allowing users to specify it in the annotation to have@org.jboss.ws.api.annotation.PolicySets

the policy assertions for that set attached to the annotated endpoint. Multiple labels can also be specified.

Here is an example of the @PolicySets annotation on a service endpoint interface:

import javax.jws.WebService;

import org.jboss.ws.api.annotation.PolicySets;

@WebService(name = "EndpointTwo", targetNamespace = "http://org.jboss.ws.jaxws.cxf/jbws3648")

@PolicySets({"WS-RM_Policy_spec_example", "WS-SP-EX223_WSS11_Anonymous_X509_Sign_Encrypt",

"WS-Addressing"})

public interface EndpointTwo

{

 String echo(String input);

}

The three sets specified in @PolicySets will cause the wsdl generated for the endpoint having this interface

to be enriched with some policy assertions for WS-RM, WS-Security and WS-Addressing.

The labels' list of known sets is stored in the

META-INF/policies/org.jboss.wsf.stack.cxf.extensions.policy.PolicyAttachmentStore

file within the (maven artifact).jbossws-cxf-client.jar org.jboss.ws.cxf:jbossws-cxf-client

Actual policy fragments for each set are also stored in the same artifact at

.META-INF/policies/<set-label>-<attachment-position>.xml

Here is a list of the available policy sets:

Label Description

WS-Addressing Basic

WS-Addressing

policy

WS-RM_Policy_spec_example The basic WS-RM

policy example in

the WS-RM

specification

WS-SP-EX2121_SSL_UT_Supporting_Token The group of policy

assertions used in

the section 2.1.2.1

example of the

WS-Security Policy

Examples 1.0

specification

Latest WildFly Documentation

JBoss Community Documentation Page of 1378 2293

WS-SP-EX213_WSS10_UT_Mutual_Auth_X509_Sign_Encrypt The group of policy

assertions used in

the section 2.1.3

example of the

WS-Security Policy

Examples 1.0

specification

WS-SP-EX214_WSS11_User_Name_Cert_Sign_Encrypt The group of policy

assertions used in

the section 2.1.4

example of the

WS-Security Policy

Examples 1.0

specification

WS-SP-EX221_WSS10_Mutual_Auth_X509_Sign_Encrypt The group of policy

assertions used in

the section 2.2.1

example of the

WS-Security Policy

Examples

1.0 specification

WS-SP-EX222_WSS10_Mutual_Auth_X509_Sign_Encrypt The group of policy

assertions used in

the section 2.2.2

example of the

WS-Security Policy

Examples

1.0 specification

WS-SP-EX223_WSS11_Anonymous_X509_Sign_Encrypt The group of policy

assertions used in

the section 2.2.3

example of the

WS-Security Policy

Examples

1.0 specification

WS-SP-EX224_WSS11_Mutual_Auth_X509_Sign_Encrypt The group of policy

assertions used in

the section 2.2.4

example of the

WS-Security Policy

Examples

1.0 specification

Latest WildFly Documentation

JBoss Community Documentation Page of 1379 2293

AsymmetricBinding_X509v1_TripleDesRsa15_EncryptBeforeSigning_ProtectTokens A WS-Security

policy for

asymmetric binding

(encrypt before

signing) using

X.509v1 tokens,

3DES + RSA 1.5

algorithms and with

token protections

enabled

AsymmetricBinding_X509v1_GCM256OAEP_ProtectTokens The same as

before, but using

custom Apache

CXF algorithm suite

including GCM 256

+ RSA OAEP

algorithms

Always verify the contents of the generated wsdl contract, as policy sets are potentially subject to

updates between JBossWS releases. This is especially important when dealing with security

related policies; the provided sets are to be considered as convenient configuration options only;

users remain responsible for the policies in their contracts.

The interface has convenientorg.jboss.wsf.stack.cxf.extensions.policy.Constants

String constants for the available policy set labels.

If you feel a new set should be added, just propose it by writing the user forum!

Published WSDL customization

Endpoint address rewrite

System property references

Latest WildFly Documentation

JBoss Community Documentation Page of 1380 2293

Endpoint address rewrite
JBossWS supports the rewrite of the element of endpoints published in WSDL contracts. <soap:address>

This feature is useful for controlling the server address that is advertised to clients for each endpoint. The

rewrite mechanism is configured at server level through a set of elements in the webservices subsystem of

the WildFly management model. Please refer to the container documentation for details on the options

supported in the selected container version. Below is a list of the elements available in the latest WildFly

sources:

Latest WildFly Documentation

JBoss Community Documentation Page of 1381 2293

Name Type Description

modify-wsdl-address boolean This boolean enables and disables the address rewrite functionality.

When modify-wsdl-address is set to true and the content of

<soap:address> is a valid URL, JBossWS will rewrite the URL using the

values of wsdl-host and wsdl-port or wsdl-secure-port.

When modify-wsdl-address is set to false and the content of

<soap:address> is a valid URL, JBossWS will not rewrite the URL. The

<soap:address> URL will be used.

When the content of <soap:address> is not a valid URL, JBossWS will

rewrite it no matter what the setting of modify-wsdl-address.

If modify-wsdl-address is set to true and wsdl-host is not defined or

explicitly set to the content of'jbossws.undefined.host'

<soap:address> URL is use. JBossWS uses the requester's host when

rewriting the <soap:address>

When modify-wsdl-address is not defined JBossWS uses a default value

of true.

wsdl-host string The hostname / IP address to be used for rewriting .<soap:address>

If is set to , JBossWS uses thewsdl-host jbossws.undefined.host

requester's host when rewriting the <soap:address>

When wsdl-host is not defined JBossWS uses a default value of '

'.jbossws.undefined.host

wsdl-port int Set this property to explicitly define the HTTP port that will be used for

rewriting the SOAP address.

Otherwise the HTTP port will be identified by querying the list of installed

HTTP connectors.

wsdl-secure-port int Set this property to explicitly define the HTTPS port that will be used for

rewriting the SOAP address.

Otherwise the HTTPS port will be identified by querying the list of

installed HTTPS connectors.

wsdl-uri-scheme string This property explicitly sets the URI scheme to use for rewriting

 . Valid values are and . This<soap:address> http https

configuration overrides scheme computed by processing the endpoint

(even if a transport guarantee

is specified). The provided values for and wsdl-port

 (or their default values) are used depending onwsdl-secure-port

specified scheme.

wsdl-path-rewrite-rule string This string defines a SED substitution command (e.g.,

's/regexp/replacement/g') that JBossWS executes against the path

component of each <soap:address> URL published from the server.

When wsdl-path-rewrite-rule is not defined, JBossWS retains the original

path component of each <soap:address> URL.

When 'modify-wsdl-address' is set to "false" this element is ignored.

Latest WildFly Documentation

JBoss Community Documentation Page of 1382 2293

Additionally, users can override the server level configuration by requesting a specific rewrite behavior for a

given endpoint deployment. That is achieved by setting one of the following properties within a

 descriptor:jboss-webservices.xml

Property Corresponding server option

wsdl.soapAddress.rewrite.modify-wsdl-address modify-wsdl-address

wsdl.soapAddress.rewrite.wsdl-host wsdl-host

wsdl.soapAddress.rewrite.wsdl-port wsdl-port

wsdl.soapAddress.rewrite.wsdl-secure-port wsdl-secure-port

wsdl.soapAddress.rewrite.wsdl-path-rewrite-rule wsdl-path-rewrite-rule

wsdl.soapAddress.rewrite.wsdl-uri-scheme wsdl-uri-scheme

Here is an example of partial overriding of the default configuration for a specific deployment:

<?xml version="1.1" encoding="UTF-8"?>

<webservices version="1.2"

 xmlns="http://www.jboss.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee">

 <property>

 <name>wsdl.soapAddress.rewrite.wsdl-uri-scheme</name>

 <value>https</value>

 </property>

 <property>

 <name>wsdl.soapAddress.rewrite.wsdl-host</name>

 <value>foo</value>

 </property>

</webservices>

Latest WildFly Documentation

JBoss Community Documentation Page of 1383 2293

System property references
System property references wrapped within "@" characters are expanded when found in WSDL attribute and

element values. This allows for instance including multiple WS-Policy declarations in the contract and

selecting the policy to use depending on a server wide system property; here is an example:

<wsdl:definitions ...>

 ...

 <wsdl:binding name="ServiceOneSoapBinding" type="tns:EndpointOne">

 ...

 <wsp:PolicyReference URI="#@org.jboss.wsf.test.JBWS3628TestCase.policy@"/>

 <wsdl:operation name="echo">

 ...

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="ServiceOne">

 <wsdl:port binding="tns:ServiceOneSoapBinding" name="EndpointOnePort">

 <soap:address location="http://localhost:8080/jaxws-cxf-jbws3628/ServiceOne"/>

 </wsdl:port>

 </wsdl:service>

 <wsp:Policy

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

xmlns:wsp="http://www.w3.org/ns/ws-policy" wsu:Id="WS-RM_Policy">

 <wsrmp:RMAssertion xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">

 ...

 </wsrmp:RMAssertion>

 </wsp:Policy>

 <wsp:Policy

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

xmlns:wsp="http://www.w3.org/ns/ws-policy"

 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata" wsu:Id="WS-Addressing_policy">

 <wsam:Addressing>

 <wsp:Policy/>

 </wsam:Addressing>

 </wsp:Policy>

</wsdl:definitions>

If the system property is defined and set to "org.jboss.wsf.test.JBWS3628TestCase.policy

", WS-Addressing will be enabled for the endpoint defined by the contract above.WS-Addressing_policy

6.35.4 JBoss Modules and WS applications

Setting module dependencies

Using MANIFEST.MF

Using JAXB

Using Apache CXF

Client side WS aggregation module

Annotation scanning

Using jboss-deployment-descriptor.xml

Latest WildFly Documentation

JBoss Community Documentation Page of 1384 2293

The JBoss Web Services functionalities are provided by a given set of modules / libraries installed on

WildFly, which are organized into JBoss Modules modules. In particular the and org.jboss.as.webservices.*

 modules belong to the JBossWS - WildFly integration. Users should not need to changeorg.jboss.ws.*

anything in them.

While users are of course allowed to provide their own modules for their custom needs, below is a brief

collection of suggestions and hints around modules and webservices development on WildFly.

Setting module dependencies
On WildFly the user deployment classloader does not have any visibility over JBoss internals; so for instance

you can't use JBossWS classes unless you explicitly set a dependency to thedirectly implementation

corresponding module. As a consequence, users need to declare the module dependencies they want to be

added to their deployment.

The JBoss Web Services APIs are always available by default whenever the webservices

subsystem is available on AS7. So users just use them, no need for explicit dependencies

declaration for those modules.

Using MANIFEST.MF
The convenient method for configuring deployment dependencies is adding them into the MANIFEST.MF

file:

Manifest-Version: 1.0

Dependencies: org.jboss.ws.cxf.jbossws-cxf-client services export,foo.bar

Here above and are the modules you want to set dependenciesorg.jboss.ws.cxf.jbossws-cxf-client foo.bar

to; tells the modules framework that you want to also import declarations fromservices META-INF/services/..

the dependency, while exports the classes from the module to any other module that might beexport

depending on the module implicitly created for your deployment.

When using annotations on your endpoints / handlers such as the Apache CXF ones

(@InInterceptor, @GZIP, ...) remember to add the proper module dependency in your manifest.

Otherwise your annotations are not picked up and added to the annotation index by WildFly,

resulting in them being completely and silently ignored.

Using JAXB
In order for successfully directly using JAXB contexts, etc. in your client or endpoint running in-container, you

need to properly setup a JAXB implementation; that is performed setting the following dependency:

Dependencies: com.sun.xml.bind services export

Latest WildFly Documentation

JBoss Community Documentation Page of 1385 2293

Using Apache CXF
In order for using Apache CXF APIs and implementation classes you need to add a dependency to the

 (API) module and / or (implementation) module:org.apache.cxf org.apache.cxf.impl

Dependencies: org.apache.cxf services

However, please note that would not come with any JBossWS-CXF customizations nor additional

extensions. For this reason, and generally speaking for simplifying user configuration, a client side

aggregation module is available with all the WS dependencies users might need.

Client side WS aggregation module
Whenever you simply want to use all the JBoss Web Services feature/functionalities, you can set a

dependency to the convenient client module.

Dependencies: org.jboss.ws.cxf.jbossws-cxf-client services

Please note the option above: that's strictly required in order for you to get the JBossWS-CXFservices

version of classes that are retrieved using the , the for instance.Service API org.apache.cxf.Bus

Be careful as issues because of misconfiguration here can be quite hard to track down, because

the Apache CXF behaviour would be sensibly different.

The option is almost always needed when declaring dependencies on services

 and modules. The reason for this is in it affectingorg.jboss.ws.cxf.jbossws-cxf-client org.apache.cxf

the loading of classes through the , which is what is used to wire most of the JBossWSService API

components as well as all Apache CXF Bus extensions.

Annotation scanning
The application server uses an annotation index for detecting JAX-WS endpoints in user deployments. When

declaring WS endpoints whose class belongs to a different module (for instance referring that in the

 descriptor), be sure to have an type dependency in place. Without that, yourweb.xml annotations

endpoints would simply be ignored as they won't appear as annotated classes to the webservices

subsystem.

Dependencies: org.foo annotations

Latest WildFly Documentation

JBoss Community Documentation Page of 1386 2293

Using jboss-deployment-descriptor.xml
In some circumstances, the convenient approach of setting module dependencies in MANIFEST.MF might

not work. An example is the need for importing/exporting specific resources from a given module

dependency. Users should hence add a jboss-deployment-structure.xml descriptor to their deployment and

set module dependencies in it.

Latest WildFly Documentation

JBoss Community Documentation Page of 1387 2293

7 High Availability Guide

Introduction to High Availability Services

What are High Availability services?

High Availability through fail-over

High Availability through load balancing

Aims of the guide

Organization of the guide

HTTP Services

Subsystem Support

Purpose

Configuration example

Use Cases

Purpose

Configuration Example

Use Cases

Clustered Web Sessions

Clustered SSO

Load Balancing

Load balancing with Apache + mod_jk

Load balancing with Apache + mod_cluster

mod_cluster Subsystem

Configuration

Runtime Operations

EJB Services

EJB Subsystem

EJB Timer

Marking an EJB as clustered

Deploying clustered EJBs

Failover for clustered EJBs

Hibernate

HA Singleton Features

Singleton subsystem

Configuration

Non-HA environments

Singleton deployments

Usage

Singleton MSC services

Installing an MSC service using an existing singleton policy

Installing an MSC service using dynamic singleton policy

Related Issues

Changes From Previous Versions

Key changes

Migration to Wildfly

Latest WildFly Documentation

JBoss Community Documentation Page of 1388 2293

WildFly 8 Cluster Howto

References

All WildFly 8 documentation

7.1 Introduction to High Availability Services

7.1.1 What are High Availability services?

WildFly's High Availability services are used to guarantee availability of a deployed Java EE application.

Deploying critical applications on a single node suffers from two potential problems:

loss of application availability when the node hosting the application crashes (single point of failure)

loss of application availability in the form of extreme delays in response time during high volumes of

requests (overwhelmed server)

WildFly supports two features which ensure high availability of critical Java EE applications:

 allows a client interacting with a Java EE application to have uninterrupted access to thatfail-over:

application, even in the presence of node failures

 allows a client to have timely responses from the application, even in the presenceload balancing:

of high-volumes of requests

These two independent high availability services can very effectively inter-operate when making

use of mod_cluster for load balancing!

Taking advantage of WildFly's high availability services is easy, and simply involves deploying WildFly on a

cluster of nodes, making a small number of application configuration changes, and then deploying the

application in the cluster.

We now take a brief look at what these services can guarantee.

Latest WildFly Documentation

JBoss Community Documentation Page of 1389 2293

7.1.2 High Availability through fail-over

Fail-over allows a client interacting with a Java EE application to have uninterrupted access to that

application, even in the presence of node failures. For example, consider a Java EE application which

makes use of the following features:

 session-oriented servlets to provide user interaction

 session-oriented EJBs to perform state-dependent business computation

 EJB entity beans to store critical data in a persistent store (e.g. database)

 SSO login to the application

If the application makes use of WildFly's fail-over services, a client interacting with an instance of that

application will not be interrupted even when the node on which that instance executes crashes. Behind the

scenes, WildFly makes sure that all of the user data that the application make use of (HTTP session data,

EJB SFSB sessions, EJB entities and SSO credentials) are available at other nodes in the cluster, so that

when a failure occurs and the client is redirected to that new node for continuation of processing (i.e. the

client "fails over" to the new node), the user's data is available and processing can continue.

The Infinispan and JGroups subsystems are instrumental in providing these data availability guarantees and

will be discussed in detail later in the guide.

7.1.3 High Availability through load balancing

Load balancing enables the application to respond to client requests in a timely fashion, even when

subjected to a high-volume of requests. Using a load balancer as a front-end, each incoming HTTP request

can be directed to one node in the cluster for processing. In this way, the cluster acts as a pool of

processing nodes and the load is "balanced" over the pool, achieving scalability and, as a consequence,

availability. Requests involving session-oriented servlets are directed to the the same application instance in

the pool for efficiency of processing (sticky sessions). Using mod_cluster has the advantage that changes in

cluster topology (scaling the pool up or down, servers crashing) are communicated back to the load balancer

and used to update in real time the load balancing activity and avoid requests being directed to application

instances which are no longer available.

The mod_cluster subsystem is instrumental in providing support for this High Availability feature of

WildFly and will be discussed in detail later in this guide.

7.1.4 Aims of the guide

This guide aims to:

provide a description of the high-availability features available in WildFly and the services they

depend on

show how the various high availability services can be configured for particular application use cases

identify default behavior for features relating to high-availability/clustering

Latest WildFly Documentation

JBoss Community Documentation Page of 1390 2293

7.1.5 Organization of the guide

As high availability features and their configuration depend on the particular component they affect (e.g.

HTTP sessions, EJB SFSB sessions, Hibernate), we organize the discussion around those Java

EE features. We strive to make each section as self-contained as possible. Also, when discussing a feature,

we will introduce any WildFly subsystems upon which the feature depends.

7.2 HTTP Services

This section summarises the HTTP-based clustering features.

7.2.1 Subsystem Support

This section describes the key clustering subsystems, JGroups and Infinispan. Say a few words about how

they work together.

JGroups Subsystem

Purpose
The JGroups subsystem provides group communication support for HA services in the form of JGroups

channels.

Named channel instances permit application peers in a cluster to communicate as a group and in such a

way that the communication satisfies defined properties (e.g. reliable, ordered, failure-sensitive).

Communication properties are configurable for each channel and are defined by the protocol stack used to

create the channel. Protocol stacks consist of a base transport layer (used to transport messages around the

cluster) together with a user-defined, ordered stack of protocol layers, where each protocol layer supports a

given communication property.

The JGroups subsystem provides the following features:

allows definition of named protocol stacks

view run-time metrics associated with channels

specify a default stack for general use

In the following sections, we describe the JGroups subsystem.

JGroups channels are created transparently as part of the clustering functionality (e.g. on clustered

application deployment, channels will be created behind the scenes to support clustered features

such as session replication or transmission of SSO contexts around the cluster).

Latest WildFly Documentation

JBoss Community Documentation Page of 1391 2293

Configuration example
What follows is a sample JGroups subsystem configuration showing all of the possible elements and

attributes which may be configured. We shall use this example to explain the meaning of the various

elements and attributes.

The schema for the subsystem, describing all valid elements and attributes, can be found in the

Wildfly distribution, in the docs/schema directory.

<subsystem xmlns="urn:jboss:domain:jgroups:5.0">

 <channels default="ee">

 <channel name="ee" stack="udp"/>

 </channels>

 <stacks>

 <stack name="udp">

 <transport type="UDP" socket-binding="jgroups-udp"/>

 <protocol type="PING"/>

 <protocol type="MERGE3"/>

 <protocol type="FD_SOCK"/>

 <protocol type="FD_ALL"/>

 <protocol type="VERIFY_SUSPECT"/>

 <protocol type="pbcast.NAKACK2"/>

 <protocol type="UNICAST3"/>

 <protocol type="pbcast.STABLE"/>

 <protocol type="pbcast.GMS"/>

 <protocol type="UFC"/>

 <protocol type="MFC"/>

 <protocol type="FRAG2"/>

 </stack>

 <stack name="tcp">

 <transport type="TCP" socket-binding="jgroups-tcp"/>

 <socket-protocol type="MPING" socket-binding="jgroups-mping"/>

 <protocol type="MERGE3"/>

 <protocol type="FD_SOCK"/>

 <protocol type="FD_ALL"/>

 <protocol type="VERIFY_SUSPECT"/>

 <protocol type="pbcast.NAKACK2"/>

 <protocol type="UNICAST3"/>

 <protocol type="pbcast.STABLE"/>

 <protocol type="pbcast.GMS"/>

 <protocol type="MFC"/>

 <protocol type="FRAG2"/>

 </stack>

 </stacks>

</subsystem>

Latest WildFly Documentation

JBoss Community Documentation Page of 1392 2293

<subsystem>
This element is used to configure the subsystem within a Wildfly system profile.

 This attribute specifies the XML namespace of the JGroups subsystem and, in particular, itsxmlns

version.

 This attribute is used to specify a default stack for the JGroups subsystem. Thisdefault-stack

default stack will be used whenever a stack is required but no stack is specified.

<stack>
This element is used to configure a JGroups protocol stack.

 This attribute is used to specify the name of the stack.name

Latest WildFly Documentation

JBoss Community Documentation Page of 1393 2293

<transport>
This element is used to configure the transport layer (required) of the protocol stack.

 This attribute specifies the transport type (e.g. UDP, TCP, TCPGOSSIP)type

 This attribute references a defined socket binding in the server profile. It is usedsocket-binding

when JGroups needs to create general sockets internally.

 This attribute references a defined socket binding in the serverdiagnostics-socket-binding

profile. It is used when JGroups needs to create sockets for use with the diagnostics program. For

more about the use of diagnostics, see the JGroups documentation for probe.sh.

 This attribute references a defined thread pool executor in the threadsdefault-executor

subsystem. It governs the allocation and execution of runnable tasks to handle incoming JGroups

messages.

 This attribute references a defined thread pool executor in the threads subsystem. Itoob-executor

governs the allocation and execution of runnable tasks to handle incoming JGroups OOB

(out-of-bound) messages.

 This attribute references a defined thread pool executor in the threads subsystem.timer-executor

It governs the allocation and execution of runnable timer-related tasks.

 This attribute indicates whether or not this transport is shared amongst several JGroupsshared

stacks or not.

 This attribute references a defined thread factory in the threads subsystem. Itthread-factory

governs the allocation of threads for running tasks which are not handled by the executors above.

 This attribute defines a site (data centre) id for this node.site

 This attribute defines a rack (server rack) id for this node.rack

 This attribute defines a machine (host) is for this node.machine

site, rack and machine ids are used by the Infinispan topology-aware consistent hash function,

which when using dist mode, prevents dist mode replicas from being stored on the same host, rack

or site

.

<property>
This element is used to configure a transport property.

 This attribute specifies the name of the protocol property. The value is provided as text for thename

property element.

Latest WildFly Documentation

JBoss Community Documentation Page of 1394 2293

<protocol>
This element is used to configure a (non-transport) protocol layer in the JGroups stack. Protocol layers are

ordered within the stack.

 This attribute specifies the name of the JGroups protocol implementation (e.g. MPING,type

pbcast.GMS), with the package prefix org.jgroups.protocols removed.

 This attribute references a defined socket binding in the server profile. It is usedsocket-binding

when JGroups needs to create general sockets internally for this protocol instance.

<property>
This element is used to configure a protocol property.

 This attribute specifies the name of the protocol property. The value is provided as text for thename

property element.

<relay>
This element is used to configure the RELAY protocol for a JGroups stack. RELAY is a protocol which

provides cross-site replication between defined sites (data centres). In the RELAY protocol, defined sites

specify the names of remote sites (backup sites) to which their data should be backed up. Channels are

defined between sites to permit the RELAY protocol to transport the data from the current site to a backup

site.

 This attribute specifies the name of the current site. Site names can be referenced elsewheresite

(e.g. in the JGroups remote-site configuration elements, as well as backup configuration elements in

the Infinispan subsystem)

<remote-site>
This element is used to configure a remote site for the RELAY protocol.

 This attribute specifies the name of the remote site to which this configuration applies.name

 This attribute specifies a JGroups protocol stack to use for communication between this sitestack

and the remote site.

 This attribute specifies the name of the JGroups channel to use for communication betweencluster

this site and the remote site.

Latest WildFly Documentation

JBoss Community Documentation Page of 1395 2293

Use Cases
In many cases, channels will be configured via XML as in the example above, so that the channels will be

available upon server startup. However, channels may also be added, removed or have their configurations

changed in a running server by making use of the Wildfly management API command-line interface (CLI). In

this section, we present some key use cases for the JGroups management API.

The key use cases covered are:

adding a stack

adding a protocol to an existing stack

adding a property to a protocol

The Wildfly management API command-line interface (CLI) itself can be used to provide extensive

information on the attributes and commands available in the JGroups subsystem interface used in

these examples.

Add a stack

/subsystem=jgroups/stack=mystack:add()

Add a protocol to a stack

/subsystem=jgroups/stack=mystack/transport=<type>:add(socket-binding=<socketbinding>)

/subsystem=jgroups/stack=mystack:protocol=<type>:add(socket-binding=<socketbinding>)

Add a property to a protocol

/subsystem=jgroups/stack=mystack/transport=<type>:map-put(name=properties, key=<property-name>,

value=<property-value>)

Infinispan Subsystem

Latest WildFly Documentation

JBoss Community Documentation Page of 1396 2293

Purpose
The Infinispan subsystem provides caching support for HA services in the form of Infinispan caches:

 high-performance, transactional caches which can operate in both non-distributed and distributed

scenarios. Distributed caching support is used in the provision of many key HA services. For example, the

failover of a session-oriented client HTTP request from a failing node to a new (failover) node depends on

session data for the client being available on the new node. In other words, the client session data needs to

be replicated across nodes in the cluster. This is effectively achieved via a distributed Infinispan cache. This

approach to providing fail-over also applies to EJB SFSB sessions. Over and above providing support for

fail-over, an underlying cache is also required when providing second-level caching for entity beans using

Hibernate, and this case is also handled through the use of an Infinispan cache.

The Infinispan subsystem provides the following features:

allows definition and configuration of named cache containers and caches

view run-time metrics associated with cache container and cache instances

In the following sections, we describe the Infinispan subsystem.

Infiispan cache containers and caches are created transparently as part of the clustering

functionality (e.g. on clustered application deployment, cache containers and their associated

caches will be created behind the scenes to support clustered features such as session replication

or caching of entities around the cluster).

Configuration Example
In this section, we provide an example XML configuration of the infinispan subsystem and review the

configuration elements and attributes.

The schema for the subsystem, describing all valid elements and attributes, can be found in the

Wildfly distribution, in the docs/schema directory.

Latest WildFly Documentation

JBoss Community Documentation Page of 1397 2293

<subsystem xmlns="urn:jboss:domain:infinispan:4.0">

 <cache-container name="server" aliases="singleton cluster" default-cache="default"

module="org.wildfly.clustering.server">

 <transport lock-timeout="60000"/>

 <replicated-cache name="default" mode="SYNC">

 <transaction mode="BATCH"/> </replicated-cache>

 </cache-container>

 <cache-container name="web" default-cache="dist"

module="org.wildfly.clustering.web.infinispan">

 <transport lock-timeout="60000"/>

 <replicated-cache name="repl" mode="SYNC">

 <transaction mode="BATCH"/> <file-store/>

 </replicated-cache>

 <distributed-cache name="dist" mode="SYNC">

 <transaction mode="BATCH"/>

 <file-store/>

 </distributed-cache>

 </cache-container>

 <cache-container name="ejb" aliases="sfsb" default-cache="dist"

module="org.wildfly.clustering.ejb.infinispan">

 <transport lock-timeout="60000"/>

 <replicated-cache name="repl" mode="SYNC">

 <transaction mode="BATCH"/>

 <file-store/>

 </replicated-cache>

 <distributed-cache name="dist" mode="SYNC" l1-lifespan="0">

 <transaction mode="BATCH"/>

 <file-store/>

 </distributed-cache>

 </cache-container>

 <cache-container name="hibernate" module="org.hibernate.infinispan">

 <transport lock-timeout="60000"/>

 <local-cache name="local-query">

 <transaction mode="NONE"/>

 <eviction strategy="LRU" max-entries="10000"/>

 <expiration max-idle="100000"/>

 </local-cache>

 <invalidation-cache name="entity" mode="SYNC">

 <transaction mode="NON_XA"/>

 <eviction strategy="LRU" max-entries="10000"/>

 <expiration max-idle="100000"/>

 </invalidation-cache>

 <replicated-cache name="timestamps" mode="ASYNC">

 <transaction mode="NONE"/>

 <eviction strategy="NONE"/>

 </replicated-cache>

 </cache-container>

</subsystem>

<cache-container>
This element is used to configure a cache container.

Latest WildFly Documentation

JBoss Community Documentation Page of 1398 2293

 This attribute is used to specify the name of the cache container.name

 This attribute configures the default cache to be used, when no cache is otherwisedefault-cache

specified.

 This attribute references a defined thread pool executor in the threadslistener-executor

subsystem. It governs the allocation and execution of runnable tasks in the replication queue.

 This attribute references a defined thread pool executor in the threadseviction-executor

subsystem. It governs the allocation and execution of runnable tasks to handle evictions.

 This attribute references a defined thread pool executor in thereplication-queue-executor

threads subsystem. It governs the allocation and execution of runnable tasks to handle asynchronous

cache operations.

 This attribute is used to assign a name for the cache container in the JNDI name service.jndi-name

 This attribute configures the module whose class loader should be used when building thismodule

cache container's configuration.

 This attribute configured the cache container start mode and has since been deprecated, thestart

only supported and the default value is LAZY (on-demand start).

 This attribute is used to define aliases for the cache container name.aliases

This element has the following child elements: , , , <transport> <local-cache> <invalidation-cache>

, and .<replicated-cache> <distributed-cache>

Latest WildFly Documentation

JBoss Community Documentation Page of 1399 2293

<transport>
This element is used to configure the JGroups transport used by the cache container, when required.

 This attribute configures the JGroups channel to be used for the transport. If none ischannel

specified, the default channel as defined by the JGroups subsystem is used.

 This attribute configures the name of the group communication cluster. This is the namecluster

which will be seen in debugging logs.

 This attribute references a defined thread pool executor in the threads subsystem. Itexecutor

governs the allocation and execution of runnable tasks to handle ? >?.<fill me in

 This attribute configures the time-out to be used when obtaining locks for thelock-timeout

transport.

 This attribute configures the site id of the cache container.site

 This attribute configures the rack id of the cache container.rack

 This attribute configures the machine id of the cache container.machine

The presence of the transport element is required when operating in clustered mode

The remaining child elements of , namely , , <cache-container> <local-cache> <invalidation-cache>

 and , each configures one of four key cache types or<replicated-cache> <distributed-cache>

classifications.

These cache-related elements are actually part of an xsd hierarchy with abstract complexTypes

, , and . In order to simplify the presentation, we notate thesecache clustered-cache shared-cache

as pseudo-elements , and <abstract cache> <abstract clustered-cache> <abstract

. In what follows, we first describe the extension hierarchy of base elements, andshared-cache>

then show how the cache type elements relate to them.

<abstract cache>
This abstract base element defines the attributes and child elements common to all non-clustered caches.

 This attribute configures the name of the cache. This name may be referenced by othername

subsystems.

 This attribute configured the cache container start mode and has since been deprecated, thestart

only supported and the default value is LAZY (on-demand start).

 This attribute configures batching. If enabled, the invocation batching API will be madebatching

available for this cache.

 This attribute configures indexing. If enabled, entries will be indexed when they are addedindexing

to the cache. Indexes will be updated as entries change or are removed.

 This attribute is used to assign a name for the cache in the JNDI name service.jndi-name

 This attribute configures the module whose class loader should be used when building thismodule

cache container's configuration.

Latest WildFly Documentation

JBoss Community Documentation Page of 1400 2293

The <abstract cache> abstract base element has the following child elements: <indexing-properties>,

, , , , , , , <locking> <transaction> <eviction> <expiration> <store> <file-store> <string-keyed-jdbc-store>

, , .<binary-keyed-jdbc-store> <mixed-keyed-jdbc-store> <remote-store>

<indexing-properties>

This child element defines properties to control indexing behaviour.

<locking>

This child element configures the locking behaviour of the cache.

 This attribute the cache locking isolation level. Allowable values are NONE,isolation

SERIALIZABLE, REPEATABLE_READ, READ_COMMITTED, READ_UNCOMMITTED.

 If true, a pool of shared locks is maintained for all entries that need to be locked.striping

Otherwise, a lock is created per entry in the cache. Lock striping helps control memory footprint but

may reduce concurrency in the system.

 This attribute configures the maximum time to attempt a particular lockacquire-timeout

acquisition.

 This attribute is used to configure the concurrency level. Adjust this valueconcurrency-level

according to the number of concurrent threads interacting with Infinispan.

<transaction>

This child element configures the transactional behaviour of the cache.

 This attribute configures the transaction mode, setting the cache transaction mode to one ofmode

NONE, NON_XA, NON_DURABLE_XA, FULL_XA.

 If there are any ongoing transactions when a cache is stopped, Infinispan waits forstop-timeout

ongoing remote and local transactions to finish. The amount of time to wait for is defined by the cache

stop timeout.

 This attribute configures the locking mode for this cache, one of OPTIMISTIC orlocking

PESSIMISTIC.

<eviction>

This child element configures the eviction behaviour of the cache.

 This attribute configures the cache eviction strategy. Available options are 'UNORDERED',strategy

'FIFO', 'LRU', 'LIRS' and 'NONE' (to disable eviction).

 This attribute configures the maximum number of entries in a cache instance. Ifmax-entries

selected value is not a power of two the actual value will default to the least power of two larger than

selected value. -1 means no limit.

Latest WildFly Documentation

JBoss Community Documentation Page of 1401 2293

<expiration>

This child element configures the expiration behaviour of the cache.

 This attribute configures the maximum idle time a cache entry will be maintained in themax-idle

cache, in milliseconds. If the idle time is exceeded, the entry will be expired cluster-wide. -1 means

the entries never expire.

 This attribute configures the maximum lifespan of a cache entry, after which the entry islifespan

expired cluster-wide, in milliseconds. -1 means the entries never expire.

 This attribute specifies the interval (in ms) between subsequent runs to purge expiredinterval

entries from memory and any cache stores. If you wish to disable the periodic eviction process

altogether, set wakeupInterval to -1.

The remaining child elements of the abstract base element , namely , , <cache> <store> <file-store>

, , and ,<remote-store> <string-keyed-jdbc-store> <binary-keyed-jdbc-store> <mixed-keyed-jdbc-store>

each configures one of six key cache store types.

These cache store-related elements are actually part of an xsd extension hierarchy with abstract

complexTypes and . As before, in order to simplify the presentation,base-store base-jdbc-store

we notate these as pseudo-elements and . In<abstract base-store> <abstract base-jdbc-store>

what follows, we first describe the extension hierarchy of base elements, and then show how the

cache store elements relate to them.

Latest WildFly Documentation

JBoss Community Documentation Page of 1402 2293

<abstract base-store>

This abstract base element defines the attributes and child elements common to all cache stores.

 This attribute should be set to true when multiple cache instances share the same cacheshared

store (e.g. multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared

database) Setting this to true avoids multiple cache instances writing the same modification multiple

times. If enabled, only the node where the modification originated will write to the cache store. If

disabled, each individual cache reacts to a potential remote update by storing the data to the cache

store.

 This attribute configures whether or not, when the cache starts, data stored in the cachepreload

loader will be pre-loaded into memory. This is particularly useful when data in the cache loader is

needed immediately after start-up and you want to avoid cache operations being delayed as a result

of loading this data lazily. Can be used to provide a 'warm-cache' on start-up, however there is a

performance penalty as start-up time is affected by this process. Note that pre-loading is done in a

local fashion, so any data loaded is only stored locally in the node. No replication or distribution of the

preloaded data happens. Also, Infinispan only pre-loads up to the maximum configured number of

entries in eviction.

 If true, data is only written to the cache store when it is evicted from memory, apassivation

phenomenon known as . Next time the data is requested, it will be 'activated' which meanspassivation

that data will be brought back to memory and removed from the persistent store. If false, the cache

store contains a copy of the cache contents in memory, so writes to cache result in cache store

writes. This essentially gives you a 'write-through' configuration.

 This attribute, if true, causes persistent state to be fetched when joining a cluster. Iffetch-state

multiple cache stores are chained, only one of them can have this property enabled.

 This attribute configures whether the cache store is purged upon start-up.purge

 This attribute configures whether or not the singleton store cache store is enabled.singleton

SingletonStore is a delegating cache store used for situations when only one instance in a cluster

should interact with the underlying store.

 This attribute configures a custom store implementation class to use for this cache store.class

 This attribute is used to configure a list of cache store properties.properties

The abstract base element has one child element: <write-behind>

<write-behind>

This element is used to configure a cache store as write-behind instead of write-through. In write-through

mode, writes to the cache are also written to the cache store, whereas in write-behind mode,synchronously

writes to the cache are followed by writes to the cache store.asynchronous

 This attribute configures the time-out for acquiring the lock which guards theflush-lock-timeout

state to be flushed to the cache store periodically.

 This attribute configures the maximum number of entries in themodification-queue-size

asynchronous queue. When the queue is full, the store becomes write-through until it can accept new

entries.

 This attribute configures the time-out (in ms) to stop the cache store.shutdown-timeout

 This attribute is used to configure the size of the thread pool whose threads arethread-pool

responsible for applying the modifications to the cache store.

Latest WildFly Documentation

JBoss Community Documentation Page of 1403 2293

<abstract base-jdbc-store> extends <abstract base-store>

This abstract base element defines the attributes and child elements common to all JDBC-based cache

stores.

 This attribute configures the datasource for the JDBC-based cache store.datasource

 This attribute configures the database table used to store cache entries.entry-table

 This attribute configures the database table used to store binary cache entries.bucket-table

<file-store> extends <abstract base-store>

This child element is used to configure a file-based cache store. This requires specifying the name of the file

to be used as backing storage for the cache store.

 This attribute optionally configures a relative path prefix for the file store path. Can berelative-to

null.

 This attribute configures an absolute path to a file if is null; configures a relative pathpath relative-to

to the file, in relation to the value for , otherwise.relative-to

<remote-store> extends <abstract base-store>

This child element of cache is used to configure a remote cache store. It has a child <remote-servers>.

 This attribute configures the name of the remote cache to use for this remote store.cache

 This attribute configures a TCP_NODELAY value for communication with the remotetcp-nodelay

cache.

 This attribute configures a socket time-out for communication with the remotesocket-timeout

cache.

<remote-servers>

This child element of cache configures a list of remote servers for this cache store.

<remote-server>

This element configures a remote server. A remote server is defined completely by a locally defined

outbound socket binding, through which communication is made with the server.

 This attribute configures an outbound socket binding for a remoteoutbound-socket-binding

server.

<local-cache> extends <abstract cache>
This element configures a local cache.

Latest WildFly Documentation

JBoss Community Documentation Page of 1404 2293

<abstract clustered-cache> extends <abstract cache>
This abstract base element defines the attributes and child elements common to all clustered caches. A

clustered cache is a cache which spans multiple nodes in a cluster. It inherits from <cache>, so that all

attributes and elements of <cache> are also defined for <clustered-cache>.

 This attribute configures async marshalling. If enabled, this will causeasync-marshalling

marshalling of entries to be performed asynchronously.

 This attribute configures the clustered cache mode, ASYNC for asynchronous operation, ormode

SYNC for synchronous operation.

 In ASYNC mode, this attribute can be used to trigger flushing of the queue when itqueue-size

reaches a specific threshold.

 In ASYNC mode, this attribute controls how often the asynchronousqueue-flush-interval

thread used to flush the replication queue runs. This should be a positive integer which represents

thread wakeup time in milliseconds.

 In SYNC mode, this attribute (in ms) used to wait for an acknowledgement whenremote-timeout

making a remote call, after which the call is aborted and an exception is thrown.

<invalidation-cache> extends <abstract clustered-cache>
This element configures an invalidation cache.

Latest WildFly Documentation

JBoss Community Documentation Page of 1405 2293

<abstract shared-cache> extends <abstract clustered-cache>
This abstract base element defines the attributes and child elements common to all shared caches. A shared

cache is a clustered cache which shares state with its cache peers in the cluster. It inherits from

<clustered-cache>, so that all attributes and elements of <clustered-cache> are also defined for

<shared-cache>.

<state-transfer>

 If enabled, this will cause the cache to ask neighbouring caches for state when it starts up,enabled

so the cache starts 'warm', although it will impact start-up time.

 This attribute configures the maximum amount of time (ms) to wait for state fromtimeout

neighbouring caches, before throwing an exception and aborting start-up.

 This attribute configures the size, in bytes, in which to batch the transfer of cachechunk-size

entries.

<backups>

<backup>

 This attribute configures the backup strategy for this cache. Allowable values are SYNC,strategy

ASYNC.

 This attribute configures the policy to follow when connectivity to the backup sitefailure-policy

fails. Allowable values are IGNORE, WARN, FAIL, CUSTOM.

 This attribute configures whether or not this backup is enabled. If enabled, data will be sentenabled

to the backup site; otherwise, the backup site will be effectively ignored.

 This attribute configures the time-out for replicating to the backup site.timeout

 This attribute configures the number of failures after which this backup site shouldafter-failures

go off-line.

 This attribute configures the minimum time (in milliseconds) to wait after the max numbermin-wait

of failures is reached, after which this backup site should go off-line.

<backup-for>

 This attribute configures the name of the remote cache for which this cache acts as aremote-cache

backup.

 This attribute configures the site of the remote cache for which this cache acts as aremote-site

backup.

<replicated-cache> extends <abstract shared-cache>
This element configures a replicated cache. With a replicated cache, all contents (key-value pairs) of the

cache are replicated on all nodes in the cluster.

Latest WildFly Documentation

JBoss Community Documentation Page of 1406 2293

<distributed-cache> extends <abstract shared-cache>
This element configures a distributed cache. With a distributed cache, contents of the cache are selectively

replicated on nodes in the cluster, according to the number of owners specified.

 This attribute configures the number of cluster-wide replicas for each cache entry.owners

 This attribute configures the number of hash space segments which is the granularity forsegments

key distribution in the cluster. Value must be strictly positive.

 This attribute configures the maximum lifespan of an entry placed in the L1 cache.l1-lifespan

Configures the L1 cache behaviour in 'distributed' caches instances. In any other cache modes, this

element is ignored.

Use Cases
In many cases, cache containers and caches will be configured via XML as in the example above, so that

they will be available upon server start-up. However, cache containers and caches may also be added,

removed or have their configurations changed in a running server by making use of the Wildfly management

API command-line interface (CLI). In this section, we present some key use cases for the Infinispan

management API.

The key use cases covered are:

adding a cache container

adding a cache to an existing cache container

configuring the transaction subsystem of a cache

The Wildfly management API command-line interface (CLI) can be used to provide

extensive information on the attributes and commands available in the Infinispan subsystem

interface used in these examples.

Add a cache container

/subsystem=infinispan/cache-container=mycontainer:add(default-cache=<default-cache-name>)

/subsystem=infinispan/cache-container=mycontainer/transport=jgroups:add(lock-timeout=<timeout>)

Add a cache

/subsystem=infinispan/cache-container=mycontainer/local-cache=mylocalcache:add()

Configure the transaction component of a cache

/subsystem=infinispan/cache-container=mycontainer/local-cache=mylocalcache/component=transaction:add(mode=<transaction-mode>)

Latest WildFly Documentation

JBoss Community Documentation Page of 1407 2293

7.2.2 Clustered Web Sessions

7.2.3 Clustered SSO

7.2.4 Load Balancing

This section describes load balancing via Apache + mod_jk and Apache + mod_cluster.

7.2.5 Load balancing with Apache + mod_jk

Describe load balancing with Apache using mod_jk.

7.2.6 Load balancing with Apache + mod_cluster

Describe load balancing with Apache using mod_cluster.

mod_cluster Subsystem
The mod_cluster integration is done via the .modcluster subsystem

http://docs.jboss.org/mod_cluster/1.1.0/html/java.AS7config.html

Latest WildFly Documentation

JBoss Community Documentation Page of 1408 2293

7.3 Configuration

7.3.1 Instance ID or JVMRoute

The instance-id or JVMRoute defaults to jboss.node.name property passed on server startup (e.g. via

-Djboss.node.name=XYZ).

[standalone@localhost:9990 /] /subsystem=undertow/:read-attribute(name=instance-id)

{

 "outcome" => "success",

 "result" => expression "${jboss.node.name}"

}

To configure instance-id statically, configure the corresponding property in Undertow subsystem:

[standalone@localhost:9990 /]

/subsystem=undertow/:write-attribute(name=instance-id,value=myroute)

{

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-reload" => true,

 "process-state" => "reload-required"

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1409 2293

7.3.2 Proxies

By default, mod_cluster is configured for multicast-based discovery. To specify a static list of proxies, create

a remote-socket-binding for each proxy and then reference them in the 'proxies' attribute. See the following

example for configuration in the domain mode:

[domain@localhost:9990 /]

/socket-binding-group=ha-sockets/remote-destination-outbound-socket-binding=proxy1:add(host=10.21.152.86,

port=6666)

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => undefined

}

[domain@localhost:9990 /]

/socket-binding-group=ha-sockets/remote-destination-outbound-socket-binding=proxy2:add(host=10.21.152.87,

port=6666)

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => undefined

}

[domain@localhost:9990 /]

/profile=ha/subsystem=modcluster/mod-cluster-config=configuration/:write-attribute(name=proxies,

value=[proxy1, proxy2]

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => undefined

}

[domain@localhost:9990 /] :reload-servers

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => undefined

}

7.4 Runtime Operations

The modcluster subsystem supports several operations:

Latest WildFly Documentation

JBoss Community Documentation Page of 1410 2293

[standalone@localhost:9999 subsystem=modcluster] :read-operation-names

{

 "outcome" => "success",

 "result" => [

 "add",

 "add-custom-metric",

 "add-metric",

 "add-proxy",

 "disable",

 "disable-context",

 "enable",

 "enable-context",

 "list-proxies",

 "read-attribute",

 "read-children-names",

 "read-children-resources",

 "read-children-types",

 "read-operation-description",

 "read-operation-names",

 "read-proxies-configuration",

 "read-proxies-info",

 "read-resource",

 "read-resource-description",

 "refresh",

 "remove-custom-metric",

 "remove-metric",

 "remove-proxy",

 "reset",

 "stop",

 "stop-context",

 "validate-address",

 "write-attribute"

]

}

The operations specific to the modcluster subsystem are divided in 3 categories the ones that affects the

configuration and require a restart of the subsystem, the one that just modify the behaviour temporarily and

the ones that display information from the httpd part.

7.4.1 operations displaying httpd informations

There are 2 operations that display how Apache httpd sees the node:

Latest WildFly Documentation

JBoss Community Documentation Page of 1411 2293

read-proxies-configuration
Send a DUMP message to all Apache httpd the node is connected to and display the message received

from Apache httpd.

[standalone@localhost:9999 subsystem=modcluster] :read-proxies-configuration

{

 "outcome" => "success",

 "result" => [

 "neo3:6666",

 "balancer: [1] Name: mycluster Sticky: 1 [JSESSIONID]/[jsessionid] remove: 0 force: 1

Timeout: 0 Maxtry: 1

node: [1:1],Balancer: mycluster,JVMRoute: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,Domain: [],Host:

127.0.0.1,Port: 8080,Type: http,flushpackets: 0,flushwait: 10,ping: 10,smax: 26,ttl: 60,timeout:

0

host: 1 [example.com] vhost: 1 node: 1

host: 2 [localhost] vhost: 1 node: 1

host: 3 [default-host] vhost: 1 node: 1

context: 1 [/myapp] vhost: 1 node: 1 status: 1

context: 2 [/] vhost: 1 node: 1 status: 1

",

 "jfcpc:6666",

 "balancer: [1] Name: mycluster Sticky: 1 [JSESSIONID]/[jsessionid] remove: 0 force: 1

Timeout: 0 maxAttempts: 1

node: [1:1],Balancer: mycluster,JVMRoute: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,LBGroup: [],Host:

127.0.0.1,Port: 8080,Type: http,flushpackets: 0,flushwait: 10,ping: 10,smax: 26,ttl: 60,timeout:

0

host: 1 [default-host] vhost: 1 node: 1

host: 2 [localhost] vhost: 1 node: 1

host: 3 [example.com] vhost: 1 node: 1

context: 1 [/] vhost: 1 node: 1 status: 1

context: 2 [/myapp] vhost: 1 node: 1 status: 1

"

]

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1412 2293

read-proxies-info
Send a INFO message to all Apache httpd the node is connected to and display the message received from

Apache httpd.

[standalone@localhost:9999 subsystem=modcluster] :read-proxies-info

{

 "outcome" => "success",

 "result" => [

 "neo3:6666",

 "Node: [1],Name: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,Balancer: mycluster,Domain: ,Host:

127.0.0.1,Port: 8080,Type: http,Flushpackets: Off,Flushwait: 10000,Ping: 10000000,Smax: 26,Ttl:

60000000,Elected: 0,Read: 0,Transfered: 0,Connected: 0,Load: -1

Vhost: [1:1:1], Alias: example.com

Vhost: [1:1:2], Alias: localhost

Vhost: [1:1:3], Alias: default-host

Context: [1:1:1], Context: /myapp, Status: ENABLED

Context: [1:1:2], Context: /, Status: ENABLED

",

 "jfcpc:6666",

 "Node: [1],Name: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,Balancer: mycluster,LBGroup:

,Host: 127.0.0.1,Port: 8080,Type: http,Flushpackets: Off,Flushwait: 10,Ping: 10,Smax: 26,Ttl:

60,Elected: 0,Read: 0,Transfered: 0,Connected: 0,Load: 1

Vhost: [1:1:1], Alias: default-host

Vhost: [1:1:2], Alias: localhost

Vhost: [1:1:3], Alias: example.com

Context: [1:1:1], Context: /, Status: ENABLED

Context: [1:1:2], Context: /myapp, Status: ENABLED

"

]

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1413 2293

7.4.2

operations that handle the proxies the node is connected too
there are 3 operation that could be used to manipulate the list of Apache httpd the node is connected too.

list-proxies:
Displays the httpd that are connected to the node. The httpd could be discovered via the Advertise protocol

or via the proxy-list attribute.

[standalone@localhost:9999 subsystem=modcluster] :list-proxies

{

 "outcome" => "success",

 "result" => [

 "proxy1:6666",

 "proxy2:6666"

]

}

remove-proxy
Remove a proxy from the discovered proxies or temporarily from the proxy-list attribute.

[standalone@localhost:9999 subsystem=modcluster] :remove-proxy(host=jfcpc, port=6666)

{"outcome" => "success"}

proxy
Add a proxy to the discovered proxies or temporarily to the proxy-list attribute.

[standalone@localhost:9999 subsystem=modcluster] :add-proxy(host=jfcpc, port=6666)

{"outcome" => "success"}

Latest WildFly Documentation

JBoss Community Documentation Page of 1414 2293

7.4.3 Context related operations

Those operations allow to send context related commands to Apache httpd. They are send automatically

when deploying or undeploying webapps.

enable-context
Tell Apache httpd that the context is ready receive requests.

[standalone@localhost:9999 subsystem=modcluster] :enable-context(context=/myapp,

virtualhost=default-host)

{"outcome" => "success"}

disable-context
Tell Apache httpd that it shouldn't send new session requests to the context of the virtualhost.

[standalone@localhost:9999 subsystem=modcluster] :disable-context(context=/myapp,

virtualhost=default-host)

{"outcome" => "success"}

stop-context
Tell Apache httpd that it shouldn't send requests to the context of the virtualhost.

[standalone@localhost:9999 subsystem=modcluster] :stop-context(context=/myapp,

virtualhost=default-host, waittime=50)

{"outcome" => "success"}

7.4.4 Node related operations

Those operations are like the context operation but they apply to all webapps running on the node and

operation that affect the whole node.

refresh
Refresh the node by sending a new CONFIG message to Apache httpd.

reset
reset the connection between Apache httpd and the node

Latest WildFly Documentation

JBoss Community Documentation Page of 1415 2293

7.4.5 Configuration

Metric configuration
There are 4 metric operations corresponding to add and remove load metrics to the dynamic-load-provider.

Note that when nothing is defined a simple-load-provider is use with a fixed load factor of one.

[standalone@localhost:9999 subsystem=modcluster] :read-resource(name=mod-cluster-config)

{

 "outcome" => "success",

 "result" => {"simple-load-provider" => {"factor" => "1"}}

}

that corresponds to the following configuration:

<subsystem xmlns="urn:jboss:domain:modcluster:1.0">

 <mod-cluster-config>

 <simple-load-provider factor="1"/>

 </mod-cluster-config>

 </subsystem>

metric
Add a metric to the dynamic-load-provider, the dynamic-load-provider in configuration is created if needed.

[standalone@localhost:9999 subsystem=modcluster] :add-metric(type=cpu)

{"outcome" => "success"}

[standalone@localhost:9999 subsystem=modcluster] :read-resource(name=mod-cluster-config)

{

 "outcome" => "success",

 "result" => {

 "dynamic-load-provider" => {

 "history" => 9,

 "decay" => 2,

 "load-metric" => [{

 "type" => "cpu"

 }]

 }

 }

}

remove-metric
Remove a metric from the dynamic-load-provider.

[standalone@localhost:9999 subsystem=modcluster] :remove-metric(type=cpu)

{"outcome" => "success"}

Latest WildFly Documentation

JBoss Community Documentation Page of 1416 2293

custom-metric / remove-custom-metric
like the add-metric and remove-metric except they require a class parameter instead the type. Usually they

needed additional properties which can be specified

[standalone@localhost:9999 subsystem=modcluster] :add-custom-metric(class=myclass,

property=[("pro1" => "value1"), ("pro2" => "value2")]

{"outcome" => "success"}

which corresponds the following in the xml configuration file:

<subsystem xmlns="urn:jboss:domain:modcluster:1.0">

 <mod-cluster-config>

 <dynamic-load-provider history="9" decay="2">

 <custom-load-metric class="myclass">

 <property name="pro1" value="value1"/>

 <property name="pro2" value="value2"/>

 </custom-load-metric>

 </dynamic-load-provider>

 </mod-cluster-config>

</subsystem>

7.5 EJB Services

This chapter explains how clustering of EJBs works in WildFly 8.

7.5.1 EJB Subsystem

7.6 EJB Timer

Wildfly now supports clustered database backed timers. For details have a look to the EJB3 reference

section

https://docs.jboss.org/author/display/WFLY/EJB3+Clustered+Database+Timers
https://docs.jboss.org/author/display/WFLY/EJB3+Clustered+Database+Timers

Latest WildFly Documentation

JBoss Community Documentation Page of 1417 2293

7.6.1 Marking an EJB as clustered

WildFly 8 allows clustering of stateful session beans. A stateful session bean can be marked with

 annotation or be marked as clustered using the@org.jboss.ejb3.annotation.Clustered

jboss-ejb3.xml's element.<clustered>

MyStatefulBean

import org.jboss.ejb3.annotation.Clustered;

import javax.ejb.Stateful;

@Stateful

@Clustered

public class MyStatefulBean {

...

}

jboss-ejb3.xml

<jboss xmlns="http://www.jboss.com/xml/ns/javaee"

 xmlns:jee="http://java.sun.com/xml/ns/javaee"

 xmlns:c="urn:clustering:1.0">

 <jee:assembly-descriptor>

 <c:clustering>

 <jee:ejb-name>DDBasedClusteredBean</jee:ejb-name>

 <c:clustered>true</c:clustered>

 </c:clustering>

 </jee:assembly-descriptor>

</jboss>

Latest WildFly Documentation

JBoss Community Documentation Page of 1418 2293

7.6.2 Deploying clustered EJBs

Clustering support is available in the HA profiles of WildFly 8. In this chapter we'll be using the standalone

server for explaining the details. However, the same applies to servers in a domain mode. Starting the

standalone server with HA capabilities enabled, involves starting it with the standalone-ha.xml (or even

standalone-full-ha.xml):

./standalone.sh -server-config=standalone-ha.xml

This will start a single instance of the server with HA capabilities. Deploying the EJBs to this instance doesn't

involve anything special and is the same as explained in the .application deployment chapter

Obviously, to be able to see the benefits of clustering, you'll need more than one instance of the server. So

let's start another server with HA capabilities. That another instance of the server can either be on the same

machine or on some other machine. If it's on the same machine, the two things you have to make sure is

that you pass the port offset for the second instance and also make sure that each of the server instances

have a unique system property. You can do that by passing the following two systemjboss.node.name

properties to the startup command:

./standalone.sh -server-config=standalone-ha.xml -Djboss.socket.binding.port-offset=<offset of

your choice> -Djboss.node.name=<unique node name>

Follow whichever approach you feel comfortable with for deploying the EJB deployment to this instance too.

Deploying the application on just one node of a standalone instance of a clustered server does not

mean that it will be automatically deployed to the other clustered instance. You will have to do

deploy it explicitly on the other standalone clustered instance too. Or you can start the servers in

domain mode so that the deployment can be deployed to all the server within a server group. See

the for more details on domain setup.admin guide

Now that you have deployed an application with clustered EJBs on both the instances, the EJBs are now

capable of making use of the clustering features.

7.6.3 Failover for clustered EJBs

Clustered EJBs have failover capability. The state of the @Stateful @Clustered EJBs is replicated across

the cluster nodes so that if one of the nodes in the cluster goes down, some other node will be able to take

over the invocations. Let's see how it's implemented in WildFly 8. In the next few sections we'll see how it

works for remote (standalone) clients and for clients in another remote WildFly server instance. Although,

there isn't a difference in how it works in both these cases, we'll still explain it separately so as to make sure

there aren't any unanswered questions.

https://docs.jboss.org/author/display/AS71/Application+deployment
https://docs.jboss.org/author/display/AS71/Admin+Guide

Latest WildFly Documentation

JBoss Community Documentation Page of 1419 2293

Remote standalone clients
In this section we'll consider a remote standalone client (i.e. a client which runs in a separate JVM and isn't

running within another WildFly 8 instance). Let's consider that we have 2 servers, server X and server Y

which we started earlier. Each of these servers has the clustered EJB deployment. A standalone remote

client can use either the or native JBoss EJB client APIs to communicate with the servers.JNDI approach

The important thing to note is that when you are invoking clustered EJB deployments, you do have to listnot

all the servers within the cluster (which obviously wouldn't have been feasible due the dynamic nature of

cluster node additions within a cluster).

The remote client just has to list only one of the servers with the clustering capability. In this case, we can

either list server X (in jboss-ejb-client.properties) server Y. This server will act as the starting point foror

cluster topology communication between the client and the clustered nodes.

Note that you have to configure the cluster in the jboss-ejb-client.properties configuration file, like so:ejb

remote.clusters=ejb

remote.cluster.ejb.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

remote.cluster.ejb.connect.options.org.xnio.Options.SSL_ENABLED=false

https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI

Latest WildFly Documentation

JBoss Community Documentation Page of 1420 2293

Cluster topology communication
When a client connects to a server, the JBoss EJB client implementation (internally) communicates with the

server for cluster topology information, if the server had clustering capability. In our example above, let's

assume we listed server X as the initial server to connect to. When the client connects to server X, the

server will send back an (asynchronous) cluster topology message to the client. This topology message

consists of the cluster name(s) and the information of the nodes that belong to the cluster. The node

information includes the node address and port number to connect to (whenever necessary). So in this

example, the server X will send back the cluster topology consisting of the other server Y which belongs to

the cluster.

In case of stateful (clustered) EJBs, a typical invocation flow involves creating of a session for the stateful

bean, which happens when you do a JNDI lookup for that bean, and then invoking on the returned proxy.

The lookup for stateful bean, internally, triggers a (synchronous) session creation request from the client to

the server. In this case, the session creation request goes to server X since that's the initial connection that

we have configured in our jboss-ejb-client.properties. Since server X is clustered, it will return back a session

id and along with send back an of that session. In case of clustered servers, the affinity equals to"affinity"

the name of the cluster to which the stateful bean belongs on the server side. For non-clustered beans, the

affinity is just the node name on which the session was created. This will later help the EJB client toaffinity

route the invocations on the proxy, appropriately to either a node within a cluster (for clustered beans) or to a

specific node (for non-clustered beans). While this session creation request is going on, the server X will

also send back an asynchronous message which contains the cluster topology. The JBoss EJB client

implementation will take note of this topology information and will later use it for connection creation to nodes

within the cluster and routing invocations to those nodes, whenever necessary.

Now that we know how the cluster topology information is communicated from the server to the client, let see

how failover works. Let's continue with the example of server X being our starting point and a client

application looking up a stateful bean and invoking on it. During these invocations, the client side will have

collected the cluster topology information from the server. Now let's assume for some reason, server X goes

down and the client application subsequent invokes on the proxy. The JBoss EJB client implementation, at

this stage will be aware of the affinity and in this case it's a cluster affinity. Because of the cluster topology

information it has, it knows that the cluster has two nodes server X and server Y. When the invocation now

arrives, it sees that the server X is down. So it uses a selector to fetch a suitable node from among the

cluster nodes. The selector itself is configurable, but we'll leave it from discussion for now. When the selector

returns a node from among the cluster, the JBoss EJB client implementation creates a connection to that

node (if not already created earlier) and creates a EJB receiver out of it. Since in our example, the only other

node in the cluster is server Y, the selector will return that node and the JBoss EJB client implementation will

use it to create a EJB receiver out of it and use that receiver to pass on the invocation on the proxy.

Effectively, the invocation has now failed over to a different node within the cluster.

Latest WildFly Documentation

JBoss Community Documentation Page of 1421 2293

Remote clients on another instance of WildFly 8
So far we discussed remote standalone clients which typically use either the EJB client API or the

jboss-ejb-client.properties based approach to configure and communicate with the servers where the

clustered beans are deployed. Now let's consider the case where the client is an application deployed

another AS7 instance and it wants to invoke on a clustered stateful bean which is deployed on another

instance of WildFly 8. In this example let's consider a case where we have 3 servers involved. Server X and

Server Y both belong to a cluster and have clustered EJB deployed on them. Let's consider another server

instance Server C (which may or may have clustering capability) which acts as a client on which there'snot

a deployment which wants to invoke on the clustered beans deployed on server X and Y and achieve

failover.

The configurations required to achieve this are explained in . As you can see the configurationsthis chapter

are done in a jboss-ejb-client.xml which points to a remote outbound connection to the other server. This

jboss-ejb-client.xml goes in the deployment of server C (since that's our client). As explained eariler, the

client configuration need point to all clustered nodes. Instead it just has to point to one of them which willnot

act as a start point for communication. So in this case, we can create a remote outbound connection on

server C to server X and use server X as our starting point for communication. Just like in the case of remote

standalone clients, when the application on server C (client) looks up a stateful bean, a session creation

request will be sent to server X which will send back a session id and the cluster affinity for it. Furthermore,

server X asynchronously send back a message to server C (client) containing the cluster topology. This

topology information will include the node information of server Y (since that belongs to the cluster along with

server X). Subsequent invocations on the proxy will be routed appropriately to the nodes in the cluster. If

server X goes down, as explained earlier, a different node from the cluster will be selected and the

invocation will be forwarded to that node.

As can be seen both remote standalone client and remote clients on another WildFly 8 instance act similar in

terms of failover.

Testcases for failover of stateful beans
We have testcases in WildFly 8 testsuite which test that whatever is explained above works as expected.

The tests the case where a stateful EJB uses @ClusteredRemoteEJBClientStatefulBeanFailoverTestCase

annotation to mark itself as clustered. We also have RemoteEJBClientDDBasedSFSBFailoverTestCase

which uses jboss-ejb3.xml to mark a stateful EJB as clustered. Both these testcases test that when a node

goes down in a cluster, the client invocation is routed to a different node in the cluster.

7.7 Hibernate

https://docs.jboss.org/author/display/WFLY8/EJB+invocations+from+a+remote+server+instance
https://github.com/wildfly/wildfly/blob/master/testsuite/integration/clust/src/test/java/org/jboss/as/test/clustering/cluster/ejb3/stateful/remote/failover/RemoteEJBClientStatefulBeanFailoverTestCase.java
https://github.com/wildfly/wildfly/blob/master/testsuite/integration/clust/src/test/java/org/jboss/as/test/clustering/cluster/ejb3/stateful/remote/failover/dd/RemoteEJBClientDDBasedSFSBFailoverTestCase.java

Latest WildFly Documentation

JBoss Community Documentation Page of 1422 2293

1.

2.

3.

4.

7.8 HA Singleton Features

In general, an HA or clustered singleton is a service that exists on multiple nodes in a cluster, but is active on

just a single node at any given time. If the node providing the service fails or is shut down, a new singleton

provider is chosen and started. Thus, other than a brief interval when one provider has stopped and another

has yet to start, the service is always running on one node.

7.8.1 Singleton subsystem

WildFly 10 introduces a “singleton” subsystem, which defines a set of policies that define how an HA

singleton should behave. A singleton policy can be used to instrument singleton deployments or to create

singleton MSC services.

Configuration
The from WildFly’s ha and full-ha profile looks like:default subsystem configuration

<subsystem xmlns="urn:jboss:domain:singleton:1.0">

 <singleton-policies default="default">

 <singleton-policy name="default" cache-container="server">

 <simple-election-policy/>

 </singleton-policy>

 </singleton-policies>

</subsystem>

A singleton policy defines:

A unique name

A cache container and cache with which to register singleton provider candidates

An election policy

A quorum (optional)

One can add a new singleton policy via the following management operation:

/subsystem=singleton/singleton-policy=foo:add(cache-container=server)

Cache configuration
The cache-container and cache attributes of a singleton policy must reference a valid cache from the

Infinispan subsystem. If no specific cache is defined, the default cache of the cache container is assumed.

This cache is used as a registry of which nodes can provide a given service and will typically use a

replicated-cache configuration.

https://github.com/wildfly/wildfly/blob/10.0.0.Final/clustering/singleton/extension/src/main/resources/schema/wildfly-singleton_1_0.xsd

Latest WildFly Documentation

JBoss Community Documentation Page of 1423 2293

Election policies
WildFly 10 includes 2 singleton election policy implementations:

simple

Elects the provider (a.k.a. master) of a singleton service based on a specified position in a circular

linked list of eligible nodes sorted by descending age. Position=0, the default value, refers to the

oldest node, 1 is second oldest, etc. ; while position=-1 refers to the youngest node, -2 to the second

youngest, etc.

e.g.

/subsystem=singleton/singleton-policy=foo/election-policy=simple:add(position=-1)

random

Elects a random member to be the provider of a singleton service

e.g.

/subsystem=singleton/singleton-policy=foo/election-policy=random:add()

Preferences
Additionally, any singleton election policy may indicate a preference for one or more members of a cluster.

Preferences may be defined either via node name or via outbound socket binding name. Node preferences

always take precedent over the results of an election policy.

e.g.

/subsystem=singleton/singleton-policy=foo/election-policy=simple:list-add(name=name-preferences,

value=nodeA)

/subsystem=singleton/singleton-policy=bar/election-policy=random:list-add(name=socket-binding-preferences,

value=nodeA)

Quorum
Network partitions are particularly problematic for singleton services, since they can trigger multiple singleton

providers for the same service to run at the same time. To defend against this scenario, a singleton policy

may define a quorum that requires a minimum number of nodes to be present before a singleton provider

election can take place. A typical deployment scenario uses a quorum of N/2 + 1, where N is the anticipated

cluster size. This value can be updated at runtime, and will immediately affect any active singleton services.

e.g.

/subsystem=singleton/singleton-policy=foo:write-attribute(name=quorum, value=3)

Latest WildFly Documentation

JBoss Community Documentation Page of 1424 2293

HA environments
The singleton subsystem can be used in a non-HA profile, so long as the cache that it references uses a

local-cache configuration. In this manner, an application leveraging singleton functionality (via the singleton

API or using a singleton deployment descriptor) will continue function as if the server was a sole member of

a cluster. For obvious reasons, the use of a quorum does not make sense in such a configuration.

7.8.2 Singleton deployments

WildFly 10 resurrects the ability to start a given deployment on a single node in the cluster at any given time.

If that node shuts down, or fails, the application will automatically start on another node on which the given

deployment exists. Long time users of JBoss AS will recognize this functionality as being akin to the

, a.k.a. “ ”, feature of AS6 and earlier.HASingletonDeployer deploy-hasingleton

Usage
A deployment indicates that it should be deployed as a singleton via a deployment descriptor. This can either

be a standalone “/META-INF/singleton-deployment.xml” file or embedded within an existing jboss-all.xml

descriptor. This descriptor may be applied to any deployment type, e.g. JAR, WAR, EAR, etc., with the

exception of a subdeployment within an EAR.

e.g.

<singleton-deployment xmlns="urn:jboss:singleton-deployment:1.0" policy="foo"/>

The singleton deployment descriptor defines which should be used to deploy the application.singleton policy

If undefined, the default singleton policy is used, as defined by the singleton subsystem.

Using a standalone descriptor is often preferable, since it may be overlaid onto an existing deployment

archive.

e.g.

deployment-overlay add --name=singleton-policy-foo

--content=/META-INF/singleton-deployment.xml=/path/to/singleton-deployment.xml

--deployments=my-app.jar --redeploy-affected

7.8.3 Singleton MSC services

WildFly allows any user MSC service to be installed as a singleton MSC service via a public API. Once

installed, the service will only ever start on 1 node in the cluster at a time. If the node providing the service is

shutdown, or fails, another node on which the service was installed will start automatically.

https://docs.jboss.org/jbossclustering/cluster_guide/5.1/html/deployment.chapt.html#d0e1220
https://docs.jboss.org/jbossclustering/cluster_guide/5.1/html/deployment.chapt.html#d0e1220
https://docs.jboss.org/author/display/WFLY10/Singleton+subsystem

Latest WildFly Documentation

JBoss Community Documentation Page of 1425 2293

Installing an MSC service using an existing singleton policy
While singleton MSC services have been around since AS7, WildFly 10 adds the ability to leverage the

singleton subsystem to create singleton MSC services from existing singleton policies.

The singleton subsystem exposes capabilities for each singleton policy it defines. These policies,

represented via the interface, can beorg.wildfly.clustering.singleton.SingletonPolicy

referenced via the following name: “org.wildfly.clustering.singleton.policy”

e.g.

public class MyServiceActivator implements ServiceActivator {

 @Override

 public void activate(ServiceActivatorContext context) {

 ServiceName name = ServiceName.parse(“my.service.name”);

 Service<?> service = new MyService();

 try {

 SingletonPolicy policy = (SingletonPolicy)

context.getServiceRegistry().getRequiredService(ServiceName.parse(SingletonPolicy.CAPABILITY_NAME)).awaitValue();

policy.createSingletonServiceBuilder(name, service).build(context.getServiceTarget()).install();

 } catch (InterruptedException e) {

 throw new ServiceRegistryException(e);

 }

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1426 2293

Installing an MSC service using dynamic singleton policy
Alternatively, you can build singleton policy dynamically, which is particularly useful if you want to use a

custom singleton election policy. Specifically, is a generalization of the SingletonPolicy

 interface, whichorg.wildfly.clustering.singleton.SingletonServiceBuilderFactory

includes support for specifying an election policy and, optionally, a quorum.

e.g.

public class MyServiceActivator implements ServiceActivator {

 @Override

 public void activate(ServiceActivatorContext context) {

 String containerName = “server”;

 ElectionPolicy policy = new MySingletonElectionPolicy();

 int quorum = 3;

 ServiceName name = ServiceName.parse(“my.service.name”);

 Service<?> service = new MyService();

 try {

 SingletonServiceBuilderFactory factory = (SingletonServiceBuilderFactory)

context.getServiceRegistry().getRequiredService(SingletonServiceName.BUILDER.getServiceName(containerName))).awaitValue();

factory.createSingletonServiceBuilder(name, service)

 .electionPolicy(policy)

 .quorum(quorum)

 .build(context.getServiceTarget()).install();

 } catch (InterruptedException e) {

 throw new ServiceRegistryException(e);

 }

 }

}

7.9 Related Issues

Couldn't find a page to include called: Related Issues

7.10 Changes From Previous Versions

Describe here key changes between releases.

7.10.1 Key changes

7.10.2 Migration to Wildfly

Latest WildFly Documentation

JBoss Community Documentation Page of 1427 2293

7.11 WildFly 8 Cluster Howto

Couldn't find a page to include called: WildFly 8 Cluster Howto

7.12 References

Couldn't find a page to include called: References

7.13 All WildFly 8 documentation

Couldn't find a page to include called: All WildFly 8 documentation

7.14 Introduction To High Availability Services

7.14.1 What are High Availability services?

WildFly's High Availability services are used to guarantee availability of a deployed Java EE application.

Deploying critical applications on a single node suffers from two potential problems:

loss of application availability when the node hosting the application crashes (single point of failure)

loss of application availability in the form of extreme delays in response time during high volumes of

requests (overwhelmed server)

WildFly supports two features which ensure high availability of critical Java EE applications:

 allows a client interacting with a Java EE application to have uninterrupted access to thatfail-over:

application, even in the presence of node failures

 allows a client to have timely responses from the application, even in the presenceload balancing:

of high-volumes of requests

These two independent high availability services can very effectively inter-operate when making

use of mod_cluster for load balancing!

Taking advantage of WildFly's high availability services is easy, and simply involves deploying WildFly on a

cluster of nodes, making a small number of application configuration changes, and then deploying the

application in the cluster.

We now take a brief look at what these services can guarantee.

Latest WildFly Documentation

JBoss Community Documentation Page of 1428 2293

7.14.2 High Availability through fail-over

Fail-over allows a client interacting with a Java EE application to have uninterrupted access to that

application, even in the presence of node failures. For example, consider a Java EE application which

makes use of the following features:

 session-oriented servlets to provide user interaction

 session-oriented EJBs to perform state-dependent business computation

 EJB entity beans to store critical data in a persistent store (e.g. database)

 SSO login to the application

If the application makes use of WildFly's fail-over services, a client interacting with an instance of that

application will not be interrupted even when the node on which that instance executes crashes. Behind the

scenes, WildFly makes sure that all of the user data that the application make use of (HTTP session data,

EJB SFSB sessions, EJB entities and SSO credentials) are available at other nodes in the cluster, so that

when a failure occurs and the client is redirected to that new node for continuation of processing (i.e. the

client "fails over" to the new node), the user's data is available and processing can continue.

The Infinispan and JGroups subsystems are instrumental in providing these data availability guarantees and

will be discussed in detail later in the guide.

7.14.3 High Availability through load balancing

Load balancing enables the application to respond to client requests in a timely fashion, even when

subjected to a high-volume of requests. Using a load balancer as a front-end, each incoming HTTP request

can be directed to one node in the cluster for processing. In this way, the cluster acts as a pool of

processing nodes and the load is "balanced" over the pool, achieving scalability and, as a consequence,

availability. Requests involving session-oriented servlets are directed to the the same application instance in

the pool for efficiency of processing (sticky sessions). Using mod_cluster has the advantage that changes in

cluster topology (scaling the pool up or down, servers crashing) are communicated back to the load balancer

and used to update in real time the load balancing activity and avoid requests being directed to application

instances which are no longer available.

The mod_cluster subsystem is instrumental in providing support for this High Availability feature of

WildFly and will be discussed in detail later in this guide.

7.14.4 Aims of the guide

This guide aims to:

provide a description of the high-availability features available in WildFly and the services they

depend on

show how the various high availability services can be configured for particular application use cases

identify default behavior for features relating to high-availability/clustering

Latest WildFly Documentation

JBoss Community Documentation Page of 1429 2293

7.14.5 Organization of the guide

As high availability features and their configuration depend on the particular component they affect (e.g.

HTTP sessions, EJB SFSB sessions, Hibernate), we organize the discussion around those Java

EE features. We strive to make each section as self-contained as possible. Also, when discussing a feature,

we will introduce any WildFly subsystems upon which the feature depends.

7.15 Subsystem Support

This section describes the key clustering subsystems, JGroups and Infinispan. Say a few words about how

they work together.

7.15.1 JGroups Subsystem

7.15.2 Purpose

The JGroups subsystem provides group communication support for HA services in the form of JGroups

channels.

Named channel instances permit application peers in a cluster to communicate as a group and in such a

way that the communication satisfies defined properties (e.g. reliable, ordered, failure-sensitive).

Communication properties are configurable for each channel and are defined by the protocol stack used to

create the channel. Protocol stacks consist of a base transport layer (used to transport messages around the

cluster) together with a user-defined, ordered stack of protocol layers, where each protocol layer supports a

given communication property.

The JGroups subsystem provides the following features:

allows definition of named protocol stacks

view run-time metrics associated with channels

specify a default stack for general use

In the following sections, we describe the JGroups subsystem.

JGroups channels are created transparently as part of the clustering functionality (e.g. on clustered

application deployment, channels will be created behind the scenes to support clustered features

such as session replication or transmission of SSO contexts around the cluster).

Latest WildFly Documentation

JBoss Community Documentation Page of 1430 2293

7.15.3 Configuration example

What follows is a sample JGroups subsystem configuration showing all of the possible elements and

attributes which may be configured. We shall use this example to explain the meaning of the various

elements and attributes.

The schema for the subsystem, describing all valid elements and attributes, can be found in the

Wildfly distribution, in the docs/schema directory.

<subsystem xmlns="urn:jboss:domain:jgroups:5.0">

 <channels default="ee">

 <channel name="ee" stack="udp"/>

 </channels>

 <stacks>

 <stack name="udp">

 <transport type="UDP" socket-binding="jgroups-udp"/>

 <protocol type="PING"/>

 <protocol type="MERGE3"/>

 <protocol type="FD_SOCK"/>

 <protocol type="FD_ALL"/>

 <protocol type="VERIFY_SUSPECT"/>

 <protocol type="pbcast.NAKACK2"/>

 <protocol type="UNICAST3"/>

 <protocol type="pbcast.STABLE"/>

 <protocol type="pbcast.GMS"/>

 <protocol type="UFC"/>

 <protocol type="MFC"/>

 <protocol type="FRAG2"/>

 </stack>

 <stack name="tcp">

 <transport type="TCP" socket-binding="jgroups-tcp"/>

 <socket-protocol type="MPING" socket-binding="jgroups-mping"/>

 <protocol type="MERGE3"/>

 <protocol type="FD_SOCK"/>

 <protocol type="FD_ALL"/>

 <protocol type="VERIFY_SUSPECT"/>

 <protocol type="pbcast.NAKACK2"/>

 <protocol type="UNICAST3"/>

 <protocol type="pbcast.STABLE"/>

 <protocol type="pbcast.GMS"/>

 <protocol type="MFC"/>

 <protocol type="FRAG2"/>

 </stack>

 </stacks>

</subsystem>

Latest WildFly Documentation

JBoss Community Documentation Page of 1431 2293

<subsystem>
This element is used to configure the subsystem within a Wildfly system profile.

 This attribute specifies the XML namespace of the JGroups subsystem and, in particular, itsxmlns

version.

 This attribute is used to specify a default stack for the JGroups subsystem. Thisdefault-stack

default stack will be used whenever a stack is required but no stack is specified.

<stack>
This element is used to configure a JGroups protocol stack.

 This attribute is used to specify the name of the stack.name

Latest WildFly Documentation

JBoss Community Documentation Page of 1432 2293

<transport>
This element is used to configure the transport layer (required) of the protocol stack.

 This attribute specifies the transport type (e.g. UDP, TCP, TCPGOSSIP)type

 This attribute references a defined socket binding in the server profile. It is usedsocket-binding

when JGroups needs to create general sockets internally.

 This attribute references a defined socket binding in the serverdiagnostics-socket-binding

profile. It is used when JGroups needs to create sockets for use with the diagnostics program. For

more about the use of diagnostics, see the JGroups documentation for probe.sh.

 This attribute references a defined thread pool executor in the threadsdefault-executor

subsystem. It governs the allocation and execution of runnable tasks to handle incoming JGroups

messages.

 This attribute references a defined thread pool executor in the threads subsystem. Itoob-executor

governs the allocation and execution of runnable tasks to handle incoming JGroups OOB

(out-of-bound) messages.

 This attribute references a defined thread pool executor in the threads subsystem.timer-executor

It governs the allocation and execution of runnable timer-related tasks.

 This attribute indicates whether or not this transport is shared amongst several JGroupsshared

stacks or not.

 This attribute references a defined thread factory in the threads subsystem. Itthread-factory

governs the allocation of threads for running tasks which are not handled by the executors above.

 This attribute defines a site (data centre) id for this node.site

 This attribute defines a rack (server rack) id for this node.rack

 This attribute defines a machine (host) is for this node.machine

site, rack and machine ids are used by the Infinispan topology-aware consistent hash function,

which when using dist mode, prevents dist mode replicas from being stored on the same host, rack

or site

.

<property>
This element is used to configure a transport property.

 This attribute specifies the name of the protocol property. The value is provided as text for thename

property element.

Latest WildFly Documentation

JBoss Community Documentation Page of 1433 2293

<protocol>
This element is used to configure a (non-transport) protocol layer in the JGroups stack. Protocol layers are

ordered within the stack.

 This attribute specifies the name of the JGroups protocol implementation (e.g. MPING,type

pbcast.GMS), with the package prefix org.jgroups.protocols removed.

 This attribute references a defined socket binding in the server profile. It is usedsocket-binding

when JGroups needs to create general sockets internally for this protocol instance.

<property>
This element is used to configure a protocol property.

 This attribute specifies the name of the protocol property. The value is provided as text for thename

property element.

<relay>
This element is used to configure the RELAY protocol for a JGroups stack. RELAY is a protocol which

provides cross-site replication between defined sites (data centres). In the RELAY protocol, defined sites

specify the names of remote sites (backup sites) to which their data should be backed up. Channels are

defined between sites to permit the RELAY protocol to transport the data from the current site to a backup

site.

 This attribute specifies the name of the current site. Site names can be referenced elsewheresite

(e.g. in the JGroups remote-site configuration elements, as well as backup configuration elements in

the Infinispan subsystem)

<remote-site>
This element is used to configure a remote site for the RELAY protocol.

 This attribute specifies the name of the remote site to which this configuration applies.name

 This attribute specifies a JGroups protocol stack to use for communication between this sitestack

and the remote site.

 This attribute specifies the name of the JGroups channel to use for communication betweencluster

this site and the remote site.

Latest WildFly Documentation

JBoss Community Documentation Page of 1434 2293

7.15.4 Use Cases

In many cases, channels will be configured via XML as in the example above, so that the channels will be

available upon server startup. However, channels may also be added, removed or have their configurations

changed in a running server by making use of the Wildfly management API command-line interface (CLI). In

this section, we present some key use cases for the JGroups management API.

The key use cases covered are:

adding a stack

adding a protocol to an existing stack

adding a property to a protocol

The Wildfly management API command-line interface (CLI) itself can be used to provide extensive

information on the attributes and commands available in the JGroups subsystem interface used in

these examples.

Add a stack

/subsystem=jgroups/stack=mystack:add()

Add a protocol to a stack

/subsystem=jgroups/stack=mystack/transport=<type>:add(socket-binding=<socketbinding>)

/subsystem=jgroups/stack=mystack:protocol=<type>:add(socket-binding=<socketbinding>)

Add a property to a protocol

/subsystem=jgroups/stack=mystack/transport=<type>:map-put(name=properties, key=<property-name>,

value=<property-value>)

Infinispan Subsystem

Latest WildFly Documentation

JBoss Community Documentation Page of 1435 2293

7.15.5 Purpose

The Infinispan subsystem provides caching support for HA services in the form of Infinispan caches:

 high-performance, transactional caches which can operate in both non-distributed and distributed

scenarios. Distributed caching support is used in the provision of many key HA services. For example, the

failover of a session-oriented client HTTP request from a failing node to a new (failover) node depends on

session data for the client being available on the new node. In other words, the client session data needs to

be replicated across nodes in the cluster. This is effectively achieved via a distributed Infinispan cache. This

approach to providing fail-over also applies to EJB SFSB sessions. Over and above providing support for

fail-over, an underlying cache is also required when providing second-level caching for entity beans using

Hibernate, and this case is also handled through the use of an Infinispan cache.

The Infinispan subsystem provides the following features:

allows definition and configuration of named cache containers and caches

view run-time metrics associated with cache container and cache instances

In the following sections, we describe the Infinispan subsystem.

Infiispan cache containers and caches are created transparently as part of the clustering

functionality (e.g. on clustered application deployment, cache containers and their associated

caches will be created behind the scenes to support clustered features such as session replication

or caching of entities around the cluster).

7.15.6 Configuration Example

In this section, we provide an example XML configuration of the infinispan subsystem and review the

configuration elements and attributes.

The schema for the subsystem, describing all valid elements and attributes, can be found in the

Wildfly distribution, in the docs/schema directory.

Latest WildFly Documentation

JBoss Community Documentation Page of 1436 2293

<subsystem xmlns="urn:jboss:domain:infinispan:4.0">

 <cache-container name="server" aliases="singleton cluster" default-cache="default"

module="org.wildfly.clustering.server">

 <transport lock-timeout="60000"/>

 <replicated-cache name="default" mode="SYNC">

 <transaction mode="BATCH"/> </replicated-cache>

 </cache-container>

 <cache-container name="web" default-cache="dist"

module="org.wildfly.clustering.web.infinispan">

 <transport lock-timeout="60000"/>

 <replicated-cache name="repl" mode="SYNC">

 <transaction mode="BATCH"/> <file-store/>

 </replicated-cache>

 <distributed-cache name="dist" mode="SYNC">

 <transaction mode="BATCH"/>

 <file-store/>

 </distributed-cache>

 </cache-container>

 <cache-container name="ejb" aliases="sfsb" default-cache="dist"

module="org.wildfly.clustering.ejb.infinispan">

 <transport lock-timeout="60000"/>

 <replicated-cache name="repl" mode="SYNC">

 <transaction mode="BATCH"/>

 <file-store/>

 </replicated-cache>

 <distributed-cache name="dist" mode="SYNC" l1-lifespan="0">

 <transaction mode="BATCH"/>

 <file-store/>

 </distributed-cache>

 </cache-container>

 <cache-container name="hibernate" module="org.hibernate.infinispan">

 <transport lock-timeout="60000"/>

 <local-cache name="local-query">

 <transaction mode="NONE"/>

 <eviction strategy="LRU" max-entries="10000"/>

 <expiration max-idle="100000"/>

 </local-cache>

 <invalidation-cache name="entity" mode="SYNC">

 <transaction mode="NON_XA"/>

 <eviction strategy="LRU" max-entries="10000"/>

 <expiration max-idle="100000"/>

 </invalidation-cache>

 <replicated-cache name="timestamps" mode="ASYNC">

 <transaction mode="NONE"/>

 <eviction strategy="NONE"/>

 </replicated-cache>

 </cache-container>

</subsystem>

<cache-container>
This element is used to configure a cache container.

Latest WildFly Documentation

JBoss Community Documentation Page of 1437 2293

 This attribute is used to specify the name of the cache container.name

 This attribute configures the default cache to be used, when no cache is otherwisedefault-cache

specified.

 This attribute references a defined thread pool executor in the threadslistener-executor

subsystem. It governs the allocation and execution of runnable tasks in the replication queue.

 This attribute references a defined thread pool executor in the threadseviction-executor

subsystem. It governs the allocation and execution of runnable tasks to handle evictions.

 This attribute references a defined thread pool executor in thereplication-queue-executor

threads subsystem. It governs the allocation and execution of runnable tasks to handle asynchronous

cache operations.

 This attribute is used to assign a name for the cache container in the JNDI name service.jndi-name

 This attribute configures the module whose class loader should be used when building thismodule

cache container's configuration.

 This attribute configured the cache container start mode and has since been deprecated, thestart

only supported and the default value is LAZY (on-demand start).

 This attribute is used to define aliases for the cache container name.aliases

This element has the following child elements: , , , <transport> <local-cache> <invalidation-cache>

, and .<replicated-cache> <distributed-cache>

Latest WildFly Documentation

JBoss Community Documentation Page of 1438 2293

<transport>
This element is used to configure the JGroups transport used by the cache container, when required.

 This attribute configures the JGroups channel to be used for the transport. If none ischannel

specified, the default channel as defined by the JGroups subsystem is used.

 This attribute configures the name of the group communication cluster. This is the namecluster

which will be seen in debugging logs.

 This attribute references a defined thread pool executor in the threads subsystem. Itexecutor

governs the allocation and execution of runnable tasks to handle ? >?.<fill me in

 This attribute configures the time-out to be used when obtaining locks for thelock-timeout

transport.

 This attribute configures the site id of the cache container.site

 This attribute configures the rack id of the cache container.rack

 This attribute configures the machine id of the cache container.machine

The presence of the transport element is required when operating in clustered mode

The remaining child elements of , namely , , <cache-container> <local-cache> <invalidation-cache>

 and , each configures one of four key cache types or<replicated-cache> <distributed-cache>

classifications.

These cache-related elements are actually part of an xsd hierarchy with abstract complexTypes

, , and . In order to simplify the presentation, we notate thesecache clustered-cache shared-cache

as pseudo-elements , and <abstract cache> <abstract clustered-cache> <abstract

. In what follows, we first describe the extension hierarchy of base elements, andshared-cache>

then show how the cache type elements relate to them.

<abstract cache>
This abstract base element defines the attributes and child elements common to all non-clustered caches.

 This attribute configures the name of the cache. This name may be referenced by othername

subsystems.

 This attribute configured the cache container start mode and has since been deprecated, thestart

only supported and the default value is LAZY (on-demand start).

 This attribute configures batching. If enabled, the invocation batching API will be madebatching

available for this cache.

 This attribute configures indexing. If enabled, entries will be indexed when they are addedindexing

to the cache. Indexes will be updated as entries change or are removed.

 This attribute is used to assign a name for the cache in the JNDI name service.jndi-name

 This attribute configures the module whose class loader should be used when building thismodule

cache container's configuration.

Latest WildFly Documentation

JBoss Community Documentation Page of 1439 2293

The <abstract cache> abstract base element has the following child elements: <indexing-properties>,

, , , , , , , <locking> <transaction> <eviction> <expiration> <store> <file-store> <string-keyed-jdbc-store>

, , .<binary-keyed-jdbc-store> <mixed-keyed-jdbc-store> <remote-store>

<indexing-properties>
This child element defines properties to control indexing behaviour.

<locking>
This child element configures the locking behaviour of the cache.

 This attribute the cache locking isolation level. Allowable values are NONE,isolation

SERIALIZABLE, REPEATABLE_READ, READ_COMMITTED, READ_UNCOMMITTED.

 If true, a pool of shared locks is maintained for all entries that need to be locked.striping

Otherwise, a lock is created per entry in the cache. Lock striping helps control memory footprint but

may reduce concurrency in the system.

 This attribute configures the maximum time to attempt a particular lockacquire-timeout

acquisition.

 This attribute is used to configure the concurrency level. Adjust this valueconcurrency-level

according to the number of concurrent threads interacting with Infinispan.

<transaction>
This child element configures the transactional behaviour of the cache.

 This attribute configures the transaction mode, setting the cache transaction mode to one ofmode

NONE, NON_XA, NON_DURABLE_XA, FULL_XA.

 If there are any ongoing transactions when a cache is stopped, Infinispan waits forstop-timeout

ongoing remote and local transactions to finish. The amount of time to wait for is defined by the cache

stop timeout.

 This attribute configures the locking mode for this cache, one of OPTIMISTIC orlocking

PESSIMISTIC.

<eviction>
This child element configures the eviction behaviour of the cache.

 This attribute configures the cache eviction strategy. Available options are 'UNORDERED',strategy

'FIFO', 'LRU', 'LIRS' and 'NONE' (to disable eviction).

 This attribute configures the maximum number of entries in a cache instance. Ifmax-entries

selected value is not a power of two the actual value will default to the least power of two larger than

selected value. -1 means no limit.

Latest WildFly Documentation

JBoss Community Documentation Page of 1440 2293

<expiration>
This child element configures the expiration behaviour of the cache.

 This attribute configures the maximum idle time a cache entry will be maintained in themax-idle

cache, in milliseconds. If the idle time is exceeded, the entry will be expired cluster-wide. -1 means

the entries never expire.

 This attribute configures the maximum lifespan of a cache entry, after which the entry islifespan

expired cluster-wide, in milliseconds. -1 means the entries never expire.

 This attribute specifies the interval (in ms) between subsequent runs to purge expiredinterval

entries from memory and any cache stores. If you wish to disable the periodic eviction process

altogether, set wakeupInterval to -1.

The remaining child elements of the abstract base element , namely , , <cache> <store> <file-store>

, , and ,<remote-store> <string-keyed-jdbc-store> <binary-keyed-jdbc-store> <mixed-keyed-jdbc-store>

each configures one of six key cache store types.

These cache store-related elements are actually part of an xsd extension hierarchy with abstract

complexTypes and . As before, in order to simplify the presentation,base-store base-jdbc-store

we notate these as pseudo-elements and . In<abstract base-store> <abstract base-jdbc-store>

what follows, we first describe the extension hierarchy of base elements, and then show how the

cache store elements relate to them.

Latest WildFly Documentation

JBoss Community Documentation Page of 1441 2293

<abstract base-store>
This abstract base element defines the attributes and child elements common to all cache stores.

 This attribute should be set to true when multiple cache instances share the same cacheshared

store (e.g. multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared

database) Setting this to true avoids multiple cache instances writing the same modification multiple

times. If enabled, only the node where the modification originated will write to the cache store. If

disabled, each individual cache reacts to a potential remote update by storing the data to the cache

store.

 This attribute configures whether or not, when the cache starts, data stored in the cachepreload

loader will be pre-loaded into memory. This is particularly useful when data in the cache loader is

needed immediately after start-up and you want to avoid cache operations being delayed as a result

of loading this data lazily. Can be used to provide a 'warm-cache' on start-up, however there is a

performance penalty as start-up time is affected by this process. Note that pre-loading is done in a

local fashion, so any data loaded is only stored locally in the node. No replication or distribution of the

preloaded data happens. Also, Infinispan only pre-loads up to the maximum configured number of

entries in eviction.

 If true, data is only written to the cache store when it is evicted from memory, apassivation

phenomenon known as . Next time the data is requested, it will be 'activated' which meanspassivation

that data will be brought back to memory and removed from the persistent store. If false, the cache

store contains a copy of the cache contents in memory, so writes to cache result in cache store

writes. This essentially gives you a 'write-through' configuration.

 This attribute, if true, causes persistent state to be fetched when joining a cluster. Iffetch-state

multiple cache stores are chained, only one of them can have this property enabled.

 This attribute configures whether the cache store is purged upon start-up.purge

 This attribute configures whether or not the singleton store cache store is enabled.singleton

SingletonStore is a delegating cache store used for situations when only one instance in a cluster

should interact with the underlying store.

 This attribute configures a custom store implementation class to use for this cache store.class

 This attribute is used to configure a list of cache store properties.properties

The abstract base element has one child element: <write-behind>

Latest WildFly Documentation

JBoss Community Documentation Page of 1442 2293

<write-behind>
This element is used to configure a cache store as write-behind instead of write-through. In write-through

mode, writes to the cache are also written to the cache store, whereas in write-behind mode,synchronously

writes to the cache are followed by writes to the cache store.asynchronous

 This attribute configures the time-out for acquiring the lock which guards theflush-lock-timeout

state to be flushed to the cache store periodically.

 This attribute configures the maximum number of entries in themodification-queue-size

asynchronous queue. When the queue is full, the store becomes write-through until it can accept new

entries.

 This attribute configures the time-out (in ms) to stop the cache store.shutdown-timeout

 This attribute is used to configure the size of the thread pool whose threads arethread-pool

responsible for applying the modifications to the cache store.

<abstract base-jdbc-store> extends <abstract base-store>
This abstract base element defines the attributes and child elements common to all JDBC-based cache

stores.

 This attribute configures the datasource for the JDBC-based cache store.datasource

 This attribute configures the database table used to store cache entries.entry-table

 This attribute configures the database table used to store binary cache entries.bucket-table

<file-store> extends <abstract base-store>
This child element is used to configure a file-based cache store. This requires specifying the name of the file

to be used as backing storage for the cache store.

 This attribute optionally configures a relative path prefix for the file store path. Can berelative-to

null.

 This attribute configures an absolute path to a file if is null; configures a relative pathpath relative-to

to the file, in relation to the value for , otherwise.relative-to

<remote-store> extends <abstract base-store>
This child element of cache is used to configure a remote cache store. It has a child <remote-servers>.

 This attribute configures the name of the remote cache to use for this remote store.cache

 This attribute configures a TCP_NODELAY value for communication with the remotetcp-nodelay

cache.

 This attribute configures a socket time-out for communication with the remotesocket-timeout

cache.

<remote-servers>
This child element of cache configures a list of remote servers for this cache store.

Latest WildFly Documentation

JBoss Community Documentation Page of 1443 2293

<remote-server>
This element configures a remote server. A remote server is defined completely by a locally defined

outbound socket binding, through which communication is made with the server.

 This attribute configures an outbound socket binding for a remoteoutbound-socket-binding

server.

<local-cache> extends <abstract cache>
This element configures a local cache.

<abstract clustered-cache> extends <abstract cache>
This abstract base element defines the attributes and child elements common to all clustered caches. A

clustered cache is a cache which spans multiple nodes in a cluster. It inherits from <cache>, so that all

attributes and elements of <cache> are also defined for <clustered-cache>.

 This attribute configures async marshalling. If enabled, this will causeasync-marshalling

marshalling of entries to be performed asynchronously.

 This attribute configures the clustered cache mode, ASYNC for asynchronous operation, ormode

SYNC for synchronous operation.

 In ASYNC mode, this attribute can be used to trigger flushing of the queue when itqueue-size

reaches a specific threshold.

 In ASYNC mode, this attribute controls how often the asynchronousqueue-flush-interval

thread used to flush the replication queue runs. This should be a positive integer which represents

thread wakeup time in milliseconds.

 In SYNC mode, this attribute (in ms) used to wait for an acknowledgement whenremote-timeout

making a remote call, after which the call is aborted and an exception is thrown.

<invalidation-cache> extends <abstract clustered-cache>
This element configures an invalidation cache.

Latest WildFly Documentation

JBoss Community Documentation Page of 1444 2293

<abstract shared-cache> extends <abstract clustered-cache>
This abstract base element defines the attributes and child elements common to all shared caches. A shared

cache is a clustered cache which shares state with its cache peers in the cluster. It inherits from

<clustered-cache>, so that all attributes and elements of <clustered-cache> are also defined for

<shared-cache>.

<state-transfer>

 If enabled, this will cause the cache to ask neighbouring caches for state when it starts up,enabled

so the cache starts 'warm', although it will impact start-up time.

 This attribute configures the maximum amount of time (ms) to wait for state fromtimeout

neighbouring caches, before throwing an exception and aborting start-up.

 This attribute configures the size, in bytes, in which to batch the transfer of cachechunk-size

entries.

<backups>

<backup>

 This attribute configures the backup strategy for this cache. Allowable values are SYNC,strategy

ASYNC.

 This attribute configures the policy to follow when connectivity to the backup sitefailure-policy

fails. Allowable values are IGNORE, WARN, FAIL, CUSTOM.

 This attribute configures whether or not this backup is enabled. If enabled, data will be sentenabled

to the backup site; otherwise, the backup site will be effectively ignored.

 This attribute configures the time-out for replicating to the backup site.timeout

 This attribute configures the number of failures after which this backup site shouldafter-failures

go off-line.

 This attribute configures the minimum time (in milliseconds) to wait after the max numbermin-wait

of failures is reached, after which this backup site should go off-line.

<backup-for>

 This attribute configures the name of the remote cache for which this cache acts as aremote-cache

backup.

 This attribute configures the site of the remote cache for which this cache acts as aremote-site

backup.

<replicated-cache> extends <abstract shared-cache>
This element configures a replicated cache. With a replicated cache, all contents (key-value pairs) of the

cache are replicated on all nodes in the cluster.

Latest WildFly Documentation

JBoss Community Documentation Page of 1445 2293

<distributed-cache> extends <abstract shared-cache>
This element configures a distributed cache. With a distributed cache, contents of the cache are selectively

replicated on nodes in the cluster, according to the number of owners specified.

 This attribute configures the number of cluster-wide replicas for each cache entry.owners

 This attribute configures the number of hash space segments which is the granularity forsegments

key distribution in the cluster. Value must be strictly positive.

 This attribute configures the maximum lifespan of an entry placed in the L1 cache.l1-lifespan

Configures the L1 cache behaviour in 'distributed' caches instances. In any other cache modes, this

element is ignored.

Latest WildFly Documentation

JBoss Community Documentation Page of 1446 2293

7.15.7 Use Cases

In many cases, cache containers and caches will be configured via XML as in the example above, so that

they will be available upon server start-up. However, cache containers and caches may also be added,

removed or have their configurations changed in a running server by making use of the Wildfly management

API command-line interface (CLI). In this section, we present some key use cases for the Infinispan

management API.

The key use cases covered are:

adding a cache container

adding a cache to an existing cache container

configuring the transaction subsystem of a cache

The Wildfly management API command-line interface (CLI) can be used to provide

extensive information on the attributes and commands available in the Infinispan subsystem

interface used in these examples.

Add a cache container

/subsystem=infinispan/cache-container=mycontainer:add(default-cache=<default-cache-name>)

/subsystem=infinispan/cache-container=mycontainer/transport=jgroups:add(lock-timeout=<timeout>)

Add a cache

/subsystem=infinispan/cache-container=mycontainer/local-cache=mylocalcache:add()

Configure the transaction component of a cache

/subsystem=infinispan/cache-container=mycontainer/local-cache=mylocalcache/component=transaction:add(mode=<transaction-mode>)

Latest WildFly Documentation

JBoss Community Documentation Page of 1447 2293

7.15.8 JGroups Subsystem

Purpose
The JGroups subsystem provides group communication support for HA services in the form of JGroups

channels.

Named channel instances permit application peers in a cluster to communicate as a group and in such a

way that the communication satisfies defined properties (e.g. reliable, ordered, failure-sensitive).

Communication properties are configurable for each channel and are defined by the protocol stack used to

create the channel. Protocol stacks consist of a base transport layer (used to transport messages around the

cluster) together with a user-defined, ordered stack of protocol layers, where each protocol layer supports a

given communication property.

The JGroups subsystem provides the following features:

allows definition of named protocol stacks

view run-time metrics associated with channels

specify a default stack for general use

In the following sections, we describe the JGroups subsystem.

JGroups channels are created transparently as part of the clustering functionality (e.g. on clustered

application deployment, channels will be created behind the scenes to support clustered features

such as session replication or transmission of SSO contexts around the cluster).

Configuration example
What follows is a sample JGroups subsystem configuration showing all of the possible elements and

attributes which may be configured. We shall use this example to explain the meaning of the various

elements and attributes.

The schema for the subsystem, describing all valid elements and attributes, can be found in the

Wildfly distribution, in the docs/schema directory.

Latest WildFly Documentation

JBoss Community Documentation Page of 1448 2293

<subsystem xmlns="urn:jboss:domain:jgroups:5.0">

 <channels default="ee">

 <channel name="ee" stack="udp"/>

 </channels>

 <stacks>

 <stack name="udp">

 <transport type="UDP" socket-binding="jgroups-udp"/>

 <protocol type="PING"/>

 <protocol type="MERGE3"/>

 <protocol type="FD_SOCK"/>

 <protocol type="FD_ALL"/>

 <protocol type="VERIFY_SUSPECT"/>

 <protocol type="pbcast.NAKACK2"/>

 <protocol type="UNICAST3"/>

 <protocol type="pbcast.STABLE"/>

 <protocol type="pbcast.GMS"/>

 <protocol type="UFC"/>

 <protocol type="MFC"/>

 <protocol type="FRAG2"/>

 </stack>

 <stack name="tcp">

 <transport type="TCP" socket-binding="jgroups-tcp"/>

 <socket-protocol type="MPING" socket-binding="jgroups-mping"/>

 <protocol type="MERGE3"/>

 <protocol type="FD_SOCK"/>

 <protocol type="FD_ALL"/>

 <protocol type="VERIFY_SUSPECT"/>

 <protocol type="pbcast.NAKACK2"/>

 <protocol type="UNICAST3"/>

 <protocol type="pbcast.STABLE"/>

 <protocol type="pbcast.GMS"/>

 <protocol type="MFC"/>

 <protocol type="FRAG2"/>

 </stack>

 </stacks>

</subsystem>

<subsystem>
This element is used to configure the subsystem within a Wildfly system profile.

 This attribute specifies the XML namespace of the JGroups subsystem and, in particular, itsxmlns

version.

 This attribute is used to specify a default stack for the JGroups subsystem. Thisdefault-stack

default stack will be used whenever a stack is required but no stack is specified.

<stack>
This element is used to configure a JGroups protocol stack.

 This attribute is used to specify the name of the stack.name

Latest WildFly Documentation

JBoss Community Documentation Page of 1449 2293

<transport>
This element is used to configure the transport layer (required) of the protocol stack.

 This attribute specifies the transport type (e.g. UDP, TCP, TCPGOSSIP)type

 This attribute references a defined socket binding in the server profile. It is usedsocket-binding

when JGroups needs to create general sockets internally.

 This attribute references a defined socket binding in the serverdiagnostics-socket-binding

profile. It is used when JGroups needs to create sockets for use with the diagnostics program. For

more about the use of diagnostics, see the JGroups documentation for probe.sh.

 This attribute references a defined thread pool executor in the threadsdefault-executor

subsystem. It governs the allocation and execution of runnable tasks to handle incoming JGroups

messages.

 This attribute references a defined thread pool executor in the threads subsystem. Itoob-executor

governs the allocation and execution of runnable tasks to handle incoming JGroups OOB

(out-of-bound) messages.

 This attribute references a defined thread pool executor in the threads subsystem.timer-executor

It governs the allocation and execution of runnable timer-related tasks.

 This attribute indicates whether or not this transport is shared amongst several JGroupsshared

stacks or not.

 This attribute references a defined thread factory in the threads subsystem. Itthread-factory

governs the allocation of threads for running tasks which are not handled by the executors above.

 This attribute defines a site (data centre) id for this node.site

 This attribute defines a rack (server rack) id for this node.rack

 This attribute defines a machine (host) is for this node.machine

site, rack and machine ids are used by the Infinispan topology-aware consistent hash function,

which when using dist mode, prevents dist mode replicas from being stored on the same host, rack

or site

.

<property>
This element is used to configure a transport property.

 This attribute specifies the name of the protocol property. The value is provided as text for thename

property element.

Latest WildFly Documentation

JBoss Community Documentation Page of 1450 2293

<protocol>
This element is used to configure a (non-transport) protocol layer in the JGroups stack. Protocol layers are

ordered within the stack.

 This attribute specifies the name of the JGroups protocol implementation (e.g. MPING,type

pbcast.GMS), with the package prefix org.jgroups.protocols removed.

 This attribute references a defined socket binding in the server profile. It is usedsocket-binding

when JGroups needs to create general sockets internally for this protocol instance.

<property>
This element is used to configure a protocol property.

 This attribute specifies the name of the protocol property. The value is provided as text for thename

property element.

<relay>
This element is used to configure the RELAY protocol for a JGroups stack. RELAY is a protocol which

provides cross-site replication between defined sites (data centres). In the RELAY protocol, defined sites

specify the names of remote sites (backup sites) to which their data should be backed up. Channels are

defined between sites to permit the RELAY protocol to transport the data from the current site to a backup

site.

 This attribute specifies the name of the current site. Site names can be referenced elsewheresite

(e.g. in the JGroups remote-site configuration elements, as well as backup configuration elements in

the Infinispan subsystem)

<remote-site>
This element is used to configure a remote site for the RELAY protocol.

 This attribute specifies the name of the remote site to which this configuration applies.name

 This attribute specifies a JGroups protocol stack to use for communication between this sitestack

and the remote site.

 This attribute specifies the name of the JGroups channel to use for communication betweencluster

this site and the remote site.

Latest WildFly Documentation

JBoss Community Documentation Page of 1451 2293

Use Cases
In many cases, channels will be configured via XML as in the example above, so that the channels will be

available upon server startup. However, channels may also be added, removed or have their configurations

changed in a running server by making use of the Wildfly management API command-line interface (CLI). In

this section, we present some key use cases for the JGroups management API.

The key use cases covered are:

adding a stack

adding a protocol to an existing stack

adding a property to a protocol

The Wildfly management API command-line interface (CLI) itself can be used to provide extensive

information on the attributes and commands available in the JGroups subsystem interface used in

these examples.

Add a stack

/subsystem=jgroups/stack=mystack:add()

Add a protocol to a stack

/subsystem=jgroups/stack=mystack/transport=<type>:add(socket-binding=<socketbinding>)

/subsystem=jgroups/stack=mystack:protocol=<type>:add(socket-binding=<socketbinding>)

Add a property to a protocol

/subsystem=jgroups/stack=mystack/transport=<type>:map-put(name=properties, key=<property-name>,

value=<property-value>)

Latest WildFly Documentation

JBoss Community Documentation Page of 1452 2293

7.15.9 Infinispan Subsystem

Purpose
The Infinispan subsystem provides caching support for HA services in the form of Infinispan caches:

 high-performance, transactional caches which can operate in both non-distributed and distributed

scenarios. Distributed caching support is used in the provision of many key HA services. For example, the

failover of a session-oriented client HTTP request from a failing node to a new (failover) node depends on

session data for the client being available on the new node. In other words, the client session data needs to

be replicated across nodes in the cluster. This is effectively achieved via a distributed Infinispan cache. This

approach to providing fail-over also applies to EJB SFSB sessions. Over and above providing support for

fail-over, an underlying cache is also required when providing second-level caching for entity beans using

Hibernate, and this case is also handled through the use of an Infinispan cache.

The Infinispan subsystem provides the following features:

allows definition and configuration of named cache containers and caches

view run-time metrics associated with cache container and cache instances

In the following sections, we describe the Infinispan subsystem.

Infiispan cache containers and caches are created transparently as part of the clustering

functionality (e.g. on clustered application deployment, cache containers and their associated

caches will be created behind the scenes to support clustered features such as session replication

or caching of entities around the cluster).

Configuration Example
In this section, we provide an example XML configuration of the infinispan subsystem and review the

configuration elements and attributes.

The schema for the subsystem, describing all valid elements and attributes, can be found in the

Wildfly distribution, in the docs/schema directory.

Latest WildFly Documentation

JBoss Community Documentation Page of 1453 2293

<subsystem xmlns="urn:jboss:domain:infinispan:4.0">

 <cache-container name="server" aliases="singleton cluster" default-cache="default"

module="org.wildfly.clustering.server">

 <transport lock-timeout="60000"/>

 <replicated-cache name="default" mode="SYNC">

 <transaction mode="BATCH"/> </replicated-cache>

 </cache-container>

 <cache-container name="web" default-cache="dist"

module="org.wildfly.clustering.web.infinispan">

 <transport lock-timeout="60000"/>

 <replicated-cache name="repl" mode="SYNC">

 <transaction mode="BATCH"/> <file-store/>

 </replicated-cache>

 <distributed-cache name="dist" mode="SYNC">

 <transaction mode="BATCH"/>

 <file-store/>

 </distributed-cache>

 </cache-container>

 <cache-container name="ejb" aliases="sfsb" default-cache="dist"

module="org.wildfly.clustering.ejb.infinispan">

 <transport lock-timeout="60000"/>

 <replicated-cache name="repl" mode="SYNC">

 <transaction mode="BATCH"/>

 <file-store/>

 </replicated-cache>

 <distributed-cache name="dist" mode="SYNC" l1-lifespan="0">

 <transaction mode="BATCH"/>

 <file-store/>

 </distributed-cache>

 </cache-container>

 <cache-container name="hibernate" module="org.hibernate.infinispan">

 <transport lock-timeout="60000"/>

 <local-cache name="local-query">

 <transaction mode="NONE"/>

 <eviction strategy="LRU" max-entries="10000"/>

 <expiration max-idle="100000"/>

 </local-cache>

 <invalidation-cache name="entity" mode="SYNC">

 <transaction mode="NON_XA"/>

 <eviction strategy="LRU" max-entries="10000"/>

 <expiration max-idle="100000"/>

 </invalidation-cache>

 <replicated-cache name="timestamps" mode="ASYNC">

 <transaction mode="NONE"/>

 <eviction strategy="NONE"/>

 </replicated-cache>

 </cache-container>

</subsystem>

<cache-container>
This element is used to configure a cache container.

Latest WildFly Documentation

JBoss Community Documentation Page of 1454 2293

 This attribute is used to specify the name of the cache container.name

 This attribute configures the default cache to be used, when no cache is otherwisedefault-cache

specified.

 This attribute references a defined thread pool executor in the threadslistener-executor

subsystem. It governs the allocation and execution of runnable tasks in the replication queue.

 This attribute references a defined thread pool executor in the threadseviction-executor

subsystem. It governs the allocation and execution of runnable tasks to handle evictions.

 This attribute references a defined thread pool executor in thereplication-queue-executor

threads subsystem. It governs the allocation and execution of runnable tasks to handle asynchronous

cache operations.

 This attribute is used to assign a name for the cache container in the JNDI name service.jndi-name

 This attribute configures the module whose class loader should be used when building thismodule

cache container's configuration.

 This attribute configured the cache container start mode and has since been deprecated, thestart

only supported and the default value is LAZY (on-demand start).

 This attribute is used to define aliases for the cache container name.aliases

This element has the following child elements: , , , <transport> <local-cache> <invalidation-cache>

, and .<replicated-cache> <distributed-cache>

Latest WildFly Documentation

JBoss Community Documentation Page of 1455 2293

<transport>
This element is used to configure the JGroups transport used by the cache container, when required.

 This attribute configures the JGroups channel to be used for the transport. If none ischannel

specified, the default channel as defined by the JGroups subsystem is used.

 This attribute configures the name of the group communication cluster. This is the namecluster

which will be seen in debugging logs.

 This attribute references a defined thread pool executor in the threads subsystem. Itexecutor

governs the allocation and execution of runnable tasks to handle ? >?.<fill me in

 This attribute configures the time-out to be used when obtaining locks for thelock-timeout

transport.

 This attribute configures the site id of the cache container.site

 This attribute configures the rack id of the cache container.rack

 This attribute configures the machine id of the cache container.machine

The presence of the transport element is required when operating in clustered mode

The remaining child elements of , namely , , <cache-container> <local-cache> <invalidation-cache>

 and , each configures one of four key cache types or<replicated-cache> <distributed-cache>

classifications.

These cache-related elements are actually part of an xsd hierarchy with abstract complexTypes

, , and . In order to simplify the presentation, we notate thesecache clustered-cache shared-cache

as pseudo-elements , and <abstract cache> <abstract clustered-cache> <abstract

. In what follows, we first describe the extension hierarchy of base elements, andshared-cache>

then show how the cache type elements relate to them.

<abstract cache>
This abstract base element defines the attributes and child elements common to all non-clustered caches.

 This attribute configures the name of the cache. This name may be referenced by othername

subsystems.

 This attribute configured the cache container start mode and has since been deprecated, thestart

only supported and the default value is LAZY (on-demand start).

 This attribute configures batching. If enabled, the invocation batching API will be madebatching

available for this cache.

 This attribute configures indexing. If enabled, entries will be indexed when they are addedindexing

to the cache. Indexes will be updated as entries change or are removed.

 This attribute is used to assign a name for the cache in the JNDI name service.jndi-name

 This attribute configures the module whose class loader should be used when building thismodule

cache container's configuration.

Latest WildFly Documentation

JBoss Community Documentation Page of 1456 2293

The <abstract cache> abstract base element has the following child elements: <indexing-properties>,

, , , , , , , <locking> <transaction> <eviction> <expiration> <store> <file-store> <string-keyed-jdbc-store>

, , .<binary-keyed-jdbc-store> <mixed-keyed-jdbc-store> <remote-store>

<indexing-properties>

This child element defines properties to control indexing behaviour.

<locking>

This child element configures the locking behaviour of the cache.

 This attribute the cache locking isolation level. Allowable values are NONE,isolation

SERIALIZABLE, REPEATABLE_READ, READ_COMMITTED, READ_UNCOMMITTED.

 If true, a pool of shared locks is maintained for all entries that need to be locked.striping

Otherwise, a lock is created per entry in the cache. Lock striping helps control memory footprint but

may reduce concurrency in the system.

 This attribute configures the maximum time to attempt a particular lockacquire-timeout

acquisition.

 This attribute is used to configure the concurrency level. Adjust this valueconcurrency-level

according to the number of concurrent threads interacting with Infinispan.

<transaction>

This child element configures the transactional behaviour of the cache.

 This attribute configures the transaction mode, setting the cache transaction mode to one ofmode

NONE, NON_XA, NON_DURABLE_XA, FULL_XA.

 If there are any ongoing transactions when a cache is stopped, Infinispan waits forstop-timeout

ongoing remote and local transactions to finish. The amount of time to wait for is defined by the cache

stop timeout.

 This attribute configures the locking mode for this cache, one of OPTIMISTIC orlocking

PESSIMISTIC.

<eviction>

This child element configures the eviction behaviour of the cache.

 This attribute configures the cache eviction strategy. Available options are 'UNORDERED',strategy

'FIFO', 'LRU', 'LIRS' and 'NONE' (to disable eviction).

 This attribute configures the maximum number of entries in a cache instance. Ifmax-entries

selected value is not a power of two the actual value will default to the least power of two larger than

selected value. -1 means no limit.

Latest WildFly Documentation

JBoss Community Documentation Page of 1457 2293

<expiration>

This child element configures the expiration behaviour of the cache.

 This attribute configures the maximum idle time a cache entry will be maintained in themax-idle

cache, in milliseconds. If the idle time is exceeded, the entry will be expired cluster-wide. -1 means

the entries never expire.

 This attribute configures the maximum lifespan of a cache entry, after which the entry islifespan

expired cluster-wide, in milliseconds. -1 means the entries never expire.

 This attribute specifies the interval (in ms) between subsequent runs to purge expiredinterval

entries from memory and any cache stores. If you wish to disable the periodic eviction process

altogether, set wakeupInterval to -1.

The remaining child elements of the abstract base element , namely , , <cache> <store> <file-store>

, , and ,<remote-store> <string-keyed-jdbc-store> <binary-keyed-jdbc-store> <mixed-keyed-jdbc-store>

each configures one of six key cache store types.

These cache store-related elements are actually part of an xsd extension hierarchy with abstract

complexTypes and . As before, in order to simplify the presentation,base-store base-jdbc-store

we notate these as pseudo-elements and . In<abstract base-store> <abstract base-jdbc-store>

what follows, we first describe the extension hierarchy of base elements, and then show how the

cache store elements relate to them.

Latest WildFly Documentation

JBoss Community Documentation Page of 1458 2293

<abstract base-store>

This abstract base element defines the attributes and child elements common to all cache stores.

 This attribute should be set to true when multiple cache instances share the same cacheshared

store (e.g. multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared

database) Setting this to true avoids multiple cache instances writing the same modification multiple

times. If enabled, only the node where the modification originated will write to the cache store. If

disabled, each individual cache reacts to a potential remote update by storing the data to the cache

store.

 This attribute configures whether or not, when the cache starts, data stored in the cachepreload

loader will be pre-loaded into memory. This is particularly useful when data in the cache loader is

needed immediately after start-up and you want to avoid cache operations being delayed as a result

of loading this data lazily. Can be used to provide a 'warm-cache' on start-up, however there is a

performance penalty as start-up time is affected by this process. Note that pre-loading is done in a

local fashion, so any data loaded is only stored locally in the node. No replication or distribution of the

preloaded data happens. Also, Infinispan only pre-loads up to the maximum configured number of

entries in eviction.

 If true, data is only written to the cache store when it is evicted from memory, apassivation

phenomenon known as . Next time the data is requested, it will be 'activated' which meanspassivation

that data will be brought back to memory and removed from the persistent store. If false, the cache

store contains a copy of the cache contents in memory, so writes to cache result in cache store

writes. This essentially gives you a 'write-through' configuration.

 This attribute, if true, causes persistent state to be fetched when joining a cluster. Iffetch-state

multiple cache stores are chained, only one of them can have this property enabled.

 This attribute configures whether the cache store is purged upon start-up.purge

 This attribute configures whether or not the singleton store cache store is enabled.singleton

SingletonStore is a delegating cache store used for situations when only one instance in a cluster

should interact with the underlying store.

 This attribute configures a custom store implementation class to use for this cache store.class

 This attribute is used to configure a list of cache store properties.properties

The abstract base element has one child element: <write-behind>

<write-behind>

This element is used to configure a cache store as write-behind instead of write-through. In write-through

mode, writes to the cache are also written to the cache store, whereas in write-behind mode,synchronously

writes to the cache are followed by writes to the cache store.asynchronous

 This attribute configures the time-out for acquiring the lock which guards theflush-lock-timeout

state to be flushed to the cache store periodically.

 This attribute configures the maximum number of entries in themodification-queue-size

asynchronous queue. When the queue is full, the store becomes write-through until it can accept new

entries.

 This attribute configures the time-out (in ms) to stop the cache store.shutdown-timeout

 This attribute is used to configure the size of the thread pool whose threads arethread-pool

responsible for applying the modifications to the cache store.

Latest WildFly Documentation

JBoss Community Documentation Page of 1459 2293

<abstract base-jdbc-store> extends <abstract base-store>

This abstract base element defines the attributes and child elements common to all JDBC-based cache

stores.

 This attribute configures the datasource for the JDBC-based cache store.datasource

 This attribute configures the database table used to store cache entries.entry-table

 This attribute configures the database table used to store binary cache entries.bucket-table

<file-store> extends <abstract base-store>

This child element is used to configure a file-based cache store. This requires specifying the name of the file

to be used as backing storage for the cache store.

 This attribute optionally configures a relative path prefix for the file store path. Can berelative-to

null.

 This attribute configures an absolute path to a file if is null; configures a relative pathpath relative-to

to the file, in relation to the value for , otherwise.relative-to

<remote-store> extends <abstract base-store>

This child element of cache is used to configure a remote cache store. It has a child <remote-servers>.

 This attribute configures the name of the remote cache to use for this remote store.cache

 This attribute configures a TCP_NODELAY value for communication with the remotetcp-nodelay

cache.

 This attribute configures a socket time-out for communication with the remotesocket-timeout

cache.

<remote-servers>

This child element of cache configures a list of remote servers for this cache store.

<remote-server>

This element configures a remote server. A remote server is defined completely by a locally defined

outbound socket binding, through which communication is made with the server.

 This attribute configures an outbound socket binding for a remoteoutbound-socket-binding

server.

<local-cache> extends <abstract cache>
This element configures a local cache.

Latest WildFly Documentation

JBoss Community Documentation Page of 1460 2293

<abstract clustered-cache> extends <abstract cache>
This abstract base element defines the attributes and child elements common to all clustered caches. A

clustered cache is a cache which spans multiple nodes in a cluster. It inherits from <cache>, so that all

attributes and elements of <cache> are also defined for <clustered-cache>.

 This attribute configures async marshalling. If enabled, this will causeasync-marshalling

marshalling of entries to be performed asynchronously.

 This attribute configures the clustered cache mode, ASYNC for asynchronous operation, ormode

SYNC for synchronous operation.

 In ASYNC mode, this attribute can be used to trigger flushing of the queue when itqueue-size

reaches a specific threshold.

 In ASYNC mode, this attribute controls how often the asynchronousqueue-flush-interval

thread used to flush the replication queue runs. This should be a positive integer which represents

thread wakeup time in milliseconds.

 In SYNC mode, this attribute (in ms) used to wait for an acknowledgement whenremote-timeout

making a remote call, after which the call is aborted and an exception is thrown.

<invalidation-cache> extends <abstract clustered-cache>
This element configures an invalidation cache.

Latest WildFly Documentation

JBoss Community Documentation Page of 1461 2293

<abstract shared-cache> extends <abstract clustered-cache>
This abstract base element defines the attributes and child elements common to all shared caches. A shared

cache is a clustered cache which shares state with its cache peers in the cluster. It inherits from

<clustered-cache>, so that all attributes and elements of <clustered-cache> are also defined for

<shared-cache>.

<state-transfer>

 If enabled, this will cause the cache to ask neighbouring caches for state when it starts up,enabled

so the cache starts 'warm', although it will impact start-up time.

 This attribute configures the maximum amount of time (ms) to wait for state fromtimeout

neighbouring caches, before throwing an exception and aborting start-up.

 This attribute configures the size, in bytes, in which to batch the transfer of cachechunk-size

entries.

<backups>

<backup>

 This attribute configures the backup strategy for this cache. Allowable values are SYNC,strategy

ASYNC.

 This attribute configures the policy to follow when connectivity to the backup sitefailure-policy

fails. Allowable values are IGNORE, WARN, FAIL, CUSTOM.

 This attribute configures whether or not this backup is enabled. If enabled, data will be sentenabled

to the backup site; otherwise, the backup site will be effectively ignored.

 This attribute configures the time-out for replicating to the backup site.timeout

 This attribute configures the number of failures after which this backup site shouldafter-failures

go off-line.

 This attribute configures the minimum time (in milliseconds) to wait after the max numbermin-wait

of failures is reached, after which this backup site should go off-line.

<backup-for>

 This attribute configures the name of the remote cache for which this cache acts as aremote-cache

backup.

 This attribute configures the site of the remote cache for which this cache acts as aremote-site

backup.

<replicated-cache> extends <abstract shared-cache>
This element configures a replicated cache. With a replicated cache, all contents (key-value pairs) of the

cache are replicated on all nodes in the cluster.

Latest WildFly Documentation

JBoss Community Documentation Page of 1462 2293

<distributed-cache> extends <abstract shared-cache>
This element configures a distributed cache. With a distributed cache, contents of the cache are selectively

replicated on nodes in the cluster, according to the number of owners specified.

 This attribute configures the number of cluster-wide replicas for each cache entry.owners

 This attribute configures the number of hash space segments which is the granularity forsegments

key distribution in the cluster. Value must be strictly positive.

 This attribute configures the maximum lifespan of an entry placed in the L1 cache.l1-lifespan

Configures the L1 cache behaviour in 'distributed' caches instances. In any other cache modes, this

element is ignored.

Use Cases
In many cases, cache containers and caches will be configured via XML as in the example above, so that

they will be available upon server start-up. However, cache containers and caches may also be added,

removed or have their configurations changed in a running server by making use of the Wildfly management

API command-line interface (CLI). In this section, we present some key use cases for the Infinispan

management API.

The key use cases covered are:

adding a cache container

adding a cache to an existing cache container

configuring the transaction subsystem of a cache

The Wildfly management API command-line interface (CLI) can be used to provide

extensive information on the attributes and commands available in the Infinispan subsystem

interface used in these examples.

Add a cache container

/subsystem=infinispan/cache-container=mycontainer:add(default-cache=<default-cache-name>)

/subsystem=infinispan/cache-container=mycontainer/transport=jgroups:add(lock-timeout=<timeout>)

Add a cache

/subsystem=infinispan/cache-container=mycontainer/local-cache=mylocalcache:add()

Configure the transaction component of a cache

/subsystem=infinispan/cache-container=mycontainer/local-cache=mylocalcache/component=transaction:add(mode=<transaction-mode>)

Latest WildFly Documentation

JBoss Community Documentation Page of 1463 2293

7.15.10 mod_cluster Subsystem

The mod_cluster integration is done via the .modcluster subsystem

Configuration

Instance ID or JVMRoute
The instance-id or JVMRoute defaults to jboss.node.name property passed on server startup (e.g. via

-Djboss.node.name=XYZ).

[standalone@localhost:9990 /] /subsystem=undertow/:read-attribute(name=instance-id)

{

 "outcome" => "success",

 "result" => expression "${jboss.node.name}"

}

To configure instance-id statically, configure the corresponding property in Undertow subsystem:

[standalone@localhost:9990 /]

/subsystem=undertow/:write-attribute(name=instance-id,value=myroute)

{

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-reload" => true,

 "process-state" => "reload-required"

 }

}

http://docs.jboss.org/mod_cluster/1.1.0/html/java.AS7config.html

Latest WildFly Documentation

JBoss Community Documentation Page of 1464 2293

Proxies
By default, mod_cluster is configured for multicast-based discovery. To specify a static list of proxies, create

a remote-socket-binding for each proxy and then reference them in the 'proxies' attribute. See the following

example for configuration in the domain mode:

[domain@localhost:9990 /]

/socket-binding-group=ha-sockets/remote-destination-outbound-socket-binding=proxy1:add(host=10.21.152.86,

port=6666)

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => undefined

}

[domain@localhost:9990 /]

/socket-binding-group=ha-sockets/remote-destination-outbound-socket-binding=proxy2:add(host=10.21.152.87,

port=6666)

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => undefined

}

[domain@localhost:9990 /]

/profile=ha/subsystem=modcluster/mod-cluster-config=configuration/:write-attribute(name=proxies,

value=[proxy1, proxy2]

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => undefined

}

[domain@localhost:9990 /] :reload-servers

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => undefined

}

Runtime Operations
The modcluster subsystem supports several operations:

Latest WildFly Documentation

JBoss Community Documentation Page of 1465 2293

[standalone@localhost:9999 subsystem=modcluster] :read-operation-names

{

 "outcome" => "success",

 "result" => [

 "add",

 "add-custom-metric",

 "add-metric",

 "add-proxy",

 "disable",

 "disable-context",

 "enable",

 "enable-context",

 "list-proxies",

 "read-attribute",

 "read-children-names",

 "read-children-resources",

 "read-children-types",

 "read-operation-description",

 "read-operation-names",

 "read-proxies-configuration",

 "read-proxies-info",

 "read-resource",

 "read-resource-description",

 "refresh",

 "remove-custom-metric",

 "remove-metric",

 "remove-proxy",

 "reset",

 "stop",

 "stop-context",

 "validate-address",

 "write-attribute"

]

}

The operations specific to the modcluster subsystem are divided in 3 categories the ones that affects the

configuration and require a restart of the subsystem, the one that just modify the behaviour temporarily and

the ones that display information from the httpd part.

operations displaying httpd informations
There are 2 operations that display how Apache httpd sees the node:

Latest WildFly Documentation

JBoss Community Documentation Page of 1466 2293

read-proxies-configuration
Send a DUMP message to all Apache httpd the node is connected to and display the message received

from Apache httpd.

[standalone@localhost:9999 subsystem=modcluster] :read-proxies-configuration

{

 "outcome" => "success",

 "result" => [

 "neo3:6666",

 "balancer: [1] Name: mycluster Sticky: 1 [JSESSIONID]/[jsessionid] remove: 0 force: 1

Timeout: 0 Maxtry: 1

node: [1:1],Balancer: mycluster,JVMRoute: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,Domain: [],Host:

127.0.0.1,Port: 8080,Type: http,flushpackets: 0,flushwait: 10,ping: 10,smax: 26,ttl: 60,timeout:

0

host: 1 [example.com] vhost: 1 node: 1

host: 2 [localhost] vhost: 1 node: 1

host: 3 [default-host] vhost: 1 node: 1

context: 1 [/myapp] vhost: 1 node: 1 status: 1

context: 2 [/] vhost: 1 node: 1 status: 1

",

 "jfcpc:6666",

 "balancer: [1] Name: mycluster Sticky: 1 [JSESSIONID]/[jsessionid] remove: 0 force: 1

Timeout: 0 maxAttempts: 1

node: [1:1],Balancer: mycluster,JVMRoute: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,LBGroup: [],Host:

127.0.0.1,Port: 8080,Type: http,flushpackets: 0,flushwait: 10,ping: 10,smax: 26,ttl: 60,timeout:

0

host: 1 [default-host] vhost: 1 node: 1

host: 2 [localhost] vhost: 1 node: 1

host: 3 [example.com] vhost: 1 node: 1

context: 1 [/] vhost: 1 node: 1 status: 1

context: 2 [/myapp] vhost: 1 node: 1 status: 1

"

]

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1467 2293

read-proxies-info
Send a INFO message to all Apache httpd the node is connected to and display the message received from

Apache httpd.

[standalone@localhost:9999 subsystem=modcluster] :read-proxies-info

{

 "outcome" => "success",

 "result" => [

 "neo3:6666",

 "Node: [1],Name: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,Balancer: mycluster,Domain: ,Host:

127.0.0.1,Port: 8080,Type: http,Flushpackets: Off,Flushwait: 10000,Ping: 10000000,Smax: 26,Ttl:

60000000,Elected: 0,Read: 0,Transfered: 0,Connected: 0,Load: -1

Vhost: [1:1:1], Alias: example.com

Vhost: [1:1:2], Alias: localhost

Vhost: [1:1:3], Alias: default-host

Context: [1:1:1], Context: /myapp, Status: ENABLED

Context: [1:1:2], Context: /, Status: ENABLED

",

 "jfcpc:6666",

 "Node: [1],Name: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,Balancer: mycluster,LBGroup:

,Host: 127.0.0.1,Port: 8080,Type: http,Flushpackets: Off,Flushwait: 10,Ping: 10,Smax: 26,Ttl:

60,Elected: 0,Read: 0,Transfered: 0,Connected: 0,Load: 1

Vhost: [1:1:1], Alias: default-host

Vhost: [1:1:2], Alias: localhost

Vhost: [1:1:3], Alias: example.com

Context: [1:1:1], Context: /, Status: ENABLED

Context: [1:1:2], Context: /myapp, Status: ENABLED

"

]

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1468 2293

operations that handle the proxies the node is connected too
there are 3 operation that could be used to manipulate the list of Apache httpd the node is connected too.

list-proxies:
Displays the httpd that are connected to the node. The httpd could be discovered via the Advertise protocol

or via the proxy-list attribute.

[standalone@localhost:9999 subsystem=modcluster] :list-proxies

{

 "outcome" => "success",

 "result" => [

 "proxy1:6666",

 "proxy2:6666"

]

}

remove-proxy
Remove a proxy from the discovered proxies or temporarily from the proxy-list attribute.

[standalone@localhost:9999 subsystem=modcluster] :remove-proxy(host=jfcpc, port=6666)

{"outcome" => "success"}

proxy
Add a proxy to the discovered proxies or temporarily to the proxy-list attribute.

[standalone@localhost:9999 subsystem=modcluster] :add-proxy(host=jfcpc, port=6666)

{"outcome" => "success"}

Latest WildFly Documentation

JBoss Community Documentation Page of 1469 2293

Context related operations
Those operations allow to send context related commands to Apache httpd. They are send automatically

when deploying or undeploying webapps.

enable-context
Tell Apache httpd that the context is ready receive requests.

[standalone@localhost:9999 subsystem=modcluster] :enable-context(context=/myapp,

virtualhost=default-host)

{"outcome" => "success"}

disable-context
Tell Apache httpd that it shouldn't send new session requests to the context of the virtualhost.

[standalone@localhost:9999 subsystem=modcluster] :disable-context(context=/myapp,

virtualhost=default-host)

{"outcome" => "success"}

stop-context
Tell Apache httpd that it shouldn't send requests to the context of the virtualhost.

[standalone@localhost:9999 subsystem=modcluster] :stop-context(context=/myapp,

virtualhost=default-host, waittime=50)

{"outcome" => "success"}

Node related operations
Those operations are like the context operation but they apply to all webapps running on the node and

operation that affect the whole node.

refresh
Refresh the node by sending a new CONFIG message to Apache httpd.

reset
reset the connection between Apache httpd and the node

Configuration

Metric configuration
There are 4 metric operations corresponding to add and remove load metrics to the dynamic-load-provider.

Note that when nothing is defined a simple-load-provider is use with a fixed load factor of one.

Latest WildFly Documentation

JBoss Community Documentation Page of 1470 2293

[standalone@localhost:9999 subsystem=modcluster] :read-resource(name=mod-cluster-config)

{

 "outcome" => "success",

 "result" => {"simple-load-provider" => {"factor" => "1"}}

}

that corresponds to the following configuration:

<subsystem xmlns="urn:jboss:domain:modcluster:1.0">

 <mod-cluster-config>

 <simple-load-provider factor="1"/>

 </mod-cluster-config>

 </subsystem>

metric

Add a metric to the dynamic-load-provider, the dynamic-load-provider in configuration is created if needed.

[standalone@localhost:9999 subsystem=modcluster] :add-metric(type=cpu)

{"outcome" => "success"}

[standalone@localhost:9999 subsystem=modcluster] :read-resource(name=mod-cluster-config)

{

 "outcome" => "success",

 "result" => {

 "dynamic-load-provider" => {

 "history" => 9,

 "decay" => 2,

 "load-metric" => [{

 "type" => "cpu"

 }]

 }

 }

}

remove-metric

Remove a metric from the dynamic-load-provider.

[standalone@localhost:9999 subsystem=modcluster] :remove-metric(type=cpu)

{"outcome" => "success"}

Latest WildFly Documentation

JBoss Community Documentation Page of 1471 2293

custom-metric / remove-custom-metric

like the add-metric and remove-metric except they require a class parameter instead the type. Usually they

needed additional properties which can be specified

[standalone@localhost:9999 subsystem=modcluster] :add-custom-metric(class=myclass,

property=[("pro1" => "value1"), ("pro2" => "value2")]

{"outcome" => "success"}

which corresponds the following in the xml configuration file:

<subsystem xmlns="urn:jboss:domain:modcluster:1.0">

 <mod-cluster-config>

 <dynamic-load-provider history="9" decay="2">

 <custom-load-metric class="myclass">

 <property name="pro1" value="value1"/>

 <property name="pro2" value="value2"/>

 </custom-load-metric>

 </dynamic-load-provider>

 </mod-cluster-config>

</subsystem>

SSL Configuration using Elytron Subsystem

Overview

Defining a Trust Store with the Trusted Certificates

Defining a Trust Manager To Validate Certificates

Defining a Client SSL Context and Configuring mod_cluster Subsystem

Using a Certificate Revocation List

This document provides information how to configure mod_cluster subsystem to protect communication

between mod_cluster and load balancer using SSL/TLS using .Elytron Subsystem

Overview
Elytron subsystem provides a powerful and flexible model to configure different security aspects for

applications and the application server itself. At its core, Elytron subsystem exposes different capabilities to

the application server in order centralize security related configuration in a single place and to allow other

subsystems to consume these capabilities. One of the security capabilities exposed by Elytron subsystem is

a Client that can be used to configure mod_cluster subsystem to communicate with a loadssl-context

balancer using SSL/TLS.

When protecting the communication between the application server and the load balancer, you need do

define a Client in order to:ssl-context

Define a trust store holding the certificate chain that will be used to validate load balancer's certificate

Define a trust manager to perform validations against the load balancer's certificate

Latest WildFly Documentation

JBoss Community Documentation Page of 1472 2293

Defining a Trust Store with the Trusted Certificates
To define a trust store in Elytron you can execute the following CLI command:

[standalone@localhost:9990 /] /subsystem=elytron/key-store=default-trust-store:add(type=JKS,

relative-to=jboss.server.config.dir, path=application.truststore,

credential-reference={clear-text=password})

In order to successfully execute the command above you must have a file insideapplication.truststore

your directory. Where the trust store is protected by a passwordJBOSS_HOME/standalone/configuration

with a value . The trust store must contain the certificates associated with the load balancer or apassword

certificate chain in case the load balancer's certificate is signed by a CA.

We strongly recommend you to avoid using self-signed certificates with your load balancer. Ideally,

certificates should be signed by a CA and your trust store should contain a certificate chain representing

your ROOT and Intermediary CAs.

Defining a Trust Manager To Validate Certificates
To define a trust manager in Elytron you can execute the following CLI command:

[standalone@localhost:9990 /]

/subsystem=elytron/trust-managers=default-trust-manager:add(algorithm=PKIX,

key-store=default-trust-store)

Here we are setting the as the source of the certificates that the application server trusts.default-trust-store

Defining a Client SSL Context and Configuring mod_cluster Subsystem
Finally, you can create the Client SSL Context that is going to be used by the mod_cluster subsystem when

connecting to the load balancer using SSL/TLS:

[standalone@localhost:9990 /]

/subsystem=elytron/client-ssl-context=modcluster-client-ssl-context:add(trust-managers=default-trust-manager)

Now that the Client is defined you can configure mod_cluster subsystem as follows:ssl-context

[standalone@localhost:9990 /]

/subsystem=modcluster/mod-cluster-config=configuration:write-attribute(name=ssl-context,

value=modcluster-client-ssl-context)

Once you execute the last command above, reload the server:

[standalone@localhost:9990 /] :reload

Latest WildFly Documentation

JBoss Community Documentation Page of 1473 2293

Using a Certificate Revocation List
In case you want to validate the load balancer certificate against a Certificate Revocation List (CRL), you can

configure the in Elytron subsystem as follows:trust-manager

[standalone@localhost:9990 /]

/subsystem=elytron/trust-managers=default-trust-manager:write-attribute(name=certificate-revocation-list.path,

value=intermediate.crl.pem)

To use a CRL your trust store must contain the certificate chain in order to check validity of both CRL list and

the load balancer`s certificate.

A different way to configure a CRL is using the embedded in your certificates. For that,Distribution Points

you need to configure a as follows:certificate-revocation-list

/subsystem=elytron/trust-managers=default-trust-manager:write-attribute(name=certificate-revocation-list)

7.16 HTTP Services

This section summarises the HTTP-based clustering features.

7.16.1 Subsystem Support

This section describes the key clustering subsystems, JGroups and Infinispan. Say a few words about how

they work together.

JGroups Subsystem

Latest WildFly Documentation

JBoss Community Documentation Page of 1474 2293

Purpose
The JGroups subsystem provides group communication support for HA services in the form of JGroups

channels.

Named channel instances permit application peers in a cluster to communicate as a group and in such a

way that the communication satisfies defined properties (e.g. reliable, ordered, failure-sensitive).

Communication properties are configurable for each channel and are defined by the protocol stack used to

create the channel. Protocol stacks consist of a base transport layer (used to transport messages around the

cluster) together with a user-defined, ordered stack of protocol layers, where each protocol layer supports a

given communication property.

The JGroups subsystem provides the following features:

allows definition of named protocol stacks

view run-time metrics associated with channels

specify a default stack for general use

In the following sections, we describe the JGroups subsystem.

JGroups channels are created transparently as part of the clustering functionality (e.g. on clustered

application deployment, channels will be created behind the scenes to support clustered features

such as session replication or transmission of SSO contexts around the cluster).

Configuration example
What follows is a sample JGroups subsystem configuration showing all of the possible elements and

attributes which may be configured. We shall use this example to explain the meaning of the various

elements and attributes.

The schema for the subsystem, describing all valid elements and attributes, can be found in the

Wildfly distribution, in the docs/schema directory.

Latest WildFly Documentation

JBoss Community Documentation Page of 1475 2293

<subsystem xmlns="urn:jboss:domain:jgroups:5.0">

 <channels default="ee">

 <channel name="ee" stack="udp"/>

 </channels>

 <stacks>

 <stack name="udp">

 <transport type="UDP" socket-binding="jgroups-udp"/>

 <protocol type="PING"/>

 <protocol type="MERGE3"/>

 <protocol type="FD_SOCK"/>

 <protocol type="FD_ALL"/>

 <protocol type="VERIFY_SUSPECT"/>

 <protocol type="pbcast.NAKACK2"/>

 <protocol type="UNICAST3"/>

 <protocol type="pbcast.STABLE"/>

 <protocol type="pbcast.GMS"/>

 <protocol type="UFC"/>

 <protocol type="MFC"/>

 <protocol type="FRAG2"/>

 </stack>

 <stack name="tcp">

 <transport type="TCP" socket-binding="jgroups-tcp"/>

 <socket-protocol type="MPING" socket-binding="jgroups-mping"/>

 <protocol type="MERGE3"/>

 <protocol type="FD_SOCK"/>

 <protocol type="FD_ALL"/>

 <protocol type="VERIFY_SUSPECT"/>

 <protocol type="pbcast.NAKACK2"/>

 <protocol type="UNICAST3"/>

 <protocol type="pbcast.STABLE"/>

 <protocol type="pbcast.GMS"/>

 <protocol type="MFC"/>

 <protocol type="FRAG2"/>

 </stack>

 </stacks>

</subsystem>

<subsystem>
This element is used to configure the subsystem within a Wildfly system profile.

 This attribute specifies the XML namespace of the JGroups subsystem and, in particular, itsxmlns

version.

 This attribute is used to specify a default stack for the JGroups subsystem. Thisdefault-stack

default stack will be used whenever a stack is required but no stack is specified.

<stack>
This element is used to configure a JGroups protocol stack.

 This attribute is used to specify the name of the stack.name

Latest WildFly Documentation

JBoss Community Documentation Page of 1476 2293

<transport>
This element is used to configure the transport layer (required) of the protocol stack.

 This attribute specifies the transport type (e.g. UDP, TCP, TCPGOSSIP)type

 This attribute references a defined socket binding in the server profile. It is usedsocket-binding

when JGroups needs to create general sockets internally.

 This attribute references a defined socket binding in the serverdiagnostics-socket-binding

profile. It is used when JGroups needs to create sockets for use with the diagnostics program. For

more about the use of diagnostics, see the JGroups documentation for probe.sh.

 This attribute references a defined thread pool executor in the threadsdefault-executor

subsystem. It governs the allocation and execution of runnable tasks to handle incoming JGroups

messages.

 This attribute references a defined thread pool executor in the threads subsystem. Itoob-executor

governs the allocation and execution of runnable tasks to handle incoming JGroups OOB

(out-of-bound) messages.

 This attribute references a defined thread pool executor in the threads subsystem.timer-executor

It governs the allocation and execution of runnable timer-related tasks.

 This attribute indicates whether or not this transport is shared amongst several JGroupsshared

stacks or not.

 This attribute references a defined thread factory in the threads subsystem. Itthread-factory

governs the allocation of threads for running tasks which are not handled by the executors above.

 This attribute defines a site (data centre) id for this node.site

 This attribute defines a rack (server rack) id for this node.rack

 This attribute defines a machine (host) is for this node.machine

site, rack and machine ids are used by the Infinispan topology-aware consistent hash function,

which when using dist mode, prevents dist mode replicas from being stored on the same host, rack

or site

.

<property>
This element is used to configure a transport property.

 This attribute specifies the name of the protocol property. The value is provided as text for thename

property element.

Latest WildFly Documentation

JBoss Community Documentation Page of 1477 2293

<protocol>
This element is used to configure a (non-transport) protocol layer in the JGroups stack. Protocol layers are

ordered within the stack.

 This attribute specifies the name of the JGroups protocol implementation (e.g. MPING,type

pbcast.GMS), with the package prefix org.jgroups.protocols removed.

 This attribute references a defined socket binding in the server profile. It is usedsocket-binding

when JGroups needs to create general sockets internally for this protocol instance.

<property>
This element is used to configure a protocol property.

 This attribute specifies the name of the protocol property. The value is provided as text for thename

property element.

<relay>
This element is used to configure the RELAY protocol for a JGroups stack. RELAY is a protocol which

provides cross-site replication between defined sites (data centres). In the RELAY protocol, defined sites

specify the names of remote sites (backup sites) to which their data should be backed up. Channels are

defined between sites to permit the RELAY protocol to transport the data from the current site to a backup

site.

 This attribute specifies the name of the current site. Site names can be referenced elsewheresite

(e.g. in the JGroups remote-site configuration elements, as well as backup configuration elements in

the Infinispan subsystem)

<remote-site>
This element is used to configure a remote site for the RELAY protocol.

 This attribute specifies the name of the remote site to which this configuration applies.name

 This attribute specifies a JGroups protocol stack to use for communication between this sitestack

and the remote site.

 This attribute specifies the name of the JGroups channel to use for communication betweencluster

this site and the remote site.

Latest WildFly Documentation

JBoss Community Documentation Page of 1478 2293

Use Cases
In many cases, channels will be configured via XML as in the example above, so that the channels will be

available upon server startup. However, channels may also be added, removed or have their configurations

changed in a running server by making use of the Wildfly management API command-line interface (CLI). In

this section, we present some key use cases for the JGroups management API.

The key use cases covered are:

adding a stack

adding a protocol to an existing stack

adding a property to a protocol

The Wildfly management API command-line interface (CLI) itself can be used to provide extensive

information on the attributes and commands available in the JGroups subsystem interface used in

these examples.

Add a stack

/subsystem=jgroups/stack=mystack:add()

Add a protocol to a stack

/subsystem=jgroups/stack=mystack/transport=<type>:add(socket-binding=<socketbinding>)

/subsystem=jgroups/stack=mystack:protocol=<type>:add(socket-binding=<socketbinding>)

Add a property to a protocol

/subsystem=jgroups/stack=mystack/transport=<type>:map-put(name=properties, key=<property-name>,

value=<property-value>)

Infinispan Subsystem

Latest WildFly Documentation

JBoss Community Documentation Page of 1479 2293

Purpose
The Infinispan subsystem provides caching support for HA services in the form of Infinispan caches:

 high-performance, transactional caches which can operate in both non-distributed and distributed

scenarios. Distributed caching support is used in the provision of many key HA services. For example, the

failover of a session-oriented client HTTP request from a failing node to a new (failover) node depends on

session data for the client being available on the new node. In other words, the client session data needs to

be replicated across nodes in the cluster. This is effectively achieved via a distributed Infinispan cache. This

approach to providing fail-over also applies to EJB SFSB sessions. Over and above providing support for

fail-over, an underlying cache is also required when providing second-level caching for entity beans using

Hibernate, and this case is also handled through the use of an Infinispan cache.

The Infinispan subsystem provides the following features:

allows definition and configuration of named cache containers and caches

view run-time metrics associated with cache container and cache instances

In the following sections, we describe the Infinispan subsystem.

Infiispan cache containers and caches are created transparently as part of the clustering

functionality (e.g. on clustered application deployment, cache containers and their associated

caches will be created behind the scenes to support clustered features such as session replication

or caching of entities around the cluster).

Configuration Example
In this section, we provide an example XML configuration of the infinispan subsystem and review the

configuration elements and attributes.

The schema for the subsystem, describing all valid elements and attributes, can be found in the

Wildfly distribution, in the docs/schema directory.

Latest WildFly Documentation

JBoss Community Documentation Page of 1480 2293

<subsystem xmlns="urn:jboss:domain:infinispan:4.0">

 <cache-container name="server" aliases="singleton cluster" default-cache="default"

module="org.wildfly.clustering.server">

 <transport lock-timeout="60000"/>

 <replicated-cache name="default" mode="SYNC">

 <transaction mode="BATCH"/> </replicated-cache>

 </cache-container>

 <cache-container name="web" default-cache="dist"

module="org.wildfly.clustering.web.infinispan">

 <transport lock-timeout="60000"/>

 <replicated-cache name="repl" mode="SYNC">

 <transaction mode="BATCH"/> <file-store/>

 </replicated-cache>

 <distributed-cache name="dist" mode="SYNC">

 <transaction mode="BATCH"/>

 <file-store/>

 </distributed-cache>

 </cache-container>

 <cache-container name="ejb" aliases="sfsb" default-cache="dist"

module="org.wildfly.clustering.ejb.infinispan">

 <transport lock-timeout="60000"/>

 <replicated-cache name="repl" mode="SYNC">

 <transaction mode="BATCH"/>

 <file-store/>

 </replicated-cache>

 <distributed-cache name="dist" mode="SYNC" l1-lifespan="0">

 <transaction mode="BATCH"/>

 <file-store/>

 </distributed-cache>

 </cache-container>

 <cache-container name="hibernate" module="org.hibernate.infinispan">

 <transport lock-timeout="60000"/>

 <local-cache name="local-query">

 <transaction mode="NONE"/>

 <eviction strategy="LRU" max-entries="10000"/>

 <expiration max-idle="100000"/>

 </local-cache>

 <invalidation-cache name="entity" mode="SYNC">

 <transaction mode="NON_XA"/>

 <eviction strategy="LRU" max-entries="10000"/>

 <expiration max-idle="100000"/>

 </invalidation-cache>

 <replicated-cache name="timestamps" mode="ASYNC">

 <transaction mode="NONE"/>

 <eviction strategy="NONE"/>

 </replicated-cache>

 </cache-container>

</subsystem>

<cache-container>
This element is used to configure a cache container.

Latest WildFly Documentation

JBoss Community Documentation Page of 1481 2293

 This attribute is used to specify the name of the cache container.name

 This attribute configures the default cache to be used, when no cache is otherwisedefault-cache

specified.

 This attribute references a defined thread pool executor in the threadslistener-executor

subsystem. It governs the allocation and execution of runnable tasks in the replication queue.

 This attribute references a defined thread pool executor in the threadseviction-executor

subsystem. It governs the allocation and execution of runnable tasks to handle evictions.

 This attribute references a defined thread pool executor in thereplication-queue-executor

threads subsystem. It governs the allocation and execution of runnable tasks to handle asynchronous

cache operations.

 This attribute is used to assign a name for the cache container in the JNDI name service.jndi-name

 This attribute configures the module whose class loader should be used when building thismodule

cache container's configuration.

 This attribute configured the cache container start mode and has since been deprecated, thestart

only supported and the default value is LAZY (on-demand start).

 This attribute is used to define aliases for the cache container name.aliases

This element has the following child elements: , , , <transport> <local-cache> <invalidation-cache>

, and .<replicated-cache> <distributed-cache>

Latest WildFly Documentation

JBoss Community Documentation Page of 1482 2293

<transport>
This element is used to configure the JGroups transport used by the cache container, when required.

 This attribute configures the JGroups channel to be used for the transport. If none ischannel

specified, the default channel as defined by the JGroups subsystem is used.

 This attribute configures the name of the group communication cluster. This is the namecluster

which will be seen in debugging logs.

 This attribute references a defined thread pool executor in the threads subsystem. Itexecutor

governs the allocation and execution of runnable tasks to handle ? >?.<fill me in

 This attribute configures the time-out to be used when obtaining locks for thelock-timeout

transport.

 This attribute configures the site id of the cache container.site

 This attribute configures the rack id of the cache container.rack

 This attribute configures the machine id of the cache container.machine

The presence of the transport element is required when operating in clustered mode

The remaining child elements of , namely , , <cache-container> <local-cache> <invalidation-cache>

 and , each configures one of four key cache types or<replicated-cache> <distributed-cache>

classifications.

These cache-related elements are actually part of an xsd hierarchy with abstract complexTypes

, , and . In order to simplify the presentation, we notate thesecache clustered-cache shared-cache

as pseudo-elements , and <abstract cache> <abstract clustered-cache> <abstract

. In what follows, we first describe the extension hierarchy of base elements, andshared-cache>

then show how the cache type elements relate to them.

<abstract cache>
This abstract base element defines the attributes and child elements common to all non-clustered caches.

 This attribute configures the name of the cache. This name may be referenced by othername

subsystems.

 This attribute configured the cache container start mode and has since been deprecated, thestart

only supported and the default value is LAZY (on-demand start).

 This attribute configures batching. If enabled, the invocation batching API will be madebatching

available for this cache.

 This attribute configures indexing. If enabled, entries will be indexed when they are addedindexing

to the cache. Indexes will be updated as entries change or are removed.

 This attribute is used to assign a name for the cache in the JNDI name service.jndi-name

 This attribute configures the module whose class loader should be used when building thismodule

cache container's configuration.

Latest WildFly Documentation

JBoss Community Documentation Page of 1483 2293

The <abstract cache> abstract base element has the following child elements: <indexing-properties>,

, , , , , , , <locking> <transaction> <eviction> <expiration> <store> <file-store> <string-keyed-jdbc-store>

, , .<binary-keyed-jdbc-store> <mixed-keyed-jdbc-store> <remote-store>

<indexing-properties>

This child element defines properties to control indexing behaviour.

<locking>

This child element configures the locking behaviour of the cache.

 This attribute the cache locking isolation level. Allowable values are NONE,isolation

SERIALIZABLE, REPEATABLE_READ, READ_COMMITTED, READ_UNCOMMITTED.

 If true, a pool of shared locks is maintained for all entries that need to be locked.striping

Otherwise, a lock is created per entry in the cache. Lock striping helps control memory footprint but

may reduce concurrency in the system.

 This attribute configures the maximum time to attempt a particular lockacquire-timeout

acquisition.

 This attribute is used to configure the concurrency level. Adjust this valueconcurrency-level

according to the number of concurrent threads interacting with Infinispan.

<transaction>

This child element configures the transactional behaviour of the cache.

 This attribute configures the transaction mode, setting the cache transaction mode to one ofmode

NONE, NON_XA, NON_DURABLE_XA, FULL_XA.

 If there are any ongoing transactions when a cache is stopped, Infinispan waits forstop-timeout

ongoing remote and local transactions to finish. The amount of time to wait for is defined by the cache

stop timeout.

 This attribute configures the locking mode for this cache, one of OPTIMISTIC orlocking

PESSIMISTIC.

<eviction>

This child element configures the eviction behaviour of the cache.

 This attribute configures the cache eviction strategy. Available options are 'UNORDERED',strategy

'FIFO', 'LRU', 'LIRS' and 'NONE' (to disable eviction).

 This attribute configures the maximum number of entries in a cache instance. Ifmax-entries

selected value is not a power of two the actual value will default to the least power of two larger than

selected value. -1 means no limit.

Latest WildFly Documentation

JBoss Community Documentation Page of 1484 2293

<expiration>

This child element configures the expiration behaviour of the cache.

 This attribute configures the maximum idle time a cache entry will be maintained in themax-idle

cache, in milliseconds. If the idle time is exceeded, the entry will be expired cluster-wide. -1 means

the entries never expire.

 This attribute configures the maximum lifespan of a cache entry, after which the entry islifespan

expired cluster-wide, in milliseconds. -1 means the entries never expire.

 This attribute specifies the interval (in ms) between subsequent runs to purge expiredinterval

entries from memory and any cache stores. If you wish to disable the periodic eviction process

altogether, set wakeupInterval to -1.

The remaining child elements of the abstract base element , namely , , <cache> <store> <file-store>

, , and ,<remote-store> <string-keyed-jdbc-store> <binary-keyed-jdbc-store> <mixed-keyed-jdbc-store>

each configures one of six key cache store types.

These cache store-related elements are actually part of an xsd extension hierarchy with abstract

complexTypes and . As before, in order to simplify the presentation,base-store base-jdbc-store

we notate these as pseudo-elements and . In<abstract base-store> <abstract base-jdbc-store>

what follows, we first describe the extension hierarchy of base elements, and then show how the

cache store elements relate to them.

Latest WildFly Documentation

JBoss Community Documentation Page of 1485 2293

<abstract base-store>

This abstract base element defines the attributes and child elements common to all cache stores.

 This attribute should be set to true when multiple cache instances share the same cacheshared

store (e.g. multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared

database) Setting this to true avoids multiple cache instances writing the same modification multiple

times. If enabled, only the node where the modification originated will write to the cache store. If

disabled, each individual cache reacts to a potential remote update by storing the data to the cache

store.

 This attribute configures whether or not, when the cache starts, data stored in the cachepreload

loader will be pre-loaded into memory. This is particularly useful when data in the cache loader is

needed immediately after start-up and you want to avoid cache operations being delayed as a result

of loading this data lazily. Can be used to provide a 'warm-cache' on start-up, however there is a

performance penalty as start-up time is affected by this process. Note that pre-loading is done in a

local fashion, so any data loaded is only stored locally in the node. No replication or distribution of the

preloaded data happens. Also, Infinispan only pre-loads up to the maximum configured number of

entries in eviction.

 If true, data is only written to the cache store when it is evicted from memory, apassivation

phenomenon known as . Next time the data is requested, it will be 'activated' which meanspassivation

that data will be brought back to memory and removed from the persistent store. If false, the cache

store contains a copy of the cache contents in memory, so writes to cache result in cache store

writes. This essentially gives you a 'write-through' configuration.

 This attribute, if true, causes persistent state to be fetched when joining a cluster. Iffetch-state

multiple cache stores are chained, only one of them can have this property enabled.

 This attribute configures whether the cache store is purged upon start-up.purge

 This attribute configures whether or not the singleton store cache store is enabled.singleton

SingletonStore is a delegating cache store used for situations when only one instance in a cluster

should interact with the underlying store.

 This attribute configures a custom store implementation class to use for this cache store.class

 This attribute is used to configure a list of cache store properties.properties

The abstract base element has one child element: <write-behind>

<write-behind>

This element is used to configure a cache store as write-behind instead of write-through. In write-through

mode, writes to the cache are also written to the cache store, whereas in write-behind mode,synchronously

writes to the cache are followed by writes to the cache store.asynchronous

 This attribute configures the time-out for acquiring the lock which guards theflush-lock-timeout

state to be flushed to the cache store periodically.

 This attribute configures the maximum number of entries in themodification-queue-size

asynchronous queue. When the queue is full, the store becomes write-through until it can accept new

entries.

 This attribute configures the time-out (in ms) to stop the cache store.shutdown-timeout

 This attribute is used to configure the size of the thread pool whose threads arethread-pool

responsible for applying the modifications to the cache store.

Latest WildFly Documentation

JBoss Community Documentation Page of 1486 2293

<abstract base-jdbc-store> extends <abstract base-store>

This abstract base element defines the attributes and child elements common to all JDBC-based cache

stores.

 This attribute configures the datasource for the JDBC-based cache store.datasource

 This attribute configures the database table used to store cache entries.entry-table

 This attribute configures the database table used to store binary cache entries.bucket-table

<file-store> extends <abstract base-store>

This child element is used to configure a file-based cache store. This requires specifying the name of the file

to be used as backing storage for the cache store.

 This attribute optionally configures a relative path prefix for the file store path. Can berelative-to

null.

 This attribute configures an absolute path to a file if is null; configures a relative pathpath relative-to

to the file, in relation to the value for , otherwise.relative-to

<remote-store> extends <abstract base-store>

This child element of cache is used to configure a remote cache store. It has a child <remote-servers>.

 This attribute configures the name of the remote cache to use for this remote store.cache

 This attribute configures a TCP_NODELAY value for communication with the remotetcp-nodelay

cache.

 This attribute configures a socket time-out for communication with the remotesocket-timeout

cache.

<remote-servers>

This child element of cache configures a list of remote servers for this cache store.

<remote-server>

This element configures a remote server. A remote server is defined completely by a locally defined

outbound socket binding, through which communication is made with the server.

 This attribute configures an outbound socket binding for a remoteoutbound-socket-binding

server.

<local-cache> extends <abstract cache>
This element configures a local cache.

Latest WildFly Documentation

JBoss Community Documentation Page of 1487 2293

<abstract clustered-cache> extends <abstract cache>
This abstract base element defines the attributes and child elements common to all clustered caches. A

clustered cache is a cache which spans multiple nodes in a cluster. It inherits from <cache>, so that all

attributes and elements of <cache> are also defined for <clustered-cache>.

 This attribute configures async marshalling. If enabled, this will causeasync-marshalling

marshalling of entries to be performed asynchronously.

 This attribute configures the clustered cache mode, ASYNC for asynchronous operation, ormode

SYNC for synchronous operation.

 In ASYNC mode, this attribute can be used to trigger flushing of the queue when itqueue-size

reaches a specific threshold.

 In ASYNC mode, this attribute controls how often the asynchronousqueue-flush-interval

thread used to flush the replication queue runs. This should be a positive integer which represents

thread wakeup time in milliseconds.

 In SYNC mode, this attribute (in ms) used to wait for an acknowledgement whenremote-timeout

making a remote call, after which the call is aborted and an exception is thrown.

<invalidation-cache> extends <abstract clustered-cache>
This element configures an invalidation cache.

Latest WildFly Documentation

JBoss Community Documentation Page of 1488 2293

<abstract shared-cache> extends <abstract clustered-cache>
This abstract base element defines the attributes and child elements common to all shared caches. A shared

cache is a clustered cache which shares state with its cache peers in the cluster. It inherits from

<clustered-cache>, so that all attributes and elements of <clustered-cache> are also defined for

<shared-cache>.

<state-transfer>

 If enabled, this will cause the cache to ask neighbouring caches for state when it starts up,enabled

so the cache starts 'warm', although it will impact start-up time.

 This attribute configures the maximum amount of time (ms) to wait for state fromtimeout

neighbouring caches, before throwing an exception and aborting start-up.

 This attribute configures the size, in bytes, in which to batch the transfer of cachechunk-size

entries.

<backups>

<backup>

 This attribute configures the backup strategy for this cache. Allowable values are SYNC,strategy

ASYNC.

 This attribute configures the policy to follow when connectivity to the backup sitefailure-policy

fails. Allowable values are IGNORE, WARN, FAIL, CUSTOM.

 This attribute configures whether or not this backup is enabled. If enabled, data will be sentenabled

to the backup site; otherwise, the backup site will be effectively ignored.

 This attribute configures the time-out for replicating to the backup site.timeout

 This attribute configures the number of failures after which this backup site shouldafter-failures

go off-line.

 This attribute configures the minimum time (in milliseconds) to wait after the max numbermin-wait

of failures is reached, after which this backup site should go off-line.

<backup-for>

 This attribute configures the name of the remote cache for which this cache acts as aremote-cache

backup.

 This attribute configures the site of the remote cache for which this cache acts as aremote-site

backup.

<replicated-cache> extends <abstract shared-cache>
This element configures a replicated cache. With a replicated cache, all contents (key-value pairs) of the

cache are replicated on all nodes in the cluster.

Latest WildFly Documentation

JBoss Community Documentation Page of 1489 2293

<distributed-cache> extends <abstract shared-cache>
This element configures a distributed cache. With a distributed cache, contents of the cache are selectively

replicated on nodes in the cluster, according to the number of owners specified.

 This attribute configures the number of cluster-wide replicas for each cache entry.owners

 This attribute configures the number of hash space segments which is the granularity forsegments

key distribution in the cluster. Value must be strictly positive.

 This attribute configures the maximum lifespan of an entry placed in the L1 cache.l1-lifespan

Configures the L1 cache behaviour in 'distributed' caches instances. In any other cache modes, this

element is ignored.

Use Cases
In many cases, cache containers and caches will be configured via XML as in the example above, so that

they will be available upon server start-up. However, cache containers and caches may also be added,

removed or have their configurations changed in a running server by making use of the Wildfly management

API command-line interface (CLI). In this section, we present some key use cases for the Infinispan

management API.

The key use cases covered are:

adding a cache container

adding a cache to an existing cache container

configuring the transaction subsystem of a cache

The Wildfly management API command-line interface (CLI) can be used to provide

extensive information on the attributes and commands available in the Infinispan subsystem

interface used in these examples.

Add a cache container

/subsystem=infinispan/cache-container=mycontainer:add(default-cache=<default-cache-name>)

/subsystem=infinispan/cache-container=mycontainer/transport=jgroups:add(lock-timeout=<timeout>)

Add a cache

/subsystem=infinispan/cache-container=mycontainer/local-cache=mylocalcache:add()

Configure the transaction component of a cache

/subsystem=infinispan/cache-container=mycontainer/local-cache=mylocalcache/component=transaction:add(mode=<transaction-mode>)

Latest WildFly Documentation

JBoss Community Documentation Page of 1490 2293

7.16.2 Clustered Web Sessions

7.16.3 Clustered SSO

7.16.4 Load Balancing

This section describes load balancing via Apache + mod_jk and Apache + mod_cluster.

7.16.5 Load balancing with Apache + mod_jk

Describe load balancing with Apache using mod_jk.

7.16.6 Load balancing with Apache + mod_cluster

Describe load balancing with Apache using mod_cluster.

mod_cluster Subsystem
The mod_cluster integration is done via the .modcluster subsystem

http://docs.jboss.org/mod_cluster/1.1.0/html/java.AS7config.html

Latest WildFly Documentation

JBoss Community Documentation Page of 1491 2293

7.16.7 Configuration

Instance ID or JVMRoute
The instance-id or JVMRoute defaults to jboss.node.name property passed on server startup (e.g. via

-Djboss.node.name=XYZ).

[standalone@localhost:9990 /] /subsystem=undertow/:read-attribute(name=instance-id)

{

 "outcome" => "success",

 "result" => expression "${jboss.node.name}"

}

To configure instance-id statically, configure the corresponding property in Undertow subsystem:

[standalone@localhost:9990 /]

/subsystem=undertow/:write-attribute(name=instance-id,value=myroute)

{

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-reload" => true,

 "process-state" => "reload-required"

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1492 2293

Proxies
By default, mod_cluster is configured for multicast-based discovery. To specify a static list of proxies, create

a remote-socket-binding for each proxy and then reference them in the 'proxies' attribute. See the following

example for configuration in the domain mode:

[domain@localhost:9990 /]

/socket-binding-group=ha-sockets/remote-destination-outbound-socket-binding=proxy1:add(host=10.21.152.86,

port=6666)

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => undefined

}

[domain@localhost:9990 /]

/socket-binding-group=ha-sockets/remote-destination-outbound-socket-binding=proxy2:add(host=10.21.152.87,

port=6666)

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => undefined

}

[domain@localhost:9990 /]

/profile=ha/subsystem=modcluster/mod-cluster-config=configuration/:write-attribute(name=proxies,

value=[proxy1, proxy2]

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => undefined

}

[domain@localhost:9990 /] :reload-servers

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => undefined

}

7.16.8 Runtime Operations

The modcluster subsystem supports several operations:

Latest WildFly Documentation

JBoss Community Documentation Page of 1493 2293

[standalone@localhost:9999 subsystem=modcluster] :read-operation-names

{

 "outcome" => "success",

 "result" => [

 "add",

 "add-custom-metric",

 "add-metric",

 "add-proxy",

 "disable",

 "disable-context",

 "enable",

 "enable-context",

 "list-proxies",

 "read-attribute",

 "read-children-names",

 "read-children-resources",

 "read-children-types",

 "read-operation-description",

 "read-operation-names",

 "read-proxies-configuration",

 "read-proxies-info",

 "read-resource",

 "read-resource-description",

 "refresh",

 "remove-custom-metric",

 "remove-metric",

 "remove-proxy",

 "reset",

 "stop",

 "stop-context",

 "validate-address",

 "write-attribute"

]

}

The operations specific to the modcluster subsystem are divided in 3 categories the ones that affects the

configuration and require a restart of the subsystem, the one that just modify the behaviour temporarily and

the ones that display information from the httpd part.

operations displaying httpd informations
There are 2 operations that display how Apache httpd sees the node:

Latest WildFly Documentation

JBoss Community Documentation Page of 1494 2293

read-proxies-configuration
Send a DUMP message to all Apache httpd the node is connected to and display the message received

from Apache httpd.

[standalone@localhost:9999 subsystem=modcluster] :read-proxies-configuration

{

 "outcome" => "success",

 "result" => [

 "neo3:6666",

 "balancer: [1] Name: mycluster Sticky: 1 [JSESSIONID]/[jsessionid] remove: 0 force: 1

Timeout: 0 Maxtry: 1

node: [1:1],Balancer: mycluster,JVMRoute: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,Domain: [],Host:

127.0.0.1,Port: 8080,Type: http,flushpackets: 0,flushwait: 10,ping: 10,smax: 26,ttl: 60,timeout:

0

host: 1 [example.com] vhost: 1 node: 1

host: 2 [localhost] vhost: 1 node: 1

host: 3 [default-host] vhost: 1 node: 1

context: 1 [/myapp] vhost: 1 node: 1 status: 1

context: 2 [/] vhost: 1 node: 1 status: 1

",

 "jfcpc:6666",

 "balancer: [1] Name: mycluster Sticky: 1 [JSESSIONID]/[jsessionid] remove: 0 force: 1

Timeout: 0 maxAttempts: 1

node: [1:1],Balancer: mycluster,JVMRoute: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,LBGroup: [],Host:

127.0.0.1,Port: 8080,Type: http,flushpackets: 0,flushwait: 10,ping: 10,smax: 26,ttl: 60,timeout:

0

host: 1 [default-host] vhost: 1 node: 1

host: 2 [localhost] vhost: 1 node: 1

host: 3 [example.com] vhost: 1 node: 1

context: 1 [/] vhost: 1 node: 1 status: 1

context: 2 [/myapp] vhost: 1 node: 1 status: 1

"

]

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1495 2293

read-proxies-info
Send a INFO message to all Apache httpd the node is connected to and display the message received from

Apache httpd.

[standalone@localhost:9999 subsystem=modcluster] :read-proxies-info

{

 "outcome" => "success",

 "result" => [

 "neo3:6666",

 "Node: [1],Name: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,Balancer: mycluster,Domain: ,Host:

127.0.0.1,Port: 8080,Type: http,Flushpackets: Off,Flushwait: 10000,Ping: 10000000,Smax: 26,Ttl:

60000000,Elected: 0,Read: 0,Transfered: 0,Connected: 0,Load: -1

Vhost: [1:1:1], Alias: example.com

Vhost: [1:1:2], Alias: localhost

Vhost: [1:1:3], Alias: default-host

Context: [1:1:1], Context: /myapp, Status: ENABLED

Context: [1:1:2], Context: /, Status: ENABLED

",

 "jfcpc:6666",

 "Node: [1],Name: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,Balancer: mycluster,LBGroup:

,Host: 127.0.0.1,Port: 8080,Type: http,Flushpackets: Off,Flushwait: 10,Ping: 10,Smax: 26,Ttl:

60,Elected: 0,Read: 0,Transfered: 0,Connected: 0,Load: 1

Vhost: [1:1:1], Alias: default-host

Vhost: [1:1:2], Alias: localhost

Vhost: [1:1:3], Alias: example.com

Context: [1:1:1], Context: /, Status: ENABLED

Context: [1:1:2], Context: /myapp, Status: ENABLED

"

]

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1496 2293

operations that handle the proxies the node is connected too
there are 3 operation that could be used to manipulate the list of Apache httpd the node is connected too.

list-proxies:
Displays the httpd that are connected to the node. The httpd could be discovered via the Advertise protocol

or via the proxy-list attribute.

[standalone@localhost:9999 subsystem=modcluster] :list-proxies

{

 "outcome" => "success",

 "result" => [

 "proxy1:6666",

 "proxy2:6666"

]

}

remove-proxy
Remove a proxy from the discovered proxies or temporarily from the proxy-list attribute.

[standalone@localhost:9999 subsystem=modcluster] :remove-proxy(host=jfcpc, port=6666)

{"outcome" => "success"}

proxy
Add a proxy to the discovered proxies or temporarily to the proxy-list attribute.

[standalone@localhost:9999 subsystem=modcluster] :add-proxy(host=jfcpc, port=6666)

{"outcome" => "success"}

Latest WildFly Documentation

JBoss Community Documentation Page of 1497 2293

Context related operations
Those operations allow to send context related commands to Apache httpd. They are send automatically

when deploying or undeploying webapps.

enable-context
Tell Apache httpd that the context is ready receive requests.

[standalone@localhost:9999 subsystem=modcluster] :enable-context(context=/myapp,

virtualhost=default-host)

{"outcome" => "success"}

disable-context
Tell Apache httpd that it shouldn't send new session requests to the context of the virtualhost.

[standalone@localhost:9999 subsystem=modcluster] :disable-context(context=/myapp,

virtualhost=default-host)

{"outcome" => "success"}

stop-context
Tell Apache httpd that it shouldn't send requests to the context of the virtualhost.

[standalone@localhost:9999 subsystem=modcluster] :stop-context(context=/myapp,

virtualhost=default-host, waittime=50)

{"outcome" => "success"}

Node related operations
Those operations are like the context operation but they apply to all webapps running on the node and

operation that affect the whole node.

refresh
Refresh the node by sending a new CONFIG message to Apache httpd.

reset
reset the connection between Apache httpd and the node

Configuration

Metric configuration
There are 4 metric operations corresponding to add and remove load metrics to the dynamic-load-provider.

Note that when nothing is defined a simple-load-provider is use with a fixed load factor of one.

Latest WildFly Documentation

JBoss Community Documentation Page of 1498 2293

[standalone@localhost:9999 subsystem=modcluster] :read-resource(name=mod-cluster-config)

{

 "outcome" => "success",

 "result" => {"simple-load-provider" => {"factor" => "1"}}

}

that corresponds to the following configuration:

<subsystem xmlns="urn:jboss:domain:modcluster:1.0">

 <mod-cluster-config>

 <simple-load-provider factor="1"/>

 </mod-cluster-config>

 </subsystem>

metric
Add a metric to the dynamic-load-provider, the dynamic-load-provider in configuration is created if needed.

[standalone@localhost:9999 subsystem=modcluster] :add-metric(type=cpu)

{"outcome" => "success"}

[standalone@localhost:9999 subsystem=modcluster] :read-resource(name=mod-cluster-config)

{

 "outcome" => "success",

 "result" => {

 "dynamic-load-provider" => {

 "history" => 9,

 "decay" => 2,

 "load-metric" => [{

 "type" => "cpu"

 }]

 }

 }

}

remove-metric
Remove a metric from the dynamic-load-provider.

[standalone@localhost:9999 subsystem=modcluster] :remove-metric(type=cpu)

{"outcome" => "success"}

Latest WildFly Documentation

JBoss Community Documentation Page of 1499 2293

custom-metric / remove-custom-metric
like the add-metric and remove-metric except they require a class parameter instead the type. Usually they

needed additional properties which can be specified

[standalone@localhost:9999 subsystem=modcluster] :add-custom-metric(class=myclass,

property=[("pro1" => "value1"), ("pro2" => "value2")]

{"outcome" => "success"}

which corresponds the following in the xml configuration file:

<subsystem xmlns="urn:jboss:domain:modcluster:1.0">

 <mod-cluster-config>

 <dynamic-load-provider history="9" decay="2">

 <custom-load-metric class="myclass">

 <property name="pro1" value="value1"/>

 <property name="pro2" value="value2"/>

 </custom-load-metric>

 </dynamic-load-provider>

 </mod-cluster-config>

</subsystem>

7.16.9 Clustered Web Sessions

7.16.10 Clustered SSO

7.16.11 Load Balancing

This section describes load balancing via Apache + mod_jk and Apache + mod_cluster.

Load balancing with Apache + mod_jk
Describe load balancing with Apache using mod_jk.

Load balancing with Apache + mod_cluster
Describe load balancing with Apache using mod_cluster.

mod_cluster Subsystem
The mod_cluster integration is done via the .modcluster subsystem

http://docs.jboss.org/mod_cluster/1.1.0/html/java.AS7config.html

Latest WildFly Documentation

JBoss Community Documentation Page of 1500 2293

Configuration

Instance ID or JVMRoute
The instance-id or JVMRoute defaults to jboss.node.name property passed on server startup (e.g. via

-Djboss.node.name=XYZ).

[standalone@localhost:9990 /] /subsystem=undertow/:read-attribute(name=instance-id)

{

 "outcome" => "success",

 "result" => expression "${jboss.node.name}"

}

To configure instance-id statically, configure the corresponding property in Undertow subsystem:

[standalone@localhost:9990 /]

/subsystem=undertow/:write-attribute(name=instance-id,value=myroute)

{

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-reload" => true,

 "process-state" => "reload-required"

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1501 2293

Proxies
By default, mod_cluster is configured for multicast-based discovery. To specify a static list of proxies, create

a remote-socket-binding for each proxy and then reference them in the 'proxies' attribute. See the following

example for configuration in the domain mode:

[domain@localhost:9990 /]

/socket-binding-group=ha-sockets/remote-destination-outbound-socket-binding=proxy1:add(host=10.21.152.86,

port=6666)

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => undefined

}

[domain@localhost:9990 /]

/socket-binding-group=ha-sockets/remote-destination-outbound-socket-binding=proxy2:add(host=10.21.152.87,

port=6666)

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => undefined

}

[domain@localhost:9990 /]

/profile=ha/subsystem=modcluster/mod-cluster-config=configuration/:write-attribute(name=proxies,

value=[proxy1, proxy2]

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => undefined

}

[domain@localhost:9990 /] :reload-servers

{

 "outcome" => "success",

 "result" => undefined,

 "server-groups" => undefined

}

Runtime Operations
The modcluster subsystem supports several operations:

Latest WildFly Documentation

JBoss Community Documentation Page of 1502 2293

[standalone@localhost:9999 subsystem=modcluster] :read-operation-names

{

 "outcome" => "success",

 "result" => [

 "add",

 "add-custom-metric",

 "add-metric",

 "add-proxy",

 "disable",

 "disable-context",

 "enable",

 "enable-context",

 "list-proxies",

 "read-attribute",

 "read-children-names",

 "read-children-resources",

 "read-children-types",

 "read-operation-description",

 "read-operation-names",

 "read-proxies-configuration",

 "read-proxies-info",

 "read-resource",

 "read-resource-description",

 "refresh",

 "remove-custom-metric",

 "remove-metric",

 "remove-proxy",

 "reset",

 "stop",

 "stop-context",

 "validate-address",

 "write-attribute"

]

}

The operations specific to the modcluster subsystem are divided in 3 categories the ones that affects the

configuration and require a restart of the subsystem, the one that just modify the behaviour temporarily and

the ones that display information from the httpd part.

operations displaying httpd informations
There are 2 operations that display how Apache httpd sees the node:

Latest WildFly Documentation

JBoss Community Documentation Page of 1503 2293

read-proxies-configuration
Send a DUMP message to all Apache httpd the node is connected to and display the message received

from Apache httpd.

[standalone@localhost:9999 subsystem=modcluster] :read-proxies-configuration

{

 "outcome" => "success",

 "result" => [

 "neo3:6666",

 "balancer: [1] Name: mycluster Sticky: 1 [JSESSIONID]/[jsessionid] remove: 0 force: 1

Timeout: 0 Maxtry: 1

node: [1:1],Balancer: mycluster,JVMRoute: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,Domain: [],Host:

127.0.0.1,Port: 8080,Type: http,flushpackets: 0,flushwait: 10,ping: 10,smax: 26,ttl: 60,timeout:

0

host: 1 [example.com] vhost: 1 node: 1

host: 2 [localhost] vhost: 1 node: 1

host: 3 [default-host] vhost: 1 node: 1

context: 1 [/myapp] vhost: 1 node: 1 status: 1

context: 2 [/] vhost: 1 node: 1 status: 1

",

 "jfcpc:6666",

 "balancer: [1] Name: mycluster Sticky: 1 [JSESSIONID]/[jsessionid] remove: 0 force: 1

Timeout: 0 maxAttempts: 1

node: [1:1],Balancer: mycluster,JVMRoute: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,LBGroup: [],Host:

127.0.0.1,Port: 8080,Type: http,flushpackets: 0,flushwait: 10,ping: 10,smax: 26,ttl: 60,timeout:

0

host: 1 [default-host] vhost: 1 node: 1

host: 2 [localhost] vhost: 1 node: 1

host: 3 [example.com] vhost: 1 node: 1

context: 1 [/] vhost: 1 node: 1 status: 1

context: 2 [/myapp] vhost: 1 node: 1 status: 1

"

]

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1504 2293

read-proxies-info
Send a INFO message to all Apache httpd the node is connected to and display the message received from

Apache httpd.

[standalone@localhost:9999 subsystem=modcluster] :read-proxies-info

{

 "outcome" => "success",

 "result" => [

 "neo3:6666",

 "Node: [1],Name: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,Balancer: mycluster,Domain: ,Host:

127.0.0.1,Port: 8080,Type: http,Flushpackets: Off,Flushwait: 10000,Ping: 10000000,Smax: 26,Ttl:

60000000,Elected: 0,Read: 0,Transfered: 0,Connected: 0,Load: -1

Vhost: [1:1:1], Alias: example.com

Vhost: [1:1:2], Alias: localhost

Vhost: [1:1:3], Alias: default-host

Context: [1:1:1], Context: /myapp, Status: ENABLED

Context: [1:1:2], Context: /, Status: ENABLED

",

 "jfcpc:6666",

 "Node: [1],Name: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,Balancer: mycluster,LBGroup:

,Host: 127.0.0.1,Port: 8080,Type: http,Flushpackets: Off,Flushwait: 10,Ping: 10,Smax: 26,Ttl:

60,Elected: 0,Read: 0,Transfered: 0,Connected: 0,Load: 1

Vhost: [1:1:1], Alias: default-host

Vhost: [1:1:2], Alias: localhost

Vhost: [1:1:3], Alias: example.com

Context: [1:1:1], Context: /, Status: ENABLED

Context: [1:1:2], Context: /myapp, Status: ENABLED

"

]

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1505 2293

operations that handle the proxies the node is connected too
there are 3 operation that could be used to manipulate the list of Apache httpd the node is connected too.

list-proxies:
Displays the httpd that are connected to the node. The httpd could be discovered via the Advertise protocol

or via the proxy-list attribute.

[standalone@localhost:9999 subsystem=modcluster] :list-proxies

{

 "outcome" => "success",

 "result" => [

 "proxy1:6666",

 "proxy2:6666"

]

}

remove-proxy
Remove a proxy from the discovered proxies or temporarily from the proxy-list attribute.

[standalone@localhost:9999 subsystem=modcluster] :remove-proxy(host=jfcpc, port=6666)

{"outcome" => "success"}

proxy
Add a proxy to the discovered proxies or temporarily to the proxy-list attribute.

[standalone@localhost:9999 subsystem=modcluster] :add-proxy(host=jfcpc, port=6666)

{"outcome" => "success"}

Latest WildFly Documentation

JBoss Community Documentation Page of 1506 2293

Context related operations
Those operations allow to send context related commands to Apache httpd. They are send automatically

when deploying or undeploying webapps.

enable-context
Tell Apache httpd that the context is ready receive requests.

[standalone@localhost:9999 subsystem=modcluster] :enable-context(context=/myapp,

virtualhost=default-host)

{"outcome" => "success"}

disable-context
Tell Apache httpd that it shouldn't send new session requests to the context of the virtualhost.

[standalone@localhost:9999 subsystem=modcluster] :disable-context(context=/myapp,

virtualhost=default-host)

{"outcome" => "success"}

stop-context
Tell Apache httpd that it shouldn't send requests to the context of the virtualhost.

[standalone@localhost:9999 subsystem=modcluster] :stop-context(context=/myapp,

virtualhost=default-host, waittime=50)

{"outcome" => "success"}

Node related operations
Those operations are like the context operation but they apply to all webapps running on the node and

operation that affect the whole node.

refresh
Refresh the node by sending a new CONFIG message to Apache httpd.

reset
reset the connection between Apache httpd and the node

Configuration

Metric configuration
There are 4 metric operations corresponding to add and remove load metrics to the dynamic-load-provider.

Note that when nothing is defined a simple-load-provider is use with a fixed load factor of one.

Latest WildFly Documentation

JBoss Community Documentation Page of 1507 2293

[standalone@localhost:9999 subsystem=modcluster] :read-resource(name=mod-cluster-config)

{

 "outcome" => "success",

 "result" => {"simple-load-provider" => {"factor" => "1"}}

}

that corresponds to the following configuration:

<subsystem xmlns="urn:jboss:domain:modcluster:1.0">

 <mod-cluster-config>

 <simple-load-provider factor="1"/>

 </mod-cluster-config>

 </subsystem>

metric

Add a metric to the dynamic-load-provider, the dynamic-load-provider in configuration is created if needed.

[standalone@localhost:9999 subsystem=modcluster] :add-metric(type=cpu)

{"outcome" => "success"}

[standalone@localhost:9999 subsystem=modcluster] :read-resource(name=mod-cluster-config)

{

 "outcome" => "success",

 "result" => {

 "dynamic-load-provider" => {

 "history" => 9,

 "decay" => 2,

 "load-metric" => [{

 "type" => "cpu"

 }]

 }

 }

}

remove-metric

Remove a metric from the dynamic-load-provider.

[standalone@localhost:9999 subsystem=modcluster] :remove-metric(type=cpu)

{"outcome" => "success"}

Latest WildFly Documentation

JBoss Community Documentation Page of 1508 2293

custom-metric / remove-custom-metric

like the add-metric and remove-metric except they require a class parameter instead the type. Usually they

needed additional properties which can be specified

[standalone@localhost:9999 subsystem=modcluster] :add-custom-metric(class=myclass,

property=[("pro1" => "value1"), ("pro2" => "value2")]

{"outcome" => "success"}

which corresponds the following in the xml configuration file:

<subsystem xmlns="urn:jboss:domain:modcluster:1.0">

 <mod-cluster-config>

 <dynamic-load-provider history="9" decay="2">

 <custom-load-metric class="myclass">

 <property name="pro1" value="value1"/>

 <property name="pro2" value="value2"/>

 </custom-load-metric>

 </dynamic-load-provider>

 </mod-cluster-config>

</subsystem>

Apache httpd
The recommended front-end module is mod_cluster but mod_jk or mod_proxy could be used as in Tomcat

or other AS version.

To use AJP define a ajp connector in the web subsystem like:

<subsystem xmlns="urn:jboss:domain:web:1.0">

 <connector name="http" protocol="HTTP/1.1" socket-binding="http"/>

 <connector name="ajp" protocol="AJP/1.3" socket-binding="ajp"/>

To the ajp in the in the socket-binding-group like:

<socket-binding-group name="standard-sockets" default-interface="public">

 <socket-binding name="http" port="8080"/>

 <socket-binding name="ajp" port="8009"/>

 <socket-binding name="https" port="8443"/>

7.17 EJB Services

This chapter explains how clustering of EJBs works in WildFly 8.

Latest WildFly Documentation

JBoss Community Documentation Page of 1509 2293

7.17.1 EJB Subsystem

7.17.2 EJB Timer

Wildfly now supports clustered database backed timers. For details have a look to the EJB3 reference

section

Marking an EJB as clustered
WildFly 8 allows clustering of stateful session beans. A stateful session bean can be marked with

 annotation or be marked as clustered using the@org.jboss.ejb3.annotation.Clustered

jboss-ejb3.xml's element.<clustered>

MyStatefulBean

import org.jboss.ejb3.annotation.Clustered;

import javax.ejb.Stateful;

@Stateful

@Clustered

public class MyStatefulBean {

...

}

jboss-ejb3.xml

<jboss xmlns="http://www.jboss.com/xml/ns/javaee"

 xmlns:jee="http://java.sun.com/xml/ns/javaee"

 xmlns:c="urn:clustering:1.0">

 <jee:assembly-descriptor>

 <c:clustering>

 <jee:ejb-name>DDBasedClusteredBean</jee:ejb-name>

 <c:clustered>true</c:clustered>

 </c:clustering>

 </jee:assembly-descriptor>

</jboss>

https://docs.jboss.org/author/display/WFLY/EJB3+Clustered+Database+Timers
https://docs.jboss.org/author/display/WFLY/EJB3+Clustered+Database+Timers

Latest WildFly Documentation

JBoss Community Documentation Page of 1510 2293

Deploying clustered EJBs
Clustering support is available in the HA profiles of WildFly 8. In this chapter we'll be using the standalone

server for explaining the details. However, the same applies to servers in a domain mode. Starting the

standalone server with HA capabilities enabled, involves starting it with the standalone-ha.xml (or even

standalone-full-ha.xml):

./standalone.sh -server-config=standalone-ha.xml

This will start a single instance of the server with HA capabilities. Deploying the EJBs to this instance doesn't

involve anything special and is the same as explained in the .application deployment chapter

Obviously, to be able to see the benefits of clustering, you'll need more than one instance of the server. So

let's start another server with HA capabilities. That another instance of the server can either be on the same

machine or on some other machine. If it's on the same machine, the two things you have to make sure is

that you pass the port offset for the second instance and also make sure that each of the server instances

have a unique system property. You can do that by passing the following two systemjboss.node.name

properties to the startup command:

./standalone.sh -server-config=standalone-ha.xml -Djboss.socket.binding.port-offset=<offset of

your choice> -Djboss.node.name=<unique node name>

Follow whichever approach you feel comfortable with for deploying the EJB deployment to this instance too.

Deploying the application on just one node of a standalone instance of a clustered server does not

mean that it will be automatically deployed to the other clustered instance. You will have to do

deploy it explicitly on the other standalone clustered instance too. Or you can start the servers in

domain mode so that the deployment can be deployed to all the server within a server group. See

the for more details on domain setup.admin guide

Now that you have deployed an application with clustered EJBs on both the instances, the EJBs are now

capable of making use of the clustering features.

Failover for clustered EJBs
Clustered EJBs have failover capability. The state of the @Stateful @Clustered EJBs is replicated across

the cluster nodes so that if one of the nodes in the cluster goes down, some other node will be able to take

over the invocations. Let's see how it's implemented in WildFly 8. In the next few sections we'll see how it

works for remote (standalone) clients and for clients in another remote WildFly server instance. Although,

there isn't a difference in how it works in both these cases, we'll still explain it separately so as to make sure

there aren't any unanswered questions.

https://docs.jboss.org/author/display/AS71/Application+deployment
https://docs.jboss.org/author/display/AS71/Admin+Guide

Latest WildFly Documentation

JBoss Community Documentation Page of 1511 2293

Remote standalone clients
In this section we'll consider a remote standalone client (i.e. a client which runs in a separate JVM and isn't

running within another WildFly 8 instance). Let's consider that we have 2 servers, server X and server Y

which we started earlier. Each of these servers has the clustered EJB deployment. A standalone remote

client can use either the or native JBoss EJB client APIs to communicate with the servers.JNDI approach

The important thing to note is that when you are invoking clustered EJB deployments, you do have to listnot

all the servers within the cluster (which obviously wouldn't have been feasible due the dynamic nature of

cluster node additions within a cluster).

The remote client just has to list only one of the servers with the clustering capability. In this case, we can

either list server X (in jboss-ejb-client.properties) server Y. This server will act as the starting point foror

cluster topology communication between the client and the clustered nodes.

Note that you have to configure the cluster in the jboss-ejb-client.properties configuration file, like so:ejb

remote.clusters=ejb

remote.cluster.ejb.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

remote.cluster.ejb.connect.options.org.xnio.Options.SSL_ENABLED=false

https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI

Latest WildFly Documentation

JBoss Community Documentation Page of 1512 2293

Cluster topology communication
When a client connects to a server, the JBoss EJB client implementation (internally) communicates with the

server for cluster topology information, if the server had clustering capability. In our example above, let's

assume we listed server X as the initial server to connect to. When the client connects to server X, the

server will send back an (asynchronous) cluster topology message to the client. This topology message

consists of the cluster name(s) and the information of the nodes that belong to the cluster. The node

information includes the node address and port number to connect to (whenever necessary). So in this

example, the server X will send back the cluster topology consisting of the other server Y which belongs to

the cluster.

In case of stateful (clustered) EJBs, a typical invocation flow involves creating of a session for the stateful

bean, which happens when you do a JNDI lookup for that bean, and then invoking on the returned proxy.

The lookup for stateful bean, internally, triggers a (synchronous) session creation request from the client to

the server. In this case, the session creation request goes to server X since that's the initial connection that

we have configured in our jboss-ejb-client.properties. Since server X is clustered, it will return back a session

id and along with send back an of that session. In case of clustered servers, the affinity equals to"affinity"

the name of the cluster to which the stateful bean belongs on the server side. For non-clustered beans, the

affinity is just the node name on which the session was created. This will later help the EJB client toaffinity

route the invocations on the proxy, appropriately to either a node within a cluster (for clustered beans) or to a

specific node (for non-clustered beans). While this session creation request is going on, the server X will

also send back an asynchronous message which contains the cluster topology. The JBoss EJB client

implementation will take note of this topology information and will later use it for connection creation to nodes

within the cluster and routing invocations to those nodes, whenever necessary.

Now that we know how the cluster topology information is communicated from the server to the client, let see

how failover works. Let's continue with the example of server X being our starting point and a client

application looking up a stateful bean and invoking on it. During these invocations, the client side will have

collected the cluster topology information from the server. Now let's assume for some reason, server X goes

down and the client application subsequent invokes on the proxy. The JBoss EJB client implementation, at

this stage will be aware of the affinity and in this case it's a cluster affinity. Because of the cluster topology

information it has, it knows that the cluster has two nodes server X and server Y. When the invocation now

arrives, it sees that the server X is down. So it uses a selector to fetch a suitable node from among the

cluster nodes. The selector itself is configurable, but we'll leave it from discussion for now. When the selector

returns a node from among the cluster, the JBoss EJB client implementation creates a connection to that

node (if not already created earlier) and creates a EJB receiver out of it. Since in our example, the only other

node in the cluster is server Y, the selector will return that node and the JBoss EJB client implementation will

use it to create a EJB receiver out of it and use that receiver to pass on the invocation on the proxy.

Effectively, the invocation has now failed over to a different node within the cluster.

Latest WildFly Documentation

JBoss Community Documentation Page of 1513 2293

Remote clients on another instance of WildFly 8
So far we discussed remote standalone clients which typically use either the EJB client API or the

jboss-ejb-client.properties based approach to configure and communicate with the servers where the

clustered beans are deployed. Now let's consider the case where the client is an application deployed

another AS7 instance and it wants to invoke on a clustered stateful bean which is deployed on another

instance of WildFly 8. In this example let's consider a case where we have 3 servers involved. Server X and

Server Y both belong to a cluster and have clustered EJB deployed on them. Let's consider another server

instance Server C (which may or may have clustering capability) which acts as a client on which there'snot

a deployment which wants to invoke on the clustered beans deployed on server X and Y and achieve

failover.

The configurations required to achieve this are explained in . As you can see the configurationsthis chapter

are done in a jboss-ejb-client.xml which points to a remote outbound connection to the other server. This

jboss-ejb-client.xml goes in the deployment of server C (since that's our client). As explained eariler, the

client configuration need point to all clustered nodes. Instead it just has to point to one of them which willnot

act as a start point for communication. So in this case, we can create a remote outbound connection on

server C to server X and use server X as our starting point for communication. Just like in the case of remote

standalone clients, when the application on server C (client) looks up a stateful bean, a session creation

request will be sent to server X which will send back a session id and the cluster affinity for it. Furthermore,

server X asynchronously send back a message to server C (client) containing the cluster topology. This

topology information will include the node information of server Y (since that belongs to the cluster along with

server X). Subsequent invocations on the proxy will be routed appropriately to the nodes in the cluster. If

server X goes down, as explained earlier, a different node from the cluster will be selected and the

invocation will be forwarded to that node.

As can be seen both remote standalone client and remote clients on another WildFly 8 instance act similar in

terms of failover.

Testcases for failover of stateful beans
We have testcases in WildFly 8 testsuite which test that whatever is explained above works as expected.

The tests the case where a stateful EJB uses @ClusteredRemoteEJBClientStatefulBeanFailoverTestCase

annotation to mark itself as clustered. We also have RemoteEJBClientDDBasedSFSBFailoverTestCase

which uses jboss-ejb3.xml to mark a stateful EJB as clustered. Both these testcases test that when a node

goes down in a cluster, the client invocation is routed to a different node in the cluster.

7.17.3 EJB Timer

Wildfly now supports clustered database backed timers. For details have a look to the EJB3 reference

section

https://docs.jboss.org/author/display/WFLY8/EJB+invocations+from+a+remote+server+instance
https://github.com/wildfly/wildfly/blob/master/testsuite/integration/clust/src/test/java/org/jboss/as/test/clustering/cluster/ejb3/stateful/remote/failover/RemoteEJBClientStatefulBeanFailoverTestCase.java
https://github.com/wildfly/wildfly/blob/master/testsuite/integration/clust/src/test/java/org/jboss/as/test/clustering/cluster/ejb3/stateful/remote/failover/dd/RemoteEJBClientDDBasedSFSBFailoverTestCase.java
https://docs.jboss.org/author/display/WFLY/EJB3+Clustered+Database+Timers
https://docs.jboss.org/author/display/WFLY/EJB3+Clustered+Database+Timers

Latest WildFly Documentation

JBoss Community Documentation Page of 1514 2293

1.

2.

3.

4.

7.18 HA Singleton Features

In general, an HA or clustered singleton is a service that exists on multiple nodes in a cluster, but is active on

just a single node at any given time. If the node providing the service fails or is shut down, a new singleton

provider is chosen and started. Thus, other than a brief interval when one provider has stopped and another

has yet to start, the service is always running on one node.

7.18.1 Singleton subsystem

WildFly 10 introduces a “singleton” subsystem, which defines a set of policies that define how an HA

singleton should behave. A singleton policy can be used to instrument singleton deployments or to create

singleton MSC services.

Configuration
The from WildFly’s ha and full-ha profile looks like:default subsystem configuration

<subsystem xmlns="urn:jboss:domain:singleton:1.0">

 <singleton-policies default="default">

 <singleton-policy name="default" cache-container="server">

 <simple-election-policy/>

 </singleton-policy>

 </singleton-policies>

</subsystem>

A singleton policy defines:

A unique name

A cache container and cache with which to register singleton provider candidates

An election policy

A quorum (optional)

One can add a new singleton policy via the following management operation:

/subsystem=singleton/singleton-policy=foo:add(cache-container=server)

Cache configuration
The cache-container and cache attributes of a singleton policy must reference a valid cache from the

Infinispan subsystem. If no specific cache is defined, the default cache of the cache container is assumed.

This cache is used as a registry of which nodes can provide a given service and will typically use a

replicated-cache configuration.

https://github.com/wildfly/wildfly/blob/10.0.0.Final/clustering/singleton/extension/src/main/resources/schema/wildfly-singleton_1_0.xsd

Latest WildFly Documentation

JBoss Community Documentation Page of 1515 2293

Election policies
WildFly 10 includes 2 singleton election policy implementations:

simple

Elects the provider (a.k.a. master) of a singleton service based on a specified position in a circular

linked list of eligible nodes sorted by descending age. Position=0, the default value, refers to the

oldest node, 1 is second oldest, etc. ; while position=-1 refers to the youngest node, -2 to the second

youngest, etc.

e.g.

/subsystem=singleton/singleton-policy=foo/election-policy=simple:add(position=-1)

random

Elects a random member to be the provider of a singleton service

e.g.

/subsystem=singleton/singleton-policy=foo/election-policy=random:add()

Preferences
Additionally, any singleton election policy may indicate a preference for one or more members of a cluster.

Preferences may be defined either via node name or via outbound socket binding name. Node preferences

always take precedent over the results of an election policy.

e.g.

/subsystem=singleton/singleton-policy=foo/election-policy=simple:list-add(name=name-preferences,

value=nodeA)

/subsystem=singleton/singleton-policy=bar/election-policy=random:list-add(name=socket-binding-preferences,

value=nodeA)

Quorum
Network partitions are particularly problematic for singleton services, since they can trigger multiple singleton

providers for the same service to run at the same time. To defend against this scenario, a singleton policy

may define a quorum that requires a minimum number of nodes to be present before a singleton provider

election can take place. A typical deployment scenario uses a quorum of N/2 + 1, where N is the anticipated

cluster size. This value can be updated at runtime, and will immediately affect any active singleton services.

e.g.

/subsystem=singleton/singleton-policy=foo:write-attribute(name=quorum, value=3)

Latest WildFly Documentation

JBoss Community Documentation Page of 1516 2293

HA environments
The singleton subsystem can be used in a non-HA profile, so long as the cache that it references uses a

local-cache configuration. In this manner, an application leveraging singleton functionality (via the singleton

API or using a singleton deployment descriptor) will continue function as if the server was a sole member of

a cluster. For obvious reasons, the use of a quorum does not make sense in such a configuration.

7.18.2 Singleton deployments

WildFly 10 resurrects the ability to start a given deployment on a single node in the cluster at any given time.

If that node shuts down, or fails, the application will automatically start on another node on which the given

deployment exists. Long time users of JBoss AS will recognize this functionality as being akin to the

, a.k.a. “ ”, feature of AS6 and earlier.HASingletonDeployer deploy-hasingleton

Usage
A deployment indicates that it should be deployed as a singleton via a deployment descriptor. This can either

be a standalone “/META-INF/singleton-deployment.xml” file or embedded within an existing jboss-all.xml

descriptor. This descriptor may be applied to any deployment type, e.g. JAR, WAR, EAR, etc., with the

exception of a subdeployment within an EAR.

e.g.

<singleton-deployment xmlns="urn:jboss:singleton-deployment:1.0" policy="foo"/>

The singleton deployment descriptor defines which should be used to deploy the application.singleton policy

If undefined, the default singleton policy is used, as defined by the singleton subsystem.

Using a standalone descriptor is often preferable, since it may be overlaid onto an existing deployment

archive.

e.g.

deployment-overlay add --name=singleton-policy-foo

--content=/META-INF/singleton-deployment.xml=/path/to/singleton-deployment.xml

--deployments=my-app.jar --redeploy-affected

7.18.3 Singleton MSC services

WildFly allows any user MSC service to be installed as a singleton MSC service via a public API. Once

installed, the service will only ever start on 1 node in the cluster at a time. If the node providing the service is

shutdown, or fails, another node on which the service was installed will start automatically.

https://docs.jboss.org/jbossclustering/cluster_guide/5.1/html/deployment.chapt.html#d0e1220
https://docs.jboss.org/jbossclustering/cluster_guide/5.1/html/deployment.chapt.html#d0e1220
https://docs.jboss.org/author/display/WFLY10/Singleton+subsystem

Latest WildFly Documentation

JBoss Community Documentation Page of 1517 2293

Installing an MSC service using an existing singleton policy
While singleton MSC services have been around since AS7, WildFly 10 adds the ability to leverage the

singleton subsystem to create singleton MSC services from existing singleton policies.

The singleton subsystem exposes capabilities for each singleton policy it defines. These policies,

represented via the interface, can beorg.wildfly.clustering.singleton.SingletonPolicy

referenced via the following name: “org.wildfly.clustering.singleton.policy”

e.g.

public class MyServiceActivator implements ServiceActivator {

 @Override

 public void activate(ServiceActivatorContext context) {

 ServiceName name = ServiceName.parse(“my.service.name”);

 Service<?> service = new MyService();

 try {

 SingletonPolicy policy = (SingletonPolicy)

context.getServiceRegistry().getRequiredService(ServiceName.parse(SingletonPolicy.CAPABILITY_NAME)).awaitValue();

policy.createSingletonServiceBuilder(name, service).build(context.getServiceTarget()).install();

 } catch (InterruptedException e) {

 throw new ServiceRegistryException(e);

 }

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1518 2293

Installing an MSC service using dynamic singleton policy
Alternatively, you can build singleton policy dynamically, which is particularly useful if you want to use a

custom singleton election policy. Specifically, is a generalization of the SingletonPolicy

 interface, whichorg.wildfly.clustering.singleton.SingletonServiceBuilderFactory

includes support for specifying an election policy and, optionally, a quorum.

e.g.

public class MyServiceActivator implements ServiceActivator {

 @Override

 public void activate(ServiceActivatorContext context) {

 String containerName = “server”;

 ElectionPolicy policy = new MySingletonElectionPolicy();

 int quorum = 3;

 ServiceName name = ServiceName.parse(“my.service.name”);

 Service<?> service = new MyService();

 try {

 SingletonServiceBuilderFactory factory = (SingletonServiceBuilderFactory)

context.getServiceRegistry().getRequiredService(SingletonServiceName.BUILDER.getServiceName(containerName))).awaitValue();

factory.createSingletonServiceBuilder(name, service)

 .electionPolicy(policy)

 .quorum(quorum)

 .build(context.getServiceTarget()).install();

 } catch (InterruptedException e) {

 throw new ServiceRegistryException(e);

 }

 }

}

7.18.4 Singleton subsystem

WildFly 10 introduces a “singleton” subsystem, which defines a set of policies that define how an HA

singleton should behave. A singleton policy can be used to instrument singleton deployments or to create

singleton MSC services.

Configuration
The from WildFly’s ha and full-ha profile looks like:default subsystem configuration

<subsystem xmlns="urn:jboss:domain:singleton:1.0">

 <singleton-policies default="default">

 <singleton-policy name="default" cache-container="server">

 <simple-election-policy/>

 </singleton-policy>

 </singleton-policies>

</subsystem>

https://github.com/wildfly/wildfly/blob/10.0.0.Final/clustering/singleton/extension/src/main/resources/schema/wildfly-singleton_1_0.xsd

Latest WildFly Documentation

JBoss Community Documentation Page of 1519 2293

1.

2.

3.

4.

A singleton policy defines:

A unique name

A cache container and cache with which to register singleton provider candidates

An election policy

A quorum (optional)

One can add a new singleton policy via the following management operation:

/subsystem=singleton/singleton-policy=foo:add(cache-container=server)

Cache configuration
The cache-container and cache attributes of a singleton policy must reference a valid cache from the

Infinispan subsystem. If no specific cache is defined, the default cache of the cache container is assumed.

This cache is used as a registry of which nodes can provide a given service and will typically use a

replicated-cache configuration.

Latest WildFly Documentation

JBoss Community Documentation Page of 1520 2293

Election policies
WildFly 10 includes 2 singleton election policy implementations:

simple

Elects the provider (a.k.a. master) of a singleton service based on a specified position in a circular

linked list of eligible nodes sorted by descending age. Position=0, the default value, refers to the

oldest node, 1 is second oldest, etc. ; while position=-1 refers to the youngest node, -2 to the second

youngest, etc.

e.g.

/subsystem=singleton/singleton-policy=foo/election-policy=simple:add(position=-1)

random

Elects a random member to be the provider of a singleton service

e.g.

/subsystem=singleton/singleton-policy=foo/election-policy=random:add()

Preferences
Additionally, any singleton election policy may indicate a preference for one or more members of a cluster.

Preferences may be defined either via node name or via outbound socket binding name. Node preferences

always take precedent over the results of an election policy.

e.g.

/subsystem=singleton/singleton-policy=foo/election-policy=simple:list-add(name=name-preferences,

value=nodeA)

/subsystem=singleton/singleton-policy=bar/election-policy=random:list-add(name=socket-binding-preferences,

value=nodeA)

Quorum
Network partitions are particularly problematic for singleton services, since they can trigger multiple singleton

providers for the same service to run at the same time. To defend against this scenario, a singleton policy

may define a quorum that requires a minimum number of nodes to be present before a singleton provider

election can take place. A typical deployment scenario uses a quorum of N/2 + 1, where N is the anticipated

cluster size. This value can be updated at runtime, and will immediately affect any active singleton services.

e.g.

/subsystem=singleton/singleton-policy=foo:write-attribute(name=quorum, value=3)

Latest WildFly Documentation

JBoss Community Documentation Page of 1521 2293

HA environments
The singleton subsystem can be used in a non-HA profile, so long as the cache that it references uses a

local-cache configuration. In this manner, an application leveraging singleton functionality (via the singleton

API or using a singleton deployment descriptor) will continue function as if the server was a sole member of

a cluster. For obvious reasons, the use of a quorum does not make sense in such a configuration.

7.18.5 Singleton deployments

WildFly 10 resurrects the ability to start a given deployment on a single node in the cluster at any given time.

If that node shuts down, or fails, the application will automatically start on another node on which the given

deployment exists. Long time users of JBoss AS will recognize this functionality as being akin to the

, a.k.a. “ ”, feature of AS6 and earlier.HASingletonDeployer deploy-hasingleton

Usage
A deployment indicates that it should be deployed as a singleton via a deployment descriptor. This can either

be a standalone “/META-INF/singleton-deployment.xml” file or embedded within an existing jboss-all.xml

descriptor. This descriptor may be applied to any deployment type, e.g. JAR, WAR, EAR, etc., with the

exception of a subdeployment within an EAR.

e.g.

<singleton-deployment xmlns="urn:jboss:singleton-deployment:1.0" policy="foo"/>

The singleton deployment descriptor defines which should be used to deploy the application.singleton policy

If undefined, the default singleton policy is used, as defined by the singleton subsystem.

Using a standalone descriptor is often preferable, since it may be overlaid onto an existing deployment

archive.

e.g.

deployment-overlay add --name=singleton-policy-foo

--content=/META-INF/singleton-deployment.xml=/path/to/singleton-deployment.xml

--deployments=my-app.jar --redeploy-affected

7.18.6 Singleton MSC services

WildFly allows any user MSC service to be installed as a singleton MSC service via a public API. Once

installed, the service will only ever start on 1 node in the cluster at a time. If the node providing the service is

shutdown, or fails, another node on which the service was installed will start automatically.

https://docs.jboss.org/jbossclustering/cluster_guide/5.1/html/deployment.chapt.html#d0e1220
https://docs.jboss.org/jbossclustering/cluster_guide/5.1/html/deployment.chapt.html#d0e1220
https://docs.jboss.org/author/display/WFLY10/Singleton+subsystem

Latest WildFly Documentation

JBoss Community Documentation Page of 1522 2293

Installing an MSC service using an existing singleton policy
While singleton MSC services have been around since AS7, WildFly 10 adds the ability to leverage the

singleton subsystem to create singleton MSC services from existing singleton policies.

The singleton subsystem exposes capabilities for each singleton policy it defines. These policies,

represented via the interface, can beorg.wildfly.clustering.singleton.SingletonPolicy

referenced via the following name: “org.wildfly.clustering.singleton.policy”

e.g.

public class MyServiceActivator implements ServiceActivator {

 @Override

 public void activate(ServiceActivatorContext context) {

 ServiceName name = ServiceName.parse(“my.service.name”);

 Service<?> service = new MyService();

 try {

 SingletonPolicy policy = (SingletonPolicy)

context.getServiceRegistry().getRequiredService(ServiceName.parse(SingletonPolicy.CAPABILITY_NAME)).awaitValue();

policy.createSingletonServiceBuilder(name, service).build(context.getServiceTarget()).install();

 } catch (InterruptedException e) {

 throw new ServiceRegistryException(e);

 }

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1523 2293

Installing an MSC service using dynamic singleton policy
Alternatively, you can build singleton policy dynamically, which is particularly useful if you want to use a

custom singleton election policy. Specifically, is a generalization of the SingletonPolicy

 interface, whichorg.wildfly.clustering.singleton.SingletonServiceBuilderFactory

includes support for specifying an election policy and, optionally, a quorum.

e.g.

public class MyServiceActivator implements ServiceActivator {

 @Override

 public void activate(ServiceActivatorContext context) {

 String containerName = “server”;

 ElectionPolicy policy = new MySingletonElectionPolicy();

 int quorum = 3;

 ServiceName name = ServiceName.parse(“my.service.name”);

 Service<?> service = new MyService();

 try {

 SingletonServiceBuilderFactory factory = (SingletonServiceBuilderFactory)

context.getServiceRegistry().getRequiredService(SingletonServiceName.BUILDER.getServiceName(containerName))).awaitValue();

factory.createSingletonServiceBuilder(name, service)

 .electionPolicy(policy)

 .quorum(quorum)

 .build(context.getServiceTarget()).install();

 } catch (InterruptedException e) {

 throw new ServiceRegistryException(e);

 }

 }

}

7.19 Hibernate

7.20 Clustering and Domain Setup Walkthrough

In this article, I'd like to show you how to setup WildFly 9 in domain mode and enable clustering so we could

get HA and session replication among the nodes. It's a step to step guide so you can follow the instructions

in this article and build the sandbox by yourself

Latest WildFly Documentation

JBoss Community Documentation Page of 1524 2293

7.20.1 Preparation & Scenario

Preparation
We need to prepare two hosts (or virtual hosts) to do the experiment. We will use these two hosts as

following:

Install Fedora 16 on them (Other linux version may also fine but I'll use Fedora 16 in this article)

Make sure that they are in same local network

Make sure that they can access each other via different TCP/UDP ports(better turn off firewall and

disable SELinux during the experiment or they will cause network problems).

Scenario
Here are some details on what we are going to do:

Let's call one host as 'master', the other one as 'slave'.

Both master and slave will run WildFly 9, and master will run as domain controller, slave will under the

domain management of master.

Apache httpd will be run on master, and in httpd we will enable the mod_cluster module. The WildFly

9 on master and slave will form a cluster and discovered by httpd.

We will deploy a demo project into domain, and verify that the project is deployed into both master

and slave by domain controller. Thus we could see that domain management provide us a single

point to manage the deployments across multiple hosts in a single domain.

We will access the cluster URL and verify that httpd has distributed the request to one of the WildFly

host. So we could see the cluster is working properly.

Latest WildFly Documentation

JBoss Community Documentation Page of 1525 2293

We will try to make a request on cluster, and if the request is forwarded to master, we then kill the

WildFly process on master. After that we will go on requesting cluster and we should see the request

is forwarded to slave, but the session is not lost. Our goal is to verify the HA is working and sessions

are replicated.

After previous step finished, we reconnect the master by restarting it. We should see the master is

registered back into cluster, also we should see slave sees master as domain controller again and

connect to it.

Please don't worry if you cannot digest so many details currently. Let's move on and you will get the points

step by step.

Latest WildFly Documentation

JBoss Community Documentation Page of 1526 2293

7.20.2 Download WildFly 9

First we should download WildFly 9 from the website:

http://wildfly.org/downloads/

The version I downloaded is WildFly 9.0.0.Final.

After download finished, I got the zip file:

wildfly-9.0.0.Final.zip

Note: The name of your archive will differ slightly due to version naming conventions.

Then I unzipped the package to master and try to make a test run:

unzip wildfly-9.0.0.Final.zip

cd wildfly-9.0.0.Final/bin

./domain.sh

If everything ok we should see WildFly successfully startup in domain mode:

wildfly-9.0.0.Final/bin$./domain.sh

===

 JBoss Bootstrap Environment

 JBOSS_HOME: /Users/weli/Downloads/wildfly-9.0.0.Final

 JAVA: /Library/Java/Home/bin/java

 JAVA_OPTS: -Xms64m -Xmx512m -XX:MaxPermSize=256m -Djava.net.preferIPv4Stack=true

-Dorg.jboss.resolver.warning=true -Dsun.rmi.dgc.client.gcInterval=3600000

-Dsun.rmi.dgc.server.gcInterval=3600000 -Djboss.modules.system.pkgs=org.jboss.byteman

-Djava.awt.headless=true

===

...

[Server:server-two] 14:46:12,375 INFO [org.jboss.as] (Controller Boot Thread) JBAS015874:

WildFly 9.0.0.Final "Kenny" started in 8860ms - Started 210 of 258 services (89 services are

lazy, passive or on-demand)

Now exit master and let's repeat the same steps on slave host. Finally we get WildFly 9 run on both master

and slave, then we could move on to next step.

Latest WildFly Documentation

JBoss Community Documentation Page of 1527 2293

7.20.3 Domain Configuration

Interface config on master
In this section we'll setup both master and slave for them to run in domain mode. And we will configure

master to be the domain controller.

First open the host.xml in master for editing:

vi domain/configuration/host.xml

The default settings for interface in this file is like:

<interfaces>

 <interface name="management">

 <inet-address value="${jboss.bind.address.management:127.0.0.1}"/>

 </interface>

 <interface name="public">

 <inet-address value="${jboss.bind.address:127.0.0.1}"/>

 </interface>

 <interface name="unsecured">

 <inet-address value="127.0.0.1" />

 </interface>

</interfaces>

We need to change the address to the management interface so slave could connect to master. The public

interface allows the application to be accessed by non-local HTTP, and the unsecured interface allows

remote RMI access. My master's ip address is 10.211.55.7, so I change the config to:

<interfaces>

 <interface name="management"

 <inet-address value="${jboss.bind.address.management:10.211.55.7}"/>

 </interface>

 <interface name="public">

 <inet-address value="${jboss.bind.address:10.211.55.7}"/>

 </interface>

 <interface name="unsecured">

 <inet-address value="10.211.55.7" />

 </interface>

</interfaces>

Interface config on slave
Now we will setup interfaces on slave. Let's edit host.xml. Similar to the steps on master, open host.xml first:

vi domain/configuration/host.xml

Latest WildFly Documentation

JBoss Community Documentation Page of 1528 2293

The configuration we'll use on slave is a little bit different, because we need to let slave connect to master.

First we need to set the hostname. We change the name property from:

<host name="master" xmlns="urn:jboss:domain:3.0">

to:

<host name="slave" xmlns="urn:jboss:domain:3.0">

Then we need to modify domain-controller section so slave can connect to master's management port:

<domain-controller>

 <remote protocol="remote" host="10.211.55.7" port="9999" />

</domain-controller>

As we know, 10.211.55.7 is the ip address of master.

You may use discovery options to define multiple mechanisms to connect to the remote domain controller :

<domain-controller>

 <remote security-realm="ManagementRealm" >

 <discovery-options>

 <static-discovery name="master-native" protocol="remote" host="10.211.55.7" port=9999" />

 <static-discovery name="master-https" protocol="https-remoting" host="10.211.55.7"

port="9993" security-realm="ManagementRealm"/>

 <static-discovery name="master-http" protocol="http-remoting" host="10.211.55.7"

port="9990" />

 </discovery-options>

 </remote>

 </domain-controller>

Finally, we also need to configure interfaces section and expose the management ports to public address:

<interfaces>

 <interface name="management">

 <inet-address value="${jboss.bind.address.management:10.211.55.2}"/>

 </interface>

 <interface name="public">

 <inet-address value="${jboss.bind.address:10.211.55.2}"/>

 </interface>

 <interface name="unsecured">

 <inet-address value="10.211.55.2" />

 </interface>

</interfaces>

10.211.55.2 is the ip address of the slave. Refer to the domain controller configuration above for an

explanation of the management, public, and unsecured interfaces.

Latest WildFly Documentation

JBoss Community Documentation Page of 1529 2293

It is easier to turn off all firewalls for testing, but in production, you need to enable the firewall and

allow access to the following ports: 9999.

Security Configuration
If you start WildFly on both master and slave now, you will see the slave cannot be started with following

error:

[Host Controller] 20:31:24,575 ERROR [org.jboss.remoting.remote] (Remoting "endpoint" read-1)

JBREM000200: Remote connection failed: javax.security.sasl.SaslException: Authentication failed:

all available authentication mechanisms failed

[Host Controller] 20:31:24,579 WARN [org.jboss.as.host.controller] (Controller Boot Thread)

JBAS010900: Could not connect to remote domain controller 10.211.55.7:9999

[Host Controller] 20:31:24,582 ERROR [org.jboss.as.host.controller] (Controller Boot Thread)

JBAS010901: Could not connect to master. Aborting. Error was: java.lang.IllegalStateException:

JBAS010942: Unable to connect due to authentication failure.

Because we haven't properly set up the authentication between master and slave. Now let's work on it:

Master
In bin directory there is a script called add-user.sh, we'll use it to add new users to the properties file used for

domain management authentication:

./add-user.sh

Enter the details of the new user to add.

Realm (ManagementRealm) :

Username : admin

Password recommendations are listed below. To modify these restrictions edit the

add-user.properties configuration file.

 - The password should not be one of the following restricted values {root, admin,

administrator}

 - The password should contain at least 8 characters, 1 alphabetic character(s), 1 digit(s), 1

non-alphanumeric symbol(s)

 - The password should be different from the username

Password : passw0rd!

Re-enter Password : passw0rd!

The username 'admin' is easy to guess

Are you sure you want to add user 'admin' yes/no? yes

About to add user 'admin' for realm 'ManagementRealm'

Is this correct yes/no? yes

Added user 'admin' to file

'/home/weli/projs/wildfly-9.0.0.Final/standalone/configuration/mgmt-users.properties'

Added user 'admin' to file

'/home/weli/projs/wildfly-9.0.0.Final/domain/configuration/mgmt-users.properties'

Latest WildFly Documentation

JBoss Community Documentation Page of 1530 2293

As shown above, we have created a user named 'admin' and its password is 'passw0rd!'. Then we add

another user called 'slave':

./add-user.sh

Enter the details of the new user to add.

Realm (ManagementRealm) :

Username : slave

Password recommendations are listed below. To modify these restrictions edit the

add-user.properties configuration file.

 - The password should not be one of the following restricted values {root, admin,

administrator}

 - The password should contain at least 8 characters, 1 alphabetic character(s), 1 digit(s), 1

non-alphanumeric symbol(s)

 - The password should be different from the username

Password : passw0rd!

Re-enter Password : passw0rd!

What groups do you want this user to belong to? (Please enter a comma separated list, or leave

blank for none)[]:

About to add user 'slave' for realm 'ManagementRealm'

Is this correct yes/no? yes

Added user 'slave' to file

'/home/weli/projs/wildfly-9.0.0.Final/standalone/configuration/mgmt-users.properties'

Added user 'slave' to file

'/home/weli/projs/wildfly-9.0.0.Final/domain/configuration/mgmt-users.properties'

Added user 'slave' with groups to file

'/home/weli/projs/wildfly-9.0.0.Final/standalone/configuration/mgmt-groups.properties'

Added user 'slave' with groups to file

'/home/weli/projs/wildfly-9.0.0.Final/domain/configuration/mgmt-groups.properties'

Is this new user going to be used for one AS process to connect to another AS process?

e.g. for a slave host controller connecting to the master or for a Remoting connection for

server to server EJB calls.

yes/no? yes

To represent the user add the following to the server-identities definition <secret

value="cGFzc3cwcmQh" />

We will use this user for slave host to connect to master. The add-user.sh will let you choose the type of the

user. Here we need to choose 'Management User' type for both 'admin' and 'slave' account.

Latest WildFly Documentation

JBoss Community Documentation Page of 1531 2293

Slave
In slave we need to configure host.xml for authentication. We should change the security-realms section as

following:

<security-realms>

 <security-realm name="ManagementRealm">

 <server-identities>

 <secret value="cGFzc3cwcmQh" />

 <!-- This is required for SSL remoting -->

 <ssl>

 <keystore path="server.keystore" relative-to="jboss.domain.config.dir"

keystore-password="jbossas" alias="jboss" key-password="jbossas"/>

 </ssl>

 </server-identities>

 <authentication>

 <properties path="mgmt-users.properties" relative-to="jboss.domain.config.dir"/>

 </authentication>

 </security-realm>

</security-realms>

We've added server-identities into security-realm, which is used for authentication host when slave tries to

connect to master. In secret value property we have 'cGFzc3cwcmQh', which is the base64 code for

'passw0rd!'. You can generate this value by using a base64 calculator such as the one at

.http://www.webutils.pl/index.php?idx=base64

Then in domain controller section we also need to add security-realm property:

<domain-controller>

 <remote protocol="remote" host="10.211.55.7" port="9999" username="slave"

security-realm="ManagementRealm" />

</domain-controller>

So the slave host could use the authentication information we provided in 'ManagementRealm'.

Dry Run
Now everything is set for the two hosts to run in domain mode. Let's start them by running domain.sh on

both hosts. If everything goes fine, we could see from the log on master:

[Host Controller] 21:30:52,042 INFO [org.jboss.as.domain] (management-handler-threads - 1)

JBAS010918: Registered remote slave host slave

That means all the configurations are correct and two hosts are run in domain mode now as expected.

Hurrah!

http://www.webutils.pl/index.php?idx=base64

Latest WildFly Documentation

JBoss Community Documentation Page of 1532 2293

7.20.4 Deployment

Now we can deploy a demo project into the domain. I have created a simple project located at:

https://github.com/liweinan/cluster-demo

We can use git command to fetch a copy of the demo:

git clone git://github.com/liweinan/cluster-demo.git

In this demo project we have a very simple web application. In web.xml we've enabled session replication by

adding following entry:

<distributable/>

And it contains a jsp page called put.jsp which will put current time to a session entry called 'current.time':

<%

 session.setAttribute("current.time", new java.util.Date());

%>

Then we could fetch this value from get.jsp:

The time is <%= session.getAttribute("current.time") %>

It's an extremely simple project but it could help us to test the cluster later: We will access put.jsp from

cluster and see the request are distributed to master, then we disconnect master and access get.jsp. We

should see the request is forwarded to slave but the 'current.time' value is held by session replication. We'll

cover more details on this one later.

Let's go back to this demo project. Now we need to create a war from it. In the project directory, run the

following command to get the war:

mvn package

It will generate cluster-demo.war. Then we need to deploy the war into domain. First we should access the

http management console on master(Because master is acting as domain controller):

http://10.211.55.7:9990

Latest WildFly Documentation

JBoss Community Documentation Page of 1533 2293

It will popup a windows ask you to input account name and password, we can use the 'admin' account we've

added just now. After logging in we could see the 'Server Instances' window. By default there are three

servers listed, which are:

server-one

server-two

server-three

We could see server-one and server-two are in running status and they belong to main-server-group;

server-three is in idle status, and it belongs to other-server-group.

All these servers and server groups are set in domain.xml on master as7. What we are interested in is the

'other-server-group' in domain.xml:

<server-group name="other-server-group" profile="ha">

 <jvm name="default">

 <heap size="64m" max-size="512m"/>

 </jvm>

 <socket-binding-group ref="ha-sockets"/>

</server-group>

We could see this server-group is using 'ha' profile, which then uses 'ha-sockets' socket binding group. It

enable all the modules we need to establish cluster later(including infinispan, jgroup and mod_cluster

modules). So we will deploy our demo project into a server that belongs to 'other-server-group', so

'server-three' is our choice.

In newer version of WildFly, the profile 'ha' changes to 'full-ha':

<server-group name="other-server-group" profile="full-ha">

Let's go back to domain controller's management console:

http://10.211.55.7:9990

Now server-three is not running, so let's click on 'server-three' and then click the 'start' button at bottom right

of the server list. Wait a moment and server-three should start now.

Now we should also enable 'server-three' on slave: From the top of menu list on left side of the page, we

could see now we are managing master currently. Click on the list, and click 'slave', then choose

'server-three', and we are in slave host management page now.

Then repeat the steps we've done on master to start 'server-three' on slave.

Latest WildFly Documentation

JBoss Community Documentation Page of 1534 2293

server-three on master and slave are two different hosts, their names can be different.

After server-three on both master and slave are started, we will add our cluster-demo.war for deployment.

Click on the 'Manage Deployments' link at the bottom of left menu list.

(We should ensure the server-three should be started on both master and slave)

After enter 'Manage Deployments' page, click 'Add Content' at top right corner. Then we should choose our

cluster-demo.war, and follow the instruction to add it into our content repository.

Now we can see cluster-demo.war is added. Next we click 'Add to Groups' button and add the war to

'other-server-group' and then click 'save'.

Wait a few seconds, management console will tell you that the project is deployed into 'other-server-group'.

Latest WildFly Documentation

JBoss Community Documentation Page of 1535 2293

Please note we have two hosts participate in this server group, so the project should be deployed in both

master and slave now - that's the power of domain management.

Now let's verify this, trying to access cluster-demo from both master and slave, and they should all work

now:

http://10.211.55.7:8330/cluster-demo/

Latest WildFly Documentation

JBoss Community Documentation Page of 1536 2293

http://10.211.55.2:8330/cluster-demo/

Now that we have finished the project deployment and see the usages of domain controller, we will then

head up for using these two hosts to establish a cluster

Latest WildFly Documentation

JBoss Community Documentation Page of 1537 2293

Why is the port number 8330 instead of 8080? Please check the settings in host.xml on both

master and slave:

<server name="server-three" group="other-server-group" auto-start="false">

 <!-- server-three avoids port conflicts by incrementing the ports in

 the default socket-group declared in the server-group -->

 <socket-bindings port-offset="250"/>

</server>

The port-offset is set to 250, so 8080 + 250 = 8330

Now we quit the WildFly process on both master and slave. We have some work left on host.xml

configurations. Open the host.xml of master, and do some modifications the servers section from:

<server name="server-three" group="other-server-group" auto-start="false">

 <!-- server-three avoids port conflicts by incrementing the ports in

 the default socket-group declared in the server-group -->

 <socket-bindings port-offset="250"/>

</server>

to:

<server name="server-three" group="other-server-group" auto-start="true">

 <!-- server-three avoids port conflicts by incrementing the ports in

 the default socket-group declared in the server-group -->

 <socket-bindings port-offset="250"/>

</server>

We've set auto-start to true so we don't need to enable it in management console each time WildFly restart.

Now open slave's host.xml, and modify the server-three section:

<server name="server-three-slave" group="other-server-group" auto-start="true">

 <!-- server-three avoids port conflicts by incrementing the ports in

 the default socket-group declared in the server-group -->

 <socket-bindings port-offset="250"/>

</server>

Besides setting auto-start to true, we've renamed the 'server-three' to 'server-three-slave'. We need to do

this because mod_cluster will fail to register the hosts with same name in a single server group. It will cause

name conflict.

After finishing the above configuration, let's restart two as7 hosts and go on cluster configuration.

Latest WildFly Documentation

JBoss Community Documentation Page of 1538 2293

7.20.5 Cluster Configuration

We will use mod_cluster + apache httpd on master as our cluster controller here. Because WildFly 8 has

been configured to support mod_cluster out of box so it's the easiest way.

The WildFly 8 domain controller and httpd are not necessary to be on same host. But in this article

I just install them all on master for convenience.

First we need to ensure that httpd is installed:

sudo yum install httpd

And then we need to download newer version of mod_cluster from its website:

http://www.jboss.org/mod_cluster/downloads

The version I downloaded is:

http://downloads.jboss.org/mod_cluster/1.1.3.Final/mod_cluster-1.1.3.Final-linux2-x86-so.tar.gz

Jean-Frederic has suggested to use mod_cluster 1.2.x. Because 1.1.x it is affected by

CVE-2011-4608

With mod_cluster-1.2.0 you need to add EnableMCPMReceive in the VirtualHost.

Then we extract it into:

/etc/httpd/modules

Then we edit httpd.conf:

sudo vi /etc/httpd/conf/httpd.conf

We should add the modules:

Latest WildFly Documentation

JBoss Community Documentation Page of 1539 2293

LoadModule slotmem_module modules/mod_slotmem.so

LoadModule manager_module modules/mod_manager.so

LoadModule proxy_cluster_module modules/mod_proxy_cluster.so

LoadModule advertise_module modules/mod_advertise.so

Please note we should comment out:

#LoadModule proxy_balancer_module modules/mod_proxy_balancer.so

This is conflicted with cluster module. And then we need to make httpd to listen to public address so we

could do the testing. Because we installed httpd on master host so we know the ip address of it:

Listen 10.211.55.7:80

Then we do the necessary configuration at the bottom of httpd.conf:

This Listen port is for the mod_cluster-manager, where you can see the status of mod_cluster.

Port 10001 is not a reserved port, so this prevents problems with SELinux.

Listen 10.211.55.7:10001

This directive only applies to Red Hat Enterprise Linux. It prevents the temmporary

files from being written to /etc/httpd/logs/ which is not an appropriate location.

MemManagerFile /var/cache/httpd

<VirtualHost 10.211.55.7:10001>

 <Directory />

 Order deny,allow

 Deny from all

 Allow from 10.211.55.

 </Directory>

 # This directive allows you to view mod_cluster status at URL

http://10.211.55.4:10001/mod_cluster-manager

 <Location /mod_cluster-manager>

 SetHandler mod_cluster-manager

 Order deny,allow

 Deny from all

 Allow from 10.211.55.

 </Location>

 KeepAliveTimeout 60

 MaxKeepAliveRequests 0

 ManagerBalancerName other-server-group

 AdvertiseFrequency 5

</VirtualHost>

Latest WildFly Documentation

JBoss Community Documentation Page of 1540 2293

For more details on mod_cluster configurations please see this document:

http://docs.jboss.org/mod_cluster/1.1.0/html/Quick_Start_Guide.html

7.20.6 Testing

If everything goes fine we can start httpd service now:

service httpd start

Now we access the cluster:

http://10.211.55.7/cluster-demo/put.jsp

We should see the request is distributed to one of the hosts(master or slave) from the WildFly log. For me

the request is sent to master:

Latest WildFly Documentation

JBoss Community Documentation Page of 1541 2293

[Server:server-three] 16:06:22,256 INFO [stdout] (http-10.211.55.7-10.211.55.7-8330-4) Putting

date now

Now I disconnect master by using the management interface. Select 'runtime' and the server 'master' in the

upper corners.

Select 'server-three' and kick the stop button, the active-icon should change.

Killing the server by using system commands will have the effect that the Host-Controller restart the instance

imediately!

Then wait for a few seconds and access cluster:

http://10.211.55.7/cluster-demo/get.jsp

Now the request should be served by slave and we should see the log from slave:

[Server:server-three-slave] 16:08:29,860 INFO [stdout] (http-10.211.55.2-10.211.55.2-8330-1)

Getting date now

And from the get.jsp we should see that the time we get is the same we've put by 'put.jsp'. Thus it's proven

that the session is correctly replicated to slave.

Now we restart master and should see the host is registered back to cluster.

Latest WildFly Documentation

JBoss Community Documentation Page of 1542 2293

It doesn't matter if you found the request is distributed to slave at first time. Then just disconnect

slave and do the testing, the request should be sent to master instead. The point is we should see

the request is redirect from one host to another and the session is held.

7.20.7 Special Thanks

 has contributed the updated add-user.sh usages and configs in host.xml from 7.1.0.Final.Wolf-Dieter Fink

 provided the mod_cluster 1.2.0 usages.Jean-Frederic Clere

Misty Stanley-Jones has given a lot of suggestions and helps to make this document readable.

7.21 Changes From Previous Versions

Describe here key changes between releases.

7.21.1 Key changes

7.21.2 Migration to Wildfly

7.22 Related Topics

This section describes additional issues related to the clustering subsystems.

7.22.1 Modularity And Class Loading

Describe classloading and monitoring framework as it affects clustering applications.

7.22.2 Monitoring

Describe resources available for monitoring clustered applications.

https://community.jboss.org/people/wdfink
https://community.jboss.org/people/jfclere

Latest WildFly Documentation

JBoss Community Documentation Page of 1543 2293

8 Getting Started Developing Applications Guide
This guide has moved to https://github.com/wildfly/quickstart/blob/10.x/guide/Introduction.asciidoc

8.1 Introduction

This page has moved to https://github.com/wildfly/quickstart/blob/10.x/guide/Introduction.asciidoc

8.2 Getting started with WildFly

This page has moved to https://github.com/wildfly/quickstart/blob/10.x/guide/GettingStarted.asciidoc

8.3 Helloworld quickstart

This page has moved to https://github.com/wildfly/quickstart/blob/10.x/guide/HelloworldQuickstart.asciidoc

8.3.1 Deploying the Helloworld example using Eclipse

You may choose to deploy the example using Eclipse. You'll need to have JBoss AS started in Eclipse (as

described in) and to have imported the quickstarts into[Starting JBoss AS from Eclipse with JBoss Tools]

Eclipse (as described in).[Importing the quickstarts into Eclipse]

With the quickstarts imported, you can deploy the example by right clicking on the jboss-as-helloworld

project, and choosing :Run As -> Run On Server

https://github.com/wildfly/quickstart/blob/10.x/guide/Introduction.asciidoc
https://github.com/wildfly/quickstart/blob/10.x/guide/Introduction.asciidoc
https://github.com/wildfly/quickstart/blob/10.x/guide/GettingStarted.asciidoc
https://github.com/wildfly/quickstart/blob/10.x/guide/HelloworldQuickstart.asciidoc

Latest WildFly Documentation

JBoss Community Documentation Page of 1544 2293

Make sure the JBoss AS server is selected, and hit :Finish

Latest WildFly Documentation

JBoss Community Documentation Page of 1545 2293

You should see JBoss AS start up (unless you already started it in [Starting JBoss AS from Eclipse with

) and the application deploy in the Console log:JBoss Tools]

Latest WildFly Documentation

JBoss Community Documentation Page of 1546 2293

8.3.2 The helloworld example in depth

This page has moved to

http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/HelloworldQuickstart/#_the_helloworld_quickstart_in_depth

8.4 Numberguess quickstart

This page has moved to

https://github.com/wildfly/quickstart/blob/10.x/guide/NumberguessQuickstart.asciidoc

8.4.1 Deploying the Numberguess example using Eclipse

This page has moved to

http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/NumberguessQuickstart/#_deploying_the_numberguess_quickstart_using_eclipse

8.4.2 The numberguess example in depth

This page has moved to

http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/NumberguessQuickstart/#_the_numberguess_quickstart_in_depth

8.5 Greeter quickstart

This page has moved to https://github.com/wildfly/quickstart/blob/10.x/guide/GreeterQuickstart.asciidoc

8.5.1 Deploying the Login example using Eclipse

This page has moved to http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/GreeterQuickstart/

8.5.2 The login example in depth

This page has moved to

http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/GreeterQuickstart/#greeter_in_depth

http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/HelloworldQuickstart/#_the_helloworld_quickstart_in_depth
https://github.com/wildfly/quickstart/blob/10.x/guide/NumberguessQuickstart.asciidoc
http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/NumberguessQuickstart/#_deploying_the_numberguess_quickstart_using_eclipse
http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/NumberguessQuickstart/#_the_numberguess_quickstart_in_depth
https://github.com/wildfly/quickstart/blob/10.x/guide/GreeterQuickstart.asciidoc
http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/GreeterQuickstart/
http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/GreeterQuickstart/#greeter_in_depth

Latest WildFly Documentation

JBoss Community Documentation Page of 1547 2293

8.6 Kitchensink quickstart

This page has moved to https://github.com/wildfly/quickstart/blob/10.x/guide/KitchensinkQuickstart.asciidoc

8.6.1 Deploying the Kitchensink example using Eclipse

This page has moved to

http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/KitchensinkQuickstart/#_deploying_the_kitchensink_quickstart_using_jboss_developer_studio_or_eclipse_with_jboss_tools

8.6.2 The kitchensink example in depth

This page has moved to

http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/KitchensinkQuickstart/#_the_kitchensink_quickstart_in_depth

8.7 Creating your own application

This page has moved to https://github.com/wildfly/quickstart/blob/10.x/guide/Archetype.asciidoc

8.7.1 Creating your own application using Eclipse

This page has moved to http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/Archetype/

8.8 More Resources

Getting

Started

Guide

The Getting Started Guide covers topics such as server layout (what you can configure

where), data source definition, and using the web management interface.

Torquebox Torque Box allows you to use all the familiar services from JBoss AS 7, but with Ruby.

JBoss AS 7

FAQ

Frequently Asked Questions for JBoss AS 7

8.8.1 Developing JSF Project Using JBoss AS7, Maven and

IntelliJ

JBoss AS7 is a very 'modern' application server that has very fast startup speed. So it's an excellent

container to test your JSF project. In this article, I'd like to show you how to use AS7, maven and IntelliJ

together to develop your JSF project.

https://github.com/wildfly/quickstart/blob/10.x/guide/KitchensinkQuickstart.asciidoc
http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/KitchensinkQuickstart/#_deploying_the_kitchensink_quickstart_using_jboss_developer_studio_or_eclipse_with_jboss_tools
http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/KitchensinkQuickstart/#_the_kitchensink_quickstart_in_depth
https://github.com/wildfly/quickstart/blob/10.x/guide/Archetype.asciidoc
http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/Archetype/
http://torquebox.org/2x/builds/LATEST/html-docs/
http://community.jboss.org/wiki/JBossAS7FAQ
http://community.jboss.org/wiki/JBossAS7FAQ

Latest WildFly Documentation

JBoss Community Documentation Page of 1548 2293

In this article I'd like to introduce the following things:

Create a project using Maven

Add JSF into project

Writing Code

Add JBoss AS 7 deploy plugin into project

Deploy project to JBoss AS 7

Import project into IntelliJ

Add IntelliJ JSF support to project

Add JBoss AS7 to IntelliJ

Debugging project with IntelliJ and AS7

I won't explain many basic concepts about AS7, maven and IntelliJ in this article because there are already

many good introductions on these topics. So before doing the real work, there some preparations should be

done firstly:

Download JBoss AS7

It could be downloaded from here: http://www.jboss.org/jbossas/downloads/

Using the latest release would be fine. When I'm writing this article the latest version is 7.1.1.Final.

Install Maven

Please make sure you have maven installed on your machine. Here is my environment:

weli@power:~$ mvn -version

Apache Maven 3.0.3 (r1075438; 2011-03-01 01:31:09+0800)

Maven home: /usr/share/maven

Java version: 1.6.0_33, vendor: Apple Inc.

Java home: /System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home

Default locale: en_US, platform encoding: MacRoman

OS name: "mac os x", version: "10.8", arch: "x86_64", family: "mac"

Get IntelliJ

In this article I'd like to use IntelliJ Ultimate Edition as the IDE for development, it's a commercial software

and can be downloaded from: http://www.jetbrains.com/idea/

The version I'm using is IntelliJ IDEA Ultimate 11.1

After all of these prepared, we can dive into the real work:

http://www.jboss.org/jbossas/downloads/
http://www.jetbrains.com/idea/

Latest WildFly Documentation

JBoss Community Documentation Page of 1549 2293

Create a project using Maven
Use the following maven command to create a web project:

mvn archetype:create -DarchetypeGroupId=org.apache.maven.archetypes \

-DarchetypeArtifactId=maven-archetype-webapp \

-DarchetypeVersion=1.0 \

-DgroupId=net.bluedash \

-DartifactId=jsfdemo \

-Dversion=1.0-SNAPSHOT

If everything goes fine maven will generate the project for us:

The contents of the project is shown as above.

Latest WildFly Documentation

JBoss Community Documentation Page of 1550 2293

Add JSF into project
The JSF library is now included in maven repo, so we can let maven to manage the download for us. First is

to add repository into our pom.xml:

<repository>

 <id>jvnet-nexus-releases</id>

 <name>jvnet-nexus-releases</name>

 <url>https://maven.java.net/content/repositories/releases/</url>

</repository>

Then we add JSF dependency into pom.xml:

<dependency>

 <groupId>javax.faces</groupId>

 <artifactId>jsf-api</artifactId>

 <version>2.1</version>

 <scope>provided</scope>

</dependency>

Please note the 'scope' is 'provided', because we don't want to bundle the jsf.jar into the war produced by

our project later, as JBoss AS7 already have jsf bundled in.

Then we run 'mvn install' to update the project, and maven will download jsf-api for us automatically.

Writing Code
Writing JSF code in this article is trivial, so I've put written a project called 'jsfdemo' onto github:

https://github.com/liweinan/jsfdemo

Please clone this project into your local machine, and import it into IntelliJ following the steps described as

above.

Add JBoss AS 7 deploy plugin into project
JBoss AS7 has provide a set of convenient maven plugins to perform daily tasks such as deploying project

into AS7. In this step let's see how to use it in our project.

We should put AS7's repository into pom.xml:

https://github.com/liweinan/jsfdemo

Latest WildFly Documentation

JBoss Community Documentation Page of 1551 2293

<repository>

 <id>jboss-public-repository-group</id>

 <name>JBoss Public Repository Group</name>

 <url>http://repository.jboss.org/nexus/content/groups/public/</url>

 <layout>default</layout>

 <releases>

 <enabled>true</enabled>

 <updatePolicy>never</updatePolicy>

 </releases>

 <snapshots>

 <enabled>true</enabled>

 <updatePolicy>never</updatePolicy>

 </snapshots>

</repository>

And also the plugin repository:

<pluginRepository>

 <id>jboss-public-repository-group</id>

 <name>JBoss Public Repository Group</name>

 <url>http://repository.jboss.org/nexus/content/groups/public/</url>

 <releases>

 <enabled>true</enabled>

 </releases>

 <snapshots>

 <enabled>true</enabled>

 </snapshots>

</pluginRepository>

And put jboss deploy plugin into 'build' section:

<plugin>

 <groupId>org.jboss.as.plugins</groupId>

 <artifactId>jboss-as-maven-plugin</artifactId>

 <executions>

 <execution>

 <phase>package</phase>

 <goals>

 <goal>deploy</goal>

 </goals>

 </execution>

 </executions>

</plugin>

I've put the final version pom.xml here to check whether your modification is correct:

https://github.com/liweinan/jsfdemo/blob/master/pom.xml

Now we have finished the setup work for maven.

https://github.com/liweinan/jsfdemo/blob/master/pom.xml

Latest WildFly Documentation

JBoss Community Documentation Page of 1552 2293

Deploy project to JBoss AS 7
To deploy the project to JBoss AS7, we should start AS7 firstly. In JBoss AS7 directory, run following

command:

bin/standalone.sh

AS7 should start in a short time. Then let's go back to our project directory and run maven command:

mvn -q jboss-as:deploy

Maven will use some time to download necessary components for a while, so please wait patiently. After a

while, we can see the result:

And if you check the console output of AS7, you can see the project is deployed:

Latest WildFly Documentation

JBoss Community Documentation Page of 1553 2293

Now we have learnt how to create a JSF project and deploy it to AS7 without any help from graphical tools.

Next let's see how to use IntelliJ IDEA to go on developing/debugging our project.

Import project into IntelliJ
Now it's time to import the project into IntelliJ. Now let's open IntelliJ, and choose 'New Project...':

Latest WildFly Documentation

JBoss Community Documentation Page of 1554 2293

The we choose 'Import project from external model':

Latest WildFly Documentation

JBoss Community Documentation Page of 1555 2293

Next step is choosing 'Maven':

Latest WildFly Documentation

JBoss Community Documentation Page of 1556 2293

Then IntelliJ will ask you the position of the project you want to import. In 'Root directory' input your project's

directory and leave other options as default:

Latest WildFly Documentation

JBoss Community Documentation Page of 1557 2293

For next step, just click 'Next':

Latest WildFly Documentation

JBoss Community Documentation Page of 1558 2293

Finally click 'Finish':

Latest WildFly Documentation

JBoss Community Documentation Page of 1559 2293

Hooray! We've imported the project into IntelliJ now

Adding IntelliJ JSF support to project
Let's see how to use IntelliJ and AS7 to debug the project. First we need to add 'JSF' facet into project.

Open project setting:

Latest WildFly Documentation

JBoss Community Documentation Page of 1560 2293

Latest WildFly Documentation

JBoss Community Documentation Page of 1561 2293

Click on 'Facets' section on left; Select 'Web' facet that we already have, and click the '+' on top, choose

'JSF':

Select 'Web' as parent facet:

Latest WildFly Documentation

JBoss Community Documentation Page of 1562 2293

Click 'Ok':

Latest WildFly Documentation

JBoss Community Documentation Page of 1563 2293

Now we have enabled IntelliJ's JSF support for project.

Add JBoss AS7 to IntelliJ
Let's add JBoss AS7 into IntelliJ and use it to debug our project. First please choose 'Edit Configuration' in

menu tab:

Latest WildFly Documentation

JBoss Community Documentation Page of 1564 2293

Click '+' and choose 'JBoss Server' -> 'Local':

Latest WildFly Documentation

JBoss Community Documentation Page of 1565 2293

Click 'configure':

Latest WildFly Documentation

JBoss Community Documentation Page of 1566 2293

and choose your JBoss AS7:

Latest WildFly Documentation

JBoss Community Documentation Page of 1567 2293

Now we need to add our project into deployment. Click the 'Deployment' tab:

Latest WildFly Documentation

JBoss Community Documentation Page of 1568 2293

Choose 'Artifact', and add our project:

Latest WildFly Documentation

JBoss Community Documentation Page of 1569 2293

Leave everything as default and click 'Ok', now we've added JBoss AS7 into IntelliJ

Debugging project with IntelliJ and AS7
Now comes the fun part. To debug our project, we cannot directly use the 'debug' feature provided by IntelliJ

right now(maybe in the future version this problem could be fixed). So now we should use the debugging

config provided by AS7 itself to enable JPDA feature, and then use the remote debug function provided by

IntelliJ to get things done. Let's dive into the details now:

First we need to enable JPDA config inside AS7, open 'bin/standalone.conf' and find following lines:

Sample JPDA settings for remote socket debugging

#JAVA_OPTS="$JAVA_OPTS -Xrunjdwp:transport=dt_socket,address=8787,server=y,suspend=n"

Enable the above config by removing the leading hash sign:

Sample JPDA settings for remote socket debugging

JAVA_OPTS="$JAVA_OPTS -Xrunjdwp:transport=dt_socket,address=8787,server=y,suspend=n"

Latest WildFly Documentation

JBoss Community Documentation Page of 1570 2293

With WildFly you can directly start the server in debug mode:

bin/standalone.sh --debug --server-config=standalone.xml

Now we start AS7 in IntelliJ:

Please note we should undeploy the existing 'jsfdemo' project in AS7 as we've added by maven jboss deploy

plugin before. Or AS7 will tell us there is already existing project with same name so IntelliJ could not deploy

the project anymore.

If the project start correctly we can see from the IntelliJ console window, and please check the debug option

is enabled:

Latest WildFly Documentation

JBoss Community Documentation Page of 1571 2293

Now we will setup the debug configuration, click 'debug' option on menu:

Choose 'Edit Configurations':

Then we click 'Add' and choose Remote:

Latest WildFly Documentation

JBoss Community Documentation Page of 1572 2293

Set the 'port' to the one you used in AS7 config file 'standalone.conf':

Latest WildFly Documentation

JBoss Community Documentation Page of 1573 2293

Leave other configurations as default and click 'Ok'. Now we need to set breakpoints in project, let's choose

TimeBean.java and set a breakpoint on 'getNow()' method by clicking the left side of that line of code:

Now we can use the profile to do debug:

Latest WildFly Documentation

JBoss Community Documentation Page of 1574 2293

If everything goes fine we can see the console output:

Now we go to web browser and see our project's main page, try to click on 'Get current time':

Latest WildFly Documentation

JBoss Community Documentation Page of 1575 2293

Then IntelliJ will popup and the code is pausing on break point:

Latest WildFly Documentation

JBoss Community Documentation Page of 1576 2293

And we could inspect our project now.

Conclusion
In this article I've shown to you how to use maven to create a project using JSF and deploy it in JBoss AS7,

and I've also talked about the usage of IntelliJ during project development phase. Hope the contents are

practical and helpful to you

References

JBoss AS7: Using JPDA to debug the AS source code

Importing JBoss 7 Bundled Dependency Versions Through Maven

Maven Getting Started - Developers

JSF 2.1 project using Eclipse and Maven 2:http

Practical RichFaces

Oracle Mojarra JavaServer Faces

JBoss AS7 Maven Plugin

https://community.jboss.org/wiki/JBossAS7UsingJPDAToDebugTheASSourceCode
http://navinpeiris.com/2011/07/19/importing-jboss-7-dependencies-through-maven/
https://community.jboss.org/wiki/MavenGettingStarted-Developers
https://docs.jboss.org/blog.v-s-f.co.uk/2010/09/jsf-2-1-project-using-eclipse-and-maven-2/
http://www.amazon.com/Practical-RichFaces-Max-Katz/dp/1430234490/ref=dp_ob_title_bk
http://javaserverfaces.java.net/download.html
https://github.com/jbossas/jboss-as-maven-plugin

Latest WildFly Documentation

JBoss Community Documentation Page of 1577 2293

8.8.2 Getting Started Developing Applications Presentation &

Demo

Introduction

Prerequisites for using the script

Import examples into Eclipse and set up JBoss AS

The Helloworld Quickstart

Introduction

Using Maven

Using the Command Line Interface (CLI)

Using the web management interface

Using the filesystem

Using Eclipse

Digging into the app

The numberguess quickstart

Introduction

Run the app

Deployment descriptors src/main/webapp/WEB-INF

Views

Beans

The login quickstart

Introduction

Run the app

Deployment Descriptors

Views

Beans

The kitchensink quickstart

Introduction

Run the app

Bean Validation

JAX-RS

Arquillian

Introduction
This document is a “script” for use with the quickstarts associated with the Getting Started Developing

. It can be used as the basis for demoing/explaining the Java EE 6 programming modelApplications Guide

with JBoss AS 7.

There is an associated presentation – JBoss AS - Getting Started Developing Applications – which can be

used to introduce the Java EE 6 ecosystem.

The emphasis here is on the programming model, not on OAM/dev-ops, performance etc.

Latest WildFly Documentation

JBoss Community Documentation Page of 1578 2293

Prerequisites for using the script

JBoss AS 7 downloaded and installed

Eclipse Indigo with m2eclipse and JBoss Tools installed

The quickstarts downloaded and imported into Eclipse

Make sure is set.$JBOSS_HOME

Make sure has the correct path to your JBoss AS installsrc/test/resources/arquillian.xml

for kitchensink

Make sure your font size is set in Eclipse so everyone can read the text!

Import examples into Eclipse and set up JBoss AS
TODO

The Helloworld Quickstart

Introduction
This quickstart is extremely basic, and is really useful for nothing more than showing than the app server is

working properly, and our deployment mechanism is working. We recommend you use this quickstart to

demonstrate the various ways you can deploy apps to JBoss AS 7.

Latest WildFly Documentation

JBoss Community Documentation Page of 1579 2293

1.

2.

3.

4.

5.

Using Maven

Start JBoss AS 7 from the console

$JBOSS_HOME/bin/standalone.sh

Deploy the app using Maven

mvn clean package jboss-as:deploy

The quickstarts use the jboss-as maven plugin to deploy and undeploy applications. This

plugin uses the JBoss AS Native Java Detyped Management API to communicate with the

server. The Detyped API is used by management tools to control an entire domain of

servers, and exposes only a small number of types, allowing for backwards and forwards

compatibility.

Show the app has deployed in the terminal

Visit http://localhost:8080/jboss-as-helloworld

Undeploy the app using Maven

mvn jboss-as:undeploy

http://localhost:8080/jboss-as-helloworld

Latest WildFly Documentation

JBoss Community Documentation Page of 1580 2293

1.

2.

3.

4.

5.

Using the Command Line Interface (CLI)

Start JBoss AS 7 from the console (if not already running)

$JBOSS_HOME/bin/standalone.sh

Build the war

mvn clean package

Start the CLI

$JBOSS_HOME/bin/jboss-admin.sh --connect

The command line also uses the Deptyped Management API to communicate with the

server. It's designed to be as "unixy" as possible, allowing you to "cd" into nodes, with full

tab completion etc. The CLI allows you to deploy and undeploy applications, create JMS

queues, topics etc., create datasources (normal and XA). It also fully supports the domain

node.

Deploy the app

deploy target/jboss-as-helloworld.war

Show the app has deployed

undeploy jboss-as-helloworld.war

Latest WildFly Documentation

JBoss Community Documentation Page of 1581 2293

1.

2.

3.

4.

5.

6.

7.

8.

Using the web management interface

Start JBoss AS 7 from the console (if not already running)

$JBOSS_HOME/bin/standalone.sh

Build the war

mvn clean package

Open up the web management interface http://localhost:9990/console

The web maangement interface offers the same functionality as the CLI (and again uses the

Detyped Management API), but does so using a pretty GWT interface! You can set up

virtual servers, interrogate sub systems and more.

Navigate . Click on choose file and locate Manage Deployments -> Add content

.helloworld/target/jboss-as-helloworld.war

Click and to upload the war to the server.Next Finish

Now click and to start the applicationEnable Ok

Switch to the console to show it deployed

Now click Remove

http://localhost:9990/console

Latest WildFly Documentation

JBoss Community Documentation Page of 1582 2293

1.

2.

3.

4.

5.

6.

7.

Using the filesystem

Start JBoss AS 7 from the console (if not already running)

$JBOSS_HOME/bin/standalone.sh

Build the war

mvn clean package

Of course, you can still use the good ol' file system to deploy. Just copy the file to

.$JBOSS_HOME/standalone/deployments

Copy the war

cp target/jboss-as-helloworld.war $JBOSS_HOME/standalone/deployments

Show the war deployed

The filesystem deployment uses marker files to indicate the status of a deployment. As this

deployment succeeded we get a

$JBOSS_HOME/standalone/deployments/jboss-as-helloworld.war.deployed

file. If the deployment failed, you would get a file etc..failed

Undeploy the war

rm $JBOSS_HOME/standalone/deployments/jboss-as-helloworld.war.deployed

Show the deployment stopping!

Start and stop the appserver, show that the deployment really is gone!

This gives you much more precise control over deployments than before

Latest WildFly Documentation

JBoss Community Documentation Page of 1583 2293

1.

1.

2.

3.

4.

5.

2.

1.

2.

3.

1.

2.

3.

4.

Using Eclipse

Add a JBoss AS server

Bring up the Server view

Right click in it, and choose New -> Server

Choose JBoss AS 7.0 and hit Next

Locate the server on your disc

Hit Finish

Start JBoss AS in Eclipse

Select the server

Click the Run button

Deploy the app

right click on the app, choose Run As -> Run On Server

Select the AS 7 instance you want to use

Hit finish

Load the app at http://localhost:8080/jboss-as-helloworld

http://localhost:8080/jboss-as-helloworld

Latest WildFly Documentation

JBoss Community Documentation Page of 1584 2293

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

6.

1.

2.

3.

4.

5.

1.

2.

3.

Digging into the app

Open up the helloworld quickstart in Eclipse, and open up .src/main/webapp

Point out that we don't require a anymore!web.xml

Show and explain it's a marker file used to JBoss AS to enable CDI (open it, show that itbeans.xml

is empty)

Show , and explain it is just used to kick the user into the app (open it, show theindex.html

meta-refresh)

Open up the - and emphasise that it's pretty simple.pom.xm

There is no parent pom, everything for the build is here

Show that we are enabling the JBoss Maven repo - explain you can do this in your POM or in

system wide ()settings.xml

Show the section. Here we import the JBoss AS 7 Web Profile API.dependencyManagement

Explain that this gives you all the versions for all of the JBoss AS 7 APIs that are in the web

profile. Explain we could also depend on this directly, which would give us the whole set of

APIs, but that here we've decided to go for slightly tighter control and specify each dependency

ourselves

Show the import for CDI, JSR-250 and Servlet API. Show that these are all provided - we are

depending on build in server implementations, not packaging this stuff!

Show the plugin sections - nothing that exciting here, the war plugin is out of date and requires

you to provide , configure the JBoss AS Maven Plugin, set the Java version to 6.web.xml

Open up and open up the .src/main/java HelloWorldServlet

Point out the - explain this one annotation removes about 8 lines of XML - no@WebServlet

need to separately map a path either. This is much more refactor safe

Show that we can inject services into a Servlet

Show that we use the service (line 41)

#Cmd-click on HelloService

This is a CDI bean - very simple, no annotations required!

Explain injection

Probably used to string based bean resolution

This is typesafe (refactor safe, take advantage of the compiler and the IDE - we just saw

that!)

When CDI needs to inject something, the first thing it looks at is the type - and if the type

of the injection point is assignable from a bean, CDI will inject that bean

The numberguess quickstart

Introduction
This quickstart adds in a "complete" view layer into the mix. Java EE ships with a JSF. JSF is a server side

rendering, component orientated framework, where you write markup using an HTML like language, adding

in dynamic behavior by binding components to beans in the back end. The quickstart also makes more use

of CDI to wire the application together.

Latest WildFly Documentation

JBoss Community Documentation Page of 1585 2293

1.

2.

3.

4.

5.

6.

1.

2.

3.

4.

1.

2.

1.

3.

4.

5.

6.

Run the app

Start JBoss AS in Eclipse

Deploy it using Eclipse - just right click on the app, choose Run As -> Run On Server

Select the AS 7 instance you want to use

Hit finish

Load the app at http://localhost:8080/jboss-as-numberguess

Make a few guesses

Deployment descriptors src/main/webapp/WEB-INF
Emphasize the lack of them!

No need to open any of them, just point them out

 - don't need it!web.xml

 - as before, marker filebeans.xml

 - nice feature from AS7 - we can just put into thefaces-config.xml faces-config.xml

WEB-INF and it enables JSF (inspiration from CDI)

 we saw this before, this time it's the same but adds in JSF APIpom.xml

Views

 - same as before, just kicks us into the appindex.html

home.xhtml

Lines 19 - 25 – these are messages output depending on state of beans (minimise coupling

between controller and view layer by interrogating state, not pushing)

Line 20 – output any messages pushed out by the controller

Line 39 - 42 – the input field is bound to the guess field on the game bean. We validate the input by

calling a method on the game bean.

Line 43 - 45 – the command button is used to submit the form, and calls a method on the game bean

Line 48, 49, The reset button again calls a method on the game bean

http://localhost:8080/jboss-as-numberguess

Latest WildFly Documentation

JBoss Community Documentation Page of 1586 2293

1.

1.

2.

3.

4.

1.

2.

5.

2.

3.

1.

2.

1.

2.

3.

4.

5.

6.

7.

Beans

 – this is the main controller for the game. App has no persistence etc.Game.java

 – As we discussed CDI is typesafe, (beans are injected by type) but sometimes need@Named

to access in a non-typesafe fashion. @Named exposes the Bean in EL - and allows us to

access it from JSF

 – really simple app, we keep the game data in the session - to play two@SessionScoped

concurrent games, need two sessions. This is not a limitation of CDI, but simply keeps this

demo very simple. CDI will create a bean instance the first time the game bean is accessed,

and then always load that for you

 – here we inject the maximum number we can guess. This allows us to@Inject maxNumber

externalize the config of the game

 – here we inject the random number we need to guess. Two things@Inject rnadomNumber

to discuss here

Instance - normally we can inject the object itself, but sometimes it's useful to inject a

"provider" of the object (in this case so that we can get a new random number when the

game is reset!). Instance allows us to a new instance when neededget()

Qualifiers - now we have two types of Integer (CDI auto-boxes types when doing

injection) so we need to disambiguate. Explain qualifiers and development time

approach to disambiguation. You will want to open up and here.@MaxNumber @Random

 – here is our reset method - we also call it on startup to set up initial values.@PostConstruct

Show use of .Instance.get()

 This bean acts as our random number generator.Generator.java

 explain about other scopes available in CDI + extensibility.@ApplicationScoped

 Explain about producers being useful for determining bean instance at runtimenext()

 Explain about producers allowing for loose couplinggetMaxNumber()

The login quickstart

Introduction
The login quickstart builds on the knowledge of CDI and JSF we have got from numberguess. New stuff we

will learn about is how to use JPA to store data in a database, how to use JTA to control transactions, and

how to use EJB for declarative TX control.

Run the app

Start JBoss AS in Eclipse

Deploy it using Eclipse - just right click on the app, choose Run As -> Run On Server

Select the AS 7 instance you want to use

Hit finish

Load the app at http://localhost:8080/jboss-as-login

Login as admin/admin

Create a new user

http://localhost:8080/jboss-as-login

Latest WildFly Documentation

JBoss Community Documentation Page of 1587 2293

1.

2.

1.

2.

3.

1.

1.

2.

3.

4.

5.

6.

2.

1.

2.

3.

4.

5.

Deployment Descriptors

Show that we have the same ones we are used in – , src/main/webapp beans.xml

faces-config.xml

We have a couple of new ones in src/main/resources

. Not too exciting. We are using a datasource that AS7 ships with. It'spersistence.xml

backed by the H2 database and is purely a sample datasource to use in sample applications.

We also tell Hibernate to auto-create tables - as you always have.

 Again, the same old thing you are used to in Hibernate - auto-import data whenimport.sql

the app starts.

 is the same again, but just adds in dependencies for JPA, JTA and EJBpom.xml

Views

 One of the updates added to JSF 2.0 was templating ability. We take advantagetemplate.xhtml

of that in this app, as we have multiple views

Actually nothing too major here, we define the app "title" and we could easily define a common

footer etc. (we can see this done in the kitchensink app)

The command inserts the actual content from the templated page.ui:insert

#home.xhtml

Uses the template

Has some input fields for the login form, button to login and logout, link to add users.

Binds fields to credentials bean}}

Buttons link to login bean which is the controller

users.xhtml

Uses the template

Displays all users using a table

Has a form with input fields to add users.

Binds fields to the newUser bean

Methods call on userManager bean

Latest WildFly Documentation

JBoss Community Documentation Page of 1588 2293

1.

2.

1.

2.

3.

4.

5.

3.

4.

5.

1.

2.

3.

4.

5.

6.

1.

2.

6.

1.

2.

3.

7.

1.

Beans

 Backing bean for the login form field, pretty trivial. It's request scoped (naturalCredentials.java

for a login field) and named so we can get it from JSF.

Login.java

Is session scoped (a user is logged in for the length of their session or until they log out}}

Is accessible from EL

Injects the current credentials

Uses the userManager service to load the user, and sends any messages to JSF as needed

Uses a producer method to expose the @LoggedIn user (producer methods used as we don't

know which user at development time)

 Is a pretty straightforward JPA entity. Mapped with , has an natural id.User.java @Entity

 This is an interface, and by default we use the ManagedBean version, whichUserManager.java

requires manual TX control

 - accessible from EL, request scoped.ManagedBeanUserManager.java

Injects a logger (we'll see how that is produced in a minute)

Injects the entity manager (again, just a min)

Inject the UserTransaction (this is provided by CDI)

 standard JPA-QL that we know and love - but lots of ugly TX handling code.getUsers()

Same for and methods - very simple JPA but...addUser() findUser()

Got a couple of producer methods.

 is obvious - loads all the users in the database. No ambiguity - CDI takesgetUsers()

into account generic types when injecting. Also note that CDI names respect JavaBean

naming conventions

 is used to bind the new user form to from the view layer - very nice as itgetNewUser()

decreases coupling - we could completely change the wiring on the server side (different

approach to creating the newUser bean) and no need to change the view layer.

EJBUserManager.java

It's an alternative – explain alternatives, and that they allow selection of beans at deployment

time

Much simple now we have declarative TX control.

Start to see how we can introduce EJB to get useful enterprise services such as declarative TX

control

Resources.java

{EntityManager}} - explain resource producer pattern

The kitchensink quickstart

Introduction
The kitchensink quickstart is generated from an archetype available for JBoss AS (tell people to check the

 Guide for details). It demonstrates CDI, JSF, EJB, JPA (which[Getting Started Developing Applications]

we've seen before) and JAX-RS and Bean Validation as well. We add in Arquillian for testing.

Latest WildFly Documentation

JBoss Community Documentation Page of 1589 2293

1.

2.

3.

4.

5.

6.

7.

1.

2.

1.

2.

3.

1.

4.

1.

2.

3.

4.

1.

2.

3.

5.

Run the app

Start JBoss AS in Eclipse

Deploy it using Eclipse - just right click on the app, choose Run As -> Run On Server

Select the AS 7 instance you want to use

Hit finish

Load the app at http://localhost:8080/jboss-as-kitchensink

Register a member - make sure to enter an invalid email and phone - show bean validation at work

Click on the member URL and show the output from JAX-RS

Bean Validation

Explain the benefits of bean validation - need your data always valid (protect your data) AND good

errors for your user. BV allows you to express once, apply often.

index.xhtml

Show the input fields – no validators attached

Show the message output

Member.java

Hightlight the various validation annotations

Java EE automatically applies the validators in both the persistence layer and in your views

RS

 - Show that URL generation is just manualindex.xhtml

 - simply activates JAX-RSJaxRsActivator.java

 - add JAXB annotation to make JAXB process the class properlyMember.java

MemberResourceRESTService.java

 sets the JAX-RS resource@Path

JAX-RS services can use injection

 methods are auto transformed to XML using JAXB@GET

And that is it!

http://localhost:8080/jboss-as-kitchensink

Latest WildFly Documentation

JBoss Community Documentation Page of 1590 2293

1.

2.

1.

3.

4.

5.

6.

7.

1.

8.

1.

2.

3.

Arquillian

Make sure JBoss AS is running

mvn clean test -Parq-jbossas-remote

Explain the difference between managed and remote

Make sure JBoss AS is stopped

mvn clean test -Parq-jbossas-managed

Start JBoss AS in Eclipse

Update the project to use the profilearq-jbossas-remote

Run the test from Eclipse

Right click on test, Run As -> JUnit Test

MemberRegistrationTest.java

Discuss micro deployments

Explain Arquilian allows you to use injection

Explain that Arquillian allows you to concentrate just on your test logic

Latest WildFly Documentation

JBoss Community Documentation Page of 1591 2293

9 Getting Started Guide

Getting Started with WildFly 10

Download

Requirements

Installation

WildFly - A Quick Tour

WildFly 10 Directory Structure

WildFly 10 Configurations

Starting WildFly 10

Starting WildFly 10 with an Alternate Configuration

Managing your WildFly 10

Modifying the Example DataSource

9.1 Getting Started with WildFly 10

WildFly 10 is the latest release in a series of JBoss open-source application server offerings. WildFly 10 is

an exceptionally fast, lightweight and powerful implementation of the Java Enterprise Edition 7 Platform

specifications. The state-of-the-art architecture built on the Modular Service Container enables services

on-demand when your application requires them. The table below lists the Java Enterprise Edition 7

technologies and the technologies available in WildFly 10 server configuration profiles.

Java EE 7 Platform Technology Java EE

7

Full

Profile

Java EE

7

Web

Profile

WildFly

10

Full

Profile

WildFly

10

Web

Profile

JSR-356: Java API for Web Socket X X X X

JSR-353: Java API for JSON Processing X X X X

JSR-340: Java Servlet 3.1 X X X X

JSR-344: JavaServer Faces 2.2 X X X X

JSR-341: Expression Language 3.0 X X X X

JSR-245: JavaServer Pages 2.3 X X X X

JSR-52: Standard Tag Library for JavaServer Pages (JSTL)

1.2

X X X X

JSR-352: Batch Applications for the Java Platform 1.0 X -- X --

JSR-236: Concurrency Utilities for Java EE 1.0 X X X X

JSR-346: Contexts and Dependency Injection for Java 1.1 X X X X

Latest WildFly Documentation

JBoss Community Documentation Page of 1592 2293

JSR-330: Dependency Injection for Java 1.0 X X X X

JSR-349: Bean Validation 1.1 X X X X

JSR-345: Enterprise JavaBeans 3.2 X

CMP 2.0

Optional

X

(Lite)

X

CMP 2.0

Not

Available

X

(Lite)

JSR-318: Interceptors 1.2 X X X X

JSR-322: Java EE Connector Architecture 1.7 X -- X X

JSR-338: Java Persistence 2.1 X X X X

JSR-250: Common Annotations for the Java Platform 1.2 X X X X

JSR-343: Java Message Service API 2.0 X -- X --

JSR-907: Java Transaction API 1.2 X X X X

JSR-919: JavaMail 1.5 X -- X X

JSR-339: Java API for RESTFul Web Services 2.0 X X X X

JSR-109: Implementing Enterprise Web Services 1.3 X -- X --

JSR-224: Java API for XML-Based Web Services 2.2 X X X X

JSR-181: Web Services Metadata for the Java Platform X -- X --

JSR-101: Java API for XML-Based RPC 1.1 Optional -- -- --

JSR-67: Java APIs for XML Messaging 1.3 X -- X --

JSR-93: Java API for XML Registries Optional -- -- --

JSR-196: Java Authentication Service Provider Interface for

Containers 1.1

X -- X --

JSR-115: Java Authorization Contract for Containers 1.5 X -- X --

JSR-88: Java EE Application Deployment 1.2 Optional -- -- --

JSR-77: J2EE Management 1.1 X X

JSR-45: Debugging Support for Other Languages 1.0 X X X X

Missing HornetQ and JMS?

The WildFly Web Profile doesn't include JMS (provided by HornetQ) by default. If you want to use

messaging, make sure you start the server using the "Full Profile" configuration.

Latest WildFly Documentation

JBoss Community Documentation Page of 1593 2293

This document provides a quick overview on how to download and get started using WildFly 10 for your

application development. For in-depth content on administrative features, refer to the WildFly 10 Admin

Guide.

9.1.1 Download

WildFly 10 distributions can be obtained from:

wildfly.org/downloads

WildFly 10 provides a single distribution available in zip or tar file formats.

wildfly-10.0.0.Final.zip

wildfly-10.0.0.Final.tar.gz

9.1.2 Requirements

Java SE 8 or later (we recommend that you use the latest update available)

9.1.3 Installation

Simply extract your chosen download to the directory of your choice. You can install WildFly 10 on any

operating system that supports the zip or tar formats. Refer to the Release Notes for additional information

related to the release.

9.1.4 WildFly - A Quick Tour

Now that you’ve downloaded WildFly 10, the next thing to discuss is the layout of the distribution and explore

the server directory structure, key configuration files, log files, user deployments and so on. It’s worth

familiarizing yourself with the layout so that you’ll be able to find your way around when it comes to

deploying your own applications.

http://www.wildfly.org/downloads/

Latest WildFly Documentation

JBoss Community Documentation Page of 1594 2293

WildFly 10 Directory Structure

DIRECTORY DESCRIPTION

appclient Configuration files, deployment content, and writable areas used by the

application client container run from this installation.

bin Start up scripts, start up configuration files and various command line utilities like

Vault, add-user and Java diagnostic report

available for Unix and Windows environments

bin/client Contains a client jar for use by non-maven based clients.

docs/schema XML schema definition files

docs/examples/configs Example configuration files representing specific use cases

domain Configuration files, deployment content, and writable areas used by the domain

mode processes run from this installation.

modules WildFly 10 is based on a modular classloading architecture. The various modules

used in the server are stored here.

standalone Configuration files, deployment content, and writable areas used by the single

standalone server run from this installation.

welcome-content Default Welcome Page content

Latest WildFly Documentation

JBoss Community Documentation Page of 1595 2293

Standalone Directory Structure
In " " mode each WildFly 10 server instance is an independent process (similar to previous JBossstandalone

AS versions; e.g., 3, 4, 5, or 6). The configuration files, deployment content and writable areas used by the

single standalone server run from a WildFly installation are found in the following subdirectories under the

top level "standalone" directory:

DIRECTORY DESCRIPTION

configuration Configuration files for the standalone server that runs off of this installation. All configuration

information for the running server is located here and is the single place for configuration

modifications for the standalone server.

data Persistent information written by the server to survive a restart of the server

deployments End user deployment content can be placed in this directory for automatic detection and

deployment of that content into the server's runtime.

NOTE: The server's management API is recommended for installing deployment content.

File system based deployment scanning capabilities remain for developer convenience.

lib/ext Location for installed library jars referenced by applications using the Extension-List

mechanism

log standalone server log files

tmp location for temporary files written by the server

tmp/auth Special location used to exchange authentication tokens with local clients so they can

confirm that they are local to the running AS process.

Latest WildFly Documentation

JBoss Community Documentation Page of 1596 2293

Domain Directory Structure
A key feature of WildFly 10 is the managing multiple servers from a single control point. A collection of

multiple servers are referred to as a " ". Domains can span multiple physical (or virtual) machinesdomain

with all WildFly instances on a given host under the control of a Host Controller process. The Host

Controllers interact with the Domain Controller to control the lifecycle of the WildFly instances running on

that host and to assist the Domain Controller in managing them. The configuration files, deployment content

and writeable areas used by domain mode processes run from a WildFly installation are found in the

following subdirectories under the top level "domain" directory:

DIRECTORY DESCRIPTION

configuration Configuration files for the domain and for the Host Controller and any servers running off of

this installation. All configuration information for the servers managed wtihin the domain is

located here and is the single place for configuration information.

content an internal working area for the Host Controller that controls this installation. This is where it

internally stores deployment content. This directory is not meant to be manipulated by end

users.

Note that " " mode does not support deploying content based on scanning a filedomain

system.

lib/ext Location for installed library jars referenced by applications using the Extension-List

mechanism

log Location where the Host Controller process writes its logs. The Process Controller, a small

lightweight process that actually spawns the other Host Controller process and any

Application Server processes also writes a log here.

servers Writable area used by each Application Server instance that runs from this installation.

Each Application Server instance will have its own subdirectory, created when the server is

first started. In each server's subdirectory there will be the following subdirectories:

data -- information written by the server that needs to survive a restart of the server

log -- the server's log files

tmp -- location for temporary files written by the server

tmp location for temporary files written by the server

tmp/auth Special location used to exchange authentication tokens with local clients so they can

confirm that they are local to the running AS process.

Latest WildFly Documentation

JBoss Community Documentation Page of 1597 2293

WildFly 10 Configurations

Standalone Server Configurations

standalone.xml ()default

Java Enterprise Edition 7 web profile certified configuration with the required technologies plus

those noted in the table above.

standalone-ha.xml

Java Enterprise Edition 7 web profile certified configuration with high availability

standalone-full.xml

Java Enterprise Edition 7 full profile certified configuration including all the required EE 7

technologies

standalone-full-ha.xml

Java Enterprise Edition 7 full profile certified configuration with high availability

Domain Server Configurations

domain.xml

Java Enterprise Edition 7 full and web profiles available with or without high availability

Important to note is that the and modes determine how the servers are managed notdomain standalone

what capabilities they provide.

Starting WildFly 10
To start WildFly 10 using the default web profile configuration in " " mode, change directory tostandalone

$JBOSS_HOME/bin.

./standalone.sh

To start the default web profile configuration using domain management capabilities,

./domain.sh

Starting WildFly 10 with an Alternate Configuration
If you choose to start your server with one of the other provided configurations, they can be accessed by

passing the --server-config argument with the server-config file to be used.

To use the full profile with clustering capabilities, use the following syntax from $JBOSS_HOME/bin:

./standalone.sh --server-config=standalone-full-ha.xml

Latest WildFly Documentation

JBoss Community Documentation Page of 1598 2293

Similarly to start an alternate configuration in mode:domain

./domain.sh --domain-config=my-domain-configuration.xml

 Alternatively, you can create your own selecting the additional subsystems you want to add, remove, or

modify.

Test Your Installation
After executing one of the above commands, you should see output similar to what's shown below.

===

 JBoss Bootstrap Environment

 JBOSS_HOME: /opt/wildfly-10.0.0.Final

 JAVA: java

 JAVA_OPTS: -server -Xms64m -Xmx512m -XX:MetaspaceSize=96M -XX:MaxMetaspaceSize=256m

-Djava.net.preferIPv4Stack=true -Djboss.modules.system.pkgs=com.yourkit,org.jboss.byteman

-Djava.awt.headless=true

===

11:46:11,161 INFO [org.jboss.modules] (main) JBoss Modules version 1.5.1.Final

11:46:11,331 INFO [org.jboss.msc] (main) JBoss MSC version 1.2.6.Final

11:46:11,391 INFO [org.jboss.as] (MSC service thread 1-6) WFLYSRV0049: WildFly Full

10.0.0.Final (WildFly Core 2.0.10.Final) starting

<snip>

11:46:14,300 INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0025: WildFly Full

10.0.0.Final (WildFly Core 2.0.10.Final) started in 1909ms - Started 267 of 553 services (371

services are lazy, passive or on-demand)

As with previous WildFly releases, you can point your browser to (if using the defaulthttp://localhost:8080

configured http port) which brings you to the Welcome Screen:

http://localhost:8080

Latest WildFly Documentation

JBoss Community Documentation Page of 1599 2293

From here you can access links to the WildFly community documentation set, stay up-to-date on the latest

project information, have a discussion in the user forum and access the enhanced web-based Administration

Console. Or, if you uncover a defect while using WildFly, report an issue to inform us (attached patches will

be reviewed). This landing page is recommended for convenient access to information about WildFly 10 but

can easily be replaced with your own if desired.

Managing your WildFly 10
WildFly 10 offers two administrative mechanisms for managing your running instance:

web-based Administration Console

command-line interface

Latest WildFly Documentation

JBoss Community Documentation Page of 1600 2293

Authentication
By default WildFly 10 is now distributed with security enabled for the management interfaces, this means

that before you connect using the administration console or remotely using the CLI you will need to add a

new user, this can be achieved simply by using the script in the bin folder.add-user.sh

After starting the script you will be guided through the process to add a new user: -

./add-user.sh

What type of user do you wish to add?

 a) Management User (mgmt-users.properties)

 b) Application User (application-users.properties)

(a):

In this case a new user is being added for the purpose of managing the servers so select option a.

You will then be prompted to enter the details of the new user being added: -

Enter the details of the new user to add.

Realm (ManagementRealm) :

Username :

Password :

Re-enter Password :

It is important to leave the name of the realm as 'ManagementRealm' as this needs to match the name used

in the server's configuration, for the remaining fields enter the new username, password and password

confirmation.

Provided there are no errors in the values entered you will then be asked to confirm that you want to add the

user, the user will be written to the properties files used for authentication and a confirmation message will

be displayed.

The modified time of the properties files are inspected at the time of authentication and the files reloaded if

they have changed, for this reason you do not need to re-start the server after adding a new user.

Latest WildFly Documentation

JBoss Community Documentation Page of 1601 2293

Administration Console
To access the web-based Administration Console, simply follow the link from the Welcome Screen. To

directly access the Management Console, point your browser at:

http://localhost:9990/console

NOTE: port 9990 is the default port configured.

<management-interfaces>

 <native-interface security-realm="ManagementRealm">

 <socket-binding native="management-native"/>

 </native-interface>

 <http-interface security-realm="ManagementRealm">

 <socket-binding http="management-http"/>

 </http-interface>

</management-interfaces>

If you modify the socket binding in your running configuration: adjust the above commandmanagement-http

accordingly. If such modifications are made, then the link from the Welcome Screen will also be

inaccessible.

If you have not yet added at least one management user an error page will be displayed asking you to add a

new user, after a user has been added you can click on the 'Try Again' link at the bottom of the error page to

try connecting to the administration console again.

Command-Line Interface
If you prefer to manage your server from the command line (or batching), the script provides thejboss-cli.sh

same capabilities available via the web-based UI. This script is accessed from $JBOSS_HOME/bin

directory; e.g.,

$JBOSS_HOME/bin/jboss-cli.sh --connect

Connected to standalone controller at localhost:9990

Notice if no host or port information provided, it will default to localhost:9990.

When running locally to the WildFly process the CLI will silently authenticate against the server by

exchanging tokens on the file system, the purpose of this exchange is to verify that the client does have

access to the local file system. If the CLI is connecting to a remote WildFly installation then you will be

prompted to enter the username and password of a user already added to the realm.

Once connected you can add, modify, remove resources and deploy or undeploy applications. For a

complete list of commands and command syntax, type once connected.help

http://localhost:9990/console

Latest WildFly Documentation

JBoss Community Documentation Page of 1602 2293

1.

2.

Modifying the Example DataSource
As with previous JBoss application server releases, a default data source, , is configured usingExampleDS

the embedded H2 database for developer convenience. There are two ways to define datasource

configurations:

as a module

as a deployment

In the provided configurations, H2 is configured as a module. The module is located in the

$JBOSS_HOME/modules/com/h2database/h2 directory. The H2 datasource configuration is shown below.

<subsystem xmlns="urn:jboss:domain:datasources:1.0">

 <datasources>

 <datasource jndi-name="java:jboss/datasources/ExampleDS" pool-name="ExampleDS">

 <connection-url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-1</connection-url>

 <driver>h2</driver>

 <pool>

 <min-pool-size>10</min-pool-size>

 <max-pool-size>20</max-pool-size>

 <prefill>true</prefill>

 </pool>

 <security>

 <user-name>sa</user-name>

 <password>sa</password>

 </security>

 </datasource>

 <xa-datasource jndi-name="java:jboss/datasources/ExampleXADS" pool-name="ExampleXADS">

 <driver>h2</driver>

 <xa-datasource-property name="URL">jdbc:h2:mem:test</xa-datasource-property>

 <xa-pool>

 <min-pool-size>10</min-pool-size>

 <max-pool-size>20</max-pool-size>

 <prefill>true</prefill>

 </xa-pool>

 <security>

 <user-name>sa</user-name>

 <password>sa</password>

 </security>

 </xa-datasource>

 <drivers>

 <driver name="h2" module="com.h2database.h2">

 <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-datasource-class>

 </driver>

 </drivers>

 </datasources>

</subsystem>

The datasource subsystem is provided by the project. For a detailed description of the availableIronJacamar

configuration properties, please consult the project documentation.

http://www.jboss.org/ironjacamar

Latest WildFly Documentation

JBoss Community Documentation Page of 1603 2293

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

IronJacamar homepage: http://www.jboss.org/ironjacamar

Project Documentation: http://www.jboss.org/ironjacamar/docs

Schema description:

http://docs.jboss.org/ironjacamar/userguide/1.0/en-US/html/deployment.html#deployingds_descriptor

Configure Logging in WildFly 10
WildFly 10 logging can be configured with the web console or the command line interface. You can get more

detail on the page.Logging Configuration

Turn on debugging for a specific category with CLI:

/subsystem=logging/logger=org.jboss.as:add(level=DEBUG)

By default the is configured to include all levels in it's log output. In the above example weserver.log

changed the console to also display debug messages.

9.2 JavaEE 6 Tutorial

Coming Soon

This guide is still under development, check back soon!

9.2.1 Standard JavaEE 6 Technologies

Enterprise JavaBeans Technology (EJB)

Java Servlet Technology

Java Server Faces Technology (JSF)

Java Persistence API (JPA)

Java Transaction API (JTA)

Java API for RESTful Web Services (JAX-RS)

Java API for XML Web Services (JAX-WS)

Managed Beans

Contexts and Dependency Injection (CDI)

Bean Validation

Java Message Service API (JMS)

JavaEE Connector Architecture (JCA)

JavaMail API

Java Authorization Contract for Containers (JACC)

Java Authentication Service Provider Interface for Containers (JASPIC)

http://www.jboss.org/ironjacamar
http://www.jboss.org/ironjacamar/docs
http://docs.jboss.org/ironjacamar/userguide/1.0/en-US/html/deployment.html#deployingds_descriptor
https://docs.jboss.org/author/display/WFLY10/Logging+Configuration

Latest WildFly Documentation

JBoss Community Documentation Page of 1604 2293

1.

2.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

9.2.2 JBoss AS7 Extension Technologies

OSGi Technology

Management Interface

9.2.3 Standard JavaEE 6 Technologies

Coming Soon

This guide is still under development, check back soon!

Enterprise JavaBeans Technology (EJB)

Java Servlet Technology

Java Server Faces Technology (JSF)

Java Persistence API (JPA)

Java Transaction API (JTA)

Java API for RESTful Web Services (JAX-RS)

Java API for XML Web Services (JAX-WS)

Managed Beans

Contexts and Dependency Injection (CDI)

Bean Validation

Java Message Service API (JMS)

JavaEE Connector Architecture (JCA)

JavaMail API

Java Authorization Contract for Containers (JACC)

Java Authentication Service Provider Interface for Containers (JASPIC)

Java API for RESTful Web Services (JAX-RS)

Content

Tutorial Overview

What are RESTful Web Services?

Creating a RESTful endpoint

Package and build the endpoint

Deploy the endpoint to OpenShift

Building the mobile client

Exploring the mobile client

https://docs.jboss.org/author/display/AS71/Java+API+for+XML+Web+Services+%28JAX-WS%29

Latest WildFly Documentation

JBoss Community Documentation Page of 1605 2293

Tutorial Overview
This chapter describes the Java API for RESTful web services (JAX-RS, defined in). isJSR331 RESTEasy

an portable implementation of this specification which can run in any Servlet container. Tight integration with

JBoss Application Server is available for optimal user experience in that environment. While JAX-RS is only

a server-side specification, RESTeasy has innovated to bring JAX-RS to the client through the RESTEasy

JAX-RS Client Framework.

Detailed documentation on RESTEasy is available .here

The source for this tutorial is in github repository git://github.com/tdiesler/javaee-tutorial.git

, is a portfolio of portable cloud services for deploying and managing applications in the cloud. ThisOpenShift

tutorial shows how to deploy a RESTful web service on the free OpenShift Express JavaEE cartridge that

runs .JBossAS 7

An application running on shows how to leverage JBoss technology on mobile devices. Specifically,Android

we show how use the RESTEasy client API from an Android device to integrate with a RESTful service

running on a JBossAS 7 instance in the cloud.

The following topics are addressed

What are RESTful web services

Creating a RESTful server endpoint

Deploying a RESTful endpoint to a JBossAS instance in the cloud

RESTEasy client running on an Android mobile device

http://jcp.org/en/jsr/detail?id=311
http://www.jboss.org/resteasy
http://www.jboss.org/resteasy/docs.html
https://github.com/tdiesler/javaee-tutorial
https://openshift.redhat.com/app
http://www.jboss.org/jbossas
http://www.android.com

Latest WildFly Documentation

JBoss Community Documentation Page of 1606 2293

What are RESTful Web Services?

Coming Soon

This section is still under development.

RESTful web services are designed to expose APIs on the web. REST stands for presentational tate Re S T

ransfer. It aims to provide better performance, scalability, and flexibility than traditinoal web services, by

allowing clients to access data and resources using predictable URLs. Many well-known public web services

expose RESTful APIs.

The Java 6 Enterprise Edition specification for RESTful services is JAX-RS. It is covered by JSR-311 (

). In the REST model, the server exposes APIs through specific URIs (typicallyhttp://jcp.org/jsr/detail/311.jsp

URLs), and clients access those URIs to query or modify data. REST uses a stateless communication

protocol. Typically, this is HTTP.

The following is a summary of RESTful design principles:

A URL is tied to a resource using the annotation. Clients access the resource using the URL.@Path

Create, Read, Update, and Delete (CRUD) operations are accessed via , , , and PUT GET POST

 requests in the HTTP protocol.DELETE

 creates a new resource. PUT

 deletes a resource.DELETE

 retrieves the current state of a resource.GET

 updates a resources's state.POST

Resources are decoupled from their representation, so that clients can request the data in a variety of

different formats.

Stateful interactions require explicit state transfer, in the form of URL rewriting, cookies, and hidden

form fields. State can also be embedded in response messages.

Creating a RESTful endpoint
A RESTful endpoint is deployed as JavaEE web archive (WAR). For this tutorial we use a simple library

application to manage some books. There are two classes in this application:

Library

Book

The Book is a plain old Java object (POJO) with two attributes. This is a simple Java representation of a

RESTful entity.

http://jcp.org/jsr/detail/311.jsp

Latest WildFly Documentation

JBoss Community Documentation Page of 1607 2293

public class Book {

 private String isbn;

 private String title;

 ...

}

The Library is the RESTful Root Resource. Here we use a set of standard JAX-RS annotations to define

The root path to the library resource

The wire representation of the data (MIME type)

The Http methods and corresponding paths

@Path("/library")

@Consumes({ "application/json" })

@Produces({ "application/json" })

public class Library {

 @GET

 @Path("/books")

 public Collection<Book> getBooks() {

 ...

 }

 @GET

 @Path("/book/{isbn}")

 public Book getBook(@PathParam("isbn") String id) {

 ...

 }

 @PUT

 @Path("/book/{isbn}")

 public Book addBook(@PathParam("isbn") String id, @QueryParam("title") String title) {

 ...

 }

 @POST

 @Path("/book/{isbn}")

 public Book updateBook(@PathParam("isbn") String id, String title) {

 ...

 }

 @DELETE

 @Path("/book/{isbn}")

 public Book removeBook(@PathParam("isbn") String id) {

 ...

 }

}

The Library root resource uses these JAX-RS annotations:

Latest WildFly Documentation

JBoss Community Documentation Page of 1608 2293

Annotation Description

@Path Identifies the URI path that a resource class or class method will serve requests for

@Consumes Defines the media types that the methods of a resource class can accept

@Produces Defines the media type(s) that the methods of a resource class can produce

@GET Indicates that the annotated method responds to HTTP GET requests

@PUT Indicates that the annotated method responds to HTTP PUT requests

@POST Indicates that the annotated method responds to HTTP POST requests

@DELETE Indicates that the annotated method responds to HTTP DELETE requests

For a full description of the available JAX-RS annotations, see the documentation.JAX-RS API

Package and build the endpoint
To package the endpoint we create a simple web archive and include a web.xml with the following content

Review

 Remove or explain why web.xml is needed for RESTful endpointsAS7-1674

<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

 <servlet-mapping>

 <servlet-name>javax.ws.rs.core.Application</servlet-name>

 <url-pattern>/*</url-pattern>

 </servlet-mapping>

</web-app>

The root context is defined in jboss-web.xml

<jboss-web>

 <context-root>jaxrs-sample</context-root>

</jboss-web>

The code for the JAX-RS part of this tutorial is available on

. In this step we clone the repository and build thehttps://github.com/tdiesler/javaee-tutorial/tree/master/jaxrs

endpoint using . There are a number of JAX-RS client tests that run against a local JBossAS 7maven

instance. Before we build the project, we set the JBOSS_HOME environment variable accordingly.

http://download.oracle.com/javaee/6/api/javax/ws/rs/package-summary.html
https://issues.jboss.org/browse/AS7-1674
https://github.com/tdiesler/javaee-tutorial/tree/master/jaxrs
http://maven.apache.org

Latest WildFly Documentation

JBoss Community Documentation Page of 1609 2293

, the test framework we use throughout this tutorial, can manage server startup/shutdown. It isArquillian

however also possible to startup the server instance manually before you run the tests. The latter allows you

to look at the console and see what log output the deployment phase and JAX-RS endpoint invocations

produce.

$ git clone git://github.com/tdiesler/javaee-tutorial.git

Cloning into javaee-tutorial...

$ cd javaee-tutorial/jaxrs

$ export JBOSS_HOME=~/workspace/jboss-as-7.0.1.Final

$ mvn install

...

[INFO] --

[INFO] Reactor Summary:

[INFO]

[INFO] JavaEE Tutorial - JAX-RS SUCCESS [1.694s]

[INFO] JavaEE Tutorial - JAX-RS Server SUCCESS [2.392s]

[INFO] JavaEE Tutorial - JAX-RS Client SUCCESS [7.304s]

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 12.142s

Deploy the endpoint to OpenShift
First we need to create a free account and select the JavaEE cartridge that runsOpenShift Express

JBossAS 7. Once we have received the confirmation email from OpenShift we can continue to create our

subdomain and deploy the RESTful endpoint. A series of videos on the OpenShift Express page shows you

how to do this. There is also an excellent that you have access to after login.quick start document

For this tutorial we assume you have done the above and that we can continue by creating the OpenShift

application. This step sets up your JBossAS 7 instance in the cloud. Additionally a repository isGit

configured that gives access to your deployed application.

$ rhc-create-app -a tutorial -t jbossas-7.0

Password:

Attempting to create remote application space: tutorial

Successfully created application: tutorial

Now your new domain name is being propagated worldwide (this might take a minute)...

Success! Your application is now published here:

 http://tutorial-tdiesler.rhcloud.com/

The remote repository is located here:

 ssh://79dcb9db5e134cccb9d1ba33e6089667@tutorial-tdiesler.rhcloud.com/~/git/tutorial.git/

Next, we can clone the remote Git repository to our local workspace

http://www.jboss.org/arquillian
https://openshift.redhat.com/app/express
https://openshift.redhat.com/app/express#quickstart
http://git-scm.com

Latest WildFly Documentation

JBoss Community Documentation Page of 1610 2293

$ git clone

ssh://79dcb9db5e134cccb9d1ba33e6089667@tutorial-tdiesler.rhcloud.com/~/git/tutorial.git

Cloning into tutorial...

remote: Counting objects: 24, done.

remote: Compressing objects: 100% (14/14), done.

remote: Total 24 (delta 0), reused 0 (delta 0)

Receiving objects: 100% (24/24), 21.84 KiB, done.

ls -1 tutorial

deployments

pom.xml

README

src

Because we want to deploy an already existing web application, which we'll build in the next step, we can

safely remove the source artefacts from the repository.

$ rm -rf tutorial/src tutorial/pom.xml

Now we copy the JAX-RS endpoint webapp that we build above to the 'deployments' folder and commit the

changes.

$ cp javaee-tutorial/jaxrs/server/target/javaee-tutorial-jaxrs-server-1.0.0-SNAPSHOT.war

tutorial/deployments

$ cd tutorial; git commit -a -m "Initial jaxrs endpoint deployment"

[master be5b5a3] Initial jaxrs endpoint deployment

 7 files changed, 0 insertions(+), 672 deletions(-)

 create mode 100644 deployments/javaee-tutorial-jaxrs-server-1.0.0-SNAPSHOT.war

 delete mode 100644 pom.xml

 delete mode 100644 src/main/java/.gitkeep

 delete mode 100644 src/main/resources/.gitkeep

 delete mode 100644 src/main/webapp/WEB-INF/web.xml

 delete mode 100644 src/main/webapp/health.jsp

 delete mode 100644 src/main/webapp/images/jbosscorp_logo.png

 delete mode 100644 src/main/webapp/index.html

 delete mode 100644 src/main/webapp/snoop.jsp

$ git push origin

Counting objects: 6, done.

...

remote: Starting application...Done

You can now use curl or your browser to see the JAX-RS endpoint in action. The following URL lists the

books that are currently registered in the library.

Latest WildFly Documentation

JBoss Community Documentation Page of 1611 2293

$ curl http://tutorial-tdiesler.rhcloud.com/jaxrs-sample/library/books

[

{"title":"The Judgment","isbn":"001"},

{"title":"The Stoker","isbn":"002"},

{"title":"Jackals and Arabs","isbn":"003"},

{"title":"The Refusal","isbn":"004"}

]

Building the mobile client
The source associated with this tutorial contains a fully working mobile client application for the Android

framework. If not done so already please follow steps described in . In addition to theInstalling the SDK

Android SDK, I recommend installing the and the plugin to .m2eclipse EGit Eclipse

First, go to File|Import... and choose "Existing Maven Projects" to import the tutorial sources

You project view should look like this

http://developer.android.com/sdk/installing.html
http://m2eclipse.sonatype.org/installing-m2eclipse.html
http://www.eclipse.org/egit/download/
http://www.eclipse.org/downloads/packages/eclipse-classic-37/indigor

Latest WildFly Documentation

JBoss Community Documentation Page of 1612 2293

Then go to File|New|Android Project and fill out the first wizard page like this

Latest WildFly Documentation

JBoss Community Documentation Page of 1613 2293

Click Finish. Next, go to Project|Properties|Build Path|Libraries and add these external libraries to your

android project.

You final project view should look like this

Latest WildFly Documentation

JBoss Community Documentation Page of 1614 2293

To run the application in the emulator, we need an Android Virtual Device (AVD). Go to Window|Android

SDK and AVD Manager and create a new AVD like this

Latest WildFly Documentation

JBoss Community Documentation Page of 1615 2293

Now go to Run|Configuration to create a new run configuration for the client app.

Latest WildFly Documentation

JBoss Community Documentation Page of 1616 2293

Now you should be able to launch the application in the debugger. Right click on the

javaee-tutorial-jaxrs-android project and select Debug As|Android Application. This should launch the

emulator, which now goes though a series of boot screens until it eventually displays the Android home

screen. This will take a minute or two if you do this for the first time.

Latest WildFly Documentation

JBoss Community Documentation Page of 1617 2293

Latest WildFly Documentation

JBoss Community Documentation Page of 1618 2293

Latest WildFly Documentation

JBoss Community Documentation Page of 1619 2293

When you unlock the home screen by dragging the little green lock to the right. You should see the the

running JAX-RS client application.

Latest WildFly Documentation

JBoss Community Documentation Page of 1620 2293

Finally, you need to configure the host that the client app connects to. This would be the same as you used

above to curl the library list. In the emulator click Menu|Host Settings and enter the host address of your

OpenShift application.

Latest WildFly Documentation

JBoss Community Documentation Page of 1621 2293

When going back to the application using the little back arrow next to Menu, you should see a list of books.

Latest WildFly Documentation

JBoss Community Documentation Page of 1622 2293

You can now add, edit and delete books and switch between your browser and the emulator to verify that the

client app is not cheating and that the books are in fact in the cloud on your JBossAS 7 instance.

In Eclipse you can go to the Debug perspective and click on the little Android robot in the lower right corner.

This will display the LogCat view, which should display log output from that Android system as well as from

this client app

08-30 09:05:46.180: INFO/JaxrsSample(269): removeBook: Book [isbn=1234, title=1234]

08-30 09:05:46.210: INFO/JaxrsSample(269): requestURI:

http://tutorial-tdiesler.rhcloud.com:80/jaxrs-sample/library

08-30 09:05:46.860: INFO/global(269): Default buffer size used in BufferedInputStream

constructor. It would be better to be explicit if an 8k buffer is required.

08-30 09:05:46.920: INFO/JaxrsSample(269): getBooks: [Book [isbn=001, title=The Judgment], Book

[isbn=002, title=The Stoker], Book [isbn=003, title=Jackals and Arabs], Book [isbn=004,

title=The Refusal]]

Exploring the mobile client
There is a lot to writing high quality mobile applications. The goal of this little application is to get you started

with JBossAS 7 / Android integration. There is also a portable approach to writing mobile applications. A

popular one would be through . With PhoneGap you write your application in HTML+CSS+JavaPhoneGap

Script. It then runs in the browser of your mobile device. Naturally, of mobile platform APIsnot the full set

would be available through this approach.

http://www.phonegap.com
http://www.phonegap.com/about/features

Latest WildFly Documentation

JBoss Community Documentation Page of 1623 2293

The JAX-RS client application uses an annotated library client interface

@Consumes({ "application/json" })

@Produces({ "application/json" })

public interface LibraryClient {

 @GET

 @Path("/books")

 public List<Book> getBooks();

 @GET

 @Path("/book/{isbn}")

 public Book getBook(@PathParam("isbn") String id);

 @PUT

 @Path("/book/{isbn}")

 public Book addBook(@PathParam("isbn") String id, @QueryParam("title") String title);

 @POST

 @Path("/book/{isbn}")

 public Book updateBook(@PathParam("isbn") String id, String title);

 @DELETE

 @Path("/book/{isbn}")

 public Book removeBook(@PathParam("isbn") String id);

}

There are two implementations of this interface available.

LibraryHttpclient

LibraryResteasyClient

The first uses APIs that are available in the Android SDK natively. The code is much more involved, but

there would be no need to add external libraries (i.e. resteasy, jackson, etc). The effect is that the total size

of the application is considerably smaller in size (i.e. 40k)

Latest WildFly Documentation

JBoss Community Documentation Page of 1624 2293

@Override

 public List<Book> getBooks() {

 List<Book> result = new ArrayList<Book>();

 String content = get("books");

 Log.d(LOG_TAG, "Result content:" + content);

 if (content != null) {

 try {

 JSONTokener tokener = new JSONTokener(content);

 JSONArray array = (JSONArray) tokener.nextValue();

 for (int i = 0; i < array.length(); i++) {

 JSONObject obj = array.getJSONObject(i);

 String title = obj.getString("title");

 String isbn = obj.getString("isbn");

 result.add(new Book(isbn, title));

 }

 } catch (JSONException ex) {

 ex.printStackTrace();

 }

 }

 Log.i(LOG_TAG, "getBooks: " + result);

 return result;

 }

 private String get(String path) {

 try {

 HttpGet request = new HttpGet(getRequestURI(path));

 HttpResponse res = httpClient.execute(request);

 String content = EntityUtils.toString(res.getEntity());

 return content;

 } catch (Exception ex) {

 ex.printStackTrace();

 return null;

 }

 }

The second implementation uses the fabulous RESTEasy client proxy to interact with the JAX-RS endpoint.

The details of Http connectivity and JSON data binding is transparently handled by RESTEasy. The total

size of the application is considerably bigger in size (i.e. 400k)

@Override

 public List<Book> getBooks() {

 List<Book> result = new ArrayList<Book>();

 try {

 result = getLibraryClient().getBooks();

 } catch (RuntimeException ex) {

 ex.printStackTrace();

 }

 Log.i(LOG_TAG, "getBooks: " + result);

 return result;

 }

Latest WildFly Documentation

JBoss Community Documentation Page of 1625 2293

Stay tuned for an update on a much more optimized version of the RESTEasy mobile client. Feasible is also

a RESTEasy JavaScript library that would enable the portable PhoneGap approach.

Java Servlet Technology

Coming Soon

This guide is still under development, check back soon!

Content

Asynchronous Support

Asynchronous Support

Java Server Faces Technology (JSF)

Java Persistence API (JPA)

Java Transaction API (JTA)

Coming Soon

This guide is still under development, check back soon!

Managed Beans

Contexts and Dependency Injection (CDI)

Bean Validation

Java Message Service API (JMS)

Coming Soon

This guide is still under development, check back soon!

Configure JBossAS for Messaging

Adding the message destinations

Latest WildFly Documentation

JBoss Community Documentation Page of 1626 2293

Configure JBossAS for Messaging
Currently, the default configuration does not include the JMS subsystem. To enable JMS in the standalone

server you need to add these configuration items to standalone.xml or simply use standalone-full.xml.

<extension module="org.jboss.as.messaging"/>

<subsystem xmlns="urn:jboss:domain:messaging:1.0">

 <!-- Default journal file size is 10Mb, reduced here to 100k for faster first boot -->

 <journal-file-size>102400</journal-file-size>

 <journal-min-files>2</journal-min-files>

 <journal-type>NIO</journal-type>

 <!-- disable messaging persistence -->

 <persistence-enabled>false</persistence-enabled>

 <connectors>

 <netty-connector name="netty" socket-binding="messaging" />

 <netty-connector name="netty-throughput" socket-binding="messaging-throughput">

 <param key="batch-delay" value="50"/>

 </netty-connector>

 <in-vm-connector name="in-vm" server-id="0" />

 </connectors>

 <acceptors>

 <netty-acceptor name="netty" socket-binding="messaging" />

 <netty-acceptor name="netty-throughput" socket-binding="messaging-throughput">

 <param key="batch-delay" value="50"/>

 <param key="direct-deliver" value="false"/>

 </netty-acceptor>

 <acceptor name="stomp-acceptor">

<factory-class>org.hornetq.core.remoting.impl.netty.NettyAcceptorFactory</factory-class>

 <param key="protocol" value="stomp" />

 <param key="port" value="61613" />

 </acceptor>

 <in-vm-acceptor name="in-vm" server-id="0" />

 </acceptors>

 <security-settings>

 <security-setting match="#">

 <permission type="createNonDurableQueue" roles="guest"/>

 <permission type="deleteNonDurableQueue" roles="guest"/>

 <permission type="consume" roles="guest"/>

 <permission type="send" roles="guest"/>

 </security-setting>

 </security-settings>

 <address-settings>

 <!--default for catch all-->

 <address-setting match="#">

 <dead-letter-address>jms.queue.DLQ</dead-letter-address>

 <expiry-address>jms.queue.ExpiryQueue</expiry-address>

 <redelivery-delay>0</redelivery-delay>

 <max-size-bytes>10485760</max-size-bytes>

 <message-counter-history-day-limit>10</message-counter-history-day-limit>

 <address-full-policy>BLOCK</address-full-policy>

Latest WildFly Documentation

JBoss Community Documentation Page of 1627 2293

 </address-setting>

 </address-settings>

 <!--JMS Stuff-->

 <jms-connection-factories>

 <connection-factory name="InVmConnectionFactory">

 <connectors>

 <connector-ref connector-name="in-vm"/>

 </connectors>

 <entries>

 <entry name="java:/ConnectionFactory"/>

 </entries>

 </connection-factory>

 <connection-factory name="RemoteConnectionFactory">

 <connectors>

 <connector-ref connector-name="netty"/>

 </connectors>

 <entries>

 <entry name="RemoteConnectionFactory"/>

 </entries>

 </connection-factory>

 <pooled-connection-factory name="hornetq-ra">

 <transaction mode="xa"/>

 <connectors>

 <connector-ref connector-name="in-vm"/>

 </connectors>

 <entries>

 <entry name="java:/JmsXA"/>

 <!-- Global JNDI entry used to provide a default JMS Connection factory to EE

application -->

 <entry name="java:jboss/DefaultJMSConnectionFactory"/>

 </entries>

 </pooled-connection-factory>

 </jms-connection-factories>

 <jms-destinations>

 <jms-queue name="testQueue">

 <entry name="queue/test"/>

 </jms-queue>

 <jms-topic name="testTopic">

 <entry name="topic/test"/>

 </jms-topic>

 </jms-destinations>

</subsystem>

<socket-binding name="messaging" port="5445" />

<socket-binding name="messaging-throughput" port="5455"/>

Alternatively run the server using the preview configuration

$ bin/standalone.sh --server-config=standalone-preview.xml

Latest WildFly Documentation

JBoss Community Documentation Page of 1628 2293

Adding the message destinations
For this tutorial we use two message destinations

BidQueue - The queue that receives the client bids

AuctionTopic - The topic that publishes the start of a new auction

You can either add the message destinations by using the Command Line Interface (CLI)

$ bin/jboss-admin.sh --connect

Connected to standalone controller at localhost:9999

[standalone@localhost:9999 /] jms-queue add --queue-address=BidQueue --entries=queue/bid

[standalone@localhost:9999 /] jms-topic add --topic-address=AuctionTopic --entries=topic/auction

[standalone@localhost:9999 /] exit

Closed connection to localhost:9999

or by adding them to the subsytem configuration as shown above.

JavaEE Connector Architecture (JCA)

JavaMail API

Latest WildFly Documentation

JBoss Community Documentation Page of 1629 2293

Java Authorization Contract for Containers (JACC)
In order to register your own JACC Module, you'll need to create a server module containing the required

classes, and then set three system properties for WildFly to take it. Such a module would depend on the

"javax.api" and "javaee.api" modules.

An example module.xml for such a module could be:

<module xmlns="urn:jboss:module:1.1" name="com.example.customjacc">

 <resources>

 <resource-root path="customjacc.jar"/>

 </resources>

 <dependencies>

 <module name="javax.api"/>

 <module name="javaee.api"/>

 </dependencies>

</module>

The specified JAR needs to contain at least two classes, as mandated by the JACC spec:

A implementation: in our example, it'll be PolicyProvider

com.example.customjacc.CustomPolicy.

A implementation: PolicyConfigurationFactory

 in our case.com.example.customjacc.CustomPolicyConfigurationFactory

The spec requires two system properties to be set for the server to register the JACC Module.

For a server running in standalone mode, put the following commands in the JBoss CLI:

[standalone@localhost:9990 /]

/system-property=javax.security.jacc.policy.provider:add(value=com.example.customjacc.CustomPolicy)
[standalone@localhost:9990

/]

/system-property=javax.security.jacc.PolicyConfigurationFactory.provider:add(value=com.example.customjacc.CustomPolicyConfigurationFactory)

Another property is needed to make WildFly know where to load the classes from:

[standalone@localhost:9990 /]

/system-property=org.jboss.as.security.jacc-module:add(value=com.example.customjacc)

Latest WildFly Documentation

JBoss Community Documentation Page of 1630 2293

Java Authentication Service Provider Interface for Containers (JASPIC)
JASPI is not available by default for deployments, and a specific Security Domain must be created to use it.

For a simplified developer experience, a default JASPI Domain is already bundled, called .jaspitest

To make use of it, a Web Application only needs to specifiy the desired security domain in the

 deployment descriptor. This file should be located under the directory. Anjboss-web.xml WEB-INF

example enabling the default JASPI domain:jboss-web.xml

<?xml version="1.0"?>

<jboss-web xmlns="http://www.jboss.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee

http://www.jboss.org/j2ee/schema/jboss-web_10_0.xsd"

 version="10.0">

 <security-domain>jaspitest</security-domain>

</jboss-web>

For EAR deployments, a like the following should be used instead, placed under the rootjboss-app.xml

META-INF directory:

<?xml version="1.0" encoding="UTF-8"?>

<jboss-app xmlns="http://www.jboss.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 version="7.0">

 <security-domain>jaspitest</security-domain>

</jboss-app>

Latest WildFly Documentation

JBoss Community Documentation Page of 1631 2293

Enterprise JavaBeans Technology (EJB)
In this section we'll look at the two main types of beans (Session Beans and Message Driven Beans), the

methods to access and the packaging possibilities of beans.

Coming Soon

This guide is still under development, check back soon!

Session Beans

Stateful Session Beans

Stateless Session Beans

Singleton Session Beans

Message Driven Beans

How can Enterprise JavaBeans can be accessed?

Remote call invocation

Local call invocation

Web Services

Packaging

Session Beans

Stateful Session Beans

Stateless Session Beans

Singleton Session Beans

Message Driven Beans

How can Enterprise JavaBeans can be accessed?

Remote call invocation

Local call invocation

Web Services

Packaging

Latest WildFly Documentation

JBoss Community Documentation Page of 1632 2293

Java API for XML Web Services (JAX-WS)
JBossWS uses the JBoss Application Server as its target container. The following examples focus on web

service deployments that leverage EJB3 service implementations and the JAX-WS programming models.

For further information on POJO service implementations and advanced topics you need consult the user

.guide

Developing web service implementations
JAX-WS does leverage annotations in order to express web service meta data on Java components and to

describe the mapping between Java data types and XML. When developing web service implementations

you need to decide whether you are going to start with an abstract contract (WSDL) or a Java component.

If you are in charge to provide the service implementation, then you are probably going to start with the

implementation and derive the abstract contract from it. You are probably not even getting in touch with the

WSDL unless you hand it to 3rd party clients. For this reason we are going to look at a service

implementation that leverages .JSR-181 annotations

Even though detailed knowledge of web service meta data is not required, it will definitely help if

you make yourself familiar with it. For further information see

Web service meta data (JSR-181)

Java API for XML binding (JAXB)

Java API for XML-Based Web Services

The service implementation class
When starting from Java you must provide the service implementation. A valid endpoint implementation

class must meet the following requirements:

It carry a annotation (see JSR 181)must javax.jws.WebService

All method parameters and return types be compatible with the JAXB 2.0must

Let's look at a sample EJB3 component that is going to be exposed as a web service.

Don't be confused with the EJB3 annotation . We concentrate on the annotation@Stateless @WebService

for now.

https://docs.jboss.org/author/display/AS71/JAX-WS+User+Guide
https://docs.jboss.org/author/display/AS71/JAX-WS+User+Guide
http://www.jcp.org/en/jsr/summary?id=181
http://www.jcp.org/en/jsr/summary?id=181
http://www.jcp.org/en/jsr/summary?id=222
http://www.jcp.org/en/jsr/summary?id=224

Latest WildFly Documentation

JBoss Community Documentation Page of 1633 2293

Implementing the service

package org.jboss.test.ws.jaxws.samples.retail.profile;

import javax.ejb.Stateless;

import javax.jws.WebService;

import javax.jws.WebMethod;

import javax.jws.soap.SOAPBinding;

@Stateless (1)

@WebService((2)

 name="ProfileMgmt",

 targetNamespace = "http://org.jboss.ws/samples/retail/profile",

 serviceName = "ProfileMgmtService")

@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE) (3)

public class ProfileMgmtBean {

 @WebMethod (4)

 public DiscountResponse getCustomerDiscount(DiscountRequest request) {

 return new DiscountResponse(request.getCustomer(), 10.00);

 }

}

1. We are using a stateless session bean implementation

2. Exposed a web service with an explicit namespace

3. It's a doc/lit bare endpoint

4. And offers an 'getCustomerDiscount' operation

Latest WildFly Documentation

JBoss Community Documentation Page of 1634 2293

What about the payload?

The method parameters and return values are going to represent our XML payload and thus require being

compatible with JAXB2. Actually you wouldn't need any JAXB annotations for this particular example,

because JAXB relies on meaningful defaults. For the sake of documentation we put the more important ones

here.

Take a look at the request parameter:

package org.jboss.test.ws.jaxws.samples.retail.profile;

import javax.xml.bind.annotation.XmlAccessType;

import javax.xml.bind.annotation.XmlAccessorType;

import javax.xml.bind.annotation.XmlType;

import org.jboss.test.ws.jaxws.samples.retail.Customer;

@XmlAccessorType(XmlAccessType.FIELD)

@XmlType((1)

 name = "discountRequest",

 namespace="http://org.jboss.ws/samples/retail/profile",

 propOrder = { "customer" }

)

public class DiscountRequest {

 protected Customer customer;

 public DiscountRequest() {

 }

 public DiscountRequest(Customer customer) {

 this.customer = customer;

 }

 public Customer getCustomer() {

 return customer;

 }

 public void setCustomer(Customer value) {

 this.customer = value;

 }

}

1. In this case we use @XmlType to specify an XML complex type name and override the namespace.

If you have more complex mapping problems you need to consult the .JAXB documentation

http://java.sun.com/webservices/jaxb/

Latest WildFly Documentation

JBoss Community Documentation Page of 1635 2293

Deploying service implementations
Service deployment basically depends on the implementation type. As you may already know web services

can be implemented as EJB3 components or plain old Java objects. This quick start leverages EJB3

components, that's why we are going to look at this case in the next sections.

EJB3 services

Simply wrap up the service implementation class, the endpoint interface and any custom data types in a JAR

and drop them in the directory. No additional deployment descriptors required. Any meta datadeployment

required for the deployment of the actual web service is taken from the annotations provided on the

implementation class and the service endpoint interface. JBossWS will intercept that EJB3 deployment (the

bean will also be there) and create an HTTP endpoint at deploy-time.

 The JAR package structure

jar -tf jaxws-samples-retail.jar

org/jboss/test/ws/jaxws/samples/retail/profile/DiscountRequest.class

org/jboss/test/ws/jaxws/samples/retail/profile/DiscountResponse.class

org/jboss/test/ws/jaxws/samples/retail/profile/ObjectFactory.class

org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmt.class

org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmtBean.class

org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmtService.class

org/jboss/test/ws/jaxws/samples/retail/profile/package-info.class

If the deployment was successful you should be able to see your endpoint in the application server

management console.

Consuming web services
When creating web service clients you would usually start from the WSDL. JBossWS ships with a set of

tools to generate the required JAX-WS artefacts to build client implementations. In the following section we

will look at the most basic usage patterns. For a more detailed introduction to web service client please

consult the user guide.

Creating the client artifacts

Latest WildFly Documentation

JBoss Community Documentation Page of 1636 2293

1.

Using wsconsume

The tool is used to consume the abstract contract (WSDL) and produce annotated Java classeswsconsume

(and optionally sources) that define it. We are going to start with the WSDL from our retail example

(ProfileMgmtService.wsdl). For a detailed tool reference you need to consult the user guide.

wsconsume is a command line tool that generates

portable JAX-WS artifacts from a WSDL file.

usage: org.jboss.ws.tools.jaxws.command.wsconsume [options] <wsdl-url>

options:

 -h, --help Show this help message

 -b, --binding=<file> One or more JAX-WS or JAXB binding files

 -k, --keep Keep/Generate Java source

 -c --catalog=<file> Oasis XML Catalog file for entity resolution

 -p --package=<name> The target package for generated source

 -w --wsdlLocation=<loc> Value to use for @WebService.wsdlLocation

 -o, --output=<directory> The directory to put generated artifacts

 -s, --source=<directory> The directory to put Java source

 -q, --quiet Be somewhat more quiet

 -t, --show-traces Show full exception stack traces

Let's try it on our sample:

~./wsconsume.sh -k -p org.jboss.test.ws.jaxws.samples.retail.profile ProfileMgmtService.wsdl

(1)

org/jboss/test/ws/jaxws/samples/retail/profile/Customer.java

org/jboss/test/ws/jaxws/samples/retail/profile/DiscountRequest.java

org/jboss/test/ws/jaxws/samples/retail/profile/DiscountResponse.java

org/jboss/test/ws/jaxws/samples/retail/profile/ObjectFactory.java

org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmt.java

org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmtService.java

org/jboss/test/ws/jaxws/samples/retail/profile/package-info.java

As you can see we did use the switch to specify the package name of the generated sources.-p

Latest WildFly Documentation

JBoss Community Documentation Page of 1637 2293

1.

2.

3.

 The generated artifacts explained

File Purpose

ProfileMgmt.java Service Endpoint Interface

Customer.java Custom data type

Discount*.java Custom data type

ObjectFactory.java JAXB XML Registry

package-info.java Holder for JAXB package annotations

ProfileMgmtService.java Service factory

Basically generates all custom data types (JAXB annotated classes), the service endpointwsconsume

interface and a service factory class. We will look at how these artifacts can be used the build web service

client implementations in the next section.

Constructing a service stub
Web service clients make use of a service stubs that hide the details of a remote web service invocation. To

a client application a WS invocation just looks like an invocation of any other business component. In this

case the service endpoint interface acts as the business interface. JAX-WS does use a service factory class

to construct this as particular service stub:

import javax.xml.ws.Service;

[...]

Service service = Service.create((1)

new URL("http://example.org/service?wsdl"),

new QName("MyService")

);

ProfileMgmt profileMgmt = service.getPort(ProfileMgmt.class); (2)

// do something with the service stub here... (3)

Create a service factory using the WSDL location and the service name

Use the tool created service endpoint interface to build the service stub

Use the stub like any other business interface

Appendix
Sample wsdl contract

<definitions

 name='ProfileMgmtService'

 targetNamespace='http://org.jboss.ws/samples/retail/profile'

 xmlns='http://schemas.xmlsoap.org/wsdl/'

 xmlns:ns1='http://org.jboss.ws/samples/retail'

 xmlns:soap='http://schemas.xmlsoap.org/wsdl/soap/'

 xmlns:tns='http://org.jboss.ws/samples/retail/profile'

 xmlns:xsd='http://www.w3.org/2001/XMLSchema'>

Latest WildFly Documentation

JBoss Community Documentation Page of 1638 2293

 <types>

 <xs:schema targetNamespace='http://org.jboss.ws/samples/retail'

 version='1.0' xmlns:xs='http://www.w3.org/2001/XMLSchema'>

 <xs:complexType name='customer'>

 <xs:sequence>

 <xs:element minOccurs='0' name='creditCardDetails' type='xs:string'/>

 <xs:element minOccurs='0' name='firstName' type='xs:string'/>

 <xs:element minOccurs='0' name='lastName' type='xs:string'/>

 </xs:sequence>

 </xs:complexType>

 </xs:schema>

 <xs:schema

 targetNamespace='http://org.jboss.ws/samples/retail/profile'

 version='1.0'

 xmlns:ns1='http://org.jboss.ws/samples/retail'

 xmlns:tns='http://org.jboss.ws/samples/retail/profile'

 xmlns:xs='http://www.w3.org/2001/XMLSchema'>

 <xs:import namespace='http://org.jboss.ws/samples/retail'/>

 <xs:element name='getCustomerDiscount'

 nillable='true' type='tns:discountRequest'/>

 <xs:element name='getCustomerDiscountResponse'

 nillable='true' type='tns:discountResponse'/>

 <xs:complexType name='discountRequest'>

 <xs:sequence>

 <xs:element minOccurs='0' name='customer' type='ns1:customer'/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name='discountResponse'>

 <xs:sequence>

 <xs:element minOccurs='0' name='customer' type='ns1:customer'/>

 <xs:element name='discount' type='xs:double'/>

 </xs:sequence>

 </xs:complexType>

 </xs:schema>

 </types>

 <message name='ProfileMgmt_getCustomerDiscount'>

 <part element='tns:getCustomerDiscount' name='getCustomerDiscount'/>

 </message>

 <message name='ProfileMgmt_getCustomerDiscountResponse'>

 <part element='tns:getCustomerDiscountResponse'

 name='getCustomerDiscountResponse'/>

 </message>

 <portType name='ProfileMgmt'>

 <operation name='getCustomerDiscount'

 parameterOrder='getCustomerDiscount'>

 <input message='tns:ProfileMgmt_getCustomerDiscount'/>

 <output message='tns:ProfileMgmt_getCustomerDiscountResponse'/>

 </operation>

 </portType>

 <binding name='ProfileMgmtBinding' type='tns:ProfileMgmt'>

 <soap:binding style='document'

Latest WildFly Documentation

JBoss Community Documentation Page of 1639 2293

 transport='http://schemas.xmlsoap.org/soap/http'/>

 <operation name='getCustomerDiscount'>

 <soap:operation soapAction=''/>

 <input>

 <soap:body use='literal'/>

 </input>

 <output>

 <soap:body use='literal'/>

 </output>

 </operation>

 </binding>

 <service name='ProfileMgmtService'>

 <port binding='tns:ProfileMgmtBinding' name='ProfileMgmtPort'>

 <soap:address

 location='http://<HOST>:<PORT>/jaxws-samples-retail/ProfileMgmtBean'/>

 </port>

 </service>

</definitions>

Latest WildFly Documentation

JBoss Community Documentation Page of 1640 2293

1.

2.

9.2.4 JBoss AS7 Extension Technologies

Coming Soon

This guide is still under development, check back soon!

OSGi Technology

Management Interface

Management Interface

Coming Soon

This guide is still under development, check back soon!

Management via the Java Management Extension (JMX)

Management via RESTful services

Batch Management / Command Line Interface (CLI)

Management via the Java Management Extension (JMX)

Management via RESTful services

Batch Management / Command Line Interface (CLI)

Latest WildFly Documentation

JBoss Community Documentation Page of 1641 2293

10 Glossary

Module

10.1 Module

A logical grouping of classes used for classloading and dependency management in WildFly 10. Modules

can be or . dynamic static

 are the predefined modules installed in the modules/ directory of the application server.Static Modules

 are created by the application server for each deployment (or sub-deployment in an EAR).Dynamic Modules

Reference: Class Loading in WildFly

10.2 Module

A logical grouping of classes used for classloading and dependency management in WildFly 10. Modules

can be or . dynamic static

 are the predefined modules installed in the modules/ directory of the application server.Static Modules

 are created by the application server for each deployment (or sub-deployment in an EAR).Dynamic Modules

Reference: Class Loading in WildFly

https://docs.jboss.org/author/display/WFLY8/Class+Loading+in+WildFly
https://docs.jboss.org/author/display/WFLY8/Class+Loading+in+WildFly

Latest WildFly Documentation

JBoss Community Documentation Page of 1642 2293

11 Extending WildFly

Target Audience

Prerequisites

Examples in this guide

Overview

Example subsystem

Create the skeleton project

Create the schema

Design and define the model structure

Registering the core subsystem model

Registering the subsystem child

Parsing and marshalling of the subsystem xml

Testing the parsers

Add the deployers

Deployment phases and attachments

STRUCTURE

PARSE

DEPENDENCIES

CONFIGURE_MODULE

POST_MODULE

INSTALL

CLEANUP

Integrate with WildFly

Expressions

What expression types are supported

How to support expressions in subsystems

Latest WildFly Documentation

JBoss Community Documentation Page of 1643 2293

Working with WildFly Capabilities

Capabilities

Comparison to other concepts

Capabilities vs modules

Capabilities vs Extensions

Capability Names

Statically vs Dynamically Named Capabilities

Service provided by a capability

Custom integration APIs provided by a capability

Capability Requirements

Supporting runtime-only requirements

Capability Contract

Capability Registry

Using Capabilities

Basics of Using Your Own Capability

Creating your capability

Registering and unregistering your capability

Installing, accessing and removing the service provided by your capability

Basics of Using Other Capabilities

Registering a hard requirement for a static capability

Registering a requirement for a dynamically named capability

Depending upon a service provided by another capability

Using a custom integration API provided by another capability

Runtime-only requirements

Using a capability in a DeploymentUnitProcessor

Detailed API

Domain mode subsystem transformers

Abstract

Background

Getting the initial domain model

An operation changes something in the domain configuration

Versions and backward compatibility

Versioning of subsystems

The role of transformers

Resource transformers

Rejection in resource transformers

Operation transformers

Rejection in operation transformers

Different profiles for different versions

Ignoring resources on legacy hosts

How do I know what needs to be transformed?

Getting data for a previous version

See what changed

Latest WildFly Documentation

JBoss Community Documentation Page of 1644 2293

How do I write a transformer?

ResourceTransformationDescriptionBuilder

Silently discard child resources

Reject child resource

Redirect address for child resource

Getting a child resource builder

AttributeTransformationDescriptionBuilder

Attribute transformation lifecycle

Discarding attributes

The DiscardAttributeChecker interface

DiscardAttributeChecker helper classes/implementations

DiscardAttributeChecker.DefaultDiscardAttributeChecker

DiscardAttributeChecker.DiscardAttributeValueChecker

DiscardAttributeChecker.ALWAYS

DiscardAttributeChecker.UNDEFINED

Rejecting attributes

The RejectAttributeChecker interface

RejectAttributeChecker helper classes/implementations

RejectAttributeChecker.DefaultRejectAttributeChecker

RejectAttributeChecker.DEFINED

RejectAttributeChecker.SIMPLE_EXPRESSIONS

RejectAttributeChecker.ListRejectAttributeChecker

RejectAttributeChecker.ObjectFieldsRejectAttributeChecker

Converting attributes

The AttributeConverter interface

Introducing attributes during transformation

Renaming attributes

OperationTransformationOverrideBuilder

Evolving transformers with subsystem ModelVersions

The old way

Chained transformers

Testing transformers

Testing a configuration that works

Testing a configuration that does not work

Common transformation use-cases

Child resource type does not exist in legacy model

Attribute does not exist in the legacy subsystem

Default value of the attribute is the same as legacy implied behavior

Default value of the attribute is different from legacy implied behaviour

Attribute has a different default value

Attribute has a different type

Latest WildFly Documentation

JBoss Community Documentation Page of 1645 2293

Key Interfaces and Classes Relevant to Extension Developers

 InterfaceExtension

WildFly Managed Resources

 InterfaceManagementResourceRegistration

 InterfaceResourceDefinition

ResourceDescriptionResolver

 ClassAttributeDefinition

Key Uses of AttributeDefinition

Use in XML Parsing

Use in Storing Data Provided by the User to the Configuration Model

Use in Extracting Data from the Configuration Model for Use in Runtime Services

Use in Marshaling Configuration Model Data to XML

 and InterfacesOperationDefinition OperationStepHandler

Operation Execution and the OperationContext

Execution Process

Stage.MODEL

Stage.RUNTIME

Stage.VERIFY

Stage.DOMAIN

Stage.DONE and / ExecutionResultHandler RollbackHandler

Tips About Adding Steps

Passing Data to an Added Step

Controlling Output from an Added Step

 use of the OperationStepHandler OperationContext

Locking and Change Visibility

 InterfaceResource

Creating Resources

Runtime-Only and Synthetic Resources and the ClassPlaceholderResourceEntry

 InterfaceDeploymentUnitProcessor

Useful classes for implementing OperationStepHandler

Add Handlers

Remove Handlers

Write attribute handlers

Reload-required handlers

Restart Parent Resource Handlers

Model Only Handlers

Misc

 CLI Extensibility for Layered Products

All WildFly documentation

Latest WildFly Documentation

JBoss Community Documentation Page of 1646 2293

11.1 Target Audience

This document is intended for people who want to extend WildFly to introduce new capabilities.

11.1.1 Prerequisites

You should know how to download, install and run WildFly. If not please consult the .Getting Started Guide

You should also be familiar with the management concepts from the , particularly the Admin Guide Core

 section and you need Java development experience to follow the example in thismanagement concepts

guide.

11.1.2 Examples in this guide

Most of the examples in this guide are being expressed as excerpts of the XML configuration files or by

using a representation of the de-typed management model.

11.2 Overview

In this document we provide an example of how to extend the kernel functionality of WildFly via an extension

and the subsystem it installs. The WildFly kernel is very simple and lightweight; most of the capabilities

people associate with an application server are provided via extensions and their subsystems. The WildFly

distribution includes many extensions and subsystems; the webserver integration is via a subsystem; the

transaction manager integration is via a subsystem, the EJB container integration is via a subsystem, etc.

This document is divided into two main sections. The is focused on learning by doing. This section willfirst

walk you through the steps needed to create your own subsystem, and will touch on most of the concepts

discussed elsewhere in this guide. The focuses on a conceptual overview of the key interfaces andsecond

classes described in the example. Readers should feel free to start with the second section if that better fits

their learning style. Jumping back and forth between the sections is also a good strategy.

11.3 Example subsystem

Our example subsystem will keep track of all deployments of certain types containing a special marker file,

and expose operations to see how long these deployments have been deployed.

11.3.1 Create the skeleton project

To make your life easier we have provided a maven archetype which will create a skeleton project for

implementing subsystems.

Latest WildFly Documentation

JBoss Community Documentation Page of 1647 2293

mvn archetype:generate \

 -DarchetypeArtifactId=wildfly-subsystem \

 -DarchetypeGroupId=org.wildfly.archetypes \

 -DarchetypeVersion=8.0.0.Final \

 -DarchetypeRepository=http://repository.jboss.org/nexus/content/groups/public

Maven will download the archetype and it's dependencies, and ask you some questions:

$ mvn archetype:generate \

 -DarchetypeArtifactId=wildfly-subsystem \

 -DarchetypeGroupId=org.wildfly.archetypes \

 -DarchetypeVersion=8.0.0.Final \

 -DarchetypeRepository=http://repository.jboss.org/nexus/content/groups/public

[INFO] Scanning for projects...

[INFO]

[INFO] --

[INFO] Building Maven Stub Project (No POM) 1

[INFO] --

[INFO]

.........

Define value for property 'groupId': : com.acme.corp

Define value for property 'artifactId': : acme-subsystem

Define value for property 'version': 1.0-SNAPSHOT: :

Define value for property 'package': com.acme.corp: : com.acme.corp.tracker

Define value for property 'module': : com.acme.corp.tracker

[INFO] Using property: name = WildFly subsystem project

Confirm properties configuration:

groupId: com.acme.corp

artifactId: acme-subsystem

version: 1.0-SNAPSHOT

package: com.acme.corp.tracker

module: com.acme.corp.tracker

name: WildFly subsystem project

 Y: : Y

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 1:42.563s

[INFO] Finished at: Fri Jul 08 14:30:09 BST 2011

[INFO] Final Memory: 7M/81M

[INFO] --

$

Latest WildFly Documentation

JBoss Community Documentation Page of 1648 2293

 Instruction

1 Enter the groupId you wish to use

2 Enter the artifactId you wish to use

3 Enter the version you wish to use, or just hit Enter if you wish to accept the default 1.0-SNAPSHOT

4 Enter the java package you wish to use, or just hit Enter if you wish to accept the default (which is

copied from groupId).

5 Enter the module name you wish to use for your extension.

6 Finally, if you are happy with your choices, hit Enter and Maven will generate the project for you.

You can also do this in Eclipse, see for more details. We now have a skeletonCreating your own application

project that you can use to implement a subsystem. Import the project into your favouriteacme-subsystem

IDE. A nice side-effect of running this in the IDE is that you can see the javadoc of WildFly classes and

interfaces imported by the skeleton code. If you do a in the project it will work if we plug it intomvn install

WildFly, but before doing that we will change it to do something more useful.

The rest of this section modifies the skeleton project created by the archetype to do something more useful,

and the full code can be found in .acme-subsystem.zip

If you do a in the created project, you will see some tests being runmvn install

$mvn install

[INFO] Scanning for projects...

[...]

[INFO] Surefire report directory:

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/surefire-reports

 T E S T S

Running com.acme.corp.tracker.extension.SubsystemBaseParsingTestCase

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.424 sec

Running com.acme.corp.tracker.extension.SubsystemParsingTestCase

Tests run: 6, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.074 sec

Results :

Tests run: 3, Failures: 0, Errors: 0, Skipped: 0

[...]

We will talk about these later in the section.Testing the parsers

https://docs.jboss.org/author/download/attachments/108626363/acme-subsystem.zip?version=1&modificationDate=1332346374000

Latest WildFly Documentation

JBoss Community Documentation Page of 1649 2293

11.3.2 Create the schema

First, let us define the schema for our subsystem. Rename

 to .src/main/resources/schema/mysubsystem.xsd src/main/resources/schema/acme.xsd

Then open and modify it to the followingacme.xsd

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="urn:com.acme.corp.tracker:1.0"

 xmlns="urn:com.acme.corp.tracker:1.0"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 version="1.0">

 <!-- The subsystem root element -->

 <xs:element name="subsystem" type="subsystemType"/>

 <xs:complexType name="subsystemType">

 <xs:all>

 <xs:element name="deployment-types" type="deployment-typesType"/>

 </xs:all>

 </xs:complexType>

 <xs:complexType name="deployment-typesType">

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="deployment-type" type="deployment-typeType"/>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="deployment-typeType">

 <xs:attribute name="suffix" use="required"/>

 <xs:attribute name="tick" type="xs:long" use="optional" default="10000"/>

 </xs:complexType>

</xs:schema>

Note that we modified the and values to .xmlns targetNamespace urn.com.acme.corp.tracker:1.0

Our new element has a child called , which in turn can have zero or moresubsystem deployment-types

children called . Each has a required attribute, and a deployment-type deployment-type suffix tick

attribute which defaults to true.

Now modify the class to contain thecom.acme.corp.tracker.extension.SubsystemExtension

new namespace.

public class SubsystemExtension implements Extension {

 /** The name space used for the {@code substystem} element */

 public static final String NAMESPACE = "urn:com.acme.corp.tracker:1.0";

 ...

Latest WildFly Documentation

JBoss Community Documentation Page of 1650 2293

11.3.3 Design and define the model structure

The following example xml contains a valid subsystem configuration, we will see how to plug this in to

WildFly later in this tutorial.

<subsystem xmlns="urn:com.acme.corp.tracker:1.0">

 <deployment-types>

 <deployment-type suffix="sar" tick="10000"/>

 <deployment-type suffix="war" tick="10000"/>

 </deployment-types>

</subsystem>

Now when designing our model, we can either do a one to one mapping between the schema and the model

or come up with something slightly or very different. To keep things simple, let us stay pretty true to the

schema so that when executing a against our subsystem we'll see:read-resource(recursive=true)

something like:

{

 "outcome" => "success",

 "result" => {"type" => {

 "sar" => {"tick" => "10000"},

 "war" => {"tick" => "10000"}

 }}

}

Each in the xml becomes in the model a child resource of the subsystem's rootdeployment-type

resource. The child resource's child-type is , and it is indexed by its . Each resource thentype suffix type

contains the attribute.tick

We also need a name for our subsystem, to do that change

:com.acme.corp.tracker.extension.SubsystemExtension

public class SubsystemExtension implements Extension {

 ...

 /** The name of our subsystem within the model. */

 public static final String SUBSYSTEM_NAME = "tracker";

 ...

Once we are finished our subsystem will be available under ./subsystem=tracker

The method defines the model, currently it sets up the basics toSubsystemExtension.initialize()

add our subsystem to the model:

Latest WildFly Documentation

JBoss Community Documentation Page of 1651 2293

@Override

 public void initialize(ExtensionContext context) {

 //register subsystem with its model version

 final SubsystemRegistration subsystem = context.registerSubsystem(SUBSYSTEM_NAME, 1, 0);

 //register subsystem model with subsystem definition that defines all attributes and

operations

 final ManagementResourceRegistration registration =

subsystem.registerSubsystemModel(SubsystemDefinition.INSTANCE);

 //register describe operation, note that this can be also registered in

SubsystemDefinition

 registration.registerOperationHandler(DESCRIBE,

GenericSubsystemDescribeHandler.INSTANCE, GenericSubsystemDescribeHandler.INSTANCE, false,

OperationEntry.EntryType.PRIVATE);

 //we can register additional submodels here

 //

 subsystem.registerXMLElementWriter(parser);

 }

The call registers our subsystem with the extension context. At the end of theregisterSubsystem()

method we register our parser with the returned to be able to marshal ourSubsystemRegistration

subsystem's model back to the main configuration file when it is modified. We will add more functionality to

this method later.

Registering the core subsystem model
Next we obtain a by registering the subsystem model. This is a ManagementResourceRegistration

 step for every new subsystem.compulsory

final ManagementResourceRegistration registration =

subsystem.registerSubsystemModel(SubsystemDefinition.INSTANCE);

Its parameter is an implementation of the interface, which means that when you callResourceDefinition

 the information you see comes from model that/subsystem=tracker:read-resource-description

is defined by .SubsystemDefinition.INSTANCE

Latest WildFly Documentation

JBoss Community Documentation Page of 1652 2293

1.

2.

3.

4.

public class SubsystemDefinition extends SimpleResourceDefinition {

 public static final SubsystemDefinition INSTANCE = new SubsystemDefinition();

 private SubsystemDefinition() {

 super(SubsystemExtension.SUBSYSTEM_PATH,

 SubsystemExtension.getResourceDescriptionResolver(null),

 //We always need to add an 'add' operation

 SubsystemAdd.INSTANCE,

 //Every resource that is added, normally needs a remove operation

 SubsystemRemove.INSTANCE);

 }

 @Override

 public void registerOperations(ManagementResourceRegistration resourceRegistration) {

 super.registerOperations(resourceRegistration);

 //you can register aditional operations here

 }

 @Override

 public void registerAttributes(ManagementResourceRegistration resourceRegistration) {

 //you can register attributes here

 }

}

Since we need child resource we need to add new ResourceDefinition,type

The obtained in is thenManagementResourceRegistration SubsystemExtension.initialize()

used to add additional operations or to register submodels to the address. Every/subsystem=tracker

subsystem and resource have an method which can be achieved by the following line inside must ADD

 in your or by providing it in constructor of your registerOperations ResourceDefinition

 just as we did in example above.SimpleResourceDefinition

//We always need to add an 'add' operation

 resourceRegistration.registerOperationHandler(ADD, SubsystemAdd.INSTANCE, new

DefaultResourceAddDescriptionProvider(resourceRegistration,descriptionResolver), false);

The parameters when registering an operation handler are:

 - i.e. .The name ADD

The handler instance - we will talk more about this below

The handler description provider - we will talk more about this below.

Whether this operation handler is inherited - means that this operation is not inherited, and willfalse

only apply to . The content for this operation handler will be provided by ./subsystem=tracker 3

Let us first look at the description provider which is quite simple since this operation takes no parameters.

The addition of children will be handled by another operation handler, as we will see later on.type

Latest WildFly Documentation

JBoss Community Documentation Page of 1653 2293

There are two way to define , one is by defining it by hand using ModelNode, butDescriptionProvider

as this has show to be very error prone there are lots of helper methods to help you automatically describe

the model. Following example is done by manually defining Description provider for ADD operation handler

/**

 * Used to create the description of the subsystem add method

 */

 public static DescriptionProvider SUBSYSTEM_ADD = new DescriptionProvider() {

 public ModelNode getModelDescription(Locale locale) {

 //The locale is passed in so you can internationalize the strings used in the

descriptions

 final ModelNode subsystem = new ModelNode();

 subsystem.get(OPERATION_NAME).set(ADD);

 subsystem.get(DESCRIPTION).set("Adds the tracker subsystem");

 return subsystem;

 }

 };

Or you can use API that helps you do that for you. For Add and Remove methods there are classes

 and DefaultResourceAddDescriptionProvider

 that do work for you. In case you use DefaultResourceRemoveDescriptionProvider

 even that part is hidden from you.SimpleResourceDefinition

resourceRegistration.registerOperationHandler(ADD, SubsystemAdd.INSTANCE, new

DefaultResourceAddDescriptionProvider(resourceRegistration,descriptionResolver), false);

resourceRegistration.registerOperationHandler(REMOVE, SubsystemRemove.INSTANCE, new

DefaultResourceRemoveDescriptionProvider(resourceRegistration,descriptionResolver), false);

For other operation handlers that are not add/remove you can use

 that takes additional parameter of what is the name ofDefaultOperationDescriptionProvider

operation and optional array of parameters/attributes operation takes. This is an example to register

operation " " with two parameters:add-mime

container.registerOperationHandler("add-mime",

 MimeMappingAdd.INSTANCE,

 new DefaultOperationDescriptionProvider("add-mime",

Extension.getResourceDescriptionResolver("container.mime-mapping"), MIME_NAME, MIME_VALUE));

When descriping an operation its description provider's must match the nameOPERATION_NAME

used when calling ManagementResourceRegistration.registerOperationHandler()

Next we have the actual operation handler instance, note that we have changed its populateModel()

method to initialize the child of the model.type

Latest WildFly Documentation

JBoss Community Documentation Page of 1654 2293

class SubsystemAdd extends AbstractBoottimeAddStepHandler {

 static final SubsystemAdd INSTANCE = new SubsystemAdd();

 private SubsystemAdd() {

 }

 /** {@inheritDoc} */

 @Override

 protected void populateModel(ModelNode operation, ModelNode model) throws

OperationFailedException {

 log.info("Populating the model");

 //Initialize the 'type' child node

 model.get("type").setEmptyObject();

 }

 also has a method which is used for initializing the deployer chainSubsystemAdd performBoottime()

associated with this subsystem. We will talk about the deployers later on. However, the basic idea for all

operation handlers is that we do any model updates before changing the actual runtime state.

The rule of thumb is that every thing that can be added, can also be removed so we have a remove handler

for the subsystem registered

in or just provide the operation handler in constructor.SubsystemDefinition.registerOperations

//Every resource that is added, normally needs a remove operation

 registration.registerOperationHandler(REMOVE, SubsystemRemove.INSTANCE,

DefaultResourceRemoveDescriptionProvider(resourceRegistration,descriptionResolver) , false);

 extends which takes care of removing the resourceSubsystemRemove AbstractRemoveStepHandler

from the model so we don't need to override its operation, also the add handler did notperformRemove()

install any services (services will be discussed later) so we can delete the methodperformRuntime()

generated by the archetype.

class SubsystemRemove extends AbstractRemoveStepHandler {

 static final SubsystemRemove INSTANCE = new SubsystemRemove();

 private final Logger log = Logger.getLogger(SubsystemRemove.class);

 private SubsystemRemove() {

 }

}

The description provider for the remove operation is simple and quite similar to that of the add handler where

just name of the method changes.

Latest WildFly Documentation

JBoss Community Documentation Page of 1655 2293

Registering the subsystem child
The child does not exist in our skeleton project so we need to implement the operations to add andtype

remove them from the model.

First we need an add operation to add the child, create a class called type

. In this case we extend the com.acme.corp.tracker.extension.TypeAddHandler

 class and implement the org.jboss.as.controller.AbstractAddStepHandler

 interface. org.jboss.as.controller.descriptions.DescriptionProvider

 is the main interface for the operation handlers,org.jboss.as.controller.OperationStepHandler

and is an implementation of that which does the plumbing work for adding aAbstractAddStepHandler

resource to the model.

class TypeAddHandler extends AbstractAddStepHandler implements DescriptionProvider {

 public static final TypeAddHandler INSTANCE = new TypeAddHandler();

 private TypeAddHandler() {

 }

Then we define subsystem model. Lets call it and for ease of use let it extend TypeDefinition

 instead just implement .SimpleResourceDefinition ResourceDefinition

public class TypeDefinition extends SimpleResourceDefinition {

 public static final TypeDefinition INSTANCE = new TypeDefinition();

 //we define attribute named tick

protected static final SimpleAttributeDefinition TICK =

new SimpleAttributeDefinitionBuilder(TrackerExtension.TICK, ModelType.LONG)

 .setAllowExpression(true)

 .setXmlName(TrackerExtension.TICK)

 .setFlags(AttributeAccess.Flag.RESTART_ALL_SERVICES)

 .setDefaultValue(new ModelNode(1000))

 .setAllowNull(false)

 .build();

private TypeDefinition(){

 super(TYPE_PATH,

TrackerExtension.getResourceDescriptionResolver(TYPE),TypeAdd.INSTANCE,TypeRemove.INSTANCE);

}

@Override

public void registerAttributes(ManagementResourceRegistration resourceRegistration){

 resourceRegistration.registerReadWriteAttribute(TICK, null, TrackerTickHandler.INSTANCE);

}

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1656 2293

Which will take care of describing the model for us. As you can see in example above we define

 named , this is a mechanism to define Attributes in more type safeSimpleAttributeDefinition TICK

way and to add more common API to manipulate attributes. As you can see here we define default value of

1000 as also other constraints and capabilities. There could be other properties set such as validators,

alternate names, xml name, flags for marking it attribute allows expressions and more.

Then we do the work of updating the model by implementing the method from the populateModel()

, which populates the model's attribute from the operation parameters. First weAbstractAddStepHandler

get hold of the model relative to the address of this operation (we will see later that we will register it against

), so we just specify an empty relative address, and we then populate our/subsystem=tracker/type=*

model with the parameters from the operation. There is operation on validateAndSet

 that helps us validate and set the model based on definition of the attribute.AttributeDefinition

@Override

 protected void populateModel(ModelNode operation, ModelNode model) throws

OperationFailedException {

 TICK.validateAndSet(operation,model);

 }

We then override the method to perform our runtime changes, which in this caseperformRuntime()

involves installing a service into the controller at the heart of WildFly. (

 is similar to AbstractAddStepHandler.performRuntime()

 in that the model is updated before runtimeAbstractBoottimeAddStepHandler.performBoottime()

changes are made.

@Override

 protected void performRuntime(OperationContext context, ModelNode operation, ModelNode

model,

 ServiceVerificationHandler verificationHandler, List<ServiceController<?>>

newControllers)

 throws OperationFailedException {

 String suffix =

PathAddress.pathAddress(operation.get(ModelDescriptionConstants.ADDRESS)).getLastElement().getValue();

long tick = TICK.resolveModelAttribute(context,model).asLong();

 TrackerService service = new TrackerService(suffix, tick);

 ServiceName name = TrackerService.createServiceName(suffix);

 ServiceController<TrackerService> controller = context.getServiceTarget()

 .addService(name, service)

 .addListener(verificationHandler)

 .setInitialMode(Mode.ACTIVE)

 .install();

 newControllers.add(controller);

 }

}

Since the add methods will be of the format , we/subsystem=tracker/suffix=war:add(tick=1234)

look for the last element of the operation address, which is in the example just given and use that as ourwar

suffix. We then create an instance of TrackerService and install that into the of theservice target

context and add the created to the list.service controller newControllers

Latest WildFly Documentation

JBoss Community Documentation Page of 1657 2293

The tracker service is quite simple. All services installed into WildFly must implement the

 interface.org.jboss.msc.service.Service

public class TrackerService implements Service<TrackerService>{

We then have some fields to keep the tick count and a thread which when run outputs all the deployments

registered with our service.

private AtomicLong tick = new AtomicLong(10000);

 private Set<String> deployments = Collections.synchronizedSet(new HashSet<String>());

 private Set<String> coolDeployments = Collections.synchronizedSet(new HashSet<String>());

 private final String suffix;

 private Thread OUTPUT = new Thread() {

 @Override

 public void run() {

 while (true) {

 try {

 Thread.sleep(tick.get());

 System.out.println("Current deployments deployed while " + suffix + "

tracking active:\n" + deployments

 + "\nCool: " + coolDeployments.size());

 } catch (InterruptedException e) {

 interrupted();

 break;

 }

 }

 }

 };

 public TrackerService(String suffix, long tick) {

 this.suffix = suffix;

 this.tick.set(tick);

 }

Next we have three methods which come from the interface. returns this service, Service getValue()

 is called when the service is started by the controller, is called when the service is stoppedstart() stop

by the controller, and they start and stop the thread outputting the deployments.

Latest WildFly Documentation

JBoss Community Documentation Page of 1658 2293

@Override

 public TrackerService getValue() throws IllegalStateException, IllegalArgumentException {

 return this;

 }

 @Override

 public void start(StartContext context) throws StartException {

 OUTPUT.start();

 }

 @Override

 public void stop(StopContext context) {

 OUTPUT.interrupt();

 }

Next we have a utility method to create the which is used to register the service in theServiceName

controller.

public static ServiceName createServiceName(String suffix) {

 return ServiceName.JBOSS.append("tracker", suffix);

}

Finally we have some methods to add and remove deployments, and to set and read the . The 'cool'tick

deployments will be explained later.

public void addDeployment(String name) {

 deployments.add(name);

 }

 public void addCoolDeployment(String name) {

 coolDeployments.add(name);

 }

 public void removeDeployment(String name) {

 deployments.remove(name);

 coolDeployments.remove(name);

 }

 void setTick(long tick) {

 this.tick.set(tick);

 }

 public long getTick() {

 return this.tick.get();

 }

}//TrackerService - end

Latest WildFly Documentation

JBoss Community Documentation Page of 1659 2293

Since we are able to add children, we need a way to be able to remove them, so we create a type

. In this case we extend com.acme.corp.tracker.extension.TypeRemoveHandler

 which takes care of removing the resource from the model so we don'tAbstractRemoveStepHandler

need to override its operationa. But we need to implement the performRemove()

 method to provide the model description, and since the add handler installs theDescriptionProvider

TrackerService, we need to remove that in the method.performRuntime()

public class TypeRemoveHandler extends AbstractRemoveStepHandler {

 public static final TypeRemoveHandler INSTANCE = new TypeRemoveHandler();

 private TypeRemoveHandler() {

 }

 @Override

 protected void performRuntime(OperationContext context, ModelNode operation, ModelNode

model) throws OperationFailedException {

 String suffix =

PathAddress.pathAddress(operation.get(ModelDescriptionConstants.ADDRESS)).getLastElement().getValue();

ServiceName name = TrackerService.createServiceName(suffix);

 context.removeService(name);

 }

}

We then need a description provider for the part of the model itself, so we modify TypeDefinitnion totype

registerAttribute

class TypeDefinition{

...

@Override

public void registerAttributes(ManagementResourceRegistration resourceRegistration){

 resourceRegistration.registerReadWriteAttribute(TICK, null, TrackerTickHandler.INSTANCE);

}

}

Then finally we need to specify that our new child and associated handlers go under type

 in the model by adding registering it with the model in /subsystem=tracker/type=*

. So we add the following just before the end of the method.SubsystemExtension.initialize()

Latest WildFly Documentation

JBoss Community Documentation Page of 1660 2293

@Override

public void initialize(ExtensionContext context)

{

 final SubsystemRegistration subsystem = context.registerSubsystem(SUBSYSTEM_NAME, 1, 0);

 final ManagementResourceRegistration registration =

subsystem.registerSubsystemModel(TrackerSubsystemDefinition.INSTANCE);

 //Add the type child

 ManagementResourceRegistration typeChild =

registration.registerSubModel(TypeDefinition.INSTANCE);

 subsystem.registerXMLElementWriter(parser);

}

The above first creates a child of our main subsystem registration for the relative address , and getstype=*

the registration.typeChild

To this we add the and .TypeAddHandler TypeRemoveHandler

The add variety is added under the name and the remove handler under the name , and foradd remove

each registered operation handler we use the handler singleton instance as both the handler parameter and

as the .DescriptionProvider

Finally, we register as a read/write attribute, the null parameter means we don't do anything specialtick

with regards to reading it, for the write handler we supply it with an operation handler called

.TrackerTickHandler

Registering it as a read/write attribute means we can use the operation to modify the:write-attribute

value of the parameter, and it will be handled by .TrackerTickHandler

Not registering a write attribute handler makes the attribute read only.

 extends TrackerTickHandler AbstractWriteAttributeHandler

directly, and so must implement its and method.applyUpdateToRuntime revertUpdateToRuntime

This takes care of model manipulation (validation, setting) but leaves us to do just to deal with what we need

to do.

Latest WildFly Documentation

JBoss Community Documentation Page of 1661 2293

class TrackerTickHandler extends AbstractWriteAttributeHandler<Void> {

 public static final TrackerTickHandler INSTANCE = new TrackerTickHandler();

 private TrackerTickHandler() {

 super(TypeDefinition.TICK);

 }

 protected boolean applyUpdateToRuntime(OperationContext context, ModelNode operation, String

attributeName,

 ModelNode resolvedValue, ModelNode currentValue, HandbackHolder<Void>

handbackHolder) throws OperationFailedException {

 modifyTick(context, operation, resolvedValue.asLong());

 return false;

 }

 protected void revertUpdateToRuntime(OperationContext context, ModelNode operation, String

attributeName, ModelNode valueToRestore, ModelNode valueToRevert, Void handback){

 modifyTick(context, operation, valueToRestore.asLong());

 }

 private void modifyTick(OperationContext context, ModelNode operation, long value) throws

OperationFailedException {

 final String suffix =

PathAddress.pathAddress(operation.get(ModelDescriptionConstants.ADDRESS)).getLastElement().getValue();

TrackerService service = (TrackerService)

context.getServiceRegistry(true).getRequiredService(TrackerService.createServiceName(suffix)).getValue();

service.setTick(value);

 }

}

The operation used to execute this will be of the form

) so we first get the /subsystem=tracker/type=war:write-attribute(name=tick,value=12345

 from the operation address, and the value from the operation parameter's suffix tick resolvedValue

parameter, and use that to update the model.

We then add a new step associated with the stage to update the tick of the TrackerService for ourRUNTIME

suffix. This is essential since the call to will fail unless the stepcontext.getServiceRegistry()

accessing it belongs to the stage.RUNTIME

When implementing , you call when you are done.execute() must context.completeStep()

Latest WildFly Documentation

JBoss Community Documentation Page of 1662 2293

11.3.4 Parsing and marshalling of the subsystem xml

WildFly uses the Stax API to parse the xml files. This is initialized in by mapping ourSubsystemExtension

parser onto our namespace:

public class SubsystemExtension implements Extension {

 /** The name space used for the {@code subsystem} element */

 public static final String NAMESPACE = "urn:com.acme.corp.tracker:1.0";

 ...

 protected static final PathElement SUBSYSTEM_PATH = PathElement.pathElement(SUBSYSTEM,

SUBSYSTEM_NAME);

 protected static final PathElement TYPE_PATH = PathElement.pathElement(TYPE);

 /** The parser used for parsing our subsystem */

 private final SubsystemParser parser = new SubsystemParser();

 @Override

 public void initializeParsers(ExtensionParsingContext context) {

 context.setSubsystemXmlMapping(NAMESPACE, parser);

 }

 ...

We then need to write the parser. The contract is that we read our subsystem's xml and create the

operations that will populate the model with the state contained in the xml. These operations will then be

executed on our behalf as part of the parsing process. The entry point is the method.readElement()

public class SubsystemExtension implements Extension {

 /**

 * The subsystem parser, which uses stax to read and write to and from xml

 */

 private static class SubsystemParser implements XMLStreamConstants,

XMLElementReader<List<ModelNode>>, XMLElementWriter<SubsystemMarshallingContext> {

 /** {@inheritDoc} */

 @Override

 public void readElement(XMLExtendedStreamReader reader, List<ModelNode> list) throws

XMLStreamException {

 // Require no attributes

 ParseUtils.requireNoAttributes(reader);

 //Add the main subsystem 'add' operation

 final ModelNode subsystem = new ModelNode();

 subsystem.get(OP).set(ADD);

 subsystem.get(OP_ADDR).set(PathAddress.pathAddress(SUBSYSTEM_PATH).toModelNode());

 list.add(subsystem);

 //Read the children

 while (reader.hasNext() && reader.nextTag() != END_ELEMENT) {

 if (!reader.getLocalName().equals("deployment-types")) {

Latest WildFly Documentation

JBoss Community Documentation Page of 1663 2293

 throw ParseUtils.unexpectedElement(reader);

 }

 while (reader.hasNext() && reader.nextTag() != END_ELEMENT) {

 if (reader.isStartElement()) {

 readDeploymentType(reader, list);

 }

 }

 }

 }

 private void readDeploymentType(XMLExtendedStreamReader reader, List<ModelNode> list)

throws XMLStreamException {

 if (!reader.getLocalName().equals("deployment-type")) {

 throw ParseUtils.unexpectedElement(reader);

 }

 ModelNode addTypeOperation = new ModelNode();

 addTypeOperation.get(OP).set(ModelDescriptionConstants.ADD);

 String suffix = null;

 for (int i = 0; i < reader.getAttributeCount(); i++) {

 String attr = reader.getAttributeLocalName(i);

 String value = reader.getAttributeValue(i);

 if (attr.equals("tick")) {

 TypeDefinition.TICK.parseAndSetParameter(value, addTypeOperation, reader);

 } else if (attr.equals("suffix")) {

 suffix = value;

 } else {

 throw ParseUtils.unexpectedAttribute(reader, i);

 }

 }

 ParseUtils.requireNoContent(reader);

 if (suffix == null) {

 throw ParseUtils.missingRequiredElement(reader,

Collections.singleton("suffix"));

 }

 //Add the 'add' operation for each 'type' child

 PathAddress addr = PathAddress.pathAddress(SUBSYSTEM_PATH,

PathElement.pathElement(TYPE, suffix));

 addTypeOperation.get(OP_ADDR).set(addr.toModelNode());

 list.add(addTypeOperation);

 }

 ...

So in the above we always create the add operation for our subsystem. Due to its address

 defined by this will trigger the we/subsystem=tracker SUBSYSTEM_PATH SubsystemAddHandler

created earlier when we invoke . We then parse the child elements and create/subsystem=tracker:add

an add operation for the child address for each child. Since the address will for example be type

 (defined by) and is registered for all /subsystem=tracker/type=sar TYPE_PATH TypeAddHandler

 subaddresses the will get invoked for those operations. Note that when we aretype TypeAddHandler

parsing attribute we are using definition of attribute that we defined in TypeDefintion to parse attributetick

value and apply all rules that we specified for this attribute, this also enables us to property support

expressions on attributes.

Latest WildFly Documentation

JBoss Community Documentation Page of 1664 2293

The parser is also used to marshal the model to xml whenever something modifies the model, for which the

entry point is the method:writeContent()

private static class SubsystemParser implements XMLStreamConstants,

XMLElementReader<List<ModelNode>>, XMLElementWriter<SubsystemMarshallingContext> {

 ...

 /** {@inheritDoc} */

 @Override

 public void writeContent(final XMLExtendedStreamWriter writer, final

SubsystemMarshallingContext context) throws XMLStreamException {

 //Write out the main subsystem element

 context.startSubsystemElement(TrackerExtension.NAMESPACE, false);

 writer.writeStartElement("deployment-types");

 ModelNode node = context.getModelNode();

 ModelNode type = node.get(TYPE);

 for (Property property : type.asPropertyList()) {

 //write each child element to xml

 writer.writeStartElement("deployment-type");

 writer.writeAttribute("suffix", property.getName());

 ModelNode entry = property.getValue();

 TypeDefinition.TICK.marshallAsAttribute(entry, true, writer);

 writer.writeEndElement();

 }

 //End deployment-types

 writer.writeEndElement();

 //End subsystem

 writer.writeEndElement();

 }

 }

Then we have to implement the which translates the current state of theSubsystemDescribeHandler

model into operations similar to the ones created by the parser. The is onlySubsystemDescribeHandler

used when running in a managed domain, and is used when the host controller queries the domain controller

for the configuration of the profile used to start up each server. In our case the

 adds the operation to add the subsystem and then adds the operation toSubsystemDescribeHandler

add each child. Since we are using ResourceDefinitinon for defining subsystem all that is generatedtype

for us, but if you want to customize that you can do it by implementing it like this.

Latest WildFly Documentation

JBoss Community Documentation Page of 1665 2293

private static class SubsystemDescribeHandler implements OperationStepHandler,

DescriptionProvider {

 static final SubsystemDescribeHandler INSTANCE = new SubsystemDescribeHandler();

 public void execute(OperationContext context, ModelNode operation) throws

OperationFailedException {

 //Add the main operation

 context.getResult().add(createAddSubsystemOperation());

 //Add the operations to create each child

 ModelNode node = context.readModel(PathAddress.EMPTY_ADDRESS);

 for (Property property : node.get("type").asPropertyList()) {

 ModelNode addType = new ModelNode();

 addType.get(OP).set(ModelDescriptionConstants.ADD);

 PathAddress addr = PathAddress.pathAddress(SUBSYSTEM_PATH,

PathElement.pathElement("type", property.getName()));

 addType.get(OP_ADDR).set(addr.toModelNode());

 if (property.getValue().hasDefined("tick")) {

 TypeDefinition.TICK.validateAndSet(property,addType);

 }

 context.getResult().add(addType);

 }

 context.completeStep();

 }

}

Testing the parsers

Changes to tests between 7.0.0 and 7.0.1

The testing framework was moved from the archetype into the core JBoss AS 7 sources between

JBoss AS 7.0.0 and JBoss AS 7.0.1, and has been improved upon and is used internally for testing

JBoss AS 7's subsystems. The differences between the two versions is that in 7.0.0.Final the

testing framework is bundled with the code generated by the archetype (in a sub-package of the

package specified for your subsystem, e.g.), and the testcom.acme.corp.tracker.support

extends the class.AbstractParsingTest

From 7.0.1 the testing framework is now brought in via the

 maven artifact, and the test's superclass is org.jboss.as:jboss-as-subsystem-test

. The concepts are the same butorg.jboss.as.subsystem.test.AbstractSubsystemTest

more and more functionality will be available as JBoss AS 7 is developed.

Latest WildFly Documentation

JBoss Community Documentation Page of 1666 2293

Now that we have modified our parsers we need to update our tests to reflect the new model. There are

currently three tests testing the basic functionality, something which is a lot easier to debug from your IDE

before you plug it into the application server. We will talk about these tests in turn and they all live in

. com.acme.corp.tracker.extension.SubsystemParsingTestCase

 extends which does a lot of the setup for youSubsystemParsingTestCase AbstractSubsystemTest

and contains utility methods for verifying things from your test. See the javadoc of that class for more

information about the functionality available to you. And by all means feel free to add more tests for your

subsystem, here we are only testing for the best case scenario while you will probably want to throw in a few

tests for edge cases.

The first test we need to modify is . It tests that the parsed xml becomes thetestParseSubsystem()

expected operations that will be parsed into the server, so let us tweak this test to match our subsystem.

First we tell the test to parse the xml into operations

@Test

 public void testParseSubsystem() throws Exception {

 //Parse the subsystem xml into operations

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 List<ModelNode> operations = super.parse(subsystemXml);

There should be one operation for adding the subsystem itself and an operation for adding the

, so check we got two operationsdeployment-type

///Check that we have the expected number of operations

 Assert.assertEquals(2, operations.size());

Now check that the first operation is for the address :add /subsystem=tracker

//Check that each operation has the correct content

 //The add subsystem operation will happen first

 ModelNode addSubsystem = operations.get(0);

 Assert.assertEquals(ADD, addSubsystem.get(OP).asString());

 PathAddress addr = PathAddress.pathAddress(addSubsystem.get(OP_ADDR));

 Assert.assertEquals(1, addr.size());

 PathElement element = addr.getElement(0);

 Assert.assertEquals(SUBSYSTEM, element.getKey());

 Assert.assertEquals(SubsystemExtension.SUBSYSTEM_NAME, element.getValue());

Then check that the second operation is for the address , and that wasadd /subsystem=tracker 12345

picked up for the value of the parameter:tick

Latest WildFly Documentation

JBoss Community Documentation Page of 1667 2293

//Then we will get the add type operation

 ModelNode addType = operations.get(1);

 Assert.assertEquals(ADD, addType.get(OP).asString());

 Assert.assertEquals(12345, addType.get("tick").asLong());

 addr = PathAddress.pathAddress(addType.get(OP_ADDR));

 Assert.assertEquals(2, addr.size());

 element = addr.getElement(0);

 Assert.assertEquals(SUBSYSTEM, element.getKey());

 Assert.assertEquals(SubsystemExtension.SUBSYSTEM_NAME, element.getValue());

 element = addr.getElement(1);

 Assert.assertEquals("type", element.getKey());

 Assert.assertEquals("tst", element.getValue());

 }

The second test we need to modify is which tests that the xml installstestInstallIntoController()

properly into the controller. In other words we are making sure that the operations we created earlieradd

work properly. First we create the xml and install it into the controller. Behind the scenes this will parse the

xml into operations as we saw in the last test, but it will also create a new controller and boot that up using

the created operations

@Test

 public void testInstallIntoController() throws Exception {

 //Parse the subsystem xml and install into the controller

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 KernelServices services = super.installInController(subsystemXml);

The returned allow us to execute operations on the controller, and to read the wholeKernelServices

model.

//Read the whole model and make sure it looks as expected

 ModelNode model = services.readWholeModel();

 //Useful for debugging :-)

 //System.out.println(model);

Now we make sure that the structure of the model within the controller has the expected format and values

Latest WildFly Documentation

JBoss Community Documentation Page of 1668 2293

Assert.assertTrue(model.get(SUBSYSTEM).hasDefined(SubsystemExtension.SUBSYSTEM_NAME));

 Assert.assertTrue(model.get(SUBSYSTEM,

SubsystemExtension.SUBSYSTEM_NAME).hasDefined("type"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type").hasDefined("tst"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME, "type",

"tst").hasDefined("tick"));

 Assert.assertEquals(12345, model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type", "tst", "tick").asLong());

 }

The last test provided is called . It's main purpose is to make sure thattestParseAndMarshalModel()

our works as expected. This is achieved by starting a controller inSubsystemParser.writeContent()

the same way as before

@Test

 public void testParseAndMarshalModel() throws Exception {

 //Parse the subsystem xml and install into the first controller

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 KernelServices servicesA = super.installInController(subsystemXml);

Now we read the model and the xml that was persisted from the first controller, and use that xml to start a

second controller

//Get the model and the persisted xml from the first controller

 ModelNode modelA = servicesA.readWholeModel();

 String marshalled = servicesA.getPersistedSubsystemXml();

 //Install the persisted xml from the first controller into a second controller

 KernelServices servicesB = super.installInController(marshalled);

Finally we read the model from the second controller, and make sure that the models are identical by calling

 on the test superclass.compare()

ModelNode modelB = servicesB.readWholeModel();

 //Make sure the models from the two controllers are identical

 super.compare(modelA, modelB);

 }

We then have a test that needs no changing from what the archetype provides us with. As we have seen

before we start a controller

Latest WildFly Documentation

JBoss Community Documentation Page of 1669 2293

@Test

 public void testDescribeHandler() throws Exception {

 //Parse the subsystem xml and install into the first controller

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 "</subsystem>";

 KernelServices servicesA = super.installInController(subsystemXml);

We then call which outputs the subsystem as operations needed to/subsystem=tracker:describe

reach the current state (Done by our)SubsystemDescribeHandler

//Get the model and the describe operations from the first controller

 ModelNode modelA = servicesA.readWholeModel();

 ModelNode describeOp = new ModelNode();

 describeOp.get(OP).set(DESCRIBE);

 describeOp.get(OP_ADDR).set(

 PathAddress.pathAddress(

 PathElement.pathElement(SUBSYSTEM,

SubsystemExtension.SUBSYSTEM_NAME)).toModelNode());

 List<ModelNode> operations =

super.checkResultAndGetContents(servicesA.executeOperation(describeOp)).asList();

Then we create a new controller using those operations

//Install the describe options from the first controller into a second controller

 KernelServices servicesB = super.installInController(operations);

And then we read the model from the second controller and make sure that the two subsystems are identical

ModelNode modelB = servicesB.readWholeModel();

//Make sure the models from the two controllers are identical

 super.compare(modelA, modelB);

 }

To test the removal of the the subsystem and child resources we modify the testSubsystemRemoval()

test provided by the archetype:

/**

 * Tests that the subsystem can be removed

 */

 @Test

 public void testSubsystemRemoval() throws Exception {

 //Parse the subsystem xml and install into the first controller

We provide xml for the subsystem installing a child, which in turn installs a TrackerService

Latest WildFly Documentation

JBoss Community Documentation Page of 1670 2293

String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 KernelServices services = super.installInController(subsystemXml);

Having installed the xml into the controller we make sure the TrackerService is there

//Sanity check to test the service for 'tst' was there

 services.getContainer().getRequiredService(TrackerService.createServiceName("tst"));

This call from the subsystem test harness will call remove for each level in our subsystem, children first and

validate

that the subsystem model is empty at the end.

//Checks that the subsystem was removed from the model

 super.assertRemoveSubsystemResources(services);

Finally we check that all the services were removed by the remove handlers

//Check that any services that were installed were removed here

 try {

 services.getContainer().getRequiredService(TrackerService.createServiceName("tst"));

 Assert.fail("Should have removed services");

 } catch (Exception expected) {

 }

 }

For good measure let us throw in another test which adds a and also changes itsdeployment-type

attribute at runtime. So first of all boot up the controller with the same xml we have been using so far

@Test

 public void testExecuteOperations() throws Exception {

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 KernelServices services = super.installInController(subsystemXml);

Now create an operation which does the same as the following CLI command

/subsystem=tracker/type=foo:add(tick=1000)

Latest WildFly Documentation

JBoss Community Documentation Page of 1671 2293

//Add another type

 PathAddress fooTypeAddr = PathAddress.pathAddress(

 PathElement.pathElement(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME),

 PathElement.pathElement("type", "foo"));

 ModelNode addOp = new ModelNode();

 addOp.get(OP).set(ADD);

 addOp.get(OP_ADDR).set(fooTypeAddr.toModelNode());

 addOp.get("tick").set(1000);

Execute the operation and make sure it was successful

ModelNode result = services.executeOperation(addOp);

 Assert.assertEquals(SUCCESS, result.get(OUTCOME).asString());

Read the whole model and make sure that the original data is still there (i.e. the same as what was done by

testInstallIntoController()

ModelNode model = services.readWholeModel();

 Assert.assertTrue(model.get(SUBSYSTEM).hasDefined(SubsystemExtension.SUBSYSTEM_NAME));

 Assert.assertTrue(model.get(SUBSYSTEM,

SubsystemExtension.SUBSYSTEM_NAME).hasDefined("type"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type").hasDefined("tst"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME, "type",

"tst").hasDefined("tick"));

 Assert.assertEquals(12345, model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type", "tst", "tick").asLong());

Then make sure our new has been added:type

Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type").hasDefined("foo"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME, "type",

"foo").hasDefined("tick"));

 Assert.assertEquals(1000, model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type", "foo", "tick").asLong());

Then we call to change the value of :write-attribute tick /subsystem=tracker/type=foo

//Call write-attribute

 ModelNode writeOp = new ModelNode();

 writeOp.get(OP).set(WRITE_ATTRIBUTE_OPERATION);

 writeOp.get(OP_ADDR).set(fooTypeAddr.toModelNode());

 writeOp.get(NAME).set("tick");

 writeOp.get(VALUE).set(3456);

 result = services.executeOperation(writeOp);

 Assert.assertEquals(SUCCESS, result.get(OUTCOME).asString());

Latest WildFly Documentation

JBoss Community Documentation Page of 1672 2293

To give you exposure to other ways of doing things, now instead of reading the whole model to check the

attribute, we call instead, and make sure it has the value we set it to.read-attribute

//Check that write attribute took effect, this time by calling read-attribute instead of reading

the whole model

 ModelNode readOp = new ModelNode();

 readOp.get(OP).set(READ_ATTRIBUTE_OPERATION);

 readOp.get(OP_ADDR).set(fooTypeAddr.toModelNode());

 readOp.get(NAME).set("tick");

 result = services.executeOperation(readOp);

 Assert.assertEquals(3456, checkResultAndGetContents(result).asLong());

Since each installs its own copy of , we get the for type TrackerService TrackerService type=foo

from the service container exposed by the kernel services and make sure it has the right value

TrackerService service =

(TrackerService)services.getContainer().getService(TrackerService.createServiceName("foo")).getValue();

Assert.assertEquals(3456, service.getTick());

 }

TypeDefinition.TICK.

11.3.5 Add the deployers

When discussing we did not mention the work done to install the deployers, whichSubsystemAddHandler

is done in the following method:

@Override

 public void performBoottime(OperationContext context, ModelNode operation, ModelNode model,

 ServiceVerificationHandler verificationHandler, List<ServiceController<?>>

newControllers)

 throws OperationFailedException {

 log.info("Populating the model");

 //Add deployment processors here

 //Remove this if you don't need to hook into the deployers, or you can add as many as

you like

 //see SubDeploymentProcessor for explanation of the phases

 context.addStep(new AbstractDeploymentChainStep() {

 public void execute(DeploymentProcessorTarget processorTarget) {

 processorTarget.addDeploymentProcessor(SubsystemDeploymentProcessor.PHASE,

SubsystemDeploymentProcessor.priority, new SubsystemDeploymentProcessor());

 }

 }, OperationContext.Stage.RUNTIME);

 }

Latest WildFly Documentation

JBoss Community Documentation Page of 1673 2293

This adds an extra step which is responsible for installing deployment processors. You can add as many as

you like, or avoid adding any all together depending on your needs. Each processor has a and a Phase

. Phases are sequential, and a deployment passes through each phases deployment processors.priority

The specifies where within a phase the processor appears. See priority

 for more information about phases.org.jboss.as.server.deployment.Phase

In our case we are keeping it simple and staying with one deployment processor with the phase and priority

created for us by the maven archetype. The phases will be explained in the next section. The deployment

processor is as follows:

public class SubsystemDeploymentProcessor implements DeploymentUnitProcessor {

 ...

 @Override

 public void deploy(DeploymentPhaseContext phaseContext) throws

DeploymentUnitProcessingException {

 String name = phaseContext.getDeploymentUnit().getName();

 TrackerService service = getTrackerService(phaseContext.getServiceRegistry(), name);

 if (service != null) {

 ResourceRoot root =

phaseContext.getDeploymentUnit().getAttachment(Attachments.DEPLOYMENT_ROOT);

 VirtualFile cool = root.getRoot().getChild("META-INF/cool.txt");

 service.addDeployment(name);

 if (cool.exists()) {

 service.addCoolDeployment(name);

 }

 }

 }

 @Override

 public void undeploy(DeploymentUnit context) {

 context.getServiceRegistry();

 String name = context.getName();

 TrackerService service = getTrackerService(context.getServiceRegistry(), name);

 if (service != null) {

 service.removeDeployment(name);

 }

 }

 private TrackerService getTrackerService(ServiceRegistry registry, String name) {

 int last = name.lastIndexOf(".");

 String suffix = name.substring(last + 1);

 ServiceController<?> container =

registry.getService(TrackerService.createServiceName(suffix));

 if (container != null) {

 TrackerService service = (TrackerService)container.getValue();

 return service;

 }

 return null;

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1674 2293

The method is called when a deployment is being deployed. In this case we look for the deploy()

 instance for the service name created from the deployment's suffix. If there is one itTrackerService

means that we are meant to be tracking deployments with this suffix (i.e. was called forTypeAddHandler

this suffix), and if we find one we add the deployment's name to it. Similarly is called when aundeploy()

deployment is being undeployed, and if there is a instance for the deployment's suffix,TrackerService

we remove the deployment's name from it.

Latest WildFly Documentation

JBoss Community Documentation Page of 1675 2293

Deployment phases and attachments
The code in the SubsystemDeploymentProcessor uses an , which is the means ofattachment

communication between the individual deployment processors. A deployment processor belonging to a

phase may create an attachment which is then read further along the chain of deployment unit processors.

In the above example we look for the attachment, which is a view of theAttachments.DEPLOYMENT_ROOT

file structure of the deployment unit put in place before the chain of deployment unit processors is invoked.

As mentioned above, the deployment unit processors are organized in phases, and have a relative order

within each phase. A deployment unit passes through all the deployment unit processors in that order. A

deployment unit processor may choose to take action or not depending on what attachments are available.

Let's take a quick look at what the deployment unit processors for in the phases described in

.org.jboss.as.server.deployment.Phase

STRUCTURE
The deployment unit processors in this phase determine the structure of a deployment, and looks for sub

deployments and metadata files.

PARSE
In this phase the deployment unit processors parse the deployment descriptors and build up the annotation

index. entries from the META-INF/MANIFEST.MF are added.Class-Path

DEPENDENCIES
Extra class path dependencies are added. For example if deploying a file, the commonly neededwar

dependencies for a web application are added.

CONFIGURE_MODULE
In this phase the modular class loader for the deployment is created. No attempt should be made loading

classes from the deployment until this phase.after

POST_MODULE
Now that our class loader has been constructed we have access to the classes. In this stage deployment

processors may use the attachment which is a deployment indexAttachments.REFLECTION_INDEX

used to obtain members of classes in the deployment, and to invoke upon them, bypassing the inefficiencies

of using directly.java.lang.reflect

INSTALL
Install new services coming from the deployment.

CLEANUP
Attachments put in place earlier in the deployment unit processor chain may be removed here.

Latest WildFly Documentation

JBoss Community Documentation Page of 1676 2293

11.3.6 Integrate with WildFly

Now that we have all the code needed for our subsystem, we can build our project by running mvn

install

[kabir ~/sourcecontrol/temp/archetype-test/acme-subsystem]

$mvn install

[INFO] Scanning for projects...

[...]

main:

 [delete] Deleting:

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/null1004283288

 [delete] Deleting directory

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/module

 [copy] Copying 1 file to

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/module/com/acme/corp/tracker/main

[copy] Copying 1 file to

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/module/com/acme/corp/tracker/main

[echo] Module com.acme.corp.tracker has been created in the target/module directory. Copy to

your JBoss AS 7 installation.

[INFO] Executed tasks

[INFO]

[INFO] --- maven-install-plugin:2.3.1:install (default-install) @ acme-subsystem ---

[INFO] Installing

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/acme-subsystem.jar to

/Users/kabir/.m2/repository/com/acme/corp/acme-subsystem/1.0-SNAPSHOT/acme-subsystem-1.0-SNAPSHOT.jar
[INFO]

Installing /Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/pom.xml to

/Users/kabir/.m2/repository/com/acme/corp/acme-subsystem/1.0-SNAPSHOT/acme-subsystem-1.0-SNAPSHOT.pom
[INFO]

--

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 5.851s

[INFO] Finished at: Mon Jul 11 23:24:58 BST 2011

[INFO] Final Memory: 7M/81M

[INFO] --

This will have built our project and assembled a module for us that can be used for installing it into WildFly. If

you go to the folder where you built the project you will see the moduletarget/module

$ls target/module/com/acme/corp/tracker/main/

acme-subsystem.jar module.xml

The comes from and is used to definemodule.xml src/main/resources/module/main/module.xml

your module. It says that it contains the :acme-subsystem.jar

<module xmlns="urn:jboss:module:1.0" name="com.acme.corp.tracker">

 <resources>

 <resource-root path="acme-subsystem.jar"/>

 </resources>

Latest WildFly Documentation

JBoss Community Documentation Page of 1677 2293

And has a default set of dependencies needed by every subsystem created. If your subsystem requires

additional module dependencies you can add them here before building and installing.

<dependencies>

 <module name="javax.api"/>

 <module name="org.jboss.staxmapper"/>

 <module name="org.jboss.as.controller"/>

 <module name="org.jboss.as.server"/>

 <module name="org.jboss.modules"/>

 <module name="org.jboss.msc"/>

 <module name="org.jboss.logging"/>

 <module name="org.jboss.vfs"/>

 </dependencies>

</module>

Note that the name of the module corresponds to the directory structure containing it. Now copy the

 directory and its contents to target/module/com/acme/corp/tracker/main/

 (where is the root of your WildFly install).$WFLY/modules/com/acme/corp/tracker/main/ $WFLY

Next we need to modify . First we need to add$WFLY/standalone/configuration/standalone.xml

our new module to the section:<extensions>

<extensions>

 ...

 <extension module="org.jboss.as.weld"/>

 <extension module="com.acme.corp.tracker"/>

 </extensions>

And then we have to add our subsystem to the section:<profile>

<profile>

 ...

 <subsystem xmlns="urn:com.acme.corp.tracker:1.0">

 <deployment-types>

 <deployment-type suffix="sar" tick="10000"/>

 <deployment-type suffix="war" tick="10000"/>

 </deployment-types>

 </subsystem>

 ...

 </profile>

Adding this to a managed domain works exactly the same apart from in this case you need to modify

.$WFLY/domain/configuration/domain.xml

Now start up WildFly by running and you should see messages like these$WFLY/bin/standalone.sh

after the server has started, which means our subsystem has been added and our isTrackerService

working:

Latest WildFly Documentation

JBoss Community Documentation Page of 1678 2293

15:27:33,838 INFO [org.jboss.as] (Controller Boot Thread) JBoss AS 7.0.0.Final "Lightning"

started in 2861ms - Started 94 of 149 services (55 services are passive or on-demand)

15:27:42,966 INFO [stdout] (Thread-8) Current deployments deployed while sar tracking active:

15:27:42,966 INFO [stdout] (Thread-8) []

15:27:42,967 INFO [stdout] (Thread-8) Cool: 0

15:27:42,967 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:27:42,967 INFO [stdout] (Thread-9) []

15:27:42,967 INFO [stdout] (Thread-9) Cool: 0

15:27:52,967 INFO [stdout] (Thread-8) Current deployments deployed while sar tracking active:

15:27:52,967 INFO [stdout] (Thread-8) []

15:27:52,967 INFO [stdout] (Thread-8) Cool: 0

If you run the command line interface you can execute some commands to see more about the subsystem.

For example

[standalone@localhost:9999 /] /subsystem=tracker/:read-resource-description(recursive=true,

operations=true)

will return a lot of information, including what we provided in the s we created toDescriptionProvider

document our subsystem.

To see the current subsystem state you can execute

[standalone@localhost:9999 /] /subsystem=tracker/:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {"type" => {

 "war" => {"tick" => 10000L},

 "sar" => {"tick" => 10000L}

 }}

}

We can remove both the deployment types which removes them from the model:

[standalone@localhost:9999 /] /subsystem=tracker/type=sar:remove

{"outcome" => "success"}

[standalone@localhost:9999 /] /subsystem=tracker/type=war:remove

{"outcome" => "success"}

[standalone@localhost:9999 /] /subsystem=tracker/:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {"type" => undefined}

}

You should now see the output from the instances having stopped.TrackerService

Now, let's add the war tracker again:

Latest WildFly Documentation

JBoss Community Documentation Page of 1679 2293

[standalone@localhost:9999 /] /subsystem=tracker/type=war:add

{"outcome" => "success"}

[standalone@localhost:9999 /] /subsystem=tracker/:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {"type" => {"war" => {"tick" => 10000L}}}

}

and the WildFly console should show the messages coming from the war again.TrackerService

Now let us deploy something. You can find two maven projects for test wars already built at and test1.zip

. If you download them and extract them to and , youtest2.zip /Downloads/test1 /Downloads/test2

can see that contains a while /Downloads/test1/target/test1.war META-INF/cool.txt

 does not contain that file. From CLI deploy first:/Downloads/test2/target/test2.war test1.war

[standalone@localhost:9999 /] deploy ~/Downloads/test1/target/test1.war

'test1.war' deployed successfully.

And you should now see the output from the war list the deployments:TrackerService

15:35:03,712 INFO [org.jboss.as.server.deployment] (MSC service thread 1-2) Starting deployment

of "test1.war"

15:35:03,988 INFO [org.jboss.web] (MSC service thread 1-1) registering web context: /test1

15:35:03,996 INFO [org.jboss.as.server.controller] (pool-2-thread-9) Deployed "test1.war"

15:35:13,056 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:35:13,056 INFO [stdout] (Thread-9) [test1.war]

15:35:13,057 INFO [stdout] (Thread-9) Cool: 1

So our got picked up as a 'cool' deployment. Now if we deploy test1.war test2.war

[standalone@localhost:9999 /] deploy ~/sourcecontrol/temp/archetype-test/test2/target/test2.war

'test2.war' deployed successfully.

You will see that deployment get picked up as well but since there is no it is notMETA-INF/cool.txt

marked as a 'cool' deployment:

15:37:05,634 INFO [org.jboss.as.server.deployment] (MSC service thread 1-4) Starting deployment

of "test2.war"

15:37:05,699 INFO [org.jboss.web] (MSC service thread 1-1) registering web context: /test2

15:37:05,982 INFO [org.jboss.as.server.controller] (pool-2-thread-15) Deployed "test2.war"

15:37:13,075 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:37:13,075 INFO [stdout] (Thread-9) [test1.war, test2.war]

15:37:13,076 INFO [stdout] (Thread-9) Cool: 1

An undeploy

https://docs.jboss.org/author/download/attachments/108626368/test1.zip?version=1&modificationDate=1311326317000
https://docs.jboss.org/author/download/attachments/108626368/test2.zip?version=1&modificationDate=1311326215000

Latest WildFly Documentation

JBoss Community Documentation Page of 1680 2293

[standalone@localhost:9999 /] undeploy test1.war

Successfully undeployed test1.war.

is also reflected in the output:TrackerService

15:38:47,901 INFO [org.jboss.as.server.controller] (pool-2-thread-21) Undeployed "test1.war"

15:38:47,934 INFO [org.jboss.as.server.deployment] (MSC service thread 1-3) Stopped deployment

test1.war in 40ms

15:38:53,091 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:38:53,092 INFO [stdout] (Thread-9) [test2.war]

15:38:53,092 INFO [stdout] (Thread-9) Cool: 0

Finally, we registered a write attribute handler for the property of the so we can change thetick type

frequency

[standalone@localhost:9999 /] /subsystem=tracker/type=war:write-attribute(name=tick,value=1000)

{"outcome" => "success"}

You should now see the output from the happen every secondTrackerService

15:39:43,100 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:39:43,100 INFO [stdout] (Thread-9) [test2.war]

15:39:43,101 INFO [stdout] (Thread-9) Cool: 0

15:39:44,101 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:39:44,102 INFO [stdout] (Thread-9) [test2.war]

15:39:44,105 INFO [stdout] (Thread-9) Cool: 0

15:39:45,106 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:39:45,106 INFO [stdout] (Thread-9) [test2.war]

If you open you can see that our subsystem$WFLY/standalone/configuration/standalone.xml

entry reflects the current state of the subsystem:

<subsystem xmlns="urn:com.acme.corp.tracker:1.0">

 <deployment-types>

 <deployment-type suffix="war" tick="1000"/>

 </deployment-types>

 </subsystem>

11.3.7 Expressions

Expressions are mechanism that enables you to support variables in your attributes, for instance when you

want the value of attribute to be resolved using system / environment properties.

An example expression is

Latest WildFly Documentation

JBoss Community Documentation Page of 1681 2293

${jboss.bind.address.management:127.0.0.1}

which means that the value should be taken from a system property named

 and if it is not defined use .jboss.bind.address.management 127.0.0.1

What expression types are supported

System properties, which are resolved using java.lang.System.getProperty(String key)

Environment properties, which are resolved using .java.lang.System.getEnv(String name)

Security vault expressions, resolved against the security vault configured for the server or Host

Controller that needs to resolve the expression.

In all cases, the syntax for the expression is

${expression_to_resolve}

For an expression meant to be resolved against environment properties, the expression_to_resolve

must be prefixed with . The portion after will be the name passed to env. env.

.java.lang.System.getEnv(String name)

Security vault expressions do not support default values (i.e. the in the 127.0.0.1

 example above.)jboss.bind.address.management:127.0.0.1

How to support expressions in subsystems
The easiest way is by using AttributeDefinition, which provides support for expressions just by using it

correctly.

When we create an AttributeDefinition all we need to do is mark that is allows expressions. Here is an

example how to define an attribute that allows expressions to be used.

SimpleAttributeDefinition MY_ATTRIBUTE =

 new SimpleAttributeDefinitionBuilder("my-attribute", ModelType.INT, true)

 .setAllowExpression(true)

 .setFlags(AttributeAccess.Flag.RESTART_ALL_SERVICES)

 .setDefaultValue(new ModelNode(1))

 .build();

Then later when you are parsing the xml configuration you should use the MY_ATTRIBUTE attribute

definition to set the value to the management operation ModelNode you are creating.

Latest WildFly Documentation

JBoss Community Documentation Page of 1682 2293

....

 String attr = reader.getAttributeLocalName(i);

 String value = reader.getAttributeValue(i);

 if (attr.equals("my-attribute")) {

 MY_ATTRIBUTE.parseAndSetParameter(value, operation, reader);

 } else if (attr.equals("suffix")) {

.....

Note that this just helps you to properly set the value to the model node you are working on, so no need to

additionally set anything to the model for this attribute. Method parseAndSetParameter parses the value that

was read from xml for possible expressions in it and if it finds any it creates special model node that defines

that node is of type .ModelType.EXPRESSION

Later in your operation handlers where you implement populateModel and have to store the value from the

operation to the configuration model you also use this MY_ATTRIBUTE attribute definition.

@Override

 protected void populateModel(ModelNode operation, ModelNode model) throws

OperationFailedException {

 MY_ATTRIBUTE.validateAndSet(operation,model);

 }

This will make sure that the attribute that is stored from the operation to the model is valid and nothing is

lost. It also checks the value stored in the operation , and if it isn't already ModelNode

, it checks if the value is a string that contains the expression syntax. If so, theModelType.EXPRESSION

value stored in the model will be of type . Doing this ensures that expressions areModelType.EXPRESSION

properly handled when they appear in operations that weren't created by the subsystem parser, but are

instead passed in from CLI or admin console users.

As last step we need to use the value of the attribute. This is usually needed inside of the performRuntime

method

protected void performRuntime(OperationContext context, ModelNode operation, ModelNode model,

ServiceVerificationHandler verificationHandler, List<ServiceController<?>> newControllers)

throws OperationFailedException {

 final int attributeValue = MY_ATTRIBUTE.resolveModelAttribute(context,

model).asInt();

 ...

 }

As you can see resolving of attribute's value is not done until it is needed for use in the subsystem's runtime

services. The resolved value is not stored in the configuration model, the unresolved expression is. That way

we do not lose any information in the model and can assure that also marshalling is done properly, where we

must marshall back the unresolved value.

Attribute definitinon also helps you with that:

Latest WildFly Documentation

JBoss Community Documentation Page of 1683 2293

1.

2.

3.

public void writeContent(XMLExtendedStreamWriter writer, SubsystemMarshallingContext context)

throws XMLStreamException {

 MY_ATTRIBUTE.marshallAsAttribute(sessionData, writer);

 MY_OTHER_ATTRIBUTE.marshallAsElement(sessionData, false, writer);

 ...

}

11.4 Working with WildFly Capabilities

An extension to WildFly will likely want to make use of services provided by the WildFly kernel, may want to

make use of services provided by other subsystems, and may wish to make functionality available to other

extensions. Each of these cases involves integration between different parts of the system. In releases prior

to WildFly 10, this kind of integration was done on an ad-hoc basis, resulting in overly tight coupling between

different parts of the system and overly weak integration contracts. For example, a service installed by

subsystem A might depend on a service installed by subsystem B, and to record that dependency A's

authors copy a ServiceName from B's code, or even refer to a constant or static method from B's code. The

result is B's code cannot evolve without risking breaking A. And the authors of B may not even intend for

other subsystems to use its services. There is no proper integration contract between the two subsystems.

Beginning with WildFly Core 2 and WildFly 10 the WildFly kernel's management layer provides a mechanism

for allowing different parts of the system to integrate with each other in a loosely coupled manner. This is

done via WildFly Capabilities. Use of capabilities provides the following benefits:

A standard way for system components to define integration contracts for their use by other system

components.

A standard way for system components to access integration contracts provided by other system

components.

A mechanism for configuration model referential integrity checking, such that if one component's

configuration has an attribute that refers to an other component (e.g. a attribute insocket-binding

a subsystem that opens a socket referring to that socket's configuration), the validity of that reference

can be checked when validating the configuration model.

11.4.1 Capabilities

A capability is a piece of functionality used in a WildFly Core based process that is exposed via the WildFly

Core management layer. Capabilities may depend on other capabilities, and this interaction between

capabilities is mediated by the WildFly Core management layer.

Some capabilities are automatically part of a WildFly Core based process, but in most cases the

configuration provided by the end user (i.e. in standalone.xml, domain.xml and host.xml) determines what

capabilities are present at runtime. It is the responsibility of the handlers for management operations to

register capabilities and to register any requirements those capabilities may have for the presence of other

capabilities. This registration is done during the MODEL stage of operation execution

Latest WildFly Documentation

JBoss Community Documentation Page of 1684 2293

1.

2.

3.

4.

A capability has the following basic characteristics:

It has a name.

It may install an MSC service that can be depended upon by services installed by other capabilities. If

it does, it provides a mechanism for discovering the name of that service.

It may expose some other API not based on service dependencies allowing other capabilities to

integrate with it at runtime.

It may depend on, or other capabilities.require

During boot of the process, and thereafter whenever a management operation makes a change to the

process' configuration, at the end of the MODEL stage of operation execution the kernel management layer

will validate that all capabilities required by other capabilities are present, and will fail any management

operation step that introduced an unresolvable requirement. This will be done before execution of the

management operation proceeds to the RUNTIME stage, where interaction with the process' MSC Service

Container is done. As a result, in the RUNTIME stage the handler for an operation can safely assume that

the runtime services provided by a capability for which it has registered a requirement are available.

Comparison to other concepts

Capabilities vs modules
A JBoss Modules module is the means of making resources available to the classloading system of a

WildFly Core based process. To make a capability available, you must package its resources in one or more

modules and make them available to the classloading system. But a module is not a capability in and of

itself, and simply copying a module to a WildFly installation does not mean a capability is available. Modules

can include resources completely unrelated to management capabilities.

Capabilities vs Extensions
An extension is the means by which the WildFly Core management layer is made aware of manageable

functionality that is not part of the WildFly Core kernel. The extension registers with the kernel new

management resource types and handlers for operations on those resources. One of the things a handler

can do is register or unregister a capability and its requirements. An extension may register a single

capability, multiple capabilities, or possibly none at all. Further, not all capabilities are registered by

extensions; the WildFly Core kernel itself may register a number of different capabilities.

Capability Names
Capability names are simple strings, with the dot character serving as a separator to allow namespacing.

The 'org.wildfly' namespace is reserved for projects associated with the WildFly organization on github (

).https://github.com/wildfly

https://github.com/wildfly

Latest WildFly Documentation

JBoss Community Documentation Page of 1685 2293

Statically vs Dynamically Named Capabilities
The full name of a capability is either statically known, or it may include a statically known base element and

then a dynamic element. The dynamic part of the name is determined at runtime based on the address of

the management resource that registers the capability. For example, the management resource at the

address '/socket-binding-group=standard-sockets/socket-binding=web' will register a dynamically named

capability named 'org.wildlfy.network.socket-binding.web'. The 'org.wildlfy.network.socket-binding' portion is

the static part of the name.

All dynamically named capabilities that have the same static portion of their name should provide a

consistent feature set and set of requirements.

Service provided by a capability
Typically a capability functions by registering a service with the WildFly process' MSC ServiceContainer, and

then dependent capabilities depend on that service. The WildFly Core management layer orchestrates

registration of those services and service dependencies by providing a means to discover service names.

Custom integration APIs provided by a capability
Instead of or in addition to providing MSC services, a capability may expose some other API to dependent

capabilities. This API must be encapsulated in a single class (although that class can use other non-JRE

classes as method parameters or return types).

Latest WildFly Documentation

JBoss Community Documentation Page of 1686 2293

Capability Requirements
A capability may rely on other capabilities in order to provide its functionality at runtime. The management

operation handlers that register capabilities are also required to register their requirements.

There are three basic types of requirements a capability may have:

Hard requirements. The required capability must always be present for the dependent capability to

function.

Optional requirements. Some aspect of the configuration of the dependent capability controls whether

the depended on capability is actually necessary. So the requirement cannot be known until the

running configuration is analyzed.

Runtime-only requirements. The dependent capability will check for the presence of the depended

upon capability at runtime, and if present it will utilize it, but if it is not present it will function properly

without the capability. There is nothing in the dependent capability's configuration that controls

whether the depended on capability must be present. Only capabilities that declare themselves as

being suitable for use as a runtime-only requirement should be depended upon in this manner.

Hard and optional requirements may be for either statically named or dynamically named capabilities.

Runtime-only requirements can only be for statically named capabilities, as such a requirement cannot be

specified via configuration, and without configuration the dynamic part of the required capability name is

unknown.

Supporting runtime-only requirements
Not all capabilities are usable as a runtime-only requirement.

Any dynamically named capability is not usable as a runtime-only requirement.

For a capability to support use as a runtime-only requirement, it must guarantee that a configuration change

to a running process that removes the capability will not impact currently running capabilities that have a

runtime-only requirement for it. This means:

A capability that supports runtime-only usage must ensure that it never removes its runtime service

except via a full process reload.

A capability that exposes a custom integration API generally is not usable as a runtime-only

requirement. If such a capability does support use as a runtime-only requirement, it must ensure that

any functionality provided via its integration API remains available as long as a full process reload has

not occurred.

Latest WildFly Documentation

JBoss Community Documentation Page of 1687 2293

11.4.2 Capability Contract

A capability provides a stable contract to users of the capability. The contract includes the following:

The name of the capability (including whether it is dynamically named).

Whether it installs an MSC Service, and if it does, the value type of the service. That value type then

becomes a stable API users of the capability can rely upon.

Whether it provides a custom integration API, and if it does, the type that represents that API. That

type then becomes a stable API users of the capability can rely upon.

Whether the capability supports use as a runtime-only requirement.

Developers can learn about available capabilities and the contracts they provide by reading the WildFly

.capabilty registry

11.4.3 Capability Registry

The WildFly organization on github maintains a git repo where information about available capabilities is

published.

https://github.com/wildfly/wildfly-capabilities

Developers can learn about available capabilities and the contracts they provide by reading the WildFly

capabilty registry.

The README.md file at the root of that repo explains the how to find out information about the registry.

Developers of new capabilities are to document and register their capability bystrongly encouraged

submitting a pull request to the wildfly-capabilities github repo. This both allows others to learn about your

capability and helps prevent capability name collisions. Capabilities that are used in the WildFly or WildFly

Core code base itself have a registry entry before the code referencing them will be merged.must

External organizations that create capabilities should include an organization-specific namespace as part

their capability names to avoid name collisions.

11.4.4 Using Capabilities

Now that all the background information is presented, here are some specifics about how to use WildFly

capabilities in your code.

https://github.com/wildfly/wildfly-capabilities

Latest WildFly Documentation

JBoss Community Documentation Page of 1688 2293

Basics of Using Your Own Capability

Creating your capability
A capability is an instance of the immutable

 class. A capability is usuallyorg.jboss.as.controller.capability.RuntimeCapability

registered by a resource, so the usual way to use one is to store it in constant in the resource's

. Use a to create one.ResourceDefinition RuntimeCapability.Builder

class MyResourceDefinition extends SimpleResourceDefinition {

 static final RuntimeCapability<Void> FOO_CAPABILITY =

RuntimeCapability.Builder.of("com.example.foo").build();

 . . .

}

That creates a statically named capability named .com.example.foo

If the capability is dynamically named, add the parameter to state this:dynamic

static final RuntimeCapability<Void> FOO_CAPABILITY =

 RuntimeCapability.Builder.of("com.example.foo", true).build();

Most capabilities install a service that requiring capabilities can depend on. If your capability does this, you

need to declare the service's (the type of the object returned by value type

). For example, if FOO_CAPABILITY provides a org.jboss.msc.Service.getValue()

:Service<javax.sql.DataSource>

static final RuntimeCapability<Void> FOO_CAPABILITY =

 RuntimeCapability.Builder.of("com.example.foo", DataSource.class).build();

For a dynamic capability:

static final RuntimeCapability<Void> FOO_CAPABILITY =

 RuntimeCapability.Builder.of("com.example.foo", true, DataSource.class).build();

If the capability provides a custom integration API, you need to instantiate an instance of that API:

Latest WildFly Documentation

JBoss Community Documentation Page of 1689 2293

public class JTSCapability {

 static final JTSCapability INSTANCE = new JTSCapability();

 private JTSCapability() {}

 /**

 * Gets the names of the {@link org.omg.PortableInterceptor.ORBInitializer} implementations

that should be included

 * as part of the {@link org.omg.CORBA.ORB#init(String[], java.util.Properties)

initialization of an ORB}.

 *

 * @return the names of the classes implementing {@code ORBInitializer}. Will not be {@code

null}.

 */

 public List<String> getORBInitializerClasses() {

 return Collections.unmodifiableList(Arrays.asList(

"com.arjuna.ats.jts.orbspecific.jacorb.interceptors.interposition.InterpositionORBInitializerImpl",

"com.arjuna.ats.jbossatx.jts.InboundTransactionCurrentInitializer"));

 }

}

and provide it to the builder:

static final RuntimeCapability<JTSCapability> FOO_CAPABILITY =

 RuntimeCapability.Builder.of("com.example.foo", JTSCapability.INSTANCE).build();

For a dynamic capability:

static final RuntimeCapability<JTSCapability> FOO_CAPABILITY =

RuntimeCapability.Builder.of("com.example.foo", true, JTSCapability.INSTANCE).build();

A capability can provide both a custom integration API and install a service:

static final RuntimeCapability<JTSCapability> FOO_CAPABILITY =

 RuntimeCapability.Builder.of("com.example.foo", JTSCapability.INSTANCE)

 .setServiceType(DataSource.class)

 .build();

Latest WildFly Documentation

JBoss Community Documentation Page of 1690 2293

Registering and unregistering your capability
Once you have your capability, you need to ensure it gets registered with the WildFly Core kernel when your

resource is added. This is easily done simply by providing a reference to the capability to the resource's

. This assumes your resource definition is a subclass of the standard ResourceDefinition

. providesorg.jboss.as.controller.SimpleResourceDefinition SimpleResourceDefinition

a class that provides a builder-style API for setting up all the data needed by your definition.Parameters

This includes a method that can be used to declare the capabilities provided bysetCapabilities

resources of this type.

class MyResourceDefinition extends SimpleResourceDefinition {

 . . .

 MyResourceDefinition() {

 super(new SimpleResourceDefinition.Parameters(PATH, RESOLVER)

 .setAddHandler(MyAddHandler.INSTANCE)

 .setRemoveHandler(MyRemoveHandler.INSTANCE)

 .setCapabilities(FOO_CAPABILITY)

);

 }

}

Your add handler needs to extend the standard

 class or one of its subclasses:org.jboss.as.controller.AbstractAddStepHandler

class MyAddHandler extends AbstractAddStepHandler() {

's logic will register the capability when it executes.AbstractAddStepHandler

Your remove handler must also extend of the standard

 or one of its subclasses.org.jboss.as.controller.AbstractRemoveStepHandler

class MyRemoveHandler extends AbstractRemoveStepHandler() {

's logic will deregister the capability when it executes.AbstractRemoveStepHandler

If for some reason you cannot base your on orResourceDefinition SimpleResourceDefinition

your handlers on and then you will need toAbstractAddStepHandler AbstractRemoveStepHandler

take responsibility for registering the capability yourself. This is not expected to be a common situation. See

the implementation of those classes to see how to do it.

Latest WildFly Documentation

JBoss Community Documentation Page of 1691 2293

Installing, accessing and removing the service provided by your capability
If your capability installs a service, you should use the when you need to determineRuntimeCapability

the service's name. For example in the handling of your "add" step handler. Here's anStage.RUNTIME

example for a statically named capability:

class MyAddHandler extends AbstractAddStepHandler() {

 . . .

 @Override

 protected void performRuntime(final OperationContext context, final ModelNode operation,

 final Resource resource) throws OperationFailedException {

 ServiceName serviceName = FOO_CAPABILITY.getCapabilityServiceName();

 Service<DataSource> service = createDataSourceService(context, resource);

 context.getServiceTarget().addService(serviceName, service).install();

 }

If the capability is dynamically named, get the dynamic part of the name from the andOperationContext

use that when getting the service name:

class MyAddHandler extends AbstractAddStepHandler() {

 . . .

 @Override

 protected void performRuntime(final OperationContext context, final ModelNode operation,

 final Resource resource) throws OperationFailedException {

 String myName = context.getCurrentAddressValue();

 ServiceName serviceName = FOO_CAPABILITY.getCapabilityServiceName(myName);

 Service<DataSource> service = createDataSourceService(context, resource);

 context.getServiceTarget().addService(serviceName, service).install();

 }

The same patterns should be used when accessing or removing the service in handlers for , remove

 and custom operations.write-attribute

If you use for the operation, simply provide your ServiceRemoveStepHandler remove

 to the constructor and it will automatically removeRuntimeCapability ServiceRemoveStepHandler

your capability's service when it executes.

Basics of Using Other Capabilities
When a capability needs another capability, it only refers to it by its string name. A capability should not

reference the object of another capability.RuntimeCapability

Latest WildFly Documentation

JBoss Community Documentation Page of 1692 2293

Before a capability can look up the service name for a required capability's service, or access its custom

integration API, it must first register a requirement for the capability. This must be done in Stage.MODEL,

while service name lookups and accessing the custom integration API is done in Stage.RUNTIME.

Registering a requirement for a capability is simple.

Registering a hard requirement for a static capability
If your capability has a hard requirement for a statically named capability, simply declare that to the builder

for your . For example, WildFly's JTS capability requires both a basic transactionRuntimeCapability

support capability and IIOP capabilities:

static final RuntimeCapability<JTSCapability> JTS_CAPABILITY =

 RuntimeCapability.Builder.of("org.wildfly.transactions.jts", new JTSCapability())

 .addRequirements("org.wildfly.transactions", "org.wildfly.iiop.orb",

"org.wildfly.iiop.corba-naming")

 .build();

When your capability is registered with the system, the WildFly Core kernel will automatically register any

static hard requirements declared this way.

Latest WildFly Documentation

JBoss Community Documentation Page of 1693 2293

Registering a requirement for a dynamically named capability
If the capability you require is dynamically named, usually your capability's resource will include an attribute

whose value is the dynamic part of the required capability's name. You should declare this fact in the

 for the attribute using the AttributeDefinition

 method.SimpleAttributeDefinitionBuilder.setCapabilityReference

For example, the WildFly "remoting" subsystem's "org.wildfly.remoting.connector" capability has a

requirement for a dynamically named socket-binding capability:

public class ConnectorResource extends SimpleResourceDefinition {

 . . .

 static final String SOCKET_CAPABILITY_NAME = "org.wildfly.network.socket-binding";

 static final RuntimeCapability<Void> CONNECTOR_CAPABILITY =

 RuntimeCapability.Builder.of("org.wildfly.remoting.connector", true)

 .build();

 . . .

 static final SimpleAttributeDefinition SOCKET_BINDING =

 new SimpleAttributeDefinitionBuilder(CommonAttributes.SOCKET_BINDING,

ModelType.STRING, false)

.addAccessConstraint(SensitiveTargetAccessConstraintDefinition.SOCKET_BINDING_REF)

 .setCapabilityReference(SOCKET_CAPABILITY_NAME, CONNECTOR_CAPABILITY)

 .build();

If the "add" operation handler for your resource extends and the handler for AbstractAddStepHandler

 extends , the declaration above is sufficient towrite-attribute AbstractWriteAttributeHandler

ensure that the appropriate capability requirement will be registered when the attribute is modified.

Latest WildFly Documentation

JBoss Community Documentation Page of 1694 2293

Depending upon a service provided by another capability
Once the requirement for the capability is registered, your can use the OperationStepHandler

 to discover the name of the service provided by the required capability.OperationContext

For example, the "add" handler for a remoting connector uses the to find the name ofOperationContext

the needed {{SocketBinding} service:

final String socketName = ConnectorResource.SOCKET_BINDING.resolveModelAttribute(context,

fullModel).asString();

 final ServiceName socketBindingName =

context.getCapabilityServiceName(ConnectorResource.SOCKET_CAPABILITY_NAME, socketName,

SocketBinding.class);

That service name is then used to add a dependency on the service to the remotingSocketBinding

connector service.

If the required capability isn't dynamically named, exposes an overloaded OperationContext

 variant. For example, if a capability requires a remoting Endpoint:getCapabilityServiceName

ServiceName endpointService = context.getCapabilityServiceName("org.wildfly.remoting.endpoint",

Endpoint.class);

Using a custom integration API provided by another capability
In your handler, use to get aStage.RUNTIME OperationContext.getCapabilityRuntimeAPI

reference to the required capability's custom integration API. Then use it as necessary.

List<String> orbInitializers = new ArrayList<String>();

 . . .

 JTSCapability jtsCapability =

context.getCapabilityRuntimeAPI(IIOPExtension.JTS_CAPABILITY, JTSCapability.class);

 orbInitializers.addAll(jtsCapability.getORBInitializerClasses());

Latest WildFly Documentation

JBoss Community Documentation Page of 1695 2293

Runtime-only requirements
If your capability has a runtime-only requirement for another capability, that means that if that capability is

present in you'll use it, and if not you won't. There is nothing about the configuration ofStage.RUNTIME

your capability that triggers the need for the other capability; you'll just use it if it's there.

In this case, use in your handler toOperationContext.hasOptionalCapability Stage.RUNTIME

check if the capability is present:

protected void performRuntime(final OperationContext context, final ModelNode operation, final

ModelNode model) throws OperationFailedException {

 ServiceName myServiceName = MyResource.FOO_CAPABILITY.getCapabilityServiceName();

 Service<DataSource> myService = createService(context, model);

 ServiceBuilder<DataSource> builder = context.getTarget().addService(myServiceName,

myService);

 // Inject a "Bar" into our "Foo" if bar capability is present

 if (context.hasOptionalCapability("com.example.bar",

MyResource.FOO_CAPABILITY.getName(), null) {

 ServiceName barServiceName = context.getCapabilityServiceName("com.example.bar",

Bar.class);

 builder.addDependency(barServiceName, Bar.class, myService.getBarInjector());

 }

 builder.install();

 }

The WildFly Core kernel will not register a requirement for the "com.example.bar" capability, so if a

configuration change occurs that means that capability will no longer be present, that change will not be

rolled back. Because of this, runtime-only requirements can only be used with capabilities that declare in

their contract that they support such use.

Using a capability in a DeploymentUnitProcessor
A is likely to have a need to interact with capabilities, in order to createDeploymentUnitProcessor

service dependencies from a deployment service to a capability provided service or to access some aspect

of a capability's custom integration API that relates to deployments.

If a associated with a capability implementation needs to utilize its ownDeploymentUnitProcessor

capability object, the authors should simply provide it with a reference to the DeploymentUnitProcessor

 instance. Service name lookups or access to the capabilities custom integration APIRuntimeCapability

can then be performed by invoking the methods on the .RuntimeCapability

If you need to access service names or a custom integration API associated with a different capability, you

will need to use the objectorg.jboss.as.controller.capability.CapabilityServiceSupport

associated with the deployment unit. This can be found as an attachment to the

:DeploymentPhaseContext

Latest WildFly Documentation

JBoss Community Documentation Page of 1696 2293

class MyDUP implements DeploymentUntiProcessor {

 public void deploy(DeploymentPhaseContext phaseContext) throws

DeploymentUnitProcessingException {

 AttachmentKey<CapabilityServiceSupport> key =

org.jboss.as.server.deployment.Attachments.DEPLOYMENT_COMPLETE_SERVICES;

 CapabilityServiceSupport capSvcSupport = phaseContext.getAttachment(key);

Once you have the you can use it to look up service names:CapabilityServiceSupport

ServiceName barSvcName = capSvcSupport.getCapabilityServiceName("com.example.bar");

 // Determine what 'baz' the user specified in the deployment descriptor

 String bazDynamicName = getSelectedBaz(phaseContext);

 ServiceName bazSvcName = capSvcSupport.getCapabilityServiceName("com.example.baz",

bazDynamicName);

It's important to note that when you request a service name associated with a capability, the

 will give you one regardless of whether the capability is actuallyCapabilityServiceSupport

registered with the kernel. If the capability isn't present, any service dependency your DUP creates

using that service name will eventually result in a service start failure, due to the missing

dependency. This behavior of not failing immediately when the capability service name is

requested is deliberate. It allows deployment operations that use the

 header to successfully install (but not start) all of therollback-on-runtime-failure=false

services related to a deployment. If a subsequent operation adds the missing capability, the

missing service dependency problem will then be resolved and the MSC service container will

automatically start the deployment services.

You can also use the to obtain a reference to the capability's customCapabilityServiceSupport

integration API:

// We need custom integration with the baz capability beyond service injection

 BazIntegrator bazIntegrator;

 try {

 bazIntegrator = capSvcSupport.getCapabilityRuntimeAPI("com.example.baz",

bazDynamicName, BazIntegrator.class);

 } catch (NoSuchCapabilityException e) {

 //

 String msg = String.format("Deployment %s requires use of the 'bar' capability but

it is not currently registered",

 phaseContext.getDeploymentUnit().getName());

 throw new DeploymentUnitProcessingException(msg);

 }

Latest WildFly Documentation

JBoss Community Documentation Page of 1697 2293

Note that here, unlike the case with service name lookups, the will throw aCapabilityServiceSupport

checked exception if the desired capability is not installed. This is because the kernel has no way to satisfy

the request for a custom integration API if the capability is not installed. The DeploymentUnitProcessor

will need to catch and handle the exception.

Detailed API
The WildFly Core kernel's API for using capabilities is covered in detail in the javadoc for the

 classes and the and RuntimeCapability and RuntimeCapability.Builder OperationContext

 interfaces.CapabilityServiceSupport

Many of the methods in related to capabilities have to do with registering capabilitiesOperationContext

or registering requirements for capabilities. Typically non-kernel developers won't need to worry about these,

as the abstract implementations provided by the kernel take care of this for you,OperationStepHandler

as described in the preceding sections. If you do find yourself in a situation where you need to use these in

an extension, please read the javadoc thoroughly.

11.5 Domain mode subsystem transformers

Abstract

Background

Getting the initial domain model

An operation changes something in the domain configuration

Versions and backward compatibility

Versioning of subsystems

The role of transformers

Resource transformers

Rejection in resource transformers

Operation transformers

Rejection in operation transformers

Different profiles for different versions

Ignoring resources on legacy hosts

How do I know what needs to be transformed?

Getting data for a previous version

See what changed

https://github.com/wildfly/wildfly-core/blob/master/controller/src/main/java/org/jboss/as/controller/capability/RuntimeCapability.java
https://github.com/wildfly/wildfly-core/blob/master/controller/src/main/java/org/jboss/as/controller/OperationContext.java
https://github.com/wildfly/wildfly-core/blob/master/controller/src/main/java/org/jboss/as/controller/capability/CapabilityServiceSupport.java

Latest WildFly Documentation

JBoss Community Documentation Page of 1698 2293

How do I write a transformer?

ResourceTransformationDescriptionBuilder

Silently discard child resources

Reject child resource

Redirect address for child resource

Getting a child resource builder

AttributeTransformationDescriptionBuilder

Attribute transformation lifecycle

Discarding attributes

The DiscardAttributeChecker interface

DiscardAttributeChecker helper classes/implementations

DiscardAttributeChecker.DefaultDiscardAttributeChecker

DiscardAttributeChecker.DiscardAttributeValueChecker

DiscardAttributeChecker.ALWAYS

DiscardAttributeChecker.UNDEFINED

Rejecting attributes

The RejectAttributeChecker interface

RejectAttributeChecker helper classes/implementations

RejectAttributeChecker.DefaultRejectAttributeChecker

RejectAttributeChecker.DEFINED

RejectAttributeChecker.SIMPLE_EXPRESSIONS

RejectAttributeChecker.ListRejectAttributeChecker

RejectAttributeChecker.ObjectFieldsRejectAttributeChecker

Converting attributes

The AttributeConverter interface

Introducing attributes during transformation

Renaming attributes

OperationTransformationOverrideBuilder

Evolving transformers with subsystem ModelVersions

The old way

Chained transformers

Testing transformers

Testing a configuration that works

Testing a configuration that does not work

Common transformation use-cases

Child resource type does not exist in legacy model

Attribute does not exist in the legacy subsystem

Default value of the attribute is the same as legacy implied behavior

Default value of the attribute is different from legacy implied behaviour

Attribute has a different default value

Attribute has a different type

Latest WildFly Documentation

JBoss Community Documentation Page of 1699 2293

11.5.1 Abstract

A WildFly domain may consist of a new Domain Controller (DC) controlling slave Host Controllers (HC)

running older versions. Each slave HC maintains a copy of the centralized domain configuration, which they

use for controlling their own servers. In order for the slave HCs to understand the configuration from the DC,

transformation is needed, whereby the DC translates the configuration and operations into something the

slave HCs can understand.

11.5.2 Background

WildFly comes with a which allows you to have one Host Controller acting as the Domaindomain mode

Controller. The Domain Controller's job is to maintain the centralized domain configuration. Another term for

the DC is 'Master Host Controller'. Before explaining why transformers are important and when they should

be used, we will revisit how the domain configuration is used in domain mode.

The centralized domain configuration is stored in . This is only ever parsed on the DC, and itdomain.xml

has the following structure:

 - contains:extensions

 - a references to a module that bootstraps the extension

 implementation used to bootstrap yourorg.jboss.as.controller.Extension

subsystem parsers and initialize the resource definitions for your subsystems.

 - contains:profiles

 - a named set of:profile

 - contains the configuration for a subsystem, using the parser initialized bysubsystem

the subsystem's extension.

 - contains:socket-binding-groups

 - a named set of:socket-binding-group

 - A named port on an interface which can be referenced from the socket-binding

 configurations for subsystems opening sockets.subsystem

 - containsserver-groups

 - this has a name and references a and a server-group profile

. The HCs then reference the name from their socket-binding-group server-group

 section in .<servers> host.xml

When the DC parses , it is transformed into (and in some cases)domain.xml add write-attribute

operations just as explained in . These operations build up theParsing and marshalling of the subsystem xml

model on the DC.

Latest WildFly Documentation

JBoss Community Documentation Page of 1700 2293

A HC wishing to join the domain and use the DC's centralized configuration is known as a 'slave HC'. A slave

HC maintains a copy of the DC's centralized domain configuration. This copy of the domain configuration is

used to start its servers. This is done by asking the domain model to itself, which in turn asks thedescribe

subsystems to themselves. The operation for a subsystem looks at the state of thedescribe describe

subsystem model and produces the operations necessary to create the subsystem on the server. Theadd

same mechanism also takes place on the DC (bear in mind that the DC is also a HC, which can have its own

servers), although of course its copy of the domain configuration is the centralized one.

There are two steps involved in keeping the keeping the slave HC's domain configuration in sync with the

centralized domain configuration.

getting the initial domain model

an operation changes something in the domain configuration

Let's look a bit closer at what happens in each of these steps.

Getting the initial domain model
When a slave HC connects to the DC it obtains a copy of the domain model from the DC. This is done in a

simpler serialized format, different from the operations that built up the model on the DC, or the operations

resulting from the step used to bootstrap the servers. They describe each address that exists indescribe

the DC's model, and contain the attributes set for the resource at that address. This serialized form looks like

this:

Latest WildFly Documentation

JBoss Community Documentation Page of 1701 2293

[{

 "domain-resource-address" => [],

 "domain-resource-model" => {

 "management-major-version" => 2,

 "management-minor-version" => 0,

 "management-micro-version" => 0,

 "release-version" => "8.0.0.Beta1-SNAPSHOT",

 "release-codename" => "WildFly"

 }

},

{

 "domain-resource-address" => [("extension" => "org.jboss.as.clustering.infinispan")],

 "domain-resource-model" => {"module" => "org.jboss.as.clustering.infinispan"}

},

--SNIP - the rest of the extensions --

{

 "domain-resource-address" => [("extension" => "org.jboss.as.weld")],

 "domain-resource-model" => {"module" => "org.jboss.as.weld"}

},

{

 "domain-resource-address" => [("system-property" => "java.net.preferIPv4Stack")],

 "domain-resource-model" => {

 "value" => "true",

 "boot-time" => undefined

 }

},

{

 "domain-resource-address" => [("profile" => "full-ha")],

 "domain-resource-model" => undefined

},

{

 "domain-resource-address" => [

 ("profile" => "full-ha"),

 ("subsystem" => "logging")

],

 "domain-resource-model" => {}

},

{

 "domain-resource-address" => [sss|WFLY8:Example subsystem],

 "domain-resource-model" => {

 "level" => "INFO",

 "enabled" => undefined,

 "encoding" => undefined,

 "formatter" => "%d{HH:mm:ss,SSS} %-5p [%c] (%t) %s%E%n",

 "filter-spec" => undefined,

 "autoflush" => undefined,

 "target" => undefined,

 "named-formatter" => undefined

 }

},

--SNIP---

The slave HC then applies these one at a time and builds up the initial domain model. It needs to do this

before it can start any of its servers.

Latest WildFly Documentation

JBoss Community Documentation Page of 1702 2293

An operation changes something in the domain configuration
Once a domain is up and running we can still change things in the domain configuration. These changes

must happen when connected to the DC, and are then propagated to the slave HCs, which then in turn

propagate the changes to any servers running in a server group affected by the changes made. In this

example:

[disconnected /] connect

[domain@localhost:9990 /]

/profile=full/subsystem=datasources/data-source=ExampleDS:write-attribute(name=enabled,value=false)
{

"outcome" => "success",

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {

 "slave" => {"server-one" => {"response" => {

 "outcome" => "success",

 "result" => undefined,

 "response-headers" => {

 "operation-requires-restart" => true,

 "process-state" => "restart-required"

 }

 }}},

 "master" => {

 "server-one" => {"response" => {

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-restart" => true,

 "process-state" => "restart-required"

 }

 }},

 "server-two" => {"response" => {

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-restart" => true,

 "process-state" => "restart-required"

 }

 }}

 }

 }}}

}

the DC propagates the changes to itself , which in turn propagates it to its two servershost=master

belonging to which uses the profile. More interestingly, it also propagates it to main-server-group full

 which updates its local copy of the domain model, and then propagates the change to its host=slave

 which belongs to which uses the profile.server-one main-server-group full

11.5.3 Versions and backward compatibility

A HC and its servers will always be the same version of WildFly (they use the same module path and jars).

However, the DC and the slave HCs do not necessarily need to be the same version. One of the points in

the original specification for WildFly is that

Latest WildFly Documentation

JBoss Community Documentation Page of 1703 2293

Important

A Domain Controller should be able to manage slave Host Controllers older than itself.

This means that for example a WildFly 10.1 DC should be able to work with slave HCs running WildFly 10.

The opposite is not true, the DC must be the same or the newest version in the domain.

Versioning of subsystems
To help with being able to know what is compatible we have versions within the subsystems, this is stored in

the subsystem's extension. When registering the subsystem you will typically see something like:

public class SomeExtension implements Extension {

 private static final String SUBSYSTEM_NAME = "my-subsystem"'

 private static final int MANAGEMENT_API_MAJOR_VERSION = 2;

 private static final int MANAGEMENT_API_MINOR_VERSION = 0;

 private static final int MANAGEMENT_API_MICRO_VERSION = 0;

 /**

 * {@inheritDoc}

 * @see

org.jboss.as.controller.Extension#initialize(org.jboss.as.controller.ExtensionContext)

 */

 @Override

 public void initialize(ExtensionContext context) {

 // IMPORTANT: Management API version != xsd version! Not all Management API changes

result in XSD changes

 SubsystemRegistration registration = context.registerSubsystem(SUBSYSTEM_NAME,

MANAGEMENT_API_MAJOR_VERSION,

 MANAGEMENT_API_MINOR_VERSION, MANAGEMENT_API_MICRO_VERSION);

 //Register the resource definitions

 }

}

Which sets the of the subsystem.ModelVersion

Latest WildFly Documentation

JBoss Community Documentation Page of 1704 2293

Important

Whenever something changes in the subsystem, such as:

an attribute is added or removed from a resource

a attribute is renamed in a resource

an attribute has its type changed

an attribute or operation parameter's nillable or allows expressions is changed

an attribute or operation parameter's default value changes

a child resource type is added or removed

an operation is added or removed

an operation has its parameters changed

and the current version of the subsystem has been part of a Final release of WildFly, we must

bump the version of the subsystem.

Once it has been increased you can of course make more changes until the next Final release without more

version bumps. It is also worth noting that a new WildFly release does not automatically mean a new version

for the subsystem, the new version is only needed if something was changed. For example the jaxrs

subsystem has remained on 1.0.0 for all versions of WildFly and JBoss AS 7.

You can find the of a subsystem by querying its extension:ModelVersion

domain@localhost:9990 /]

/extension=org.jboss.as.clustering.infinispan:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {

 "module" => "org.jboss.as.clustering.infinispan",

 "subsystem" => {"infinispan" => {

 "management-major-version" => 2,

 "management-micro-version" => 0,

 "management-minor-version" => 0,

 "xml-namespaces" => [jboss:domain:infinispan:1.0",

 "urn:jboss:domain:infinispan:1.1",

 "urn:jboss:domain:infinispan:1.2",

 "urn:jboss:domain:infinispan:1.3",

 "urn:jboss:domain:infinispan:1.4",

 "urn:jboss:domain:infinispan:2.0"]

 }}

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1705 2293

11.5.4 The role of transformers

Now that we have mentioned the slave HCs registration process with the DC, and know about

ModelVersions, it is time to mention that when registering with the DC, the slave HC will send across a list of

all its subsystem ModelVersions. The DC maintains this information in a registry for each slave HC, so that it

knows which transformers (if any) to invoke for a legacy slave. We will see how to write and register

transformers later on in . Slave HCs from version 7.2.0 onwards will also includeHow do I write a transformer

a list of resources that they ignore (see), and the DC will maintain thisIgnoring resources on legacy hosts

information in its registry. The DC will not send across any resources that it knows a slave ignores during the

initial domain model transfer. When forwarding operations onto the slave HCs, the DC will skip forwarding

those to slave HCs ignoring those resources.

There are two kinds of transformers:

resource transformers

operation transformers

The main function of transformers is to transform a subsystem to something that the legacy slave HC can

understand, or to aggressively reject things that the legacy slave HC will not understand. Rejection, in this

context, essentially means, that the resource or operation cannot safely be transformed to something valid

on the slave, so the transformation fails. We will see later how to reject attributes in , andRejecting attributes

child resources in .Reject child resource

Both resource and operation transformers are needed, but take effect at different times. Let us use the weld

subsystem, which is relatively simple, as an example. In JBoss AS 7.2.0 and lower it had a ModelVersion of

1.0.0, and its resource description was as follows:

{

 "description" => "The configuration of the weld subsystem.",

 "attributes" => {},

 "operations" => {

 "remove" => {

 "operation-name" => "remove",

 "description" => "Operation removing the weld subsystem.",

 "request-properties" => {},

 "reply-properties" => {}

 },

 "add" => {

 "operation-name" => "add",

 "description" => "Operation creating the weld subsystem.",

 "request-properties" => {},

 "reply-properties" => {}

 }

 },

 "children" => {}

 },

Latest WildFly Documentation

JBoss Community Documentation Page of 1706 2293

In WildFly 8, it has a ModelVersion of 2.0.0 and has added two attributes, require-bean-descriptor

and mode:non-portable

{

 "description" => "The configuration of the weld subsystem.",

 "attributes" => {

 "require-bean-descriptor" => {

 "type" => BOOLEAN,

 "description" => "If true then implicit bean archives without bean descriptor

file (beans.xml) are ignored by Weld",

 "expressions-allowed" => true,

 "nillable" => true,

 "default" => false,

 "access-type" => "read-write",

 "storage" => "configuration",

 "restart-required" => "no-services"

 },

 "non-portable-mode" => {

 "type" => BOOLEAN,

 "description" => "If true then the non-portable mode is enabled. The

non-portable mode is suggested by the specification to overcome problems with legacy

applications that do not use CDI SPI properly and may be rejected by more strict validation in

CDI 1.1.",

 "expressions-allowed" => true,

 "nillable" => true,

 "default" => false,

 "access-type" => "read-write",

 "storage" => "configuration",

 "restart-required" => "no-services"

 }

 },

 "operations" => {

 "remove" => {

 "operation-name" => "remove",

 "description" => "Operation removing the weld subsystem.",

 "request-properties" => {},

 "reply-properties" => {}

 },

 "add" => {

 "operation-name" => "add",

 "description" => "Operation creating the weld subsystem.",

 "request-properties" => {

 "require-bean-descriptor" => {

 "type" => BOOLEAN,

 "description" => "If true then implicit bean archives without bean

descriptor file (beans.xml) are ignored by Weld",

 "expressions-allowed" => true,

 "required" => false,

 "nillable" => true,

 "default" => false

 },

 "non-portable-mode" => {

 "type" => BOOLEAN,

 "description" => "If true then the non-portable mode is enabled. The

non-portable mode is suggested by the specification to overcome problems with legacy

applications that do not use CDI SPI properly and may be rejected by more strict validation in

Latest WildFly Documentation

JBoss Community Documentation Page of 1707 2293

CDI 1.1.",

 "expressions-allowed" => true,

 "required" => false,

 "nillable" => true,

 "default" => false

 }

 },

 "reply-properties" => {}

 }

 },

 "children" => {}

 }

In the rest of this section we will assume that we are running a DC running WildFly 8 so it will have

ModelVersion 2.0.0 of the weld subsystem, and that we are running a slave using ModelVersion 1.0.0 of the

weld subsystem.

Important

Transformation always takes place on the Domain Controller, and is done when sending across the

initial domain model AND forwarding on operations to legacy slave HCs.

Latest WildFly Documentation

JBoss Community Documentation Page of 1708 2293

Resource transformers
When copying over the centralized domain configuration as mentioned in ,Getting the initial domain model

we need to make sure that the copy of the domain model is something that the servers running on the legacy

slave HC understand. So if the centralized domain configuration had any of the two new attributes set, we

would need to reject the transformation in the transformers. One reason for this is to keep things consistent,

it doesn't look good if you connect to the slave HC and find attributes and/or child resources when doing

 which are not there when you do . Also, to make life:read-resource :read-resource-description

easier for subsystem writers, most instances of the operation use a standard implementationdescribe

which would include these attributes when creating the operation for the server, which could causeadd

problems there.

Another, more concrete example from the logging subsystem is that it allows a ' }' in the pattern%K{...

formatter which makes the formatter use color:

<pattern-formatter pattern="%K{level}%d{HH:mm:ss,SSS} %-5p [%c] (%t) %s%E%n"/>

This ' }' however was introduced in JBoss AS < 7.1.3 (ModelVersion 1.2.0), so if that makes it across%K{...

to a slave HC running an older version, the servers fail to start up. So the logging extension registerswill

transformers to strip out the ' }' from the attribute value (leaving ' %K{... %-5p

[%c]

') so that the old slave HC's servers can understand it.(%t) %s%E%n"

Rejection in resource transformers
Only slave HCs from JBoss AS 7.2.0 and newer inform the DC about their ignored resources (see Ignoring

). This means that if a transformer on the DC rejects transformation for a legacyresources on legacy hosts

slave HC, exactly what happens to the slave HC depends on the version of the slave HC. If the slave HC is:

 - the DC has no means of knowing if the slave HC has ignored the resource beingolder than 7.2.0

rejected or not. So we log a warning on the DC, and send over the serialized part of that model

anyway. If the slave HC has ignored the resource in question, it does not apply it. If the slave HC has

not ignored the resource in question, it will apply it, but no failure will happen until it tries to start a

server which references this bad configuration.

 - If a resource is ignored on the slave HC, the DC knows about this, and will not7.2.0 or newer

attempt to transform or send the resource across to the slave HC. If the resource transformation is

rejected, we know the resource was not ignored on the slave HC and so we can aggressively fail the

transformation, which in turn will cause the slave HC to fail to start up.

Latest WildFly Documentation

JBoss Community Documentation Page of 1709 2293

Operation transformers
When the operation gets sent across to theAn operation changes something in the domain configuration

slave HCs to update their copies of the domain model. The slave HCs then forward this operation onto the

affected servers. The same considerations as in are true, although operationResource transformers

transformers give you quicker 'feedback' if something is not valid. If you try to execute:

/profile=full/subsystem=weld:write-attribute(name=require-bean-descriptor, value=false)

This will fail on the legacy slave HC since its version of the subsystem does not contain any such attribute.

However, it is best to aggressively reject in such cases.

Rejection in operation transformers
For transformed operations we can always know if the operation is on an ignored resource in the legacy

slave HC. In 7.2.0 onwards, we know this through the DC's registry of ignored resources on the slave. In

older versions of slaves, we send the operation across to the slave, which tries to invoke the operation. If the

operation is against an ignored resource we inform the DC about this fact. So as part of the transformation

process, if something gets rejected we can (and do!) fail the transformation aggressively. If the operation

invoked on the DC results in the operation being sent across to 10 slave HCs and one of them has a legacy

version which ends up rejecting the transformation, we rollback the operation across the whole domain.

Different profiles for different versions
Now for the example we have been using there is a slight twist. We have the new weld

 and attributes. These have been added in WildFly 8require-bean-descriptor non-portable-mode

which supports Java EE 7, and thus CDI 1.1. JBoss AS 7.x supports Java EE 6, and thus CDI 1.0. In CDI

1.1 the values of these attributes are tweakable, so they can be set to either or . The defaulttrue false

behaviour for these in CDI 1.1, if not set, is that they are . However, for CDI 1.0 these were notfalse

tweakable, and with the way the subsystem in JBoss AS 7.x worked is similar to if they are set to .true

The above discussion implies that to use the weld subsystem on a legacy slave HC, the domain.xml

configuration for it must look like:

<subsystem xmlns="urn:jboss:domain:weld:2.0"

 require-bean-descriptor="true"

 non-portable-mode="true"/>

We will see the exact mechanics for how this is actually done later but in short when pushing this to a legacy

slave DC we register transformers which reject the transformation if these attributes are not set to true

since that implies some behavior not supported on the legacy slave DC. If they are , all is well, and thetrue

transformers discard, or remove, these attributes since they don't exist in the legacy model. This removal is

fine since they have the values which would result in the behavior assumed on the legacy slave HC.

Latest WildFly Documentation

JBoss Community Documentation Page of 1710 2293

That way the older slave HCs will work fine. However, we might also have WildFly 8 slave HCs in our

domain, and they are missing out on the new features introduced by the attributes introduced in

ModelVersion 2.0.0. If we do

<subsystem xmlns="urn:jboss:domain:weld:2.0"

 require-bean-descriptor="false"

 non-portable-mode="false"/>

then it will fail when doing transformation for the legacy controller. The solution is to put these in two different

profiles in domain.xml

<domain>

....

 <profiles>

 <profile name="full">

 <subsystem xmlns="urn:jboss:domain:weld:2.0"

 require-bean-descriptor="false"

 non-portable-mode="false"/>

 ...

 </profile>

 <profile name="full-legacy">

 <subsystem xmlns="urn:jboss:domain:weld:2.0"

 require-bean-descriptor="true"

 non-portable-mode="true"/>

 ...

 </profile>

 </profiles>

 ...

 <server-groups>

 <server-group name="main-server-group" profile="full">

 <server-group>

 <server-group name="main-server-group-legacy" profile="full-legacy">

 <server-group>

 </server-groups>

</domain>

Then have the HCs using WildFly 8 make their servers reference the server group,main-server-group

and the HCs using older versions of WildFly 8 make their servers reference the

 server group.main-server-group-legacy

Latest WildFly Documentation

JBoss Community Documentation Page of 1711 2293

Ignoring resources on legacy hosts
Booting the above configuration will still cause problems on legacy slave HCs, especially if they are JBoss

AS 7.2.0 or later. The reason for this is that when they register themselves with the DC it lets the DC know

which they have. If the DC comes to transform something it should reject for a slaveignored resources

HC and it is not part of its ignored resources it will aggressively fail the transformation. Versions of JBoss AS

older than 7.2.0 still have this ignored resources mechanism, but don't let the DC know about what they

have ignored so the DC cannot reject aggressively - instead it will log some warnings. However, it is still

good practice to ignore resources you are not interested in regardless of which legacy version the slave HC

is running.

To ignore the profile we cannot understand we do the following in the legacy slave HC's host.xml

<host xmlns="urn:jboss:domain:1.3" name="slave">

...

 <domain-controller>

 <remote host="${jboss.test.host.master.address}" port="${jboss.domain.master.port:9999}"

security-realm="ManagementRealm">

 <ignored-resources type="profile">

 <instance name="full-legacy"/>

 </ignored-resources>

 </remote>

 </domain-controller>

....

</host>

Important

Any top-level resource type can be ignored , , etc. Ignoring aprofile extension server-group

resource instance ignores that resource, and all its children.

11.5.5 How do I know what needs to be transformed?

There is a set of related classes in the package to help you determine this.org.wildfly.legacy.util

These now live at

.https://github.com/wildfly/wildfly-legacy-test/tree/master/tools/src/main/java/org/wildfly/legacy/util

They are all runnable in your IDE, just start the WildFly or JBoss AS 7 instances as described below.

https://github.com/wildfly/wildfly-legacy-test/tree/master/tools/src/main/java/org/wildfly/legacy/util

Latest WildFly Documentation

JBoss Community Documentation Page of 1712 2293

1.

2.

3.

4.

1.

2.

1.

2.

3.

4.

Getting data for a previous version
 contains thehttps://github.com/wildfly/wildfly-legacy-test/tree/master/tools/src/main/resources/legacy-models

output for the previous WildFly/JBoss AS 7 versions, so check if the files for the version you want to check

backwards compatibility are there yet. If not, then you need to do the following to get the subsystem

definitions:

Start the version of WildFly/JBoss AS 7 using old --server-config=standalone-full-ha.xml

Run , which will output the subsystemorg.wildfly.legacy.util.GrabModelVersionsUtil

versions to target/standalone-model-versions-running.dmr

Run which willorg.wildfly.legacy.util.DumpStandaloneResourceDefinitionUtil

output the full resource definition to

target/standalone-resource-definition-running.dmr

Stop the running version of WildFly/JBoss AS 7

See what changed
To do this follow the following steps

Start the version of WildFly using new --server-config=standalone-full-ha.xml

Run and answer the followingorg.wildfly.legacy.util.CompareModelVersionsUtil

questions"

Enter Legacy AS version:

If it is known version in the folder,tools/src/test/resources/legacy-models

enter the version number.

If it is a not known version, and you got the data yourself in the last step, enter '

'running

Enter type:

Answer ' 'S

Read from target directory or from the legacy-models directory:

If it is known version in the controller/src/test/resources/legacy-models

folder, enter ' '.l

If it is a not known version, and you got the data yourself in the last step, enter ' 't

Report on differences in the model when the management versions are different?:

Answer ' 'y

Here is some example output, as a subsystem developer you can ignore everything down to ======

:Comparing subsystem models ======

https://github.com/wildfly/wildfly-legacy-test/tree/master/tools/src/main/resources/legacy-models

Latest WildFly Documentation

JBoss Community Documentation Page of 1713 2293

Enter legacy AS version: 7.2.0.Final

Using target model: 7.2.0.Final

Enter type [S](standalone)/H(host)/D(domain)/F(domain + host):S

Read from target directory or from the legacy-models directory - t/[l]:

Report on differences in the model when the management versions are different? y/[n]: y

Reporting on differences in the model when the management versions are different

Loading legacy model versions for 7.2.0.Final....

Loaded legacy model versions

Loading model versions for currently running server...

Oct 01, 2013 6:26:03 PM org.xnio.Xnio <clinit>

INFO: XNIO version 3.1.0.CR7

Oct 01, 2013 6:26:03 PM org.xnio.nio.NioXnio <clinit>

INFO: XNIO NIO Implementation Version 3.1.0.CR7

Oct 01, 2013 6:26:03 PM org.jboss.remoting3.EndpointImpl <clinit>

INFO: JBoss Remoting version 4.0.0.Beta1

Loaded current model versions

Loading legacy resource descriptions for 7.2.0.Final....

Loaded legacy resource descriptions

Loading resource descriptions for currently running STANDALONE...

Loaded current resource descriptions

Starting comparison of the current....

====== Comparing core models ======

-- SNIP --

====== Comparing subsystem models ======

-- SNIP --

====== Resource root address: ["subsystem" => "remoting"] - Current version: 2.0.0; legacy

version: 1.2.0 =======

--- Problems for relative address to root []:

Missing child types in current: []; missing in legacy [http-connector]

--- Problems for relative address to root ["remote-outbound-connection" => "*"]:

Missing attributes in current: []; missing in legacy [protocol]

Missing parameters for operation 'add' in current: []; missing in legacy [protocol]

-- SNIP --

====== Resource root address: ["subsystem" => "weld"] - Current version: 2.0.0; legacy version:

1.0.0 =======

--- Problems for relative address to root []:

Missing attributes in current: []; missing in legacy [require-bean-descriptor,

non-portable-mode]

Missing parameters for operation 'add' in current: []; missing in legacy

[require-bean-descriptor, non-portable-mode]

Done comparison of STANDALONE!

So we can see that for the subsystem, we have added a child type called ,remoting http-connector

and we have added an attribute called (they are missing in legacy).protocol

in the subsystem, we have added the and weld require-bean-descriptor non-portable-mode

attributes in the current version. It will also point out other issues like changed attribute types, changed

defaults etc.

Latest WildFly Documentation

JBoss Community Documentation Page of 1714 2293

Warning

Note that CompareModelVersionsUtil simply inspects the raw resource descriptions of the specified

legacy and current models. Its results show the differences between the two. They do not take into

account whether one or more transformers have already been written for those versions

differences. You will need to check that transformers are not already in place for those versions.

One final point to consider are that some subsystems register runtime-only resources and operations. For

example the subsystem has a method. These do not get registered on the , e.g. theremodcluster stop DC

is no operation, it only exists on the servers, for/profile=full-ha/subsystem=modcluster:stop

example . What this means is that/host=xxx/server=server-one/subsystem=modcluster:stop

you don't have to transform such operations and resources. The reason is they are not callable on the DC,

and so do not need propagation to the servers in the domain, which in turn means no transformation is

needed.

11.5.6 How do I write a transformer?

There are two APIs available to write transformers for a resource. There is the original low-level API where

you register transformers directly, the general idea is that you get hold of a

 for each level and implement the , TransformersSubRegistration ResourceTransformer

 and interfaces directly. It is, however, a prettyOperationTransformer PathAddressTransformer

complex thing to do, so we recommend the other approach. For completeness here is the entry point to

handling transformation in this way.

Latest WildFly Documentation

JBoss Community Documentation Page of 1715 2293

public class SomeExtension implements Extension {

 private static final String SUBSYSTEM_NAME = "my-subsystem"'

 private static final int MANAGEMENT_API_MAJOR_VERSION = 2;

 private static final int MANAGEMENT_API_MINOR_VERSION = 0;

 private static final int MANAGEMENT_API_MICRO_VERSION = 0;

 @Override

 public void initialize(ExtensionContext context) {

 SubsystemRegistration registration = context.registerSubsystem(SUBSYSTEM_NAME,

MANAGEMENT_API_MAJOR_VERSION,

 MANAGEMENT_API_MINOR_VERSION, MANAGEMENT_API_MICRO_VERSION);

 //Register the resource definitions

 }

 static void registerTransformers(final SubsystemRegistration subsystem) {

 registerTransformers_1_1_0(subsystem);

 registerTransformers_1_2_0(subsystem);

 }

 /**

 * Registers transformers from the current version to ModelVersion 1.1.0

 */

 private static void registerTransformers_1_1_0(final SubsystemRegistration subsystem) {

 final ModelVersion version = ModelVersion.create(1, 1, 0);

 //The default resource transformer forwards all operations

 final TransformersSubRegistration registration =

subsystem.registerModelTransformers(version, ResourceTransformer.DEFAULT);

 final TransformersSubRegistration child =

registration.registerSubResource(PathElement.pathElement("child"));

 //We can do more things on the TransformersSubRegistation instances

 registerRelayTransformers(stack);

 }

Having implemented a number of transformers using the above approach, we decided to simplify things, so

we introduced the

org.jboss.as.controller.transform.description.ResourceTransformationDescriptionBuilder

API. It is a lot simpler and avoids a lot of the duplication of functionality required by the low-level API

approach. While it doesn't give you the full power that the low-level API does, we found that there are very

few places in the WildFly codebase where this does not work, so we will focus on the

 API here. (If you come across a problem where thisResourceTransformationDescriptionBuilder

does not work, get in touch with someone from the WildFly Domain Management Team and we should be

able to help). The builder API makes all the nasty calls to for you underTransformersSubRegistration

the hood. It also allows you to fall back to the low-level API in places, although that will not be covered in the

current version of this guide. The entry point for using the builder API here is taken from the WeldExtension

(in current WildFly this has ModelVersion 2.0.0).

Latest WildFly Documentation

JBoss Community Documentation Page of 1716 2293

private void registerTransformers(SubsystemRegistration subsystem) {

 ResourceTransformationDescriptionBuilder builder =

TransformationDescriptionBuilder.Factory.createSubsystemInstance();

 //These new attributes are assumed to be 'true' in the old version but default to false

in the current version. So discard if 'true' and reject if 'undefined'.

 builder.getAttributeBuilder()

 .setDiscard(new DiscardAttributeChecker.DiscardAttributeValueChecker(false,

false, new ModelNode(true)),

 WeldResourceDefinition.NON_PORTABLE_MODE_ATTRIBUTE,

WeldResourceDefinition.REQUIRE_BEAN_DESCRIPTOR_ATTRIBUTE)

 .addRejectCheck(new RejectAttributeChecker.DefaultRejectAttributeChecker() {

 @Override

 public String getRejectionLogMessage(Map<String, ModelNode> attributes) {

 return

WeldMessages.MESSAGES.rejectAttributesMustBeTrue(attributes.keySet());

 }

 @Override

 protected boolean rejectAttribute(PathAddress address, String attributeName,

ModelNode attributeValue,

 TransformationContext context) {

 //This will not get called if it was discarded, so reject if it is

undefined (default==false) or if defined and != 'true'

 return !attributeValue.isDefined() ||

!attributeValue.asString().equals("true");

 }

 }, WeldResourceDefinition.NON_PORTABLE_MODE_ATTRIBUTE,

WeldResourceDefinition.REQUIRE_BEAN_DESCRIPTOR_ATTRIBUTE)

 .end();

 TransformationDescription.Tools.register(builder.build(), subsystem,

ModelVersion.create(1, 0, 0));

 }

Here we register a and a . As mentioned in discard check reject check Attribute transformation

 all attributes are inspected for whether they should be discarded first. Then all attributes which werelifecycle

not discarded are checked for if they should be rejected. We will dig more into what this code means in the

next few sections, but in short it means that we discard the and require-bean-descriptor

 attributes on the subsystem resource if they have the value . If they have anynon-portable weld true

other value, they will not get discarded and so reach the reject check, which will reject the transformation of

the attributes if they have any other value.

Here we are saying that we should discard the and require-bean-descriptor non-portable-mode

attributes on the subsystem resource if they are undefined, and reject them if they are defined. So thatweld

means that if the weld subsystem looks like

{

 "non-portable-mode" => false,

 "require-bean-descriptor" => false

 }

Latest WildFly Documentation

JBoss Community Documentation Page of 1717 2293

or

{

 "non-portable-mode" => undefined,

 "require-bean-descriptor" => undefined

 }

or any other combination (the default values for these attributes if undefined is) we will reject thefalse

transformation for the slave legacy HC.

If the resource has true for these attributes:

{

 "non-portable-mode" => true,

 "require-bean-descriptor" => true

 }

they both get discarded (i.e. removed), so they will not get inspected for rejection, and an empty model not

containing these attributes gets sent to the legacy HC.

Here we will discuss this API a bit more, to outline the most important features/most commonly needed

tasks.

ResourceTransformationDescriptionBuilder
The contains transformations for a resource type. TheResourceTransformationDescriptionBuilder

initial one is for the subsystem, obtained by the following call:

ResourceTransformationDescriptionBuilder subsystemBuilder =

TransformationDescriptionBuilder.Factory.createSubsystemInstance();

The contains functionality for how to handle childResourceTransformationDescriptionBuilder

resources, which we will look at in this section. It is also the entry point to how to handle transformation of

attributes as we will see in . Also, it allows you to further overrideAttributeTransformationDescriptionBuilder

operation transformation as discussed in . When we have finishedOperationTransformationOverrideBuilder

with our builder, we register it with the against the target ModelVersion.SubsystemRegistration

TransformationDescription.Tools.register(subsystemBuilder.build(), subsystem,

ModelVersion.create(1, 0, 0));

Important

If you have several old ModelVersions you could be transforming to, you need a separate builder

for each of those.

Latest WildFly Documentation

JBoss Community Documentation Page of 1718 2293

Silently discard child resources
To make the do something, we need to call some ofResourceTransformationDescriptionBuilder

its methods. For example, if we want to silently discard a child resource, we can do

subsystemBuilder.discardChildResource(PathElement.pathElement("child", "discarded"));

This means that any usage of never make it to the/subsystem=my-subsystem/child=discarded

legacy slave HC running ModelVersion 1.0.0. During the initial domain model transfer, that part of the

serialized domain model is stripped out, and any operations on this address are not forwarded on to the

legacy slave HCs running that version of the subsystem. (For brevity this section will leave out the leading

 part used in domain mode, and use as the 'top-level'/profile=xxx /subsystem=my-subsystem

address).

Warning

Note that discarding, although the simplest option in theory, is .rarely the right thing to do

The presence of the defined child normally implies some behaviour on the DC, and that behaviour is not

available on the legacy slave HC, so normally rejection is a better policy for those cases. Remember we can

have different profiles targeting different groups of versions of legacy slave HCs.

Reject child resource
If we want to reject transformation if a child resource exists, we can do

subsystemBuilder.rejectChildResource(PathElement.pathElement("child", "reject"));

Now, if there are any legacy slaves running ModelVersion 1.0.0, any usage of

 will get rejected for those slaves. Both during the initial/subsystem=my-subsystem/child=reject

domain model transfer, and if any operations are invoked on that address. For example the remoting

subsystem did not have a child until ModelVersion 2.0.0, so it is set up to reject thathttp-connector=*

child when transforming to legacy HCs for all previous ModelVersions (1.1.0, 1.2.0 and 1.3.0). (See

 and for exactly what happens whenRejection in resource transformers Rejection in operation transformers

something is rejected).

Latest WildFly Documentation

JBoss Community Documentation Page of 1719 2293

Redirect address for child resource
Sometimes we rename the addresses for a child resource between model versions. To do that we use one

of the methods, note that these also return a builder for the child resourceaddChildRedirection()

(since we are not rejecting or discarding it), we can do this for all children of a given type:

ResourceTransformationDescriptionBuilder childBuilder =

 subsystemBuilder.addChildRedirection(PathElement.pathElement("newChild"),

PathElement.pathElement("oldChild");

Now, in the initial domain transfer becomes /subsystem=my-subsystem/newChild=test

. Similarly all operations against the former address get/subsystem=my-subsystem/oldChild=test

mapped to the latter when executing operations on the DC before sending them to the legacy slave HC

running ModelVersion 1.1.0 of the subsystem.

We can also rename a specific named child:

ResourceTransformationDescriptionBuilder childBuilder =

 subsystemBuilder.addChildRedirection(PathElement.pathElement("newChild", "newName"),

PathElement.pathElement("oldChild", "oldName");

Now, becomes /subsystem=my-subsystem/newChild=newName

 both in the initial domain transfer, and when mapping/subsystem=my-subsystem/oldChild=oldName

operations to the legacy slave. For example, under the subsystem got renamedweb ssl=configuration

to in later versions, meaning we need a redirect from to configuration=ssl configuration=ssl

 in its transformers.ssl=configuration

Getting a child resource builder
Sometimes we don't want to transform the subsystem resource, but we want to transform something in one

of its child resources. Again, since we are not discarding or rejecting, we get a reference to the builder for

the child resource.

ResourceTransformationDescriptionBuilder childBuilder =

 subsystemBuilder.addChildResource(PathElement.pathElement("some-child"));

 //We don't actually want to transform anything in /subsystem-my-subsystem/some-child=*

either :-)

 //We are interested in /subsystem-my-subsystem/some-child=*/another-level

 ResourceTransformationDescriptionBuilder anotherBuilder =

 childBuilder.addChildResource(PathElement.pathElement("another-level"));

 //Use anotherBuilder to add child-resource and/or attribute transformation

Latest WildFly Documentation

JBoss Community Documentation Page of 1720 2293

AttributeTransformationDescriptionBuilder
To transform attributes you call

 which returns you a ResourceTransformationDescriptionBuilder.getAttributeBuilder()

 which is used to define transformation for theAttributeTransformationDescriptionBuilder

resource's attributes. For example this gets the attribute builder for the subsystem resource:

AttributeTransformationDescriptionBuilder attributeBuilder =

subSystemBuilder.getAttributeBuilder();

or we could get it for one of the child resources:

ResourceTransformationDescriptionBuilder childBuilder =

 subsystemBuilder.addChildResource(PathElement.pathElement("some-child"));

 AttributeTransformationDescriptionBuilder attributeBuilder =

childBuilder.getAttributeBuilder();

The attribute transformations defined by the will alsoAttributeTransformationDescriptionBuilder

impact the parameters to all operations defined on the resource. This means that if you have defined the

 attribute of to reject transformation if its value is example /subsystem=my-subsystem/some-child=*

, the inital domain transfer will reject if it is , also the transformation of the following operations willtrue true

reject:

/subsystem=my-subsystem/some-child=test:add(example=true)

 /subsystem=my-subsystem:write-attribute(name=example, value=true)

 /subsystem=my-subsystem:custom-operation(example=true)

The following operations will pass in this example, since the attribute is not getting set to example true

/subsystem=my-subsystem/some-child=test:add(example=false)

 /subsystem=my-subsystem/some-child=test:add() //Here it 'example' is simply left

undefined

 /subsystem=my-subsystem:write-attribute(name=example, value=false)

 /subsystem=my-subsystem:undefine-attribute(name=example) //Again this makes 'example'

undefined

 /subsystem=my-subsystem:custom-operation(example=false)

For the rest of the examples in this section we assume that the is for attributeBuilder

/subsystem=my-subsystem

Latest WildFly Documentation

JBoss Community Documentation Page of 1721 2293

1.

2.

3.

4.

Attribute transformation lifecycle
There is a well defined lifecycle used for attribute transformation that is worth explaining before jumping into

specifics. Transformation is done in the following phases, in the following order:

 - All attributes in the domain model transfer or invoked operation that have been registereddiscard

for a discard check, are checked to see if the attribute should be discarded. If an attribute should be

discarded, it is removed from the resource's attributes/operation's parameters and it does not get

passed to the next phases. Once discarded it does not get sent to the legacy slave HC.

 - All attributes that have been registered for a reject check (and which not have beenreject

discarded) are checked to see if the attribute should be rejected. As explained in Rejection in

 and exactly what happens when somethingresource transformers Rejection in operation transformers

is rejected varies depending on whether we are transforming a resource or an operation, and the

version of the legacy slave HC we are transforming for. If a transformer rejects an attribute, all other

reject transformers still get invoked, and the next phases also get invoked. This is because we don't

know in all cases what will happen if a reject happens. Although this might sound cumbersome, in

practice it actually makes it easier to write transformers since you only need one kind regardless of if

it is a resource, an operation, and legacy slave HC version. However, as we will see in Common

, it means some extra checks are needed when writing reject and converttransformation use-cases

transformers.

 - All attributes that have been registered for conversion are checked to see if the attributeconvert

should be converted. If the attribute does not exist in the original operation/resource it may be

introduced. This is useful for setting default values for the target legacy slave HC.

 - All attributes registered for renaming are renamed.rename

Next, let us have a look at how to register attributes for each of these phases.

Discarding attributes
The general idea behind a discard is that we remove attributes which do not exist in the legacy slave HC's

model. However, as hopefully described below, we normally can't simply discard everything, we need to

check the values first.

To discard an attribute we need an instance of

, and call theorg.jboss.as.controller.transform.description.DiscardAttributeChecker

following method on the :AttributeTransformationDescriptionBuilder

DiscardAttributeChecker discardCheckerA =;

 attributeBuilder.setDiscard(discardCheckerA, "attr1", "attr2");

As shown, you can register the for several attributes at once, in the aboveDiscardAttributeChecker

example both and get checked for if they should be discarded. You can also register different attr1 attr2

 instances for different attributes:DiscardAttributeChecker

Latest WildFly Documentation

JBoss Community Documentation Page of 1722 2293

DiscardAttributeChecker discardCheckerA =;

 DiscardAttributeChecker discardCheckerB =;

 attributeBuilder.setDiscard(discardCheckerA, "attr1");

 attributeBuilder.setDiscard(discardCheckerA, "attr2");

Note that you can only have one per attribute, so the following would causeDiscardAttributeChecker

an error (if running with assertions enabled, otherwise will overwrite discardCheckerB

):discardCheckerA

DiscardAttributeChecker discardCheckerA =;

 DiscardAttributeChecker discardCheckerB =;

 attributeBuilder.setDiscard(discardCheckerA, "attr1");

 attributeBuilder.setDiscard(discardCheckerB, "attr1");

The DiscardAttributeChecker interface
 contains bothorg.jboss.as.controller.transform.description.DiscardAttributeChecker

the and some helper implementations. The implementations of this interfaceDiscardAttributeChecker

get called for each attribute they are registered against. The interface itself is quite simple:

public interface DiscardAttributeChecker {

 /**

 * Returns {@code true} if the attribute should be discarded if expressions are used

 *

 * @return whether to discard if expressions are used

 */

 boolean isDiscardExpressions();

Return here to discard the attribute if it is an expression. If it is an expression, and this method returns true

, the and methodstrue isOperationParameterDiscardable isResourceAttributeDiscardable

will not get called.

/**

 * Returns {@code true} if the attribute should be discarded if it is undefined

 *

 * @return whether to discard if the attribute is undefined

 */

 boolean isDiscardUndefined();

Return here to discard the attribute if it is . If it is , and this method returns true undefined undefined

, the , and true isDiscardExpressions isOperationParameterDiscardable

 methods will not get called.isResourceAttributeDiscardable

Latest WildFly Documentation

JBoss Community Documentation Page of 1723 2293

/**

 * Gets whether the given operation parameter can be discarded

 *

 * @param address the address of the operation

 * @param attributeName the name of the operation parameter.

 * @param attributeValue the value of the operation parameter.

 * @param operation the operation executed. This is unmodifiable.

 * @param context the context of the transformation

 *

 * @return {@code true} if the operation parameter value should be discarded, {@code false}

otherwise.

 */

 boolean isOperationParameterDiscardable(PathAddress address, String attributeName, ModelNode

attributeValue, ModelNode operation, TransformationContext context);

If we are transforming an operation, this method gets called for each operation parameter. We have access

to the address of the operation, the name and value of the operation parameter, an unmodifiable copy of the

original operation and the . The allows you accessTransformationContext TransformationContext

to the original resource the operation is working on before any transformation happened, which is useful if

you want to check other values in the resource if this is, say a operation. Return write-attribute true

to discard the operation.

/**

 * Gets whether the given attribute can be discarded

 *

 * @param address the address of the resource

 * @param attributeName the name of the attribute

 * @param attributeValue the value of the attribute

 * @param context the context of the transformation

 *

 * @return {@code true} if the attribute value should be discarded, {@code false} otherwise.

 */

 boolean isResourceAttributeDiscardable(PathAddress address, String attributeName, ModelNode

attributeValue, TransformationContext context);

If we are transforming a resource, this method gets called for each attribute in the resource. We have access

to the address of the resource, the name and value of the attribute, and the .TransformationContext

Return to discard the operation.true

}

DiscardAttributeChecker helper classes/implementations
 contains a few helper implementations for the most common cases to saveDiscardAttributeChecker

you writing the same stuff again and again.

Latest WildFly Documentation

JBoss Community Documentation Page of 1724 2293

DiscardAttributeChecker.DefaultDiscardAttributeChecker

 is an abstract convenience class.DiscardAttributeChecker.DefaultDiscardAttributeChecker

In most cases you don't need a separate check for if an operation or a resource is being transformed, so it

makes both the and isResourceAttributeDiscardable()

 methods call the following method.isOperationParameterDiscardable()

protected abstract boolean isValueDiscardable(PathAddress address, String attributeName,

ModelNode attributeValue, TransformationContext context);

All you lose, in the case of an operation transformation, is the name of the transformed operation. The

constructor of also allows you toDiscardAttributeChecker.DefaultDiscardAttributeChecker

define values for and .isDiscardExpressions() isDiscardUndefined()

DiscardAttributeChecker.DiscardAttributeValueChecker

This is another convenience class, which allows you to discard an attribute if it has one or more values. Here

is a real-world example from the subsystem:jpa

private void initializeTransformers_1_1_0(SubsystemRegistration subsystemRegistration) {

 ResourceTransformationDescriptionBuilder builder =

TransformationDescriptionBuilder.Factory.createSubsystemInstance();

 builder.getAttributeBuilder()

 .setDiscard(

 new DiscardAttributeChecker.DiscardAttributeValueChecker(new

ModelNode(ExtendedPersistenceInheritance.DEEP.toString())),

 JPADefinition.DEFAULT_EXTENDEDPERSISTENCE_INHERITANCE)

 .addRejectCheck(RejectAttributeChecker.DEFINED,

JPADefinition.DEFAULT_EXTENDEDPERSISTENCE_INHERITANCE)

 .end();

 TransformationDescription.Tools.register(builder.build(), subsystemRegistration,

ModelVersion.create(1, 1, 0));

 }

We will come back to the reject checks in the section. We are saying that we shouldRejecting attributes

discard the attribute if it has theJPADefinition.DEFAULT_EXTENDEDPERSISTENCE_INHERITANCE

value . The reasoning here is that this attribute did not exist in the old model, but the legacy slave HCs deep

 is that this was . In the current version we added the possibility to toggle this setting,implied behaviour deep

but only is consistent with what is available in the legacy slave HC. In this case we are using thedeep

constructor for which says don'tDiscardAttributeChecker.DiscardAttributeValueChecker

discard if it uses expressions, and discard if it is . If it is in the current model,undefined undefined

looking at the default value of , it is JPADefinition.DEFAULT_EXTENDEDPERSISTENCE_INHERITANCE

, so a discard is in line with the implied legacy behaviour. If an expression is used, we cannot discarddeep

since we have no idea what the expression will resolve to on the slave HC.

Latest WildFly Documentation

JBoss Community Documentation Page of 1725 2293

DiscardAttributeChecker.ALWAYS

 will always discard an attribute. Use this sparingly, since normallyDiscardAttributeChecker.ALWAYS

the presence of an attribute in the current model implies some behaviour should be turned on, and if that

does not exist in the legacy model it implies that that behaviour does not exist in the legacy slave HC and its

servers. Normally the legacy slave HC's subsystem has some implied behaviour which is better checked for

by using a . One valid use for DiscardAttributeChecker.DiscardAttributeValueChecker

 can be found in the subsystem:DiscardAttributeChecker.ALWAYS ejb3

private static void registerTransformers_1_1_0(SubsystemRegistration subsystemRegistration) {

 ResourceTransformationDescriptionBuilder builder =

TransformationDescriptionBuilder.Factory.createSubsystemInstance()

 .getAttributeBuilder()

 ...

 // We can always discard this attribute, because it's meaningless without the

security-manager subsystem, and

 // a legacy slave can't have that subsystem in its profile.

 .setDiscard(DiscardAttributeChecker.ALWAYS,

EJB3SubsystemRootResourceDefinition.DISABLE_DEFAULT_EJB_PERMISSIONS)

 ...

As the comment says, this attribute only makes sense with the security-manager susbsystem, which does

not exist on legacy slaves running ModelVersion 1.1.0 of the subsystem.ejb3

DiscardAttributeChecker.UNDEFINED

 will discard an attribute if it is . This is normallyDiscardAttributeChecker.UNDEFINED undefined

safer than since the attribute is not set in the current model, weDiscardAttributeChecker.ALWAYS

don't need to send it to the legacy model. However, you should check that this attribute not existing in the

legacy slave HC, implies the same functionality as being undefined in the current DC.

Rejecting attributes
The next step is to check attributes and values which we know for sure will not work on the target legacy

slave HC.

To reject an attribute we need an instance of

, and call theorg.jboss.as.controller.transform.description.RejectAttributeChecker

following method on the :AttributeTransformationDescriptionBuilder

RejectAttributeChecker rejectCheckerA =;

 attributeBuilder.addRejectCheck(rejectCheckerA, "attr1", "attr2");

As shown you can register the for several attributes at once, in the aboveRejectAttributeChecker

example both and get checked for if they should be discarded. You can also register different attr1 attr2

 instances for different attributes:RejectAttributeChecker

RejectAttributeChecker rejectCheckerA =;

 RejectAttributeChecker rejectCheckerB =;

 attributeBuilder.addRejectCheck(rejectCheckerA, "attr1");

 attributeBuilder.addRejectCheck(rejectCheckerB, "attr2");

Latest WildFly Documentation

JBoss Community Documentation Page of 1726 2293

You can also register several instances per attributeRejectAttributeChecker

RejectAttributeChecker rejectCheckerA =;

 RejectAttributeChecker rejectCheckerB =;

 attributeBuilder.addRejectCheck(rejectCheckerA, "attr1");

 attributeBuilder.addRejectCheck(rejectCheckerB, "attr1, "attr2");

In this case gets both and . For attributes with several attr1 rejectCheckerA rejectCheckerB

 registered, they get processed in the order that they have been added. SoRejectAttributeChecker

when checking for rejection, gets run before . As mentioned in attr1 rejectCheckerA rejectCheckerB

, if an attribute is rejected, we still invoke the rest of the reject checkers.Attribute transformation lifecycle

The RejectAttributeChecker interface
 contains bothorg.jboss.as.controller.transform.description.RejectAttributeChecker

the and some helper implementations. The implementations of this interfaceRejectAttributeChecker

get called for each attribute they are registered against. The interface itself is quite simple, and its main

methods are similar to :DiscardAttributeChecker

public interface RejectAttributeChecker {

 /**

 * Determines whether the given operation parameter value is not understandable by the

target process and needs

 * to be rejected.

 *

 * @param address the address of the operation

 * @param attributeName the name of the attribute

 * @param attributeValue the value of the attribute

 * @param operation the operation executed. This is unmodifiable.

 * @param context the context of the transformation

 * @return {@code true} if the parameter value is not understandable by the target process

and so needs to be rejected, {@code false} otherwise.

 */

 boolean rejectOperationParameter(PathAddress address, String attributeName, ModelNode

attributeValue, ModelNode operation, TransformationContext context);

If we are transforming an operation, this method gets called for each operation parameter. We have access

to the address of the operation, the name and value of the operation parameter, an unmodifiable copy of the

original operation and the . The allows you accessTransformationContext TransformationContext

to the original resource the operation is working on before any transformation happened, which is useful if

you want to check other values in the resource if this is, say a operation. Return write-attribute true

to reject the operation.

Latest WildFly Documentation

JBoss Community Documentation Page of 1727 2293

/**

 * Gets whether the given resource attribute value is not understandable by the target

process and needs

 * to be rejected.

 *

 * @param address the address of the resource

 * @param attributeName the name of the attribute

 * @param attributeValue the value of the attribute

 * @param context the context of the transformation

 * @return {@code true} if the attribute value is not understandable by the target process

and so needs to be rejected, {@code false} otherwise.

 */

 boolean rejectResourceAttribute(PathAddress address, String attributeName, ModelNode

attributeValue, TransformationContext context);

If we are transforming a resource, this method gets called for each attribute in the resource. We have access

to the address of the resource, the name and value of the attribute, and the .TransformationContext

Return to discard the operation.true

/**

 * Returns the log message id used by this checker. This is used to group it so that all

attributes failing a type of rejection

 * end up in the same error message

 *

 * @return the log message id

 */

 String getRejectionLogMessageId();

Here we need a unique id for the log message from the . It is used to groupRejectAttributeChecker

rejected attributes by their log message. A typical implementation will contain {{return

getRejectionLogMessage(Collections.<String, ModelNode>emptyMap());}

/**

 * Gets the log message if the attribute failed rejection

 *

 * @param attributes a map of all attributes failed in this checker and their values

 * @return the formatted log message

 */

 String getRejectionLogMessage(Map<String, ModelNode> attributes);

Here we return a message saying why the attributes were rejected, with the possibility to format the

message to include the names of all the rejected attributes and the values they had.

}

RejectAttributeChecker helper classes/implementations

Latest WildFly Documentation

JBoss Community Documentation Page of 1728 2293

 contains a few helper classes for the most common scenarios to save youRejectAttributeChecker

from writing the same stuff again and again.

RejectAttributeChecker.DefaultRejectAttributeChecker

 is an abstract convenience class. InRejectAttributeChecker.DefaultRejectAttributeChecker

most cases you don't need a separate check for if an operation or a resource is being transformed, so it

makes both the and methods call therejectOperationParameter() rejectResourceAttribute()

following method.

protected abstract boolean rejectAttribute(PathAddress address, String attributeName, ModelNode

attributeValue, TransformationContext context);

Like , all you loose is the name of the transformed operation, in theDefaultDiscardAttributeChecker

case of operation transformation.

RejectAttributeChecker.DEFINED

 is used to reject any attribute that has a defined value. NormallyRejectAttributeChecker.DEFINED

this is because the attribute does not exist on the target legacy slave HC. A typical use case for these is for

the example we looked at in the subsystem in implied behavior jpa

DiscardAttributeChecker.DiscardAttributeValueChecker

private void initializeTransformers_1_1_0(SubsystemRegistration subsystemRegistration) {

 ResourceTransformationDescriptionBuilder builder =

TransformationDescriptionBuilder.Factory.createSubsystemInstance();

 builder.getAttributeBuilder()

 .setDiscard(

 new DiscardAttributeChecker.DiscardAttributeValueChecker(new

ModelNode(ExtendedPersistenceInheritance.DEEP.toString())),

 JPADefinition.DEFAULT_EXTENDEDPERSISTENCE_INHERITANCE)

 .addRejectCheck(RejectAttributeChecker.DEFINED,

JPADefinition.DEFAULT_EXTENDEDPERSISTENCE_INHERITANCE)

 .end();

 TransformationDescription.Tools.register(builder.build(), subsystemRegistration,

ModelVersion.create(1, 1, 0));

 }

So we discard the value if it is notJPADefinition.DEFAULT_EXTENDEDPERSISTENCE_INHERITANCE

an expression, and also has the value . Now if it was not discarded, it would will still be defined so wedeep

reject it.

Important

Reject and discard often work in pairs.

Latest WildFly Documentation

JBoss Community Documentation Page of 1729 2293

RejectAttributeChecker.SIMPLE_EXPRESSIONS

 can be used to reject an attribute that containsRejectAttributeChecker.SIMPLE_EXPRESSIONS

expressions. This was used a lot for transformations to subsystems in JBoss AS 7.1.x, since we had not fully

realized the importance of where to support expressions until JBoss AS 7.2.0 was released, so a lot of

attributes in earlier versions were missing expressions support.

RejectAttributeChecker.ListRejectAttributeChecker

The RejectAttributeChecker}}s we have seen so far work on simple attributes,

i.e. where the attribute has a ModelType which is one of the primitives. We also

 which allows you to define ahave a {{RejectAttributeChecker.ListRejectAttributeChecker

checker for the elements of a list, when the type of an attribute is .ModelType.LIST

attributeBuilder

 .addRejectCheck(new ListRejectAttributeChecker(RejectAttributeChecker.EXPRESSIONS),

"attr1");

For it will check each element of the list and run toattr1 RejectAttributeChecker.EXPRESSIONS

check that each element is not an expression. You can of course pass in another kind of

 to check the elements as well.RejectAttributeChecker

RejectAttributeChecker.ObjectFieldsRejectAttributeChecker

For attributes where the type is we have ModelType.OBJECT

 which allows you to registerRejectAttributeChecker.ObjectFieldsRejectAttributeChecker

different reject checkers for the different fields of the registered object.

Map<String, RejectAttributeChecker> fieldRejectCheckers = new HashMap<String,

RejectAttributeChecker>();

 fieldRejectCheckers.put("time", RejectAttributeChecker.SIMPLE_EXPRESSIONS);

 fieldRejectCheckers.put("unit", "Lunar Month");

 attributeBuilder

 .addRejectCheck(new ObjectFieldsRejectAttributeChecker(fieldRejectCheckers),

"attr1");

Now if is a complex type where attr1 attr1.get("time").getType() == ModelType.EXPRESSION

or we reject the attribute.attr1.get("unit").asString().equals("Lunar Month")

Converting attributes
To convert an attribute you register an

 instance against theorg.jboss.as.controller.transform.description.AttributeConverter

attributes you want to convert:

AttributeConverter converterA = ...;

 AttributeConverter converterB = ...;

 attributeBuilder

 .setValueConverter(converterA, "attr1", "attr2");

 attributeBuilder

 .setValueConverter(converterB, "attr3");

Latest WildFly Documentation

JBoss Community Documentation Page of 1730 2293

Now if and get converted with , while gets converted with .attr1 attr2 converterA attr3 converterB

The AttributeConverter interface
The interface gets called for each attribute for which the AttributeConverter AttributeConverter

has been registered

public interface AttributeConverter {

 /**

 * Converts an operation parameter

 *

 * @param address the address of the operation

 * @param attributeName the name of the operation parameter

 * @param attributeValue the value of the operation parameter to be converted

 * @param operation the operation executed. This is unmodifiable.

 * @param context the context of the transformation

 */

 void convertOperationParameter(PathAddress address, String attributeName, ModelNode

attributeValue, ModelNode operation, TransformationContext context);

If we are transforming an operation, this method gets called for each operation parameter for which the con.

We have access to the address of the operation, the name and value of the operation parameter, an

unmodifiable copy of the original operation and the . The TransformationContext

 allows you access to the original resource the operation is working on beforeTransformationContext

any transformation happened, which is useful if you want to check other values in the resource if this is, say

a write-attribute operation. To change the attribute value, you modify the .attributeValue

/**

 * Converts a resource attribute

 *

 * @param address the address of the operation

 * @param attributeName the name of the attribute

 * @param attributeValue the value of the attribute to be converted

 * @param context the context of the transformation

 */

 void convertResourceAttribute(PathAddress address, String attributeName, ModelNode

attributeValue, TransformationContext context);

If we are transforming a resource, this method gets called for each attribute in the resource. We have access

to the address of the resource, the name and value of the attribute, and the . ToTransformationContext

change the attribute value, you modify the .attributeValue

}

A hypothetical example is if the current and legacy subsystems both contain an attribute called . Intimeout

the legacy model this was specified to be milliseconds, however in the current model it has been changed to

be seconds, hence we need to convert the value when sending it to slave HCs using the legacy model:

Latest WildFly Documentation

JBoss Community Documentation Page of 1731 2293

AttributeConverter secondsToMs = new AttributeConverter.DefaultAttributeConverter() {

 @Override

 protected void convertAttribute(PathAddress address, String attributeName,

ModelNode attributeValue,

 TransformationContext context) {

 if (attributeValue.isDefined()) {

 int seconds = attributeValue.asInt();

 int milliseconds = seconds * 1000;

 attributeValue.set(milliseconds);

 }

 }

 };

 attributeBuilder.

 .setValueConverter(secondsToMs , "timeout")

We need to be a bit careful here. If the attribute is an expression our nice conversion will not work,timeout

so we need to add a reject check to make sure it is not an expression as well:

attributeBuilder.

 .addRejectCheck(SIMPLE_EXPRESSIONS, "timeout")

 .setValueConverter(secondsToMs , "timeout")

Now it should be fine.

 is is an abstract convenience class. In mostAttributeConverter.DefaultAttributeConverter

cases you don't need a separate check for if an operation or a resource is being transformed, so it makes

both the convertOperationParameter() and convertResourceAttribute() methods call the following method.

protected abstract void convertAttribute(PathAddress address, String attributeName, ModelNode

attributeValue, TransformationContext context);

Like and , all you loose isDefaultDiscardAttributeChecker DefaultRejectAttributeChecker

the name of the transformed operation, in the case of operation transformation.

Latest WildFly Documentation

JBoss Community Documentation Page of 1732 2293

Introducing attributes during transformation

Say both the current and the legacy models have an attribute called . In the legacy version this attributeport

had to be specified, and the default xml configuration had for its value. In the current version this1234

attribute has been made optional with a default value of so that it does not need to be specified. When1234

transforming to a slave HC using the old version we will need to introduce this attribute if the new model

does not contain it:

attributeBuilder.

 setValueConverter(AttributeConverter.Factory.createHardCoded(new ModelNode(1234) true),

"port");

So what this factory method does is to create an implementation of

 where in we set AttributeConverter.DefaultAttributeConverter convertAttribute()

 to have the value if it is . As long as gets set in thatattributeValue 1234 undefined attributeValue

method it will get set in the model, regardless of if it existed already or not.

Renaming attributes
To rename an attribute, you simply do

attributeBuilder.addRename("my-name", "legacy-name");

Now, in the initial domain transfer to the legacy slave HC, we rename 's /subsystem=my-subsystem

 attribute to . Also, the operations involving this attribute are affected, somy-name legacy-name

/subsystem=my-subsystem/:add(my-name=true) ->

 /subsystem=my-subsystem/:add(legacy-name=true)

 /subsystem=my-subsystem:write-attribute(name=my-name, value=true) ->

 /subsystem=my-subsystem:write-attribute(name=legacy-name, value=true)

 /subsystem=my-subsystem:undefine-attribute(name=my-name) ->

 /subsystem=my-subsystem:undefine-attribute(name=legacy-name)

Latest WildFly Documentation

JBoss Community Documentation Page of 1733 2293

OperationTransformationOverrideBuilder
All operations on a resource automatically get the same transformations on their parameters as set up by the

. In some cases you might want to change this, soAttributeTransformationDescriptionBuilder

you can use the , which is got from:OperationTransformationOverrideBuilder

OperationTransformationOverrideBuilder operationBuilder =

subSystemBuilder.addOperationTransformationOverride("some-operation");

In this case the operation will now no longer inherit the attribute/operation parameter transformations, so

they are effectively turned off. In other cases you might want to include them by calling

, and to include some more checks (the inheritResourceAttributeDefinitions()

 interface has all the methods found in OperationTransformationBuilder

:AttributeTransformationBuilder

OperationTransformationOverrideBuilder operationBuilder =

subSystemBuilder.addOperationTransformationOverride("some-operation");

 operationBuilder.inheritResourceAttributeDefinitions();

 operationBuilder.setValueConverter(AttributeConverter.Factory.createHardCoded(new

ModelNode(1234) true), "port");

You can also rename operations, in this case the operation gets renamed to some-operation

 before getting sent to the legacy slave HC.legacy-operation

OperationTransformationOverrideBuilder operationBuilder =

subSystemBuilder.addOperationTransformationOverride("some-operation");

 operationBuilder.rename("legacy-operation");

11.5.7 Evolving transformers with subsystem ModelVersions

Say you have a subsystem with ModelVersions 1.0.0 and 1.1.0. There will (hopefully!) already be

transformers in place for 1.1.0 to 1.0.0 transformations. Let's say that the transformers registration looks like:

Latest WildFly Documentation

JBoss Community Documentation Page of 1734 2293

public class SomeExtension implements Extension {

 private static final String SUBSYSTEM_NAME = "my-subsystem"'

 private static final int MANAGEMENT_API_MAJOR_VERSION = 1;

 private static final int MANAGEMENT_API_MINOR_VERSION = 1;

 private static final int MANAGEMENT_API_MICRO_VERSION = 0;

 @Override

 public void initialize(ExtensionContext context) {

 SubsystemRegistration registration = context.registerSubsystem(SUBSYSTEM_NAME,

MANAGEMENT_API_MAJOR_VERSION,

 MANAGEMENT_API_MINOR_VERSION, MANAGEMENT_API_MICRO_VERSION);

 //Register the resource definitions

 }

 private void registerTransformers(final SubsystemRegistration subsystem) {

 registerTransformers_1_0_0(subsystem);

 }

 /**

 * Registers transformers from the current version to ModelVersion 1.0.0

 */

 private void registerTransformers_1_0_0(SubsystemRegistration subsystem) {

 ResourceTransformationDescriptionBuilder builder =

TransformationDescriptionBuilder.Factory.createSubsystemInstance();

 builder.getAttributeBuilder()

 .addRejectCheck(RejectAttributeChecker.DEFINED, "attr1")

 .end();

 TransformationDescription.Tools.register(builder.build(), subsystem,

ModelVersion.create(1, 0, 0));

 }

}

Now say we want to do a new version of the model. This new version contains a new attribute called

'new-attr' which cannot be defined when transforming to 1.1.0, we bump the model version to 2.0.0:

Latest WildFly Documentation

JBoss Community Documentation Page of 1735 2293

public class SomeExtension implements Extension {

 private static final String SUBSYSTEM_NAME = "my-subsystem"'

 private static final int MANAGEMENT_API_MAJOR_VERSION = 2;

 private static final int MANAGEMENT_API_MINOR_VERSION = 0;

 private static final int MANAGEMENT_API_MICRO_VERSION = 0;

 @Override

 public void initialize(ExtensionContext context) {

 SubsystemRegistration registration = context.registerSubsystem(SUBSYSTEM_NAME,

MANAGEMENT_API_MAJOR_VERSION,

 MANAGEMENT_API_MINOR_VERSION, MANAGEMENT_API_MICRO_VERSION);

 //Register the resource definitions

 }

There are a few ways to evolve your transformers:

The old way

Chained transformers

Latest WildFly Documentation

JBoss Community Documentation Page of 1736 2293

The old way
This is the way that has been used up to WildFly 8.x. However, in WildFly 9 and later, it is strongly

recommended to migrate to what is mentioned in Chained transformers

Now we need some new transformers from the current ModelVersion to 1.1.0 where we reject any defined

occurrances of our new attribute :new-attr

private void registerTransformers(final SubsystemRegistration subsystem) {

 registerTransformers_1_0_0(subsystem);

 registerTransformers_1_1_0(subsystem);

 }

 /**

 * Registers transformers from the current version to ModelVersion 1.1.0

 */

 private void registerTransformers_1_1_0(SubsystemRegistration subsystem) {

 ResourceTransformationDescriptionBuilder builder =

TransformationDescriptionBuilder.Factory.createSubsystemInstance();

 builder.getAttributeBuilder()

 .addRejectCheck(RejectAttributeChecker.DEFINED, "new-attr")

 .end();

 TransformationDescription.Tools.register(builder.build(), subsystem,

ModelVersion.create(1, 1, 0));

 }

So that is all well and good, however we also need to take into account that new-attr does not exist in

, so we need to extend our transformer for 1.0.0 to reject it there as well. As youModelVersion 1.0.0 either

can see 1.0.0 also rejects a defined 'attr1' in addition to the 'new-attr'(which is rejected in both versions).

/**

 * Registers transformers from the current version to ModelVersion 1.0.0

 */

 private void registerTransformers_1_0_0(SubsystemRegistration subsystem) {

 ResourceTransformationDescriptionBuilder builder =

TransformationDescriptionBuilder.Factory.createSubsystemInstance();

 builder.getAttributeBuilder()

 .addRejectCheck(RejectAttributeChecker.DEFINED, "attr1", "new-attr")

 .end();

 TransformationDescription.Tools.register(builder.build(), subsystem,

ModelVersion.create(1, 0, 0));

 }

}

Now will be rejected if defined for all previous model versions.new-attr

Latest WildFly Documentation

JBoss Community Documentation Page of 1737 2293

Chained transformers
Since 'The old way' had a lot of duplication of code, since WildFly 9 we now have chained transformers. You

obtain a which is a different entry point to the ChainedTransformationDescriptionBuilder

 we have seen earlier. Each ResourceTransformationDescriptionBuilder

 deals with transformation across one version delta.ResourceTransformationDescriptionBuilder

private void registerTransformers(SubsystemRegistration subsystem) {

 ModelVersion version1_1_0 = ModelVersion.create(1, 1, 0);

 ModelVersion version1_0_0 = ModelVersion.create(1, 0, 0);

 ChainedTransformationDescriptionBuilder chainedBuilder =

TransformationDescriptionBuilder.Factory.createChainedSubystemInstance(subsystem.getSubsystemVersion());

//Differences between the current version and 1.1.0

 ResourceTransformationDescriptionBuilder builder110 =

 chainedBuilder.create(subsystem.getSubsystemVersion(), version1_1_0);

 builder110.getAttributeBuilder()

 .addRejectCheck(RejectAttributeChecker.DEFINED, "new-attr")

 .end();

 //Differences between the 1.1.0 and 1.0.0

 ResourceTransformationDescriptionBuilder builder100 =

 chainedBuilder.create(subsystem.getSubsystemVersion(), version1_0_0);

 builder110.getAttributeBuilder()

 .addRejectCheck(RejectAttributeChecker.DEFINED, "attr1")

 .end();

 chainedBuilder.buildAndRegister(subsystem, new ModelVersion[]{version1_0_0,

version1_1_0});

The method registers a chain consisting of the builtbuildAndRegister(ModelVersion[]... chains)

 and for transformation to 1.0.0, and a chain consisting of the built builder110 builder100 builder110

for transformation to 1.1.0. It allows you to specify more than one chain.

Now when transforming from the current version to 1.0.0, the resource is first transformed from the current

version to 1.1.0 (which rejects a defined) and then it is transformed from 1.1.0 to 1.0.0 (whichnew-attr

rejects a defined). So when evolving transformers you should normally only need to add things to theattr1

last version delta. The full current-to-1.1.0 transformation is run before the 1.1.0-to-1.0.0 transformation is

run.

One thing worth pointing out that the value returned by

 and TransformationContext.readResource(PathAddress address)

 which you can useTransformationContext.readResourceFromRoot(PathAddress address)

from your custom , and RejectAttributeChecker DiscardAttributeChecker

 behaves slightly differently depending on if you are transforming an operation or aAttributeConverter

resource.

Latest WildFly Documentation

JBoss Community Documentation Page of 1738 2293

During this will be the latest model, so in our above example, in the current-to-1.1.0resource transformation

transformation it will be the original model. In the 1.1.0-to-1.0.0 transformation, it will be the result of the

current-to-1.1.0 transformation.

During these methods will always return the original model (we are transformingoperation transformation

operations, not resources!).

In WildFly 9 we are now less aggressive about transforming to all previous versions of WildFly, however we

still have a lot of good tests for running against 7.1.x, 8. Also, for Red Hat employees we have tests against

EAP versions. These tests no longer get run by default, to run them you need to specify some system

properties when invoking maven. They are:

 - enables the non-default subsystem tests.-Djboss.test.transformers.subsystem.old

-Djboss.test.transformers.eap - (Red Hat developers only), enables the eap tests, but only the ones

run by default. If run in conjunction with you get-Djboss.test.transformers.subsystem.old

all the possible subsystem tests run.

-Djboss.test.transformers.core.old - enables the non-default core model tests.

11.5.8 Testing transformers

To test transformation you need to extend

 or org.jboss.as.subsystem.test.AbstractSubsystemTest

. Then, in order to have the best testorg.jboss.as.subsystem.test.AbstractSubsystemBaseTest

coverage possible, you should test the fullest configuration that will work, and you should also test

configurations that don't work if you have rejecting transformers registered. The following example is from

the threads subsystem, and I have only included the tests against 7.1.2 - there are more! First we need to

set up our test:

public class ThreadsSubsystemTestCase extends AbstractSubsystemBaseTest {

 public ThreadsSubsystemTestCase() {

 super(ThreadsExtension.SUBSYSTEM_NAME, new ThreadsExtension());

 }

 @Override

 protected String getSubsystemXml() throws IOException {

 return readResource("threads-subsystem-1_1.xml");

 }

So we say that this test is for the subsystem, and that it is implemented by .threads ThreadsExtension

This is the same test framework as we use in , but we will only talkExample subsystem#Testing the parsers

about the parts relevant to transformers here.

Testing a configuration that works
To test a configuration xxx

Latest WildFly Documentation

JBoss Community Documentation Page of 1739 2293

@Test

 public void testTransformerAS712() throws Exception {

 testTransformer_1_0(ModelTestControllerVersion.V7_1_2_FINAL);

 }

 /**

 * Tests transformation of model from 1.1.0 version into 1.0.0 version.

 *

 * @throws Exception

 */

 private void testTransformer_1_0(ModelTestControllerVersion controllerVersion) throws

Exception {

 String subsystemXml = "threads-transform-1_0.xml"; //This has no expressions not

understood by 1.0

 ModelVersion modelVersion = ModelVersion.create(1, 0, 0); //The old model version

 //Use the non-runtime version of the extension which will happen on the HC

 KernelServicesBuilder builder =

createKernelServicesBuilder(AdditionalInitialization.MANAGEMENT)

 .setSubsystemXmlResource(subsystemXml);

 final PathAddress subsystemAddress =

PathAddress.pathAddress(PathElement.pathElement(SUBSYSTEM, mainSubsystemName));

 // Add legacy subsystems

 builder.createLegacyKernelServicesBuilder(null, controllerVersion, modelVersion)

 .addOperationValidationResolve("add",

subsystemAddress.append(PathElement.pathElement("thread-factory")))

 .addMavenResourceURL("org.jboss.as:jboss-as-threads:" +

controllerVersion.getMavenGavVersion())

 .excludeFromParent(SingleClassFilter.createFilter(ThreadsLogger.class));

 KernelServices mainServices = builder.build();

 KernelServices legacyServices = mainServices.getLegacyServices(modelVersion);

 Assert.assertNotNull(legacyServices);

 checkSubsystemModelTransformation(mainServices, modelVersion);

 }

What this test does is get the builder to configure the test controller using .threads-transform-1_0.xml

This main builder works with the current subsystem version, and the jars in the WildFly checkout.

Next we configure a 'legacy' controller. This will run the version of the core libraries (e.g the controller

module) as found in the targeted legacy version of JBoss AS/Wildfly), and the subsystem. We need to pass

in that it is using the core AS version 7.1.2.Final (i.e. the

 part) and that that version is ModelVersion 1.0.0. NextModelTestControllerVersion.V7_1_2_FINAL

we have some calls passing in the Maven GAVs of the old version of theaddMavenResourceURL()

subsystem and any dependencies it has needed to boot up. Normally, specifying just the Maven GAV of the

old version of the subsystem is enough, but that depends on your subsystem. In this case the old subsystem

GAV is enough. When booting up the legacy controller the framework uses the parsed operations from the

main controller and transforms them using the 1.0.0 transformer in the threads subsystem. The

 and calls are not normally necessary,addOperationValidationResolve() excludeFromParent()

see the javadoc for more examples.

Latest WildFly Documentation

JBoss Community Documentation Page of 1740 2293

The call to will build both the main controller and the legacyKernelServicesBuilder.build()

controller. As part of that it also boots up a second copy of the main controller using the transformed

operations to make sure that the 'old' ops to boot our subsystem will still work on the current controller, which

is important for backwards compatibility of CLI scripts. To tweak how that is done if you see failures there,

see and LegacyKernelServicesInitializer.skipReverseControllerCheck()

. The LegacyKernelServicesInitializer.configureReverseControllerCheck()

 is what gets returned by LegacyKernelServicesInitializer

.KernelServicesBuilder.createLegacyKernelServicesBuilder()

Finally we call which reads the full legacy subsystem model.checkSubsystemModelTransformation()

The legacy subsystem model will have been built up from the transformed boot operations from the parsed

xml. The operations get transformed by the operation transformers. Then it takes the model of the current

subsystem and transforms that using the resource transformers. Then it compares the two models, which

should be the same. In some rare cases it is not possible to get those two models exactly the same, so there

is a version of this method that takes a to make adjustments. The ModelFixer

 method also makes sure that the legacy model is validcheckSubsystemModelTransformation()

according to the legacy subsystem's resource definition.

The legacy subsystem resource definitions are read on demand from the legacy controller when the tests

run. In some older versions of subsystems (before we converted everything to use ResourceDefinition, and

DescriptionProvider implementations were coded by hand) there were occasional problems with the

resource definitions and they needed to be touched up. In this case you can generate a new one, touch it up

and store the result in a file in the test resources under

- . This will then prefer the/same/package/as/the/test/class/{{subsystem-name model-version

file read from the file system to the one read at runtime. To generate the .dmr file, you need to generate it by

adding a temporary test (make sure that you adjust and to what youcontrollerVersion modelVersion

want to generate):

@Test

 public void deleteMeWhenDone() throws Exception {

 ModelTestControllerVersion controllerVersion = ModelTestControllerVersion.V7_1_2_FINAL;

 ModelVersion modelVersion = ModelVersion.create(1, 0, 0);

 KernelServicesBuilder builder = createKernelServicesBuilder(null);

 builder.createLegacyKernelServicesBuilder(null, controllerVersion, modelVersion)

 .addMavenResourceURL("org.jboss.as:jboss-as-threads:" +

controllerVersion.getMavenGavVersion());

 KernelServices services = builder.build();

 generateLegacySubsystemResourceRegistrationDmr(services, modelVersion);

 }

Now run the test and delete it. The legacy .dmr file should be in

target/test-classes/org/jboss/as/subsystem/test/<your-subsystem-name>-<your-version>.dmr

. Copy this .dmr file to the correct location in your project's test resources.

Latest WildFly Documentation

JBoss Community Documentation Page of 1741 2293

Testing a configuration that does not work
The subsystem (like several others) did not support the use of expression values in the versionthreads

that came with JBoss AS 7.1.2.Final. So we have a test that attempts to use expressions, and then fixes

each resource and attribute where expressions were not allowed.

@Test

 public void testRejectExpressionsAS712() throws Exception {

 testRejectExpressions_1_0_0(ModelTestControllerVersion.V7_1_2_FINAL);

 }

 private void testRejectExpressions_1_0_0(ModelTestControllerVersion controllerVersion)

throws Exception {

 // create builder for current subsystem version

 KernelServicesBuilder builder =

createKernelServicesBuilder(createAdditionalInitialization());

 // create builder for legacy subsystem version

 ModelVersion version_1_0_0 = ModelVersion.create(1, 0, 0);

 builder.createLegacyKernelServicesBuilder(null, controllerVersion, version_1_0_0)

 .addMavenResourceURL("org.jboss.as:jboss-as-threads:" +

controllerVersion.getMavenGavVersion())

 .excludeFromParent(SingleClassFilter.createFilter(ThreadsLogger.class));

 KernelServices mainServices = builder.build();

 KernelServices legacyServices = mainServices.getLegacyServices(version_1_0_0);

 Assert.assertNotNull(legacyServices);

 Assert.assertTrue("main services did not boot", mainServices.isSuccessfulBoot());

 Assert.assertTrue(legacyServices.isSuccessfulBoot());

 List<ModelNode> xmlOps = builder.parseXmlResource("expressions.xml");

 ModelTestUtils.checkFailedTransformedBootOperations(mainServices, version_1_0_0, xmlOps,

getConfig());

 }

Again we boot up a current and a legacy controller. However, note in this case that they are both empty, no

xml was parsed on boot so there are no operations to boot up the model. Instead once the controllers have

been booted, we call which gets the operations from KernelServicesBuilder.parseXmlResource()

. uses expressions in all the places they were not allowed inexpressions.xml expressions.xml

7.1.2.Final. For each resource willModelTestUtils.checkFailedTransformedBootOperations()

check that the operation gets rejected, and then correct one attribute at a time until the resource hasadd

been totally corrected. Once the operation is totally correct, it will check that the add operation no longeradd

is rejected. The configuration for this is the returned by the FailedOperationTransformationConfig

 method:getConfig()

Latest WildFly Documentation

JBoss Community Documentation Page of 1742 2293

private FailedOperationTransformationConfig getConfig() {

 PathAddress subsystemAddress = PathAddress.pathAddress(ThreadsExtension.SUBSYSTEM_PATH);

 FailedOperationTransformationConfig.RejectExpressionsConfig allowedAndKeepalive =

 new

FailedOperationTransformationConfig.RejectExpressionsConfig(PoolAttributeDefinitions.ALLOW_CORE_TIMEOUT,

PoolAttributeDefinitions.KEEPALIVE_TIME);

...

 return new FailedOperationTransformationConfig()

.addFailedAttribute(subsystemAddress.append(PathElement.pathElement(CommonAttributes.BLOCKING_BOUNDED_QUEUE_THREAD_POOL)),

allowedAndKeepalive)

.addFailedAttribute(subsystemAddress.append(PathElement.pathElement(CommonAttributes.BOUNDED_QUEUE_THREAD_POOL)),

allowedAndKeepalive)

 }

So what this means is that we expect the and attributes for the allow-core-timeout keepalive-time

 and add operations toblocking-bounded-queue-thread-pool=* bounded-queue-thread-pool=*

use expressions in the parsed xml. We then expect them to fail since there should be transformers in place

to reject expressions, and correct them one at a time until the add operation should pass. As well as doing

the operations the method willadd ModelTestUtils.checkFailedTransformedBootOperations()

also try calling for each attribute, correcting as it goes along. As well as allowing you towrite-attribute

test rejection of expressions also has some helper classesFailedOperationTransformationConfig

to help testing rejection of other scenarios.

11.5.9 Common transformation use-cases

Most transformations are quite similar, so this section covers some of the actual transformation patterns

found in the WildFly codebase. We will look at the output of CompareModelVersionsUtil, and see what can

be done to transform for the older slave HCs. The examples come from the WildFly codebase but are

stripped down to focus solely on the use-case being explained in an attempt to keep things as clear/simple

as possible.

Latest WildFly Documentation

JBoss Community Documentation Page of 1743 2293

Child resource type does not exist in legacy model
Looking at the model comparison between WildFly and JBoss AS 7.2.0, there is a change to the remoting

subsystem. The relevant part of the output is:

====== Resource root address: ["subsystem" => "remoting"] - Current version: 2.0.0; legacy

version: 1.2.0 =======

--- Problems for relative address to root []:

Missing child types in current: []; missing in legacy [http-connector]

So our current model has added a child type called which was not there in 7.2.0. This ishttp-connector

configurable, and adds new behavior, so it can not be part of a configuration sent across to a legacy slave

running version 1.2.0. So we add the following to to reject all instances of that childRemotingExtension

type against ModelVersion 1.2.0.

@Override

 public void initialize(ExtensionContext context) {

 if (context.isRegisterTransformers()) {

 registerTransformers_1_1(registration);

 registerTransformers_1_2(registration);

 }

 }

 private void registerTransformers_1_2(SubsystemRegistration registration) {

 TransformationDescription.Tools.register(get1_2_0_1_3_0Description(), registration,

VERSION_1_2);

 }

 private static TransformationDescription get1_2_0_1_3_0Description() {

 ResourceTransformationDescriptionBuilder builder =

ResourceTransformationDescriptionBuilder.Factory.createSubsystemInstance();

 builder.rejectChildResource(HttpConnectorResource.PATH);

 return builder.build();

 }

Since this child resource type also does not exist in ModelVersion 1.1.0 we need to reject it there as well

using a similar mechanism.

Attribute does not exist in the legacy subsystem

Default value of the attribute is the same as legacy implied behavior
This example also comes from the subsystem, and is probably the most common type ofremoting

transformation. The comparison tells us that there is now an attribute under

 called which did not exist in the/subsystem=remoting/remote-outbound-connection=* protocol

older version:

Latest WildFly Documentation

JBoss Community Documentation Page of 1744 2293

====== Resource root address: ["subsystem" => "remoting"] - Current version: 2.0.0; legacy

version: 1.2.0 =======

--- Problems for relative address to root []:

....

--- Problems for relative address to root ["remote-outbound-connection" => "*"]:

Missing attributes in current: []; missing in legacy [protocol]

Missing parameters for operation 'add' in current: []; missing in legacy [protocol]

This difference also affects the operation. Looking at the current model the valid values for the add

 attribute are , and . The last two are new protocolsprotocol remote http-remoting https-remoting

introduced in WildFly 8, meaning that the in JBoss 7.2.0 and earlier is the implied behaviour remote

protocol. Since this attribute does not exist in the legacy model we want to discard this attribute if it is

 or if it has the value , both of which are in line with what the legacy slave HC isundefined remote

hardwired to use. Also we want to reject it if it has a value different from . So what we need to doremote

when registering transformers against ModelVersion 1.2.0 to handle this attribute:

private void registerTransformers_1_2(SubsystemRegistration registration) {

 TransformationDescription.Tools.register(get1_2_0_1_3_0Description(), registration,

VERSION_1_2);

 }

 private static TransformationDescription get1_2_0_1_3_0Description() {

 ResourceTransformationDescriptionBuilder builder =

ResourceTransformationDescriptionBuilder.Factory.createSubsystemInstance();

protocolTransform(builder.addChildResource(RemoteOutboundConnectionResourceDefinition.ADDRESS)

 .getAttributeBuilder());

 return builder.build();

 }

 private static AttributeTransformationDescriptionBuilder

protocolTransform(AttributeTransformationDescriptionBuilder builder) {

 builder.setDiscard(new DiscardAttributeChecker.DiscardAttributeValueChecker(new

ModelNode(Protocol.REMOTE.toString())), RemoteOutboundConnectionResourceDefinition.PROTOCOL)

 .addRejectCheck(RejectAttributeChecker.DEFINED,

RemoteOutboundConnectionResourceDefinition.PROTOCOL);

 return builder;

 }

So the first thing to happens is that we register a

 which discards the attribute if it isDiscardAttributeChecker.DiscardAttributeValueChecker

either (the default value in the current model is), or and has the value undefined remote defined

. Remembering that the phase always happens before the phase, the rejectremote discard reject

checker checks that the attribute is defined, and rejects it if it is. The only reason it would be protocol

 in the reject check, is if it was not discarded by the discard check. Hopefully this example showsdefined

that the discard and reject checkers often work in pairs.

An alternative way to write the method would be:protocolTransform()

Latest WildFly Documentation

JBoss Community Documentation Page of 1745 2293

private static AttributeTransformationDescriptionBuilder

protocolTransform(AttributeTransformationDescriptionBuilder builder) {

 builder.setDiscard(new DiscardAttributeChecker.DefaultDiscardAttributeChecker() {

 @Override

 protected boolean isValueDiscardable(final PathAddress address, final String

attributeName, final ModelNode attributeValue, final TransformationCon

 return !attributeValue.isDefined() ||

attributeValue.asString().equals(Protocol.REMOTE.toString());

 }

 }, RemoteOutboundConnectionResourceDefinition.PROTOCOL)

 .addRejectCheck(RejectAttributeChecker.DEFINED,

RemoteOutboundConnectionResourceDefinition.PROTOCOL);

 return builder;

The reject check remains the same, but we have implemented the discard check by using

 instead. However, the effect of theDiscardAttributeChecker.DefaultDiscardAttributeChecker

discard check is exactly the same as when we used

.DiscardAttributeChecker.DiscardAttributeValueChecker

Default value of the attribute is different from legacy implied behaviour
We touched on this in the weld subsystem example we used earlier in this guide, but let's take a more

thorough look. Our comparison tells us that we have two new attributes and require-bean-descriptor

:non-portable-mode

====== Resource root address: ["subsystem" => "weld"] - Current version: 2.0.0; legacy version:

1.0.0 =======

--- Problems for relative address to root []:

Missing attributes in current: []; missing in legacy [require-bean-descriptor,

non-portable-mode]

Missing parameters for operation 'add' in current: []; missing in legacy

[require-bean-descriptor, non-portable-mode]

Now when we look at this we see that the default value for both of the attributes in the current model is

, which allows us more flexible behavior introduced in CDI 1.1 (which was introduced with this versionfalse

of the subsystem). The old model does not have these attributes, and implements CDI 1.0, which under the

hood (using our weld subsystem expertise knowledge) implies the values for both of these. So ourtrue

transformer must reject anything that is not for these attributes. Let us look at the transformertrue

registered by the WeldExtension:

Latest WildFly Documentation

JBoss Community Documentation Page of 1746 2293

private void registerTransformers(SubsystemRegistration subsystem) {

 ResourceTransformationDescriptionBuilder builder =

TransformationDescriptionBuilder.Factory.createSubsystemInstance();

 //These new attributes are assumed to be 'true' in the old version but default to false

in the current version. So discard if 'true' and reject if 'undefined'.

 builder.getAttributeBuilder()

 .setDiscard(new DiscardAttributeChecker.DiscardAttributeValueChecker(false,

false, new ModelNode(true)),

 WeldResourceDefinition.NON_PORTABLE_MODE_ATTRIBUTE,

WeldResourceDefinition.REQUIRE_BEAN_DESCRIPTOR_ATTRIBUTE)

 .addRejectCheck(new RejectAttributeChecker.DefaultRejectAttributeChecker() {

 @Override

 public String getRejectionLogMessage(Map<String, ModelNode> attributes) {

 return

WeldMessages.MESSAGES.rejectAttributesMustBeTrue(attributes.keySet());

 }

 @Override

 protected boolean rejectAttribute(PathAddress address, String attributeName,

ModelNode attributeValue,

 TransformationContext context) {

 //This will not get called if it was discarded, so reject if it is

undefined (default==false) or if defined and != 'true'

 return !attributeValue.isDefined() ||

!attributeValue.asString().equals("true");

 }

 }, WeldResourceDefinition.NON_PORTABLE_MODE_ATTRIBUTE,

WeldResourceDefinition.REQUIRE_BEAN_DESCRIPTOR_ATTRIBUTE)

 .end();

 TransformationDescription.Tools.register(builder.build(), subsystem,

ModelVersion.create(1, 0, 0));

 }

This looks a bit more scary than the previous transformer we have seen, but isn't actually too bad. The first

thing we do is register a which willDiscardAttributeChecker.DiscardAttributeValueChecker

discard the attribute if it has the value . It will not discard if it is since that defaults to true undefined

. This is registered for both attributes.false

If the attributes had the value they will get discarded we will not hit the reject checker since discardedtrue

attributes never get checked for rejection. If on the other hand they were an expression (since we are

interested in the actual value, but cannot evaluate what value an expression will resolve to on the target from

the DC running the transformers), , or (which will then default to) they will not getfalse undefined false

discarded and will need to be rejected. So our

 method willRejectAttributeChecker.DefaultRejectAttributeChecker.rejectAttribute()

return (i.e. reject) if the attribute value is (since that defaults to) or if it is definedtrue undefined false

and 'not equal to '. It is better to check for 'not equal to ' than to check for 'equal to ' since iftrue true false

an expression was used we still want to reject, and only the 'not equal to ' check would actually kick intrue

in that case.

Latest WildFly Documentation

JBoss Community Documentation Page of 1747 2293

The other thing we need in our is toDiscardAttributeChecker.DiscardAttributeValueChecker

override the method to get the message to be displayed when rejecting thegetRejectionLogMessage()

transformation. In this case it says something along the lines "These attributes must be 'true' for use with

CDI 1.0 '%s'", with the names of the attributes having been rejected substituting the .%s

Attribute has a different default value
– TODO

(The gist of this is to use a value converter, such that if the attribute is undefined, and hence the default

value will take effect, then the value gets converted to the current version's default value. This ensures that

the legacy HC will use the same effective setting as current version HCs.

Note however that a change in default values is a form of incompatible API change, since CLI scripts written

assuming the old defaults will now produce a configuration that behaves differently. Transformers make it

possible to have a consistently configured domain even in the presence of this kind of incompatible change,

but that doesn't mean such changes are good practice. They are generally unacceptable in WildFly's own

subsystems.

One trick to ameliorate the impact of a default value change is to modify the xml parser for the schemaold

version such that if the xml attribute is not configured, the parser sets the old default value for the attribute,

instead of . This approach allows the parsing of old config documents to produce resultsundefined

consistent with what happened when they were created. It does not help with CLI scripts though.)

Attribute has a different type
Here the example comes from the parameter some way into the subsystem, andcapacity modcluster

the legacy version is AS 7.1.2.Final. There are quite a few differences, so I am only showing the ones

relevant for this example:

====== Resource root address: ["subsystem" => "modcluster"] - Current version: 2.0.0; legacy

version: 1.2.0 =======

...

--- Problems for relative address to root ["mod-cluster-config" =>

"configuration","dynamic-load-provider" => "configuration","custom-load-m

etric" => "*"]:

Different 'type' for attribute 'capacity'. Current: DOUBLE; legacy: INT

Different 'expressions-allowed' for attribute 'capacity'. Current: true; legacy: false

...

Different 'type' for parameter 'capacity' of operation 'add'. Current: DOUBLE; legacy: INT

Different 'expressions-allowed' for parameter 'capacity' of operation 'add'. Current: true;

legacy: false

So as we can see expressions are not allowed for the attribute, and the current type is capacity double

while the legacy subsystem is . So this means that if the value is for example we can convert this to int 2.0

, but cannot be converted. The way this is solved in the ModClusterExtension is to register the2 2.5

following some other attributes are registered here, but hopefully it is clear anyway:

Latest WildFly Documentation

JBoss Community Documentation Page of 1748 2293

dynamicLoadProvider.addChildResource(LOAD_METRIC_PATH)

 .getAttributeBuilder()

 .addRejectCheck(RejectAttributeChecker.SIMPLE_EXPRESSIONS, TYPE, WEIGHT,

CAPACITY, PROPERTY)

 .addRejectCheck(CapacityCheckerAndConverter.INSTANCE, CAPACITY)

 .setValueConverter(CapacityCheckerAndConverter.INSTANCE, CAPACITY)

 ...

 .end();

So we register that we should reject expressions, and we also register the

 for . extends theCapacityCheckerAndConverter capacity CapacityCheckerAndConverter

convenience class which implements the DefaultCheckersAndConverter

, , and interfaces. WeDiscardAttributeChecker RejectAttributeChecker AttributeConverter

have seen and in previous examples. SinceDiscardAttributeChecker RejectAttributeChecker

we now need to convert a value we need an instance of .AttributeConverter

static class CapacityCheckerAndConverter extends DefaultCheckersAndConverter {

 static final CapacityCheckerAndConverter INSTANCE = new CapacityCheckerAndConverter();

We should not discard so from always returns isValueDiscardable() DiscardAttributeChecker

:false

@Override

 protected boolean isValueDiscardable(PathAddress address, String attributeName,

ModelNode attributeValue, TransformationContext context) {

 //Not used for discard

 return false;

 }

 @Override

 public String getRejectionLogMessage(Map<String, ModelNode> attributes) {

 return

ModClusterMessages.MESSAGES.capacityIsExpressionOrGreaterThanIntegerMaxValue(attributes.get(CAPACITY.getName()));

}

Now we check to see if we can convert the attribute to an and reject if not. Note that if it is anint

expression, we have no idea what its value will resolve to on the target host, so we need to reject it. Then we

try to change it into an , and reject if that was not possible:int

Latest WildFly Documentation

JBoss Community Documentation Page of 1749 2293

@Override

 protected boolean rejectAttribute(PathAddress address, String attributeName, ModelNode

attributeValue, TransformationContext context) {

 if (checkForExpression(attributeValue)

 || (attributeValue.isDefined() &&

!isIntegerValue(attributeValue.asDouble()))) {

 return true;

 }

 Long converted = convert(attributeValue);

 return (converted != null && (converted > Integer.MAX_VALUE || converted <

Integer.MIN_VALUE));

 }

And then finally we do the conversion:

@Override

 protected void convertAttribute(PathAddress address, String attributeName, ModelNode

attributeValue, TransformationContext context) {

 Long converted = convert(attributeValue);

 if (converted != null && converted <= Integer.MAX_VALUE && converted >=

Integer.MIN_VALUE) {

 attributeValue.set((int)converted.longValue());

 }

 }

 private Long convert(ModelNode attributeValue) {

 if (attributeValue.isDefined() && !checkForExpression(attributeValue)) {

 double raw = attributeValue.asDouble();

 if (isIntegerValue(raw)) {

 return Math.round(raw);

 }

 }

 return null;

 }

 private boolean isIntegerValue(double raw) {

 return raw == Double.valueOf(Math.round(raw)).doubleValue();

 }

 }

Latest WildFly Documentation

JBoss Community Documentation Page of 1750 2293

11.6 Key Interfaces and Classes Relevant to Extension

Developers

In the first major section of this guide, we provided an example of how to implement an extension to the AS.

The emphasis there was learning by doing. In this section, we'll focus a bit more on the major WildFly

interfaces and classes that most are relevant to extension developers. The best way to learn about these

interfaces and classes in detail is to look at their javadoc. What we'll try to do here is provide a brief

introduction of the key items and how they relate to each other.

Before digging into this section, readers are encouraged to read the "Core Management Concepts" section

of the Admin Guide.

Latest WildFly Documentation

JBoss Community Documentation Page of 1751 2293

11.6.1 Extension Interface

The interface is the hook by which your extension to the ASorg.jboss.as.controller.Extension

kernel is able to integrate with the AS. During boot of the AS, when the element in the AS's<extension>

xml configuration file naming your extension is parsed, the JBoss Modules module named in the element's

name attribute is loaded. The standard JDK mechanism is then used to loadjava.lang.ServiceLoader

your module's implementation of this interface.

The function of an implementation is to register with the core AS the management API, xmlExtension

parsers and xml marshallers associated with the extension module's subsystems. An canExtension

register multiple subsystems, although the usual practice is to register just one per extension.

Once the is loaded, the core AS will make two invocations upon it:Extension

void initializeParsers(ExtensionParsingContext context)

When this is invoked, it is the implementation's responsibility to initialize the XML parsers forExtension

this extension's subsystems and register them with the given . The parser'sExtensionParsingContext

job when it is later called is to create objects representing WildFlyorg.jboss.dmr.ModelNode

management API operations needed make the AS's running configuration match what is described in the

xml. Those management operation s are added to a list passed in to the parser.ModelNode

A parser for each version of the xml schema used by a subsystem should be registered. A well behaved

subsystem should be able to parse any version of its schema that it has ever published in a final release.

void initialize(ExtensionContext context)

When this is invoked, it is the implementation's responsibility to register with the core AS theExtension

management API for its subsystems, and to register the object that is capable of marshalling the

subsystem's in-memory configuration back to XML. Only one XML marshaller is registered per subsystem,

even though multiple XML parsers can be registered. The subsystem should always write documents that

conform to the latest version of its XML schema.

The registration of a subsystem's management API is done via the ManagementResourceRegistration

interface. Before discussing that interface in detail, let's describe how it (and the related Resource

interface) relate to the notion of managed resources in the AS.

Latest WildFly Documentation

JBoss Community Documentation Page of 1752 2293

11.6.2 WildFly Managed Resources

Each subsystem is responsible for managing one or more management resources. The conceptual

characteristics of a management resource are covered in some detail in the ; here we'll justAdmin Guide

summarize the main points. A management resource has

An consisting of a list of key/value pairs that uniquely identifies a resourceaddress

Zero or more , the value of which is some sort of attributes org.jboss.dmr.ModelNode

Zero or more supported . An operation has a string name and zero or more parameters,operations

each of which is a key/value pair where the key is a string naming the parameter and the value is

some sort of ModelNode

Zero or more , each of which in turn is a managed resourcechildren

The implementation of a managed resource is somewhat analogous to the implementation of a Java object.

A managed resource will have a "type", which encapsulates API information about that resource and logic

used to implement that API. And then there are actual instances of the resource, which primarily store data

representing the current state of a particular resource. This is somewhat analogous to the "class" and

"object" notions in Java.

A managed resource's type is encapsulated by the

 the core AS createsorg.jboss.as.controller.registry.ManagementResourceRegistration

when the type is registered. The data for a particular instance is encapsulated in an implementation of the

 interface.org.jboss.as.controller.registry.Resource

11.6.3 ManagementResourceRegistration Interface

In the Java analogy used above, the is analogous to the "class",ManagementResourceRegistration

while the discussed below is analogous to an instance of that class.Resource

A represents the specification for a particular managed resourceManagementResourceRegistration

type. All resources whose address matches the same pattern will be of the same type, specified by the

type's . The MRR encapsulates:ManagementResourceRegistration

Latest WildFly Documentation

JBoss Community Documentation Page of 1753 2293

A showing the address pattern that matches resources of that type. This PathAddress

 can and typically does involve wildcards in the value of one or more elements of thePathAddress

address. In this case there can be more than one instance of the type, i.e. different Resource

instances.

Definition of the various attributes exposed by resources of this type, including the

 implementations used for reading and writing the attribute values.OperationStepHandler

Definition of the various operations exposed by resources of this type, including the

 implementations used for handling user invocations of those operations.OperationStepHandler

Definition of child resource types. instances form a tree.ManagementResourceRegistration

Definition of management notifications emitted by resources of this type.

Definition of provided by resources of this type.capabilities

Definition of access constraints that should be applied by the management kernel whenRBAC

authorizing operations against resources of this type.

Whether the resource type is an alias to another resource type, and if so information about that

relationship. Aliases are primarily used to preserve backwards compatibility of the management API

when the location of a given type of resources is moved in a newer release.

The interface is a subinterface of ManagementResourceRegistration

, which provides a read-only view of the informationImmutableManagementResourceRegistration

encapsulated by the MRR. The MRR subinterface adds the methods needed for registering the attributes,

operations, children, etc.

Extension developers do not directly instantiate an MRR. Instead they create a forResourceDefinition

the root resource type for each subsystem, and register it with the passed in to their ExtensionContext

 implementation's method:Extension initialize

public void initialize(ExtensionContext context) {

 SubsystemRegistration subsystem = context.registerSubsystem(SUBSYSTEM_NAME,

CURRENT_VERSION);

 subsystem.registerXMLElementWriter(getOurXmlWriter());

 ResourceDefinition rd = getOurSubsystemDefinition();

 ManagementResourceRegistration mrr = subsystem.registerSubsystemModel(rd));

 }

The kernel uses the provided to construct a ResourceDefinition

 and then passes that MRR to the various methodsManagementResourceRegistration registerXXX

implemented by the , giving it the change to record the resource type's attributes,ResourceDefinition

operations and children.

Latest WildFly Documentation

JBoss Community Documentation Page of 1754 2293

11.6.4 ResourceDefinition Interface

An implementation of is the primary class used by an extension developer whenResourceDefinition

defining a managed resource type. It provides basic information about the type, exposes a

 used to generate a DMR description of the type, and implements callbacks theDescriptionProvider

kernel can invoke when building up the to ask for registration ofManagementResourceRegistration

definitions of attributes, operations, children, notifications and capabilities.

Almost always an extension author will create their by creating a subclass of the ResourceDefinition

 class or of its org.jboss.as.controller.SimpleResourceDefinition

 subclass. Both of these classes have constructors that take a PersistentResourceDefinition

 object, which is a simple builder class to use to provide most of the key information about theParameters

resource type. The extension-specific subclass would then take responsibility for any additional behavior

needed by overriding the , , registerAttributes registerOperations registerNotifications

and callbacks to do whatever is needed beyond what is provided by the superclasses.registerChildren

For example, to add a writable attribute:

@Override

 public void registerAttributes(ManagementResourceRegistration resourceRegistration) {

 super.registerAttributes(resourceRegistration);

 // Now we register the 'foo' attribute

 AttributeDefinition ad = FOO; // constant declared elsewhere

 OperationStepHandler writeHandler = new FooWriteAttributeHandler();

 resourceRegistration.registerReadWriteHandler(ad, null, writeHandler); // null read

handler means use default read handling

 }

To register a custom operation:

@Override

 public void registerOperations(ManagementResourceRegistration resourceRegistration) {

 super.registerOperations(resourceRegistration);

 // Now we register the 'foo-bar' custom operation

 OperationDefinition od = FooBarOperationStepHandler.getDefinition();

 OperationStepHandler osh = new FooBarOperationStepHandler();

 resourceRegistration.registerOperationHandler(od, osh);

 }

To register a child resource type:

Latest WildFly Documentation

JBoss Community Documentation Page of 1755 2293

@Override

 public void registerChildren(ManagementResourceRegistration resourceRegistration) {

 super.registerChildren(resourceRegistration);

 // Now we register the 'baz=*' child type

 ResourceDefinition rd = new BazResourceDefinition();

 resourceRegistration.registerSubmodel(rd);

 }

ResourceDescriptionResolver
One of the things a must be able to do is provide a thatResourceDefinition DescriptionProvider

provides a proper DMR description of the resource to use as the output for the standard

 management operation. Since you are almost certainly going to be usingread-resource-description

one of the standard implementations like , theResourceDefinition SimpleResourceDefinition

creation of this is largely handled for you. The one thing that is not handled for youDescriptionProvider

is providing the localized free form text descriptions of the various attributes, operations, operation

parameters, child types, etc used in creating the resource description.

For this you must provide an implementation of the interface, typicallyResourceDescriptionResolver

passed to the object provided to the constructor. ThisParameters SimpleResourceDefinition

interface has various methods that are invoked when a piece of localized text description is needed.

Almost certainly you'll satisfy this requirement by providing an instance of the

 class.StandardResourceDescriptionResolver

 uses a to load text from a properties fileStandardResourceDescriptionResolver ResourceBundle

available on the classpath. The keys in the properties file must follow patterns expected by

. See the StandardResourceDescriptionResolver StandardResourceDescriptionResolver

javadoc for further details.

The biggest task here is to create the properties file and add the text descriptions. A text description must be

provided for everything. The typical thing to do is to store this properties file in the same package as your

 implementation, in a file named .Extension LocalDescriptions.properties

11.6.5 AttributeDefinition Class

The class is used to create the static definition of one of a managed resource'sAttributeDefinition

attributes. It's a bit poorly named though, because the same interface is used to define the details of

parameters to operations, and to define fields in the result of of operations.

The definition includes all the static information about the attribute/operation parameter/result field, e.g. the

DMR of its value, whether its presence is required, whether it supports expressions, etc. See ModelType

 for a description of the metadata available. Almost all of this comesDescription of the Management Model

from the .AttributeDefinition

Latest WildFly Documentation

JBoss Community Documentation Page of 1756 2293

Besides basic metadata, the can also hold custom logic the kernel should useAttributeDefinition

when dealing with the attribute/operation parameter/result field. For example, a toParameterValidator

use to perform special validation of values (beyond basic things like DMR type checks and

defined/undefined checks), or an or to use to performAttributeParser AttributeMarshaller

customized parsing from and marshaling to XML.

WildFly Core's module provides a number of subclasses of used forcontroller AttributeDefinition

the usual kinds of attributes. For each there is an associated builder class which you should use to build the

. Most commonly used are , built by theAttributeDefinition SimpleAttributeDefinition

associated . This is used for attributes whose values areSimpleAttributeDefinitionBuilder

analogous to java primitives, or byte[]. For collections, there are various subclasses of String

 and . All have a inner class. ForListAttributeDefinition MapAttributeDefinition Builder

complex attributes, i.e. those with a fixed set of fully defined fields, use

. (Each field in the complex type is itself specified by an ObjectTypeAttributeDefinition

.) Finally there's and AttributeDefinition ObjectListAttributeDefinition

 for lists whose elements are complex types and maps whose valuesObjectMapAttributeDefinition

are complex types respectively.

Here's an example of creating a simple attribute definition with extra validation of the range of allowed

values:

static final AttributeDefinition QUEUE_LENGTH = new

SimpleAttributeDefinitionBuilder("queue-length", ModelType.INT)

 .setRequired(true)

 .setAllowExpression(true)

 .setValidator(new IntRangeValidator(1, Integer.MAX_VALUE))

 .setRestartAllServices() // means modification after resource add puts the

server in reload-required

 .build();

Via a bit of dark magic, the kernel knows that the defined here is a reliable source ofIntRangeValidator

information on min and max values for the attribute, so when creating the read-resource-description

output for the attribute it will use it and output and metadata. For STRING attributes, min max

 can also be used, and the kernel will see this and provide and StringLengthValidator min-length

 metadata. In both cases the kernel is checking for the presence of a andmax-length MinMaxValidator

if found it provides the appropriate metadata based on the type of the attribute.

Use to restrict a STRING attribute's values to a set of legal values:EnumValidator

static final SimpleAttributeDefinition TIME_UNIT = new SimpleAttributeDefinitionBuilder("unit",

ModelType.STRING)

 .setRequired(true)

 .setAllowExpression(true)

 .setValidator(new EnumValidator<TimeUnit>(TimeUnit.class))

 .build();

Latest WildFly Documentation

JBoss Community Documentation Page of 1757 2293

 is an implementation of that works with Java enums. YouEnumValidator AllowedValuesValidator

can use other implementations or write your own to do other types of restriction to certain values.

Via a bit of dark magic similar to what is done with , the kernel recognizes the presenceMinMaxValidator

of an and uses it to seed the metadata in AllowedValuesValidator allowed-values

 output.read-resource-description

Key Uses of AttributeDefinition
Your instances will be some of the most commonly used objects in your extensionAttributeDefinition

code. Following are the most typical uses. In each of these examples assume there is a

 stored in a constant FOO_AD that is available to the code. TypicallySimpleAttributeDefinition

FOO_AD would be a constant in the relevant implementation class. AssumeResourceDefinition

FOO_AD represents an INT attribute.

Note that for all of these cases except for "Use in Extracting Data from the Configuration Model for Use in

Runtime Services" there may be utility code that handles this for you. For example

 can handle the XML cases, and canPersistentResourceXMLParser AbstractAddStepHandler

handle the "Use in Storing Data Provided by the User to the Configuration Model" case.

Latest WildFly Documentation

JBoss Community Documentation Page of 1758 2293

Use in XML Parsing
Here we have your extension's implementation of that is beingXMLElementReader<List<ModelNode>>

used to parse the xml for your subsystem and add operations to the list that will be used to bootModelNode

the server.

@Override

 public void readElement(final XMLExtendedStreamReader reader, final List<ModelNode>

operationList) throws XMLStreamException {

 // Create a node for the op to add our subsystem

 ModelNode addOp = new ModelNode();

 addOp.get("address").add("subsystem", "mysubsystem");

 addOp.get("operation").set("add");

 operationList.add(addOp);

 for (int i = 0; i < reader.getAttributeCount(); i++) {

 final String value = reader.getAttributeValue(i);

 final String attribute = reader.getAttributeLocalName(i);

 if (FOO_AD.getXmlName().equals(attribute) {

 FOO_AD.parseAndSetParameter(value, addOp, reader);

 } else

 }

 ... more parsing

 }

Note that the parsing code has deliberately been abbreviated. The key point is the

 call. FOO_AD will validate the read from XML, throwing anparseAndSetParameter value

XMLStreamException with a useful message if invalid, including a reference to the current location of the

. If valid, will be converted to a DMR of the appropriate type and stored as areader value ModelNode

parameter field of . The name of the parameter will be what returns.addOp FOO_AD.getName()

If you use this parsing logic is handled for you and you don't need toPersistentResourceXMLParser

write it yourself.

Latest WildFly Documentation

JBoss Community Documentation Page of 1759 2293

Use in Storing Data Provided by the User to the Configuration Model
Here we illustrate code in an that extracts a value from a user-provided OperationStepHandler

 and stores it in the internal model:operation

@Override

 public void execute(OperationContext context, ModelNode operation) throws

OperationFailedException {

 // Get the Resource targeted by this operation

 Resource resource = context.readResourceForUpdate(PathAddress.EMPTY_ADDRESS);

 ModelNode model = resource.getModel();

 // Store the value of any 'foo' param to the model's 'foo' attribute

 FOO_AD.validateAndSet(operation, model);

 ... do other stuff

 }

As the name implies will validate the value in before setting it. A validationvalidateAndSet operation

failure will result in an with an appropriate message, which the kernel willOperationFailedException

use to provide a failure response to the user.

Note that will not perform expression resolution. Expression resolution is not appropriatevalidateAndSet

at this stage, when we are just trying to store data to the persistent configuration model. However, it will

check for expressions and fail validation if found and FOO_AD wasn't built with

.setAllowExpressions(true)

This work of storing data to the configuration model is usually done in handlers for the and add

 operations. If you base your handler implementations on the standard classes providedwrite-attribute

by WildFly Core, this part of the work will be handled for you.

Latest WildFly Documentation

JBoss Community Documentation Page of 1760 2293

Use in Extracting Data from the Configuration Model for Use in Runtime Services
This is the example you are most likely to use in your code, as this is where data needs to be extracted from

the configuration model and passed to your runtime services. What your services need is custom, so there's

no utility code we provide.

Assume as part of in the last example that your handler adds a step to do further... do other stuff

work once operation execution proceeds to RUNTIME state (see Operation Execution and the

 for more on what this means):OperationContext

context.addStep(new OperationStepHandler() {

 @Override

 public void execute(OperationContext context, ModelNode operation) throws

OperationFailedException {

 // Get the Resource targetted by this operation

 Resource resource = context.readResource(PathAddress.EMPTY_ADDRESS);

 ModelNode model = resource.getModel();

 // Extract the value of the 'foo' attribute from the model

 int foo = FOO_AD.resolveModelAttribute(context, model).asInt();

 Service<XyZ> service = new MyService(foo);

 ... do other stuff, like install 'service' with MSC

 }

 }, Stage.RUNTIME);

Use to extract data from the model. It does a number of things:resolveModelAttribute

reads the value from the model

if it's an expression and expressions are supported, resolves it

if it's undefined and undefined is allowed but FOO_AD was configured with a default value, uses the

default value

validates the result of that (which is how we check that expressions resolve to legal values), throwing

OperationFailedException with a useful message if invalid

returns that as a ModelNode

If when you built FOO_AD you configured it such that the user must provide a value, or if you configured it

with a default value, then you know the return value of will be a defined resolveModelAttribute

. Hence you can safely perform type conversions with it, as we do in the example above with theModelNode

call to . If FOO_AD was configured such that it's possible that the attribute won't have a definedasInt()

value, you need to guard against that, e.g.:

ModelNode node = FOO_AD.resolveModelAttribute(context, model);

 Integer foo = node.isDefined() ? node.asInt() : null;

Latest WildFly Documentation

JBoss Community Documentation Page of 1761 2293

Use in Marshaling Configuration Model Data to XML
Your must register an for eachExtension XMLElementWriter<SubsystemMarshallingContext>

subsystem. This is used to marshal the subsystem's configuration to XML. If you don't use

 for this you'll need to write your own marshaling code, and PersistentResourceXMLParser

 will be used.AttributeDefinition

@Override

 public void writeContent(XMLExtendedStreamWriter writer, SubsystemMarshallingContext

context) throws XMLStreamException {

 context.startSubsystemElement(Namespace.CURRENT.getUriString(), false);

 ModelNode subsystemModel = context.getModelNode();

 // we persist foo as an xml attribute

 FOO_AD.marshalAsAttribute(subsystemModel, writer);

 // We also have a different attribute that we marshal as an element

 BAR_AD.marshalAsElement(subsystemModel, writer);

 }

The provides a that represents the entire resource tree forSubsystemMarshallingContext ModelNode

the subsystem (including child resources). Your should walk through that model, usingXMLElementWriter

 or to write the attributes in each resource. If the modelmarshalAsAttribute marshalAsElement

includes child node trees that represent child resources, create child xml elements for those and continue

down the tree.

11.6.6 OperationDefinition and OperationStepHandler

Interfaces

 defines an operation, particularly its name, its parameters and the details of anyOperationDefinition

result value, with instances used to define the parameters and result details. The AttributeDefinition

 is used to generate the output for theOperationDefinition read-operation-description

operation, and in some cases is also used by the kernel to decide details as to how to execute the operation.

Typically is used to create an . UsuallySimpleOperationDefinitionBuilder OperationDefinition

you only need to create an for custom operations. For the common and OperationDefinition add

 operations, if you provide minimal information about your handlers to your remove

 implementation via the object passed to its constructor, then SimpleResourceDefinition Parameters

 can generate a correct for those operations.SimpleResourceDefinition OperationDefinition

The is what contains the actual logic for doing what the user requests when theyOperationStepHandler

invoke an operation. As its name implies, each OSH is responsible for doing one step in the overall

sequence of things necessary to give effect to what the user requested. One of the things an OSH can do is

add other steps, with the result that an overall operation can involve a great number of OSHs executing.

(See Operation Execution and the for more on this.)OperationContext

Latest WildFly Documentation

JBoss Community Documentation Page of 1762 2293

Each OSH is provided in its method with a reference to the that is controllingexecute OperationContext

the overall operation, plus an that represents the operation that particular OSH isoperation ModelNode

being asked to deal with. The node will be of with the following key/valueoperation ModelType.OBJECT

pairs:

a key named with a value of that represents the name of theoperation ModelType.STRING

operation. Typically an OSH doesn't care about this information as it is written for an operation with a

particular name and will only be invoked for that operation.

a key named with a value of with list elements of address ModelType.LIST

. This value represents the address of the resource the operation targets. IfModelType.PROPERTY

this key is not present or the value is undefined or an empty list, the target is the root resource.

Typically an OSH doesn't care about this information as it can more efficiently get the address from

the via its method.OperationContext getCurrentAddress()

other key/value pairs that represent parameters to the operation, with the key the name of the

parameter. This is the main information an OSH would want from the node.operation

There are a variety of situations where extension code will instantiate an OperationStepHandler

When registering a writable attribute with a (typically in anManagementResourceRegistration

implementation of), an OSH must be provided toResourceDefinition.registerAttributes

handle the operation.write-attribute

When registering a read-only or read-write attribute that needs special handling of the

 operation, an OSH must be provided.read-attribute

When registering a metric attribute, an OSH must be provided to handle the read-attribute

operation.

Most resources need OSHs created for the and operations. These are passed to the add remove

 object given to the constructor, for use by the Parameters SimpleResourceDefinition

 in its implementation of the method.SimpleResourceDefinition registerOperations

If your resource has custom operations, you will instantiate them to register with a

, typically in an implementation of ManagementResourceRegistration

ResourceDefinition.registerOperations

If an OSH needs to tell the to add additional steps to do further handling, theOperationContext

OSH will create another OSH to execute that step. This second OSH is typically an inner class of the

first OSH.

11.6.7 Operation Execution and the OperationContext

When the at the heart of the WildFly Core management layer handles a request toModelController

execute an operation, it instantiates an implementation of the interface to do the work.OperationContext

The is configured with an initial list of operation steps it must execute. This is done inOperationContext

one of two ways:

Latest WildFly Documentation

JBoss Community Documentation Page of 1763 2293

During boot, multiple steps are configured, one for each operation in the list generated by the parser

of the xml configuration file. For each operation, the finds the ModelController

 that matches the address of the operation and finds the ManagementResourceRegistration

 registered with that MRR for the operation's name. A step is added to the OperationStepHandler

 for each operation by providing the operation itself, plus the OperationContext ModelNode

.OperationStepHandler

After boot, any management request involves only a single operation, so only a single step is added.

(Note that a operation is still a single operation; it's just one that internally executes viacomposite

multiple steps.)

The then asks the to execute the operation.ModelController OperationContext

The acts as both the engine for operation execution, and as the interface provided to OperationContext

 implementations to let them interact with the rest of the system.OperationStepHandler

Execution Process
Operation execution proceeds via execution by the of a series of "steps" with an OperationContext

 doing the key work for each step. As mentioned above, during boot the OC isOperationStepHandler

initially configured with a number of steps, but post boot operations involve only a single step initially. But

even a post-boot operation can end up involving numerous steps before completion. In the case of a

 operation, thousands of steps might execute. This is possible/:read-resource(recursive=true)

because one of the key things an can do is ask the to addOperationStepHandler OperationContext

additional steps to execute later.

Execution proceeds via a series of "stages", with a queue of steps maintained for each stage. An

 can tell the to add a step for any stage equal to or laterOperationStepHandler OperationContext

than the currently executing stage. The instruction can either be to add the step to the head of the queue for

the stage or to place it at the end of the stage's queue.

Execution of a stage continues until there are no longer any steps in the stage's queue. Then an internal

transition task can execute, and the processing of the next stage's steps begins.

Here is some brief information about each stage:

Latest WildFly Documentation

JBoss Community Documentation Page of 1764 2293

Stage.MODEL
This stage is concerned with interacting with the persistent configuration model, either making changes to it

or reading information from it. Handlers for this stage should not make changes to the runtime, and handlers

running after this stage should not make changes to the persistent configuration model.

If any step fails during this stage, the operation will automatically roll back. Rollback of MODEL stage failures

cannot be turned off. Rollback during boot results in abort of the process start.

The initial step or steps added to the by the all execute inOperationContext ModelController

Stage.MODEL. This means that all instances your extension registers with a OperationStepHandler

 must be designed for execution in . If you need workManagementResourceRegistration Stage.MODEL

done in later stages your handler must add a step for that work.Stage.MODEL

When this stage completes, the internally performs model validation work beforeOperationContext

proceeding on to the next stage. Validation failures will result in rollback.

Stage.RUNTIME
This stage is concerned with interacting with the server runtime, either reading from it or modifying it (e.g.

installing or removing services or updating their configuration.) By the time this stage begins, all model

changes are complete and model validity has been checked. So typically handlers in this stage read their

inputs from the model, not from the original provided by the user.operation ModelNode

Most logic written by extension authors will be for Stage.RUNTIME. The vastOperationStepHandler

majority of Stage.MODEL handling can best be performed by the base handler classes WildFly Core

provides in its module. (See below for more on those.)controller

During boot failures in will not trigger rollback and abort of the server boot. After boot, byStage.RUNTIME

default failures here will trigger rollback, but users can prevent that by using the

 header. However, a RuntimeException thrown by a handler will triggerrollback-on-runtime-failure

rollback.

At the end of , the blocks waiting for the MSC service container toStage.RUNTIME OperationContext

stabilize (i.e. for all services to have reached a rest state) before moving on to the next stage.

Latest WildFly Documentation

JBoss Community Documentation Page of 1765 2293

Stage.VERIFY
Service container verification work is performed in this stage, checking that any MSC changes made in

 had the expected effect. Typically extension authors do not add any steps in this stage, asStage.RUNTIME

the steps automatically added by the itself are all that are needed. You can add a stepOperationContext

here though if you have an unusual use case where you need to verify something after MSC has stabilized.

Handlers in this stage should not make any further runtime changes; their purpose is simply to do verification

work and fail the operation if verification is unsuccessful.

During boot failures in will not trigger rollback and abort of the server boot. After boot, byStage.VERIFY

default failures here will trigger rollback, but users can prevent that by using the

 header. However, a RuntimeException thrown by a handler will triggerrollback-on-runtime-failure

rollback.

There is no special transition work at the end of this stage.

Stage.DOMAIN
Extension authors should not add steps in this stage; it is only for use by the kernel.

Steps needed to execute rollout across the domain of an operation that affects multiple processes in a

managed domain run here. This stage is only run on Host Contoller processes, never on servers.

Stage.DONE and ResultHandler / RollbackHandler Execution
This stage doesn't maintain a queue of steps; no executes here. What doesOperationStepHandler

happen here is persistence of any configuration changes to the xml file and commit or rollback of changes

affecting multiple processes in a managed domain.

While no executes in this stage, following persistence and transaction commit all OperationStepHandler

 or callbacks registered with the by the stepsResultHandler RollbackHandler OperationContext

that executed are invoked. This is done in the reverse order of step execution, so the callback for the last

step to run is the first to be executed. The most common thing for a callback to do is to respond to a rollback

by doing whatever is necessary to reverse changes made in . (No reversal of Stage.RUNTIME

 changes is needed, because if an operation rolls back the updated model produced by theStage.MODEL

operation is simply never published and is discarded.)

Tips About Adding Steps
Here are some useful tips about how to add steps:

Latest WildFly Documentation

JBoss Community Documentation Page of 1766 2293

Add a step to the head of the current stage's queue if you want it to execute next, prior to any other

steps. Typically you would use this technique if you are trying to decompose some complex work into

pieces, with reusable logic handling each piece. There would be an forOperationStepHandler

each part of the work, added to the head of the queue in the correct sequence. This would be a pretty

advanced use case for an extension author but is quite common in the handlers provided by the

kernel.

Add a step to the end of the queue if either you don't care when it executes or if you do care and want

to be sure it executes after any already registered steps.

A very common example of this is a handler adding a step for its associated Stage.MODEL

 work. If there are multiple model steps that will execute (e.g. at boot or asStage.RUNTIME

part of handling a), each will want to add a runtime step, and likely the best ordercomposite

for those runtime steps is the same as the order of the model steps. So if each adds its runtime

step at the end, the desired result will be achieved.

A more sophisticated but important scenario is when a step may or may not be executing as

part of a larger set of steps, i.e. it may be one step in a or it may not. There is nocomposite

way for the handler to know. But it can assume that if it is part of a composite, the steps for the

other operations in the composite . (The handler for the are already registered in the queue

 op guarantees this.) So, if it wants to do some work (say validation of thecomposite

relationship between different attributes or resources) the input to which may be affected by

possible other already registered steps, instead of doing that work itself, it should register a

different step at the of the queue and have that step do the work. This will ensure thatend

when the validation step runs, the other steps in the will have had a chance to docomposite

their work. Rule of thumb: always doing any extra validation work in an added step.

Passing Data to an Added Step
Often a handler author will want to share state between the handler for a step it adds and the handler that

added it. There are a number of ways this can be done:

Very often the for the added class is an inner class of the handler thatOperationStepHandler

adds it. So here sharing state is easily done using final variables in the outer class.

The handler for the added step can accept values passed to its constructor which can serve as

shared state.

The includes an Attachment API which allows arbitary data to be attached toOperationContext

the context and retrieved by any handler that has access to the attachment key.

The methods include overloaded variants where the caller can passOperationContext.addStep

in an that will in turn be passed to the method of the handler foroperation ModelNode execute

the added step. So, state can be passed via this . It's important to remember though thatModelNode

the field of the will govern what the sees as the target ofaddress operation OperationContext

operation when that added step's handler executes.

Latest WildFly Documentation

JBoss Community Documentation Page of 1767 2293

Controlling Output from an Added Step
When an wants to report an operation result, it calls the OperationStepHandler

 method and manipulates the returned . Similarly forOperationContext.getResult() ModelNode

failure messages it can call . The usual assumptionOperationContext.getFailureDescription()

when such a call is made is that the result or failure description being modified is the one at the root of the

response to the end user. But this is not necessarily the case.

When an adds a step it can use one of the overloaded OperationStepHandler

 variants that takes a parameter. If it does,OperationContext.addStep response ModelNode

whatever it passes in will be what is updated as a result of ModelNode

 and calls byOperationContext.getResult() OperationContext.getFailureDescription()

the step's handler. This node does not need to be one that is directly associated with the response to the

user.

How then does the handler that adds a step in this manner make use of whatever results the added step

produces, since the added step will not run until the adding step completes execution? There are a couple of

ways this can be done.

The first is to add yet another step, and provide it a reference to the node used by the secondresponse

step. It will execute after the second step and can read its response and use it in formulating its own

response.

The second way involves using a . The for a step will execute anyResultHandler ResultHandler after

step that it adds executes. And, it is legal for a to manipulate the "result" value for anResultHandler

operation, or its "failure-description" in case of failure. So, the handler that adds a step can provide to its

 a reference to the node it passed to , and the canResultHandler response addStep ResultHandler

in turn and use its contents to manipulate its own response.

This kind of handling wouldn't commonly be done by extension authors and great care needs to be taken if it

is done. It is often done in some of the kernel handlers.

Latest WildFly Documentation

JBoss Community Documentation Page of 1768 2293

OperationStepHandler use of the OperationContext
All useful work an performs is done by invoking methods on the OperationStepHandler

. The interface is extensively javadoced, so this section will justOperationContext OperationContext

provide a brief partial overview. The OSH can use the to:OperationContext

Learn about the environment in which it is executing (, , getProcessType getRunningMode

, , , , isBooting getCurrentStage getCallEnvironment getSecurityIdentity

,)isDefaultRequiresRuntime isNormalServer

Learn about the operation (, , getCurrentAddress getCurrentAddressValue

,)getAttachmentStream getAttachmentStreamCount

Read the tree (, , Resource readResource readResourceFromRoot

)getOriginalRootResource

Manipulate the tree (, , , Resource createResource addResource readResourceForUpdate

)removeResource

Read the resource type information (, getResourceRegistration

)getRootResourceRegistration

Manipulate the resource type information ()getResourceRegistrationForUpdate

Read the MSC service container ()getServiceRegistry(false)

Manipulate the MSC service container (, , getServiceTarget getServiceRegistry(true)

)removeService

Manipulate the process state (, , , reloadRequired revertReloadRequired restartRequired

revertRestartRequired

Resolve expressions ()resolveExpressions

Manipulate the operation response (, , getResult getFailureDescription

,)attachResultStream runtimeUpdateSkipped

Force operation rollback ()setRollbackOnly

Add other steps ()addStep

Share data with other steps (, , ,)attach attachIfAbsent getAttachment detach

Work with capabilities (numerous methods)

Emit notifications ()emit

Request a callback to a or ()ResultHandler RollbackHandler completeStep

Latest WildFly Documentation

JBoss Community Documentation Page of 1769 2293

Locking and Change Visibility
The and work together to ensure that only one operation at aModelController OperationContext

time is modifying the state of the system. This is done via an exclusive lock maintained by the

. Any operation that does not need to write never requests the lock and is able toModelController

proceed without being blocked by an operation that holds the lock (i.e. writes do not block reads.) If two

operations wish to concurrently write, one or the other will get the lock and the loser will block waiting for the

winner to complete and release the lock.

The requests the exclusive lock the first time any of the following occur:OperationContext

A step calls one of its methods that indicates a wish to modify the resource tree (, createResource

, ,)addResource readResourceForUpdate removeResource

A step calls one of its methods that indicates a wish to modify the

 tree ()ManagementResourceRegistration getResourceRegistrationForUpdate

A step calls one of its methods that indicates a desire to change MSC services (getServiceTarget

, or with the param set to)removeService getServiceRegistry modify true

A step calls one of its methods that manipulates the capability registry (various)

A step explicitly requests the lock by calling the method (doing this isacquireControllerLock

discouraged)

The step that acquired the lock is tracked, and the lock is released when the added by thatResultHandler

step has executed. (If the step doesn't add a result handler, a default no-op one is automatically added).

When an operation first expresses a desire to manipulate the tree or the capability registry, aResource

private copy of the tree or registry is created and thereafter the works with that copy.OperationContext

The copy is published back to the in if the operation commits. Until thatModelController Stage.DONE

happens any changes to the tree or capability registry made by the operation are invisible to other threads. If

the operation does not commit, the private copies are simply discarded.

However, the does not make a private copy of the OperationContext

 tree before manipulating it, nor is there a private copy of the MSCManagementResourceRegistration

service container. So, any changes made by an operation to either of those are immediately visible to other

threads.

11.6.8 Resource Interface

An instance of the interface holds the state for a particular instance of a type defined by a Resource

. Referring back to the analogy mentioned earlier the ManagementResourceRegistration

 is analogous to a Java class while the is analogous toManagementResourceRegistration Resource

an instance of that class.

The makes available state information, primarilyResource

Latest WildFly Documentation

JBoss Community Documentation Page of 1770 2293

Some descriptive metadata, such as its address, whether it is runtime-only and whether it represents

a proxy to a another primary resource that resides on another process in a managed domain

A of whose keys are the resource's attributes and whose valuesModelNode ModelType.OBJECT

are the attribute values

Links to child resources such that the resources form a tree

Creating Resources
Typically extensions create resources via calls to the OperationStepHandler

 method. However it is allowed for handlers to use their own OperationContext.createResource

 implementations by instantiating the resource and invoking Resource OperationContext.addResource

. The class can be used as a base class.AbstractModelResource

Runtime-Only and Synthetic Resources and the

PlaceholderResourceEntry Class
A runtime-only resource is one whose state is not persisted to the xml configuration file. Many runtime-only

resources are also "synthetic" meaning they are not added or removed as a result of user initiated

management operations. Rather these resources are "synthesized" in order to allow users to use the

management API to examine some aspect of the internal state of the process. A good example of synthetic

resources are the resources in the branch of the resource tree./core-service=platform-mbeans

There are resources there that represent various aspects of the JVM (classloaders, memory pools, etc) but

which resources are present entirely depends on what the JVM is doing, not on any management action.

Another example are resources representing "core queues" in the WildFly messaging and

messaging-artemismq subsystems. Queues are created as a result of activity in the message broker which

may not involve calls to the management API. But for each such queue a management resource is available

to allow management users to perform management operations against the queue.

It is a requirement of execution of a management operation that the can navigateOperationContext

through the resource tree to a object located at the address specified. This requirement holdsResource

true even for synthetic resources. How can this be handled, given the fact these resources are not created in

response to management operations?

The trick involves using special implementations of . Let's imagine a simple case where we haveResource

a parent resource which is fairly normal (i.e. it holds persistent configuration and is added via a user's add

operation) except for the fact that one of its child types represents synthetic resources (e.g. message

queues). How would this be handled?

First, the parent resource would require a custom implementation of the interface. The Resource

 for the operation would instantiate it, providing it with access to whateverOperationStepHandler add

API is needed for it to work out what items exist for which a synthetic resource should be made available

(e.g. an API provided by the message broker that provides access to its queues). The handler wouldadd

use the method to tie this custom resource into the overall resourceOperationContext.addResource

tree.

Latest WildFly Documentation

JBoss Community Documentation Page of 1771 2293

The custom implementation would use special implementations of the various methods thatResource

relate to accessing children. For all calls that relate to the synthetic child type (e.g. core-queue) the custom

implementation would use whatever API call is needed to provide the correct data for that child type (e.g. ask

the message broker for the names of queues).

A nice strategy for creating such a custom resource is to use delegation. Use

 to create a standard resource. Then pass it to the constructor of yourResource.Factory.create}()

custom resource type for use as a delegate. The custom resource type's logic is focused on the synthetic

children; all other work it passes on to the delegate.

What about the synthetic resources themselves, i.e. the leaf nodes in this part of the tree? These are created

on the fly by the parent resource in response to , , and getChild requireChild getChildren navigate

calls that target the synthetic resource type. These created-on-the-fly resources can be very lightweight,

since they store no configuration model and have no children. The class isPlaceholderResourceEntry

perfect for this. It's a very lightweight implementation with minimal logic that only stores the finalResource

element of the resource's address as state.

See in the WildFly Core logging subsystem for an example of this kind of thing.LoggingResource

Searching for other uses of will show other examples.PlaceholderResourceEntry

11.6.9 DeploymentUnitProcessor Interface

TODO

11.6.10 Useful classes for implementing OperationStepHandler

The WildFly Core module includes a number of implementationscontroller OperationStepHandler

that in some cases you can use directly, and that in other cases can serve as the base class for your own

handler implementation. In all of these a general goal is to eliminate the need for your code to do anything in

 while providing support for whatever is appropriate for .Stage.MODEL Stage.RUNTIME

Add Handlers
 is a base class for handlers for operations. There are a number of waysAbstractAddStepHandler add

you can configure its behavior, the most commonly used of which are to:

Latest WildFly Documentation

JBoss Community Documentation Page of 1772 2293

Configure its behavior in by passing to its constructor and Stage.MODEL AttributeDefinition

 instances for the attributes and capabilities provided by the resource. TheRuntimeCapability

handler will automatically validate the operation parameters whose names match the provided

attributes and store their values in the model of the newly added . It will also record theResource

presence of the given capabilities.

Control whether a step for the operation needs to be added, by overriding the Stage.RUNTIME

 method. Doing this isprotected boolean requiresRuntime(OperationContext context)

atypical; the standard behavior in the base class is appropriate for most cases.

Implement the primary logic of the step by overriding the Stage.RUNTIME protected void

performRuntime(final OperationContext context, final ModelNode operation,

 method. This is typically the bulk of the code in an final Resource resource)

 subclass. This is where you read data from the model andAbstractAddStepHandler Resource

use it to do things like configure and install MSC services.

Handle any unusual needs of any rollback of the step by overriding Stage.RUNTIME protected

void rollbackRuntime(OperationContext context, final ModelNode operation,

. Doing this is not typically needed, since if the rollback behaviorfinal Resource resource)

needed is simply to remove any MSC services installed in , the performRuntime

 will do this for you automatically.OperationContext

 is a subclass of meant for use by AbstractBoottimeAddStepHandler AbstractAddStepHandler

 operations that should only do their normal work in server, boot, with the server beingadd Stage.RUNTIME

put in if executed later. Primarily this is used for operations that register reload-required add

 implementations, as this can only be done at boot.DeploymentUnitProcessor

Usage of is the same as for exceptAbstractBoottimeAddStepHandler AbstractAddStepHandler

that instead of overriding you override performRuntime protected void

performBoottime(OperationContext context, ModelNode operation, Resource

.resource)

A typical thing to do in is to add a special step that registers one or more performBoottime

 s.DeploymentUnitProcessor

Latest WildFly Documentation

JBoss Community Documentation Page of 1773 2293

@Override

 public void performBoottime(OperationContext context, ModelNode operation, final Resource

resource)

 throws OperationFailedException {

 context.addStep(new AbstractDeploymentChainStep() {

 @Override

 protected void execute(DeploymentProcessorTarget processorTarget) {

processorTarget.addDeploymentProcessor(RequestControllerExtension.SUBSYSTEM_NAME,

Phase.STRUCTURE, Phase.STRUCTURE_GLOBAL_REQUEST_CONTROLLER, new

RequestControllerDeploymentUnitProcessor());

 }

 }, OperationContext.Stage.RUNTIME);

 ... do other things

Remove Handlers
TODO AbstractRemoveStepHandler ServiceRemoveStepHandler

Write attribute handlers
TODO AbstractWriteAttributeHandler

Reload-required handlers
 ReloadRequiredAddStepHandler ReloadRequiredRemoveStepHandler

ReloadRequiredWriteAttributeHandler

Use these for cases where, post-boot, the change to the configuration model made by the operation cannot

be reflected in the runtime until the process is reloaded. These handle the mechanics of recording the need

for reload and reverting it if the operation rolls back.

Restart Parent Resource Handlers
 RestartParentResourceAddHandler RestartParentResourceRemoveHandler

RestartParentWriteAttributeHandler

Use these in cases where a management resource doesn't directly control any runtime services, but instead

simply represents a chunk of configuration that a parent resource uses to configure services it installs.

(Really, this kind of situation is now considered to be a poor management API design and is discouraged.

Instead of using child resources for configuration chunks, complex attributes on the parent resource should

be used.)

These handlers help you deal with the mechanics of the fact that, post-boot, any change to the child

resource likely requires a restart of the service provided by the parent.

Latest WildFly Documentation

JBoss Community Documentation Page of 1774 2293

Model Only Handlers
 ModelOnlyAddStepHandler ModelOnlyRemoveStepHandler ModelOnlyWriteAttributeHandler

Use these for cases where the operation never affects the runtime, even at boot. All it does is update the

configuration model. In most cases such a thing would be odd. These are primarily useful for legacy

subsystems that are no longer usable on current version servers and thus will never do anything in the

runtime. However, current version Domain Controllers must be able to understand the subsystem's

configuration model to allow them to manage older Host Controllers running previous versions where the

subsystem is still usable by servers. So these handlers allow the DC to maintain the configuration model for

the subsystem.

Misc
 is used for custom operations that don't involve the configuration model.AbstractRuntimeOnlyHandler

Create a subclass and implement the protected abstract void

 method. TheexecuteRuntimeStep(OperationContext context, ModelNode operation)

superclass takes care of adding a step that calls your method.Stage.RUNTIME

 is for cases where a resource type includes a 'name'ReadResourceNameOperationStepHandler

attribute whose value is simply the value of the last element in the resource's address. There is no need to

store the value of such an attribute in the resource's model, since it can always be determined from the

resource address. But, if the value is not stored in the resource model, when the attribute is registered with

 an toManagementResourceRegistration.registerReadAttribute OperationStepHandler

handle the operation must be provided. Use read-attribute

 for this. (Note that including such an attribute in yourReadResourceNameOperationStepHandler

management API is considered to be poor practice as it's just redundant data.)

11.7 CLI Extensibility for Layered Products

In addition to supporting the ServiceLoader extension mechanism to load command handlers coming from

outside of the CLI codebase, starting from the wildfly-core-1.0.0.Beta1 release the CLI running in a modular

classloading environment can be extended with commands exposed in server extension modules. The CLI

will look for and register extension commands when it (re-)connects to the controller by iterating through the

registered by that time extensions and using the ServiceLoader mechanism on the extension modules.

(Note, that this mechanism will work only for extensions available in the server installation the CLI is

launched from.)

Here is an example of a simple command handler and its integration.

Latest WildFly Documentation

JBoss Community Documentation Page of 1775 2293

package org.jboss.as.test.cli.extensions;public class ExtCommandHandler extends

org.jboss.as.cli.handlers.CommandHandlerWithHelp {

package org.jboss.as.test.cli.extensions;

public class ExtCommandHandler extends org.jboss.as.cli.handlers.CommandHandlerWithHelp {

 public static final String NAME = "ext-command";

 public static final String OUTPUT = "hello world!";

 public CliExtCommandHandler() {

 super(NAME, false);

 }

 @Override

 protected void doHandle(CommandContext ctx) throws CommandLineException {

 ctx.printLine(OUTPUT);

 }

}

The command will simply print a message to the terminal. The next step is to implement the CLI

CommandHandlerProvider interface.

package org.jboss.as.test.cli.extensions;

public class ExtCommandHandlerProvider implements org.jboss.as.cli.CommandHandlerProvider {

 @Override

 public CommandHandler createCommandHandler(CommandContext ctx) {

 return new ExtCommandHandler();

 }

 /**

 * Whether the command should be available in tab-completion.

 */

 @Override

 public boolean isTabComplete() {

 return true;

 }

 /**

 * Command name(s).

 */

 @Override

 public String[] getNames() {

 return new String[]{ExtCommandHandler.NAME};

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1776 2293

The final step is to include entry into theMETA-INF/services/org.jboss.as.cli.CommandHandlerProvider

JAR file containing the classes above with value

.org.jboss.as.test.cli.extensions.ExtCommandHandlerProvider

11.8 All WildFly documentation

There are several guides in the WildFly documentation series. This list gives an overview of each of the

guides:

* - Explains how to download and start WildFly.Getting Started Guide

* - Talks you through developing your first applications onGetting Started Developing Applications Guide

WildFly, and introduces you to JBoss Tools and how to deploy your applications.

* - A Java EE 6 Tutorial.JavaEE 6 Tutorial

* - Tells you how to configure and manage your WildFly instances.Admin Guide

* - Contains concepts that you need to be aware of when developing applications forDeveloper Guide

WildFly. Classloading is explained in depth.

* - Reference guide for how to set up clustered WildFly instances.High Availability Guide

* - A guide to adding new functionality to WildFly.Extending WildFly

11.9 CLI extensibility for layered products

In addition to supporting the ServiceLoader extension mechanism to load command handlers coming from

outside of the CLI codebase, starting from the wildfly-core-1.0.0.Beta1 release the CLI running in a modular

classloading environment can be extended with commands exposed in server extension modules. The CLI

will look for and register extension commands when it (re-)connects to the controller by iterating through the

registered by that time extensions and using the ServiceLoader mechanism on the extension modules.

(Note, that this mechanism will work only for extensions available in the server installation the CLI is

launched from.)

Here is an example of a simple command handler and its integration.

Latest WildFly Documentation

JBoss Community Documentation Page of 1777 2293

package org.jboss.as.test.cli.extensions;public class ExtCommandHandler extends

org.jboss.as.cli.handlers.CommandHandlerWithHelp {

package org.jboss.as.test.cli.extensions;

public class ExtCommandHandler extends org.jboss.as.cli.handlers.CommandHandlerWithHelp {

 public static final String NAME = "ext-command";

 public static final String OUTPUT = "hello world!";

 public CliExtCommandHandler() {

 super(NAME, false);

 }

 @Override

 protected void doHandle(CommandContext ctx) throws CommandLineException {

 ctx.printLine(OUTPUT);

 }

}

The command will simply print a message to the terminal. The next step is to implement the CLI

CommandHandlerProvider interface.

package org.jboss.as.test.cli.extensions;

public class ExtCommandHandlerProvider implements org.jboss.as.cli.CommandHandlerProvider {

 @Override

 public CommandHandler createCommandHandler(CommandContext ctx) {

 return new ExtCommandHandler();

 }

 /**

 * Whether the command should be available in tab-completion.

 */

 @Override

 public boolean isTabComplete() {

 return true;

 }

 /**

 * Command name(s).

 */

 @Override

 public String[] getNames() {

 return new String[]{ExtCommandHandler.NAME};

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1778 2293

The final step is to include entry into theMETA-INF/services/org.jboss.as.cli.CommandHandlerProvider

JAR file containing the classes above with value

.org.jboss.as.test.cli.extensions.ExtCommandHandlerProvider

11.10 Domain Mode Subsystem Transformers

Abstract

Background

Getting the initial domain model

An operation changes something in the domain configuration

Versions and backward compatibility

Versioning of subsystems

The role of transformers

Resource transformers

Rejection in resource transformers

Operation transformers

Rejection in operation transformers

Different profiles for different versions

Ignoring resources on legacy hosts

How do I know what needs to be transformed?

Getting data for a previous version

See what changed

Latest WildFly Documentation

JBoss Community Documentation Page of 1779 2293

How do I write a transformer?

ResourceTransformationDescriptionBuilder

Silently discard child resources

Reject child resource

Redirect address for child resource

Getting a child resource builder

AttributeTransformationDescriptionBuilder

Attribute transformation lifecycle

Discarding attributes

The DiscardAttributeChecker interface

DiscardAttributeChecker helper classes/implementations

DiscardAttributeChecker.DefaultDiscardAttributeChecker

DiscardAttributeChecker.DiscardAttributeValueChecker

DiscardAttributeChecker.ALWAYS

DiscardAttributeChecker.UNDEFINED

Rejecting attributes

The RejectAttributeChecker interface

RejectAttributeChecker helper classes/implementations

RejectAttributeChecker.DefaultRejectAttributeChecker

RejectAttributeChecker.DEFINED

RejectAttributeChecker.SIMPLE_EXPRESSIONS

RejectAttributeChecker.ListRejectAttributeChecker

RejectAttributeChecker.ObjectFieldsRejectAttributeChecker

Converting attributes

The AttributeConverter interface

Introducing attributes during transformation

Renaming attributes

OperationTransformationOverrideBuilder

Evolving transformers with subsystem ModelVersions

The old way

Chained transformers

Testing transformers

Testing a configuration that works

Testing a configuration that does not work

Common transformation use-cases

Child resource type does not exist in legacy model

Attribute does not exist in the legacy subsystem

Default value of the attribute is the same as legacy implied behavior

Default value of the attribute is different from legacy implied behaviour

Attribute has a different default value

Attribute has a different type

Latest WildFly Documentation

JBoss Community Documentation Page of 1780 2293

11.10.1 Abstract

A WildFly domain may consist of a new Domain Controller (DC) controlling slave Host Controllers (HC)

running older versions. Each slave HC maintains a copy of the centralized domain configuration, which they

use for controlling their own servers. In order for the slave HCs to understand the configuration from the DC,

transformation is needed, whereby the DC translates the configuration and operations into something the

slave HCs can understand.

11.10.2 Background

WildFly comes with a which allows you to have one Host Controller acting as the Domaindomain mode

Controller. The Domain Controller's job is to maintain the centralized domain configuration. Another term for

the DC is 'Master Host Controller'. Before explaining why transformers are important and when they should

be used, we will revisit how the domain configuration is used in domain mode.

The centralized domain configuration is stored in . This is only ever parsed on the DC, and itdomain.xml

has the following structure:

 - contains:extensions

 - a references to a module that bootstraps the extension

 implementation used to bootstrap yourorg.jboss.as.controller.Extension

subsystem parsers and initialize the resource definitions for your subsystems.

 - contains:profiles

 - a named set of:profile

 - contains the configuration for a subsystem, using the parser initialized bysubsystem

the subsystem's extension.

 - contains:socket-binding-groups

 - a named set of:socket-binding-group

 - A named port on an interface which can be referenced from the socket-binding

 configurations for subsystems opening sockets.subsystem

 - containsserver-groups

 - this has a name and references a and a server-group profile

. The HCs then reference the name from their socket-binding-group server-group

 section in .<servers> host.xml

When the DC parses , it is transformed into (and in some cases)domain.xml add write-attribute

operations just as explained in . These operations build up theParsing and marshalling of the subsystem xml

model on the DC.

Latest WildFly Documentation

JBoss Community Documentation Page of 1781 2293

A HC wishing to join the domain and use the DC's centralized configuration is known as a 'slave HC'. A slave

HC maintains a copy of the DC's centralized domain configuration. This copy of the domain configuration is

used to start its servers. This is done by asking the domain model to itself, which in turn asks thedescribe

subsystems to themselves. The operation for a subsystem looks at the state of thedescribe describe

subsystem model and produces the operations necessary to create the subsystem on the server. Theadd

same mechanism also takes place on the DC (bear in mind that the DC is also a HC, which can have its own

servers), although of course its copy of the domain configuration is the centralized one.

There are two steps involved in keeping the keeping the slave HC's domain configuration in sync with the

centralized domain configuration.

getting the initial domain model

an operation changes something in the domain configuration

Let's look a bit closer at what happens in each of these steps.

Getting the initial domain model
When a slave HC connects to the DC it obtains a copy of the domain model from the DC. This is done in a

simpler serialized format, different from the operations that built up the model on the DC, or the operations

resulting from the step used to bootstrap the servers. They describe each address that exists indescribe

the DC's model, and contain the attributes set for the resource at that address. This serialized form looks like

this:

Latest WildFly Documentation

JBoss Community Documentation Page of 1782 2293

[{

 "domain-resource-address" => [],

 "domain-resource-model" => {

 "management-major-version" => 2,

 "management-minor-version" => 0,

 "management-micro-version" => 0,

 "release-version" => "8.0.0.Beta1-SNAPSHOT",

 "release-codename" => "WildFly"

 }

},

{

 "domain-resource-address" => [("extension" => "org.jboss.as.clustering.infinispan")],

 "domain-resource-model" => {"module" => "org.jboss.as.clustering.infinispan"}

},

--SNIP - the rest of the extensions --

{

 "domain-resource-address" => [("extension" => "org.jboss.as.weld")],

 "domain-resource-model" => {"module" => "org.jboss.as.weld"}

},

{

 "domain-resource-address" => [("system-property" => "java.net.preferIPv4Stack")],

 "domain-resource-model" => {

 "value" => "true",

 "boot-time" => undefined

 }

},

{

 "domain-resource-address" => [("profile" => "full-ha")],

 "domain-resource-model" => undefined

},

{

 "domain-resource-address" => [

 ("profile" => "full-ha"),

 ("subsystem" => "logging")

],

 "domain-resource-model" => {}

},

{

 "domain-resource-address" => [sss|WFLY8:Example subsystem],

 "domain-resource-model" => {

 "level" => "INFO",

 "enabled" => undefined,

 "encoding" => undefined,

 "formatter" => "%d{HH:mm:ss,SSS} %-5p [%c] (%t) %s%E%n",

 "filter-spec" => undefined,

 "autoflush" => undefined,

 "target" => undefined,

 "named-formatter" => undefined

 }

},

--SNIP---

The slave HC then applies these one at a time and builds up the initial domain model. It needs to do this

before it can start any of its servers.

Latest WildFly Documentation

JBoss Community Documentation Page of 1783 2293

An operation changes something in the domain configuration
Once a domain is up and running we can still change things in the domain configuration. These changes

must happen when connected to the DC, and are then propagated to the slave HCs, which then in turn

propagate the changes to any servers running in a server group affected by the changes made. In this

example:

[disconnected /] connect

[domain@localhost:9990 /]

/profile=full/subsystem=datasources/data-source=ExampleDS:write-attribute(name=enabled,value=false)
{

"outcome" => "success",

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {

 "slave" => {"server-one" => {"response" => {

 "outcome" => "success",

 "result" => undefined,

 "response-headers" => {

 "operation-requires-restart" => true,

 "process-state" => "restart-required"

 }

 }}},

 "master" => {

 "server-one" => {"response" => {

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-restart" => true,

 "process-state" => "restart-required"

 }

 }},

 "server-two" => {"response" => {

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-restart" => true,

 "process-state" => "restart-required"

 }

 }}

 }

 }}}

}

the DC propagates the changes to itself , which in turn propagates it to its two servershost=master

belonging to which uses the profile. More interestingly, it also propagates it to main-server-group full

 which updates its local copy of the domain model, and then propagates the change to its host=slave

 which belongs to which uses the profile.server-one main-server-group full

11.10.3 Versions and backward compatibility

A HC and its servers will always be the same version of WildFly (they use the same module path and jars).

However, the DC and the slave HCs do not necessarily need to be the same version. One of the points in

the original specification for WildFly is that

Latest WildFly Documentation

JBoss Community Documentation Page of 1784 2293

Important

A Domain Controller should be able to manage slave Host Controllers older than itself.

This means that for example a WildFly 10.1 DC should be able to work with slave HCs running WildFly 10.

The opposite is not true, the DC must be the same or the newest version in the domain.

Versioning of subsystems
To help with being able to know what is compatible we have versions within the subsystems, this is stored in

the subsystem's extension. When registering the subsystem you will typically see something like:

public class SomeExtension implements Extension {

 private static final String SUBSYSTEM_NAME = "my-subsystem"'

 private static final int MANAGEMENT_API_MAJOR_VERSION = 2;

 private static final int MANAGEMENT_API_MINOR_VERSION = 0;

 private static final int MANAGEMENT_API_MICRO_VERSION = 0;

 /**

 * {@inheritDoc}

 * @see

org.jboss.as.controller.Extension#initialize(org.jboss.as.controller.ExtensionContext)

 */

 @Override

 public void initialize(ExtensionContext context) {

 // IMPORTANT: Management API version != xsd version! Not all Management API changes

result in XSD changes

 SubsystemRegistration registration = context.registerSubsystem(SUBSYSTEM_NAME,

MANAGEMENT_API_MAJOR_VERSION,

 MANAGEMENT_API_MINOR_VERSION, MANAGEMENT_API_MICRO_VERSION);

 //Register the resource definitions

 }

}

Which sets the of the subsystem.ModelVersion

Latest WildFly Documentation

JBoss Community Documentation Page of 1785 2293

Important

Whenever something changes in the subsystem, such as:

an attribute is added or removed from a resource

a attribute is renamed in a resource

an attribute has its type changed

an attribute or operation parameter's nillable or allows expressions is changed

an attribute or operation parameter's default value changes

a child resource type is added or removed

an operation is added or removed

an operation has its parameters changed

and the current version of the subsystem has been part of a Final release of WildFly, we must

bump the version of the subsystem.

Once it has been increased you can of course make more changes until the next Final release without more

version bumps. It is also worth noting that a new WildFly release does not automatically mean a new version

for the subsystem, the new version is only needed if something was changed. For example the jaxrs

subsystem has remained on 1.0.0 for all versions of WildFly and JBoss AS 7.

You can find the of a subsystem by querying its extension:ModelVersion

domain@localhost:9990 /]

/extension=org.jboss.as.clustering.infinispan:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {

 "module" => "org.jboss.as.clustering.infinispan",

 "subsystem" => {"infinispan" => {

 "management-major-version" => 2,

 "management-micro-version" => 0,

 "management-minor-version" => 0,

 "xml-namespaces" => [jboss:domain:infinispan:1.0",

 "urn:jboss:domain:infinispan:1.1",

 "urn:jboss:domain:infinispan:1.2",

 "urn:jboss:domain:infinispan:1.3",

 "urn:jboss:domain:infinispan:1.4",

 "urn:jboss:domain:infinispan:2.0"]

 }}

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1786 2293

11.10.4 The role of transformers

Now that we have mentioned the slave HCs registration process with the DC, and know about

ModelVersions, it is time to mention that when registering with the DC, the slave HC will send across a list of

all its subsystem ModelVersions. The DC maintains this information in a registry for each slave HC, so that it

knows which transformers (if any) to invoke for a legacy slave. We will see how to write and register

transformers later on in . Slave HCs from version 7.2.0 onwards will also includeHow do I write a transformer

a list of resources that they ignore (see), and the DC will maintain thisIgnoring resources on legacy hosts

information in its registry. The DC will not send across any resources that it knows a slave ignores during the

initial domain model transfer. When forwarding operations onto the slave HCs, the DC will skip forwarding

those to slave HCs ignoring those resources.

There are two kinds of transformers:

resource transformers

operation transformers

The main function of transformers is to transform a subsystem to something that the legacy slave HC can

understand, or to aggressively reject things that the legacy slave HC will not understand. Rejection, in this

context, essentially means, that the resource or operation cannot safely be transformed to something valid

on the slave, so the transformation fails. We will see later how to reject attributes in , andRejecting attributes

child resources in .Reject child resource

Both resource and operation transformers are needed, but take effect at different times. Let us use the weld

subsystem, which is relatively simple, as an example. In JBoss AS 7.2.0 and lower it had a ModelVersion of

1.0.0, and its resource description was as follows:

{

 "description" => "The configuration of the weld subsystem.",

 "attributes" => {},

 "operations" => {

 "remove" => {

 "operation-name" => "remove",

 "description" => "Operation removing the weld subsystem.",

 "request-properties" => {},

 "reply-properties" => {}

 },

 "add" => {

 "operation-name" => "add",

 "description" => "Operation creating the weld subsystem.",

 "request-properties" => {},

 "reply-properties" => {}

 }

 },

 "children" => {}

 },

Latest WildFly Documentation

JBoss Community Documentation Page of 1787 2293

In WildFly 8, it has a ModelVersion of 2.0.0 and has added two attributes, require-bean-descriptor

and mode:non-portable

{

 "description" => "The configuration of the weld subsystem.",

 "attributes" => {

 "require-bean-descriptor" => {

 "type" => BOOLEAN,

 "description" => "If true then implicit bean archives without bean descriptor

file (beans.xml) are ignored by Weld",

 "expressions-allowed" => true,

 "nillable" => true,

 "default" => false,

 "access-type" => "read-write",

 "storage" => "configuration",

 "restart-required" => "no-services"

 },

 "non-portable-mode" => {

 "type" => BOOLEAN,

 "description" => "If true then the non-portable mode is enabled. The

non-portable mode is suggested by the specification to overcome problems with legacy

applications that do not use CDI SPI properly and may be rejected by more strict validation in

CDI 1.1.",

 "expressions-allowed" => true,

 "nillable" => true,

 "default" => false,

 "access-type" => "read-write",

 "storage" => "configuration",

 "restart-required" => "no-services"

 }

 },

 "operations" => {

 "remove" => {

 "operation-name" => "remove",

 "description" => "Operation removing the weld subsystem.",

 "request-properties" => {},

 "reply-properties" => {}

 },

 "add" => {

 "operation-name" => "add",

 "description" => "Operation creating the weld subsystem.",

 "request-properties" => {

 "require-bean-descriptor" => {

 "type" => BOOLEAN,

 "description" => "If true then implicit bean archives without bean

descriptor file (beans.xml) are ignored by Weld",

 "expressions-allowed" => true,

 "required" => false,

 "nillable" => true,

 "default" => false

 },

 "non-portable-mode" => {

 "type" => BOOLEAN,

 "description" => "If true then the non-portable mode is enabled. The

non-portable mode is suggested by the specification to overcome problems with legacy

applications that do not use CDI SPI properly and may be rejected by more strict validation in

Latest WildFly Documentation

JBoss Community Documentation Page of 1788 2293

CDI 1.1.",

 "expressions-allowed" => true,

 "required" => false,

 "nillable" => true,

 "default" => false

 }

 },

 "reply-properties" => {}

 }

 },

 "children" => {}

 }

In the rest of this section we will assume that we are running a DC running WildFly 8 so it will have

ModelVersion 2.0.0 of the weld subsystem, and that we are running a slave using ModelVersion 1.0.0 of the

weld subsystem.

Important

Transformation always takes place on the Domain Controller, and is done when sending across the

initial domain model AND forwarding on operations to legacy slave HCs.

Latest WildFly Documentation

JBoss Community Documentation Page of 1789 2293

Resource transformers
When copying over the centralized domain configuration as mentioned in ,Getting the initial domain model

we need to make sure that the copy of the domain model is something that the servers running on the legacy

slave HC understand. So if the centralized domain configuration had any of the two new attributes set, we

would need to reject the transformation in the transformers. One reason for this is to keep things consistent,

it doesn't look good if you connect to the slave HC and find attributes and/or child resources when doing

 which are not there when you do . Also, to make life:read-resource :read-resource-description

easier for subsystem writers, most instances of the operation use a standard implementationdescribe

which would include these attributes when creating the operation for the server, which could causeadd

problems there.

Another, more concrete example from the logging subsystem is that it allows a ' }' in the pattern%K{...

formatter which makes the formatter use color:

<pattern-formatter pattern="%K{level}%d{HH:mm:ss,SSS} %-5p [%c] (%t) %s%E%n"/>

This ' }' however was introduced in JBoss AS < 7.1.3 (ModelVersion 1.2.0), so if that makes it across%K{...

to a slave HC running an older version, the servers fail to start up. So the logging extension registerswill

transformers to strip out the ' }' from the attribute value (leaving ' %K{... %-5p

[%c]

') so that the old slave HC's servers can understand it.(%t) %s%E%n"

Rejection in resource transformers
Only slave HCs from JBoss AS 7.2.0 and newer inform the DC about their ignored resources (see Ignoring

). This means that if a transformer on the DC rejects transformation for a legacyresources on legacy hosts

slave HC, exactly what happens to the slave HC depends on the version of the slave HC. If the slave HC is:

 - the DC has no means of knowing if the slave HC has ignored the resource beingolder than 7.2.0

rejected or not. So we log a warning on the DC, and send over the serialized part of that model

anyway. If the slave HC has ignored the resource in question, it does not apply it. If the slave HC has

not ignored the resource in question, it will apply it, but no failure will happen until it tries to start a

server which references this bad configuration.

 - If a resource is ignored on the slave HC, the DC knows about this, and will not7.2.0 or newer

attempt to transform or send the resource across to the slave HC. If the resource transformation is

rejected, we know the resource was not ignored on the slave HC and so we can aggressively fail the

transformation, which in turn will cause the slave HC to fail to start up.

Latest WildFly Documentation

JBoss Community Documentation Page of 1790 2293

Operation transformers
When the operation gets sent across to theAn operation changes something in the domain configuration

slave HCs to update their copies of the domain model. The slave HCs then forward this operation onto the

affected servers. The same considerations as in are true, although operationResource transformers

transformers give you quicker 'feedback' if something is not valid. If you try to execute:

/profile=full/subsystem=weld:write-attribute(name=require-bean-descriptor, value=false)

This will fail on the legacy slave HC since its version of the subsystem does not contain any such attribute.

However, it is best to aggressively reject in such cases.

Rejection in operation transformers
For transformed operations we can always know if the operation is on an ignored resource in the legacy

slave HC. In 7.2.0 onwards, we know this through the DC's registry of ignored resources on the slave. In

older versions of slaves, we send the operation across to the slave, which tries to invoke the operation. If the

operation is against an ignored resource we inform the DC about this fact. So as part of the transformation

process, if something gets rejected we can (and do!) fail the transformation aggressively. If the operation

invoked on the DC results in the operation being sent across to 10 slave HCs and one of them has a legacy

version which ends up rejecting the transformation, we rollback the operation across the whole domain.

Different profiles for different versions
Now for the example we have been using there is a slight twist. We have the new weld

 and attributes. These have been added in WildFly 8require-bean-descriptor non-portable-mode

which supports Java EE 7, and thus CDI 1.1. JBoss AS 7.x supports Java EE 6, and thus CDI 1.0. In CDI

1.1 the values of these attributes are tweakable, so they can be set to either or . The defaulttrue false

behaviour for these in CDI 1.1, if not set, is that they are . However, for CDI 1.0 these were notfalse

tweakable, and with the way the subsystem in JBoss AS 7.x worked is similar to if they are set to .true

The above discussion implies that to use the weld subsystem on a legacy slave HC, the domain.xml

configuration for it must look like:

<subsystem xmlns="urn:jboss:domain:weld:2.0"

 require-bean-descriptor="true"

 non-portable-mode="true"/>

We will see the exact mechanics for how this is actually done later but in short when pushing this to a legacy

slave DC we register transformers which reject the transformation if these attributes are not set to true

since that implies some behavior not supported on the legacy slave DC. If they are , all is well, and thetrue

transformers discard, or remove, these attributes since they don't exist in the legacy model. This removal is

fine since they have the values which would result in the behavior assumed on the legacy slave HC.

Latest WildFly Documentation

JBoss Community Documentation Page of 1791 2293

That way the older slave HCs will work fine. However, we might also have WildFly 8 slave HCs in our

domain, and they are missing out on the new features introduced by the attributes introduced in

ModelVersion 2.0.0. If we do

<subsystem xmlns="urn:jboss:domain:weld:2.0"

 require-bean-descriptor="false"

 non-portable-mode="false"/>

then it will fail when doing transformation for the legacy controller. The solution is to put these in two different

profiles in domain.xml

<domain>

....

 <profiles>

 <profile name="full">

 <subsystem xmlns="urn:jboss:domain:weld:2.0"

 require-bean-descriptor="false"

 non-portable-mode="false"/>

 ...

 </profile>

 <profile name="full-legacy">

 <subsystem xmlns="urn:jboss:domain:weld:2.0"

 require-bean-descriptor="true"

 non-portable-mode="true"/>

 ...

 </profile>

 </profiles>

 ...

 <server-groups>

 <server-group name="main-server-group" profile="full">

 <server-group>

 <server-group name="main-server-group-legacy" profile="full-legacy">

 <server-group>

 </server-groups>

</domain>

Then have the HCs using WildFly 8 make their servers reference the server group,main-server-group

and the HCs using older versions of WildFly 8 make their servers reference the

 server group.main-server-group-legacy

Latest WildFly Documentation

JBoss Community Documentation Page of 1792 2293

Ignoring resources on legacy hosts
Booting the above configuration will still cause problems on legacy slave HCs, especially if they are JBoss

AS 7.2.0 or later. The reason for this is that when they register themselves with the DC it lets the DC know

which they have. If the DC comes to transform something it should reject for a slaveignored resources

HC and it is not part of its ignored resources it will aggressively fail the transformation. Versions of JBoss AS

older than 7.2.0 still have this ignored resources mechanism, but don't let the DC know about what they

have ignored so the DC cannot reject aggressively - instead it will log some warnings. However, it is still

good practice to ignore resources you are not interested in regardless of which legacy version the slave HC

is running.

To ignore the profile we cannot understand we do the following in the legacy slave HC's host.xml

<host xmlns="urn:jboss:domain:1.3" name="slave">

...

 <domain-controller>

 <remote host="${jboss.test.host.master.address}" port="${jboss.domain.master.port:9999}"

security-realm="ManagementRealm">

 <ignored-resources type="profile">

 <instance name="full-legacy"/>

 </ignored-resources>

 </remote>

 </domain-controller>

....

</host>

Important

Any top-level resource type can be ignored , , etc. Ignoring aprofile extension server-group

resource instance ignores that resource, and all its children.

11.10.5 How do I know what needs to be transformed?

There is a set of related classes in the package to help you determine this.org.wildfly.legacy.util

These now live at

.https://github.com/wildfly/wildfly-legacy-test/tree/master/tools/src/main/java/org/wildfly/legacy/util

They are all runnable in your IDE, just start the WildFly or JBoss AS 7 instances as described below.

https://github.com/wildfly/wildfly-legacy-test/tree/master/tools/src/main/java/org/wildfly/legacy/util

Latest WildFly Documentation

JBoss Community Documentation Page of 1793 2293

1.

2.

3.

4.

1.

2.

1.

2.

3.

4.

Getting data for a previous version
 contains thehttps://github.com/wildfly/wildfly-legacy-test/tree/master/tools/src/main/resources/legacy-models

output for the previous WildFly/JBoss AS 7 versions, so check if the files for the version you want to check

backwards compatibility are there yet. If not, then you need to do the following to get the subsystem

definitions:

Start the version of WildFly/JBoss AS 7 using old --server-config=standalone-full-ha.xml

Run , which will output the subsystemorg.wildfly.legacy.util.GrabModelVersionsUtil

versions to target/standalone-model-versions-running.dmr

Run which willorg.wildfly.legacy.util.DumpStandaloneResourceDefinitionUtil

output the full resource definition to

target/standalone-resource-definition-running.dmr

Stop the running version of WildFly/JBoss AS 7

See what changed
To do this follow the following steps

Start the version of WildFly using new --server-config=standalone-full-ha.xml

Run and answer the followingorg.wildfly.legacy.util.CompareModelVersionsUtil

questions"

Enter Legacy AS version:

If it is known version in the folder,tools/src/test/resources/legacy-models

enter the version number.

If it is a not known version, and you got the data yourself in the last step, enter '

'running

Enter type:

Answer ' 'S

Read from target directory or from the legacy-models directory:

If it is known version in the controller/src/test/resources/legacy-models

folder, enter ' '.l

If it is a not known version, and you got the data yourself in the last step, enter ' 't

Report on differences in the model when the management versions are different?:

Answer ' 'y

Here is some example output, as a subsystem developer you can ignore everything down to ======

:Comparing subsystem models ======

https://github.com/wildfly/wildfly-legacy-test/tree/master/tools/src/main/resources/legacy-models

Latest WildFly Documentation

JBoss Community Documentation Page of 1794 2293

Enter legacy AS version: 7.2.0.Final

Using target model: 7.2.0.Final

Enter type [S](standalone)/H(host)/D(domain)/F(domain + host):S

Read from target directory or from the legacy-models directory - t/[l]:

Report on differences in the model when the management versions are different? y/[n]: y

Reporting on differences in the model when the management versions are different

Loading legacy model versions for 7.2.0.Final....

Loaded legacy model versions

Loading model versions for currently running server...

Oct 01, 2013 6:26:03 PM org.xnio.Xnio <clinit>

INFO: XNIO version 3.1.0.CR7

Oct 01, 2013 6:26:03 PM org.xnio.nio.NioXnio <clinit>

INFO: XNIO NIO Implementation Version 3.1.0.CR7

Oct 01, 2013 6:26:03 PM org.jboss.remoting3.EndpointImpl <clinit>

INFO: JBoss Remoting version 4.0.0.Beta1

Loaded current model versions

Loading legacy resource descriptions for 7.2.0.Final....

Loaded legacy resource descriptions

Loading resource descriptions for currently running STANDALONE...

Loaded current resource descriptions

Starting comparison of the current....

====== Comparing core models ======

-- SNIP --

====== Comparing subsystem models ======

-- SNIP --

====== Resource root address: ["subsystem" => "remoting"] - Current version: 2.0.0; legacy

version: 1.2.0 =======

--- Problems for relative address to root []:

Missing child types in current: []; missing in legacy [http-connector]

--- Problems for relative address to root ["remote-outbound-connection" => "*"]:

Missing attributes in current: []; missing in legacy [protocol]

Missing parameters for operation 'add' in current: []; missing in legacy [protocol]

-- SNIP --

====== Resource root address: ["subsystem" => "weld"] - Current version: 2.0.0; legacy version:

1.0.0 =======

--- Problems for relative address to root []:

Missing attributes in current: []; missing in legacy [require-bean-descriptor,

non-portable-mode]

Missing parameters for operation 'add' in current: []; missing in legacy

[require-bean-descriptor, non-portable-mode]

Done comparison of STANDALONE!

So we can see that for the subsystem, we have added a child type called ,remoting http-connector

and we have added an attribute called (they are missing in legacy).protocol

in the subsystem, we have added the and weld require-bean-descriptor non-portable-mode

attributes in the current version. It will also point out other issues like changed attribute types, changed

defaults etc.

Latest WildFly Documentation

JBoss Community Documentation Page of 1795 2293

Warning

Note that CompareModelVersionsUtil simply inspects the raw resource descriptions of the specified

legacy and current models. Its results show the differences between the two. They do not take into

account whether one or more transformers have already been written for those versions

differences. You will need to check that transformers are not already in place for those versions.

One final point to consider are that some subsystems register runtime-only resources and operations. For

example the subsystem has a method. These do not get registered on the , e.g. theremodcluster stop DC

is no operation, it only exists on the servers, for/profile=full-ha/subsystem=modcluster:stop

example . What this means is that/host=xxx/server=server-one/subsystem=modcluster:stop

you don't have to transform such operations and resources. The reason is they are not callable on the DC,

and so do not need propagation to the servers in the domain, which in turn means no transformation is

needed.

11.10.6 How do I write a transformer?

There are two APIs available to write transformers for a resource. There is the original low-level API where

you register transformers directly, the general idea is that you get hold of a

 for each level and implement the , TransformersSubRegistration ResourceTransformer

 and interfaces directly. It is, however, a prettyOperationTransformer PathAddressTransformer

complex thing to do, so we recommend the other approach. For completeness here is the entry point to

handling transformation in this way.

Latest WildFly Documentation

JBoss Community Documentation Page of 1796 2293

public class SomeExtension implements Extension {

 private static final String SUBSYSTEM_NAME = "my-subsystem"'

 private static final int MANAGEMENT_API_MAJOR_VERSION = 2;

 private static final int MANAGEMENT_API_MINOR_VERSION = 0;

 private static final int MANAGEMENT_API_MICRO_VERSION = 0;

 @Override

 public void initialize(ExtensionContext context) {

 SubsystemRegistration registration = context.registerSubsystem(SUBSYSTEM_NAME,

MANAGEMENT_API_MAJOR_VERSION,

 MANAGEMENT_API_MINOR_VERSION, MANAGEMENT_API_MICRO_VERSION);

 //Register the resource definitions

 }

 static void registerTransformers(final SubsystemRegistration subsystem) {

 registerTransformers_1_1_0(subsystem);

 registerTransformers_1_2_0(subsystem);

 }

 /**

 * Registers transformers from the current version to ModelVersion 1.1.0

 */

 private static void registerTransformers_1_1_0(final SubsystemRegistration subsystem) {

 final ModelVersion version = ModelVersion.create(1, 1, 0);

 //The default resource transformer forwards all operations

 final TransformersSubRegistration registration =

subsystem.registerModelTransformers(version, ResourceTransformer.DEFAULT);

 final TransformersSubRegistration child =

registration.registerSubResource(PathElement.pathElement("child"));

 //We can do more things on the TransformersSubRegistation instances

 registerRelayTransformers(stack);

 }

Having implemented a number of transformers using the above approach, we decided to simplify things, so

we introduced the

org.jboss.as.controller.transform.description.ResourceTransformationDescriptionBuilder

API. It is a lot simpler and avoids a lot of the duplication of functionality required by the low-level API

approach. While it doesn't give you the full power that the low-level API does, we found that there are very

few places in the WildFly codebase where this does not work, so we will focus on the

 API here. (If you come across a problem where thisResourceTransformationDescriptionBuilder

does not work, get in touch with someone from the WildFly Domain Management Team and we should be

able to help). The builder API makes all the nasty calls to for you underTransformersSubRegistration

the hood. It also allows you to fall back to the low-level API in places, although that will not be covered in the

current version of this guide. The entry point for using the builder API here is taken from the WeldExtension

(in current WildFly this has ModelVersion 2.0.0).

Latest WildFly Documentation

JBoss Community Documentation Page of 1797 2293

private void registerTransformers(SubsystemRegistration subsystem) {

 ResourceTransformationDescriptionBuilder builder =

TransformationDescriptionBuilder.Factory.createSubsystemInstance();

 //These new attributes are assumed to be 'true' in the old version but default to false

in the current version. So discard if 'true' and reject if 'undefined'.

 builder.getAttributeBuilder()

 .setDiscard(new DiscardAttributeChecker.DiscardAttributeValueChecker(false,

false, new ModelNode(true)),

 WeldResourceDefinition.NON_PORTABLE_MODE_ATTRIBUTE,

WeldResourceDefinition.REQUIRE_BEAN_DESCRIPTOR_ATTRIBUTE)

 .addRejectCheck(new RejectAttributeChecker.DefaultRejectAttributeChecker() {

 @Override

 public String getRejectionLogMessage(Map<String, ModelNode> attributes) {

 return

WeldMessages.MESSAGES.rejectAttributesMustBeTrue(attributes.keySet());

 }

 @Override

 protected boolean rejectAttribute(PathAddress address, String attributeName,

ModelNode attributeValue,

 TransformationContext context) {

 //This will not get called if it was discarded, so reject if it is

undefined (default==false) or if defined and != 'true'

 return !attributeValue.isDefined() ||

!attributeValue.asString().equals("true");

 }

 }, WeldResourceDefinition.NON_PORTABLE_MODE_ATTRIBUTE,

WeldResourceDefinition.REQUIRE_BEAN_DESCRIPTOR_ATTRIBUTE)

 .end();

 TransformationDescription.Tools.register(builder.build(), subsystem,

ModelVersion.create(1, 0, 0));

 }

Here we register a and a . As mentioned in discard check reject check Attribute transformation

 all attributes are inspected for whether they should be discarded first. Then all attributes which werelifecycle

not discarded are checked for if they should be rejected. We will dig more into what this code means in the

next few sections, but in short it means that we discard the and require-bean-descriptor

 attributes on the subsystem resource if they have the value . If they have anynon-portable weld true

other value, they will not get discarded and so reach the reject check, which will reject the transformation of

the attributes if they have any other value.

Here we are saying that we should discard the and require-bean-descriptor non-portable-mode

attributes on the subsystem resource if they are undefined, and reject them if they are defined. So thatweld

means that if the weld subsystem looks like

{

 "non-portable-mode" => false,

 "require-bean-descriptor" => false

 }

Latest WildFly Documentation

JBoss Community Documentation Page of 1798 2293

or

{

 "non-portable-mode" => undefined,

 "require-bean-descriptor" => undefined

 }

or any other combination (the default values for these attributes if undefined is) we will reject thefalse

transformation for the slave legacy HC.

If the resource has true for these attributes:

{

 "non-portable-mode" => true,

 "require-bean-descriptor" => true

 }

they both get discarded (i.e. removed), so they will not get inspected for rejection, and an empty model not

containing these attributes gets sent to the legacy HC.

Here we will discuss this API a bit more, to outline the most important features/most commonly needed

tasks.

ResourceTransformationDescriptionBuilder
The contains transformations for a resource type. TheResourceTransformationDescriptionBuilder

initial one is for the subsystem, obtained by the following call:

ResourceTransformationDescriptionBuilder subsystemBuilder =

TransformationDescriptionBuilder.Factory.createSubsystemInstance();

The contains functionality for how to handle childResourceTransformationDescriptionBuilder

resources, which we will look at in this section. It is also the entry point to how to handle transformation of

attributes as we will see in . Also, it allows you to further overrideAttributeTransformationDescriptionBuilder

operation transformation as discussed in . When we have finishedOperationTransformationOverrideBuilder

with our builder, we register it with the against the target ModelVersion.SubsystemRegistration

TransformationDescription.Tools.register(subsystemBuilder.build(), subsystem,

ModelVersion.create(1, 0, 0));

Important

If you have several old ModelVersions you could be transforming to, you need a separate builder

for each of those.

Latest WildFly Documentation

JBoss Community Documentation Page of 1799 2293

Silently discard child resources
To make the do something, we need to call some ofResourceTransformationDescriptionBuilder

its methods. For example, if we want to silently discard a child resource, we can do

subsystemBuilder.discardChildResource(PathElement.pathElement("child", "discarded"));

This means that any usage of never make it to the/subsystem=my-subsystem/child=discarded

legacy slave HC running ModelVersion 1.0.0. During the initial domain model transfer, that part of the

serialized domain model is stripped out, and any operations on this address are not forwarded on to the

legacy slave HCs running that version of the subsystem. (For brevity this section will leave out the leading

 part used in domain mode, and use as the 'top-level'/profile=xxx /subsystem=my-subsystem

address).

Warning

Note that discarding, although the simplest option in theory, is .rarely the right thing to do

The presence of the defined child normally implies some behaviour on the DC, and that behaviour is not

available on the legacy slave HC, so normally rejection is a better policy for those cases. Remember we can

have different profiles targeting different groups of versions of legacy slave HCs.

Reject child resource
If we want to reject transformation if a child resource exists, we can do

subsystemBuilder.rejectChildResource(PathElement.pathElement("child", "reject"));

Now, if there are any legacy slaves running ModelVersion 1.0.0, any usage of

 will get rejected for those slaves. Both during the initial/subsystem=my-subsystem/child=reject

domain model transfer, and if any operations are invoked on that address. For example the remoting

subsystem did not have a child until ModelVersion 2.0.0, so it is set up to reject thathttp-connector=*

child when transforming to legacy HCs for all previous ModelVersions (1.1.0, 1.2.0 and 1.3.0). (See

 and for exactly what happens whenRejection in resource transformers Rejection in operation transformers

something is rejected).

Latest WildFly Documentation

JBoss Community Documentation Page of 1800 2293

Redirect address for child resource
Sometimes we rename the addresses for a child resource between model versions. To do that we use one

of the methods, note that these also return a builder for the child resourceaddChildRedirection()

(since we are not rejecting or discarding it), we can do this for all children of a given type:

ResourceTransformationDescriptionBuilder childBuilder =

 subsystemBuilder.addChildRedirection(PathElement.pathElement("newChild"),

PathElement.pathElement("oldChild");

Now, in the initial domain transfer becomes /subsystem=my-subsystem/newChild=test

. Similarly all operations against the former address get/subsystem=my-subsystem/oldChild=test

mapped to the latter when executing operations on the DC before sending them to the legacy slave HC

running ModelVersion 1.1.0 of the subsystem.

We can also rename a specific named child:

ResourceTransformationDescriptionBuilder childBuilder =

 subsystemBuilder.addChildRedirection(PathElement.pathElement("newChild", "newName"),

PathElement.pathElement("oldChild", "oldName");

Now, becomes /subsystem=my-subsystem/newChild=newName

 both in the initial domain transfer, and when mapping/subsystem=my-subsystem/oldChild=oldName

operations to the legacy slave. For example, under the subsystem got renamedweb ssl=configuration

to in later versions, meaning we need a redirect from to configuration=ssl configuration=ssl

 in its transformers.ssl=configuration

Getting a child resource builder
Sometimes we don't want to transform the subsystem resource, but we want to transform something in one

of its child resources. Again, since we are not discarding or rejecting, we get a reference to the builder for

the child resource.

ResourceTransformationDescriptionBuilder childBuilder =

 subsystemBuilder.addChildResource(PathElement.pathElement("some-child"));

 //We don't actually want to transform anything in /subsystem-my-subsystem/some-child=*

either :-)

 //We are interested in /subsystem-my-subsystem/some-child=*/another-level

 ResourceTransformationDescriptionBuilder anotherBuilder =

 childBuilder.addChildResource(PathElement.pathElement("another-level"));

 //Use anotherBuilder to add child-resource and/or attribute transformation

Latest WildFly Documentation

JBoss Community Documentation Page of 1801 2293

AttributeTransformationDescriptionBuilder
To transform attributes you call

 which returns you a ResourceTransformationDescriptionBuilder.getAttributeBuilder()

 which is used to define transformation for theAttributeTransformationDescriptionBuilder

resource's attributes. For example this gets the attribute builder for the subsystem resource:

AttributeTransformationDescriptionBuilder attributeBuilder =

subSystemBuilder.getAttributeBuilder();

or we could get it for one of the child resources:

ResourceTransformationDescriptionBuilder childBuilder =

 subsystemBuilder.addChildResource(PathElement.pathElement("some-child"));

 AttributeTransformationDescriptionBuilder attributeBuilder =

childBuilder.getAttributeBuilder();

The attribute transformations defined by the will alsoAttributeTransformationDescriptionBuilder

impact the parameters to all operations defined on the resource. This means that if you have defined the

 attribute of to reject transformation if its value is example /subsystem=my-subsystem/some-child=*

, the inital domain transfer will reject if it is , also the transformation of the following operations willtrue true

reject:

/subsystem=my-subsystem/some-child=test:add(example=true)

 /subsystem=my-subsystem:write-attribute(name=example, value=true)

 /subsystem=my-subsystem:custom-operation(example=true)

The following operations will pass in this example, since the attribute is not getting set to example true

/subsystem=my-subsystem/some-child=test:add(example=false)

 /subsystem=my-subsystem/some-child=test:add() //Here it 'example' is simply left

undefined

 /subsystem=my-subsystem:write-attribute(name=example, value=false)

 /subsystem=my-subsystem:undefine-attribute(name=example) //Again this makes 'example'

undefined

 /subsystem=my-subsystem:custom-operation(example=false)

For the rest of the examples in this section we assume that the is for attributeBuilder

/subsystem=my-subsystem

Latest WildFly Documentation

JBoss Community Documentation Page of 1802 2293

1.

2.

3.

4.

Attribute transformation lifecycle
There is a well defined lifecycle used for attribute transformation that is worth explaining before jumping into

specifics. Transformation is done in the following phases, in the following order:

 - All attributes in the domain model transfer or invoked operation that have been registereddiscard

for a discard check, are checked to see if the attribute should be discarded. If an attribute should be

discarded, it is removed from the resource's attributes/operation's parameters and it does not get

passed to the next phases. Once discarded it does not get sent to the legacy slave HC.

 - All attributes that have been registered for a reject check (and which not have beenreject

discarded) are checked to see if the attribute should be rejected. As explained in Rejection in

 and exactly what happens when somethingresource transformers Rejection in operation transformers

is rejected varies depending on whether we are transforming a resource or an operation, and the

version of the legacy slave HC we are transforming for. If a transformer rejects an attribute, all other

reject transformers still get invoked, and the next phases also get invoked. This is because we don't

know in all cases what will happen if a reject happens. Although this might sound cumbersome, in

practice it actually makes it easier to write transformers since you only need one kind regardless of if

it is a resource, an operation, and legacy slave HC version. However, as we will see in Common

, it means some extra checks are needed when writing reject and converttransformation use-cases

transformers.

 - All attributes that have been registered for conversion are checked to see if the attributeconvert

should be converted. If the attribute does not exist in the original operation/resource it may be

introduced. This is useful for setting default values for the target legacy slave HC.

 - All attributes registered for renaming are renamed.rename

Next, let us have a look at how to register attributes for each of these phases.

Discarding attributes
The general idea behind a discard is that we remove attributes which do not exist in the legacy slave HC's

model. However, as hopefully described below, we normally can't simply discard everything, we need to

check the values first.

To discard an attribute we need an instance of

, and call theorg.jboss.as.controller.transform.description.DiscardAttributeChecker

following method on the :AttributeTransformationDescriptionBuilder

DiscardAttributeChecker discardCheckerA =;

 attributeBuilder.setDiscard(discardCheckerA, "attr1", "attr2");

As shown, you can register the for several attributes at once, in the aboveDiscardAttributeChecker

example both and get checked for if they should be discarded. You can also register different attr1 attr2

 instances for different attributes:DiscardAttributeChecker

Latest WildFly Documentation

JBoss Community Documentation Page of 1803 2293

DiscardAttributeChecker discardCheckerA =;

 DiscardAttributeChecker discardCheckerB =;

 attributeBuilder.setDiscard(discardCheckerA, "attr1");

 attributeBuilder.setDiscard(discardCheckerA, "attr2");

Note that you can only have one per attribute, so the following would causeDiscardAttributeChecker

an error (if running with assertions enabled, otherwise will overwrite discardCheckerB

):discardCheckerA

DiscardAttributeChecker discardCheckerA =;

 DiscardAttributeChecker discardCheckerB =;

 attributeBuilder.setDiscard(discardCheckerA, "attr1");

 attributeBuilder.setDiscard(discardCheckerB, "attr1");

The DiscardAttributeChecker interface
 contains bothorg.jboss.as.controller.transform.description.DiscardAttributeChecker

the and some helper implementations. The implementations of this interfaceDiscardAttributeChecker

get called for each attribute they are registered against. The interface itself is quite simple:

public interface DiscardAttributeChecker {

 /**

 * Returns {@code true} if the attribute should be discarded if expressions are used

 *

 * @return whether to discard if expressions are used

 */

 boolean isDiscardExpressions();

Return here to discard the attribute if it is an expression. If it is an expression, and this method returns true

, the and methodstrue isOperationParameterDiscardable isResourceAttributeDiscardable

will not get called.

/**

 * Returns {@code true} if the attribute should be discarded if it is undefined

 *

 * @return whether to discard if the attribute is undefined

 */

 boolean isDiscardUndefined();

Return here to discard the attribute if it is . If it is , and this method returns true undefined undefined

, the , and true isDiscardExpressions isOperationParameterDiscardable

 methods will not get called.isResourceAttributeDiscardable

Latest WildFly Documentation

JBoss Community Documentation Page of 1804 2293

/**

 * Gets whether the given operation parameter can be discarded

 *

 * @param address the address of the operation

 * @param attributeName the name of the operation parameter.

 * @param attributeValue the value of the operation parameter.

 * @param operation the operation executed. This is unmodifiable.

 * @param context the context of the transformation

 *

 * @return {@code true} if the operation parameter value should be discarded, {@code false}

otherwise.

 */

 boolean isOperationParameterDiscardable(PathAddress address, String attributeName, ModelNode

attributeValue, ModelNode operation, TransformationContext context);

If we are transforming an operation, this method gets called for each operation parameter. We have access

to the address of the operation, the name and value of the operation parameter, an unmodifiable copy of the

original operation and the . The allows you accessTransformationContext TransformationContext

to the original resource the operation is working on before any transformation happened, which is useful if

you want to check other values in the resource if this is, say a operation. Return write-attribute true

to discard the operation.

/**

 * Gets whether the given attribute can be discarded

 *

 * @param address the address of the resource

 * @param attributeName the name of the attribute

 * @param attributeValue the value of the attribute

 * @param context the context of the transformation

 *

 * @return {@code true} if the attribute value should be discarded, {@code false} otherwise.

 */

 boolean isResourceAttributeDiscardable(PathAddress address, String attributeName, ModelNode

attributeValue, TransformationContext context);

If we are transforming a resource, this method gets called for each attribute in the resource. We have access

to the address of the resource, the name and value of the attribute, and the .TransformationContext

Return to discard the operation.true

}

DiscardAttributeChecker helper classes/implementations
 contains a few helper implementations for the most common cases to saveDiscardAttributeChecker

you writing the same stuff again and again.

Latest WildFly Documentation

JBoss Community Documentation Page of 1805 2293

DiscardAttributeChecker.DefaultDiscardAttributeChecker

 is an abstract convenience class.DiscardAttributeChecker.DefaultDiscardAttributeChecker

In most cases you don't need a separate check for if an operation or a resource is being transformed, so it

makes both the and isResourceAttributeDiscardable()

 methods call the following method.isOperationParameterDiscardable()

protected abstract boolean isValueDiscardable(PathAddress address, String attributeName,

ModelNode attributeValue, TransformationContext context);

All you lose, in the case of an operation transformation, is the name of the transformed operation. The

constructor of also allows you toDiscardAttributeChecker.DefaultDiscardAttributeChecker

define values for and .isDiscardExpressions() isDiscardUndefined()

DiscardAttributeChecker.DiscardAttributeValueChecker

This is another convenience class, which allows you to discard an attribute if it has one or more values. Here

is a real-world example from the subsystem:jpa

private void initializeTransformers_1_1_0(SubsystemRegistration subsystemRegistration) {

 ResourceTransformationDescriptionBuilder builder =

TransformationDescriptionBuilder.Factory.createSubsystemInstance();

 builder.getAttributeBuilder()

 .setDiscard(

 new DiscardAttributeChecker.DiscardAttributeValueChecker(new

ModelNode(ExtendedPersistenceInheritance.DEEP.toString())),

 JPADefinition.DEFAULT_EXTENDEDPERSISTENCE_INHERITANCE)

 .addRejectCheck(RejectAttributeChecker.DEFINED,

JPADefinition.DEFAULT_EXTENDEDPERSISTENCE_INHERITANCE)

 .end();

 TransformationDescription.Tools.register(builder.build(), subsystemRegistration,

ModelVersion.create(1, 1, 0));

 }

We will come back to the reject checks in the section. We are saying that we shouldRejecting attributes

discard the attribute if it has theJPADefinition.DEFAULT_EXTENDEDPERSISTENCE_INHERITANCE

value . The reasoning here is that this attribute did not exist in the old model, but the legacy slave HCs deep

 is that this was . In the current version we added the possibility to toggle this setting,implied behaviour deep

but only is consistent with what is available in the legacy slave HC. In this case we are using thedeep

constructor for which says don'tDiscardAttributeChecker.DiscardAttributeValueChecker

discard if it uses expressions, and discard if it is . If it is in the current model,undefined undefined

looking at the default value of , it is JPADefinition.DEFAULT_EXTENDEDPERSISTENCE_INHERITANCE

, so a discard is in line with the implied legacy behaviour. If an expression is used, we cannot discarddeep

since we have no idea what the expression will resolve to on the slave HC.

Latest WildFly Documentation

JBoss Community Documentation Page of 1806 2293

DiscardAttributeChecker.ALWAYS

 will always discard an attribute. Use this sparingly, since normallyDiscardAttributeChecker.ALWAYS

the presence of an attribute in the current model implies some behaviour should be turned on, and if that

does not exist in the legacy model it implies that that behaviour does not exist in the legacy slave HC and its

servers. Normally the legacy slave HC's subsystem has some implied behaviour which is better checked for

by using a . One valid use for DiscardAttributeChecker.DiscardAttributeValueChecker

 can be found in the subsystem:DiscardAttributeChecker.ALWAYS ejb3

private static void registerTransformers_1_1_0(SubsystemRegistration subsystemRegistration) {

 ResourceTransformationDescriptionBuilder builder =

TransformationDescriptionBuilder.Factory.createSubsystemInstance()

 .getAttributeBuilder()

 ...

 // We can always discard this attribute, because it's meaningless without the

security-manager subsystem, and

 // a legacy slave can't have that subsystem in its profile.

 .setDiscard(DiscardAttributeChecker.ALWAYS,

EJB3SubsystemRootResourceDefinition.DISABLE_DEFAULT_EJB_PERMISSIONS)

 ...

As the comment says, this attribute only makes sense with the security-manager susbsystem, which does

not exist on legacy slaves running ModelVersion 1.1.0 of the subsystem.ejb3

DiscardAttributeChecker.UNDEFINED

 will discard an attribute if it is . This is normallyDiscardAttributeChecker.UNDEFINED undefined

safer than since the attribute is not set in the current model, weDiscardAttributeChecker.ALWAYS

don't need to send it to the legacy model. However, you should check that this attribute not existing in the

legacy slave HC, implies the same functionality as being undefined in the current DC.

Rejecting attributes
The next step is to check attributes and values which we know for sure will not work on the target legacy

slave HC.

To reject an attribute we need an instance of

, and call theorg.jboss.as.controller.transform.description.RejectAttributeChecker

following method on the :AttributeTransformationDescriptionBuilder

RejectAttributeChecker rejectCheckerA =;

 attributeBuilder.addRejectCheck(rejectCheckerA, "attr1", "attr2");

As shown you can register the for several attributes at once, in the aboveRejectAttributeChecker

example both and get checked for if they should be discarded. You can also register different attr1 attr2

 instances for different attributes:RejectAttributeChecker

RejectAttributeChecker rejectCheckerA =;

 RejectAttributeChecker rejectCheckerB =;

 attributeBuilder.addRejectCheck(rejectCheckerA, "attr1");

 attributeBuilder.addRejectCheck(rejectCheckerB, "attr2");

Latest WildFly Documentation

JBoss Community Documentation Page of 1807 2293

You can also register several instances per attributeRejectAttributeChecker

RejectAttributeChecker rejectCheckerA =;

 RejectAttributeChecker rejectCheckerB =;

 attributeBuilder.addRejectCheck(rejectCheckerA, "attr1");

 attributeBuilder.addRejectCheck(rejectCheckerB, "attr1, "attr2");

In this case gets both and . For attributes with several attr1 rejectCheckerA rejectCheckerB

 registered, they get processed in the order that they have been added. SoRejectAttributeChecker

when checking for rejection, gets run before . As mentioned in attr1 rejectCheckerA rejectCheckerB

, if an attribute is rejected, we still invoke the rest of the reject checkers.Attribute transformation lifecycle

The RejectAttributeChecker interface
 contains bothorg.jboss.as.controller.transform.description.RejectAttributeChecker

the and some helper implementations. The implementations of this interfaceRejectAttributeChecker

get called for each attribute they are registered against. The interface itself is quite simple, and its main

methods are similar to :DiscardAttributeChecker

public interface RejectAttributeChecker {

 /**

 * Determines whether the given operation parameter value is not understandable by the

target process and needs

 * to be rejected.

 *

 * @param address the address of the operation

 * @param attributeName the name of the attribute

 * @param attributeValue the value of the attribute

 * @param operation the operation executed. This is unmodifiable.

 * @param context the context of the transformation

 * @return {@code true} if the parameter value is not understandable by the target process

and so needs to be rejected, {@code false} otherwise.

 */

 boolean rejectOperationParameter(PathAddress address, String attributeName, ModelNode

attributeValue, ModelNode operation, TransformationContext context);

If we are transforming an operation, this method gets called for each operation parameter. We have access

to the address of the operation, the name and value of the operation parameter, an unmodifiable copy of the

original operation and the . The allows you accessTransformationContext TransformationContext

to the original resource the operation is working on before any transformation happened, which is useful if

you want to check other values in the resource if this is, say a operation. Return write-attribute true

to reject the operation.

Latest WildFly Documentation

JBoss Community Documentation Page of 1808 2293

/**

 * Gets whether the given resource attribute value is not understandable by the target

process and needs

 * to be rejected.

 *

 * @param address the address of the resource

 * @param attributeName the name of the attribute

 * @param attributeValue the value of the attribute

 * @param context the context of the transformation

 * @return {@code true} if the attribute value is not understandable by the target process

and so needs to be rejected, {@code false} otherwise.

 */

 boolean rejectResourceAttribute(PathAddress address, String attributeName, ModelNode

attributeValue, TransformationContext context);

If we are transforming a resource, this method gets called for each attribute in the resource. We have access

to the address of the resource, the name and value of the attribute, and the .TransformationContext

Return to discard the operation.true

/**

 * Returns the log message id used by this checker. This is used to group it so that all

attributes failing a type of rejection

 * end up in the same error message

 *

 * @return the log message id

 */

 String getRejectionLogMessageId();

Here we need a unique id for the log message from the . It is used to groupRejectAttributeChecker

rejected attributes by their log message. A typical implementation will contain {{return

getRejectionLogMessage(Collections.<String, ModelNode>emptyMap());}

/**

 * Gets the log message if the attribute failed rejection

 *

 * @param attributes a map of all attributes failed in this checker and their values

 * @return the formatted log message

 */

 String getRejectionLogMessage(Map<String, ModelNode> attributes);

Here we return a message saying why the attributes were rejected, with the possibility to format the

message to include the names of all the rejected attributes and the values they had.

}

RejectAttributeChecker helper classes/implementations

Latest WildFly Documentation

JBoss Community Documentation Page of 1809 2293

 contains a few helper classes for the most common scenarios to save youRejectAttributeChecker

from writing the same stuff again and again.

RejectAttributeChecker.DefaultRejectAttributeChecker

 is an abstract convenience class. InRejectAttributeChecker.DefaultRejectAttributeChecker

most cases you don't need a separate check for if an operation or a resource is being transformed, so it

makes both the and methods call therejectOperationParameter() rejectResourceAttribute()

following method.

protected abstract boolean rejectAttribute(PathAddress address, String attributeName, ModelNode

attributeValue, TransformationContext context);

Like , all you loose is the name of the transformed operation, in theDefaultDiscardAttributeChecker

case of operation transformation.

RejectAttributeChecker.DEFINED

 is used to reject any attribute that has a defined value. NormallyRejectAttributeChecker.DEFINED

this is because the attribute does not exist on the target legacy slave HC. A typical use case for these is for

the example we looked at in the subsystem in implied behavior jpa

DiscardAttributeChecker.DiscardAttributeValueChecker

private void initializeTransformers_1_1_0(SubsystemRegistration subsystemRegistration) {

 ResourceTransformationDescriptionBuilder builder =

TransformationDescriptionBuilder.Factory.createSubsystemInstance();

 builder.getAttributeBuilder()

 .setDiscard(

 new DiscardAttributeChecker.DiscardAttributeValueChecker(new

ModelNode(ExtendedPersistenceInheritance.DEEP.toString())),

 JPADefinition.DEFAULT_EXTENDEDPERSISTENCE_INHERITANCE)

 .addRejectCheck(RejectAttributeChecker.DEFINED,

JPADefinition.DEFAULT_EXTENDEDPERSISTENCE_INHERITANCE)

 .end();

 TransformationDescription.Tools.register(builder.build(), subsystemRegistration,

ModelVersion.create(1, 1, 0));

 }

So we discard the value if it is notJPADefinition.DEFAULT_EXTENDEDPERSISTENCE_INHERITANCE

an expression, and also has the value . Now if it was not discarded, it would will still be defined so wedeep

reject it.

Important

Reject and discard often work in pairs.

Latest WildFly Documentation

JBoss Community Documentation Page of 1810 2293

RejectAttributeChecker.SIMPLE_EXPRESSIONS

 can be used to reject an attribute that containsRejectAttributeChecker.SIMPLE_EXPRESSIONS

expressions. This was used a lot for transformations to subsystems in JBoss AS 7.1.x, since we had not fully

realized the importance of where to support expressions until JBoss AS 7.2.0 was released, so a lot of

attributes in earlier versions were missing expressions support.

RejectAttributeChecker.ListRejectAttributeChecker

The RejectAttributeChecker}}s we have seen so far work on simple attributes,

i.e. where the attribute has a ModelType which is one of the primitives. We also

 which allows you to define ahave a {{RejectAttributeChecker.ListRejectAttributeChecker

checker for the elements of a list, when the type of an attribute is .ModelType.LIST

attributeBuilder

 .addRejectCheck(new ListRejectAttributeChecker(RejectAttributeChecker.EXPRESSIONS),

"attr1");

For it will check each element of the list and run toattr1 RejectAttributeChecker.EXPRESSIONS

check that each element is not an expression. You can of course pass in another kind of

 to check the elements as well.RejectAttributeChecker

RejectAttributeChecker.ObjectFieldsRejectAttributeChecker

For attributes where the type is we have ModelType.OBJECT

 which allows you to registerRejectAttributeChecker.ObjectFieldsRejectAttributeChecker

different reject checkers for the different fields of the registered object.

Map<String, RejectAttributeChecker> fieldRejectCheckers = new HashMap<String,

RejectAttributeChecker>();

 fieldRejectCheckers.put("time", RejectAttributeChecker.SIMPLE_EXPRESSIONS);

 fieldRejectCheckers.put("unit", "Lunar Month");

 attributeBuilder

 .addRejectCheck(new ObjectFieldsRejectAttributeChecker(fieldRejectCheckers),

"attr1");

Now if is a complex type where attr1 attr1.get("time").getType() == ModelType.EXPRESSION

or we reject the attribute.attr1.get("unit").asString().equals("Lunar Month")

Converting attributes
To convert an attribute you register an

 instance against theorg.jboss.as.controller.transform.description.AttributeConverter

attributes you want to convert:

AttributeConverter converterA = ...;

 AttributeConverter converterB = ...;

 attributeBuilder

 .setValueConverter(converterA, "attr1", "attr2");

 attributeBuilder

 .setValueConverter(converterB, "attr3");

Latest WildFly Documentation

JBoss Community Documentation Page of 1811 2293

Now if and get converted with , while gets converted with .attr1 attr2 converterA attr3 converterB

The AttributeConverter interface
The interface gets called for each attribute for which the AttributeConverter AttributeConverter

has been registered

public interface AttributeConverter {

 /**

 * Converts an operation parameter

 *

 * @param address the address of the operation

 * @param attributeName the name of the operation parameter

 * @param attributeValue the value of the operation parameter to be converted

 * @param operation the operation executed. This is unmodifiable.

 * @param context the context of the transformation

 */

 void convertOperationParameter(PathAddress address, String attributeName, ModelNode

attributeValue, ModelNode operation, TransformationContext context);

If we are transforming an operation, this method gets called for each operation parameter for which the con.

We have access to the address of the operation, the name and value of the operation parameter, an

unmodifiable copy of the original operation and the . The TransformationContext

 allows you access to the original resource the operation is working on beforeTransformationContext

any transformation happened, which is useful if you want to check other values in the resource if this is, say

a write-attribute operation. To change the attribute value, you modify the .attributeValue

/**

 * Converts a resource attribute

 *

 * @param address the address of the operation

 * @param attributeName the name of the attribute

 * @param attributeValue the value of the attribute to be converted

 * @param context the context of the transformation

 */

 void convertResourceAttribute(PathAddress address, String attributeName, ModelNode

attributeValue, TransformationContext context);

If we are transforming a resource, this method gets called for each attribute in the resource. We have access

to the address of the resource, the name and value of the attribute, and the . ToTransformationContext

change the attribute value, you modify the .attributeValue

}

A hypothetical example is if the current and legacy subsystems both contain an attribute called . Intimeout

the legacy model this was specified to be milliseconds, however in the current model it has been changed to

be seconds, hence we need to convert the value when sending it to slave HCs using the legacy model:

Latest WildFly Documentation

JBoss Community Documentation Page of 1812 2293

AttributeConverter secondsToMs = new AttributeConverter.DefaultAttributeConverter() {

 @Override

 protected void convertAttribute(PathAddress address, String attributeName,

ModelNode attributeValue,

 TransformationContext context) {

 if (attributeValue.isDefined()) {

 int seconds = attributeValue.asInt();

 int milliseconds = seconds * 1000;

 attributeValue.set(milliseconds);

 }

 }

 };

 attributeBuilder.

 .setValueConverter(secondsToMs , "timeout")

We need to be a bit careful here. If the attribute is an expression our nice conversion will not work,timeout

so we need to add a reject check to make sure it is not an expression as well:

attributeBuilder.

 .addRejectCheck(SIMPLE_EXPRESSIONS, "timeout")

 .setValueConverter(secondsToMs , "timeout")

Now it should be fine.

 is is an abstract convenience class. In mostAttributeConverter.DefaultAttributeConverter

cases you don't need a separate check for if an operation or a resource is being transformed, so it makes

both the convertOperationParameter() and convertResourceAttribute() methods call the following method.

protected abstract void convertAttribute(PathAddress address, String attributeName, ModelNode

attributeValue, TransformationContext context);

Like and , all you loose isDefaultDiscardAttributeChecker DefaultRejectAttributeChecker

the name of the transformed operation, in the case of operation transformation.

Latest WildFly Documentation

JBoss Community Documentation Page of 1813 2293

Introducing attributes during transformation

Say both the current and the legacy models have an attribute called . In the legacy version this attributeport

had to be specified, and the default xml configuration had for its value. In the current version this1234

attribute has been made optional with a default value of so that it does not need to be specified. When1234

transforming to a slave HC using the old version we will need to introduce this attribute if the new model

does not contain it:

attributeBuilder.

 setValueConverter(AttributeConverter.Factory.createHardCoded(new ModelNode(1234) true),

"port");

So what this factory method does is to create an implementation of

 where in we set AttributeConverter.DefaultAttributeConverter convertAttribute()

 to have the value if it is . As long as gets set in thatattributeValue 1234 undefined attributeValue

method it will get set in the model, regardless of if it existed already or not.

Renaming attributes
To rename an attribute, you simply do

attributeBuilder.addRename("my-name", "legacy-name");

Now, in the initial domain transfer to the legacy slave HC, we rename 's /subsystem=my-subsystem

 attribute to . Also, the operations involving this attribute are affected, somy-name legacy-name

/subsystem=my-subsystem/:add(my-name=true) ->

 /subsystem=my-subsystem/:add(legacy-name=true)

 /subsystem=my-subsystem:write-attribute(name=my-name, value=true) ->

 /subsystem=my-subsystem:write-attribute(name=legacy-name, value=true)

 /subsystem=my-subsystem:undefine-attribute(name=my-name) ->

 /subsystem=my-subsystem:undefine-attribute(name=legacy-name)

Latest WildFly Documentation

JBoss Community Documentation Page of 1814 2293

OperationTransformationOverrideBuilder
All operations on a resource automatically get the same transformations on their parameters as set up by the

. In some cases you might want to change this, soAttributeTransformationDescriptionBuilder

you can use the , which is got from:OperationTransformationOverrideBuilder

OperationTransformationOverrideBuilder operationBuilder =

subSystemBuilder.addOperationTransformationOverride("some-operation");

In this case the operation will now no longer inherit the attribute/operation parameter transformations, so

they are effectively turned off. In other cases you might want to include them by calling

, and to include some more checks (the inheritResourceAttributeDefinitions()

 interface has all the methods found in OperationTransformationBuilder

:AttributeTransformationBuilder

OperationTransformationOverrideBuilder operationBuilder =

subSystemBuilder.addOperationTransformationOverride("some-operation");

 operationBuilder.inheritResourceAttributeDefinitions();

 operationBuilder.setValueConverter(AttributeConverter.Factory.createHardCoded(new

ModelNode(1234) true), "port");

You can also rename operations, in this case the operation gets renamed to some-operation

 before getting sent to the legacy slave HC.legacy-operation

OperationTransformationOverrideBuilder operationBuilder =

subSystemBuilder.addOperationTransformationOverride("some-operation");

 operationBuilder.rename("legacy-operation");

11.10.7 Evolving transformers with subsystem ModelVersions

Say you have a subsystem with ModelVersions 1.0.0 and 1.1.0. There will (hopefully!) already be

transformers in place for 1.1.0 to 1.0.0 transformations. Let's say that the transformers registration looks like:

Latest WildFly Documentation

JBoss Community Documentation Page of 1815 2293

public class SomeExtension implements Extension {

 private static final String SUBSYSTEM_NAME = "my-subsystem"'

 private static final int MANAGEMENT_API_MAJOR_VERSION = 1;

 private static final int MANAGEMENT_API_MINOR_VERSION = 1;

 private static final int MANAGEMENT_API_MICRO_VERSION = 0;

 @Override

 public void initialize(ExtensionContext context) {

 SubsystemRegistration registration = context.registerSubsystem(SUBSYSTEM_NAME,

MANAGEMENT_API_MAJOR_VERSION,

 MANAGEMENT_API_MINOR_VERSION, MANAGEMENT_API_MICRO_VERSION);

 //Register the resource definitions

 }

 private void registerTransformers(final SubsystemRegistration subsystem) {

 registerTransformers_1_0_0(subsystem);

 }

 /**

 * Registers transformers from the current version to ModelVersion 1.0.0

 */

 private void registerTransformers_1_0_0(SubsystemRegistration subsystem) {

 ResourceTransformationDescriptionBuilder builder =

TransformationDescriptionBuilder.Factory.createSubsystemInstance();

 builder.getAttributeBuilder()

 .addRejectCheck(RejectAttributeChecker.DEFINED, "attr1")

 .end();

 TransformationDescription.Tools.register(builder.build(), subsystem,

ModelVersion.create(1, 0, 0));

 }

}

Now say we want to do a new version of the model. This new version contains a new attribute called

'new-attr' which cannot be defined when transforming to 1.1.0, we bump the model version to 2.0.0:

Latest WildFly Documentation

JBoss Community Documentation Page of 1816 2293

public class SomeExtension implements Extension {

 private static final String SUBSYSTEM_NAME = "my-subsystem"'

 private static final int MANAGEMENT_API_MAJOR_VERSION = 2;

 private static final int MANAGEMENT_API_MINOR_VERSION = 0;

 private static final int MANAGEMENT_API_MICRO_VERSION = 0;

 @Override

 public void initialize(ExtensionContext context) {

 SubsystemRegistration registration = context.registerSubsystem(SUBSYSTEM_NAME,

MANAGEMENT_API_MAJOR_VERSION,

 MANAGEMENT_API_MINOR_VERSION, MANAGEMENT_API_MICRO_VERSION);

 //Register the resource definitions

 }

There are a few ways to evolve your transformers:

The old way

Chained transformers

Latest WildFly Documentation

JBoss Community Documentation Page of 1817 2293

The old way
This is the way that has been used up to WildFly 8.x. However, in WildFly 9 and later, it is strongly

recommended to migrate to what is mentioned in Chained transformers

Now we need some new transformers from the current ModelVersion to 1.1.0 where we reject any defined

occurrances of our new attribute :new-attr

private void registerTransformers(final SubsystemRegistration subsystem) {

 registerTransformers_1_0_0(subsystem);

 registerTransformers_1_1_0(subsystem);

 }

 /**

 * Registers transformers from the current version to ModelVersion 1.1.0

 */

 private void registerTransformers_1_1_0(SubsystemRegistration subsystem) {

 ResourceTransformationDescriptionBuilder builder =

TransformationDescriptionBuilder.Factory.createSubsystemInstance();

 builder.getAttributeBuilder()

 .addRejectCheck(RejectAttributeChecker.DEFINED, "new-attr")

 .end();

 TransformationDescription.Tools.register(builder.build(), subsystem,

ModelVersion.create(1, 1, 0));

 }

So that is all well and good, however we also need to take into account that new-attr does not exist in

, so we need to extend our transformer for 1.0.0 to reject it there as well. As youModelVersion 1.0.0 either

can see 1.0.0 also rejects a defined 'attr1' in addition to the 'new-attr'(which is rejected in both versions).

/**

 * Registers transformers from the current version to ModelVersion 1.0.0

 */

 private void registerTransformers_1_0_0(SubsystemRegistration subsystem) {

 ResourceTransformationDescriptionBuilder builder =

TransformationDescriptionBuilder.Factory.createSubsystemInstance();

 builder.getAttributeBuilder()

 .addRejectCheck(RejectAttributeChecker.DEFINED, "attr1", "new-attr")

 .end();

 TransformationDescription.Tools.register(builder.build(), subsystem,

ModelVersion.create(1, 0, 0));

 }

}

Now will be rejected if defined for all previous model versions.new-attr

Latest WildFly Documentation

JBoss Community Documentation Page of 1818 2293

Chained transformers
Since 'The old way' had a lot of duplication of code, since WildFly 9 we now have chained transformers. You

obtain a which is a different entry point to the ChainedTransformationDescriptionBuilder

 we have seen earlier. Each ResourceTransformationDescriptionBuilder

 deals with transformation across one version delta.ResourceTransformationDescriptionBuilder

private void registerTransformers(SubsystemRegistration subsystem) {

 ModelVersion version1_1_0 = ModelVersion.create(1, 1, 0);

 ModelVersion version1_0_0 = ModelVersion.create(1, 0, 0);

 ChainedTransformationDescriptionBuilder chainedBuilder =

TransformationDescriptionBuilder.Factory.createChainedSubystemInstance(subsystem.getSubsystemVersion());

//Differences between the current version and 1.1.0

 ResourceTransformationDescriptionBuilder builder110 =

 chainedBuilder.create(subsystem.getSubsystemVersion(), version1_1_0);

 builder110.getAttributeBuilder()

 .addRejectCheck(RejectAttributeChecker.DEFINED, "new-attr")

 .end();

 //Differences between the 1.1.0 and 1.0.0

 ResourceTransformationDescriptionBuilder builder100 =

 chainedBuilder.create(subsystem.getSubsystemVersion(), version1_0_0);

 builder110.getAttributeBuilder()

 .addRejectCheck(RejectAttributeChecker.DEFINED, "attr1")

 .end();

 chainedBuilder.buildAndRegister(subsystem, new ModelVersion[]{version1_0_0,

version1_1_0});

The method registers a chain consisting of the builtbuildAndRegister(ModelVersion[]... chains)

 and for transformation to 1.0.0, and a chain consisting of the built builder110 builder100 builder110

for transformation to 1.1.0. It allows you to specify more than one chain.

Now when transforming from the current version to 1.0.0, the resource is first transformed from the current

version to 1.1.0 (which rejects a defined) and then it is transformed from 1.1.0 to 1.0.0 (whichnew-attr

rejects a defined). So when evolving transformers you should normally only need to add things to theattr1

last version delta. The full current-to-1.1.0 transformation is run before the 1.1.0-to-1.0.0 transformation is

run.

One thing worth pointing out that the value returned by

 and TransformationContext.readResource(PathAddress address)

 which you can useTransformationContext.readResourceFromRoot(PathAddress address)

from your custom , and RejectAttributeChecker DiscardAttributeChecker

 behaves slightly differently depending on if you are transforming an operation or aAttributeConverter

resource.

Latest WildFly Documentation

JBoss Community Documentation Page of 1819 2293

During this will be the latest model, so in our above example, in the current-to-1.1.0resource transformation

transformation it will be the original model. In the 1.1.0-to-1.0.0 transformation, it will be the result of the

current-to-1.1.0 transformation.

During these methods will always return the original model (we are transformingoperation transformation

operations, not resources!).

In WildFly 9 we are now less aggressive about transforming to all previous versions of WildFly, however we

still have a lot of good tests for running against 7.1.x, 8. Also, for Red Hat employees we have tests against

EAP versions. These tests no longer get run by default, to run them you need to specify some system

properties when invoking maven. They are:

 - enables the non-default subsystem tests.-Djboss.test.transformers.subsystem.old

-Djboss.test.transformers.eap - (Red Hat developers only), enables the eap tests, but only the ones

run by default. If run in conjunction with you get-Djboss.test.transformers.subsystem.old

all the possible subsystem tests run.

-Djboss.test.transformers.core.old - enables the non-default core model tests.

11.10.8 Testing transformers

To test transformation you need to extend

 or org.jboss.as.subsystem.test.AbstractSubsystemTest

. Then, in order to have the best testorg.jboss.as.subsystem.test.AbstractSubsystemBaseTest

coverage possible, you should test the fullest configuration that will work, and you should also test

configurations that don't work if you have rejecting transformers registered. The following example is from

the threads subsystem, and I have only included the tests against 7.1.2 - there are more! First we need to

set up our test:

public class ThreadsSubsystemTestCase extends AbstractSubsystemBaseTest {

 public ThreadsSubsystemTestCase() {

 super(ThreadsExtension.SUBSYSTEM_NAME, new ThreadsExtension());

 }

 @Override

 protected String getSubsystemXml() throws IOException {

 return readResource("threads-subsystem-1_1.xml");

 }

So we say that this test is for the subsystem, and that it is implemented by .threads ThreadsExtension

This is the same test framework as we use in , but we will only talkExample subsystem#Testing the parsers

about the parts relevant to transformers here.

Testing a configuration that works
To test a configuration xxx

Latest WildFly Documentation

JBoss Community Documentation Page of 1820 2293

@Test

 public void testTransformerAS712() throws Exception {

 testTransformer_1_0(ModelTestControllerVersion.V7_1_2_FINAL);

 }

 /**

 * Tests transformation of model from 1.1.0 version into 1.0.0 version.

 *

 * @throws Exception

 */

 private void testTransformer_1_0(ModelTestControllerVersion controllerVersion) throws

Exception {

 String subsystemXml = "threads-transform-1_0.xml"; //This has no expressions not

understood by 1.0

 ModelVersion modelVersion = ModelVersion.create(1, 0, 0); //The old model version

 //Use the non-runtime version of the extension which will happen on the HC

 KernelServicesBuilder builder =

createKernelServicesBuilder(AdditionalInitialization.MANAGEMENT)

 .setSubsystemXmlResource(subsystemXml);

 final PathAddress subsystemAddress =

PathAddress.pathAddress(PathElement.pathElement(SUBSYSTEM, mainSubsystemName));

 // Add legacy subsystems

 builder.createLegacyKernelServicesBuilder(null, controllerVersion, modelVersion)

 .addOperationValidationResolve("add",

subsystemAddress.append(PathElement.pathElement("thread-factory")))

 .addMavenResourceURL("org.jboss.as:jboss-as-threads:" +

controllerVersion.getMavenGavVersion())

 .excludeFromParent(SingleClassFilter.createFilter(ThreadsLogger.class));

 KernelServices mainServices = builder.build();

 KernelServices legacyServices = mainServices.getLegacyServices(modelVersion);

 Assert.assertNotNull(legacyServices);

 checkSubsystemModelTransformation(mainServices, modelVersion);

 }

What this test does is get the builder to configure the test controller using .threads-transform-1_0.xml

This main builder works with the current subsystem version, and the jars in the WildFly checkout.

Next we configure a 'legacy' controller. This will run the version of the core libraries (e.g the controller

module) as found in the targeted legacy version of JBoss AS/Wildfly), and the subsystem. We need to pass

in that it is using the core AS version 7.1.2.Final (i.e. the

 part) and that that version is ModelVersion 1.0.0. NextModelTestControllerVersion.V7_1_2_FINAL

we have some calls passing in the Maven GAVs of the old version of theaddMavenResourceURL()

subsystem and any dependencies it has needed to boot up. Normally, specifying just the Maven GAV of the

old version of the subsystem is enough, but that depends on your subsystem. In this case the old subsystem

GAV is enough. When booting up the legacy controller the framework uses the parsed operations from the

main controller and transforms them using the 1.0.0 transformer in the threads subsystem. The

 and calls are not normally necessary,addOperationValidationResolve() excludeFromParent()

see the javadoc for more examples.

Latest WildFly Documentation

JBoss Community Documentation Page of 1821 2293

The call to will build both the main controller and the legacyKernelServicesBuilder.build()

controller. As part of that it also boots up a second copy of the main controller using the transformed

operations to make sure that the 'old' ops to boot our subsystem will still work on the current controller, which

is important for backwards compatibility of CLI scripts. To tweak how that is done if you see failures there,

see and LegacyKernelServicesInitializer.skipReverseControllerCheck()

. The LegacyKernelServicesInitializer.configureReverseControllerCheck()

 is what gets returned by LegacyKernelServicesInitializer

.KernelServicesBuilder.createLegacyKernelServicesBuilder()

Finally we call which reads the full legacy subsystem model.checkSubsystemModelTransformation()

The legacy subsystem model will have been built up from the transformed boot operations from the parsed

xml. The operations get transformed by the operation transformers. Then it takes the model of the current

subsystem and transforms that using the resource transformers. Then it compares the two models, which

should be the same. In some rare cases it is not possible to get those two models exactly the same, so there

is a version of this method that takes a to make adjustments. The ModelFixer

 method also makes sure that the legacy model is validcheckSubsystemModelTransformation()

according to the legacy subsystem's resource definition.

The legacy subsystem resource definitions are read on demand from the legacy controller when the tests

run. In some older versions of subsystems (before we converted everything to use ResourceDefinition, and

DescriptionProvider implementations were coded by hand) there were occasional problems with the

resource definitions and they needed to be touched up. In this case you can generate a new one, touch it up

and store the result in a file in the test resources under

- . This will then prefer the/same/package/as/the/test/class/{{subsystem-name model-version

file read from the file system to the one read at runtime. To generate the .dmr file, you need to generate it by

adding a temporary test (make sure that you adjust and to what youcontrollerVersion modelVersion

want to generate):

@Test

 public void deleteMeWhenDone() throws Exception {

 ModelTestControllerVersion controllerVersion = ModelTestControllerVersion.V7_1_2_FINAL;

 ModelVersion modelVersion = ModelVersion.create(1, 0, 0);

 KernelServicesBuilder builder = createKernelServicesBuilder(null);

 builder.createLegacyKernelServicesBuilder(null, controllerVersion, modelVersion)

 .addMavenResourceURL("org.jboss.as:jboss-as-threads:" +

controllerVersion.getMavenGavVersion());

 KernelServices services = builder.build();

 generateLegacySubsystemResourceRegistrationDmr(services, modelVersion);

 }

Now run the test and delete it. The legacy .dmr file should be in

target/test-classes/org/jboss/as/subsystem/test/<your-subsystem-name>-<your-version>.dmr

. Copy this .dmr file to the correct location in your project's test resources.

Latest WildFly Documentation

JBoss Community Documentation Page of 1822 2293

Testing a configuration that does not work
The subsystem (like several others) did not support the use of expression values in the versionthreads

that came with JBoss AS 7.1.2.Final. So we have a test that attempts to use expressions, and then fixes

each resource and attribute where expressions were not allowed.

@Test

 public void testRejectExpressionsAS712() throws Exception {

 testRejectExpressions_1_0_0(ModelTestControllerVersion.V7_1_2_FINAL);

 }

 private void testRejectExpressions_1_0_0(ModelTestControllerVersion controllerVersion)

throws Exception {

 // create builder for current subsystem version

 KernelServicesBuilder builder =

createKernelServicesBuilder(createAdditionalInitialization());

 // create builder for legacy subsystem version

 ModelVersion version_1_0_0 = ModelVersion.create(1, 0, 0);

 builder.createLegacyKernelServicesBuilder(null, controllerVersion, version_1_0_0)

 .addMavenResourceURL("org.jboss.as:jboss-as-threads:" +

controllerVersion.getMavenGavVersion())

 .excludeFromParent(SingleClassFilter.createFilter(ThreadsLogger.class));

 KernelServices mainServices = builder.build();

 KernelServices legacyServices = mainServices.getLegacyServices(version_1_0_0);

 Assert.assertNotNull(legacyServices);

 Assert.assertTrue("main services did not boot", mainServices.isSuccessfulBoot());

 Assert.assertTrue(legacyServices.isSuccessfulBoot());

 List<ModelNode> xmlOps = builder.parseXmlResource("expressions.xml");

 ModelTestUtils.checkFailedTransformedBootOperations(mainServices, version_1_0_0, xmlOps,

getConfig());

 }

Again we boot up a current and a legacy controller. However, note in this case that they are both empty, no

xml was parsed on boot so there are no operations to boot up the model. Instead once the controllers have

been booted, we call which gets the operations from KernelServicesBuilder.parseXmlResource()

. uses expressions in all the places they were not allowed inexpressions.xml expressions.xml

7.1.2.Final. For each resource willModelTestUtils.checkFailedTransformedBootOperations()

check that the operation gets rejected, and then correct one attribute at a time until the resource hasadd

been totally corrected. Once the operation is totally correct, it will check that the add operation no longeradd

is rejected. The configuration for this is the returned by the FailedOperationTransformationConfig

 method:getConfig()

Latest WildFly Documentation

JBoss Community Documentation Page of 1823 2293

private FailedOperationTransformationConfig getConfig() {

 PathAddress subsystemAddress = PathAddress.pathAddress(ThreadsExtension.SUBSYSTEM_PATH);

 FailedOperationTransformationConfig.RejectExpressionsConfig allowedAndKeepalive =

 new

FailedOperationTransformationConfig.RejectExpressionsConfig(PoolAttributeDefinitions.ALLOW_CORE_TIMEOUT,

PoolAttributeDefinitions.KEEPALIVE_TIME);

...

 return new FailedOperationTransformationConfig()

.addFailedAttribute(subsystemAddress.append(PathElement.pathElement(CommonAttributes.BLOCKING_BOUNDED_QUEUE_THREAD_POOL)),

allowedAndKeepalive)

.addFailedAttribute(subsystemAddress.append(PathElement.pathElement(CommonAttributes.BOUNDED_QUEUE_THREAD_POOL)),

allowedAndKeepalive)

 }

So what this means is that we expect the and attributes for the allow-core-timeout keepalive-time

 and add operations toblocking-bounded-queue-thread-pool=* bounded-queue-thread-pool=*

use expressions in the parsed xml. We then expect them to fail since there should be transformers in place

to reject expressions, and correct them one at a time until the add operation should pass. As well as doing

the operations the method willadd ModelTestUtils.checkFailedTransformedBootOperations()

also try calling for each attribute, correcting as it goes along. As well as allowing you towrite-attribute

test rejection of expressions also has some helper classesFailedOperationTransformationConfig

to help testing rejection of other scenarios.

11.10.9 Common transformation use-cases

Most transformations are quite similar, so this section covers some of the actual transformation patterns

found in the WildFly codebase. We will look at the output of CompareModelVersionsUtil, and see what can

be done to transform for the older slave HCs. The examples come from the WildFly codebase but are

stripped down to focus solely on the use-case being explained in an attempt to keep things as clear/simple

as possible.

Latest WildFly Documentation

JBoss Community Documentation Page of 1824 2293

Child resource type does not exist in legacy model
Looking at the model comparison between WildFly and JBoss AS 7.2.0, there is a change to the remoting

subsystem. The relevant part of the output is:

====== Resource root address: ["subsystem" => "remoting"] - Current version: 2.0.0; legacy

version: 1.2.0 =======

--- Problems for relative address to root []:

Missing child types in current: []; missing in legacy [http-connector]

So our current model has added a child type called which was not there in 7.2.0. This ishttp-connector

configurable, and adds new behavior, so it can not be part of a configuration sent across to a legacy slave

running version 1.2.0. So we add the following to to reject all instances of that childRemotingExtension

type against ModelVersion 1.2.0.

@Override

 public void initialize(ExtensionContext context) {

 if (context.isRegisterTransformers()) {

 registerTransformers_1_1(registration);

 registerTransformers_1_2(registration);

 }

 }

 private void registerTransformers_1_2(SubsystemRegistration registration) {

 TransformationDescription.Tools.register(get1_2_0_1_3_0Description(), registration,

VERSION_1_2);

 }

 private static TransformationDescription get1_2_0_1_3_0Description() {

 ResourceTransformationDescriptionBuilder builder =

ResourceTransformationDescriptionBuilder.Factory.createSubsystemInstance();

 builder.rejectChildResource(HttpConnectorResource.PATH);

 return builder.build();

 }

Since this child resource type also does not exist in ModelVersion 1.1.0 we need to reject it there as well

using a similar mechanism.

Attribute does not exist in the legacy subsystem

Default value of the attribute is the same as legacy implied behavior
This example also comes from the subsystem, and is probably the most common type ofremoting

transformation. The comparison tells us that there is now an attribute under

 called which did not exist in the/subsystem=remoting/remote-outbound-connection=* protocol

older version:

Latest WildFly Documentation

JBoss Community Documentation Page of 1825 2293

====== Resource root address: ["subsystem" => "remoting"] - Current version: 2.0.0; legacy

version: 1.2.0 =======

--- Problems for relative address to root []:

....

--- Problems for relative address to root ["remote-outbound-connection" => "*"]:

Missing attributes in current: []; missing in legacy [protocol]

Missing parameters for operation 'add' in current: []; missing in legacy [protocol]

This difference also affects the operation. Looking at the current model the valid values for the add

 attribute are , and . The last two are new protocolsprotocol remote http-remoting https-remoting

introduced in WildFly 8, meaning that the in JBoss 7.2.0 and earlier is the implied behaviour remote

protocol. Since this attribute does not exist in the legacy model we want to discard this attribute if it is

 or if it has the value , both of which are in line with what the legacy slave HC isundefined remote

hardwired to use. Also we want to reject it if it has a value different from . So what we need to doremote

when registering transformers against ModelVersion 1.2.0 to handle this attribute:

private void registerTransformers_1_2(SubsystemRegistration registration) {

 TransformationDescription.Tools.register(get1_2_0_1_3_0Description(), registration,

VERSION_1_2);

 }

 private static TransformationDescription get1_2_0_1_3_0Description() {

 ResourceTransformationDescriptionBuilder builder =

ResourceTransformationDescriptionBuilder.Factory.createSubsystemInstance();

protocolTransform(builder.addChildResource(RemoteOutboundConnectionResourceDefinition.ADDRESS)

 .getAttributeBuilder());

 return builder.build();

 }

 private static AttributeTransformationDescriptionBuilder

protocolTransform(AttributeTransformationDescriptionBuilder builder) {

 builder.setDiscard(new DiscardAttributeChecker.DiscardAttributeValueChecker(new

ModelNode(Protocol.REMOTE.toString())), RemoteOutboundConnectionResourceDefinition.PROTOCOL)

 .addRejectCheck(RejectAttributeChecker.DEFINED,

RemoteOutboundConnectionResourceDefinition.PROTOCOL);

 return builder;

 }

So the first thing to happens is that we register a

 which discards the attribute if it isDiscardAttributeChecker.DiscardAttributeValueChecker

either (the default value in the current model is), or and has the value undefined remote defined

. Remembering that the phase always happens before the phase, the rejectremote discard reject

checker checks that the attribute is defined, and rejects it if it is. The only reason it would be protocol

 in the reject check, is if it was not discarded by the discard check. Hopefully this example showsdefined

that the discard and reject checkers often work in pairs.

An alternative way to write the method would be:protocolTransform()

Latest WildFly Documentation

JBoss Community Documentation Page of 1826 2293

private static AttributeTransformationDescriptionBuilder

protocolTransform(AttributeTransformationDescriptionBuilder builder) {

 builder.setDiscard(new DiscardAttributeChecker.DefaultDiscardAttributeChecker() {

 @Override

 protected boolean isValueDiscardable(final PathAddress address, final String

attributeName, final ModelNode attributeValue, final TransformationCon

 return !attributeValue.isDefined() ||

attributeValue.asString().equals(Protocol.REMOTE.toString());

 }

 }, RemoteOutboundConnectionResourceDefinition.PROTOCOL)

 .addRejectCheck(RejectAttributeChecker.DEFINED,

RemoteOutboundConnectionResourceDefinition.PROTOCOL);

 return builder;

The reject check remains the same, but we have implemented the discard check by using

 instead. However, the effect of theDiscardAttributeChecker.DefaultDiscardAttributeChecker

discard check is exactly the same as when we used

.DiscardAttributeChecker.DiscardAttributeValueChecker

Default value of the attribute is different from legacy implied behaviour
We touched on this in the weld subsystem example we used earlier in this guide, but let's take a more

thorough look. Our comparison tells us that we have two new attributes and require-bean-descriptor

:non-portable-mode

====== Resource root address: ["subsystem" => "weld"] - Current version: 2.0.0; legacy version:

1.0.0 =======

--- Problems for relative address to root []:

Missing attributes in current: []; missing in legacy [require-bean-descriptor,

non-portable-mode]

Missing parameters for operation 'add' in current: []; missing in legacy

[require-bean-descriptor, non-portable-mode]

Now when we look at this we see that the default value for both of the attributes in the current model is

, which allows us more flexible behavior introduced in CDI 1.1 (which was introduced with this versionfalse

of the subsystem). The old model does not have these attributes, and implements CDI 1.0, which under the

hood (using our weld subsystem expertise knowledge) implies the values for both of these. So ourtrue

transformer must reject anything that is not for these attributes. Let us look at the transformertrue

registered by the WeldExtension:

Latest WildFly Documentation

JBoss Community Documentation Page of 1827 2293

private void registerTransformers(SubsystemRegistration subsystem) {

 ResourceTransformationDescriptionBuilder builder =

TransformationDescriptionBuilder.Factory.createSubsystemInstance();

 //These new attributes are assumed to be 'true' in the old version but default to false

in the current version. So discard if 'true' and reject if 'undefined'.

 builder.getAttributeBuilder()

 .setDiscard(new DiscardAttributeChecker.DiscardAttributeValueChecker(false,

false, new ModelNode(true)),

 WeldResourceDefinition.NON_PORTABLE_MODE_ATTRIBUTE,

WeldResourceDefinition.REQUIRE_BEAN_DESCRIPTOR_ATTRIBUTE)

 .addRejectCheck(new RejectAttributeChecker.DefaultRejectAttributeChecker() {

 @Override

 public String getRejectionLogMessage(Map<String, ModelNode> attributes) {

 return

WeldMessages.MESSAGES.rejectAttributesMustBeTrue(attributes.keySet());

 }

 @Override

 protected boolean rejectAttribute(PathAddress address, String attributeName,

ModelNode attributeValue,

 TransformationContext context) {

 //This will not get called if it was discarded, so reject if it is

undefined (default==false) or if defined and != 'true'

 return !attributeValue.isDefined() ||

!attributeValue.asString().equals("true");

 }

 }, WeldResourceDefinition.NON_PORTABLE_MODE_ATTRIBUTE,

WeldResourceDefinition.REQUIRE_BEAN_DESCRIPTOR_ATTRIBUTE)

 .end();

 TransformationDescription.Tools.register(builder.build(), subsystem,

ModelVersion.create(1, 0, 0));

 }

This looks a bit more scary than the previous transformer we have seen, but isn't actually too bad. The first

thing we do is register a which willDiscardAttributeChecker.DiscardAttributeValueChecker

discard the attribute if it has the value . It will not discard if it is since that defaults to true undefined

. This is registered for both attributes.false

If the attributes had the value they will get discarded we will not hit the reject checker since discardedtrue

attributes never get checked for rejection. If on the other hand they were an expression (since we are

interested in the actual value, but cannot evaluate what value an expression will resolve to on the target from

the DC running the transformers), , or (which will then default to) they will not getfalse undefined false

discarded and will need to be rejected. So our

 method willRejectAttributeChecker.DefaultRejectAttributeChecker.rejectAttribute()

return (i.e. reject) if the attribute value is (since that defaults to) or if it is definedtrue undefined false

and 'not equal to '. It is better to check for 'not equal to ' than to check for 'equal to ' since iftrue true false

an expression was used we still want to reject, and only the 'not equal to ' check would actually kick intrue

in that case.

Latest WildFly Documentation

JBoss Community Documentation Page of 1828 2293

The other thing we need in our is toDiscardAttributeChecker.DiscardAttributeValueChecker

override the method to get the message to be displayed when rejecting thegetRejectionLogMessage()

transformation. In this case it says something along the lines "These attributes must be 'true' for use with

CDI 1.0 '%s'", with the names of the attributes having been rejected substituting the .%s

Attribute has a different default value
– TODO

(The gist of this is to use a value converter, such that if the attribute is undefined, and hence the default

value will take effect, then the value gets converted to the current version's default value. This ensures that

the legacy HC will use the same effective setting as current version HCs.

Note however that a change in default values is a form of incompatible API change, since CLI scripts written

assuming the old defaults will now produce a configuration that behaves differently. Transformers make it

possible to have a consistently configured domain even in the presence of this kind of incompatible change,

but that doesn't mean such changes are good practice. They are generally unacceptable in WildFly's own

subsystems.

One trick to ameliorate the impact of a default value change is to modify the xml parser for the schemaold

version such that if the xml attribute is not configured, the parser sets the old default value for the attribute,

instead of . This approach allows the parsing of old config documents to produce resultsundefined

consistent with what happened when they were created. It does not help with CLI scripts though.)

Attribute has a different type
Here the example comes from the parameter some way into the subsystem, andcapacity modcluster

the legacy version is AS 7.1.2.Final. There are quite a few differences, so I am only showing the ones

relevant for this example:

====== Resource root address: ["subsystem" => "modcluster"] - Current version: 2.0.0; legacy

version: 1.2.0 =======

...

--- Problems for relative address to root ["mod-cluster-config" =>

"configuration","dynamic-load-provider" => "configuration","custom-load-m

etric" => "*"]:

Different 'type' for attribute 'capacity'. Current: DOUBLE; legacy: INT

Different 'expressions-allowed' for attribute 'capacity'. Current: true; legacy: false

...

Different 'type' for parameter 'capacity' of operation 'add'. Current: DOUBLE; legacy: INT

Different 'expressions-allowed' for parameter 'capacity' of operation 'add'. Current: true;

legacy: false

So as we can see expressions are not allowed for the attribute, and the current type is capacity double

while the legacy subsystem is . So this means that if the value is for example we can convert this to int 2.0

, but cannot be converted. The way this is solved in the ModClusterExtension is to register the2 2.5

following some other attributes are registered here, but hopefully it is clear anyway:

Latest WildFly Documentation

JBoss Community Documentation Page of 1829 2293

dynamicLoadProvider.addChildResource(LOAD_METRIC_PATH)

 .getAttributeBuilder()

 .addRejectCheck(RejectAttributeChecker.SIMPLE_EXPRESSIONS, TYPE, WEIGHT,

CAPACITY, PROPERTY)

 .addRejectCheck(CapacityCheckerAndConverter.INSTANCE, CAPACITY)

 .setValueConverter(CapacityCheckerAndConverter.INSTANCE, CAPACITY)

 ...

 .end();

So we register that we should reject expressions, and we also register the

 for . extends theCapacityCheckerAndConverter capacity CapacityCheckerAndConverter

convenience class which implements the DefaultCheckersAndConverter

, , and interfaces. WeDiscardAttributeChecker RejectAttributeChecker AttributeConverter

have seen and in previous examples. SinceDiscardAttributeChecker RejectAttributeChecker

we now need to convert a value we need an instance of .AttributeConverter

static class CapacityCheckerAndConverter extends DefaultCheckersAndConverter {

 static final CapacityCheckerAndConverter INSTANCE = new CapacityCheckerAndConverter();

We should not discard so from always returns isValueDiscardable() DiscardAttributeChecker

:false

@Override

 protected boolean isValueDiscardable(PathAddress address, String attributeName,

ModelNode attributeValue, TransformationContext context) {

 //Not used for discard

 return false;

 }

 @Override

 public String getRejectionLogMessage(Map<String, ModelNode> attributes) {

 return

ModClusterMessages.MESSAGES.capacityIsExpressionOrGreaterThanIntegerMaxValue(attributes.get(CAPACITY.getName()));

}

Now we check to see if we can convert the attribute to an and reject if not. Note that if it is anint

expression, we have no idea what its value will resolve to on the target host, so we need to reject it. Then we

try to change it into an , and reject if that was not possible:int

Latest WildFly Documentation

JBoss Community Documentation Page of 1830 2293

@Override

 protected boolean rejectAttribute(PathAddress address, String attributeName, ModelNode

attributeValue, TransformationContext context) {

 if (checkForExpression(attributeValue)

 || (attributeValue.isDefined() &&

!isIntegerValue(attributeValue.asDouble()))) {

 return true;

 }

 Long converted = convert(attributeValue);

 return (converted != null && (converted > Integer.MAX_VALUE || converted <

Integer.MIN_VALUE));

 }

And then finally we do the conversion:

@Override

 protected void convertAttribute(PathAddress address, String attributeName, ModelNode

attributeValue, TransformationContext context) {

 Long converted = convert(attributeValue);

 if (converted != null && converted <= Integer.MAX_VALUE && converted >=

Integer.MIN_VALUE) {

 attributeValue.set((int)converted.longValue());

 }

 }

 private Long convert(ModelNode attributeValue) {

 if (attributeValue.isDefined() && !checkForExpression(attributeValue)) {

 double raw = attributeValue.asDouble();

 if (isIntegerValue(raw)) {

 return Math.round(raw);

 }

 }

 return null;

 }

 private boolean isIntegerValue(double raw) {

 return raw == Double.valueOf(Math.round(raw)).doubleValue();

 }

 }

11.11 Example subsystem

Our example subsystem will keep track of all deployments of certain types containing a special marker file,

and expose operations to see how long these deployments have been deployed.

Latest WildFly Documentation

JBoss Community Documentation Page of 1831 2293

11.11.1 Create the skeleton project

To make your life easier we have provided a maven archetype which will create a skeleton project for

implementing subsystems.

mvn archetype:generate \

 -DarchetypeArtifactId=wildfly-subsystem \

 -DarchetypeGroupId=org.wildfly.archetypes \

 -DarchetypeVersion=8.0.0.Final \

 -DarchetypeRepository=http://repository.jboss.org/nexus/content/groups/public

Maven will download the archetype and it's dependencies, and ask you some questions:

$ mvn archetype:generate \

 -DarchetypeArtifactId=wildfly-subsystem \

 -DarchetypeGroupId=org.wildfly.archetypes \

 -DarchetypeVersion=8.0.0.Final \

 -DarchetypeRepository=http://repository.jboss.org/nexus/content/groups/public

[INFO] Scanning for projects...

[INFO]

[INFO] --

[INFO] Building Maven Stub Project (No POM) 1

[INFO] --

[INFO]

.........

Define value for property 'groupId': : com.acme.corp

Define value for property 'artifactId': : acme-subsystem

Define value for property 'version': 1.0-SNAPSHOT: :

Define value for property 'package': com.acme.corp: : com.acme.corp.tracker

Define value for property 'module': : com.acme.corp.tracker

[INFO] Using property: name = WildFly subsystem project

Confirm properties configuration:

groupId: com.acme.corp

artifactId: acme-subsystem

version: 1.0-SNAPSHOT

package: com.acme.corp.tracker

module: com.acme.corp.tracker

name: WildFly subsystem project

 Y: : Y

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 1:42.563s

[INFO] Finished at: Fri Jul 08 14:30:09 BST 2011

[INFO] Final Memory: 7M/81M

[INFO] --

$

Latest WildFly Documentation

JBoss Community Documentation Page of 1832 2293

 Instruction

1 Enter the groupId you wish to use

2 Enter the artifactId you wish to use

3 Enter the version you wish to use, or just hit Enter if you wish to accept the default 1.0-SNAPSHOT

4 Enter the java package you wish to use, or just hit Enter if you wish to accept the default (which is

copied from groupId).

5 Enter the module name you wish to use for your extension.

6 Finally, if you are happy with your choices, hit Enter and Maven will generate the project for you.

You can also do this in Eclipse, see for more details. We now have a skeletonCreating your own application

project that you can use to implement a subsystem. Import the project into your favouriteacme-subsystem

IDE. A nice side-effect of running this in the IDE is that you can see the javadoc of WildFly classes and

interfaces imported by the skeleton code. If you do a in the project it will work if we plug it intomvn install

WildFly, but before doing that we will change it to do something more useful.

The rest of this section modifies the skeleton project created by the archetype to do something more useful,

and the full code can be found in .acme-subsystem.zip

If you do a in the created project, you will see some tests being runmvn install

$mvn install

[INFO] Scanning for projects...

[...]

[INFO] Surefire report directory:

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/surefire-reports

 T E S T S

Running com.acme.corp.tracker.extension.SubsystemBaseParsingTestCase

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.424 sec

Running com.acme.corp.tracker.extension.SubsystemParsingTestCase

Tests run: 6, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.074 sec

Results :

Tests run: 3, Failures: 0, Errors: 0, Skipped: 0

[...]

We will talk about these later in the section.Testing the parsers

https://docs.jboss.org/author/download/attachments/108626363/acme-subsystem.zip?version=1&modificationDate=1332346374000

Latest WildFly Documentation

JBoss Community Documentation Page of 1833 2293

11.11.2 Create the schema

First, let us define the schema for our subsystem. Rename

 to .src/main/resources/schema/mysubsystem.xsd src/main/resources/schema/acme.xsd

Then open and modify it to the followingacme.xsd

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="urn:com.acme.corp.tracker:1.0"

 xmlns="urn:com.acme.corp.tracker:1.0"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 version="1.0">

 <!-- The subsystem root element -->

 <xs:element name="subsystem" type="subsystemType"/>

 <xs:complexType name="subsystemType">

 <xs:all>

 <xs:element name="deployment-types" type="deployment-typesType"/>

 </xs:all>

 </xs:complexType>

 <xs:complexType name="deployment-typesType">

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="deployment-type" type="deployment-typeType"/>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="deployment-typeType">

 <xs:attribute name="suffix" use="required"/>

 <xs:attribute name="tick" type="xs:long" use="optional" default="10000"/>

 </xs:complexType>

</xs:schema>

Note that we modified the and values to .xmlns targetNamespace urn.com.acme.corp.tracker:1.0

Our new element has a child called , which in turn can have zero or moresubsystem deployment-types

children called . Each has a required attribute, and a deployment-type deployment-type suffix tick

attribute which defaults to true.

Now modify the class to contain thecom.acme.corp.tracker.extension.SubsystemExtension

new namespace.

public class SubsystemExtension implements Extension {

 /** The name space used for the {@code substystem} element */

 public static final String NAMESPACE = "urn:com.acme.corp.tracker:1.0";

 ...

Latest WildFly Documentation

JBoss Community Documentation Page of 1834 2293

11.11.3 Design and define the model structure

The following example xml contains a valid subsystem configuration, we will see how to plug this in to

WildFly later in this tutorial.

<subsystem xmlns="urn:com.acme.corp.tracker:1.0">

 <deployment-types>

 <deployment-type suffix="sar" tick="10000"/>

 <deployment-type suffix="war" tick="10000"/>

 </deployment-types>

</subsystem>

Now when designing our model, we can either do a one to one mapping between the schema and the model

or come up with something slightly or very different. To keep things simple, let us stay pretty true to the

schema so that when executing a against our subsystem we'll see:read-resource(recursive=true)

something like:

{

 "outcome" => "success",

 "result" => {"type" => {

 "sar" => {"tick" => "10000"},

 "war" => {"tick" => "10000"}

 }}

}

Each in the xml becomes in the model a child resource of the subsystem's rootdeployment-type

resource. The child resource's child-type is , and it is indexed by its . Each resource thentype suffix type

contains the attribute.tick

We also need a name for our subsystem, to do that change

:com.acme.corp.tracker.extension.SubsystemExtension

public class SubsystemExtension implements Extension {

 ...

 /** The name of our subsystem within the model. */

 public static final String SUBSYSTEM_NAME = "tracker";

 ...

Once we are finished our subsystem will be available under ./subsystem=tracker

The method defines the model, currently it sets up the basics toSubsystemExtension.initialize()

add our subsystem to the model:

Latest WildFly Documentation

JBoss Community Documentation Page of 1835 2293

@Override

 public void initialize(ExtensionContext context) {

 //register subsystem with its model version

 final SubsystemRegistration subsystem = context.registerSubsystem(SUBSYSTEM_NAME, 1, 0);

 //register subsystem model with subsystem definition that defines all attributes and

operations

 final ManagementResourceRegistration registration =

subsystem.registerSubsystemModel(SubsystemDefinition.INSTANCE);

 //register describe operation, note that this can be also registered in

SubsystemDefinition

 registration.registerOperationHandler(DESCRIBE,

GenericSubsystemDescribeHandler.INSTANCE, GenericSubsystemDescribeHandler.INSTANCE, false,

OperationEntry.EntryType.PRIVATE);

 //we can register additional submodels here

 //

 subsystem.registerXMLElementWriter(parser);

 }

The call registers our subsystem with the extension context. At the end of theregisterSubsystem()

method we register our parser with the returned to be able to marshal ourSubsystemRegistration

subsystem's model back to the main configuration file when it is modified. We will add more functionality to

this method later.

Registering the core subsystem model
Next we obtain a by registering the subsystem model. This is a ManagementResourceRegistration

 step for every new subsystem.compulsory

final ManagementResourceRegistration registration =

subsystem.registerSubsystemModel(SubsystemDefinition.INSTANCE);

Its parameter is an implementation of the interface, which means that when you callResourceDefinition

 the information you see comes from model that/subsystem=tracker:read-resource-description

is defined by .SubsystemDefinition.INSTANCE

Latest WildFly Documentation

JBoss Community Documentation Page of 1836 2293

1.

2.

3.

4.

public class SubsystemDefinition extends SimpleResourceDefinition {

 public static final SubsystemDefinition INSTANCE = new SubsystemDefinition();

 private SubsystemDefinition() {

 super(SubsystemExtension.SUBSYSTEM_PATH,

 SubsystemExtension.getResourceDescriptionResolver(null),

 //We always need to add an 'add' operation

 SubsystemAdd.INSTANCE,

 //Every resource that is added, normally needs a remove operation

 SubsystemRemove.INSTANCE);

 }

 @Override

 public void registerOperations(ManagementResourceRegistration resourceRegistration) {

 super.registerOperations(resourceRegistration);

 //you can register aditional operations here

 }

 @Override

 public void registerAttributes(ManagementResourceRegistration resourceRegistration) {

 //you can register attributes here

 }

}

Since we need child resource we need to add new ResourceDefinition,type

The obtained in is thenManagementResourceRegistration SubsystemExtension.initialize()

used to add additional operations or to register submodels to the address. Every/subsystem=tracker

subsystem and resource have an method which can be achieved by the following line inside must ADD

 in your or by providing it in constructor of your registerOperations ResourceDefinition

 just as we did in example above.SimpleResourceDefinition

//We always need to add an 'add' operation

 resourceRegistration.registerOperationHandler(ADD, SubsystemAdd.INSTANCE, new

DefaultResourceAddDescriptionProvider(resourceRegistration,descriptionResolver), false);

The parameters when registering an operation handler are:

 - i.e. .The name ADD

The handler instance - we will talk more about this below

The handler description provider - we will talk more about this below.

Whether this operation handler is inherited - means that this operation is not inherited, and willfalse

only apply to . The content for this operation handler will be provided by ./subsystem=tracker 3

Let us first look at the description provider which is quite simple since this operation takes no parameters.

The addition of children will be handled by another operation handler, as we will see later on.type

Latest WildFly Documentation

JBoss Community Documentation Page of 1837 2293

There are two way to define , one is by defining it by hand using ModelNode, butDescriptionProvider

as this has show to be very error prone there are lots of helper methods to help you automatically describe

the model. Following example is done by manually defining Description provider for ADD operation handler

/**

 * Used to create the description of the subsystem add method

 */

 public static DescriptionProvider SUBSYSTEM_ADD = new DescriptionProvider() {

 public ModelNode getModelDescription(Locale locale) {

 //The locale is passed in so you can internationalize the strings used in the

descriptions

 final ModelNode subsystem = new ModelNode();

 subsystem.get(OPERATION_NAME).set(ADD);

 subsystem.get(DESCRIPTION).set("Adds the tracker subsystem");

 return subsystem;

 }

 };

Or you can use API that helps you do that for you. For Add and Remove methods there are classes

 and DefaultResourceAddDescriptionProvider

 that do work for you. In case you use DefaultResourceRemoveDescriptionProvider

 even that part is hidden from you.SimpleResourceDefinition

resourceRegistration.registerOperationHandler(ADD, SubsystemAdd.INSTANCE, new

DefaultResourceAddDescriptionProvider(resourceRegistration,descriptionResolver), false);

resourceRegistration.registerOperationHandler(REMOVE, SubsystemRemove.INSTANCE, new

DefaultResourceRemoveDescriptionProvider(resourceRegistration,descriptionResolver), false);

For other operation handlers that are not add/remove you can use

 that takes additional parameter of what is the name ofDefaultOperationDescriptionProvider

operation and optional array of parameters/attributes operation takes. This is an example to register

operation " " with two parameters:add-mime

container.registerOperationHandler("add-mime",

 MimeMappingAdd.INSTANCE,

 new DefaultOperationDescriptionProvider("add-mime",

Extension.getResourceDescriptionResolver("container.mime-mapping"), MIME_NAME, MIME_VALUE));

When descriping an operation its description provider's must match the nameOPERATION_NAME

used when calling ManagementResourceRegistration.registerOperationHandler()

Next we have the actual operation handler instance, note that we have changed its populateModel()

method to initialize the child of the model.type

Latest WildFly Documentation

JBoss Community Documentation Page of 1838 2293

class SubsystemAdd extends AbstractBoottimeAddStepHandler {

 static final SubsystemAdd INSTANCE = new SubsystemAdd();

 private SubsystemAdd() {

 }

 /** {@inheritDoc} */

 @Override

 protected void populateModel(ModelNode operation, ModelNode model) throws

OperationFailedException {

 log.info("Populating the model");

 //Initialize the 'type' child node

 model.get("type").setEmptyObject();

 }

 also has a method which is used for initializing the deployer chainSubsystemAdd performBoottime()

associated with this subsystem. We will talk about the deployers later on. However, the basic idea for all

operation handlers is that we do any model updates before changing the actual runtime state.

The rule of thumb is that every thing that can be added, can also be removed so we have a remove handler

for the subsystem registered

in or just provide the operation handler in constructor.SubsystemDefinition.registerOperations

//Every resource that is added, normally needs a remove operation

 registration.registerOperationHandler(REMOVE, SubsystemRemove.INSTANCE,

DefaultResourceRemoveDescriptionProvider(resourceRegistration,descriptionResolver) , false);

 extends which takes care of removing the resourceSubsystemRemove AbstractRemoveStepHandler

from the model so we don't need to override its operation, also the add handler did notperformRemove()

install any services (services will be discussed later) so we can delete the methodperformRuntime()

generated by the archetype.

class SubsystemRemove extends AbstractRemoveStepHandler {

 static final SubsystemRemove INSTANCE = new SubsystemRemove();

 private final Logger log = Logger.getLogger(SubsystemRemove.class);

 private SubsystemRemove() {

 }

}

The description provider for the remove operation is simple and quite similar to that of the add handler where

just name of the method changes.

Latest WildFly Documentation

JBoss Community Documentation Page of 1839 2293

Registering the subsystem child
The child does not exist in our skeleton project so we need to implement the operations to add andtype

remove them from the model.

First we need an add operation to add the child, create a class called type

. In this case we extend the com.acme.corp.tracker.extension.TypeAddHandler

 class and implement the org.jboss.as.controller.AbstractAddStepHandler

 interface. org.jboss.as.controller.descriptions.DescriptionProvider

 is the main interface for the operation handlers,org.jboss.as.controller.OperationStepHandler

and is an implementation of that which does the plumbing work for adding aAbstractAddStepHandler

resource to the model.

class TypeAddHandler extends AbstractAddStepHandler implements DescriptionProvider {

 public static final TypeAddHandler INSTANCE = new TypeAddHandler();

 private TypeAddHandler() {

 }

Then we define subsystem model. Lets call it and for ease of use let it extend TypeDefinition

 instead just implement .SimpleResourceDefinition ResourceDefinition

public class TypeDefinition extends SimpleResourceDefinition {

 public static final TypeDefinition INSTANCE = new TypeDefinition();

 //we define attribute named tick

protected static final SimpleAttributeDefinition TICK =

new SimpleAttributeDefinitionBuilder(TrackerExtension.TICK, ModelType.LONG)

 .setAllowExpression(true)

 .setXmlName(TrackerExtension.TICK)

 .setFlags(AttributeAccess.Flag.RESTART_ALL_SERVICES)

 .setDefaultValue(new ModelNode(1000))

 .setAllowNull(false)

 .build();

private TypeDefinition(){

 super(TYPE_PATH,

TrackerExtension.getResourceDescriptionResolver(TYPE),TypeAdd.INSTANCE,TypeRemove.INSTANCE);

}

@Override

public void registerAttributes(ManagementResourceRegistration resourceRegistration){

 resourceRegistration.registerReadWriteAttribute(TICK, null, TrackerTickHandler.INSTANCE);

}

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1840 2293

Which will take care of describing the model for us. As you can see in example above we define

 named , this is a mechanism to define Attributes in more type safeSimpleAttributeDefinition TICK

way and to add more common API to manipulate attributes. As you can see here we define default value of

1000 as also other constraints and capabilities. There could be other properties set such as validators,

alternate names, xml name, flags for marking it attribute allows expressions and more.

Then we do the work of updating the model by implementing the method from the populateModel()

, which populates the model's attribute from the operation parameters. First weAbstractAddStepHandler

get hold of the model relative to the address of this operation (we will see later that we will register it against

), so we just specify an empty relative address, and we then populate our/subsystem=tracker/type=*

model with the parameters from the operation. There is operation on validateAndSet

 that helps us validate and set the model based on definition of the attribute.AttributeDefinition

@Override

 protected void populateModel(ModelNode operation, ModelNode model) throws

OperationFailedException {

 TICK.validateAndSet(operation,model);

 }

We then override the method to perform our runtime changes, which in this caseperformRuntime()

involves installing a service into the controller at the heart of WildFly. (

 is similar to AbstractAddStepHandler.performRuntime()

 in that the model is updated before runtimeAbstractBoottimeAddStepHandler.performBoottime()

changes are made.

@Override

 protected void performRuntime(OperationContext context, ModelNode operation, ModelNode

model,

 ServiceVerificationHandler verificationHandler, List<ServiceController<?>>

newControllers)

 throws OperationFailedException {

 String suffix =

PathAddress.pathAddress(operation.get(ModelDescriptionConstants.ADDRESS)).getLastElement().getValue();

long tick = TICK.resolveModelAttribute(context,model).asLong();

 TrackerService service = new TrackerService(suffix, tick);

 ServiceName name = TrackerService.createServiceName(suffix);

 ServiceController<TrackerService> controller = context.getServiceTarget()

 .addService(name, service)

 .addListener(verificationHandler)

 .setInitialMode(Mode.ACTIVE)

 .install();

 newControllers.add(controller);

 }

}

Since the add methods will be of the format , we/subsystem=tracker/suffix=war:add(tick=1234)

look for the last element of the operation address, which is in the example just given and use that as ourwar

suffix. We then create an instance of TrackerService and install that into the of theservice target

context and add the created to the list.service controller newControllers

Latest WildFly Documentation

JBoss Community Documentation Page of 1841 2293

The tracker service is quite simple. All services installed into WildFly must implement the

 interface.org.jboss.msc.service.Service

public class TrackerService implements Service<TrackerService>{

We then have some fields to keep the tick count and a thread which when run outputs all the deployments

registered with our service.

private AtomicLong tick = new AtomicLong(10000);

 private Set<String> deployments = Collections.synchronizedSet(new HashSet<String>());

 private Set<String> coolDeployments = Collections.synchronizedSet(new HashSet<String>());

 private final String suffix;

 private Thread OUTPUT = new Thread() {

 @Override

 public void run() {

 while (true) {

 try {

 Thread.sleep(tick.get());

 System.out.println("Current deployments deployed while " + suffix + "

tracking active:\n" + deployments

 + "\nCool: " + coolDeployments.size());

 } catch (InterruptedException e) {

 interrupted();

 break;

 }

 }

 }

 };

 public TrackerService(String suffix, long tick) {

 this.suffix = suffix;

 this.tick.set(tick);

 }

Next we have three methods which come from the interface. returns this service, Service getValue()

 is called when the service is started by the controller, is called when the service is stoppedstart() stop

by the controller, and they start and stop the thread outputting the deployments.

Latest WildFly Documentation

JBoss Community Documentation Page of 1842 2293

@Override

 public TrackerService getValue() throws IllegalStateException, IllegalArgumentException {

 return this;

 }

 @Override

 public void start(StartContext context) throws StartException {

 OUTPUT.start();

 }

 @Override

 public void stop(StopContext context) {

 OUTPUT.interrupt();

 }

Next we have a utility method to create the which is used to register the service in theServiceName

controller.

public static ServiceName createServiceName(String suffix) {

 return ServiceName.JBOSS.append("tracker", suffix);

}

Finally we have some methods to add and remove deployments, and to set and read the . The 'cool'tick

deployments will be explained later.

public void addDeployment(String name) {

 deployments.add(name);

 }

 public void addCoolDeployment(String name) {

 coolDeployments.add(name);

 }

 public void removeDeployment(String name) {

 deployments.remove(name);

 coolDeployments.remove(name);

 }

 void setTick(long tick) {

 this.tick.set(tick);

 }

 public long getTick() {

 return this.tick.get();

 }

}//TrackerService - end

Latest WildFly Documentation

JBoss Community Documentation Page of 1843 2293

Since we are able to add children, we need a way to be able to remove them, so we create a type

. In this case we extend com.acme.corp.tracker.extension.TypeRemoveHandler

 which takes care of removing the resource from the model so we don'tAbstractRemoveStepHandler

need to override its operationa. But we need to implement the performRemove()

 method to provide the model description, and since the add handler installs theDescriptionProvider

TrackerService, we need to remove that in the method.performRuntime()

public class TypeRemoveHandler extends AbstractRemoveStepHandler {

 public static final TypeRemoveHandler INSTANCE = new TypeRemoveHandler();

 private TypeRemoveHandler() {

 }

 @Override

 protected void performRuntime(OperationContext context, ModelNode operation, ModelNode

model) throws OperationFailedException {

 String suffix =

PathAddress.pathAddress(operation.get(ModelDescriptionConstants.ADDRESS)).getLastElement().getValue();

ServiceName name = TrackerService.createServiceName(suffix);

 context.removeService(name);

 }

}

We then need a description provider for the part of the model itself, so we modify TypeDefinitnion totype

registerAttribute

class TypeDefinition{

...

@Override

public void registerAttributes(ManagementResourceRegistration resourceRegistration){

 resourceRegistration.registerReadWriteAttribute(TICK, null, TrackerTickHandler.INSTANCE);

}

}

Then finally we need to specify that our new child and associated handlers go under type

 in the model by adding registering it with the model in /subsystem=tracker/type=*

. So we add the following just before the end of the method.SubsystemExtension.initialize()

Latest WildFly Documentation

JBoss Community Documentation Page of 1844 2293

@Override

public void initialize(ExtensionContext context)

{

 final SubsystemRegistration subsystem = context.registerSubsystem(SUBSYSTEM_NAME, 1, 0);

 final ManagementResourceRegistration registration =

subsystem.registerSubsystemModel(TrackerSubsystemDefinition.INSTANCE);

 //Add the type child

 ManagementResourceRegistration typeChild =

registration.registerSubModel(TypeDefinition.INSTANCE);

 subsystem.registerXMLElementWriter(parser);

}

The above first creates a child of our main subsystem registration for the relative address , and getstype=*

the registration.typeChild

To this we add the and .TypeAddHandler TypeRemoveHandler

The add variety is added under the name and the remove handler under the name , and foradd remove

each registered operation handler we use the handler singleton instance as both the handler parameter and

as the .DescriptionProvider

Finally, we register as a read/write attribute, the null parameter means we don't do anything specialtick

with regards to reading it, for the write handler we supply it with an operation handler called

.TrackerTickHandler

Registering it as a read/write attribute means we can use the operation to modify the:write-attribute

value of the parameter, and it will be handled by .TrackerTickHandler

Not registering a write attribute handler makes the attribute read only.

 extends TrackerTickHandler AbstractWriteAttributeHandler

directly, and so must implement its and method.applyUpdateToRuntime revertUpdateToRuntime

This takes care of model manipulation (validation, setting) but leaves us to do just to deal with what we need

to do.

Latest WildFly Documentation

JBoss Community Documentation Page of 1845 2293

class TrackerTickHandler extends AbstractWriteAttributeHandler<Void> {

 public static final TrackerTickHandler INSTANCE = new TrackerTickHandler();

 private TrackerTickHandler() {

 super(TypeDefinition.TICK);

 }

 protected boolean applyUpdateToRuntime(OperationContext context, ModelNode operation, String

attributeName,

 ModelNode resolvedValue, ModelNode currentValue, HandbackHolder<Void>

handbackHolder) throws OperationFailedException {

 modifyTick(context, operation, resolvedValue.asLong());

 return false;

 }

 protected void revertUpdateToRuntime(OperationContext context, ModelNode operation, String

attributeName, ModelNode valueToRestore, ModelNode valueToRevert, Void handback){

 modifyTick(context, operation, valueToRestore.asLong());

 }

 private void modifyTick(OperationContext context, ModelNode operation, long value) throws

OperationFailedException {

 final String suffix =

PathAddress.pathAddress(operation.get(ModelDescriptionConstants.ADDRESS)).getLastElement().getValue();

TrackerService service = (TrackerService)

context.getServiceRegistry(true).getRequiredService(TrackerService.createServiceName(suffix)).getValue();

service.setTick(value);

 }

}

The operation used to execute this will be of the form

) so we first get the /subsystem=tracker/type=war:write-attribute(name=tick,value=12345

 from the operation address, and the value from the operation parameter's suffix tick resolvedValue

parameter, and use that to update the model.

We then add a new step associated with the stage to update the tick of the TrackerService for ourRUNTIME

suffix. This is essential since the call to will fail unless the stepcontext.getServiceRegistry()

accessing it belongs to the stage.RUNTIME

When implementing , you call when you are done.execute() must context.completeStep()

Latest WildFly Documentation

JBoss Community Documentation Page of 1846 2293

11.11.4 Parsing and marshalling of the subsystem xml

WildFly uses the Stax API to parse the xml files. This is initialized in by mapping ourSubsystemExtension

parser onto our namespace:

public class SubsystemExtension implements Extension {

 /** The name space used for the {@code subsystem} element */

 public static final String NAMESPACE = "urn:com.acme.corp.tracker:1.0";

 ...

 protected static final PathElement SUBSYSTEM_PATH = PathElement.pathElement(SUBSYSTEM,

SUBSYSTEM_NAME);

 protected static final PathElement TYPE_PATH = PathElement.pathElement(TYPE);

 /** The parser used for parsing our subsystem */

 private final SubsystemParser parser = new SubsystemParser();

 @Override

 public void initializeParsers(ExtensionParsingContext context) {

 context.setSubsystemXmlMapping(NAMESPACE, parser);

 }

 ...

We then need to write the parser. The contract is that we read our subsystem's xml and create the

operations that will populate the model with the state contained in the xml. These operations will then be

executed on our behalf as part of the parsing process. The entry point is the method.readElement()

public class SubsystemExtension implements Extension {

 /**

 * The subsystem parser, which uses stax to read and write to and from xml

 */

 private static class SubsystemParser implements XMLStreamConstants,

XMLElementReader<List<ModelNode>>, XMLElementWriter<SubsystemMarshallingContext> {

 /** {@inheritDoc} */

 @Override

 public void readElement(XMLExtendedStreamReader reader, List<ModelNode> list) throws

XMLStreamException {

 // Require no attributes

 ParseUtils.requireNoAttributes(reader);

 //Add the main subsystem 'add' operation

 final ModelNode subsystem = new ModelNode();

 subsystem.get(OP).set(ADD);

 subsystem.get(OP_ADDR).set(PathAddress.pathAddress(SUBSYSTEM_PATH).toModelNode());

 list.add(subsystem);

 //Read the children

 while (reader.hasNext() && reader.nextTag() != END_ELEMENT) {

 if (!reader.getLocalName().equals("deployment-types")) {

Latest WildFly Documentation

JBoss Community Documentation Page of 1847 2293

 throw ParseUtils.unexpectedElement(reader);

 }

 while (reader.hasNext() && reader.nextTag() != END_ELEMENT) {

 if (reader.isStartElement()) {

 readDeploymentType(reader, list);

 }

 }

 }

 }

 private void readDeploymentType(XMLExtendedStreamReader reader, List<ModelNode> list)

throws XMLStreamException {

 if (!reader.getLocalName().equals("deployment-type")) {

 throw ParseUtils.unexpectedElement(reader);

 }

 ModelNode addTypeOperation = new ModelNode();

 addTypeOperation.get(OP).set(ModelDescriptionConstants.ADD);

 String suffix = null;

 for (int i = 0; i < reader.getAttributeCount(); i++) {

 String attr = reader.getAttributeLocalName(i);

 String value = reader.getAttributeValue(i);

 if (attr.equals("tick")) {

 TypeDefinition.TICK.parseAndSetParameter(value, addTypeOperation, reader);

 } else if (attr.equals("suffix")) {

 suffix = value;

 } else {

 throw ParseUtils.unexpectedAttribute(reader, i);

 }

 }

 ParseUtils.requireNoContent(reader);

 if (suffix == null) {

 throw ParseUtils.missingRequiredElement(reader,

Collections.singleton("suffix"));

 }

 //Add the 'add' operation for each 'type' child

 PathAddress addr = PathAddress.pathAddress(SUBSYSTEM_PATH,

PathElement.pathElement(TYPE, suffix));

 addTypeOperation.get(OP_ADDR).set(addr.toModelNode());

 list.add(addTypeOperation);

 }

 ...

So in the above we always create the add operation for our subsystem. Due to its address

 defined by this will trigger the we/subsystem=tracker SUBSYSTEM_PATH SubsystemAddHandler

created earlier when we invoke . We then parse the child elements and create/subsystem=tracker:add

an add operation for the child address for each child. Since the address will for example be type

 (defined by) and is registered for all /subsystem=tracker/type=sar TYPE_PATH TypeAddHandler

 subaddresses the will get invoked for those operations. Note that when we aretype TypeAddHandler

parsing attribute we are using definition of attribute that we defined in TypeDefintion to parse attributetick

value and apply all rules that we specified for this attribute, this also enables us to property support

expressions on attributes.

Latest WildFly Documentation

JBoss Community Documentation Page of 1848 2293

The parser is also used to marshal the model to xml whenever something modifies the model, for which the

entry point is the method:writeContent()

private static class SubsystemParser implements XMLStreamConstants,

XMLElementReader<List<ModelNode>>, XMLElementWriter<SubsystemMarshallingContext> {

 ...

 /** {@inheritDoc} */

 @Override

 public void writeContent(final XMLExtendedStreamWriter writer, final

SubsystemMarshallingContext context) throws XMLStreamException {

 //Write out the main subsystem element

 context.startSubsystemElement(TrackerExtension.NAMESPACE, false);

 writer.writeStartElement("deployment-types");

 ModelNode node = context.getModelNode();

 ModelNode type = node.get(TYPE);

 for (Property property : type.asPropertyList()) {

 //write each child element to xml

 writer.writeStartElement("deployment-type");

 writer.writeAttribute("suffix", property.getName());

 ModelNode entry = property.getValue();

 TypeDefinition.TICK.marshallAsAttribute(entry, true, writer);

 writer.writeEndElement();

 }

 //End deployment-types

 writer.writeEndElement();

 //End subsystem

 writer.writeEndElement();

 }

 }

Then we have to implement the which translates the current state of theSubsystemDescribeHandler

model into operations similar to the ones created by the parser. The is onlySubsystemDescribeHandler

used when running in a managed domain, and is used when the host controller queries the domain controller

for the configuration of the profile used to start up each server. In our case the

 adds the operation to add the subsystem and then adds the operation toSubsystemDescribeHandler

add each child. Since we are using ResourceDefinitinon for defining subsystem all that is generatedtype

for us, but if you want to customize that you can do it by implementing it like this.

Latest WildFly Documentation

JBoss Community Documentation Page of 1849 2293

private static class SubsystemDescribeHandler implements OperationStepHandler,

DescriptionProvider {

 static final SubsystemDescribeHandler INSTANCE = new SubsystemDescribeHandler();

 public void execute(OperationContext context, ModelNode operation) throws

OperationFailedException {

 //Add the main operation

 context.getResult().add(createAddSubsystemOperation());

 //Add the operations to create each child

 ModelNode node = context.readModel(PathAddress.EMPTY_ADDRESS);

 for (Property property : node.get("type").asPropertyList()) {

 ModelNode addType = new ModelNode();

 addType.get(OP).set(ModelDescriptionConstants.ADD);

 PathAddress addr = PathAddress.pathAddress(SUBSYSTEM_PATH,

PathElement.pathElement("type", property.getName()));

 addType.get(OP_ADDR).set(addr.toModelNode());

 if (property.getValue().hasDefined("tick")) {

 TypeDefinition.TICK.validateAndSet(property,addType);

 }

 context.getResult().add(addType);

 }

 context.completeStep();

 }

}

Testing the parsers

Changes to tests between 7.0.0 and 7.0.1

The testing framework was moved from the archetype into the core JBoss AS 7 sources between

JBoss AS 7.0.0 and JBoss AS 7.0.1, and has been improved upon and is used internally for testing

JBoss AS 7's subsystems. The differences between the two versions is that in 7.0.0.Final the

testing framework is bundled with the code generated by the archetype (in a sub-package of the

package specified for your subsystem, e.g.), and the testcom.acme.corp.tracker.support

extends the class.AbstractParsingTest

From 7.0.1 the testing framework is now brought in via the

 maven artifact, and the test's superclass is org.jboss.as:jboss-as-subsystem-test

. The concepts are the same butorg.jboss.as.subsystem.test.AbstractSubsystemTest

more and more functionality will be available as JBoss AS 7 is developed.

Latest WildFly Documentation

JBoss Community Documentation Page of 1850 2293

Now that we have modified our parsers we need to update our tests to reflect the new model. There are

currently three tests testing the basic functionality, something which is a lot easier to debug from your IDE

before you plug it into the application server. We will talk about these tests in turn and they all live in

. com.acme.corp.tracker.extension.SubsystemParsingTestCase

 extends which does a lot of the setup for youSubsystemParsingTestCase AbstractSubsystemTest

and contains utility methods for verifying things from your test. See the javadoc of that class for more

information about the functionality available to you. And by all means feel free to add more tests for your

subsystem, here we are only testing for the best case scenario while you will probably want to throw in a few

tests for edge cases.

The first test we need to modify is . It tests that the parsed xml becomes thetestParseSubsystem()

expected operations that will be parsed into the server, so let us tweak this test to match our subsystem.

First we tell the test to parse the xml into operations

@Test

 public void testParseSubsystem() throws Exception {

 //Parse the subsystem xml into operations

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 List<ModelNode> operations = super.parse(subsystemXml);

There should be one operation for adding the subsystem itself and an operation for adding the

, so check we got two operationsdeployment-type

///Check that we have the expected number of operations

 Assert.assertEquals(2, operations.size());

Now check that the first operation is for the address :add /subsystem=tracker

//Check that each operation has the correct content

 //The add subsystem operation will happen first

 ModelNode addSubsystem = operations.get(0);

 Assert.assertEquals(ADD, addSubsystem.get(OP).asString());

 PathAddress addr = PathAddress.pathAddress(addSubsystem.get(OP_ADDR));

 Assert.assertEquals(1, addr.size());

 PathElement element = addr.getElement(0);

 Assert.assertEquals(SUBSYSTEM, element.getKey());

 Assert.assertEquals(SubsystemExtension.SUBSYSTEM_NAME, element.getValue());

Then check that the second operation is for the address , and that wasadd /subsystem=tracker 12345

picked up for the value of the parameter:tick

Latest WildFly Documentation

JBoss Community Documentation Page of 1851 2293

//Then we will get the add type operation

 ModelNode addType = operations.get(1);

 Assert.assertEquals(ADD, addType.get(OP).asString());

 Assert.assertEquals(12345, addType.get("tick").asLong());

 addr = PathAddress.pathAddress(addType.get(OP_ADDR));

 Assert.assertEquals(2, addr.size());

 element = addr.getElement(0);

 Assert.assertEquals(SUBSYSTEM, element.getKey());

 Assert.assertEquals(SubsystemExtension.SUBSYSTEM_NAME, element.getValue());

 element = addr.getElement(1);

 Assert.assertEquals("type", element.getKey());

 Assert.assertEquals("tst", element.getValue());

 }

The second test we need to modify is which tests that the xml installstestInstallIntoController()

properly into the controller. In other words we are making sure that the operations we created earlieradd

work properly. First we create the xml and install it into the controller. Behind the scenes this will parse the

xml into operations as we saw in the last test, but it will also create a new controller and boot that up using

the created operations

@Test

 public void testInstallIntoController() throws Exception {

 //Parse the subsystem xml and install into the controller

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 KernelServices services = super.installInController(subsystemXml);

The returned allow us to execute operations on the controller, and to read the wholeKernelServices

model.

//Read the whole model and make sure it looks as expected

 ModelNode model = services.readWholeModel();

 //Useful for debugging :-)

 //System.out.println(model);

Now we make sure that the structure of the model within the controller has the expected format and values

Latest WildFly Documentation

JBoss Community Documentation Page of 1852 2293

Assert.assertTrue(model.get(SUBSYSTEM).hasDefined(SubsystemExtension.SUBSYSTEM_NAME));

 Assert.assertTrue(model.get(SUBSYSTEM,

SubsystemExtension.SUBSYSTEM_NAME).hasDefined("type"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type").hasDefined("tst"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME, "type",

"tst").hasDefined("tick"));

 Assert.assertEquals(12345, model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type", "tst", "tick").asLong());

 }

The last test provided is called . It's main purpose is to make sure thattestParseAndMarshalModel()

our works as expected. This is achieved by starting a controller inSubsystemParser.writeContent()

the same way as before

@Test

 public void testParseAndMarshalModel() throws Exception {

 //Parse the subsystem xml and install into the first controller

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 KernelServices servicesA = super.installInController(subsystemXml);

Now we read the model and the xml that was persisted from the first controller, and use that xml to start a

second controller

//Get the model and the persisted xml from the first controller

 ModelNode modelA = servicesA.readWholeModel();

 String marshalled = servicesA.getPersistedSubsystemXml();

 //Install the persisted xml from the first controller into a second controller

 KernelServices servicesB = super.installInController(marshalled);

Finally we read the model from the second controller, and make sure that the models are identical by calling

 on the test superclass.compare()

ModelNode modelB = servicesB.readWholeModel();

 //Make sure the models from the two controllers are identical

 super.compare(modelA, modelB);

 }

We then have a test that needs no changing from what the archetype provides us with. As we have seen

before we start a controller

Latest WildFly Documentation

JBoss Community Documentation Page of 1853 2293

@Test

 public void testDescribeHandler() throws Exception {

 //Parse the subsystem xml and install into the first controller

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 "</subsystem>";

 KernelServices servicesA = super.installInController(subsystemXml);

We then call which outputs the subsystem as operations needed to/subsystem=tracker:describe

reach the current state (Done by our)SubsystemDescribeHandler

//Get the model and the describe operations from the first controller

 ModelNode modelA = servicesA.readWholeModel();

 ModelNode describeOp = new ModelNode();

 describeOp.get(OP).set(DESCRIBE);

 describeOp.get(OP_ADDR).set(

 PathAddress.pathAddress(

 PathElement.pathElement(SUBSYSTEM,

SubsystemExtension.SUBSYSTEM_NAME)).toModelNode());

 List<ModelNode> operations =

super.checkResultAndGetContents(servicesA.executeOperation(describeOp)).asList();

Then we create a new controller using those operations

//Install the describe options from the first controller into a second controller

 KernelServices servicesB = super.installInController(operations);

And then we read the model from the second controller and make sure that the two subsystems are identical

ModelNode modelB = servicesB.readWholeModel();

//Make sure the models from the two controllers are identical

 super.compare(modelA, modelB);

 }

To test the removal of the the subsystem and child resources we modify the testSubsystemRemoval()

test provided by the archetype:

/**

 * Tests that the subsystem can be removed

 */

 @Test

 public void testSubsystemRemoval() throws Exception {

 //Parse the subsystem xml and install into the first controller

We provide xml for the subsystem installing a child, which in turn installs a TrackerService

Latest WildFly Documentation

JBoss Community Documentation Page of 1854 2293

String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 KernelServices services = super.installInController(subsystemXml);

Having installed the xml into the controller we make sure the TrackerService is there

//Sanity check to test the service for 'tst' was there

 services.getContainer().getRequiredService(TrackerService.createServiceName("tst"));

This call from the subsystem test harness will call remove for each level in our subsystem, children first and

validate

that the subsystem model is empty at the end.

//Checks that the subsystem was removed from the model

 super.assertRemoveSubsystemResources(services);

Finally we check that all the services were removed by the remove handlers

//Check that any services that were installed were removed here

 try {

 services.getContainer().getRequiredService(TrackerService.createServiceName("tst"));

 Assert.fail("Should have removed services");

 } catch (Exception expected) {

 }

 }

For good measure let us throw in another test which adds a and also changes itsdeployment-type

attribute at runtime. So first of all boot up the controller with the same xml we have been using so far

@Test

 public void testExecuteOperations() throws Exception {

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 KernelServices services = super.installInController(subsystemXml);

Now create an operation which does the same as the following CLI command

/subsystem=tracker/type=foo:add(tick=1000)

Latest WildFly Documentation

JBoss Community Documentation Page of 1855 2293

//Add another type

 PathAddress fooTypeAddr = PathAddress.pathAddress(

 PathElement.pathElement(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME),

 PathElement.pathElement("type", "foo"));

 ModelNode addOp = new ModelNode();

 addOp.get(OP).set(ADD);

 addOp.get(OP_ADDR).set(fooTypeAddr.toModelNode());

 addOp.get("tick").set(1000);

Execute the operation and make sure it was successful

ModelNode result = services.executeOperation(addOp);

 Assert.assertEquals(SUCCESS, result.get(OUTCOME).asString());

Read the whole model and make sure that the original data is still there (i.e. the same as what was done by

testInstallIntoController()

ModelNode model = services.readWholeModel();

 Assert.assertTrue(model.get(SUBSYSTEM).hasDefined(SubsystemExtension.SUBSYSTEM_NAME));

 Assert.assertTrue(model.get(SUBSYSTEM,

SubsystemExtension.SUBSYSTEM_NAME).hasDefined("type"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type").hasDefined("tst"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME, "type",

"tst").hasDefined("tick"));

 Assert.assertEquals(12345, model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type", "tst", "tick").asLong());

Then make sure our new has been added:type

Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type").hasDefined("foo"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME, "type",

"foo").hasDefined("tick"));

 Assert.assertEquals(1000, model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type", "foo", "tick").asLong());

Then we call to change the value of :write-attribute tick /subsystem=tracker/type=foo

//Call write-attribute

 ModelNode writeOp = new ModelNode();

 writeOp.get(OP).set(WRITE_ATTRIBUTE_OPERATION);

 writeOp.get(OP_ADDR).set(fooTypeAddr.toModelNode());

 writeOp.get(NAME).set("tick");

 writeOp.get(VALUE).set(3456);

 result = services.executeOperation(writeOp);

 Assert.assertEquals(SUCCESS, result.get(OUTCOME).asString());

Latest WildFly Documentation

JBoss Community Documentation Page of 1856 2293

To give you exposure to other ways of doing things, now instead of reading the whole model to check the

attribute, we call instead, and make sure it has the value we set it to.read-attribute

//Check that write attribute took effect, this time by calling read-attribute instead of reading

the whole model

 ModelNode readOp = new ModelNode();

 readOp.get(OP).set(READ_ATTRIBUTE_OPERATION);

 readOp.get(OP_ADDR).set(fooTypeAddr.toModelNode());

 readOp.get(NAME).set("tick");

 result = services.executeOperation(readOp);

 Assert.assertEquals(3456, checkResultAndGetContents(result).asLong());

Since each installs its own copy of , we get the for type TrackerService TrackerService type=foo

from the service container exposed by the kernel services and make sure it has the right value

TrackerService service =

(TrackerService)services.getContainer().getService(TrackerService.createServiceName("foo")).getValue();

Assert.assertEquals(3456, service.getTick());

 }

TypeDefinition.TICK.

11.11.5 Add the deployers

When discussing we did not mention the work done to install the deployers, whichSubsystemAddHandler

is done in the following method:

@Override

 public void performBoottime(OperationContext context, ModelNode operation, ModelNode model,

 ServiceVerificationHandler verificationHandler, List<ServiceController<?>>

newControllers)

 throws OperationFailedException {

 log.info("Populating the model");

 //Add deployment processors here

 //Remove this if you don't need to hook into the deployers, or you can add as many as

you like

 //see SubDeploymentProcessor for explanation of the phases

 context.addStep(new AbstractDeploymentChainStep() {

 public void execute(DeploymentProcessorTarget processorTarget) {

 processorTarget.addDeploymentProcessor(SubsystemDeploymentProcessor.PHASE,

SubsystemDeploymentProcessor.priority, new SubsystemDeploymentProcessor());

 }

 }, OperationContext.Stage.RUNTIME);

 }

Latest WildFly Documentation

JBoss Community Documentation Page of 1857 2293

This adds an extra step which is responsible for installing deployment processors. You can add as many as

you like, or avoid adding any all together depending on your needs. Each processor has a and a Phase

. Phases are sequential, and a deployment passes through each phases deployment processors.priority

The specifies where within a phase the processor appears. See priority

 for more information about phases.org.jboss.as.server.deployment.Phase

In our case we are keeping it simple and staying with one deployment processor with the phase and priority

created for us by the maven archetype. The phases will be explained in the next section. The deployment

processor is as follows:

public class SubsystemDeploymentProcessor implements DeploymentUnitProcessor {

 ...

 @Override

 public void deploy(DeploymentPhaseContext phaseContext) throws

DeploymentUnitProcessingException {

 String name = phaseContext.getDeploymentUnit().getName();

 TrackerService service = getTrackerService(phaseContext.getServiceRegistry(), name);

 if (service != null) {

 ResourceRoot root =

phaseContext.getDeploymentUnit().getAttachment(Attachments.DEPLOYMENT_ROOT);

 VirtualFile cool = root.getRoot().getChild("META-INF/cool.txt");

 service.addDeployment(name);

 if (cool.exists()) {

 service.addCoolDeployment(name);

 }

 }

 }

 @Override

 public void undeploy(DeploymentUnit context) {

 context.getServiceRegistry();

 String name = context.getName();

 TrackerService service = getTrackerService(context.getServiceRegistry(), name);

 if (service != null) {

 service.removeDeployment(name);

 }

 }

 private TrackerService getTrackerService(ServiceRegistry registry, String name) {

 int last = name.lastIndexOf(".");

 String suffix = name.substring(last + 1);

 ServiceController<?> container =

registry.getService(TrackerService.createServiceName(suffix));

 if (container != null) {

 TrackerService service = (TrackerService)container.getValue();

 return service;

 }

 return null;

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1858 2293

The method is called when a deployment is being deployed. In this case we look for the deploy()

 instance for the service name created from the deployment's suffix. If there is one itTrackerService

means that we are meant to be tracking deployments with this suffix (i.e. was called forTypeAddHandler

this suffix), and if we find one we add the deployment's name to it. Similarly is called when aundeploy()

deployment is being undeployed, and if there is a instance for the deployment's suffix,TrackerService

we remove the deployment's name from it.

Latest WildFly Documentation

JBoss Community Documentation Page of 1859 2293

Deployment phases and attachments
The code in the SubsystemDeploymentProcessor uses an , which is the means ofattachment

communication between the individual deployment processors. A deployment processor belonging to a

phase may create an attachment which is then read further along the chain of deployment unit processors.

In the above example we look for the attachment, which is a view of theAttachments.DEPLOYMENT_ROOT

file structure of the deployment unit put in place before the chain of deployment unit processors is invoked.

As mentioned above, the deployment unit processors are organized in phases, and have a relative order

within each phase. A deployment unit passes through all the deployment unit processors in that order. A

deployment unit processor may choose to take action or not depending on what attachments are available.

Let's take a quick look at what the deployment unit processors for in the phases described in

.org.jboss.as.server.deployment.Phase

STRUCTURE
The deployment unit processors in this phase determine the structure of a deployment, and looks for sub

deployments and metadata files.

PARSE
In this phase the deployment unit processors parse the deployment descriptors and build up the annotation

index. entries from the META-INF/MANIFEST.MF are added.Class-Path

DEPENDENCIES
Extra class path dependencies are added. For example if deploying a file, the commonly neededwar

dependencies for a web application are added.

CONFIGURE_MODULE
In this phase the modular class loader for the deployment is created. No attempt should be made loading

classes from the deployment until this phase.after

POST_MODULE
Now that our class loader has been constructed we have access to the classes. In this stage deployment

processors may use the attachment which is a deployment indexAttachments.REFLECTION_INDEX

used to obtain members of classes in the deployment, and to invoke upon them, bypassing the inefficiencies

of using directly.java.lang.reflect

INSTALL
Install new services coming from the deployment.

CLEANUP
Attachments put in place earlier in the deployment unit processor chain may be removed here.

Latest WildFly Documentation

JBoss Community Documentation Page of 1860 2293

11.11.6 Integrate with WildFly

Now that we have all the code needed for our subsystem, we can build our project by running mvn

install

[kabir ~/sourcecontrol/temp/archetype-test/acme-subsystem]

$mvn install

[INFO] Scanning for projects...

[...]

main:

 [delete] Deleting:

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/null1004283288

 [delete] Deleting directory

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/module

 [copy] Copying 1 file to

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/module/com/acme/corp/tracker/main

[copy] Copying 1 file to

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/module/com/acme/corp/tracker/main

[echo] Module com.acme.corp.tracker has been created in the target/module directory. Copy to

your JBoss AS 7 installation.

[INFO] Executed tasks

[INFO]

[INFO] --- maven-install-plugin:2.3.1:install (default-install) @ acme-subsystem ---

[INFO] Installing

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/acme-subsystem.jar to

/Users/kabir/.m2/repository/com/acme/corp/acme-subsystem/1.0-SNAPSHOT/acme-subsystem-1.0-SNAPSHOT.jar
[INFO]

Installing /Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/pom.xml to

/Users/kabir/.m2/repository/com/acme/corp/acme-subsystem/1.0-SNAPSHOT/acme-subsystem-1.0-SNAPSHOT.pom
[INFO]

--

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 5.851s

[INFO] Finished at: Mon Jul 11 23:24:58 BST 2011

[INFO] Final Memory: 7M/81M

[INFO] --

This will have built our project and assembled a module for us that can be used for installing it into WildFly. If

you go to the folder where you built the project you will see the moduletarget/module

$ls target/module/com/acme/corp/tracker/main/

acme-subsystem.jar module.xml

The comes from and is used to definemodule.xml src/main/resources/module/main/module.xml

your module. It says that it contains the :acme-subsystem.jar

<module xmlns="urn:jboss:module:1.0" name="com.acme.corp.tracker">

 <resources>

 <resource-root path="acme-subsystem.jar"/>

 </resources>

Latest WildFly Documentation

JBoss Community Documentation Page of 1861 2293

And has a default set of dependencies needed by every subsystem created. If your subsystem requires

additional module dependencies you can add them here before building and installing.

<dependencies>

 <module name="javax.api"/>

 <module name="org.jboss.staxmapper"/>

 <module name="org.jboss.as.controller"/>

 <module name="org.jboss.as.server"/>

 <module name="org.jboss.modules"/>

 <module name="org.jboss.msc"/>

 <module name="org.jboss.logging"/>

 <module name="org.jboss.vfs"/>

 </dependencies>

</module>

Note that the name of the module corresponds to the directory structure containing it. Now copy the

 directory and its contents to target/module/com/acme/corp/tracker/main/

 (where is the root of your WildFly install).$WFLY/modules/com/acme/corp/tracker/main/ $WFLY

Next we need to modify . First we need to add$WFLY/standalone/configuration/standalone.xml

our new module to the section:<extensions>

<extensions>

 ...

 <extension module="org.jboss.as.weld"/>

 <extension module="com.acme.corp.tracker"/>

 </extensions>

And then we have to add our subsystem to the section:<profile>

<profile>

 ...

 <subsystem xmlns="urn:com.acme.corp.tracker:1.0">

 <deployment-types>

 <deployment-type suffix="sar" tick="10000"/>

 <deployment-type suffix="war" tick="10000"/>

 </deployment-types>

 </subsystem>

 ...

 </profile>

Adding this to a managed domain works exactly the same apart from in this case you need to modify

.$WFLY/domain/configuration/domain.xml

Now start up WildFly by running and you should see messages like these$WFLY/bin/standalone.sh

after the server has started, which means our subsystem has been added and our isTrackerService

working:

Latest WildFly Documentation

JBoss Community Documentation Page of 1862 2293

15:27:33,838 INFO [org.jboss.as] (Controller Boot Thread) JBoss AS 7.0.0.Final "Lightning"

started in 2861ms - Started 94 of 149 services (55 services are passive or on-demand)

15:27:42,966 INFO [stdout] (Thread-8) Current deployments deployed while sar tracking active:

15:27:42,966 INFO [stdout] (Thread-8) []

15:27:42,967 INFO [stdout] (Thread-8) Cool: 0

15:27:42,967 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:27:42,967 INFO [stdout] (Thread-9) []

15:27:42,967 INFO [stdout] (Thread-9) Cool: 0

15:27:52,967 INFO [stdout] (Thread-8) Current deployments deployed while sar tracking active:

15:27:52,967 INFO [stdout] (Thread-8) []

15:27:52,967 INFO [stdout] (Thread-8) Cool: 0

If you run the command line interface you can execute some commands to see more about the subsystem.

For example

[standalone@localhost:9999 /] /subsystem=tracker/:read-resource-description(recursive=true,

operations=true)

will return a lot of information, including what we provided in the s we created toDescriptionProvider

document our subsystem.

To see the current subsystem state you can execute

[standalone@localhost:9999 /] /subsystem=tracker/:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {"type" => {

 "war" => {"tick" => 10000L},

 "sar" => {"tick" => 10000L}

 }}

}

We can remove both the deployment types which removes them from the model:

[standalone@localhost:9999 /] /subsystem=tracker/type=sar:remove

{"outcome" => "success"}

[standalone@localhost:9999 /] /subsystem=tracker/type=war:remove

{"outcome" => "success"}

[standalone@localhost:9999 /] /subsystem=tracker/:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {"type" => undefined}

}

You should now see the output from the instances having stopped.TrackerService

Now, let's add the war tracker again:

Latest WildFly Documentation

JBoss Community Documentation Page of 1863 2293

[standalone@localhost:9999 /] /subsystem=tracker/type=war:add

{"outcome" => "success"}

[standalone@localhost:9999 /] /subsystem=tracker/:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {"type" => {"war" => {"tick" => 10000L}}}

}

and the WildFly console should show the messages coming from the war again.TrackerService

Now let us deploy something. You can find two maven projects for test wars already built at and test1.zip

. If you download them and extract them to and , youtest2.zip /Downloads/test1 /Downloads/test2

can see that contains a while /Downloads/test1/target/test1.war META-INF/cool.txt

 does not contain that file. From CLI deploy first:/Downloads/test2/target/test2.war test1.war

[standalone@localhost:9999 /] deploy ~/Downloads/test1/target/test1.war

'test1.war' deployed successfully.

And you should now see the output from the war list the deployments:TrackerService

15:35:03,712 INFO [org.jboss.as.server.deployment] (MSC service thread 1-2) Starting deployment

of "test1.war"

15:35:03,988 INFO [org.jboss.web] (MSC service thread 1-1) registering web context: /test1

15:35:03,996 INFO [org.jboss.as.server.controller] (pool-2-thread-9) Deployed "test1.war"

15:35:13,056 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:35:13,056 INFO [stdout] (Thread-9) [test1.war]

15:35:13,057 INFO [stdout] (Thread-9) Cool: 1

So our got picked up as a 'cool' deployment. Now if we deploy test1.war test2.war

[standalone@localhost:9999 /] deploy ~/sourcecontrol/temp/archetype-test/test2/target/test2.war

'test2.war' deployed successfully.

You will see that deployment get picked up as well but since there is no it is notMETA-INF/cool.txt

marked as a 'cool' deployment:

15:37:05,634 INFO [org.jboss.as.server.deployment] (MSC service thread 1-4) Starting deployment

of "test2.war"

15:37:05,699 INFO [org.jboss.web] (MSC service thread 1-1) registering web context: /test2

15:37:05,982 INFO [org.jboss.as.server.controller] (pool-2-thread-15) Deployed "test2.war"

15:37:13,075 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:37:13,075 INFO [stdout] (Thread-9) [test1.war, test2.war]

15:37:13,076 INFO [stdout] (Thread-9) Cool: 1

An undeploy

https://docs.jboss.org/author/download/attachments/108626368/test1.zip?version=1&modificationDate=1311326317000
https://docs.jboss.org/author/download/attachments/108626368/test2.zip?version=1&modificationDate=1311326215000

Latest WildFly Documentation

JBoss Community Documentation Page of 1864 2293

[standalone@localhost:9999 /] undeploy test1.war

Successfully undeployed test1.war.

is also reflected in the output:TrackerService

15:38:47,901 INFO [org.jboss.as.server.controller] (pool-2-thread-21) Undeployed "test1.war"

15:38:47,934 INFO [org.jboss.as.server.deployment] (MSC service thread 1-3) Stopped deployment

test1.war in 40ms

15:38:53,091 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:38:53,092 INFO [stdout] (Thread-9) [test2.war]

15:38:53,092 INFO [stdout] (Thread-9) Cool: 0

Finally, we registered a write attribute handler for the property of the so we can change thetick type

frequency

[standalone@localhost:9999 /] /subsystem=tracker/type=war:write-attribute(name=tick,value=1000)

{"outcome" => "success"}

You should now see the output from the happen every secondTrackerService

15:39:43,100 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:39:43,100 INFO [stdout] (Thread-9) [test2.war]

15:39:43,101 INFO [stdout] (Thread-9) Cool: 0

15:39:44,101 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:39:44,102 INFO [stdout] (Thread-9) [test2.war]

15:39:44,105 INFO [stdout] (Thread-9) Cool: 0

15:39:45,106 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:39:45,106 INFO [stdout] (Thread-9) [test2.war]

If you open you can see that our subsystem$WFLY/standalone/configuration/standalone.xml

entry reflects the current state of the subsystem:

<subsystem xmlns="urn:com.acme.corp.tracker:1.0">

 <deployment-types>

 <deployment-type suffix="war" tick="1000"/>

 </deployment-types>

 </subsystem>

11.11.7 Expressions

Expressions are mechanism that enables you to support variables in your attributes, for instance when you

want the value of attribute to be resolved using system / environment properties.

An example expression is

Latest WildFly Documentation

JBoss Community Documentation Page of 1865 2293

${jboss.bind.address.management:127.0.0.1}

which means that the value should be taken from a system property named

 and if it is not defined use .jboss.bind.address.management 127.0.0.1

What expression types are supported

System properties, which are resolved using java.lang.System.getProperty(String key)

Environment properties, which are resolved using .java.lang.System.getEnv(String name)

Security vault expressions, resolved against the security vault configured for the server or Host

Controller that needs to resolve the expression.

In all cases, the syntax for the expression is

${expression_to_resolve}

For an expression meant to be resolved against environment properties, the expression_to_resolve

must be prefixed with . The portion after will be the name passed to env. env.

.java.lang.System.getEnv(String name)

Security vault expressions do not support default values (i.e. the in the 127.0.0.1

 example above.)jboss.bind.address.management:127.0.0.1

How to support expressions in subsystems
The easiest way is by using AttributeDefinition, which provides support for expressions just by using it

correctly.

When we create an AttributeDefinition all we need to do is mark that is allows expressions. Here is an

example how to define an attribute that allows expressions to be used.

SimpleAttributeDefinition MY_ATTRIBUTE =

 new SimpleAttributeDefinitionBuilder("my-attribute", ModelType.INT, true)

 .setAllowExpression(true)

 .setFlags(AttributeAccess.Flag.RESTART_ALL_SERVICES)

 .setDefaultValue(new ModelNode(1))

 .build();

Then later when you are parsing the xml configuration you should use the MY_ATTRIBUTE attribute

definition to set the value to the management operation ModelNode you are creating.

Latest WildFly Documentation

JBoss Community Documentation Page of 1866 2293

....

 String attr = reader.getAttributeLocalName(i);

 String value = reader.getAttributeValue(i);

 if (attr.equals("my-attribute")) {

 MY_ATTRIBUTE.parseAndSetParameter(value, operation, reader);

 } else if (attr.equals("suffix")) {

.....

Note that this just helps you to properly set the value to the model node you are working on, so no need to

additionally set anything to the model for this attribute. Method parseAndSetParameter parses the value that

was read from xml for possible expressions in it and if it finds any it creates special model node that defines

that node is of type .ModelType.EXPRESSION

Later in your operation handlers where you implement populateModel and have to store the value from the

operation to the configuration model you also use this MY_ATTRIBUTE attribute definition.

@Override

 protected void populateModel(ModelNode operation, ModelNode model) throws

OperationFailedException {

 MY_ATTRIBUTE.validateAndSet(operation,model);

 }

This will make sure that the attribute that is stored from the operation to the model is valid and nothing is

lost. It also checks the value stored in the operation , and if it isn't already ModelNode

, it checks if the value is a string that contains the expression syntax. If so, theModelType.EXPRESSION

value stored in the model will be of type . Doing this ensures that expressions areModelType.EXPRESSION

properly handled when they appear in operations that weren't created by the subsystem parser, but are

instead passed in from CLI or admin console users.

As last step we need to use the value of the attribute. This is usually needed inside of the performRuntime

method

protected void performRuntime(OperationContext context, ModelNode operation, ModelNode model,

ServiceVerificationHandler verificationHandler, List<ServiceController<?>> newControllers)

throws OperationFailedException {

 final int attributeValue = MY_ATTRIBUTE.resolveModelAttribute(context,

model).asInt();

 ...

 }

As you can see resolving of attribute's value is not done until it is needed for use in the subsystem's runtime

services. The resolved value is not stored in the configuration model, the unresolved expression is. That way

we do not lose any information in the model and can assure that also marshalling is done properly, where we

must marshall back the unresolved value.

Attribute definitinon also helps you with that:

Latest WildFly Documentation

JBoss Community Documentation Page of 1867 2293

public void writeContent(XMLExtendedStreamWriter writer, SubsystemMarshallingContext context)

throws XMLStreamException {

 MY_ATTRIBUTE.marshallAsAttribute(sessionData, writer);

 MY_OTHER_ATTRIBUTE.marshallAsElement(sessionData, false, writer);

 ...

}

11.11.8 Add the deployers

When discussing we did not mention the work done to install the deployers, whichSubsystemAddHandler

is done in the following method:

@Override

 public void performBoottime(OperationContext context, ModelNode operation, ModelNode model,

 ServiceVerificationHandler verificationHandler, List<ServiceController<?>>

newControllers)

 throws OperationFailedException {

 log.info("Populating the model");

 //Add deployment processors here

 //Remove this if you don't need to hook into the deployers, or you can add as many as

you like

 //see SubDeploymentProcessor for explanation of the phases

 context.addStep(new AbstractDeploymentChainStep() {

 public void execute(DeploymentProcessorTarget processorTarget) {

 processorTarget.addDeploymentProcessor(SubsystemDeploymentProcessor.PHASE,

SubsystemDeploymentProcessor.priority, new SubsystemDeploymentProcessor());

 }

 }, OperationContext.Stage.RUNTIME);

 }

This adds an extra step which is responsible for installing deployment processors. You can add as many as

you like, or avoid adding any all together depending on your needs. Each processor has a and a Phase

. Phases are sequential, and a deployment passes through each phases deployment processors.priority

The specifies where within a phase the processor appears. See priority

 for more information about phases.org.jboss.as.server.deployment.Phase

In our case we are keeping it simple and staying with one deployment processor with the phase and priority

created for us by the maven archetype. The phases will be explained in the next section. The deployment

processor is as follows:

Latest WildFly Documentation

JBoss Community Documentation Page of 1868 2293

public class SubsystemDeploymentProcessor implements DeploymentUnitProcessor {

 ...

 @Override

 public void deploy(DeploymentPhaseContext phaseContext) throws

DeploymentUnitProcessingException {

 String name = phaseContext.getDeploymentUnit().getName();

 TrackerService service = getTrackerService(phaseContext.getServiceRegistry(), name);

 if (service != null) {

 ResourceRoot root =

phaseContext.getDeploymentUnit().getAttachment(Attachments.DEPLOYMENT_ROOT);

 VirtualFile cool = root.getRoot().getChild("META-INF/cool.txt");

 service.addDeployment(name);

 if (cool.exists()) {

 service.addCoolDeployment(name);

 }

 }

 }

 @Override

 public void undeploy(DeploymentUnit context) {

 context.getServiceRegistry();

 String name = context.getName();

 TrackerService service = getTrackerService(context.getServiceRegistry(), name);

 if (service != null) {

 service.removeDeployment(name);

 }

 }

 private TrackerService getTrackerService(ServiceRegistry registry, String name) {

 int last = name.lastIndexOf(".");

 String suffix = name.substring(last + 1);

 ServiceController<?> container =

registry.getService(TrackerService.createServiceName(suffix));

 if (container != null) {

 TrackerService service = (TrackerService)container.getValue();

 return service;

 }

 return null;

 }

}

The method is called when a deployment is being deployed. In this case we look for the deploy()

 instance for the service name created from the deployment's suffix. If there is one itTrackerService

means that we are meant to be tracking deployments with this suffix (i.e. was called forTypeAddHandler

this suffix), and if we find one we add the deployment's name to it. Similarly is called when aundeploy()

deployment is being undeployed, and if there is a instance for the deployment's suffix,TrackerService

we remove the deployment's name from it.

Latest WildFly Documentation

JBoss Community Documentation Page of 1869 2293

Deployment phases and attachments
The code in the SubsystemDeploymentProcessor uses an , which is the means ofattachment

communication between the individual deployment processors. A deployment processor belonging to a

phase may create an attachment which is then read further along the chain of deployment unit processors.

In the above example we look for the attachment, which is a view of theAttachments.DEPLOYMENT_ROOT

file structure of the deployment unit put in place before the chain of deployment unit processors is invoked.

As mentioned above, the deployment unit processors are organized in phases, and have a relative order

within each phase. A deployment unit passes through all the deployment unit processors in that order. A

deployment unit processor may choose to take action or not depending on what attachments are available.

Let's take a quick look at what the deployment unit processors for in the phases described in

.org.jboss.as.server.deployment.Phase

STRUCTURE
The deployment unit processors in this phase determine the structure of a deployment, and looks for sub

deployments and metadata files.

PARSE
In this phase the deployment unit processors parse the deployment descriptors and build up the annotation

index. entries from the META-INF/MANIFEST.MF are added.Class-Path

DEPENDENCIES
Extra class path dependencies are added. For example if deploying a file, the commonly neededwar

dependencies for a web application are added.

CONFIGURE_MODULE
In this phase the modular class loader for the deployment is created. No attempt should be made loading

classes from the deployment until this phase.after

POST_MODULE
Now that our class loader has been constructed we have access to the classes. In this stage deployment

processors may use the attachment which is a deployment indexAttachments.REFLECTION_INDEX

used to obtain members of classes in the deployment, and to invoke upon them, bypassing the inefficiencies

of using directly.java.lang.reflect

INSTALL
Install new services coming from the deployment.

CLEANUP
Attachments put in place earlier in the deployment unit processor chain may be removed here.

Latest WildFly Documentation

JBoss Community Documentation Page of 1870 2293

11.11.9 Create the schema

First, let us define the schema for our subsystem. Rename

 to .src/main/resources/schema/mysubsystem.xsd src/main/resources/schema/acme.xsd

Then open and modify it to the followingacme.xsd

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="urn:com.acme.corp.tracker:1.0"

 xmlns="urn:com.acme.corp.tracker:1.0"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 version="1.0">

 <!-- The subsystem root element -->

 <xs:element name="subsystem" type="subsystemType"/>

 <xs:complexType name="subsystemType">

 <xs:all>

 <xs:element name="deployment-types" type="deployment-typesType"/>

 </xs:all>

 </xs:complexType>

 <xs:complexType name="deployment-typesType">

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="deployment-type" type="deployment-typeType"/>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="deployment-typeType">

 <xs:attribute name="suffix" use="required"/>

 <xs:attribute name="tick" type="xs:long" use="optional" default="10000"/>

 </xs:complexType>

</xs:schema>

Note that we modified the and values to .xmlns targetNamespace urn.com.acme.corp.tracker:1.0

Our new element has a child called , which in turn can have zero or moresubsystem deployment-types

children called . Each has a required attribute, and a deployment-type deployment-type suffix tick

attribute which defaults to true.

Now modify the class to contain thecom.acme.corp.tracker.extension.SubsystemExtension

new namespace.

public class SubsystemExtension implements Extension {

 /** The name space used for the {@code substystem} element */

 public static final String NAMESPACE = "urn:com.acme.corp.tracker:1.0";

 ...

Latest WildFly Documentation

JBoss Community Documentation Page of 1871 2293

11.11.10 Create the skeleton project

To make your life easier we have provided a maven archetype which will create a skeleton project for

implementing subsystems.

mvn archetype:generate \

 -DarchetypeArtifactId=wildfly-subsystem \

 -DarchetypeGroupId=org.wildfly.archetypes \

 -DarchetypeVersion=8.0.0.Final \

 -DarchetypeRepository=http://repository.jboss.org/nexus/content/groups/public

Maven will download the archetype and it's dependencies, and ask you some questions:

$ mvn archetype:generate \

 -DarchetypeArtifactId=wildfly-subsystem \

 -DarchetypeGroupId=org.wildfly.archetypes \

 -DarchetypeVersion=8.0.0.Final \

 -DarchetypeRepository=http://repository.jboss.org/nexus/content/groups/public

[INFO] Scanning for projects...

[INFO]

[INFO] --

[INFO] Building Maven Stub Project (No POM) 1

[INFO] --

[INFO]

.........

Define value for property 'groupId': : com.acme.corp

Define value for property 'artifactId': : acme-subsystem

Define value for property 'version': 1.0-SNAPSHOT: :

Define value for property 'package': com.acme.corp: : com.acme.corp.tracker

Define value for property 'module': : com.acme.corp.tracker

[INFO] Using property: name = WildFly subsystem project

Confirm properties configuration:

groupId: com.acme.corp

artifactId: acme-subsystem

version: 1.0-SNAPSHOT

package: com.acme.corp.tracker

module: com.acme.corp.tracker

name: WildFly subsystem project

 Y: : Y

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 1:42.563s

[INFO] Finished at: Fri Jul 08 14:30:09 BST 2011

[INFO] Final Memory: 7M/81M

[INFO] --

$

Latest WildFly Documentation

JBoss Community Documentation Page of 1872 2293

 Instruction

1 Enter the groupId you wish to use

2 Enter the artifactId you wish to use

3 Enter the version you wish to use, or just hit Enter if you wish to accept the default 1.0-SNAPSHOT

4 Enter the java package you wish to use, or just hit Enter if you wish to accept the default (which is

copied from groupId).

5 Enter the module name you wish to use for your extension.

6 Finally, if you are happy with your choices, hit Enter and Maven will generate the project for you.

You can also do this in Eclipse, see for more details. We now have a skeletonCreating your own application

project that you can use to implement a subsystem. Import the project into your favouriteacme-subsystem

IDE. A nice side-effect of running this in the IDE is that you can see the javadoc of WildFly classes and

interfaces imported by the skeleton code. If you do a in the project it will work if we plug it intomvn install

WildFly, but before doing that we will change it to do something more useful.

The rest of this section modifies the skeleton project created by the archetype to do something more useful,

and the full code can be found in .acme-subsystem.zip

If you do a in the created project, you will see some tests being runmvn install

$mvn install

[INFO] Scanning for projects...

[...]

[INFO] Surefire report directory:

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/surefire-reports

 T E S T S

Running com.acme.corp.tracker.extension.SubsystemBaseParsingTestCase

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.424 sec

Running com.acme.corp.tracker.extension.SubsystemParsingTestCase

Tests run: 6, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.074 sec

Results :

Tests run: 3, Failures: 0, Errors: 0, Skipped: 0

[...]

We will talk about these later in the section.Testing the parsers

11.11.11 Design and define the model structure

The following example xml contains a valid subsystem configuration, we will see how to plug this in to

WildFly later in this tutorial.

https://docs.jboss.org/author/download/attachments/108626363/acme-subsystem.zip?version=1&modificationDate=1332346374000

Latest WildFly Documentation

JBoss Community Documentation Page of 1873 2293

<subsystem xmlns="urn:com.acme.corp.tracker:1.0">

 <deployment-types>

 <deployment-type suffix="sar" tick="10000"/>

 <deployment-type suffix="war" tick="10000"/>

 </deployment-types>

</subsystem>

Now when designing our model, we can either do a one to one mapping between the schema and the model

or come up with something slightly or very different. To keep things simple, let us stay pretty true to the

schema so that when executing a against our subsystem we'll see:read-resource(recursive=true)

something like:

{

 "outcome" => "success",

 "result" => {"type" => {

 "sar" => {"tick" => "10000"},

 "war" => {"tick" => "10000"}

 }}

}

Each in the xml becomes in the model a child resource of the subsystem's rootdeployment-type

resource. The child resource's child-type is , and it is indexed by its . Each resource thentype suffix type

contains the attribute.tick

We also need a name for our subsystem, to do that change

:com.acme.corp.tracker.extension.SubsystemExtension

public class SubsystemExtension implements Extension {

 ...

 /** The name of our subsystem within the model. */

 public static final String SUBSYSTEM_NAME = "tracker";

 ...

Once we are finished our subsystem will be available under ./subsystem=tracker

The method defines the model, currently it sets up the basics toSubsystemExtension.initialize()

add our subsystem to the model:

Latest WildFly Documentation

JBoss Community Documentation Page of 1874 2293

@Override

 public void initialize(ExtensionContext context) {

 //register subsystem with its model version

 final SubsystemRegistration subsystem = context.registerSubsystem(SUBSYSTEM_NAME, 1, 0);

 //register subsystem model with subsystem definition that defines all attributes and

operations

 final ManagementResourceRegistration registration =

subsystem.registerSubsystemModel(SubsystemDefinition.INSTANCE);

 //register describe operation, note that this can be also registered in

SubsystemDefinition

 registration.registerOperationHandler(DESCRIBE,

GenericSubsystemDescribeHandler.INSTANCE, GenericSubsystemDescribeHandler.INSTANCE, false,

OperationEntry.EntryType.PRIVATE);

 //we can register additional submodels here

 //

 subsystem.registerXMLElementWriter(parser);

 }

The call registers our subsystem with the extension context. At the end of theregisterSubsystem()

method we register our parser with the returned to be able to marshal ourSubsystemRegistration

subsystem's model back to the main configuration file when it is modified. We will add more functionality to

this method later.

Registering the core subsystem model
Next we obtain a by registering the subsystem model. This is a ManagementResourceRegistration

 step for every new subsystem.compulsory

final ManagementResourceRegistration registration =

subsystem.registerSubsystemModel(SubsystemDefinition.INSTANCE);

Its parameter is an implementation of the interface, which means that when you callResourceDefinition

 the information you see comes from model that/subsystem=tracker:read-resource-description

is defined by .SubsystemDefinition.INSTANCE

Latest WildFly Documentation

JBoss Community Documentation Page of 1875 2293

1.

2.

3.

4.

public class SubsystemDefinition extends SimpleResourceDefinition {

 public static final SubsystemDefinition INSTANCE = new SubsystemDefinition();

 private SubsystemDefinition() {

 super(SubsystemExtension.SUBSYSTEM_PATH,

 SubsystemExtension.getResourceDescriptionResolver(null),

 //We always need to add an 'add' operation

 SubsystemAdd.INSTANCE,

 //Every resource that is added, normally needs a remove operation

 SubsystemRemove.INSTANCE);

 }

 @Override

 public void registerOperations(ManagementResourceRegistration resourceRegistration) {

 super.registerOperations(resourceRegistration);

 //you can register aditional operations here

 }

 @Override

 public void registerAttributes(ManagementResourceRegistration resourceRegistration) {

 //you can register attributes here

 }

}

Since we need child resource we need to add new ResourceDefinition,type

The obtained in is thenManagementResourceRegistration SubsystemExtension.initialize()

used to add additional operations or to register submodels to the address. Every/subsystem=tracker

subsystem and resource have an method which can be achieved by the following line inside must ADD

 in your or by providing it in constructor of your registerOperations ResourceDefinition

 just as we did in example above.SimpleResourceDefinition

//We always need to add an 'add' operation

 resourceRegistration.registerOperationHandler(ADD, SubsystemAdd.INSTANCE, new

DefaultResourceAddDescriptionProvider(resourceRegistration,descriptionResolver), false);

The parameters when registering an operation handler are:

 - i.e. .The name ADD

The handler instance - we will talk more about this below

The handler description provider - we will talk more about this below.

Whether this operation handler is inherited - means that this operation is not inherited, and willfalse

only apply to . The content for this operation handler will be provided by ./subsystem=tracker 3

Let us first look at the description provider which is quite simple since this operation takes no parameters.

The addition of children will be handled by another operation handler, as we will see later on.type

Latest WildFly Documentation

JBoss Community Documentation Page of 1876 2293

There are two way to define , one is by defining it by hand using ModelNode, butDescriptionProvider

as this has show to be very error prone there are lots of helper methods to help you automatically describe

the model. Following example is done by manually defining Description provider for ADD operation handler

/**

 * Used to create the description of the subsystem add method

 */

 public static DescriptionProvider SUBSYSTEM_ADD = new DescriptionProvider() {

 public ModelNode getModelDescription(Locale locale) {

 //The locale is passed in so you can internationalize the strings used in the

descriptions

 final ModelNode subsystem = new ModelNode();

 subsystem.get(OPERATION_NAME).set(ADD);

 subsystem.get(DESCRIPTION).set("Adds the tracker subsystem");

 return subsystem;

 }

 };

Or you can use API that helps you do that for you. For Add and Remove methods there are classes

 and DefaultResourceAddDescriptionProvider

 that do work for you. In case you use DefaultResourceRemoveDescriptionProvider

 even that part is hidden from you.SimpleResourceDefinition

resourceRegistration.registerOperationHandler(ADD, SubsystemAdd.INSTANCE, new

DefaultResourceAddDescriptionProvider(resourceRegistration,descriptionResolver), false);

resourceRegistration.registerOperationHandler(REMOVE, SubsystemRemove.INSTANCE, new

DefaultResourceRemoveDescriptionProvider(resourceRegistration,descriptionResolver), false);

For other operation handlers that are not add/remove you can use

 that takes additional parameter of what is the name ofDefaultOperationDescriptionProvider

operation and optional array of parameters/attributes operation takes. This is an example to register

operation " " with two parameters:add-mime

container.registerOperationHandler("add-mime",

 MimeMappingAdd.INSTANCE,

 new DefaultOperationDescriptionProvider("add-mime",

Extension.getResourceDescriptionResolver("container.mime-mapping"), MIME_NAME, MIME_VALUE));

When descriping an operation its description provider's must match the nameOPERATION_NAME

used when calling ManagementResourceRegistration.registerOperationHandler()

Next we have the actual operation handler instance, note that we have changed its populateModel()

method to initialize the child of the model.type

Latest WildFly Documentation

JBoss Community Documentation Page of 1877 2293

class SubsystemAdd extends AbstractBoottimeAddStepHandler {

 static final SubsystemAdd INSTANCE = new SubsystemAdd();

 private SubsystemAdd() {

 }

 /** {@inheritDoc} */

 @Override

 protected void populateModel(ModelNode operation, ModelNode model) throws

OperationFailedException {

 log.info("Populating the model");

 //Initialize the 'type' child node

 model.get("type").setEmptyObject();

 }

 also has a method which is used for initializing the deployer chainSubsystemAdd performBoottime()

associated with this subsystem. We will talk about the deployers later on. However, the basic idea for all

operation handlers is that we do any model updates before changing the actual runtime state.

The rule of thumb is that every thing that can be added, can also be removed so we have a remove handler

for the subsystem registered

in or just provide the operation handler in constructor.SubsystemDefinition.registerOperations

//Every resource that is added, normally needs a remove operation

 registration.registerOperationHandler(REMOVE, SubsystemRemove.INSTANCE,

DefaultResourceRemoveDescriptionProvider(resourceRegistration,descriptionResolver) , false);

 extends which takes care of removing the resourceSubsystemRemove AbstractRemoveStepHandler

from the model so we don't need to override its operation, also the add handler did notperformRemove()

install any services (services will be discussed later) so we can delete the methodperformRuntime()

generated by the archetype.

class SubsystemRemove extends AbstractRemoveStepHandler {

 static final SubsystemRemove INSTANCE = new SubsystemRemove();

 private final Logger log = Logger.getLogger(SubsystemRemove.class);

 private SubsystemRemove() {

 }

}

The description provider for the remove operation is simple and quite similar to that of the add handler where

just name of the method changes.

Latest WildFly Documentation

JBoss Community Documentation Page of 1878 2293

Registering the subsystem child
The child does not exist in our skeleton project so we need to implement the operations to add andtype

remove them from the model.

First we need an add operation to add the child, create a class called type

. In this case we extend the com.acme.corp.tracker.extension.TypeAddHandler

 class and implement the org.jboss.as.controller.AbstractAddStepHandler

 interface. org.jboss.as.controller.descriptions.DescriptionProvider

 is the main interface for the operation handlers,org.jboss.as.controller.OperationStepHandler

and is an implementation of that which does the plumbing work for adding aAbstractAddStepHandler

resource to the model.

class TypeAddHandler extends AbstractAddStepHandler implements DescriptionProvider {

 public static final TypeAddHandler INSTANCE = new TypeAddHandler();

 private TypeAddHandler() {

 }

Then we define subsystem model. Lets call it and for ease of use let it extend TypeDefinition

 instead just implement .SimpleResourceDefinition ResourceDefinition

public class TypeDefinition extends SimpleResourceDefinition {

 public static final TypeDefinition INSTANCE = new TypeDefinition();

 //we define attribute named tick

protected static final SimpleAttributeDefinition TICK =

new SimpleAttributeDefinitionBuilder(TrackerExtension.TICK, ModelType.LONG)

 .setAllowExpression(true)

 .setXmlName(TrackerExtension.TICK)

 .setFlags(AttributeAccess.Flag.RESTART_ALL_SERVICES)

 .setDefaultValue(new ModelNode(1000))

 .setAllowNull(false)

 .build();

private TypeDefinition(){

 super(TYPE_PATH,

TrackerExtension.getResourceDescriptionResolver(TYPE),TypeAdd.INSTANCE,TypeRemove.INSTANCE);

}

@Override

public void registerAttributes(ManagementResourceRegistration resourceRegistration){

 resourceRegistration.registerReadWriteAttribute(TICK, null, TrackerTickHandler.INSTANCE);

}

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1879 2293

Which will take care of describing the model for us. As you can see in example above we define

 named , this is a mechanism to define Attributes in more type safeSimpleAttributeDefinition TICK

way and to add more common API to manipulate attributes. As you can see here we define default value of

1000 as also other constraints and capabilities. There could be other properties set such as validators,

alternate names, xml name, flags for marking it attribute allows expressions and more.

Then we do the work of updating the model by implementing the method from the populateModel()

, which populates the model's attribute from the operation parameters. First weAbstractAddStepHandler

get hold of the model relative to the address of this operation (we will see later that we will register it against

), so we just specify an empty relative address, and we then populate our/subsystem=tracker/type=*

model with the parameters from the operation. There is operation on validateAndSet

 that helps us validate and set the model based on definition of the attribute.AttributeDefinition

@Override

 protected void populateModel(ModelNode operation, ModelNode model) throws

OperationFailedException {

 TICK.validateAndSet(operation,model);

 }

We then override the method to perform our runtime changes, which in this caseperformRuntime()

involves installing a service into the controller at the heart of WildFly. (

 is similar to AbstractAddStepHandler.performRuntime()

 in that the model is updated before runtimeAbstractBoottimeAddStepHandler.performBoottime()

changes are made.

@Override

 protected void performRuntime(OperationContext context, ModelNode operation, ModelNode

model,

 ServiceVerificationHandler verificationHandler, List<ServiceController<?>>

newControllers)

 throws OperationFailedException {

 String suffix =

PathAddress.pathAddress(operation.get(ModelDescriptionConstants.ADDRESS)).getLastElement().getValue();

long tick = TICK.resolveModelAttribute(context,model).asLong();

 TrackerService service = new TrackerService(suffix, tick);

 ServiceName name = TrackerService.createServiceName(suffix);

 ServiceController<TrackerService> controller = context.getServiceTarget()

 .addService(name, service)

 .addListener(verificationHandler)

 .setInitialMode(Mode.ACTIVE)

 .install();

 newControllers.add(controller);

 }

}

Since the add methods will be of the format , we/subsystem=tracker/suffix=war:add(tick=1234)

look for the last element of the operation address, which is in the example just given and use that as ourwar

suffix. We then create an instance of TrackerService and install that into the of theservice target

context and add the created to the list.service controller newControllers

Latest WildFly Documentation

JBoss Community Documentation Page of 1880 2293

The tracker service is quite simple. All services installed into WildFly must implement the

 interface.org.jboss.msc.service.Service

public class TrackerService implements Service<TrackerService>{

We then have some fields to keep the tick count and a thread which when run outputs all the deployments

registered with our service.

private AtomicLong tick = new AtomicLong(10000);

 private Set<String> deployments = Collections.synchronizedSet(new HashSet<String>());

 private Set<String> coolDeployments = Collections.synchronizedSet(new HashSet<String>());

 private final String suffix;

 private Thread OUTPUT = new Thread() {

 @Override

 public void run() {

 while (true) {

 try {

 Thread.sleep(tick.get());

 System.out.println("Current deployments deployed while " + suffix + "

tracking active:\n" + deployments

 + "\nCool: " + coolDeployments.size());

 } catch (InterruptedException e) {

 interrupted();

 break;

 }

 }

 }

 };

 public TrackerService(String suffix, long tick) {

 this.suffix = suffix;

 this.tick.set(tick);

 }

Next we have three methods which come from the interface. returns this service, Service getValue()

 is called when the service is started by the controller, is called when the service is stoppedstart() stop

by the controller, and they start and stop the thread outputting the deployments.

Latest WildFly Documentation

JBoss Community Documentation Page of 1881 2293

@Override

 public TrackerService getValue() throws IllegalStateException, IllegalArgumentException {

 return this;

 }

 @Override

 public void start(StartContext context) throws StartException {

 OUTPUT.start();

 }

 @Override

 public void stop(StopContext context) {

 OUTPUT.interrupt();

 }

Next we have a utility method to create the which is used to register the service in theServiceName

controller.

public static ServiceName createServiceName(String suffix) {

 return ServiceName.JBOSS.append("tracker", suffix);

}

Finally we have some methods to add and remove deployments, and to set and read the . The 'cool'tick

deployments will be explained later.

public void addDeployment(String name) {

 deployments.add(name);

 }

 public void addCoolDeployment(String name) {

 coolDeployments.add(name);

 }

 public void removeDeployment(String name) {

 deployments.remove(name);

 coolDeployments.remove(name);

 }

 void setTick(long tick) {

 this.tick.set(tick);

 }

 public long getTick() {

 return this.tick.get();

 }

}//TrackerService - end

Latest WildFly Documentation

JBoss Community Documentation Page of 1882 2293

Since we are able to add children, we need a way to be able to remove them, so we create a type

. In this case we extend com.acme.corp.tracker.extension.TypeRemoveHandler

 which takes care of removing the resource from the model so we don'tAbstractRemoveStepHandler

need to override its operationa. But we need to implement the performRemove()

 method to provide the model description, and since the add handler installs theDescriptionProvider

TrackerService, we need to remove that in the method.performRuntime()

public class TypeRemoveHandler extends AbstractRemoveStepHandler {

 public static final TypeRemoveHandler INSTANCE = new TypeRemoveHandler();

 private TypeRemoveHandler() {

 }

 @Override

 protected void performRuntime(OperationContext context, ModelNode operation, ModelNode

model) throws OperationFailedException {

 String suffix =

PathAddress.pathAddress(operation.get(ModelDescriptionConstants.ADDRESS)).getLastElement().getValue();

ServiceName name = TrackerService.createServiceName(suffix);

 context.removeService(name);

 }

}

We then need a description provider for the part of the model itself, so we modify TypeDefinitnion totype

registerAttribute

class TypeDefinition{

...

@Override

public void registerAttributes(ManagementResourceRegistration resourceRegistration){

 resourceRegistration.registerReadWriteAttribute(TICK, null, TrackerTickHandler.INSTANCE);

}

}

Then finally we need to specify that our new child and associated handlers go under type

 in the model by adding registering it with the model in /subsystem=tracker/type=*

. So we add the following just before the end of the method.SubsystemExtension.initialize()

Latest WildFly Documentation

JBoss Community Documentation Page of 1883 2293

@Override

public void initialize(ExtensionContext context)

{

 final SubsystemRegistration subsystem = context.registerSubsystem(SUBSYSTEM_NAME, 1, 0);

 final ManagementResourceRegistration registration =

subsystem.registerSubsystemModel(TrackerSubsystemDefinition.INSTANCE);

 //Add the type child

 ManagementResourceRegistration typeChild =

registration.registerSubModel(TypeDefinition.INSTANCE);

 subsystem.registerXMLElementWriter(parser);

}

The above first creates a child of our main subsystem registration for the relative address , and getstype=*

the registration.typeChild

To this we add the and .TypeAddHandler TypeRemoveHandler

The add variety is added under the name and the remove handler under the name , and foradd remove

each registered operation handler we use the handler singleton instance as both the handler parameter and

as the .DescriptionProvider

Finally, we register as a read/write attribute, the null parameter means we don't do anything specialtick

with regards to reading it, for the write handler we supply it with an operation handler called

.TrackerTickHandler

Registering it as a read/write attribute means we can use the operation to modify the:write-attribute

value of the parameter, and it will be handled by .TrackerTickHandler

Not registering a write attribute handler makes the attribute read only.

 extends TrackerTickHandler AbstractWriteAttributeHandler

directly, and so must implement its and method.applyUpdateToRuntime revertUpdateToRuntime

This takes care of model manipulation (validation, setting) but leaves us to do just to deal with what we need

to do.

Latest WildFly Documentation

JBoss Community Documentation Page of 1884 2293

class TrackerTickHandler extends AbstractWriteAttributeHandler<Void> {

 public static final TrackerTickHandler INSTANCE = new TrackerTickHandler();

 private TrackerTickHandler() {

 super(TypeDefinition.TICK);

 }

 protected boolean applyUpdateToRuntime(OperationContext context, ModelNode operation, String

attributeName,

 ModelNode resolvedValue, ModelNode currentValue, HandbackHolder<Void>

handbackHolder) throws OperationFailedException {

 modifyTick(context, operation, resolvedValue.asLong());

 return false;

 }

 protected void revertUpdateToRuntime(OperationContext context, ModelNode operation, String

attributeName, ModelNode valueToRestore, ModelNode valueToRevert, Void handback){

 modifyTick(context, operation, valueToRestore.asLong());

 }

 private void modifyTick(OperationContext context, ModelNode operation, long value) throws

OperationFailedException {

 final String suffix =

PathAddress.pathAddress(operation.get(ModelDescriptionConstants.ADDRESS)).getLastElement().getValue();

TrackerService service = (TrackerService)

context.getServiceRegistry(true).getRequiredService(TrackerService.createServiceName(suffix)).getValue();

service.setTick(value);

 }

}

The operation used to execute this will be of the form

) so we first get the /subsystem=tracker/type=war:write-attribute(name=tick,value=12345

 from the operation address, and the value from the operation parameter's suffix tick resolvedValue

parameter, and use that to update the model.

We then add a new step associated with the stage to update the tick of the TrackerService for ourRUNTIME

suffix. This is essential since the call to will fail unless the stepcontext.getServiceRegistry()

accessing it belongs to the stage.RUNTIME

When implementing , you call when you are done.execute() must context.completeStep()

Latest WildFly Documentation

JBoss Community Documentation Page of 1885 2293

11.11.12 Expressions

Expressions are mechanism that enables you to support variables in your attributes, for instance when you

want the value of attribute to be resolved using system / environment properties.

An example expression is

${jboss.bind.address.management:127.0.0.1}

which means that the value should be taken from a system property named

 and if it is not defined use .jboss.bind.address.management 127.0.0.1

What expression types are supported

System properties, which are resolved using java.lang.System.getProperty(String key)

Environment properties, which are resolved using .java.lang.System.getEnv(String name)

Security vault expressions, resolved against the security vault configured for the server or Host

Controller that needs to resolve the expression.

In all cases, the syntax for the expression is

${expression_to_resolve}

For an expression meant to be resolved against environment properties, the expression_to_resolve

must be prefixed with . The portion after will be the name passed to env. env.

.java.lang.System.getEnv(String name)

Security vault expressions do not support default values (i.e. the in the 127.0.0.1

 example above.)jboss.bind.address.management:127.0.0.1

How to support expressions in subsystems
The easiest way is by using AttributeDefinition, which provides support for expressions just by using it

correctly.

When we create an AttributeDefinition all we need to do is mark that is allows expressions. Here is an

example how to define an attribute that allows expressions to be used.

SimpleAttributeDefinition MY_ATTRIBUTE =

 new SimpleAttributeDefinitionBuilder("my-attribute", ModelType.INT, true)

 .setAllowExpression(true)

 .setFlags(AttributeAccess.Flag.RESTART_ALL_SERVICES)

 .setDefaultValue(new ModelNode(1))

 .build();

Latest WildFly Documentation

JBoss Community Documentation Page of 1886 2293

Then later when you are parsing the xml configuration you should use the MY_ATTRIBUTE attribute

definition to set the value to the management operation ModelNode you are creating.

....

 String attr = reader.getAttributeLocalName(i);

 String value = reader.getAttributeValue(i);

 if (attr.equals("my-attribute")) {

 MY_ATTRIBUTE.parseAndSetParameter(value, operation, reader);

 } else if (attr.equals("suffix")) {

.....

Note that this just helps you to properly set the value to the model node you are working on, so no need to

additionally set anything to the model for this attribute. Method parseAndSetParameter parses the value that

was read from xml for possible expressions in it and if it finds any it creates special model node that defines

that node is of type .ModelType.EXPRESSION

Later in your operation handlers where you implement populateModel and have to store the value from the

operation to the configuration model you also use this MY_ATTRIBUTE attribute definition.

@Override

 protected void populateModel(ModelNode operation, ModelNode model) throws

OperationFailedException {

 MY_ATTRIBUTE.validateAndSet(operation,model);

 }

This will make sure that the attribute that is stored from the operation to the model is valid and nothing is

lost. It also checks the value stored in the operation , and if it isn't already ModelNode

, it checks if the value is a string that contains the expression syntax. If so, theModelType.EXPRESSION

value stored in the model will be of type . Doing this ensures that expressions areModelType.EXPRESSION

properly handled when they appear in operations that weren't created by the subsystem parser, but are

instead passed in from CLI or admin console users.

As last step we need to use the value of the attribute. This is usually needed inside of the performRuntime

method

protected void performRuntime(OperationContext context, ModelNode operation, ModelNode model,

ServiceVerificationHandler verificationHandler, List<ServiceController<?>> newControllers)

throws OperationFailedException {

 final int attributeValue = MY_ATTRIBUTE.resolveModelAttribute(context,

model).asInt();

 ...

 }

Latest WildFly Documentation

JBoss Community Documentation Page of 1887 2293

As you can see resolving of attribute's value is not done until it is needed for use in the subsystem's runtime

services. The resolved value is not stored in the configuration model, the unresolved expression is. That way

we do not lose any information in the model and can assure that also marshalling is done properly, where we

must marshall back the unresolved value.

Attribute definitinon also helps you with that:

public void writeContent(XMLExtendedStreamWriter writer, SubsystemMarshallingContext context)

throws XMLStreamException {

 MY_ATTRIBUTE.marshallAsAttribute(sessionData, writer);

 MY_OTHER_ATTRIBUTE.marshallAsElement(sessionData, false, writer);

 ...

}

11.11.13 Integrate with WildFly

Now that we have all the code needed for our subsystem, we can build our project by running mvn

install

[kabir ~/sourcecontrol/temp/archetype-test/acme-subsystem]

$mvn install

[INFO] Scanning for projects...

[...]

main:

 [delete] Deleting:

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/null1004283288

 [delete] Deleting directory

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/module

 [copy] Copying 1 file to

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/module/com/acme/corp/tracker/main

[copy] Copying 1 file to

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/module/com/acme/corp/tracker/main

[echo] Module com.acme.corp.tracker has been created in the target/module directory. Copy to

your JBoss AS 7 installation.

[INFO] Executed tasks

[INFO]

[INFO] --- maven-install-plugin:2.3.1:install (default-install) @ acme-subsystem ---

[INFO] Installing

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/acme-subsystem.jar to

/Users/kabir/.m2/repository/com/acme/corp/acme-subsystem/1.0-SNAPSHOT/acme-subsystem-1.0-SNAPSHOT.jar
[INFO]

Installing /Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/pom.xml to

/Users/kabir/.m2/repository/com/acme/corp/acme-subsystem/1.0-SNAPSHOT/acme-subsystem-1.0-SNAPSHOT.pom
[INFO]

--

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 5.851s

[INFO] Finished at: Mon Jul 11 23:24:58 BST 2011

[INFO] Final Memory: 7M/81M

[INFO] --

Latest WildFly Documentation

JBoss Community Documentation Page of 1888 2293

This will have built our project and assembled a module for us that can be used for installing it into WildFly. If

you go to the folder where you built the project you will see the moduletarget/module

$ls target/module/com/acme/corp/tracker/main/

acme-subsystem.jar module.xml

The comes from and is used to definemodule.xml src/main/resources/module/main/module.xml

your module. It says that it contains the :acme-subsystem.jar

<module xmlns="urn:jboss:module:1.0" name="com.acme.corp.tracker">

 <resources>

 <resource-root path="acme-subsystem.jar"/>

 </resources>

And has a default set of dependencies needed by every subsystem created. If your subsystem requires

additional module dependencies you can add them here before building and installing.

<dependencies>

 <module name="javax.api"/>

 <module name="org.jboss.staxmapper"/>

 <module name="org.jboss.as.controller"/>

 <module name="org.jboss.as.server"/>

 <module name="org.jboss.modules"/>

 <module name="org.jboss.msc"/>

 <module name="org.jboss.logging"/>

 <module name="org.jboss.vfs"/>

 </dependencies>

</module>

Note that the name of the module corresponds to the directory structure containing it. Now copy the

 directory and its contents to target/module/com/acme/corp/tracker/main/

 (where is the root of your WildFly install).$WFLY/modules/com/acme/corp/tracker/main/ $WFLY

Next we need to modify . First we need to add$WFLY/standalone/configuration/standalone.xml

our new module to the section:<extensions>

<extensions>

 ...

 <extension module="org.jboss.as.weld"/>

 <extension module="com.acme.corp.tracker"/>

 </extensions>

And then we have to add our subsystem to the section:<profile>

Latest WildFly Documentation

JBoss Community Documentation Page of 1889 2293

<profile>

 ...

 <subsystem xmlns="urn:com.acme.corp.tracker:1.0">

 <deployment-types>

 <deployment-type suffix="sar" tick="10000"/>

 <deployment-type suffix="war" tick="10000"/>

 </deployment-types>

 </subsystem>

 ...

 </profile>

Adding this to a managed domain works exactly the same apart from in this case you need to modify

.$WFLY/domain/configuration/domain.xml

Now start up WildFly by running and you should see messages like these$WFLY/bin/standalone.sh

after the server has started, which means our subsystem has been added and our isTrackerService

working:

15:27:33,838 INFO [org.jboss.as] (Controller Boot Thread) JBoss AS 7.0.0.Final "Lightning"

started in 2861ms - Started 94 of 149 services (55 services are passive or on-demand)

15:27:42,966 INFO [stdout] (Thread-8) Current deployments deployed while sar tracking active:

15:27:42,966 INFO [stdout] (Thread-8) []

15:27:42,967 INFO [stdout] (Thread-8) Cool: 0

15:27:42,967 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:27:42,967 INFO [stdout] (Thread-9) []

15:27:42,967 INFO [stdout] (Thread-9) Cool: 0

15:27:52,967 INFO [stdout] (Thread-8) Current deployments deployed while sar tracking active:

15:27:52,967 INFO [stdout] (Thread-8) []

15:27:52,967 INFO [stdout] (Thread-8) Cool: 0

If you run the command line interface you can execute some commands to see more about the subsystem.

For example

[standalone@localhost:9999 /] /subsystem=tracker/:read-resource-description(recursive=true,

operations=true)

will return a lot of information, including what we provided in the s we created toDescriptionProvider

document our subsystem.

To see the current subsystem state you can execute

Latest WildFly Documentation

JBoss Community Documentation Page of 1890 2293

[standalone@localhost:9999 /] /subsystem=tracker/:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {"type" => {

 "war" => {"tick" => 10000L},

 "sar" => {"tick" => 10000L}

 }}

}

We can remove both the deployment types which removes them from the model:

[standalone@localhost:9999 /] /subsystem=tracker/type=sar:remove

{"outcome" => "success"}

[standalone@localhost:9999 /] /subsystem=tracker/type=war:remove

{"outcome" => "success"}

[standalone@localhost:9999 /] /subsystem=tracker/:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {"type" => undefined}

}

You should now see the output from the instances having stopped.TrackerService

Now, let's add the war tracker again:

[standalone@localhost:9999 /] /subsystem=tracker/type=war:add

{"outcome" => "success"}

[standalone@localhost:9999 /] /subsystem=tracker/:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {"type" => {"war" => {"tick" => 10000L}}}

}

and the WildFly console should show the messages coming from the war again.TrackerService

Now let us deploy something. You can find two maven projects for test wars already built at and test1.zip

. If you download them and extract them to and , youtest2.zip /Downloads/test1 /Downloads/test2

can see that contains a while /Downloads/test1/target/test1.war META-INF/cool.txt

 does not contain that file. From CLI deploy first:/Downloads/test2/target/test2.war test1.war

[standalone@localhost:9999 /] deploy ~/Downloads/test1/target/test1.war

'test1.war' deployed successfully.

And you should now see the output from the war list the deployments:TrackerService

https://docs.jboss.org/author/download/attachments/108626368/test1.zip?version=1&modificationDate=1311326317000
https://docs.jboss.org/author/download/attachments/108626368/test2.zip?version=1&modificationDate=1311326215000

Latest WildFly Documentation

JBoss Community Documentation Page of 1891 2293

15:35:03,712 INFO [org.jboss.as.server.deployment] (MSC service thread 1-2) Starting deployment

of "test1.war"

15:35:03,988 INFO [org.jboss.web] (MSC service thread 1-1) registering web context: /test1

15:35:03,996 INFO [org.jboss.as.server.controller] (pool-2-thread-9) Deployed "test1.war"

15:35:13,056 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:35:13,056 INFO [stdout] (Thread-9) [test1.war]

15:35:13,057 INFO [stdout] (Thread-9) Cool: 1

So our got picked up as a 'cool' deployment. Now if we deploy test1.war test2.war

[standalone@localhost:9999 /] deploy ~/sourcecontrol/temp/archetype-test/test2/target/test2.war

'test2.war' deployed successfully.

You will see that deployment get picked up as well but since there is no it is notMETA-INF/cool.txt

marked as a 'cool' deployment:

15:37:05,634 INFO [org.jboss.as.server.deployment] (MSC service thread 1-4) Starting deployment

of "test2.war"

15:37:05,699 INFO [org.jboss.web] (MSC service thread 1-1) registering web context: /test2

15:37:05,982 INFO [org.jboss.as.server.controller] (pool-2-thread-15) Deployed "test2.war"

15:37:13,075 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:37:13,075 INFO [stdout] (Thread-9) [test1.war, test2.war]

15:37:13,076 INFO [stdout] (Thread-9) Cool: 1

An undeploy

[standalone@localhost:9999 /] undeploy test1.war

Successfully undeployed test1.war.

is also reflected in the output:TrackerService

15:38:47,901 INFO [org.jboss.as.server.controller] (pool-2-thread-21) Undeployed "test1.war"

15:38:47,934 INFO [org.jboss.as.server.deployment] (MSC service thread 1-3) Stopped deployment

test1.war in 40ms

15:38:53,091 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:38:53,092 INFO [stdout] (Thread-9) [test2.war]

15:38:53,092 INFO [stdout] (Thread-9) Cool: 0

Finally, we registered a write attribute handler for the property of the so we can change thetick type

frequency

[standalone@localhost:9999 /] /subsystem=tracker/type=war:write-attribute(name=tick,value=1000)

{"outcome" => "success"}

You should now see the output from the happen every secondTrackerService

Latest WildFly Documentation

JBoss Community Documentation Page of 1892 2293

15:39:43,100 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:39:43,100 INFO [stdout] (Thread-9) [test2.war]

15:39:43,101 INFO [stdout] (Thread-9) Cool: 0

15:39:44,101 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:39:44,102 INFO [stdout] (Thread-9) [test2.war]

15:39:44,105 INFO [stdout] (Thread-9) Cool: 0

15:39:45,106 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:39:45,106 INFO [stdout] (Thread-9) [test2.war]

If you open you can see that our subsystem$WFLY/standalone/configuration/standalone.xml

entry reflects the current state of the subsystem:

<subsystem xmlns="urn:com.acme.corp.tracker:1.0">

 <deployment-types>

 <deployment-type suffix="war" tick="1000"/>

 </deployment-types>

 </subsystem>

11.11.14 Parsing and marshalling of the subsystem xml

WildFly uses the Stax API to parse the xml files. This is initialized in by mapping ourSubsystemExtension

parser onto our namespace:

public class SubsystemExtension implements Extension {

 /** The name space used for the {@code subsystem} element */

 public static final String NAMESPACE = "urn:com.acme.corp.tracker:1.0";

 ...

 protected static final PathElement SUBSYSTEM_PATH = PathElement.pathElement(SUBSYSTEM,

SUBSYSTEM_NAME);

 protected static final PathElement TYPE_PATH = PathElement.pathElement(TYPE);

 /** The parser used for parsing our subsystem */

 private final SubsystemParser parser = new SubsystemParser();

 @Override

 public void initializeParsers(ExtensionParsingContext context) {

 context.setSubsystemXmlMapping(NAMESPACE, parser);

 }

 ...

We then need to write the parser. The contract is that we read our subsystem's xml and create the

operations that will populate the model with the state contained in the xml. These operations will then be

executed on our behalf as part of the parsing process. The entry point is the method.readElement()

public class SubsystemExtension implements Extension {

 /**

Latest WildFly Documentation

JBoss Community Documentation Page of 1893 2293

 * The subsystem parser, which uses stax to read and write to and from xml

 */

 private static class SubsystemParser implements XMLStreamConstants,

XMLElementReader<List<ModelNode>>, XMLElementWriter<SubsystemMarshallingContext> {

 /** {@inheritDoc} */

 @Override

 public void readElement(XMLExtendedStreamReader reader, List<ModelNode> list) throws

XMLStreamException {

 // Require no attributes

 ParseUtils.requireNoAttributes(reader);

 //Add the main subsystem 'add' operation

 final ModelNode subsystem = new ModelNode();

 subsystem.get(OP).set(ADD);

 subsystem.get(OP_ADDR).set(PathAddress.pathAddress(SUBSYSTEM_PATH).toModelNode());

 list.add(subsystem);

 //Read the children

 while (reader.hasNext() && reader.nextTag() != END_ELEMENT) {

 if (!reader.getLocalName().equals("deployment-types")) {

 throw ParseUtils.unexpectedElement(reader);

 }

 while (reader.hasNext() && reader.nextTag() != END_ELEMENT) {

 if (reader.isStartElement()) {

 readDeploymentType(reader, list);

 }

 }

 }

 }

 private void readDeploymentType(XMLExtendedStreamReader reader, List<ModelNode> list)

throws XMLStreamException {

 if (!reader.getLocalName().equals("deployment-type")) {

 throw ParseUtils.unexpectedElement(reader);

 }

 ModelNode addTypeOperation = new ModelNode();

 addTypeOperation.get(OP).set(ModelDescriptionConstants.ADD);

 String suffix = null;

 for (int i = 0; i < reader.getAttributeCount(); i++) {

 String attr = reader.getAttributeLocalName(i);

 String value = reader.getAttributeValue(i);

 if (attr.equals("tick")) {

 TypeDefinition.TICK.parseAndSetParameter(value, addTypeOperation, reader);

 } else if (attr.equals("suffix")) {

 suffix = value;

 } else {

 throw ParseUtils.unexpectedAttribute(reader, i);

 }

 }

 ParseUtils.requireNoContent(reader);

 if (suffix == null) {

 throw ParseUtils.missingRequiredElement(reader,

Collections.singleton("suffix"));

 }

 //Add the 'add' operation for each 'type' child

Latest WildFly Documentation

JBoss Community Documentation Page of 1894 2293

 PathAddress addr = PathAddress.pathAddress(SUBSYSTEM_PATH,

PathElement.pathElement(TYPE, suffix));

 addTypeOperation.get(OP_ADDR).set(addr.toModelNode());

 list.add(addTypeOperation);

 }

 ...

So in the above we always create the add operation for our subsystem. Due to its address

 defined by this will trigger the we/subsystem=tracker SUBSYSTEM_PATH SubsystemAddHandler

created earlier when we invoke . We then parse the child elements and create/subsystem=tracker:add

an add operation for the child address for each child. Since the address will for example be type

 (defined by) and is registered for all /subsystem=tracker/type=sar TYPE_PATH TypeAddHandler

 subaddresses the will get invoked for those operations. Note that when we aretype TypeAddHandler

parsing attribute we are using definition of attribute that we defined in TypeDefintion to parse attributetick

value and apply all rules that we specified for this attribute, this also enables us to property support

expressions on attributes.

The parser is also used to marshal the model to xml whenever something modifies the model, for which the

entry point is the method:writeContent()

private static class SubsystemParser implements XMLStreamConstants,

XMLElementReader<List<ModelNode>>, XMLElementWriter<SubsystemMarshallingContext> {

 ...

 /** {@inheritDoc} */

 @Override

 public void writeContent(final XMLExtendedStreamWriter writer, final

SubsystemMarshallingContext context) throws XMLStreamException {

 //Write out the main subsystem element

 context.startSubsystemElement(TrackerExtension.NAMESPACE, false);

 writer.writeStartElement("deployment-types");

 ModelNode node = context.getModelNode();

 ModelNode type = node.get(TYPE);

 for (Property property : type.asPropertyList()) {

 //write each child element to xml

 writer.writeStartElement("deployment-type");

 writer.writeAttribute("suffix", property.getName());

 ModelNode entry = property.getValue();

 TypeDefinition.TICK.marshallAsAttribute(entry, true, writer);

 writer.writeEndElement();

 }

 //End deployment-types

 writer.writeEndElement();

 //End subsystem

 writer.writeEndElement();

 }

 }

Latest WildFly Documentation

JBoss Community Documentation Page of 1895 2293

Then we have to implement the which translates the current state of theSubsystemDescribeHandler

model into operations similar to the ones created by the parser. The is onlySubsystemDescribeHandler

used when running in a managed domain, and is used when the host controller queries the domain controller

for the configuration of the profile used to start up each server. In our case the

 adds the operation to add the subsystem and then adds the operation toSubsystemDescribeHandler

add each child. Since we are using ResourceDefinitinon for defining subsystem all that is generatedtype

for us, but if you want to customize that you can do it by implementing it like this.

private static class SubsystemDescribeHandler implements OperationStepHandler,

DescriptionProvider {

 static final SubsystemDescribeHandler INSTANCE = new SubsystemDescribeHandler();

 public void execute(OperationContext context, ModelNode operation) throws

OperationFailedException {

 //Add the main operation

 context.getResult().add(createAddSubsystemOperation());

 //Add the operations to create each child

 ModelNode node = context.readModel(PathAddress.EMPTY_ADDRESS);

 for (Property property : node.get("type").asPropertyList()) {

 ModelNode addType = new ModelNode();

 addType.get(OP).set(ModelDescriptionConstants.ADD);

 PathAddress addr = PathAddress.pathAddress(SUBSYSTEM_PATH,

PathElement.pathElement("type", property.getName()));

 addType.get(OP_ADDR).set(addr.toModelNode());

 if (property.getValue().hasDefined("tick")) {

 TypeDefinition.TICK.validateAndSet(property,addType);

 }

 context.getResult().add(addType);

 }

 context.completeStep();

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1896 2293

Testing the parsers

Changes to tests between 7.0.0 and 7.0.1

The testing framework was moved from the archetype into the core JBoss AS 7 sources between

JBoss AS 7.0.0 and JBoss AS 7.0.1, and has been improved upon and is used internally for testing

JBoss AS 7's subsystems. The differences between the two versions is that in 7.0.0.Final the

testing framework is bundled with the code generated by the archetype (in a sub-package of the

package specified for your subsystem, e.g.), and the testcom.acme.corp.tracker.support

extends the class.AbstractParsingTest

From 7.0.1 the testing framework is now brought in via the

 maven artifact, and the test's superclass is org.jboss.as:jboss-as-subsystem-test

. The concepts are the same butorg.jboss.as.subsystem.test.AbstractSubsystemTest

more and more functionality will be available as JBoss AS 7 is developed.

Now that we have modified our parsers we need to update our tests to reflect the new model. There are

currently three tests testing the basic functionality, something which is a lot easier to debug from your IDE

before you plug it into the application server. We will talk about these tests in turn and they all live in

. com.acme.corp.tracker.extension.SubsystemParsingTestCase

 extends which does a lot of the setup for youSubsystemParsingTestCase AbstractSubsystemTest

and contains utility methods for verifying things from your test. See the javadoc of that class for more

information about the functionality available to you. And by all means feel free to add more tests for your

subsystem, here we are only testing for the best case scenario while you will probably want to throw in a few

tests for edge cases.

The first test we need to modify is . It tests that the parsed xml becomes thetestParseSubsystem()

expected operations that will be parsed into the server, so let us tweak this test to match our subsystem.

First we tell the test to parse the xml into operations

@Test

 public void testParseSubsystem() throws Exception {

 //Parse the subsystem xml into operations

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 List<ModelNode> operations = super.parse(subsystemXml);

There should be one operation for adding the subsystem itself and an operation for adding the

, so check we got two operationsdeployment-type

Latest WildFly Documentation

JBoss Community Documentation Page of 1897 2293

///Check that we have the expected number of operations

 Assert.assertEquals(2, operations.size());

Now check that the first operation is for the address :add /subsystem=tracker

//Check that each operation has the correct content

 //The add subsystem operation will happen first

 ModelNode addSubsystem = operations.get(0);

 Assert.assertEquals(ADD, addSubsystem.get(OP).asString());

 PathAddress addr = PathAddress.pathAddress(addSubsystem.get(OP_ADDR));

 Assert.assertEquals(1, addr.size());

 PathElement element = addr.getElement(0);

 Assert.assertEquals(SUBSYSTEM, element.getKey());

 Assert.assertEquals(SubsystemExtension.SUBSYSTEM_NAME, element.getValue());

Then check that the second operation is for the address , and that wasadd /subsystem=tracker 12345

picked up for the value of the parameter:tick

//Then we will get the add type operation

 ModelNode addType = operations.get(1);

 Assert.assertEquals(ADD, addType.get(OP).asString());

 Assert.assertEquals(12345, addType.get("tick").asLong());

 addr = PathAddress.pathAddress(addType.get(OP_ADDR));

 Assert.assertEquals(2, addr.size());

 element = addr.getElement(0);

 Assert.assertEquals(SUBSYSTEM, element.getKey());

 Assert.assertEquals(SubsystemExtension.SUBSYSTEM_NAME, element.getValue());

 element = addr.getElement(1);

 Assert.assertEquals("type", element.getKey());

 Assert.assertEquals("tst", element.getValue());

 }

The second test we need to modify is which tests that the xml installstestInstallIntoController()

properly into the controller. In other words we are making sure that the operations we created earlieradd

work properly. First we create the xml and install it into the controller. Behind the scenes this will parse the

xml into operations as we saw in the last test, but it will also create a new controller and boot that up using

the created operations

@Test

 public void testInstallIntoController() throws Exception {

 //Parse the subsystem xml and install into the controller

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 KernelServices services = super.installInController(subsystemXml);

Latest WildFly Documentation

JBoss Community Documentation Page of 1898 2293

The returned allow us to execute operations on the controller, and to read the wholeKernelServices

model.

//Read the whole model and make sure it looks as expected

 ModelNode model = services.readWholeModel();

 //Useful for debugging :-)

 //System.out.println(model);

Now we make sure that the structure of the model within the controller has the expected format and values

Assert.assertTrue(model.get(SUBSYSTEM).hasDefined(SubsystemExtension.SUBSYSTEM_NAME));

 Assert.assertTrue(model.get(SUBSYSTEM,

SubsystemExtension.SUBSYSTEM_NAME).hasDefined("type"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type").hasDefined("tst"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME, "type",

"tst").hasDefined("tick"));

 Assert.assertEquals(12345, model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type", "tst", "tick").asLong());

 }

The last test provided is called . It's main purpose is to make sure thattestParseAndMarshalModel()

our works as expected. This is achieved by starting a controller inSubsystemParser.writeContent()

the same way as before

@Test

 public void testParseAndMarshalModel() throws Exception {

 //Parse the subsystem xml and install into the first controller

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 KernelServices servicesA = super.installInController(subsystemXml);

Now we read the model and the xml that was persisted from the first controller, and use that xml to start a

second controller

//Get the model and the persisted xml from the first controller

 ModelNode modelA = servicesA.readWholeModel();

 String marshalled = servicesA.getPersistedSubsystemXml();

 //Install the persisted xml from the first controller into a second controller

 KernelServices servicesB = super.installInController(marshalled);

Finally we read the model from the second controller, and make sure that the models are identical by calling

 on the test superclass.compare()

Latest WildFly Documentation

JBoss Community Documentation Page of 1899 2293

ModelNode modelB = servicesB.readWholeModel();

 //Make sure the models from the two controllers are identical

 super.compare(modelA, modelB);

 }

We then have a test that needs no changing from what the archetype provides us with. As we have seen

before we start a controller

@Test

 public void testDescribeHandler() throws Exception {

 //Parse the subsystem xml and install into the first controller

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 "</subsystem>";

 KernelServices servicesA = super.installInController(subsystemXml);

We then call which outputs the subsystem as operations needed to/subsystem=tracker:describe

reach the current state (Done by our)SubsystemDescribeHandler

//Get the model and the describe operations from the first controller

 ModelNode modelA = servicesA.readWholeModel();

 ModelNode describeOp = new ModelNode();

 describeOp.get(OP).set(DESCRIBE);

 describeOp.get(OP_ADDR).set(

 PathAddress.pathAddress(

 PathElement.pathElement(SUBSYSTEM,

SubsystemExtension.SUBSYSTEM_NAME)).toModelNode());

 List<ModelNode> operations =

super.checkResultAndGetContents(servicesA.executeOperation(describeOp)).asList();

Then we create a new controller using those operations

//Install the describe options from the first controller into a second controller

 KernelServices servicesB = super.installInController(operations);

And then we read the model from the second controller and make sure that the two subsystems are identical

ModelNode modelB = servicesB.readWholeModel();

//Make sure the models from the two controllers are identical

 super.compare(modelA, modelB);

 }

To test the removal of the the subsystem and child resources we modify the testSubsystemRemoval()

test provided by the archetype:

Latest WildFly Documentation

JBoss Community Documentation Page of 1900 2293

/**

 * Tests that the subsystem can be removed

 */

 @Test

 public void testSubsystemRemoval() throws Exception {

 //Parse the subsystem xml and install into the first controller

We provide xml for the subsystem installing a child, which in turn installs a TrackerService

String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 KernelServices services = super.installInController(subsystemXml);

Having installed the xml into the controller we make sure the TrackerService is there

//Sanity check to test the service for 'tst' was there

 services.getContainer().getRequiredService(TrackerService.createServiceName("tst"));

This call from the subsystem test harness will call remove for each level in our subsystem, children first and

validate

that the subsystem model is empty at the end.

//Checks that the subsystem was removed from the model

 super.assertRemoveSubsystemResources(services);

Finally we check that all the services were removed by the remove handlers

//Check that any services that were installed were removed here

 try {

 services.getContainer().getRequiredService(TrackerService.createServiceName("tst"));

 Assert.fail("Should have removed services");

 } catch (Exception expected) {

 }

 }

For good measure let us throw in another test which adds a and also changes itsdeployment-type

attribute at runtime. So first of all boot up the controller with the same xml we have been using so far

Latest WildFly Documentation

JBoss Community Documentation Page of 1901 2293

@Test

 public void testExecuteOperations() throws Exception {

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 KernelServices services = super.installInController(subsystemXml);

Now create an operation which does the same as the following CLI command

/subsystem=tracker/type=foo:add(tick=1000)

//Add another type

 PathAddress fooTypeAddr = PathAddress.pathAddress(

 PathElement.pathElement(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME),

 PathElement.pathElement("type", "foo"));

 ModelNode addOp = new ModelNode();

 addOp.get(OP).set(ADD);

 addOp.get(OP_ADDR).set(fooTypeAddr.toModelNode());

 addOp.get("tick").set(1000);

Execute the operation and make sure it was successful

ModelNode result = services.executeOperation(addOp);

 Assert.assertEquals(SUCCESS, result.get(OUTCOME).asString());

Read the whole model and make sure that the original data is still there (i.e. the same as what was done by

testInstallIntoController()

ModelNode model = services.readWholeModel();

 Assert.assertTrue(model.get(SUBSYSTEM).hasDefined(SubsystemExtension.SUBSYSTEM_NAME));

 Assert.assertTrue(model.get(SUBSYSTEM,

SubsystemExtension.SUBSYSTEM_NAME).hasDefined("type"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type").hasDefined("tst"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME, "type",

"tst").hasDefined("tick"));

 Assert.assertEquals(12345, model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type", "tst", "tick").asLong());

Then make sure our new has been added:type

Latest WildFly Documentation

JBoss Community Documentation Page of 1902 2293

Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type").hasDefined("foo"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME, "type",

"foo").hasDefined("tick"));

 Assert.assertEquals(1000, model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type", "foo", "tick").asLong());

Then we call to change the value of :write-attribute tick /subsystem=tracker/type=foo

//Call write-attribute

 ModelNode writeOp = new ModelNode();

 writeOp.get(OP).set(WRITE_ATTRIBUTE_OPERATION);

 writeOp.get(OP_ADDR).set(fooTypeAddr.toModelNode());

 writeOp.get(NAME).set("tick");

 writeOp.get(VALUE).set(3456);

 result = services.executeOperation(writeOp);

 Assert.assertEquals(SUCCESS, result.get(OUTCOME).asString());

To give you exposure to other ways of doing things, now instead of reading the whole model to check the

attribute, we call instead, and make sure it has the value we set it to.read-attribute

//Check that write attribute took effect, this time by calling read-attribute instead of reading

the whole model

 ModelNode readOp = new ModelNode();

 readOp.get(OP).set(READ_ATTRIBUTE_OPERATION);

 readOp.get(OP_ADDR).set(fooTypeAddr.toModelNode());

 readOp.get(NAME).set("tick");

 result = services.executeOperation(readOp);

 Assert.assertEquals(3456, checkResultAndGetContents(result).asLong());

Since each installs its own copy of , we get the for type TrackerService TrackerService type=foo

from the service container exposed by the kernel services and make sure it has the right value

TrackerService service =

(TrackerService)services.getContainer().getService(TrackerService.createServiceName("foo")).getValue();

Assert.assertEquals(3456, service.getTick());

 }

TypeDefinition.TICK.

Latest WildFly Documentation

JBoss Community Documentation Page of 1903 2293

11.12 Key Interfaces and Classes Relevant to Extension

Developers

In the first major section of this guide, we provided an example of how to implement an extension to the AS.

The emphasis there was learning by doing. In this section, we'll focus a bit more on the major WildFly

interfaces and classes that most are relevant to extension developers. The best way to learn about these

interfaces and classes in detail is to look at their javadoc. What we'll try to do here is provide a brief

introduction of the key items and how they relate to each other.

Before digging into this section, readers are encouraged to read the "Core Management Concepts" section

of the Admin Guide.

Latest WildFly Documentation

JBoss Community Documentation Page of 1904 2293

11.12.1 Extension Interface

The interface is the hook by which your extension to the ASorg.jboss.as.controller.Extension

kernel is able to integrate with the AS. During boot of the AS, when the element in the AS's<extension>

xml configuration file naming your extension is parsed, the JBoss Modules module named in the element's

name attribute is loaded. The standard JDK mechanism is then used to loadjava.lang.ServiceLoader

your module's implementation of this interface.

The function of an implementation is to register with the core AS the management API, xmlExtension

parsers and xml marshallers associated with the extension module's subsystems. An canExtension

register multiple subsystems, although the usual practice is to register just one per extension.

Once the is loaded, the core AS will make two invocations upon it:Extension

void initializeParsers(ExtensionParsingContext context)

When this is invoked, it is the implementation's responsibility to initialize the XML parsers forExtension

this extension's subsystems and register them with the given . The parser'sExtensionParsingContext

job when it is later called is to create objects representing WildFlyorg.jboss.dmr.ModelNode

management API operations needed make the AS's running configuration match what is described in the

xml. Those management operation s are added to a list passed in to the parser.ModelNode

A parser for each version of the xml schema used by a subsystem should be registered. A well behaved

subsystem should be able to parse any version of its schema that it has ever published in a final release.

void initialize(ExtensionContext context)

When this is invoked, it is the implementation's responsibility to register with the core AS theExtension

management API for its subsystems, and to register the object that is capable of marshalling the

subsystem's in-memory configuration back to XML. Only one XML marshaller is registered per subsystem,

even though multiple XML parsers can be registered. The subsystem should always write documents that

conform to the latest version of its XML schema.

The registration of a subsystem's management API is done via the ManagementResourceRegistration

interface. Before discussing that interface in detail, let's describe how it (and the related Resource

interface) relate to the notion of managed resources in the AS.

Latest WildFly Documentation

JBoss Community Documentation Page of 1905 2293

11.12.2 WildFly Managed Resources

Each subsystem is responsible for managing one or more management resources. The conceptual

characteristics of a management resource are covered in some detail in the ; here we'll justAdmin Guide

summarize the main points. A management resource has

An consisting of a list of key/value pairs that uniquely identifies a resourceaddress

Zero or more , the value of which is some sort of attributes org.jboss.dmr.ModelNode

Zero or more supported . An operation has a string name and zero or more parameters,operations

each of which is a key/value pair where the key is a string naming the parameter and the value is

some sort of ModelNode

Zero or more , each of which in turn is a managed resourcechildren

The implementation of a managed resource is somewhat analogous to the implementation of a Java object.

A managed resource will have a "type", which encapsulates API information about that resource and logic

used to implement that API. And then there are actual instances of the resource, which primarily store data

representing the current state of a particular resource. This is somewhat analogous to the "class" and

"object" notions in Java.

A managed resource's type is encapsulated by the

 the core AS createsorg.jboss.as.controller.registry.ManagementResourceRegistration

when the type is registered. The data for a particular instance is encapsulated in an implementation of the

 interface.org.jboss.as.controller.registry.Resource

11.12.3 ManagementResourceRegistration Interface

In the Java analogy used above, the is analogous to the "class",ManagementResourceRegistration

while the discussed below is analogous to an instance of that class.Resource

A represents the specification for a particular managed resourceManagementResourceRegistration

type. All resources whose address matches the same pattern will be of the same type, specified by the

type's . The MRR encapsulates:ManagementResourceRegistration

Latest WildFly Documentation

JBoss Community Documentation Page of 1906 2293

A showing the address pattern that matches resources of that type. This PathAddress

 can and typically does involve wildcards in the value of one or more elements of thePathAddress

address. In this case there can be more than one instance of the type, i.e. different Resource

instances.

Definition of the various attributes exposed by resources of this type, including the

 implementations used for reading and writing the attribute values.OperationStepHandler

Definition of the various operations exposed by resources of this type, including the

 implementations used for handling user invocations of those operations.OperationStepHandler

Definition of child resource types. instances form a tree.ManagementResourceRegistration

Definition of management notifications emitted by resources of this type.

Definition of provided by resources of this type.capabilities

Definition of access constraints that should be applied by the management kernel whenRBAC

authorizing operations against resources of this type.

Whether the resource type is an alias to another resource type, and if so information about that

relationship. Aliases are primarily used to preserve backwards compatibility of the management API

when the location of a given type of resources is moved in a newer release.

The interface is a subinterface of ManagementResourceRegistration

, which provides a read-only view of the informationImmutableManagementResourceRegistration

encapsulated by the MRR. The MRR subinterface adds the methods needed for registering the attributes,

operations, children, etc.

Extension developers do not directly instantiate an MRR. Instead they create a forResourceDefinition

the root resource type for each subsystem, and register it with the passed in to their ExtensionContext

 implementation's method:Extension initialize

public void initialize(ExtensionContext context) {

 SubsystemRegistration subsystem = context.registerSubsystem(SUBSYSTEM_NAME,

CURRENT_VERSION);

 subsystem.registerXMLElementWriter(getOurXmlWriter());

 ResourceDefinition rd = getOurSubsystemDefinition();

 ManagementResourceRegistration mrr = subsystem.registerSubsystemModel(rd));

 }

The kernel uses the provided to construct a ResourceDefinition

 and then passes that MRR to the various methodsManagementResourceRegistration registerXXX

implemented by the , giving it the change to record the resource type's attributes,ResourceDefinition

operations and children.

Latest WildFly Documentation

JBoss Community Documentation Page of 1907 2293

11.12.4 ResourceDefinition Interface

An implementation of is the primary class used by an extension developer whenResourceDefinition

defining a managed resource type. It provides basic information about the type, exposes a

 used to generate a DMR description of the type, and implements callbacks theDescriptionProvider

kernel can invoke when building up the to ask for registration ofManagementResourceRegistration

definitions of attributes, operations, children, notifications and capabilities.

Almost always an extension author will create their by creating a subclass of the ResourceDefinition

 class or of its org.jboss.as.controller.SimpleResourceDefinition

 subclass. Both of these classes have constructors that take a PersistentResourceDefinition

 object, which is a simple builder class to use to provide most of the key information about theParameters

resource type. The extension-specific subclass would then take responsibility for any additional behavior

needed by overriding the , , registerAttributes registerOperations registerNotifications

and callbacks to do whatever is needed beyond what is provided by the superclasses.registerChildren

For example, to add a writable attribute:

@Override

 public void registerAttributes(ManagementResourceRegistration resourceRegistration) {

 super.registerAttributes(resourceRegistration);

 // Now we register the 'foo' attribute

 AttributeDefinition ad = FOO; // constant declared elsewhere

 OperationStepHandler writeHandler = new FooWriteAttributeHandler();

 resourceRegistration.registerReadWriteHandler(ad, null, writeHandler); // null read

handler means use default read handling

 }

To register a custom operation:

@Override

 public void registerOperations(ManagementResourceRegistration resourceRegistration) {

 super.registerOperations(resourceRegistration);

 // Now we register the 'foo-bar' custom operation

 OperationDefinition od = FooBarOperationStepHandler.getDefinition();

 OperationStepHandler osh = new FooBarOperationStepHandler();

 resourceRegistration.registerOperationHandler(od, osh);

 }

To register a child resource type:

Latest WildFly Documentation

JBoss Community Documentation Page of 1908 2293

@Override

 public void registerChildren(ManagementResourceRegistration resourceRegistration) {

 super.registerChildren(resourceRegistration);

 // Now we register the 'baz=*' child type

 ResourceDefinition rd = new BazResourceDefinition();

 resourceRegistration.registerSubmodel(rd);

 }

ResourceDescriptionResolver
One of the things a must be able to do is provide a thatResourceDefinition DescriptionProvider

provides a proper DMR description of the resource to use as the output for the standard

 management operation. Since you are almost certainly going to be usingread-resource-description

one of the standard implementations like , theResourceDefinition SimpleResourceDefinition

creation of this is largely handled for you. The one thing that is not handled for youDescriptionProvider

is providing the localized free form text descriptions of the various attributes, operations, operation

parameters, child types, etc used in creating the resource description.

For this you must provide an implementation of the interface, typicallyResourceDescriptionResolver

passed to the object provided to the constructor. ThisParameters SimpleResourceDefinition

interface has various methods that are invoked when a piece of localized text description is needed.

Almost certainly you'll satisfy this requirement by providing an instance of the

 class.StandardResourceDescriptionResolver

 uses a to load text from a properties fileStandardResourceDescriptionResolver ResourceBundle

available on the classpath. The keys in the properties file must follow patterns expected by

. See the StandardResourceDescriptionResolver StandardResourceDescriptionResolver

javadoc for further details.

The biggest task here is to create the properties file and add the text descriptions. A text description must be

provided for everything. The typical thing to do is to store this properties file in the same package as your

 implementation, in a file named .Extension LocalDescriptions.properties

11.12.5 AttributeDefinition Class

The class is used to create the static definition of one of a managed resource'sAttributeDefinition

attributes. It's a bit poorly named though, because the same interface is used to define the details of

parameters to operations, and to define fields in the result of of operations.

The definition includes all the static information about the attribute/operation parameter/result field, e.g. the

DMR of its value, whether its presence is required, whether it supports expressions, etc. See ModelType

 for a description of the metadata available. Almost all of this comesDescription of the Management Model

from the .AttributeDefinition

Latest WildFly Documentation

JBoss Community Documentation Page of 1909 2293

Besides basic metadata, the can also hold custom logic the kernel should useAttributeDefinition

when dealing with the attribute/operation parameter/result field. For example, a toParameterValidator

use to perform special validation of values (beyond basic things like DMR type checks and

defined/undefined checks), or an or to use to performAttributeParser AttributeMarshaller

customized parsing from and marshaling to XML.

WildFly Core's module provides a number of subclasses of used forcontroller AttributeDefinition

the usual kinds of attributes. For each there is an associated builder class which you should use to build the

. Most commonly used are , built by theAttributeDefinition SimpleAttributeDefinition

associated . This is used for attributes whose values areSimpleAttributeDefinitionBuilder

analogous to java primitives, or byte[]. For collections, there are various subclasses of String

 and . All have a inner class. ForListAttributeDefinition MapAttributeDefinition Builder

complex attributes, i.e. those with a fixed set of fully defined fields, use

. (Each field in the complex type is itself specified by an ObjectTypeAttributeDefinition

.) Finally there's and AttributeDefinition ObjectListAttributeDefinition

 for lists whose elements are complex types and maps whose valuesObjectMapAttributeDefinition

are complex types respectively.

Here's an example of creating a simple attribute definition with extra validation of the range of allowed

values:

static final AttributeDefinition QUEUE_LENGTH = new

SimpleAttributeDefinitionBuilder("queue-length", ModelType.INT)

 .setRequired(true)

 .setAllowExpression(true)

 .setValidator(new IntRangeValidator(1, Integer.MAX_VALUE))

 .setRestartAllServices() // means modification after resource add puts the

server in reload-required

 .build();

Via a bit of dark magic, the kernel knows that the defined here is a reliable source ofIntRangeValidator

information on min and max values for the attribute, so when creating the read-resource-description

output for the attribute it will use it and output and metadata. For STRING attributes, min max

 can also be used, and the kernel will see this and provide and StringLengthValidator min-length

 metadata. In both cases the kernel is checking for the presence of a andmax-length MinMaxValidator

if found it provides the appropriate metadata based on the type of the attribute.

Use to restrict a STRING attribute's values to a set of legal values:EnumValidator

static final SimpleAttributeDefinition TIME_UNIT = new SimpleAttributeDefinitionBuilder("unit",

ModelType.STRING)

 .setRequired(true)

 .setAllowExpression(true)

 .setValidator(new EnumValidator<TimeUnit>(TimeUnit.class))

 .build();

Latest WildFly Documentation

JBoss Community Documentation Page of 1910 2293

 is an implementation of that works with Java enums. YouEnumValidator AllowedValuesValidator

can use other implementations or write your own to do other types of restriction to certain values.

Via a bit of dark magic similar to what is done with , the kernel recognizes the presenceMinMaxValidator

of an and uses it to seed the metadata in AllowedValuesValidator allowed-values

 output.read-resource-description

Key Uses of AttributeDefinition
Your instances will be some of the most commonly used objects in your extensionAttributeDefinition

code. Following are the most typical uses. In each of these examples assume there is a

 stored in a constant FOO_AD that is available to the code. TypicallySimpleAttributeDefinition

FOO_AD would be a constant in the relevant implementation class. AssumeResourceDefinition

FOO_AD represents an INT attribute.

Note that for all of these cases except for "Use in Extracting Data from the Configuration Model for Use in

Runtime Services" there may be utility code that handles this for you. For example

 can handle the XML cases, and canPersistentResourceXMLParser AbstractAddStepHandler

handle the "Use in Storing Data Provided by the User to the Configuration Model" case.

Latest WildFly Documentation

JBoss Community Documentation Page of 1911 2293

Use in XML Parsing
Here we have your extension's implementation of that is beingXMLElementReader<List<ModelNode>>

used to parse the xml for your subsystem and add operations to the list that will be used to bootModelNode

the server.

@Override

 public void readElement(final XMLExtendedStreamReader reader, final List<ModelNode>

operationList) throws XMLStreamException {

 // Create a node for the op to add our subsystem

 ModelNode addOp = new ModelNode();

 addOp.get("address").add("subsystem", "mysubsystem");

 addOp.get("operation").set("add");

 operationList.add(addOp);

 for (int i = 0; i < reader.getAttributeCount(); i++) {

 final String value = reader.getAttributeValue(i);

 final String attribute = reader.getAttributeLocalName(i);

 if (FOO_AD.getXmlName().equals(attribute) {

 FOO_AD.parseAndSetParameter(value, addOp, reader);

 } else

 }

 ... more parsing

 }

Note that the parsing code has deliberately been abbreviated. The key point is the

 call. FOO_AD will validate the read from XML, throwing anparseAndSetParameter value

XMLStreamException with a useful message if invalid, including a reference to the current location of the

. If valid, will be converted to a DMR of the appropriate type and stored as areader value ModelNode

parameter field of . The name of the parameter will be what returns.addOp FOO_AD.getName()

If you use this parsing logic is handled for you and you don't need toPersistentResourceXMLParser

write it yourself.

Latest WildFly Documentation

JBoss Community Documentation Page of 1912 2293

Use in Storing Data Provided by the User to the Configuration Model
Here we illustrate code in an that extracts a value from a user-provided OperationStepHandler

 and stores it in the internal model:operation

@Override

 public void execute(OperationContext context, ModelNode operation) throws

OperationFailedException {

 // Get the Resource targeted by this operation

 Resource resource = context.readResourceForUpdate(PathAddress.EMPTY_ADDRESS);

 ModelNode model = resource.getModel();

 // Store the value of any 'foo' param to the model's 'foo' attribute

 FOO_AD.validateAndSet(operation, model);

 ... do other stuff

 }

As the name implies will validate the value in before setting it. A validationvalidateAndSet operation

failure will result in an with an appropriate message, which the kernel willOperationFailedException

use to provide a failure response to the user.

Note that will not perform expression resolution. Expression resolution is not appropriatevalidateAndSet

at this stage, when we are just trying to store data to the persistent configuration model. However, it will

check for expressions and fail validation if found and FOO_AD wasn't built with

.setAllowExpressions(true)

This work of storing data to the configuration model is usually done in handlers for the and add

 operations. If you base your handler implementations on the standard classes providedwrite-attribute

by WildFly Core, this part of the work will be handled for you.

Latest WildFly Documentation

JBoss Community Documentation Page of 1913 2293

Use in Extracting Data from the Configuration Model for Use in Runtime Services
This is the example you are most likely to use in your code, as this is where data needs to be extracted from

the configuration model and passed to your runtime services. What your services need is custom, so there's

no utility code we provide.

Assume as part of in the last example that your handler adds a step to do further... do other stuff

work once operation execution proceeds to RUNTIME state (see Operation Execution and the

 for more on what this means):OperationContext

context.addStep(new OperationStepHandler() {

 @Override

 public void execute(OperationContext context, ModelNode operation) throws

OperationFailedException {

 // Get the Resource targetted by this operation

 Resource resource = context.readResource(PathAddress.EMPTY_ADDRESS);

 ModelNode model = resource.getModel();

 // Extract the value of the 'foo' attribute from the model

 int foo = FOO_AD.resolveModelAttribute(context, model).asInt();

 Service<XyZ> service = new MyService(foo);

 ... do other stuff, like install 'service' with MSC

 }

 }, Stage.RUNTIME);

Use to extract data from the model. It does a number of things:resolveModelAttribute

reads the value from the model

if it's an expression and expressions are supported, resolves it

if it's undefined and undefined is allowed but FOO_AD was configured with a default value, uses the

default value

validates the result of that (which is how we check that expressions resolve to legal values), throwing

OperationFailedException with a useful message if invalid

returns that as a ModelNode

If when you built FOO_AD you configured it such that the user must provide a value, or if you configured it

with a default value, then you know the return value of will be a defined resolveModelAttribute

. Hence you can safely perform type conversions with it, as we do in the example above with theModelNode

call to . If FOO_AD was configured such that it's possible that the attribute won't have a definedasInt()

value, you need to guard against that, e.g.:

ModelNode node = FOO_AD.resolveModelAttribute(context, model);

 Integer foo = node.isDefined() ? node.asInt() : null;

Latest WildFly Documentation

JBoss Community Documentation Page of 1914 2293

Use in Marshaling Configuration Model Data to XML
Your must register an for eachExtension XMLElementWriter<SubsystemMarshallingContext>

subsystem. This is used to marshal the subsystem's configuration to XML. If you don't use

 for this you'll need to write your own marshaling code, and PersistentResourceXMLParser

 will be used.AttributeDefinition

@Override

 public void writeContent(XMLExtendedStreamWriter writer, SubsystemMarshallingContext

context) throws XMLStreamException {

 context.startSubsystemElement(Namespace.CURRENT.getUriString(), false);

 ModelNode subsystemModel = context.getModelNode();

 // we persist foo as an xml attribute

 FOO_AD.marshalAsAttribute(subsystemModel, writer);

 // We also have a different attribute that we marshal as an element

 BAR_AD.marshalAsElement(subsystemModel, writer);

 }

The provides a that represents the entire resource tree forSubsystemMarshallingContext ModelNode

the subsystem (including child resources). Your should walk through that model, usingXMLElementWriter

 or to write the attributes in each resource. If the modelmarshalAsAttribute marshalAsElement

includes child node trees that represent child resources, create child xml elements for those and continue

down the tree.

11.12.6 OperationDefinition and OperationStepHandler

Interfaces

 defines an operation, particularly its name, its parameters and the details of anyOperationDefinition

result value, with instances used to define the parameters and result details. The AttributeDefinition

 is used to generate the output for theOperationDefinition read-operation-description

operation, and in some cases is also used by the kernel to decide details as to how to execute the operation.

Typically is used to create an . UsuallySimpleOperationDefinitionBuilder OperationDefinition

you only need to create an for custom operations. For the common and OperationDefinition add

 operations, if you provide minimal information about your handlers to your remove

 implementation via the object passed to its constructor, then SimpleResourceDefinition Parameters

 can generate a correct for those operations.SimpleResourceDefinition OperationDefinition

The is what contains the actual logic for doing what the user requests when theyOperationStepHandler

invoke an operation. As its name implies, each OSH is responsible for doing one step in the overall

sequence of things necessary to give effect to what the user requested. One of the things an OSH can do is

add other steps, with the result that an overall operation can involve a great number of OSHs executing.

(See Operation Execution and the for more on this.)OperationContext

Latest WildFly Documentation

JBoss Community Documentation Page of 1915 2293

Each OSH is provided in its method with a reference to the that is controllingexecute OperationContext

the overall operation, plus an that represents the operation that particular OSH isoperation ModelNode

being asked to deal with. The node will be of with the following key/valueoperation ModelType.OBJECT

pairs:

a key named with a value of that represents the name of theoperation ModelType.STRING

operation. Typically an OSH doesn't care about this information as it is written for an operation with a

particular name and will only be invoked for that operation.

a key named with a value of with list elements of address ModelType.LIST

. This value represents the address of the resource the operation targets. IfModelType.PROPERTY

this key is not present or the value is undefined or an empty list, the target is the root resource.

Typically an OSH doesn't care about this information as it can more efficiently get the address from

the via its method.OperationContext getCurrentAddress()

other key/value pairs that represent parameters to the operation, with the key the name of the

parameter. This is the main information an OSH would want from the node.operation

There are a variety of situations where extension code will instantiate an OperationStepHandler

When registering a writable attribute with a (typically in anManagementResourceRegistration

implementation of), an OSH must be provided toResourceDefinition.registerAttributes

handle the operation.write-attribute

When registering a read-only or read-write attribute that needs special handling of the

 operation, an OSH must be provided.read-attribute

When registering a metric attribute, an OSH must be provided to handle the read-attribute

operation.

Most resources need OSHs created for the and operations. These are passed to the add remove

 object given to the constructor, for use by the Parameters SimpleResourceDefinition

 in its implementation of the method.SimpleResourceDefinition registerOperations

If your resource has custom operations, you will instantiate them to register with a

, typically in an implementation of ManagementResourceRegistration

ResourceDefinition.registerOperations

If an OSH needs to tell the to add additional steps to do further handling, theOperationContext

OSH will create another OSH to execute that step. This second OSH is typically an inner class of the

first OSH.

11.12.7 Operation Execution and the OperationContext

When the at the heart of the WildFly Core management layer handles a request toModelController

execute an operation, it instantiates an implementation of the interface to do the work.OperationContext

The is configured with an initial list of operation steps it must execute. This is done inOperationContext

one of two ways:

Latest WildFly Documentation

JBoss Community Documentation Page of 1916 2293

During boot, multiple steps are configured, one for each operation in the list generated by the parser

of the xml configuration file. For each operation, the finds the ModelController

 that matches the address of the operation and finds the ManagementResourceRegistration

 registered with that MRR for the operation's name. A step is added to the OperationStepHandler

 for each operation by providing the operation itself, plus the OperationContext ModelNode

.OperationStepHandler

After boot, any management request involves only a single operation, so only a single step is added.

(Note that a operation is still a single operation; it's just one that internally executes viacomposite

multiple steps.)

The then asks the to execute the operation.ModelController OperationContext

The acts as both the engine for operation execution, and as the interface provided to OperationContext

 implementations to let them interact with the rest of the system.OperationStepHandler

Execution Process
Operation execution proceeds via execution by the of a series of "steps" with an OperationContext

 doing the key work for each step. As mentioned above, during boot the OC isOperationStepHandler

initially configured with a number of steps, but post boot operations involve only a single step initially. But

even a post-boot operation can end up involving numerous steps before completion. In the case of a

 operation, thousands of steps might execute. This is possible/:read-resource(recursive=true)

because one of the key things an can do is ask the to addOperationStepHandler OperationContext

additional steps to execute later.

Execution proceeds via a series of "stages", with a queue of steps maintained for each stage. An

 can tell the to add a step for any stage equal to or laterOperationStepHandler OperationContext

than the currently executing stage. The instruction can either be to add the step to the head of the queue for

the stage or to place it at the end of the stage's queue.

Execution of a stage continues until there are no longer any steps in the stage's queue. Then an internal

transition task can execute, and the processing of the next stage's steps begins.

Here is some brief information about each stage:

Latest WildFly Documentation

JBoss Community Documentation Page of 1917 2293

Stage.MODEL
This stage is concerned with interacting with the persistent configuration model, either making changes to it

or reading information from it. Handlers for this stage should not make changes to the runtime, and handlers

running after this stage should not make changes to the persistent configuration model.

If any step fails during this stage, the operation will automatically roll back. Rollback of MODEL stage failures

cannot be turned off. Rollback during boot results in abort of the process start.

The initial step or steps added to the by the all execute inOperationContext ModelController

Stage.MODEL. This means that all instances your extension registers with a OperationStepHandler

 must be designed for execution in . If you need workManagementResourceRegistration Stage.MODEL

done in later stages your handler must add a step for that work.Stage.MODEL

When this stage completes, the internally performs model validation work beforeOperationContext

proceeding on to the next stage. Validation failures will result in rollback.

Stage.RUNTIME
This stage is concerned with interacting with the server runtime, either reading from it or modifying it (e.g.

installing or removing services or updating their configuration.) By the time this stage begins, all model

changes are complete and model validity has been checked. So typically handlers in this stage read their

inputs from the model, not from the original provided by the user.operation ModelNode

Most logic written by extension authors will be for Stage.RUNTIME. The vastOperationStepHandler

majority of Stage.MODEL handling can best be performed by the base handler classes WildFly Core

provides in its module. (See below for more on those.)controller

During boot failures in will not trigger rollback and abort of the server boot. After boot, byStage.RUNTIME

default failures here will trigger rollback, but users can prevent that by using the

 header. However, a RuntimeException thrown by a handler will triggerrollback-on-runtime-failure

rollback.

At the end of , the blocks waiting for the MSC service container toStage.RUNTIME OperationContext

stabilize (i.e. for all services to have reached a rest state) before moving on to the next stage.

Latest WildFly Documentation

JBoss Community Documentation Page of 1918 2293

Stage.VERIFY
Service container verification work is performed in this stage, checking that any MSC changes made in

 had the expected effect. Typically extension authors do not add any steps in this stage, asStage.RUNTIME

the steps automatically added by the itself are all that are needed. You can add a stepOperationContext

here though if you have an unusual use case where you need to verify something after MSC has stabilized.

Handlers in this stage should not make any further runtime changes; their purpose is simply to do verification

work and fail the operation if verification is unsuccessful.

During boot failures in will not trigger rollback and abort of the server boot. After boot, byStage.VERIFY

default failures here will trigger rollback, but users can prevent that by using the

 header. However, a RuntimeException thrown by a handler will triggerrollback-on-runtime-failure

rollback.

There is no special transition work at the end of this stage.

Stage.DOMAIN
Extension authors should not add steps in this stage; it is only for use by the kernel.

Steps needed to execute rollout across the domain of an operation that affects multiple processes in a

managed domain run here. This stage is only run on Host Contoller processes, never on servers.

Stage.DONE and ResultHandler / RollbackHandler Execution
This stage doesn't maintain a queue of steps; no executes here. What doesOperationStepHandler

happen here is persistence of any configuration changes to the xml file and commit or rollback of changes

affecting multiple processes in a managed domain.

While no executes in this stage, following persistence and transaction commit all OperationStepHandler

 or callbacks registered with the by the stepsResultHandler RollbackHandler OperationContext

that executed are invoked. This is done in the reverse order of step execution, so the callback for the last

step to run is the first to be executed. The most common thing for a callback to do is to respond to a rollback

by doing whatever is necessary to reverse changes made in . (No reversal of Stage.RUNTIME

 changes is needed, because if an operation rolls back the updated model produced by theStage.MODEL

operation is simply never published and is discarded.)

Tips About Adding Steps
Here are some useful tips about how to add steps:

Latest WildFly Documentation

JBoss Community Documentation Page of 1919 2293

Add a step to the head of the current stage's queue if you want it to execute next, prior to any other

steps. Typically you would use this technique if you are trying to decompose some complex work into

pieces, with reusable logic handling each piece. There would be an forOperationStepHandler

each part of the work, added to the head of the queue in the correct sequence. This would be a pretty

advanced use case for an extension author but is quite common in the handlers provided by the

kernel.

Add a step to the end of the queue if either you don't care when it executes or if you do care and want

to be sure it executes after any already registered steps.

A very common example of this is a handler adding a step for its associated Stage.MODEL

 work. If there are multiple model steps that will execute (e.g. at boot or asStage.RUNTIME

part of handling a), each will want to add a runtime step, and likely the best ordercomposite

for those runtime steps is the same as the order of the model steps. So if each adds its runtime

step at the end, the desired result will be achieved.

A more sophisticated but important scenario is when a step may or may not be executing as

part of a larger set of steps, i.e. it may be one step in a or it may not. There is nocomposite

way for the handler to know. But it can assume that if it is part of a composite, the steps for the

other operations in the composite . (The handler for the are already registered in the queue

 op guarantees this.) So, if it wants to do some work (say validation of thecomposite

relationship between different attributes or resources) the input to which may be affected by

possible other already registered steps, instead of doing that work itself, it should register a

different step at the of the queue and have that step do the work. This will ensure thatend

when the validation step runs, the other steps in the will have had a chance to docomposite

their work. Rule of thumb: always doing any extra validation work in an added step.

Passing Data to an Added Step
Often a handler author will want to share state between the handler for a step it adds and the handler that

added it. There are a number of ways this can be done:

Very often the for the added class is an inner class of the handler thatOperationStepHandler

adds it. So here sharing state is easily done using final variables in the outer class.

The handler for the added step can accept values passed to its constructor which can serve as

shared state.

The includes an Attachment API which allows arbitary data to be attached toOperationContext

the context and retrieved by any handler that has access to the attachment key.

The methods include overloaded variants where the caller can passOperationContext.addStep

in an that will in turn be passed to the method of the handler foroperation ModelNode execute

the added step. So, state can be passed via this . It's important to remember though thatModelNode

the field of the will govern what the sees as the target ofaddress operation OperationContext

operation when that added step's handler executes.

Latest WildFly Documentation

JBoss Community Documentation Page of 1920 2293

Controlling Output from an Added Step
When an wants to report an operation result, it calls the OperationStepHandler

 method and manipulates the returned . Similarly forOperationContext.getResult() ModelNode

failure messages it can call . The usual assumptionOperationContext.getFailureDescription()

when such a call is made is that the result or failure description being modified is the one at the root of the

response to the end user. But this is not necessarily the case.

When an adds a step it can use one of the overloaded OperationStepHandler

 variants that takes a parameter. If it does,OperationContext.addStep response ModelNode

whatever it passes in will be what is updated as a result of ModelNode

 and calls byOperationContext.getResult() OperationContext.getFailureDescription()

the step's handler. This node does not need to be one that is directly associated with the response to the

user.

How then does the handler that adds a step in this manner make use of whatever results the added step

produces, since the added step will not run until the adding step completes execution? There are a couple of

ways this can be done.

The first is to add yet another step, and provide it a reference to the node used by the secondresponse

step. It will execute after the second step and can read its response and use it in formulating its own

response.

The second way involves using a . The for a step will execute anyResultHandler ResultHandler after

step that it adds executes. And, it is legal for a to manipulate the "result" value for anResultHandler

operation, or its "failure-description" in case of failure. So, the handler that adds a step can provide to its

 a reference to the node it passed to , and the canResultHandler response addStep ResultHandler

in turn and use its contents to manipulate its own response.

This kind of handling wouldn't commonly be done by extension authors and great care needs to be taken if it

is done. It is often done in some of the kernel handlers.

Latest WildFly Documentation

JBoss Community Documentation Page of 1921 2293

OperationStepHandler use of the OperationContext
All useful work an performs is done by invoking methods on the OperationStepHandler

. The interface is extensively javadoced, so this section will justOperationContext OperationContext

provide a brief partial overview. The OSH can use the to:OperationContext

Learn about the environment in which it is executing (, , getProcessType getRunningMode

, , , , isBooting getCurrentStage getCallEnvironment getSecurityIdentity

,)isDefaultRequiresRuntime isNormalServer

Learn about the operation (, , getCurrentAddress getCurrentAddressValue

,)getAttachmentStream getAttachmentStreamCount

Read the tree (, , Resource readResource readResourceFromRoot

)getOriginalRootResource

Manipulate the tree (, , , Resource createResource addResource readResourceForUpdate

)removeResource

Read the resource type information (, getResourceRegistration

)getRootResourceRegistration

Manipulate the resource type information ()getResourceRegistrationForUpdate

Read the MSC service container ()getServiceRegistry(false)

Manipulate the MSC service container (, , getServiceTarget getServiceRegistry(true)

)removeService

Manipulate the process state (, , , reloadRequired revertReloadRequired restartRequired

revertRestartRequired

Resolve expressions ()resolveExpressions

Manipulate the operation response (, , getResult getFailureDescription

,)attachResultStream runtimeUpdateSkipped

Force operation rollback ()setRollbackOnly

Add other steps ()addStep

Share data with other steps (, , ,)attach attachIfAbsent getAttachment detach

Work with capabilities (numerous methods)

Emit notifications ()emit

Request a callback to a or ()ResultHandler RollbackHandler completeStep

Latest WildFly Documentation

JBoss Community Documentation Page of 1922 2293

Locking and Change Visibility
The and work together to ensure that only one operation at aModelController OperationContext

time is modifying the state of the system. This is done via an exclusive lock maintained by the

. Any operation that does not need to write never requests the lock and is able toModelController

proceed without being blocked by an operation that holds the lock (i.e. writes do not block reads.) If two

operations wish to concurrently write, one or the other will get the lock and the loser will block waiting for the

winner to complete and release the lock.

The requests the exclusive lock the first time any of the following occur:OperationContext

A step calls one of its methods that indicates a wish to modify the resource tree (, createResource

, ,)addResource readResourceForUpdate removeResource

A step calls one of its methods that indicates a wish to modify the

 tree ()ManagementResourceRegistration getResourceRegistrationForUpdate

A step calls one of its methods that indicates a desire to change MSC services (getServiceTarget

, or with the param set to)removeService getServiceRegistry modify true

A step calls one of its methods that manipulates the capability registry (various)

A step explicitly requests the lock by calling the method (doing this isacquireControllerLock

discouraged)

The step that acquired the lock is tracked, and the lock is released when the added by thatResultHandler

step has executed. (If the step doesn't add a result handler, a default no-op one is automatically added).

When an operation first expresses a desire to manipulate the tree or the capability registry, aResource

private copy of the tree or registry is created and thereafter the works with that copy.OperationContext

The copy is published back to the in if the operation commits. Until thatModelController Stage.DONE

happens any changes to the tree or capability registry made by the operation are invisible to other threads. If

the operation does not commit, the private copies are simply discarded.

However, the does not make a private copy of the OperationContext

 tree before manipulating it, nor is there a private copy of the MSCManagementResourceRegistration

service container. So, any changes made by an operation to either of those are immediately visible to other

threads.

11.12.8 Resource Interface

An instance of the interface holds the state for a particular instance of a type defined by a Resource

. Referring back to the analogy mentioned earlier the ManagementResourceRegistration

 is analogous to a Java class while the is analogous toManagementResourceRegistration Resource

an instance of that class.

The makes available state information, primarilyResource

Latest WildFly Documentation

JBoss Community Documentation Page of 1923 2293

Some descriptive metadata, such as its address, whether it is runtime-only and whether it represents

a proxy to a another primary resource that resides on another process in a managed domain

A of whose keys are the resource's attributes and whose valuesModelNode ModelType.OBJECT

are the attribute values

Links to child resources such that the resources form a tree

Creating Resources
Typically extensions create resources via calls to the OperationStepHandler

 method. However it is allowed for handlers to use their own OperationContext.createResource

 implementations by instantiating the resource and invoking Resource OperationContext.addResource

. The class can be used as a base class.AbstractModelResource

Runtime-Only and Synthetic Resources and the

PlaceholderResourceEntry Class
A runtime-only resource is one whose state is not persisted to the xml configuration file. Many runtime-only

resources are also "synthetic" meaning they are not added or removed as a result of user initiated

management operations. Rather these resources are "synthesized" in order to allow users to use the

management API to examine some aspect of the internal state of the process. A good example of synthetic

resources are the resources in the branch of the resource tree./core-service=platform-mbeans

There are resources there that represent various aspects of the JVM (classloaders, memory pools, etc) but

which resources are present entirely depends on what the JVM is doing, not on any management action.

Another example are resources representing "core queues" in the WildFly messaging and

messaging-artemismq subsystems. Queues are created as a result of activity in the message broker which

may not involve calls to the management API. But for each such queue a management resource is available

to allow management users to perform management operations against the queue.

It is a requirement of execution of a management operation that the can navigateOperationContext

through the resource tree to a object located at the address specified. This requirement holdsResource

true even for synthetic resources. How can this be handled, given the fact these resources are not created in

response to management operations?

The trick involves using special implementations of . Let's imagine a simple case where we haveResource

a parent resource which is fairly normal (i.e. it holds persistent configuration and is added via a user's add

operation) except for the fact that one of its child types represents synthetic resources (e.g. message

queues). How would this be handled?

First, the parent resource would require a custom implementation of the interface. The Resource

 for the operation would instantiate it, providing it with access to whateverOperationStepHandler add

API is needed for it to work out what items exist for which a synthetic resource should be made available

(e.g. an API provided by the message broker that provides access to its queues). The handler wouldadd

use the method to tie this custom resource into the overall resourceOperationContext.addResource

tree.

Latest WildFly Documentation

JBoss Community Documentation Page of 1924 2293

The custom implementation would use special implementations of the various methods thatResource

relate to accessing children. For all calls that relate to the synthetic child type (e.g. core-queue) the custom

implementation would use whatever API call is needed to provide the correct data for that child type (e.g. ask

the message broker for the names of queues).

A nice strategy for creating such a custom resource is to use delegation. Use

 to create a standard resource. Then pass it to the constructor of yourResource.Factory.create}()

custom resource type for use as a delegate. The custom resource type's logic is focused on the synthetic

children; all other work it passes on to the delegate.

What about the synthetic resources themselves, i.e. the leaf nodes in this part of the tree? These are created

on the fly by the parent resource in response to , , and getChild requireChild getChildren navigate

calls that target the synthetic resource type. These created-on-the-fly resources can be very lightweight,

since they store no configuration model and have no children. The class isPlaceholderResourceEntry

perfect for this. It's a very lightweight implementation with minimal logic that only stores the finalResource

element of the resource's address as state.

See in the WildFly Core logging subsystem for an example of this kind of thing.LoggingResource

Searching for other uses of will show other examples.PlaceholderResourceEntry

11.12.9 DeploymentUnitProcessor Interface

TODO

11.12.10 Useful classes for implementing

OperationStepHandler

The WildFly Core module includes a number of implementationscontroller OperationStepHandler

that in some cases you can use directly, and that in other cases can serve as the base class for your own

handler implementation. In all of these a general goal is to eliminate the need for your code to do anything in

 while providing support for whatever is appropriate for .Stage.MODEL Stage.RUNTIME

Add Handlers
 is a base class for handlers for operations. There are a number of waysAbstractAddStepHandler add

you can configure its behavior, the most commonly used of which are to:

Latest WildFly Documentation

JBoss Community Documentation Page of 1925 2293

Configure its behavior in by passing to its constructor and Stage.MODEL AttributeDefinition

 instances for the attributes and capabilities provided by the resource. TheRuntimeCapability

handler will automatically validate the operation parameters whose names match the provided

attributes and store their values in the model of the newly added . It will also record theResource

presence of the given capabilities.

Control whether a step for the operation needs to be added, by overriding the Stage.RUNTIME

 method. Doing this isprotected boolean requiresRuntime(OperationContext context)

atypical; the standard behavior in the base class is appropriate for most cases.

Implement the primary logic of the step by overriding the Stage.RUNTIME protected void

performRuntime(final OperationContext context, final ModelNode operation,

 method. This is typically the bulk of the code in an final Resource resource)

 subclass. This is where you read data from the model andAbstractAddStepHandler Resource

use it to do things like configure and install MSC services.

Handle any unusual needs of any rollback of the step by overriding Stage.RUNTIME protected

void rollbackRuntime(OperationContext context, final ModelNode operation,

. Doing this is not typically needed, since if the rollback behaviorfinal Resource resource)

needed is simply to remove any MSC services installed in , the performRuntime

 will do this for you automatically.OperationContext

 is a subclass of meant for use by AbstractBoottimeAddStepHandler AbstractAddStepHandler

 operations that should only do their normal work in server, boot, with the server beingadd Stage.RUNTIME

put in if executed later. Primarily this is used for operations that register reload-required add

 implementations, as this can only be done at boot.DeploymentUnitProcessor

Usage of is the same as for exceptAbstractBoottimeAddStepHandler AbstractAddStepHandler

that instead of overriding you override performRuntime protected void

performBoottime(OperationContext context, ModelNode operation, Resource

.resource)

A typical thing to do in is to add a special step that registers one or more performBoottime

 s.DeploymentUnitProcessor

Latest WildFly Documentation

JBoss Community Documentation Page of 1926 2293

@Override

 public void performBoottime(OperationContext context, ModelNode operation, final Resource

resource)

 throws OperationFailedException {

 context.addStep(new AbstractDeploymentChainStep() {

 @Override

 protected void execute(DeploymentProcessorTarget processorTarget) {

processorTarget.addDeploymentProcessor(RequestControllerExtension.SUBSYSTEM_NAME,

Phase.STRUCTURE, Phase.STRUCTURE_GLOBAL_REQUEST_CONTROLLER, new

RequestControllerDeploymentUnitProcessor());

 }

 }, OperationContext.Stage.RUNTIME);

 ... do other things

Remove Handlers
TODO AbstractRemoveStepHandler ServiceRemoveStepHandler

Write attribute handlers
TODO AbstractWriteAttributeHandler

Reload-required handlers
 ReloadRequiredAddStepHandler ReloadRequiredRemoveStepHandler

ReloadRequiredWriteAttributeHandler

Use these for cases where, post-boot, the change to the configuration model made by the operation cannot

be reflected in the runtime until the process is reloaded. These handle the mechanics of recording the need

for reload and reverting it if the operation rolls back.

Restart Parent Resource Handlers
 RestartParentResourceAddHandler RestartParentResourceRemoveHandler

RestartParentWriteAttributeHandler

Use these in cases where a management resource doesn't directly control any runtime services, but instead

simply represents a chunk of configuration that a parent resource uses to configure services it installs.

(Really, this kind of situation is now considered to be a poor management API design and is discouraged.

Instead of using child resources for configuration chunks, complex attributes on the parent resource should

be used.)

These handlers help you deal with the mechanics of the fact that, post-boot, any change to the child

resource likely requires a restart of the service provided by the parent.

Latest WildFly Documentation

JBoss Community Documentation Page of 1927 2293

Model Only Handlers
 ModelOnlyAddStepHandler ModelOnlyRemoveStepHandler ModelOnlyWriteAttributeHandler

Use these for cases where the operation never affects the runtime, even at boot. All it does is update the

configuration model. In most cases such a thing would be odd. These are primarily useful for legacy

subsystems that are no longer usable on current version servers and thus will never do anything in the

runtime. However, current version Domain Controllers must be able to understand the subsystem's

configuration model to allow them to manage older Host Controllers running previous versions where the

subsystem is still usable by servers. So these handlers allow the DC to maintain the configuration model for

the subsystem.

Misc
 is used for custom operations that don't involve the configuration model.AbstractRuntimeOnlyHandler

Create a subclass and implement the protected abstract void

 method. TheexecuteRuntimeStep(OperationContext context, ModelNode operation)

superclass takes care of adding a step that calls your method.Stage.RUNTIME

 is for cases where a resource type includes a 'name'ReadResourceNameOperationStepHandler

attribute whose value is simply the value of the last element in the resource's address. There is no need to

store the value of such an attribute in the resource's model, since it can always be determined from the

resource address. But, if the value is not stored in the resource model, when the attribute is registered with

 an toManagementResourceRegistration.registerReadAttribute OperationStepHandler

handle the operation must be provided. Use read-attribute

 for this. (Note that including such an attribute in yourReadResourceNameOperationStepHandler

management API is considered to be poor practice as it's just redundant data.)

11.13 WildFly 9 JNDI Implementation

11.13.1 Introduction

This page proposes a reworked WildFly JNDI implementation, and new/updated APIs for WildFly subsystem

and EE deployment processors developers to bind new resources easier.

To support discussion in the community, the content includes a big focus on comparing WildFly 8 JNDI

implementation with the new proposal, and should later evolve to the prime guide for WildFly developers

needing to interact with JNDI at subsystem level.

Latest WildFly Documentation

JBoss Community Documentation Page of 1928 2293

11.13.2 Architecture

WildFly relies on MSC to provide the data source for the JNDI tree. Each resource bound in JNDI is stored in

a MSC service (BinderService), and such services are installed as children of subsystem/deployment

services, for an automatically unbound as consequence of uninstall of the parent services.

Since there is the need to know what entries are bound, and MSC does not provides that, there is also the

(ServiceBased)NamingStore concept, which internally manage the set of service names bound. There are

multiple naming stores in every WildFly instance, serving different JNDI namespaces:

java:comp - the standard EE namespace for entries scoped to a specific component, such as an EJB

java:module - the standard EE namespace for entries scoped to specific module, such as an EJB jar,

and shared by all components in it

java:app - the standard EE namespace for entries scoped to a specific application, i.e. EAR, and

shared by all modules in it

java:global - the standard EE namespace for entries shared by all deployments

java:jboss - a proprietary namespace "global" namespace

java:jboss/exported - a proprietary "global" namespace which entries are exposed to remote JNDI

java: - any entries not in the other namespaces

One particular implementation choice, to save resources, is that JNDI contexts by default are not bound, the

naming stores will search for any entry bound with a name that is a child of the context name, if found then

its assumed the context exists.

The reworked implementation introduces shared/global java:comp, java:module and java:app namespaces.

Any entry bound on these will automatically be available to every EE deployment scoped instance of these

namespaces, what should result in a significant reduction of binder services, and also of EE deployment

processors. Also, the Naming subsystem may now configure bind on these shared contexts, and these

contexts will be available when there is no EE component in the invocation, which means that entries such

as java:comp/DefaultDatasource will always be available.

11.13.3 Binding APIs

WildFly Naming subsystem exposes high level APIs to bind new JNDI resources, there is no need to deal

with the low level BinderService type anymore.

Subsystem
At the lowest level a JNDI entry is bound by installing a BinderService to a ServiceTarget:

Latest WildFly Documentation

JBoss Community Documentation Page of 1929 2293

 /**

 * Binds a new entry to JNDI.

 * @param serviceTarget the binder service's target

 * @param name the new JNDI entry's name

 * @param value the new JNDI entry's value

 */

 private ServiceController<?> bind(ServiceTarget serviceTarget, String name, Object value) {

 // the bind info object provides MSC service names to use when creating the binder service

 final ContextNames.BindInfo bindInfo = ContextNames.bindInfoFor(name);

 final BinderService binderService = new BinderService(bindInfo.getBindName());

 // the entry's value is provided by a managed reference factory,

 // since the value may need to be obtained on lookup (e.g. EJB reference)

 final ManagedReferenceFactory managedReferenceFactory = new

ImmediateManagedReferenceFactory(value);

 return serviceTarget

 // add binder service to specified target

 .addService(bindInfo.getBinderServiceName(), binderService)

 // when started the service will be injected with the factory

 .addInjection(binderService.getManagedObjectInjector(), managedReferenceFactory)

 // the binder service depends on the related naming store service,

 // and on start/stop will add/remove its service name

 .addDependency(bindInfo.getParentContextServiceName(),

 ServiceBasedNamingStore.class,

 binderService.getNamingStoreInjector())

 .install();

 }

But the example above is the simplest usage possible, it may become quite complicated if the entry's value

is not immediately available, for instance it is a value in another MSC service, or is a value in another JNDI

entry. It's also quite easy to introduce bugs when working with the service names, or incorrectly assume that

other MSC functionality, such as alias names, may be used.

Using the new high level API, it's as simple as:

// bind an immediate value

ContextNames.bindInfoFor("java:comp/ORB").bind(serviceTarget, this.orb);

// bind value from another JNDI entry (an alias/linkref)

ContextNames.bindInfoFor(“java:global/x").bind(serviceTarget, new JndiName(“java:jboss/x"));

// bind value obtained from a MSC service

ContextNames.bindInfoFor(“java:global/z").bind(serviceTarget, serviceName);

Latest WildFly Documentation

JBoss Community Documentation Page of 1930 2293

If there is the need to access the binder's service builder, perhaps to add a service verification handler or

simply not install the binder service right away:

ContextNames.bindInfoFor("java:comp/ORB").builder(serviceTarget, verificationHandler,

ServiceController.Mode.ON_DEMAND).installService(this.orb);

EE Deployment
With respect to EE deployments, the subsystem API should not be used, since bindings may need to be

discarded/overridden, thus a EE deployment processor should add a new binding in the form of a

BindingConfiguration, to the EeModuleDescription or ComponentDescription, depending if the bind is

specific to a component or not. An example of a deployment processor adding a binding:

public class ModuleNameBindingProcessor implements DeploymentUnitProcessor {

 // jndi name objects are immutable

 private static final JndiName JNDI_NAME_java_module_ModuleName = new

JndiName("java:module/ModuleName");

 @Override

 public void deploy(DeploymentPhaseContext phaseContext) throws

DeploymentUnitProcessingException {

 final DeploymentUnit deploymentUnit = phaseContext.getDeploymentUnit();

 // skip deployment unit if it's the top level EAR

 if (DeploymentTypeMarker.isType(DeploymentType.EAR, deploymentUnit)) {

 return;

 }

 // the module's description is in the DUs attachments

 final EEModuleDescription moduleDescription = deploymentUnit

 .getAttachment(org.jboss.as.ee.component.Attachments.EE_MODULE_DESCRIPTION);

 if (moduleDescription == null) {

 return;

 }

 // add the java:module/ModuleName binding

 // the value's injection source for an immediate available value

 final InjectionSource injectionSource = new

ImmediateInjectionSource(moduleDescription.getModuleName());

 // add the binding configuration to the module's description bindings configurations

 moduleDescription.getBindingConfigurations()

 .addDeploymentBinding(new BindingConfiguration(JNDI_NAME_java_module_ModuleName,

injectionSource));

 }

 //...

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1931 2293

When adding the binding configuration use:

addDeploymentBinding() for a binding that may not be overriden, such as the ones found in

xml descriptors

addPlatformBinding() for a binding which may be overriden by a deployment descriptor bind

or annotation, for instance java:comp/DefaultDatasource

A deployment processor may now also add a binding configuration to all components in a module:

moduleDescription.getBindingConfigurations().addPlatformBindingToAllComponents(bindingConfiguration);

In the reworked implementation there is now no need to behave differently considering the

deployment type, for instance if deployment is a WAR or app client, the Module/Component

BindingConfigurations objects handle all of that. The processor should simply go for the 3 use

cases: module binding, component binding or binding shared by all components.

All deployment binding configurations MUST be added before INSTALL phase, this is needed

because on such phase, when the bindings are actually done, there must be a final set of

deployment binding names known, such information is need to understand if a resource injection

targets entries in the global or scoped EE namespaces.

Most cases for adding bindings to EE deployments are in the context of a processor deploying a XML

descriptor, or scanning deployment classes for annotations, and there abstract types, such as the

AbstractDeploymentDescriptorBindingsProcessor, which simplifies greatly the processor code for such use

cases.

One particular use case is the parsing of EE Resource Definitions, and the reworked implementation

provides high level abstract deployment processors for both XML descriptor and annotations, an example for

each:

Latest WildFly Documentation

JBoss Community Documentation Page of 1932 2293

/**

 * Deployment processor responsible for processing administered-object deployment descriptor

elements

 *

 * @author Eduardo Martins

 */

public class AdministeredObjectDefinitionDescriptorProcessor extends

ResourceDefinitionDescriptorProcessor {

 @Override

 protected void processEnvironment(RemoteEnvironment environment,

ResourceDefinitionInjectionSources injectionSources) throws DeploymentUnitProcessingException {

 final AdministeredObjectsMetaData metaDatas = environment.getAdministeredObjects();

 if (metaDatas != null) {

 for(AdministeredObjectMetaData metaData : metaDatas) {

injectionSources.addResourceDefinitionInjectionSource(getResourceDefinitionInjectionSource(metaData));

}

 }

 }

 private ResourceDefinitionInjectionSource getResourceDefinitionInjectionSource(final

AdministeredObjectMetaData metaData) {

 final String name = metaData.getName();

 final String className = metaData.getClassName();

 final String resourceAdapter = metaData.getResourceAdapter();

 final AdministeredObjectDefinitionInjectionSource resourceDefinitionInjectionSource =

new AdministeredObjectDefinitionInjectionSource(name, className, resourceAdapter);

 resourceDefinitionInjectionSource.setInterface(metaData.getInterfaceName());

 if (metaData.getDescriptions() != null) {

resourceDefinitionInjectionSource.setDescription(metaData.getDescriptions().toString());

 }

 resourceDefinitionInjectionSource.addProperties(metaData.getProperties());

 return resourceDefinitionInjectionSource;

 }

}

and

Latest WildFly Documentation

JBoss Community Documentation Page of 1933 2293

/**

 * Deployment processor responsible for processing {@link

javax.resource.AdministeredObjectDefinition} and {@link

javax.resource.AdministeredObjectDefinitions}.

 *

 * @author Jesper Pedersen

 * @author Eduardo Martins

 */

public class AdministeredObjectDefinitionAnnotationProcessor extends

ResourceDefinitionAnnotationProcessor {

 private static final DotName ANNOTATION_NAME =

DotName.createSimple(AdministeredObjectDefinition.class.getName());

 private static final DotName COLLECTION_ANNOTATION_NAME =

DotName.createSimple(AdministeredObjectDefinitions.class.getName());

 @Override

 protected DotName getAnnotationDotName() {

 return ANNOTATION_NAME;

 }

 @Override

 protected DotName getAnnotationCollectionDotName() {

 return COLLECTION_ANNOTATION_NAME;

 }

 @Override

 protected ResourceDefinitionInjectionSource processAnnotation(AnnotationInstance

annotationInstance) throws DeploymentUnitProcessingException {

 final String name = AnnotationElement.asRequiredString(annotationInstance,

AnnotationElement.NAME);

 final String className = AnnotationElement.asRequiredString(annotationInstance,

"className");

 final String ra = AnnotationElement.asRequiredString(annotationInstance,

"resourceAdapter");

 final AdministeredObjectDefinitionInjectionSource

directAdministeredObjectInjectionSource =

 new AdministeredObjectDefinitionInjectionSource(name, className, ra);

directAdministeredObjectInjectionSource.setDescription(AnnotationElement.asOptionalString(annotationInstance,

AdministeredObjectDefinitionInjectionSource.DESCRIPTION));

directAdministeredObjectInjectionSource.setInterface(AnnotationElement.asOptionalString(annotationInstance,

AdministeredObjectDefinitionInjectionSource.INTERFACE));

directAdministeredObjectInjectionSource.addProperties(AnnotationElement.asOptionalStringArray(annotationInstance,

AdministeredObjectDefinitionInjectionSource.PROPERTIES));

 return directAdministeredObjectInjectionSource;

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 1934 2293

1.

2.

3.

The abstract processors with respect to Resource Definitions are already submitted through

WFLY-3292's PR.

11.13.4 Resource Ref Processing

 TODO for now no changes on this in the reworked WildFly Naming.

11.14 Working with WildFly Capabilities

An extension to WildFly will likely want to make use of services provided by the WildFly kernel, may want to

make use of services provided by other subsystems, and may wish to make functionality available to other

extensions. Each of these cases involves integration between different parts of the system. In releases prior

to WildFly 10, this kind of integration was done on an ad-hoc basis, resulting in overly tight coupling between

different parts of the system and overly weak integration contracts. For example, a service installed by

subsystem A might depend on a service installed by subsystem B, and to record that dependency A's

authors copy a ServiceName from B's code, or even refer to a constant or static method from B's code. The

result is B's code cannot evolve without risking breaking A. And the authors of B may not even intend for

other subsystems to use its services. There is no proper integration contract between the two subsystems.

Beginning with WildFly Core 2 and WildFly 10 the WildFly kernel's management layer provides a mechanism

for allowing different parts of the system to integrate with each other in a loosely coupled manner. This is

done via WildFly Capabilities. Use of capabilities provides the following benefits:

A standard way for system components to define integration contracts for their use by other system

components.

A standard way for system components to access integration contracts provided by other system

components.

A mechanism for configuration model referential integrity checking, such that if one component's

configuration has an attribute that refers to an other component (e.g. a attribute insocket-binding

a subsystem that opens a socket referring to that socket's configuration), the validity of that reference

can be checked when validating the configuration model.

11.14.1 Capabilities

A capability is a piece of functionality used in a WildFly Core based process that is exposed via the WildFly

Core management layer. Capabilities may depend on other capabilities, and this interaction between

capabilities is mediated by the WildFly Core management layer.

Latest WildFly Documentation

JBoss Community Documentation Page of 1935 2293

1.

2.

3.

4.

Some capabilities are automatically part of a WildFly Core based process, but in most cases the

configuration provided by the end user (i.e. in standalone.xml, domain.xml and host.xml) determines what

capabilities are present at runtime. It is the responsibility of the handlers for management operations to

register capabilities and to register any requirements those capabilities may have for the presence of other

capabilities. This registration is done during the MODEL stage of operation execution

A capability has the following basic characteristics:

It has a name.

It may install an MSC service that can be depended upon by services installed by other capabilities. If

it does, it provides a mechanism for discovering the name of that service.

It may expose some other API not based on service dependencies allowing other capabilities to

integrate with it at runtime.

It may depend on, or other capabilities.require

During boot of the process, and thereafter whenever a management operation makes a change to the

process' configuration, at the end of the MODEL stage of operation execution the kernel management layer

will validate that all capabilities required by other capabilities are present, and will fail any management

operation step that introduced an unresolvable requirement. This will be done before execution of the

management operation proceeds to the RUNTIME stage, where interaction with the process' MSC Service

Container is done. As a result, in the RUNTIME stage the handler for an operation can safely assume that

the runtime services provided by a capability for which it has registered a requirement are available.

Comparison to other concepts

Capabilities vs modules
A JBoss Modules module is the means of making resources available to the classloading system of a

WildFly Core based process. To make a capability available, you must package its resources in one or more

modules and make them available to the classloading system. But a module is not a capability in and of

itself, and simply copying a module to a WildFly installation does not mean a capability is available. Modules

can include resources completely unrelated to management capabilities.

Capabilities vs Extensions
An extension is the means by which the WildFly Core management layer is made aware of manageable

functionality that is not part of the WildFly Core kernel. The extension registers with the kernel new

management resource types and handlers for operations on those resources. One of the things a handler

can do is register or unregister a capability and its requirements. An extension may register a single

capability, multiple capabilities, or possibly none at all. Further, not all capabilities are registered by

extensions; the WildFly Core kernel itself may register a number of different capabilities.

Capability Names
Capability names are simple strings, with the dot character serving as a separator to allow namespacing.

The 'org.wildfly' namespace is reserved for projects associated with the WildFly organization on github (

).https://github.com/wildfly

https://github.com/wildfly

Latest WildFly Documentation

JBoss Community Documentation Page of 1936 2293

Statically vs Dynamically Named Capabilities
The full name of a capability is either statically known, or it may include a statically known base element and

then a dynamic element. The dynamic part of the name is determined at runtime based on the address of

the management resource that registers the capability. For example, the management resource at the

address '/socket-binding-group=standard-sockets/socket-binding=web' will register a dynamically named

capability named 'org.wildlfy.network.socket-binding.web'. The 'org.wildlfy.network.socket-binding' portion is

the static part of the name.

All dynamically named capabilities that have the same static portion of their name should provide a

consistent feature set and set of requirements.

Service provided by a capability
Typically a capability functions by registering a service with the WildFly process' MSC ServiceContainer, and

then dependent capabilities depend on that service. The WildFly Core management layer orchestrates

registration of those services and service dependencies by providing a means to discover service names.

Custom integration APIs provided by a capability
Instead of or in addition to providing MSC services, a capability may expose some other API to dependent

capabilities. This API must be encapsulated in a single class (although that class can use other non-JRE

classes as method parameters or return types).

Latest WildFly Documentation

JBoss Community Documentation Page of 1937 2293

Capability Requirements
A capability may rely on other capabilities in order to provide its functionality at runtime. The management

operation handlers that register capabilities are also required to register their requirements.

There are three basic types of requirements a capability may have:

Hard requirements. The required capability must always be present for the dependent capability to

function.

Optional requirements. Some aspect of the configuration of the dependent capability controls whether

the depended on capability is actually necessary. So the requirement cannot be known until the

running configuration is analyzed.

Runtime-only requirements. The dependent capability will check for the presence of the depended

upon capability at runtime, and if present it will utilize it, but if it is not present it will function properly

without the capability. There is nothing in the dependent capability's configuration that controls

whether the depended on capability must be present. Only capabilities that declare themselves as

being suitable for use as a runtime-only requirement should be depended upon in this manner.

Hard and optional requirements may be for either statically named or dynamically named capabilities.

Runtime-only requirements can only be for statically named capabilities, as such a requirement cannot be

specified via configuration, and without configuration the dynamic part of the required capability name is

unknown.

Supporting runtime-only requirements
Not all capabilities are usable as a runtime-only requirement.

Any dynamically named capability is not usable as a runtime-only requirement.

For a capability to support use as a runtime-only requirement, it must guarantee that a configuration change

to a running process that removes the capability will not impact currently running capabilities that have a

runtime-only requirement for it. This means:

A capability that supports runtime-only usage must ensure that it never removes its runtime service

except via a full process reload.

A capability that exposes a custom integration API generally is not usable as a runtime-only

requirement. If such a capability does support use as a runtime-only requirement, it must ensure that

any functionality provided via its integration API remains available as long as a full process reload has

not occurred.

Latest WildFly Documentation

JBoss Community Documentation Page of 1938 2293

11.14.2 Capability Contract

A capability provides a stable contract to users of the capability. The contract includes the following:

The name of the capability (including whether it is dynamically named).

Whether it installs an MSC Service, and if it does, the value type of the service. That value type then

becomes a stable API users of the capability can rely upon.

Whether it provides a custom integration API, and if it does, the type that represents that API. That

type then becomes a stable API users of the capability can rely upon.

Whether the capability supports use as a runtime-only requirement.

Developers can learn about available capabilities and the contracts they provide by reading the WildFly

.capabilty registry

11.14.3 Capability Registry

The WildFly organization on github maintains a git repo where information about available capabilities is

published.

https://github.com/wildfly/wildfly-capabilities

Developers can learn about available capabilities and the contracts they provide by reading the WildFly

capabilty registry.

The README.md file at the root of that repo explains the how to find out information about the registry.

Developers of new capabilities are to document and register their capability bystrongly encouraged

submitting a pull request to the wildfly-capabilities github repo. This both allows others to learn about your

capability and helps prevent capability name collisions. Capabilities that are used in the WildFly or WildFly

Core code base itself have a registry entry before the code referencing them will be merged.must

External organizations that create capabilities should include an organization-specific namespace as part

their capability names to avoid name collisions.

11.14.4 Using Capabilities

Now that all the background information is presented, here are some specifics about how to use WildFly

capabilities in your code.

https://github.com/wildfly/wildfly-capabilities

Latest WildFly Documentation

JBoss Community Documentation Page of 1939 2293

Basics of Using Your Own Capability

Creating your capability
A capability is an instance of the immutable

 class. A capability is usuallyorg.jboss.as.controller.capability.RuntimeCapability

registered by a resource, so the usual way to use one is to store it in constant in the resource's

. Use a to create one.ResourceDefinition RuntimeCapability.Builder

class MyResourceDefinition extends SimpleResourceDefinition {

 static final RuntimeCapability<Void> FOO_CAPABILITY =

RuntimeCapability.Builder.of("com.example.foo").build();

 . . .

}

That creates a statically named capability named .com.example.foo

If the capability is dynamically named, add the parameter to state this:dynamic

static final RuntimeCapability<Void> FOO_CAPABILITY =

 RuntimeCapability.Builder.of("com.example.foo", true).build();

Most capabilities install a service that requiring capabilities can depend on. If your capability does this, you

need to declare the service's (the type of the object returned by value type

). For example, if FOO_CAPABILITY provides a org.jboss.msc.Service.getValue()

:Service<javax.sql.DataSource>

static final RuntimeCapability<Void> FOO_CAPABILITY =

 RuntimeCapability.Builder.of("com.example.foo", DataSource.class).build();

For a dynamic capability:

static final RuntimeCapability<Void> FOO_CAPABILITY =

 RuntimeCapability.Builder.of("com.example.foo", true, DataSource.class).build();

If the capability provides a custom integration API, you need to instantiate an instance of that API:

Latest WildFly Documentation

JBoss Community Documentation Page of 1940 2293

public class JTSCapability {

 static final JTSCapability INSTANCE = new JTSCapability();

 private JTSCapability() {}

 /**

 * Gets the names of the {@link org.omg.PortableInterceptor.ORBInitializer} implementations

that should be included

 * as part of the {@link org.omg.CORBA.ORB#init(String[], java.util.Properties)

initialization of an ORB}.

 *

 * @return the names of the classes implementing {@code ORBInitializer}. Will not be {@code

null}.

 */

 public List<String> getORBInitializerClasses() {

 return Collections.unmodifiableList(Arrays.asList(

"com.arjuna.ats.jts.orbspecific.jacorb.interceptors.interposition.InterpositionORBInitializerImpl",

"com.arjuna.ats.jbossatx.jts.InboundTransactionCurrentInitializer"));

 }

}

and provide it to the builder:

static final RuntimeCapability<JTSCapability> FOO_CAPABILITY =

 RuntimeCapability.Builder.of("com.example.foo", JTSCapability.INSTANCE).build();

For a dynamic capability:

static final RuntimeCapability<JTSCapability> FOO_CAPABILITY =

RuntimeCapability.Builder.of("com.example.foo", true, JTSCapability.INSTANCE).build();

A capability can provide both a custom integration API and install a service:

static final RuntimeCapability<JTSCapability> FOO_CAPABILITY =

 RuntimeCapability.Builder.of("com.example.foo", JTSCapability.INSTANCE)

 .setServiceType(DataSource.class)

 .build();

Latest WildFly Documentation

JBoss Community Documentation Page of 1941 2293

Registering and unregistering your capability
Once you have your capability, you need to ensure it gets registered with the WildFly Core kernel when your

resource is added. This is easily done simply by providing a reference to the capability to the resource's

. This assumes your resource definition is a subclass of the standard ResourceDefinition

. providesorg.jboss.as.controller.SimpleResourceDefinition SimpleResourceDefinition

a class that provides a builder-style API for setting up all the data needed by your definition.Parameters

This includes a method that can be used to declare the capabilities provided bysetCapabilities

resources of this type.

class MyResourceDefinition extends SimpleResourceDefinition {

 . . .

 MyResourceDefinition() {

 super(new SimpleResourceDefinition.Parameters(PATH, RESOLVER)

 .setAddHandler(MyAddHandler.INSTANCE)

 .setRemoveHandler(MyRemoveHandler.INSTANCE)

 .setCapabilities(FOO_CAPABILITY)

);

 }

}

Your add handler needs to extend the standard

 class or one of its subclasses:org.jboss.as.controller.AbstractAddStepHandler

class MyAddHandler extends AbstractAddStepHandler() {

's logic will register the capability when it executes.AbstractAddStepHandler

Your remove handler must also extend of the standard

 or one of its subclasses.org.jboss.as.controller.AbstractRemoveStepHandler

class MyRemoveHandler extends AbstractRemoveStepHandler() {

's logic will deregister the capability when it executes.AbstractRemoveStepHandler

If for some reason you cannot base your on orResourceDefinition SimpleResourceDefinition

your handlers on and then you will need toAbstractAddStepHandler AbstractRemoveStepHandler

take responsibility for registering the capability yourself. This is not expected to be a common situation. See

the implementation of those classes to see how to do it.

Latest WildFly Documentation

JBoss Community Documentation Page of 1942 2293

Installing, accessing and removing the service provided by your capability
If your capability installs a service, you should use the when you need to determineRuntimeCapability

the service's name. For example in the handling of your "add" step handler. Here's anStage.RUNTIME

example for a statically named capability:

class MyAddHandler extends AbstractAddStepHandler() {

 . . .

 @Override

 protected void performRuntime(final OperationContext context, final ModelNode operation,

 final Resource resource) throws OperationFailedException {

 ServiceName serviceName = FOO_CAPABILITY.getCapabilityServiceName();

 Service<DataSource> service = createDataSourceService(context, resource);

 context.getServiceTarget().addService(serviceName, service).install();

 }

If the capability is dynamically named, get the dynamic part of the name from the andOperationContext

use that when getting the service name:

class MyAddHandler extends AbstractAddStepHandler() {

 . . .

 @Override

 protected void performRuntime(final OperationContext context, final ModelNode operation,

 final Resource resource) throws OperationFailedException {

 String myName = context.getCurrentAddressValue();

 ServiceName serviceName = FOO_CAPABILITY.getCapabilityServiceName(myName);

 Service<DataSource> service = createDataSourceService(context, resource);

 context.getServiceTarget().addService(serviceName, service).install();

 }

The same patterns should be used when accessing or removing the service in handlers for , remove

 and custom operations.write-attribute

If you use for the operation, simply provide your ServiceRemoveStepHandler remove

 to the constructor and it will automatically removeRuntimeCapability ServiceRemoveStepHandler

your capability's service when it executes.

Basics of Using Other Capabilities
When a capability needs another capability, it only refers to it by its string name. A capability should not

reference the object of another capability.RuntimeCapability

Latest WildFly Documentation

JBoss Community Documentation Page of 1943 2293

Before a capability can look up the service name for a required capability's service, or access its custom

integration API, it must first register a requirement for the capability. This must be done in Stage.MODEL,

while service name lookups and accessing the custom integration API is done in Stage.RUNTIME.

Registering a requirement for a capability is simple.

Registering a hard requirement for a static capability
If your capability has a hard requirement for a statically named capability, simply declare that to the builder

for your . For example, WildFly's JTS capability requires both a basic transactionRuntimeCapability

support capability and IIOP capabilities:

static final RuntimeCapability<JTSCapability> JTS_CAPABILITY =

 RuntimeCapability.Builder.of("org.wildfly.transactions.jts", new JTSCapability())

 .addRequirements("org.wildfly.transactions", "org.wildfly.iiop.orb",

"org.wildfly.iiop.corba-naming")

 .build();

When your capability is registered with the system, the WildFly Core kernel will automatically register any

static hard requirements declared this way.

Latest WildFly Documentation

JBoss Community Documentation Page of 1944 2293

Registering a requirement for a dynamically named capability
If the capability you require is dynamically named, usually your capability's resource will include an attribute

whose value is the dynamic part of the required capability's name. You should declare this fact in the

 for the attribute using the AttributeDefinition

 method.SimpleAttributeDefinitionBuilder.setCapabilityReference

For example, the WildFly "remoting" subsystem's "org.wildfly.remoting.connector" capability has a

requirement for a dynamically named socket-binding capability:

public class ConnectorResource extends SimpleResourceDefinition {

 . . .

 static final String SOCKET_CAPABILITY_NAME = "org.wildfly.network.socket-binding";

 static final RuntimeCapability<Void> CONNECTOR_CAPABILITY =

 RuntimeCapability.Builder.of("org.wildfly.remoting.connector", true)

 .build();

 . . .

 static final SimpleAttributeDefinition SOCKET_BINDING =

 new SimpleAttributeDefinitionBuilder(CommonAttributes.SOCKET_BINDING,

ModelType.STRING, false)

.addAccessConstraint(SensitiveTargetAccessConstraintDefinition.SOCKET_BINDING_REF)

 .setCapabilityReference(SOCKET_CAPABILITY_NAME, CONNECTOR_CAPABILITY)

 .build();

If the "add" operation handler for your resource extends and the handler for AbstractAddStepHandler

 extends , the declaration above is sufficient towrite-attribute AbstractWriteAttributeHandler

ensure that the appropriate capability requirement will be registered when the attribute is modified.

Latest WildFly Documentation

JBoss Community Documentation Page of 1945 2293

Depending upon a service provided by another capability
Once the requirement for the capability is registered, your can use the OperationStepHandler

 to discover the name of the service provided by the required capability.OperationContext

For example, the "add" handler for a remoting connector uses the to find the name ofOperationContext

the needed {{SocketBinding} service:

final String socketName = ConnectorResource.SOCKET_BINDING.resolveModelAttribute(context,

fullModel).asString();

 final ServiceName socketBindingName =

context.getCapabilityServiceName(ConnectorResource.SOCKET_CAPABILITY_NAME, socketName,

SocketBinding.class);

That service name is then used to add a dependency on the service to the remotingSocketBinding

connector service.

If the required capability isn't dynamically named, exposes an overloaded OperationContext

 variant. For example, if a capability requires a remoting Endpoint:getCapabilityServiceName

ServiceName endpointService = context.getCapabilityServiceName("org.wildfly.remoting.endpoint",

Endpoint.class);

Using a custom integration API provided by another capability
In your handler, use to get aStage.RUNTIME OperationContext.getCapabilityRuntimeAPI

reference to the required capability's custom integration API. Then use it as necessary.

List<String> orbInitializers = new ArrayList<String>();

 . . .

 JTSCapability jtsCapability =

context.getCapabilityRuntimeAPI(IIOPExtension.JTS_CAPABILITY, JTSCapability.class);

 orbInitializers.addAll(jtsCapability.getORBInitializerClasses());

Latest WildFly Documentation

JBoss Community Documentation Page of 1946 2293

Runtime-only requirements
If your capability has a runtime-only requirement for another capability, that means that if that capability is

present in you'll use it, and if not you won't. There is nothing about the configuration ofStage.RUNTIME

your capability that triggers the need for the other capability; you'll just use it if it's there.

In this case, use in your handler toOperationContext.hasOptionalCapability Stage.RUNTIME

check if the capability is present:

protected void performRuntime(final OperationContext context, final ModelNode operation, final

ModelNode model) throws OperationFailedException {

 ServiceName myServiceName = MyResource.FOO_CAPABILITY.getCapabilityServiceName();

 Service<DataSource> myService = createService(context, model);

 ServiceBuilder<DataSource> builder = context.getTarget().addService(myServiceName,

myService);

 // Inject a "Bar" into our "Foo" if bar capability is present

 if (context.hasOptionalCapability("com.example.bar",

MyResource.FOO_CAPABILITY.getName(), null) {

 ServiceName barServiceName = context.getCapabilityServiceName("com.example.bar",

Bar.class);

 builder.addDependency(barServiceName, Bar.class, myService.getBarInjector());

 }

 builder.install();

 }

The WildFly Core kernel will not register a requirement for the "com.example.bar" capability, so if a

configuration change occurs that means that capability will no longer be present, that change will not be

rolled back. Because of this, runtime-only requirements can only be used with capabilities that declare in

their contract that they support such use.

Using a capability in a DeploymentUnitProcessor
A is likely to have a need to interact with capabilities, in order to createDeploymentUnitProcessor

service dependencies from a deployment service to a capability provided service or to access some aspect

of a capability's custom integration API that relates to deployments.

If a associated with a capability implementation needs to utilize its ownDeploymentUnitProcessor

capability object, the authors should simply provide it with a reference to the DeploymentUnitProcessor

 instance. Service name lookups or access to the capabilities custom integration APIRuntimeCapability

can then be performed by invoking the methods on the .RuntimeCapability

If you need to access service names or a custom integration API associated with a different capability, you

will need to use the objectorg.jboss.as.controller.capability.CapabilityServiceSupport

associated with the deployment unit. This can be found as an attachment to the

:DeploymentPhaseContext

Latest WildFly Documentation

JBoss Community Documentation Page of 1947 2293

class MyDUP implements DeploymentUntiProcessor {

 public void deploy(DeploymentPhaseContext phaseContext) throws

DeploymentUnitProcessingException {

 AttachmentKey<CapabilityServiceSupport> key =

org.jboss.as.server.deployment.Attachments.DEPLOYMENT_COMPLETE_SERVICES;

 CapabilityServiceSupport capSvcSupport = phaseContext.getAttachment(key);

Once you have the you can use it to look up service names:CapabilityServiceSupport

ServiceName barSvcName = capSvcSupport.getCapabilityServiceName("com.example.bar");

 // Determine what 'baz' the user specified in the deployment descriptor

 String bazDynamicName = getSelectedBaz(phaseContext);

 ServiceName bazSvcName = capSvcSupport.getCapabilityServiceName("com.example.baz",

bazDynamicName);

It's important to note that when you request a service name associated with a capability, the

 will give you one regardless of whether the capability is actuallyCapabilityServiceSupport

registered with the kernel. If the capability isn't present, any service dependency your DUP creates

using that service name will eventually result in a service start failure, due to the missing

dependency. This behavior of not failing immediately when the capability service name is

requested is deliberate. It allows deployment operations that use the

 header to successfully install (but not start) all of therollback-on-runtime-failure=false

services related to a deployment. If a subsequent operation adds the missing capability, the

missing service dependency problem will then be resolved and the MSC service container will

automatically start the deployment services.

You can also use the to obtain a reference to the capability's customCapabilityServiceSupport

integration API:

// We need custom integration with the baz capability beyond service injection

 BazIntegrator bazIntegrator;

 try {

 bazIntegrator = capSvcSupport.getCapabilityRuntimeAPI("com.example.baz",

bazDynamicName, BazIntegrator.class);

 } catch (NoSuchCapabilityException e) {

 //

 String msg = String.format("Deployment %s requires use of the 'bar' capability but

it is not currently registered",

 phaseContext.getDeploymentUnit().getName());

 throw new DeploymentUnitProcessingException(msg);

 }

Latest WildFly Documentation

JBoss Community Documentation Page of 1948 2293

Note that here, unlike the case with service name lookups, the will throw aCapabilityServiceSupport

checked exception if the desired capability is not installed. This is because the kernel has no way to satisfy

the request for a custom integration API if the capability is not installed. The DeploymentUnitProcessor

will need to catch and handle the exception.

Detailed API
The WildFly Core kernel's API for using capabilities is covered in detail in the javadoc for the

 classes and the and RuntimeCapability and RuntimeCapability.Builder OperationContext

 interfaces.CapabilityServiceSupport

Many of the methods in related to capabilities have to do with registering capabilitiesOperationContext

or registering requirements for capabilities. Typically non-kernel developers won't need to worry about these,

as the abstract implementations provided by the kernel take care of this for you,OperationStepHandler

as described in the preceding sections. If you do find yourself in a situation where you need to use these in

an extension, please read the javadoc thoroughly.

https://github.com/wildfly/wildfly-core/blob/master/controller/src/main/java/org/jboss/as/controller/capability/RuntimeCapability.java
https://github.com/wildfly/wildfly-core/blob/master/controller/src/main/java/org/jboss/as/controller/OperationContext.java
https://github.com/wildfly/wildfly-core/blob/master/controller/src/main/java/org/jboss/as/controller/capability/CapabilityServiceSupport.java

Latest WildFly Documentation

JBoss Community Documentation Page of 1949 2293

12 Common

12.1 All WildFly documentation

There are several guides in the WildFly documentation series. This list gives an overview of each of the

guides:

* - Explains how to download and start WildFly.Getting Started Guide

* - Talks you through developing your first applications onGetting Started Developing Applications Guide

WildFly, and introduces you to JBoss Tools and how to deploy your applications.

* - A Java EE 6 Tutorial.JavaEE 6 Tutorial

* - Tells you how to configure and manage your WildFly instances.Admin Guide

* - Contains concepts that you need to be aware of when developing applications forDeveloper Guide

WildFly. Classloading is explained in depth.

* - Reference guide for how to set up clustered WildFly instances.High Availability Guide

* - A guide to adding new functionality to WildFly.Extending WildFly

Latest WildFly Documentation

JBoss Community Documentation Page of 1950 2293

13 Testsuite

13.1 JBoss AS 7 Testsuite

Where to go next?

 if you changed JBoss AS 7 code and want to check forWildFly Integration Testsuite User Guide

regressions.

 to learn how the testsuite works (shell scripts, Ant scripts,AS 7 Testsuite Harness Developer Guide

pom.xml files)

 if you want to add a new test case to the testsuite (to increaseAS 7 Testsuite Test Developer Guide

code coverage or to reproduce a bug)

13.2 WildFly Testsuite Overview

This document will detail the implementation of the testsuite Integration submodule as it guides you on

adding your own test cases.

The WildFly integration test suite has been designed with the following goals:

support execution of all identified test case use cases

employ a design/organization which is scalable and maintainable

provide support for the automated measurement of test suite quality (generation of feature coverage

reports, code coverage reports)

In addition, these requirements were considered:

identifying distinct test case runs of the same test case with a different set of client side parameters

and server side parameters

separately maintaining server side execution results (e.g. logs, the original server configuration) for

post-execution debugging

running the testsuite in conjunction with a debugger

the execution of a single test (for debugging purposes)

running test cases against different container modes (managed in the main, but also remote and

embedded)

configuring client and server JVMs separately (e.g., IPv6 testing)

https://docs.jboss.org/author/display/AS71/AS+7+Testsuite+Harness+Developer+Guide
https://docs.jboss.org/author/display/AS71/AS+7+Testsuite+Test+Developer+Guide

Latest WildFly Documentation

JBoss Community Documentation Page of 1951 2293

13.2.1 Test Suite Organization

The testsuite module has a small number of submodules:

 - holds all benchmark tests intended to assess relative performance of specific featurebenchmark

 - holds all domain management testsdomain

 - holds all integration testsintegration

 - holds all stress testsstress

It is expected that test contributions fit into one of these categories.

The pom.xml file located in the testsuite module is inherited by all submodules and is used to do the

following:

set defaults for common testsuite system properties (which can then be overridden on the command

line)

define dependencies common to all tests (Arquillian, junit or testng, and container type)

provide a workaround for @Resource(lookup=...) which requires libraries in jbossas/endorsed

It should not:

define module-specific server configuration build steps

define module-specific surefire executions

These elements should be defined in logical profiles associated with each logical grouping of tests; e.g., in

the pom for the module which contains the tests. The submodule poms contain additional details of their

function and purpose as well as expanded information as shown in this document.

Latest WildFly Documentation

JBoss Community Documentation Page of 1952 2293

13.2.2 Profiles

You should not activate the abovementioned profiles by -P, because that disables other profiles which are

activated by default.

Instead, you should always use activating properties, which are in parenthesis in the lists below.

 are used to group tests into logical groups.Testsuite profiles

all-modules.module.profile (all-modules)

integration.module.profile (integration.module)

compat.module.profile (compat.module)

domain.module.profile (domain.module)

benchmark.module.profile (benchmark.module)

stress.module.profile (stress.module)

They also pprepare WildFly instances and resources for respective testsuite submodules.

jpda.profile - sets surefire.jpda.args (debug)

ds.profile -sets database properties and prepares the datasource (ds=<db id>)

Has related database-specific profiles, like mysql51.profile etc.

 configure surefire executions.Integration testsuite profiles

smoke.integration.tests.profile

basic.integration.tests.profile

clustering.integration.tests.profile

Latest WildFly Documentation

JBoss Community Documentation Page of 1953 2293

13.2.3 Integration tests

Smoke -Dts.smoke, -Dts.noSmoke
Contains smoke tests.

Runs by default; use -Dts.noSmoke to prevent running.

Tests should execute quickly.

Divided into two Surefire executions:

One with full profile

Second with web profile (majority of tests).

Basic -Dts.basic
Basic integration tests - those which do not need special configuration like cluster.

Divided into three Surefire executions:

One with full profile,

Second with web profile (majority of tests).

Third with web profile, but needs to be run after server restart to check whether persistent data are

really persisted.

Cluster -Dts.clust
Sets up a cluster of two nodes.

IIOP -Dts.iiop

XTS -Dts.XTS

Multinode -Dts.multinode

13.3 WildFly Integration Testsuite User Guide

 See also: WildFly Testsuite Test Developer Guide

 Those interested in running the testsuite or a subset thereof, with various configurationTarget Audience:

options.

Latest WildFly Documentation

JBoss Community Documentation Page of 1954 2293

13.3.1 Running the testsuite

The tests can be run using:

 or , as a part of WildFly build.build.sh build.bat

By default, only smoke tests are run. To run all tests, run build.sh install -DallTests.

 or , a convenience script which uses bundledintegration-tests.sh integration-tests.bat

Maven (currently 3.0.3), and runs all parent testsuite modules (which configure the AS server).

pure maven run, using .mvn install

The scripts are wrappers around Maven-based build. Their arguments are passed to Maven (with few

exceptions described below). This means you can use:

build.sh (defaults to install)

build.sh install

build.sh clean install

integration-tests.sh install

...etc.

Supported Maven phases
Testsuite actions are bounds to various Maven phases up to . Running the build with earlier phasesverify

may fail in the submodules due to missed configuration steps. Therefore, the only Maven phases you may

safely run, are:

clean

install

site

The phase is not recommended to be used for scripted jobs as we are planning to switch to the test

 plugin bound to the and phases. See and .failsafe integration-test verify WFLY-625 WFLY-228

https://issues.jboss.org/browse/WFLY-625
https://issues.jboss.org/browse/WFLY-228

Latest WildFly Documentation

JBoss Community Documentation Page of 1955 2293

Testsuite structure
testsuite

 integration

 smoke

 basic

 clust

 iiop

 multinode

 xts

 compat

 domain

 mixed-domain

 stress

 benchmark

Test groups
To define groups of tests to be run, these properties are available:

 - Runs all subgroups.-DallTests

 - Runs all integration tests. Same as -DallInteg cd testsuite/integration; mvn

clean install -DallTests

 - Basic integration + clustering tests.-Dts.integ

 - Clustering tests.-Dts.clust

 - IIOP tests.-Dts.iiop

- Tests with many nodes.-Dts.multinode

 - Tests with manual mode Arquillian containers.-Dts.manualmode

 - Benchmark tests.-Dts.bench

 - Stress tests.-Dts.stress

 - Domain mode tests.-Dts.domain

 - Compatibility tests.-Dts.compat

Latest WildFly Documentation

JBoss Community Documentation Page of 1956 2293

13.3.2 Examples

 integration-tests.sh [install] -- Runs smoke tests.

integration-tests.sh clean install -- Cleans the

target directory, then runs smoke tests.

 integration-tests.sh install -Dts.smoke -- Same as above.

 integration-tests.sh install -DallTests -- Runs all

testsuite tests.

integration-tests.sh install -Dts.stress -- Runs smoke tests

and stress tests.

integration-tests.sh install -Dts.stress -Dts.noSmoke -- Runs stress

tests only.

 - if you prefer not to use scripts, you may achieve the same result with:Pure maven

mvn ... -rf testsuite

The parameter stands for "resume from" and causes Maven to run the specified module -rf ... and all

.successive

It's possible to run only a single module (provided the ancestor modules were already run to create the AS

copies) :

mvn ... -pl testsuite/integration/cluster

The parameter stands for "project list" and causes Maven to run the specified module .-pl ... only

Output to console

-DtestLogToFile

Other options
 - Run all tests with the profile (). By default, most tests are-DnoWebProfile full standalone-full.xml

run under profile ().web standalone.xml

 - Skip testsuite's tests. Defaults to the value of , which defaults to .-Dts.skipTests -DskipTests false

To build AS, skip unit tests and run testsuite, use .-DskipTests -Dts.skipTests=false

Latest WildFly Documentation

JBoss Community Documentation Page of 1957 2293

Timeouts

Surefire execution timeout
Unfortunatelly, no math can be done in Maven, so instead of applying a timeout ratio, you need to specify

timeout manually for Surefire.

-Dsurefire.forked.process.timeout=900

test timeout ratios
Ratio in prercent - 100 = default, 200 = two times longer timeouts for given category.

Currently we have five different ratios. Later, it could be replaced with just one generic, one for database and

one for deployment operations.

-Dtimeout.ratio.fsio=100

-Dtimeout.ratio.netio=100

-Dtimeout.ratio.memio=100

-Dtimeout.ratio.proc=100

-Dtimeout.ratio.db=100

Latest WildFly Documentation

JBoss Community Documentation Page of 1958 2293

Running a single test (or specified tests)
Single test is run using . Examples:-Dtest=...

 ./integration-tests.sh install -Dtest='*Clustered*' -Dintegration.module

-Dts.clust

./integration-tests.sh clean install -Dtest=org/jboss/as/test/integration/

 ejb/async/*TestCase.java -Dintegration.module -Dts.basic

 cd testsuite; mvn install -Dtest='*Clustered*' -Dts.basic # No need for

-Dintegration.module - integration module is active by default.

The same shortcuts listed in "Test groups" may be used to activate the module and group profile.

Note that overrides and defined in pom.xml, so do not rely on them-Dtest= <includes> <exludes>

when using wildcards - all compiled test classes matching the wildcard will be run.

Which Surefire execution is used?

Due to Surefire's design flaw, tests run multiple times if there are multiple surefire executions.

To prevent this, if ... is specified, non-default executions are disabled, and standalone-full is used-Dtest=

for all tests.

If you need it other way, you can overcome that need:

basic-integration-web.surefire with standalone.xml - Configure

standalone.xml to be used as server config.

basic-integration-non-web.surefire - For tests included

here, technically nothing changes.

basic-integration-2nd.surefire - Simply run the second

test in another invocation of Maven.

Running against existing AS copy (not the one from

build/target/jboss-as-*)
 will tell the testsuite to copy that AS into submodules to run the tests-Djboss.dist=<path/to/jboss-as>

against.

For example, you might want to run the testsuite against AS located in :/opt/wildfly-8

./integration-tests.sh -DallTests -Djboss.dist=/opt/wildfly-8

The difference between jboss.dist and jboss.home:

jboss.dist is the location of the tested binaries. It gets copied to testsuite submodules.

jboss.home is internally used and points to those copied AS instances (for multinode tests, may be even

different for each AS started by Arquillian).

Latest WildFly Documentation

JBoss Community Documentation Page of 1959 2293

Running against a running JBoss AS instance
Arquillian's WildFly 8 container adapter allows specifying in allowConnectingToRunningServer

, which makes it check whether AS is listening at arquillian.xml

, and if so, it uses that server instead of launching a new one,managementAddress:managementPort

and doesn't shut it down at the end.

All arquillian.xml's in the testsuite specify this parameter. Thus, if you have a server already running, it will be

re-used.

Running against JBoss Enterprise Application Platform (EAP) 6.0
To run the testsuite against AS included JBoss Enterprise Application Platform 6.x (EAP), special steps are

needed.

Assuming you already have the sources available, and the distributed EAP maven repository unzipped in

e.g. :/opt/jboss/eap6-maven-repo/

1) Configure maven in settings.xml to use only the EAP repository. This repo contains all artifacts necessary

for building EAP, including maven plugins.

The build (unlike running testsuite) may be done offline.

The recommended way of configuring is to use special settings.xml, not your local one (typically in

.m2/settings.xml).

 <mirror>

 <id>eap6-mirror-setting</id>

 <mirrorOf>

 *,!central-eap6,!central-eap6-plugins,!jboss-public-eap6,!jboss-public-eap6-plugins

 </mirrorOf>

 <name>Mirror Settings for EAP 6 build</name>

 <url>file:///opt/jboss/eap6-maven-repo</url>

 </mirror>

 </mirrors>

2) Build EAP. You won't use the resulting EAP build, though. The purpose is to get the artifacts which the

testsuite depends on.

mvn clean install -s settings.xml -Dmaven.repo.local=local-repo-eap

3) Run the testsuite. Assuming that EAP is located in , you would run:/opt/eap6

./integration-tests.sh -DallTests -Djboss.dist=/opt/eap6

For further information on building EAP and running the testsuite against it, see the official EAP

documentation (link to be added).

How-to for EAP QA can be found (Red Hat internal only).here

https://docspace.corp.redhat.com/docs/DOC-86875
https://docspace.corp.redhat.com/docs/DOC-89200

Latest WildFly Documentation

JBoss Community Documentation Page of 1960 2293

Running with a debugger

Argument What will start with debugger Default port Port change arg.

-Ddebug AS instances run by Arquillian 8787 -Das.debug.port=...

-Djpda alias for -Ddebug

-DdebugClient Test JVMs (currently Surefire) 5050 -Ddebug.port.surefire=...

-DdebugCLI AS CLI 5051 -Ddebug.port.cli=...

Examples

./integration-tests.sh install -DdebugClient -Ddebug.port.surefire=4040

...

 T E S T S

Listening for transport dt_socket at address: 4040

./integration-tests.sh install -DdebugClient -Ddebug.port.surefire

...

 T E S T S

Listening for transport dt_socket at address: 5050

./integration-tests.sh install -Ddebug

./integration-tests.sh install -Ddebug -Das.debug.port=5005

JBoss AS is started by Arquillian, when the first test which requires given instance is run. Unless

you pass ; it will-DtestLogToFile=false, there's (currently) no challenge text in the console

look like the first test is stuck. This is being solved in

.http://jira.codehaus.org/browse/SUREFIRE-781

Depending on which test group(s) you run, multiple AS instances may be started. In that case, you

need to attach the debugger multiple times.

http://jira.codehaus.org/browse/SUREFIRE-781

Latest WildFly Documentation

JBoss Community Documentation Page of 1961 2293

Running tests with custom database
To run with different database, specify the and use these properties (with the following defaults):-Dds

-Dds.jdbc.driver=

-Dds.jdbc.driver.version=

-Dds.jdbc.url=

-Dds.jdbc.user=test

-Dds.jdbc.pass=test

-Dds.jdbc.driver.jar=${ds.db}-jdbc-driver.jar

 is JDBC driver class. JDBC , and is as expected.driver url user pass

 is used for automated JDBC driver downloading. Users can set up internal Mavendriver.version

repository hosting JDBC drivers, with artifacts with

GAV = }jdbcdrivers:${ds.db}:${ds.jdbc.driver.version

Internally, JBoss has such repo at

 .http://nexus.qa.jboss.com:8081/nexus/content/repositories/thirdparty/jdbcdrivers/

The value is set depending on ds. E.g. sets (since they have theds.db -Dds=mssql2005 ds.db=mssql

same driver). may be overriden to use different driver.-Dds.db

In case you don't want to use such driver, set just -Dds.db= (empty) and provide the driver to the AS

manually.

Not supported; work in progress on parameter to provide JDBC Driver jar.

Default values
For WildFly continuous integration, there are some predefined values for some of databases, which can be

set using:

-Dds.db=<database-identifier>

Where database-identifier is one of: , h2 mysql51

http://nexus.qa.jboss.com:8081/nexus/content/repositories/thirdparty/jdbcdrivers/

Latest WildFly Documentation

JBoss Community Documentation Page of 1962 2293

Running tests with IPv6
 - Runs AS with -Dipv6 -Djava.net.preferIPv4Stack=false

-Djava.net.preferIPv6Addresses=true

and the following defaults, overridable by respective parameter:

Parameter IPv4

default

IPv6

default

-Dnode0 127.0.0.1 ::1 Single-node tests.

-Dnode1 127.0.0.1 ::1 Two-node tests (e.g. cluster) use this for the 2nd

node.

-Dmcast 230.0.0.4 ff01::1 ff01::1 is IPv6 Node-Local scope mcast addr.

-Dmcast.jgroupsDiag 224.0.75.75 ff01::2 JGroups diagnostics multicast address.

-Dmcast.modcluster 224.0.1.105 ff01::3 mod_cluster multicast address.

Values are set in AS configuration XML, replaced in resources (like ejb-jar.xml) and used in tests.

Running tests with security manager / custom security policy
 - Run with default policy.-Dsecurity.manager

 - Run with the given policy.-Dsecurity.policy=<path>

 - Run with the given properties. Whole-Dsecurity.manager.other=<set of Java properties>

set is included in all server startup parameters.

Example:

./integration-tests.sh clean install -Dintegration.module -DallTests \

\"-Dsecurity.manager.other=-Djava.security.manager \

-Djava.security.policy==$(pwd)/testsuite/shared/src/main/resources/secman/permitt_all.policy \

-Djava.security.debug=access:failure \"

Notice the \" quotes delimiting the whole property.-Dsecurity.manager.other

Latest WildFly Documentation

JBoss Community Documentation Page of 1963 2293

Creating test reports
Test reports are created in the form known from EAP 5. To create them, simply run the testsuite, which will

create Surefire XML files.

Creation of the reports is bound to the Maven phase, so it must be run separatedly afterwards. Usesite

one of these:

./integration-tests.sh site

cd testsuite; mvn site

mvn -pl testsuite site

Note that it will take all test results under - the pattern is testsuite/integration/ **/*TestCase.xml

, without need to specify .-DallTests

Creating coverage reports
 Jira: https://issues.jboss.org/browse/WFLY-585

Coverage reports are created by .JaCoCo

During the integration tests, Arquillian is passed a JVM argument which makes it run with JaCoCo agent,

which records the executions into .${basedir}/target/jacoco

In the phase, a HTML, XML and CSV reports are generated. That is done using Antsite jacoco:report

task in since JaCoCo's maven report goal doesn't support getting classes outsidemaven-ant-plugin

target/classes.

Usage

./build.sh clean install -DskipTests

./integration-tests.sh clean install -DallTests -Dcoverage

./integration-tests.sh site -DallTests -Dcoverage ## Must run in separatedly.

Alternative:

mvn clean install -DskipTests

mvn -rf testsuite clean install -DallTests -Dcoverage

mvn -rf testsuite site -DallTests -Dcoverage

https://issues.jboss.org/browse/WFLY-585
http://www.eclemma.org/jacoco/trunk/index.html

Latest WildFly Documentation

JBoss Community Documentation Page of 1964 2293

Cleaning the project
To have most stable build process, it should start with:

clean target directories

only central Maven repo configured

clean local repository or at least:

free of artefacts to be built

free of dependencies to be used (especially snapshots)

To use , you may use these commands:

mvn clean install -DskipTests -DallTests ## ...to clean all testsuite modules.

mvn dependency:purge-local-repository build-helper:remove-project-artifact

-Dbuildhelper.removeAll

In case the build happens in a shared environment (e.g. network disk), it's recommended to use local

repository:

cp /home/hudson/.m2/settings.xml .

sed

"s|<settings>|<settings><localRepository>/home/ozizka/hudson-repos/$JOBNAME</localRepository>|"

-i settings.xml

Or:

mvn clean install ... -Dmaven.repo.local=localrepo

See also .https://issues.jboss.org/browse/WFLY-628

https://issues.jboss.org/browse/WFLY-628

Latest WildFly Documentation

JBoss Community Documentation Page of 1965 2293

13.3.3 Troubleshooting Common Issues

Timeouts
May happen especially on slower computers. Try setting a different timeout (in seconds) :

-Dsurefire.forked.process.timeout=9999

"Server already running"
Known issue: Arquillian should wait until a port is free after AS JVM process ends to preventJBPAPP-8368

"port in use".

 This has been fixed in 7.1.2, see pull request Currently, the only solution is to re-run.

 .https://github.com/jbossas/jboss-as/pull/1999

Database failures

Build gets stuck at first test of a module
If you use NFS (Network file system), it might be a file locking issue.

Try running using a local disk.

13.4 WildFly Testsuite Harness Developer Guide

 Whoever wants to change the testsuite harnessAudience:

: JIRA WFLY-576

13.4.1 Testsuite requirements

 will probably be merged here later.http://community.jboss.org/wiki/ASTestsuiteRequirements

13.4.2 Adding a new maven plugin

The plugin version needs to be specified in jboss-parent. See

 .https://github.com/jboss/jboss-parent-pom/blob/master/pom.xml#L65

13.4.3 Shortened Maven run overview

See .Shortened Maven Run Overview

https://issues.jboss.org/browse/JBPAPP-8368
https://github.com/jbossas/jboss-as/pull/1999
https://issues.jboss.org/browse/WFLY-576
http://community.jboss.org/wiki/ASTestsuiteRequirements
https://github.com/jboss/jboss-parent-pom/blob/master/pom.xml#L65
https://docs.jboss.org/author/display/AS71/Shortened+Maven+Run+Overview

Latest WildFly Documentation

JBoss Community Documentation Page of 1966 2293

13.4.4 How the AS instance is built

See How the JBoss AS instance is built and configured for testsuite modules.

https://docs.jboss.org/author/display/AS71/How+the+JBoss+AS+instance+is+built+and+configured+for+testsuite+modules.

Latest WildFly Documentation

JBoss Community Documentation Page of 1967 2293

13.4.5 Properties and their propagation

Propagated to tests through arquillian.xml:

 <property name="javaVmArguments">${server.jvm.args}</property>

TBD: https://issues.jboss.org/browse/ARQ-647

JBoss AS instance dir
integration/pom.xml

(currently nothing)

*-arquillian.xml

<container qualifier="jboss" default="true">

 <configuration>

 <property name="jbossHome">${basedir}/target/jbossas</property>

Server JVM arguments

<surefire.memory.args>-Xmx512m -XX:MaxPermSize=256m</surefire.memory.args>

 <surefire.jpda.args></surefire.jpda.args>

 <surefire.system.args>${surefire.memory.args} ${surefire.jpda.args}</surefire.system.args>

IP settings

 - used in which${ip.server.stack} <systemPropertyVariables> / <server.jvm.args>

is used in .*-arquillian.xml

Testsuite directories

}${jbossas.ts.integ.dir

}${jbossas.ts.dir

}${jbossas.project.dir

Clustering properties

node0

node1

https://issues.jboss.org/browse/ARQ-647

Latest WildFly Documentation

JBoss Community Documentation Page of 1968 2293

13.4.6 Debug parameters propagation

<surefire.jpda.args></surefire.jpda.args> - default

<surefire.jpda.args>-Xrunjdwp:transport=dt_socket,address=${as.debug.port},server=y,suspend=y</surefire.jpda.args>

- activated by -Ddebug or -Djpda

testsuite/pom.xml: <surefire.system.args>... ${surefire.jpda.args}

...</surefire.system.args>

testsuite/pom.xml: <jboss.options>${surefire.system.args}</jboss.options>

testsuite/integration/pom.xml: <server.jvm.args>${surefire.system.args}

${jvm.args.ip.server} ${jvm.args.security} ${jvm.args.timeouts} -Dnode0=${node0} -Dnode1=

integration/pom.xml:

<server.jvm.args>${surefire.system.args} ${jvm.args.ip.server} ${jvm.args.security}

${jvm.args.timeouts} -Dnode0=${node0} -Dnode1=${node1} -DudpGroup=${udpGroup}

${jvm.args.dirs}</server.jvm.args>

arquillian.xml:

<property name="javaVmArguments">${server.jvm.args}

-Djboss.inst=${basedir}/target/jbossas</property>

13.4.7 How the JBoss AS instance is built and configured for

testsuite modules.

Refer to to see the mentioned build steps.Shortened Maven Run Overview

1) AS instance is copied from } to .${jboss.dist testsuite/target/jbossas

 Defaults to AS which is built by the project ().build/target/jboss-as-*

2)

testsuite/pom.xml:

from ${jboss.home} to ${basedir}/target/jbossas

phase generate-test-resources: resource-plugin, goal copy-resources

testsuite/integration/pom.xml:

phase process-test-resources: antrun-plugin:

https://docs.jboss.org/author/display/AS71/Shortened+Maven+Run+Overview

Latest WildFly Documentation

JBoss Community Documentation Page of 1969 2293

<ant antfile="$\{basedir}/src/test/scripts/basic-integration-build.xml">

 <target name="build-basic-integration"/>

 <target name="build-basic-integration-jts"/>

</ant>

Which invokes

<target name="build-basic-integration" description="Builds server configuration for

basic-integration tests">

 <build-server-config name="jbossas"/>

Which invokes

<!-- Copy the base distribution. -->

<!-- We exclude modules and bundles as they are read-only and we locate the via sys props. -->

<copy todir="@{output.dir}/@{name}">

 <fileset dir="@{jboss.dist}">

 <exclude name="**/modules/**"/>

 <exclude name="**/bundles/**"/>

 </fileset>

</copy>

<!-- overwrite with configs from test-configs and apply property filtering -->

<copy todir="@{output.dir}/@{name}" overwrite="true" failonerror="false">

 <fileset dir="@{test.configs.dir}/@{name}"/>

 <filterset begintoken="${" endtoken="}">

 <filter token="node0" value="${node0}"/>

 <filter token="node1" value="${node1}"/>

 <filter token="udpGroup" value="${udpGroup}"/>

 <filter-elements/>

 </filterset>

</copy>

Arquillian config file location

-Darquillian.xml=some-file-or-classpath-resource.xml

13.4.8 Plugin executions matrix

x - runs in this module

xx - runs in this and all successive modules

x! - runs but should not.

initialize

 TS integ smoke basic clust iiop comp domain bench

Latest WildFly Documentation

JBoss Community Documentation Page of 1970 2293

maven-help-plugin xx x x x x x x x x

properties-maven-plugin:write-project-properties x

maven-antrun-plugin:1.6:run (banner)

process-resources

maven-resources-plugin:2.5:resources

(default-resources)

xx

maven-dependency-plugin:2.3:copy

(copy-annotations-endorsed)

xx!

compile

maven-compiler-plugin:2.3.2:compile

(default-compile)

xx

generate-test-resources

maven-resources-plugin:2.5:copy-resources

(build-jbossas.server)

xx!

Should be: x

maven-resources-plugin:2.5:copy-resources

(ts.copy-jbossas)

 x

maven-resources-plugin:2.5:copy-resources

(ts.copy-jbossas.groups)

 x x x ? ? ? !

Should be: xx x x x x x x x

process-test-resources

maven-resources-plugin:2.5:testResources

(default-testResources)

xx

maven-antrun-plugin:1.6:run

(build-smoke.server)

 x

maven-antrun-plugin:1.6:run

(prepare-jars-basic-integration.server)

 x

maven-antrun-plugin:1.6:run

(build-clustering.server)

 x x!?

test-compile

maven-compiler-plugin:2.3.2:testCompile

(default-testCompile)

xx

xml-maven-plugin:1.0:transform

(update-ip-addresses-jbossas.server)

x

Latest WildFly Documentation

JBoss Community Documentation Page of 1971 2293

maven-antrun-plugin:1.6:run (build-jars) x

test

maven-surefire-plugin:2.10:test

(smoke-full.surefire)

maven-surefire-plugin:2.10:test

(smoke-web.surefire)

maven-surefire-plugin:2.10:test (default-test) x x x x

maven-surefire-plugin:2.10:test

(basic-integration-default-full.surefire)

 x

maven-surefire-plugin:2.10:test

(basic-integration-default-web.surefire)

 x

maven-surefire-plugin:2.10:test

(basic-integration-2nd.surefire)

 x

maven-surefire-plugin:2.10:test

(tests-clust-multi-node-unm...surefire)

 x

maven-surefire-plugin:2.10:test

(tests-clustering-single-node.surefire)

 x

maven-surefire-plugin:2.10:test

(tests-clustering-multi-node.surefire)

 x

maven-surefire-plugin:2.10:test

(tests-iiop-multi-node.surefire)

 x

package

maven-jar-plugin:2.3.1:jar (default-jar) xx!

maven-source-plugin:2.1.2:jar-no-fork

(attach-sources)

x

install

maven-install-plugin:2.3.1:install (default-install) xx!

 TS integ smoke basic clust iiop comp domain bench

Latest WildFly Documentation

JBoss Community Documentation Page of 1972 2293

13.4.9 Shortened Maven Run Overview

How to get it

./integration-tests.sh clean install -DallTests | tee TS.txt | testsuite/tools/runSummary.sh

How it's done
Run this script on the output of the AS7 testsuite run:

Cat the file or stdin if no args,

filter only interesting lines - plugin executions and modules separators,

plus Test runs summaries,

and remove the boring plugins like enforcer etc.

cat $1 \

 | egrep ' --- |Building| ---------|Tests run: | T E S T S' \

 | grep -v 'Time elapsed'

 | sed 's|Tests run:| Tests run:|' \

 | grep -v maven-clean-plugin \

 | grep -v maven-enforcer-plugin \

 | grep -v buildnumber-maven-plugin \

 | grep -v maven-help-plugin \

 | grep -v properties-maven-plugin:.*:write-project-properties \

;

You'll get an overview of the run.

Example output with comments.

ondra@ondra-redhat: ~/work/AS7/ozizka-as7 $./integration-tests.sh clean install -DallTests |

tee TS.txt | testsuite/tools/runSummary.sh

[INFO] --

[INFO] --

[INFO] Building JBoss Application Server Test Suite: Aggregator 7.1.0.CR1-SNAPSHOT

[INFO] --

[INFO] --- maven-dependency-plugin:2.3:copy (copy-annotations-endorsed) @ jboss-as-testsuite ---

 Copies org.jboss.spec.javax.annotation:jboss-annotations-api_1.1_spec to

${project.build.directory}/endorsed .

 Inherited - needed for compilation of all submodules.

[INFO] --- maven-resources-plugin:2.5:copy-resources (build-jbossas.server) @ jboss-as-testsuite

 Copies ${jboss.home} to target/jbossas . TODO: Should be jboss.dist.

[INFO] --- xml-maven-plugin:1.0:transform (update-ip-addresses-jbossas.server) @

jboss-as-testsuite ---

 Changes IP addresses used in server config files -

Latest WildFly Documentation

JBoss Community Documentation Page of 1973 2293

 applies ${xslt.scripts.dir}/changeIPAddresses.xsl on

${basedir}/target/jbossas/standalone/configuration/standalone-*.xml

 Currently inherited, IMO should not be.

[INFO] --- maven-source-plugin:2.1.2:jar-no-fork (attach-sources) @ jboss-as-testsuite ---

 TODO: Remove

[INFO] --- maven-install-plugin:2.3.1:install (default-install) @ jboss-as-testsuite ---

[INFO] --

[INFO] Building JBoss Application Server Test Suite: Integration Aggregator 7.1.0.CR1-SNAPSHOT

[INFO] --

[INFO] --- maven-dependency-plugin:2.3:copy (copy-annotations-endorsed) @

jboss-as-testsuite-integration-agg ---

[INFO] --- maven-resources-plugin:2.5:copy-resources (build-jbossas.server) @

jboss-as-testsuite-integration-agg ---

 TODO: Remove

[INFO] --- maven-resources-plugin:2.5:copy-resources (ts.copy-jbossas) @

jboss-as-testsuite-integration-agg ---

[INFO] --- maven-resources-plugin:2.5:copy-resources (ts.copy-jbossas.groups) @

jboss-as-testsuite-integration-agg ---

[INFO] --- xml-maven-plugin:1.0:transform (update-ip-addresses-jbossas.server) @

jboss-as-testsuite-integration-agg ---

 TODO: Remove

[INFO] --- maven-source-plugin:2.1.2:jar-no-fork (attach-sources) @

jboss-as-testsuite-integration-agg ---

 TODO: Remove

[INFO] --- maven-install-plugin:2.3.1:install (default-install) @

jboss-as-testsuite-integration-agg ---

[INFO] --

[INFO] Building JBoss AS Test Suite: Integration - Smoke 7.1.0.CR1-SNAPSHOT

[INFO] --

[INFO] --- maven-dependency-plugin:2.3:copy (copy-annotations-endorsed) @

jboss-as-testsuite-integration-smoke ---

[INFO] --- maven-resources-plugin:2.5:resources (default-resources) @

jboss-as-testsuite-integration-smoke ---

 TODO: Remove

[INFO] --- maven-compiler-plugin:2.3.2:compile (default-compile) @

jboss-as-testsuite-integration-smoke ---

[INFO] --- maven-resources-plugin:2.5:copy-resources (build-jbossas.server) @

jboss-as-testsuite-integration-smoke ---

[INFO] --- maven-resources-plugin:2.5:copy-resources (ts.copy-jbossas.groups) @

jboss-as-testsuite-integration-smoke ---

[INFO] --- maven-resources-plugin:2.5:testResources (default-testResources) @

jboss-as-testsuite-integration-smoke ---

[INFO] --- xml-maven-plugin:1.0:transform (update-ip-addresses-jbossas.server) @

jboss-as-testsuite-integration-smoke ---

 TODO: Remove

[INFO] --- maven-antrun-plugin:1.6:run (build-smoke.server) @

jboss-as-testsuite-integration-smoke ---

 [echo] Building AS instance "smoke" from /home/ondra/work/EAP/EAP6-DR9 to

/home/ondra/work/AS7/ozizka-as7/testsuite/integration/smoke/target

 TODO: Should be running one level above!

[INFO] --- maven-compiler-plugin:2.3.2:testCompile (default-testCompile) @

jboss-as-testsuite-integration-smoke ---

[INFO] --- maven-surefire-plugin:2.10:test (smoke-full.surefire) @

Latest WildFly Documentation

JBoss Community Documentation Page of 1974 2293

jboss-as-testsuite-integration-smoke ---

 T E S T S

 Tests run: 4, Failures: 0, Errors: 4, Skipped: 0

Example output, unchanged

ondra@lenovo:~/work/AS7/ozizka-git$./integration-tests.sh clean install -DallTests | tee TS.txt

| testsuite/tools/runSummary.sh

SSCmeetingWestfordJan [copy] Warning:

/home/ondra/work/AS7/ozizka-git/testsuite/integration/src/test/resources/test-configs/smoke does

not exist.

 [copy] Warning:

/home/ondra/work/AS7/ozizka-git/testsuite/integration/src/test/resources/test-configs/clustering-udp-0

does not exist.

 [copy] Warning:

/home/ondra/work/AS7/ozizka-git/testsuite/integration/src/test/resources/test-configs/clustering-udp-1

does not exist.

 [copy] Warning:

/home/ondra/work/AS7/ozizka-git/testsuite/integration/src/test/resources/test-configs/iiop-client

does not exist.

 [copy] Warning:

/home/ondra/work/AS7/ozizka-git/testsuite/integration/src/test/resources/test-configs/iiop-server

does not exist.

[INFO] --

[INFO] --

[INFO] Building JBoss Application Server Test Suite: Aggregator 7.1.0.Final-SNAPSHOT

[INFO] --

[INFO] --- maven-antrun-plugin:1.6:run (banner) @ jboss-as-testsuite ---

[INFO] --- maven-dependency-plugin:2.3:copy (copy-annotations-endorsed) @ jboss-as-testsuite ---

[INFO] --- maven-resources-plugin:2.5:copy-resources (build-jbossas.server) @ jboss-as-testsuite

[INFO] --- xml-maven-plugin:1.0:transform (update-ip-addresses-jbossas.server) @

jboss-as-testsuite ---

[INFO] --- maven-install-plugin:2.3.1:install (default-install) @ jboss-as-testsuite ---

[INFO] --

[INFO] Building JBoss Application Server Test Suite: Integration 7.1.0.Final-SNAPSHOT

[INFO] --

[INFO] --- maven-dependency-plugin:2.3:copy (copy-annotations-endorsed) @

jboss-as-testsuite-integration-agg ---

[INFO] --- maven-resources-plugin:2.5:copy-resources (build-jbossas.server) @

jboss-as-testsuite-integration-agg ---

[INFO] --- maven-resources-plugin:2.5:copy-resources (ts.copy-jbossas) @

jboss-as-testsuite-integration-agg ---

[INFO] --- maven-resources-plugin:2.5:copy-resources (ts.copy-jbossas.groups) @

jboss-as-testsuite-integration-agg ---

[INFO] --- maven-install-plugin:2.3.1:install (default-install) @

jboss-as-testsuite-integration-agg ---

[INFO] --

[INFO] Building JBoss Application Server Test Suite: Integration - Smoke 7.1.0.Final-SNAPSHOT

[INFO] --

[INFO] --- maven-dependency-plugin:2.3:copy (copy-annotations-endorsed) @

jboss-as-testsuite-integration-smoke ---

[INFO] --- maven-resources-plugin:2.5:resources (default-resources) @

jboss-as-testsuite-integration-smoke ---

Latest WildFly Documentation

JBoss Community Documentation Page of 1975 2293

[INFO] --- maven-compiler-plugin:2.3.2:compile (default-compile) @

jboss-as-testsuite-integration-smoke ---

[INFO] --- maven-resources-plugin:2.5:copy-resources (build-jbossas.server) @

jboss-as-testsuite-integration-smoke ---

[INFO] --- maven-resources-plugin:2.5:copy-resources (ts.copy-jbossas.groups) @

jboss-as-testsuite-integration-smoke ---

[INFO] --- maven-resources-plugin:2.5:testResources (default-testResources) @

jboss-as-testsuite-integration-smoke ---

[INFO] --- maven-antrun-plugin:1.6:run (build-smoke.server) @

jboss-as-testsuite-integration-smoke ---

 [echo] Building AS instance "smoke" from

/home/ondra/work/AS7/ozizka-git/testsuite/integration/smoke/../../../build/target/jboss-as-7.1.0.Final-SNAPSHOT

to /home/ondra/work/AS7/ozizka-git/testsuite/integration/smoke/target

[INFO] --- maven-compiler-plugin:2.3.2:testCompile (default-testCompile) @

jboss-as-testsuite-integration-smoke ---

[INFO] --- maven-surefire-plugin:2.10:test (smoke-full.surefire) @

jboss-as-testsuite-integration-smoke ---

 T E S T S

 Tests run: 4, Failures: 0, Errors: 0, Skipped: 0

[INFO] --- maven-surefire-plugin:2.10:test (smoke-web.surefire) @

jboss-as-testsuite-integration-smoke ---

 T E S T S

 Tests run: 116, Failures: 0, Errors: 0, Skipped: 6

[INFO] --- maven-jar-plugin:2.3.1:jar (default-jar) @ jboss-as-testsuite-integration-smoke ---

[INFO] Building jar:

/home/ondra/work/AS7/ozizka-git/testsuite/integration/smoke/target/jboss-as-testsuite-integration-smoke-7.1.0.Final-SNAPSHOT.jar
[INFO]

--- maven-install-plugin:2.3.1:install (default-install) @ jboss-as-testsuite-integration-smoke

[INFO] --

[INFO] Building JBoss Application Server Test Suite: Integration - Basic 7.1.0.Final-SNAPSHOT

[INFO] --

[INFO] --- maven-dependency-plugin:2.3:copy (copy-annotations-endorsed) @

jboss-as-testsuite-integration-basic ---

[INFO] --- maven-resources-plugin:2.5:resources (default-resources) @

jboss-as-testsuite-integration-basic ---

[INFO] --- maven-compiler-plugin:2.3.2:compile (default-compile) @

jboss-as-testsuite-integration-basic ---

[INFO] --- maven-resources-plugin:2.5:copy-resources (build-jbossas.server) @

jboss-as-testsuite-integration-basic ---

[INFO] --- maven-resources-plugin:2.5:copy-resources (ts.copy-jbossas.groups) @

jboss-as-testsuite-integration-basic ---

[INFO] --- maven-resources-plugin:2.5:testResources (default-testResources) @

jboss-as-testsuite-integration-basic ---

[INFO] --- maven-antrun-plugin:1.6:run (prepare-jars-basic-integration.server) @

jboss-as-testsuite-integration-basic ---

[INFO] --- maven-compiler-plugin:2.3.2:testCompile (default-testCompile) @

jboss-as-testsuite-integration-basic ---

[INFO] --- maven-surefire-plugin:2.10:test (basic-integration-default-full.surefire) @

jboss-as-testsuite-integration-basic ---

 T E S T S

 Tests run: 323, Failures: 0, Errors: 4, Skipped: 30

[INFO] --

[INFO] Building JBoss Application Server Test Suite: Integration - Clustering

7.1.0.Final-SNAPSHOT

[INFO] --

[INFO] --- maven-dependency-plugin:2.3:copy (copy-annotations-endorsed) @

jboss-as-testsuite-integration-clust ---

[INFO] --- maven-resources-plugin:2.5:resources (default-resources) @

Latest WildFly Documentation

JBoss Community Documentation Page of 1976 2293

jboss-as-testsuite-integration-clust ---

[INFO] --- maven-compiler-plugin:2.3.2:compile (default-compile) @

jboss-as-testsuite-integration-clust ---

[INFO] --- maven-resources-plugin:2.5:copy-resources (build-jbossas.server) @

jboss-as-testsuite-integration-clust ---

[INFO] --- maven-resources-plugin:2.5:copy-resources (ts.copy-jbossas.groups) @

jboss-as-testsuite-integration-clust ---

[INFO] --- maven-resources-plugin:2.5:testResources (default-testResources) @

jboss-as-testsuite-integration-clust ---

[INFO] --- maven-antrun-plugin:1.6:run (build-clustering.server) @

jboss-as-testsuite-integration-clust ---

 [echo] Building config clustering-udp-0

 [echo] Building AS instance "clustering-udp-0" from

/home/ondra/work/AS7/ozizka-git/testsuite/integration/clust/../../../build/target/jboss-as-7.1.0.Final-SNAPSHOT

to /home/ondra/work/AS7/ozizka-git/testsuite/integration/clust/target

 [echo] Building config clustering-udp-1

 [echo] Building AS instance "clustering-udp-1" from

/home/ondra/work/AS7/ozizka-git/testsuite/integration/clust/../../../build/target/jboss-as-7.1.0.Final-SNAPSHOT

to /home/ondra/work/AS7/ozizka-git/testsuite/integration/clust/target

[INFO] --- maven-compiler-plugin:2.3.2:testCompile (default-testCompile) @

jboss-as-testsuite-integration-clust ---

[INFO] --- maven-surefire-plugin:2.10:test (tests-clustering-multi-node-unmanaged.surefire) @

jboss-as-testsuite-integration-clust ---

 T E S T S

 Tests run: 9, Failures: 0, Errors: 0, Skipped: 0

[INFO] --- maven-surefire-plugin:2.10:test (tests-clustering-single-node.surefire) @

jboss-as-testsuite-integration-clust ---

 T E S T S

 Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO] --- maven-surefire-plugin:2.10:test (tests-clustering-multi-node.surefire) @

jboss-as-testsuite-integration-clust ---

 T E S T S

 Tests run: 8, Failures: 0, Errors: 0, Skipped: 0

[INFO] --- maven-jar-plugin:2.3.1:jar (default-jar) @ jboss-as-testsuite-integration-clust ---

[INFO] Building jar:

/home/ondra/work/AS7/ozizka-git/testsuite/integration/clust/target/jboss-as-testsuite-integration-clust-7.1.0.Final-SNAPSHOT.jar
[INFO]

--- maven-install-plugin:2.3.1:install (default-install) @ jboss-as-testsuite-integration-clust

[INFO] --

[INFO] Building JBoss Application Server Test Suite: Integration - IIOP 7.1.0.Final-SNAPSHOT

[INFO] --

[INFO] --- maven-dependency-plugin:2.3:copy (copy-annotations-endorsed) @

jboss-as-testsuite-integration-iiop ---

[INFO] --- maven-resources-plugin:2.5:resources (default-resources) @

jboss-as-testsuite-integration-iiop ---

[INFO] --- maven-compiler-plugin:2.3.2:compile (default-compile) @

jboss-as-testsuite-integration-iiop ---

[INFO] --- maven-resources-plugin:2.5:copy-resources (build-jbossas.server) @

jboss-as-testsuite-integration-iiop ---

[INFO] --- maven-resources-plugin:2.5:copy-resources (ts.copy-jbossas.groups) @

jboss-as-testsuite-integration-iiop ---

[INFO] --- maven-resources-plugin:2.5:testResources (default-testResources) @

jboss-as-testsuite-integration-iiop ---

[INFO] --- maven-antrun-plugin:1.6:run (build-clustering.server) @

jboss-as-testsuite-integration-iiop ---

 [echo] Building config iiop-client

 [echo] Building AS instance "iiop-client" from

/home/ondra/work/AS7/ozizka-git/testsuite/integration/iiop/../../../build/target/jboss-as-7.1.0.Final-SNAPSHOT

Latest WildFly Documentation

JBoss Community Documentation Page of 1977 2293

to /home/ondra/work/AS7/ozizka-git/testsuite/integration/iiop/target

 [echo] Building config iiop-server

 [echo] Building AS instance "iiop-server" from

/home/ondra/work/AS7/ozizka-git/testsuite/integration/iiop/../../../build/target/jboss-as-7.1.0.Final-SNAPSHOT

to /home/ondra/work/AS7/ozizka-git/testsuite/integration/iiop/target

[INFO] --- maven-compiler-plugin:2.3.2:testCompile (default-testCompile) @

jboss-as-testsuite-integration-iiop ---

[INFO] --- maven-surefire-plugin:2.10:test (tests-iiop-multi-node.surefire) @

jboss-as-testsuite-integration-iiop ---

 T E S T S

 Tests run: 12, Failures: 0, Errors: 0, Skipped: 0

[INFO] --- maven-jar-plugin:2.3.1:jar (default-jar) @ jboss-as-testsuite-integration-iiop ---

[INFO] Building jar:

/home/ondra/work/AS7/ozizka-git/testsuite/integration/iiop/target/jboss-as-testsuite-integration-iiop-7.1.0.Final-SNAPSHOT.jar
[INFO]

--- maven-install-plugin:2.3.1:install (default-install) @ jboss-as-testsuite-integration-iiop

[INFO] --

[INFO] Building JBoss Application Server Test Suite: Compatibility Tests 7.1.0.Final-SNAPSHOT

[INFO] --

[INFO] --- maven-dependency-plugin:2.3:copy (copy-annotations-endorsed) @

jboss-as-testsuite-integration-compat ---

[INFO] --- maven-resources-plugin:2.5:resources (default-resources) @

jboss-as-testsuite-integration-compat ---

[INFO] --- maven-compiler-plugin:2.3.2:compile (default-compile) @

jboss-as-testsuite-integration-compat ---

[INFO] --- maven-resources-plugin:2.5:copy-resources (build-jbossas.server) @

jboss-as-testsuite-integration-compat ---

[INFO] --- maven-resources-plugin:2.5:testResources (default-testResources) @

jboss-as-testsuite-integration-compat ---

[INFO] --- maven-compiler-plugin:2.3.2:testCompile (default-testCompile) @

jboss-as-testsuite-integration-compat ---

[INFO] --- maven-antrun-plugin:1.6:run (build-jars) @ jboss-as-testsuite-integration-compat ---

[INFO] --- maven-surefire-plugin:2.10:test (default-test) @

jboss-as-testsuite-integration-compat ---

 T E S T S

 Tests run: 7, Failures: 0, Errors: 4, Skipped: 3

[INFO] --

[INFO] Building JBoss Application Server Test Suite: Domain Mode Integration Tests

7.1.0.Final-SNAPSHOT

[INFO] --

[INFO] --- maven-dependency-plugin:2.3:copy (copy-annotations-endorsed) @

jboss-as-testsuite-integration-domain ---

[INFO] --- maven-resources-plugin:2.5:resources (default-resources) @

jboss-as-testsuite-integration-domain ---

[INFO] --- maven-compiler-plugin:2.3.2:compile (default-compile) @

jboss-as-testsuite-integration-domain ---

[INFO] --- maven-resources-plugin:2.5:copy-resources (build-jbossas.server) @

jboss-as-testsuite-integration-domain ---

[INFO] --- maven-resources-plugin:2.5:testResources (default-testResources) @

jboss-as-testsuite-integration-domain ---

[INFO] --- maven-compiler-plugin:2.3.2:testCompile (default-testCompile) @

jboss-as-testsuite-integration-domain ---

[INFO] --- maven-surefire-plugin:2.10:test (default-test) @

jboss-as-testsuite-integration-domain ---

 T E S T S

 Tests run: 89, Failures: 0, Errors: 0, Skipped: 4

[INFO] --- maven-jar-plugin:2.3.1:jar (default-jar) @ jboss-as-testsuite-integration-domain ---

[INFO] Building jar:

Latest WildFly Documentation

JBoss Community Documentation Page of 1978 2293

/home/ondra/work/AS7/ozizka-git/testsuite/domain/target/jboss-as-testsuite-integration-domain-7.1.0.Final-SNAPSHOT.jar
[INFO]

--- maven-install-plugin:2.3.1:install (default-install) @ jboss-as-testsuite-integration-domain

[INFO] --

[INFO] Building JBoss Application Server Test Suite: Benchmark Tests 7.1.0.Final-SNAPSHOT

[INFO] --

[INFO] --- maven-dependency-plugin:2.3:copy (copy-annotations-endorsed) @

jboss-as-testsuite-benchmark ---

[INFO] --- maven-resources-plugin:2.5:resources (default-resources) @

jboss-as-testsuite-benchmark ---

[INFO] --- maven-compiler-plugin:2.3.2:compile (default-compile) @ jboss-as-testsuite-benchmark

[INFO] --- maven-resources-plugin:2.5:copy-resources (build-jbossas.server) @

jboss-as-testsuite-benchmark ---

[INFO] --- maven-resources-plugin:2.5:testResources (default-testResources) @

jboss-as-testsuite-benchmark ---

[INFO] --- maven-compiler-plugin:2.3.2:testCompile (default-testCompile) @

jboss-as-testsuite-benchmark ---

[INFO] --- maven-surefire-plugin:2.10:test (default-test) @ jboss-as-testsuite-benchmark ---

 T E S T S

 Tests run: 0, Failures: 0, Errors: 0, Skipped: 0

[INFO] --- maven-jar-plugin:2.3.1:jar (default-jar) @ jboss-as-testsuite-benchmark ---

[INFO] Building jar:

/home/ondra/work/AS7/ozizka-git/testsuite/benchmark/target/jboss-as-testsuite-benchmark-7.1.0.Final-SNAPSHOT.jar
[INFO]

--- maven-install-plugin:2.3.1:install (default-install) @ jboss-as-testsuite-benchmark ---

[INFO] --

[INFO] Building JBoss Application Server Test Suite: Stress Tests 7.1.0.Final-SNAPSHOT

[INFO] --

[INFO] --- maven-dependency-plugin:2.3:copy (copy-annotations-endorsed) @

jboss-as-testsuite-stress ---

[INFO] --- maven-resources-plugin:2.5:resources (default-resources) @ jboss-as-testsuite-stress

[INFO] --- maven-compiler-plugin:2.3.2:compile (default-compile) @ jboss-as-testsuite-stress ---

[INFO] --- maven-resources-plugin:2.5:copy-resources (build-jbossas.server) @

jboss-as-testsuite-stress ---

[INFO] --- maven-resources-plugin:2.5:testResources (default-testResources) @

jboss-as-testsuite-stress ---

[INFO] --- maven-compiler-plugin:2.3.2:testCompile (default-testCompile) @

jboss-as-testsuite-stress ---

[INFO] --- maven-surefire-plugin:2.10:test (default-test) @ jboss-as-testsuite-stress ---

 T E S T S

 Tests run: 0, Failures: 0, Errors: 0, Skipped: 0

[INFO] --- maven-jar-plugin:2.3.1:jar (default-jar) @ jboss-as-testsuite-stress ---

[INFO] Building jar:

/home/ondra/work/AS7/ozizka-git/testsuite/stress/target/jboss-as-testsuite-stress-7.1.0.Final-SNAPSHOT.jar
[INFO]

--- maven-install-plugin:2.3.1:install (default-install) @ jboss-as-testsuite-stress ---

[INFO] --

[INFO] --

[INFO] --

[INFO] --

Latest WildFly Documentation

JBoss Community Documentation Page of 1979 2293

13.5 WildFly Testsuite Test Developer Guide

 See also: WildFly Integration Testsuite User Guide

13.5.1 requisites

Please be sure to read and follow those guidelines.Pre-requisites - test quality standards

13.5.2 Arquillian container configuration

See .AS 7.1 managed container adapter refrence

13.5.3 ManagementClient and ModelNode usage example

final ModelNode operation = new ModelNode();

operation.get(ModelDescriptionConstants.OP).set(ModelDescriptionConstants.READ_RESOURCE_OPERATION);
operation.get(ModelDescriptionConstants.OP_ADDR).set(address);
operation.get(ModelDescriptionConstants.RECURSIVE).set(true);

final

ModelNode result = managementClient.getControllerClient().execute(operation);

Assert.assertEquals(ModelDescriptionConstants.SUCCESS,

result.get(ModelDescriptionConstants.OUTCOME).asString());

ManagementClient can be obtained as described below.

13.5.4 Arquillian features available in tests

@ServerSetup

TBD

@ContainerResource private ManagementClient managementClient;

final ModelNode result = managementClient.getControllerClient().execute(operation);

TBD

@ArquillianResource private ManagementClient managementClient;

ModelControllerClient client = managementClient.getControllerClient();

https://docs.jboss.org/author/display/AS71/Pre-requisites+-+test+quality+standards
https://docs.jboss.org/author/display/ARQ/JBoss+AS+7.1%2C+JBoss+EAP+6.0+-+Managed

Latest WildFly Documentation

JBoss Community Documentation Page of 1980 2293

@ArquillianResource ContainerController cc;

@Test

public void test() {

 cc.setup("test", ...properties..)

 cc.start("test")

}

<arquillian>

 <container qualifier="test" mode="manual" />

</arquillian>

// Targeted containers HTTP context.

@ArquillianResource URL url;

// Targeted containers HTTP context where servlet is located.

@ArquillianResource(SomeServlet.class) URL url;

// Targeted containers initial context.

@ArquillianResource InitialContext|Context context;

// The manual deployer.

@ArquillianResource Deployer deployer;

See for more info, forArquillian's Resource Injection docs https://github.com/arquillian/arquillian-examples

examples.

See also .Arquillian Reference

Note to @ServerSetup annotation: It works as expected only on non-manual containers. In case of manual

mode containers it calls setup() method after each server start up which is right (or actually before

deployment), but the tearDown() method is called only at AfterClass event, i.e. usually after your manual

shutdown of the server. Which limits you on the ability to revert some configuration changes on the server

and so on. I cloned the annotation and changed it to fit the manual mode, but it is still in my github branch :)

https://docs.jboss.org/author/display/ARQ/Resource+injection
https://github.com/arquillian/arquillian-examples
https://docs.jboss.org/author/display/ARQ/Reference+Guide

Latest WildFly Documentation

JBoss Community Documentation Page of 1981 2293

13.5.5 Properties available in tests

Directories

jbosssa.project.dir - Project's root dir (where ./build.sh is).

jbossas.ts.dir - Testsuite dir.

jbossas.ts.integ.dir - Testsuite's integration module dir.

jboss.dist - Path to AS distribution, either built (build/target/jboss-as-...) or user-provided via

-Djboss.dist

jboss.inst - (Arquillian in-container only) Path to the AS instance in which the test is

running (until ARQ-650 is possibly done)

 - as it's name is unclear and confusing. Use jboss.dist or jboss.inst.jboss.home Deprecated

Networking

node0

node1

230.0.0.4

Time-related coefficients (ratios)
In case some of the following causes timeouts, you may prolong the timeouts by setting value >= 100:

100 = leave as is,

150 = 50 % longer, etc.

timeout.ratio.gen - General ratio - can be used to adjust all timeouts.When this and specific are

defined, both apply.

timeout.ratio.fs- Filesystem IO

timeout.ratio.net - Network IO

timeout.ratio.mem - Memory IO

timeout.ratio.cpu - Processor

timeout.ratio.db - Database

Time ratios will soon be provided by org.jboss.as.test.shared.time.TimeRatio.for*()

methods.

Latest WildFly Documentation

JBoss Community Documentation Page of 1982 2293

13.5.6 Negative tests

To test invalid deployment handling: @ShouldThrowException

Currently doesn't work due to .WFLY-673

optionally you might be able to catch it using the manual deployer

@Deployment(name = "X", managed = false) ...

@Test

public void shouldFail(@ArquillianResource Deployer deployer) throws Exception {

 try {

 deployer.deploy("X")

 }

 catch(Exception e) {

 // do something

 }

}

13.5.7 Clustering tests (WFLY-616)

You need to deploy the same thing twice, so two deployment methods that just return the same thing.

And then you have tests that run against each.

@Deployment(name = "deplA", testable = false)

 @TargetsContainer("serverB")

 public static Archive<?> deployment()

 @Deployment(name = "deplB", testable = false)

 @TargetsContainer("serverA")

 public static Archive<?> deployment(){ ... }

 @Test

 @OperateOnDeployment("deplA")

 public void testA(){ ... }

 @Test

 @OperateOnDeployment("deplA")

 public void testA() {...}

https://issues.jboss.org/browse/WFLY-673

Latest WildFly Documentation

JBoss Community Documentation Page of 1983 2293

13.5.8 How to get the tests to master

First of all, .be sure to read the "Before you add a test" section

 the newest mater: Fetch git fetch upstream # Provided you have the

 jbossas/jbossas GitHub repo as a remote called 'upstream'.

 your branch: git checkout WFLY-1234-your-branch; git rebase upstream/masterRebase

 (integration-tests -DallTests). You may use Run whole testsuite

https://jenkins.mw.lab.eng.bos.redhat.com/hudson/job/wildfly-as-testsuite-RHEL-matrix-openJDK7/lastCompletedBuild/testReport/

.

If any tests fail and they do not fail in master, fix it and go back to the "Fetch" step.

 to a new branch in your GitHub repo: Push git push origin WFLY-1234-new-XY-tests

 on GitHub. Go to your branch and click on "Pull Request". Create a pull-request

If you have a jira, start the title with it, like - WFLY-1234 New tests for XYZ.

If you don't, write some apposite title. In the description, describe in detail what was done and

why should it be merged. Keep in mind that the diff will be visible under your description.

 until it's merged (see the Fetch step). If you don't, you'reKeep the branch rebased daily

dramatically decreasing chance to get it merged.

There's a mailing list, jbossas-pull-requests, which is notified of every pull-request.

You might have someone with merge privileges to cooperate with you, so they know what you're

doing, and expect your pull request.

When your pull request is reviewed and merged, you'll be notified by mail from GitHub.

You may also check if it was merged by the following: git fetch upstream; git cherry

 git branch --contains{{<branch> - see}} <branch> ## Or here

Your commits will appear in master. They will have the same hash as in your branch.

You are now safe to delete both your local and remote branches: git branch -D

WFLY-1234-your-branch; git push origin :WFLY-1234-your-branch

https://jenkins.mw.lab.eng.bos.redhat.com/hudson/job/wildfly-as-testsuite-RHEL-matrix-openJDK7/lastCompletedBuild/testReport/
https://jenkins.mw.lab.eng.bos.redhat.com/hudson/job/wildfly-as-testsuite-RHEL-matrix-openJDK7/lastCompletedBuild/testReport/

Latest WildFly Documentation

JBoss Community Documentation Page of 1984 2293

13.5.9 How to Add a Test Case

(Please don't (re)move - this is a landing page from a Jira link.)

Thank you for finding time to contribute to WildFly 8 quality.

Covering corner cases found by community users with tests is very important to increase stability.

If you're providing a test case to support your bug report, it's very likely that your bug will be fixed much

sooner.

1) Create a test case.
It's quite easy - a simple use case may even consist of one short .java file.

Check WildFly 8 for examples.test suite test cases

For more information, see . Check the requirements for a test to beWildFly Testsuite Test Developer Guide

included in the testsuite.

Ask for help at WildFly 8 forum or at IRC - #wildfly @ FreeNode.

2) Push your test case to GitHub and create a pull request.
For information on how to create a GitHub account and push your code therein, see .Hacking on WildFly

If you're not into Git, send a diff file to JBoss forums, someone might pick it up.

3) Wait for the outcome.
Your test case will be reviewed and eventually added. It may take few days.

When something happens, you'll receive a notification e-mail.

13.5.10 Before you add a test

Every added test, whether ported or new should follow the same guidelines:

Verify the test belongs in WildFly 8

AS6 has a lot of tests for things that are discontinued. For example the

legacy JBoss Transaction Manager which was replaced by Arjuna. Also we

had tests for SPIs that no longer exist. None of these things should be

migrated.

Only add CORRECT and UNDERSTANDABLE tests

https://github.com/wildfly/wildfly/tree/master/testsuite/integration/basic/src/test/java/org/jboss/as/test/integration
https://docs.jboss.org/author/display/WFLY8/WildFly+Testsuite+Test+Developer+Guide
https://community.jboss.org/wiki/HackingOnWildFly

Latest WildFly Documentation

JBoss Community Documentation Page of 1985 2293

If you don't understand what a test is doing (perhaps too complex), or

it's going about things in a strange way that might not be correct, THEN

DO NOT PORT IT. Instead we should have a simpler, understandable, and

correct test. Write a new one, ping the author, or skip it altogether.

Do not add duplicate tests

Always check that the test you are adding doesn't have coverage

elsewhere (try using "git grep"). As mentioned above we have some

overlap between 6 and 7. The 7 test version will likely be better.

Don't name tests after JIRAs

A JIRA number is useless without an internet connection, and they are

hard to read. If I get a test failure thats XDGR-843534578 I have to dig

to figure out the context. It's perfectly fine though to link to a JIRA

number in the comments of the test. Also the commit log is always available.

Tests should contain javadoc that explains what is being tested

This is especially critical if the test is non-trivial

Prefer expanding an EXISTING test over a new test class

If you are looking at migrating or creating a test with similar

functionality to an exiting test, it is better to

expand upon the existing one by adding more test methods, rather than

creating a whole new test. In general each

new test class adds at least 300ms to execution time, so as long as it

makes sense it is better to add it to an

existing test case.

Organize tests by subsystem

Integration tests should be packaged in subpackages under the relevant

subsystem (e.g org.jboss.as.test.integration.ejb.async). When a test

impacts multiple subsystems this is a bit of a judgement call, but in

general the tests should go into the package of

the spec that defines the functionality (e.g. CDI based constructor

injection into an EJB, even though this involves CDI and EJB,

the CDI spec defines this behaviour)

Explain non-obvious spec behavior in comments

Latest WildFly Documentation

JBoss Community Documentation Page of 1986 2293

The EE spec is full of odd requirements. If the test is covering

behavior that is not obvious then please add something like "Verifies EE

X.T.Z - The widget can't have a foobar if it is declared like blah"

Put integration test resources in the source directory of the test

At the moment there is not real organization of these files. It makes

sense for most apps to have this separation, however the testsuite is

different. e.g. most apps will have a single deployment descriptor of a

given type, for the testsuite will have hundreds, and maintaining mirroring

package structures is error prone.

This also makes the tests easier to understand, as all the artifacts in

the deployment are in one place, and that place tends to be small (only

a handful of files).

Do not hard-code values likely to need configuration (URLs, ports, ...)

URLs hardcoded to certain address (localhost) or port (like the default 8080 for web) prevent running the test

against different address or with IPv6 adress.

Always use the configurable values provided by Arquillian or as a system property.

If you come across a value which is not configurable but you think it should be, file an WildFly 8 jira issue

with component "Test suite".

See .@ArquillianResourrce usage example

Follow best committing practices
Only do changes related to the topic of the jira/pull request.

Do not clutter your pull request with e.g. reformatting, fixing typos spotted along the way - do

another pull request for such.

Prefer smaller changes in more pull request over one big pull request which are difficult to

merge.

Keep the code consistent across commits - e.g. when renaming something, be sure to update

all references to it.

Describe your commits properly as they will appear in master's linear history.

If you're working on a jira issue, include it's ID in the commit message(s).

Do not use blind timeouts

Do not use Thread.sleep() without checking for the actual condition you need to be fulfilled.

You may use active waiting with a timeout, but prefer using timeouts of the API/SPI you test where available.

Make the timeouts configurable: For a group of similar test, use a configurable timeout value with a default if

not set.

https://github.com/arquillian/arquillian/blob/master/examples/junit/src/test/java/com/acme/web/LocalRunServletTestCase.java

Latest WildFly Documentation

JBoss Community Documentation Page of 1987 2293

Provide messages in assert*() and fail() calls

Definitely, it's better to see "File x/y/z.xml not found" instead of:

junit.framework.AssertionFailedError

 at junit.framework.Assert.fail(Assert.java:48) [arquillian-service:]

 at junit.framework.Assert.assertTrue(Assert.java:20) [arquillian-service:]

 at junit.framework.Assert.assertTrue(Assert.java:27) [arquillian-service:]

 at

org.jboss.as.test.smoke.embedded.parse.ParseAndMarshalModelsTestCase.getOriginalStandaloneXml(ParseAndMarshalModelsTestCase.java:554)

[bogus.jar:]

Provide configuration properties hints in exceptions

If your test uses some configuration property and it fails possibly due to misconfiguration, note the property

and it's value in the exception:

File jdbcJar = new File(System.getProperty("jbossas.ts.dir", "."),

 "integration/src/test/resources/mysql-connector-java-5.1.15.jar");

 if(!jdbcJar.exists())

 throw new IllegalStateException("Can't find " + jdbcJar + " using $\{jbossas.ts.dir} ==

" + System.getProperty("jbossas.ts.dir"));

Clean up

Close sockets, connections, file descriptors;

Don't put much data to static fields, or clean them in a finaly {...} block.

Don't alter AS config (unless you are absolutely sure that it will reload in a final {...} block or an

@After* method)

Keep the tests configurable
Keep these things in properties, set them at the beginning of the test:

Timeouts

Paths

URLs

Numbers (of whatever)

They either will be or already are provided in form of system properties, or a simple testsuite until API (soon

to come).

Latest WildFly Documentation

JBoss Community Documentation Page of 1988 2293

13.5.11 Shared Test Classes and Resources

Among Testsuite Modules
Use the module.testsuite/shared

Classes and resources in this module are available in all testsuite modules - i.e. in testsuite/* .

Only use it if necessary - don't put things "for future use" in there.

 Don't split packages across modules. Make sure the java package is unique in the WildFly project.

 (javadoc) so they can be easily found and reused! A generated list will be putDocument your util classes

here.

Between Components and Testsuite Modules
To share component's test classes with some module in testsuite, you don't need to split to submodules.

You can create a jar with classifier using this:

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-jar-plugin</artifactId>

 <executions> <execution>

 <goals> <goal>test-jar</goal> </goals>

 </execution></executions>

 </plugin>

This creates a jar with classifier "tests", so you can add it as dependency to a testsuite module:

 <dependency>

 <groupId>org.jboss.as</groupId>

 <artifactId>jboss-as-clustering-common</artifactId>

 <classifier>tests</classifier>

 <version>${project.version}</version>

 <scope>test</scope>

 </dependency>

Latest WildFly Documentation

JBoss Community Documentation Page of 1989 2293

14 Quickstarts
WildFly ships with a number of quickstarts that show you how to get started with a variety of technologies in

WildFly. You'll find out how to write a web application using the latest Java EE technologies like CDI and

JAX-RS. How to write client libraries to talk to WildFly using web services, JMS or EJB. How to set up a

distributed transaction, and how to recover from a transaction failure. And much, much more.

14.1 Getting Started

Some of the quickstarts are described in great detail in the ,Getting Started Developing Applications Guide

which focuses on how get WildFly and Eclipse, with JBoss Tools set up, and how to build web applications.

The other quickstarts are all described in README files and code comments, including what to look out for,

how to install and start WildFly, and how to deploy and test the quickstart.

To download the quickstarts, visit .https://github.com/wildfly/quickstart

14.2 Contributing

If you want to contribute to the quickstarts, check out our page.Contributing a Quickstart

14.3 Contributing a Quickstart

Please note: The content for this page has moved.

JBoss developer information, including the details about the Quickstarts, has moved to the

.JBoss Developer Framework

The list of available quickstarts and download information can be found here: Quickstarts -

Get Started

Information about how to contribute a quickstart can be found in the Contributing Guide

located here: Quickstarts - Get Involved with Quickstarts

The quickstart tool that verifies a quickstart follows the guidelines and uses correct the

Maven artifact versions is described here: QS Tools

https://github.com/wildfly/quickstart
http://www.jboss.org/jdf/
http://www.jboss.org/jdf/quickstarts/get-started/
http://www.jboss.org/jdf/quickstarts/get-started/
http://www.jboss.org/jdf/quickstarts/get-involved/
http://www.jboss.org/jdf/quickstarts/qstools/

Latest WildFly Documentation

JBoss Community Documentation Page of 1990 2293

14.3.1 Maven POM Versions Checklist

Please note: The content for this page has moved.

JBoss developer information, including the details about the Quickstarts, has moved to the

.JBoss Developer Framework

The list of available quickstarts and download information can be found here: Quickstarts -

Get Started

Information about how to contribute a quickstart can be found in the Contributing Guide

located here: Quickstarts - Get Involved with Quickstarts

The quickstart tool that verifies a quickstart follows the guidelines and uses correct the

Maven artifact versions is described here: QS Tools

14.3.2 Writing a quickstart

Please note: The content for this page has moved.

JBoss developer information, including the details about the Quickstarts, has moved to the

.JBoss Developer Framework

The list of available quickstarts and download information can be found here: Quickstarts -

Get Started

Information about how to contribute a quickstart can be found in the Contributing Guide

located here: Quickstarts - Get Involved with Quickstarts

The quickstart tool that verifies a quickstart follows the guidelines and uses correct the

Maven artifact versions is described here: QS Tools

http://www.jboss.org/jdf/
http://www.jboss.org/jdf/quickstarts/get-started/
http://www.jboss.org/jdf/quickstarts/get-started/
http://www.jboss.org/jdf/quickstarts/get-involved/
http://www.jboss.org/jdf/quickstarts/qstools/
http://www.jboss.org/jdf/
http://www.jboss.org/jdf/quickstarts/get-started/
http://www.jboss.org/jdf/quickstarts/get-started/
http://www.jboss.org/jdf/quickstarts/get-involved/
http://www.jboss.org/jdf/quickstarts/qstools/

Latest WildFly Documentation

JBoss Community Documentation Page of 1991 2293

15 WildFly Elytron Security

About

Authentication

Authorization

SSL / TLS

Secure Credential Storage

General Elytron Architecture

Security Domains

SASL Authentication

HTTP Authentication

SSL / TLS

Elytron Subsystem

Get Started using the Elytron Subsystem

Provided components

Factories

Principal Transformers

Principal Decoders

Realm Mappers

Realms

Permission Mappers

Role Decoders

Role Mappers

SSL Components

Other

Out of the Box Configuration

Default Application Authentication Configuration

Update WildFly to Use the Default Elytron Components for Application Authentication

Default Elytron Application HTTP Authentication Configuration

Default Management Authentication Configuration

Update WildFly to Use the Default Elytron Components for Management Authentication

Default Elytron Management HTTP Authentication Configuration

Default Elytron Management CLI Authentication

Comparing Legacy Approaches to Elytron Approaches

Latest WildFly Documentation

JBoss Community Documentation Page of 1992 2293

Using the Elytron Subsystem

Set Up and Configure Authentication for Applications

Configure Authentication with a Properties File-Based Identity Store

Configure Authentication with a Filesystem-Based Identity Store

Configure Authentication with a Database Identity Store

Configure Authentication with an LDAP-Based Identity Store

Configure Authentication with Certificates

Configure Authentication with a Kerberos-Based Identity Store

Configure Authentication with a Form as a Fallback for Kerberos

Configure Applications to Use Elytron or Legacy Security for Authentication

Override an Application's Authentication Configuration

Create and Use a Credential Store

Set up and Configure Authentication for the Management Interfaces

Secure the Management Interfaces with a New Identity Store

Silent Authentication

Using RBAC with Elytron

Configure SSL/TLS

Enable One-way SSL/TLS for Applications

Enable Two-way SSL/TLS in WildFly for Applications

Enable One-way SSL/TLS for the Management Interfaces Using the Elytron Subsystem

Enable Two-way SSL/TLS for the Management Interfaces using the Elytron Subsystem

Using an ldap-key-store

Using a filtering-key-store

Reload a Keystore

Check the Content of a Keystore by Alias

Custom Components

Configuring the Elytron and Security Subsystems

Enable and Disable the Elytron Subsystem

Enable and Disable the Security Subsystem

Use the Elytron and Security Subsystems in Parallel

Creating Elytron Subsystem Components

Create an Elytron Security Realm

Create an Elytron Role Decoder

Create an Elytron Permission Mapper

Create an Elytron Role Mapper

Create an Elytron Security Domain

Create an Elytron Authentication Factory

Create an Elytron Policy Provider

Latest WildFly Documentation

JBoss Community Documentation Page of 1993 2293

Using Elytron within WildFly

Using the Out of the Box Elytron Components

Securing Management Interfaces

Securing Applications

Using SSL/TLS

Using Elytron with Other Subsystems

Undertow Subsystem

EJB Subsystem

WebServices Subsystem

Legacy Security Subsystem

Client Authentication with Elytron Client

The Configuration File Approach

The Programmatic Approach

The Default Configuration Approach

Using Elytron Client with Clients Deployed to WildFly

Client configuration using wildfly-config.xml

15.1 About

The WildFly Elytron project is a new security framework brought to WildFly to provide a single unified

security framework across the whole of the application server. As a single framework it will be usable both

for configuring management access to the server and for applications deployed to the server, it will also be

usable across all process types so there will be no need to learn a different security framework for host

controllers in a domain compared to configuring a standalone server.

The project covers these main areas: -

Authentication

Authorization

SSL / TLS

Secure Credential Storage

15.1.1 Authentication

One of the fundamental objectives of the project was to ensure that we can use stronger authentication

mechanisms for both HTTP and SASL based authentication, in both cases the new framework also makes it

possible to bring in new implementations opening up various integration opportunities with external solutions.

Latest WildFly Documentation

JBoss Community Documentation Page of 1994 2293

15.1.2 Authorization

The architecture of the project makes a very clear distinction between the raw representation of the identity

as returned by a SecurityRealm from the repository of identities and the final representation as a

SecurityIdentity after roles have been decoded and mapped and permissions have been mapped.

Custom implementations of the components to perform role decoding and mapping, and permission

mapping can be provided allowing for further flexibility beyond the default set of components provided by the

project.

15.1.3 SSL / TLS

The project becomes the centralised point within the application server for configuring SSL related resources

meaning they can be configured in a central location and referenced by resources across the application

server. The centralised configuration also covers advanced options such as configuration of enabled cipher

suites and protocols without this information needing to be distributed across the management model.

The SSL / TLS implementation also includes an optimisation where it can be closely tied to authentication

allowing for permissions checks to be performed on establishment of a connection before the first request is

received and the eager construction of a SecurityIdentity eliminating the need for it to be constructed on a

per-request basis.

15.1.4 Secure Credential Storage

The previous vault used for plain text String encryption is replaced with a newly designed credential store. in

addition to the protection it offers for the credentials stored within it, the store currently supports storage of

clear text credentials.

15.2 General Elytron Architecture

The overall architecture for WildFly Elytron is building up a full security policy from assembling smaller

components together, by default we include various implementations of the components - in addition to this,

custom implementations of many components can be provided in order to provide more specialised

implementations.

Within WildFly the different Elytron components are handled as capabilities meaning that different

implementations can be mixed and matched, however the different implementations are modelled using

distinct resources. This section contains a number of diagrams to show the general relationships between

different components to provide a high level view, however the different resource definitions may use

different dependencies depending on their purpose.

Latest WildFly Documentation

JBoss Community Documentation Page of 1995 2293

15.2.1 Security Domains

Within WildFly Elytron a SecurityDomain can be considered as a security policy backed by one or more

SecurityRealm instances. Resources that make authorization decisions will be associated with a

SecurityDomain, from the SecurityDomain a SecurityIdentity can be obtained which is a representation of the

current identity, from this the identities roles and permissions can be checked to make the authorization

decision for the resource.

SecurityDomain

The SecurityDomain is the general wrapper around the policy describing a resulting SecurityIdentity and

makes use of the following components to define this policy.

NameRewriter

NameRewriters are used in multiple places within the Elytron configuration, as their name implies, their

purpose is to take a name and map it to another representation of the name or perform some normalisation

or clean up of the name.

RealmMapper

Latest WildFly Documentation

JBoss Community Documentation Page of 1996 2293

As a SecurityDomain is able to reference multiple SecurityRealms the RealmMapper is responsible for

identifying which SecurityRealm to use based on the supplied name for authentication.

SecurityRealm

One more more named SecurityRealms are associated with a SecurityDomain, the SecurityRealms are the

access to the underlying repository of identities and are used for obtaining credentials to allow authentication

mechanisms to perform verification, for validation of Evidence and for obtaining the raw AuthorizationIdentity

performing the authentication.

Some SecurityRealm implementations are also modifiable so expose an API that allows for updates to be

made to the repository containing the identities.

RoleDecoder

Along with the SecurityRealm association is also a reference to a RoleDecoder, the RoleDecoder takes the

raw AuthorizationIdentity returned from the SecurityRealm and converts it's attributes into roles.

RoleMapper

After the roles have been decoded for an identity further mapping can be applied, this could be as simple at

normalising the format of the names through to adding or removing specific role names. If a RoleMapper is

referenced by the SecurityRealm association that RoleMapper is applied first before applying the

RoleMapper associated with the SecurityDomain.

PrincipalDecoder

A PrincipalDecoder converts from a Principal to a String representation of a name, one example for this is

we have an X500PrincipalDecoder which is able to extract an attribute from a distinguished name.

PermissionMapper

In addition to having roles a SecurityIdentity can also have a set of permissions, the PermissionMapper

assigns those permissions to the identity.

Different secured resources can be associated with different SecurityDomains for their authorization

decisions, within WildFly Elytron we have the ability to configure inflow between different SecurityDomains.

The inflow process means that a SecurityIdentity inflowed into a second SecurityDomain has the mappings

of the new SecurityDomain applied to it so although a common identity may be calling different resources

each of those resources could have a very different view.

Latest WildFly Documentation

JBoss Community Documentation Page of 1997 2293

15.2.2 SASL Authentication

The SaslAuthenticationFactory is an authentication policy for authentication using SASL authentication

mechanisms, in addition to being a policy it is also a factory for configured authentication mechanisms

backed by a SecurityDomain.

SaslAuthenticationFactory

The SaslAuthenticationFactory references the following: -

SecurityDomain

This is the security domain that any mechanism authentication will be performed against.

SaslServerFactory

This is the general factory for server side SASL authentication mechanisms.

MechanismConfigurationSelector

Additional configuration can be supplied for the authentication mechanisms, the configuration will be

described in more detail later but the purpose of the MechanismConfigurationSelector is to obtain

configuration specific to the mechanism selected. This can include information about realm names a

mechanism should present to a remote client plus additional NameRewriters and RealmMappers to use

during the authentication process.

The reason some of the components referenced by the SecurityDomain are duplicated is so that mechanism

specific mappings can be applied.

Latest WildFly Documentation

JBoss Community Documentation Page of 1998 2293

15.2.3 HTTP Authentication

The HttpAuthenticationFactory is an authentication policy for authentication using HTTP authentication

mechanisms, in addition to being a policy it is also a factory for configured authentication mechanisms

backed by a SecurityDomain.

HttpAuthenticationFactory

The HttpAuthenticationFactory references the following: -

SecurityDomain

This is the security domain that any mechanism authentication will be performed against.

HttpServerAuthenticationMechanismFactory

This is the general factory for server side HTTP authentication mechanisms.

MechanismConfigurationSelector

Additional configuration can be supplied for the authentication mechanisms, the configuration will be

described in more detail later but the purpose of the MechanismConfigurationSelector is to obtain

configuration specific to the mechanism selected. This can include information about realm names a

mechanism should present to a remote client plus additional NameRewriters and RealmMappers to use

during the authentication process.

The reason some of the components referenced by the SecurityDomain are duplicated is so that mechanism

specific mappings can be applied.

Latest WildFly Documentation

JBoss Community Documentation Page of 1999 2293

15.2.4 SSL / TLS

The SSLContext defined within Elytron is a javax.net.ssl.SSLContext meaning it can be used by anything

that uses an SSLContext directly.

SSLContext

In addition to the usual configuration for an SSLContext it is possible to configure additional items such as

cipher suites and protocols and the SSLContext returned will wrap any engines created to set these values.

The SSLContext within Elytron can also reference the following: -

KeyManagers

An array of KeyManager instances to be used by the SSLContext, this in turn can reference a KeyStore to

load the keys.

TrustManagers

An array of TrustManager instances to be used by the SSLContext, this in turn can also reference a

KeyStore to load the certificates.

SecurityDomain

This is optional, however if an SSLContext is configured to reference a SecurityDomain then verification of a

clients certificate can be performed as an authentication ensuring the appropriate permissions to Logon are

assigned before even allowing the connection to be fully opened, additionally the SecurityIdentity can be

established at the time the connection is opened and used for any invocations over the connection.

Latest WildFly Documentation

JBoss Community Documentation Page of 2000 2293

15.3 Elytron Subsystem

WildFly Elytron is a security framework used to unify security across the entire application server. The

 subsystem enables a single point of configuration for securing both applications and theelytron

management interfaces. WildFly Elytron also provides a set of APIs and SPIs for providing custom

implementations of functionality and integrating with the subsystem.elytron

In addition, there are several other important features of the WildFly Elytron:

Stronger authentication mechanisms for HTTP and SASL authentication.

Improved architecture that allows for to be propagated across security domains andSecurityIdentities

transparently transformed ready to be used for authorization. This transformation takes place using

configurable role decoders, role mappers, and permission mappers.

Centralized point for SSL/TLS configuration including cipher suites and protocols.

SSL/TLS optimizations such as eager construction and closely tying authorization toSecureIdentity

establishing an SSL/TLS connection. Eager construction eliminates the need for a SecureIdentity

 to be constructed on a per-request basis. Closely tying authentication to establishingSecureIdentity

an SSL/TLS connection enables permission checks to happen the first request is received.BEFORE

A secure credential store that replaces the previous vault implementation to store clear text

credentials.

The new subsystem exists in parallel to the legacy subsystem and legacy core managementelytron security

authentication. Both the legacy and Elytron methods may be used for securing the management interfaces

as well as providing security for applications.

15.3.1 Get Started using the Elytron Subsystem

To get started using Elytron, refer to these topics:

Use the default Elytron components for and authenticationapplication management

Secure an application with a new identity store stored in a or .filesystem database

Set up one-way SSL/TLS for or the .applications management interfaces

Set up two-way SSL/TLS for or the .applications management interfaces

.Create a credential store and use it with your SSL/TLS configuration

.Use certificate-based authentication with applications

 with Elytron authentication.Override an application's authentication configuration

.Configure Kerberos authentication for applications

Secure and the with an LDAP-based identity store.applications management interfaces

15.3.2 Provided components

Wildfly Elytron provides a default set of implementations in the subsystem.elytron

Latest WildFly Documentation

JBoss Community Documentation Page of 2001 2293

Factories

Component Description

aggregate-http-server-mechanism-factory An HTTP server factory definition where the HTTP

server factory is an aggregation of other HTTP server

factories.

aggregate-sasl-server-factory A SASL server factory definition where the SASL server

factory is an aggregation of other SASL server factories.

configurable-http-server-mechanism-factory A SASL server factory definition where the SASL server

factory is an aggregation of other SASL server factories.

configurable-sasl-server-factory A SASL server factory definition where the SASL server

factory is an aggregation of other SASL server factories.

custom-credential-security-factory A custom credential definition.SecurityFactory

http-authentication-factory Resource containing the association of a security domain

with a .HttpServerAuthenticationMechanismFactory

kerberos-security-factory A security factory for obtaining a for useGSSCredential

during authentication.

mechanism-provider-filtering-sasl-server-factory A SASL server factory definition that enables filtering by

provider where the factory was loaded using a provider.

provider-http-server-mechanism-factory An HTTP server factory definition where the HTTP

server factory is an aggregation of factories from the

provider list.

provider-sasl-server-factory A SASL server factory definition where the SASL server

factory is an aggregation of factories from the provider

list.

sasl-authentication-factory Resource containing the association of a security domain

with a .SaslServerFactory

service-loader-http-server-mechanism-factory An HTTP server factory definition where the HTTP

server factory is an aggregation of factories identified

using a ServiceLoader

service-loader-sasl-server-factory A SASL server factory definition where the SASL server

factory is an aggregation of factories identified using a

ServiceLoader

Latest WildFly Documentation

JBoss Community Documentation Page of 2002 2293

Principal Transformers

Component Description

aggregate-principal-transformer A principal transformer definition where the principal transformer is

an aggregation of other principal transformers.

chained-principal-transformer A principal transformer definition where the principal transformer is

a chaining of other principal transformers.

constant-principal-transformer A principal transformer definition where the principal transformer

always returns the same constant.

custom-principal-transformer A custom principal transformer definition.

regex-principal-transformer A regular expression based principal transformer

regex-validating-principal-transformer A regular expression based principal transformer which uses the

regular expression to validate the name.

Principal Decoders

Component Description

aggregate-principal-decoder A principal decoder definition where the principal decoder is an

aggregation of other principal decoders.

concatenating-principal-decoder A principal decoder definition where the principal decoder is a

concatenation of other principal decoders.

constant-principal-decoder Definition of a principal decoder that always returns the same constant.

custom-principal-decoder Definition of a custom principal decoder.

x500-attribute-principal-decoder Definition of a X500 attribute based principal decoder.

Realm Mappers

Component Description

constant-realm-mapper Definition of a constant realm mapper that always returns the same value.

custom-realm-mapper Definition of a custom realm mapper

mapped-regex-realm-mapper Definition of a realm mapper implementation that first uses a regular

expression to extract the realm name, this is then converted using the

configured mapping of realm names.

simple-regex-realm-mapper Definition of a simple realm mapper that attempts to extract the realm name

using the capture group from the regular expression, if that does not

provide a match then the delegate realm mapper is used instead.

Latest WildFly Documentation

JBoss Community Documentation Page of 2003 2293

Realms

Component Description

aggregate-realm A realm definition that is an aggregation of two realms, one for the

authentication steps and one for loading the identity for the authorization steps.

caching-realm A realm definition that enables caching to another security realm. Caching

strategy is where least accessed entries are discardedLeast Recently Used

when maximum number of entries is reached.

custom-modifiable-realm Custom realm configured as being modifiable will be expected to implement the

 interface. By configuring a realm as being modifiableModifiableSecurityRealm

management operations will be made available to manipulate the realm.

custom-realm A custom realm definitions can implement either the s interfaceSecurityRealm

or the interface. Regardless of which interface isModifiableSecurityRealm

implemented management operations will not be exposed to manage the realm.

However other services that depend on the realm will still be able to perform a

type check and cast to gain access to the modification API.

filesystem-realm A simple security realm definition backed by the filesystem.

identity-realm A security realm definition where identities are represented in the management

model.

jdbc-realm A security realm definition backed by database using JDBC.

key-store-realm A security realm definition backed by a keystore.

ldap-realm A security realm definition backed by LDAP.

properties-realm A security realm definition backed by properties files.

token-realm A security realm definition capable of validating and extracting identities from

security tokens.

trust-managers A trust manager definition for creating the list as used to createTrustManager

an SSL context.

Permission Mappers

Component Description

custom-permission-mapper Definition of a custom permission mapper.

logical-permission-mapper Definition of a logical permission mapper.

simple-permission-mapper Definition of a simple configured permission mapper.

constant-permission-mapper Definition of a permission mapper that always returns the same constant.

Latest WildFly Documentation

JBoss Community Documentation Page of 2004 2293

Role Decoders

Component Description

custom-role-decoder Definition of a custom RoleDecoder

simple-role-decoder Definition of a simple RoleDecoder that takes a single attribute and maps it directly

to roles.

Role Mappers

Component Description

add-prefix-role-mapper A role mapper definition for a role mapper that adds a prefix to each provided.

add-suffix-role-mapper A role mapper definition for a role mapper that adds a suffix to each provided.

constant-role-mapper A role mapper definition where a constant set of roles is always returned.

aggregate-role-mapper A role mapper definition where the role mapper is an aggregation of other role

mappers.

logical-role-mapper A role mapper definition for a role mapper that performs a logical operation using

two referenced role mappers.

custom-role-mapper Definition of a custom role mapper

SSL Components

Component Description

client-ssl-context An SSLContext for use on the client side of a connection.

filtering-key-store A filtering keystore definition, which provides a keystore by filtering a .key-store

key-managers A key manager definition for creating the key manager list as used to create an SSL

context.

key-store A keystore definition.

ldap-key-store An LDAP keystore definition, which loads a keystore from an LDAP server.

server-ssl-context An SSL context for use on the server side of a connection.

Latest WildFly Documentation

JBoss Community Documentation Page of 2005 2293

Other

Component Description

aggregate-providers An aggregation of two or more resources.Provider[]

authentication-configuration An individual authentication configuration definition, which is used by clients

deployed to Wildfly and other resources for authenticating when making a

remote connection.

authentication-context An individual authentication context definition, which is used to supply an

 and when clients deployed to Wildflyssl-context authentication-configuration

and other resources make a remoting connection.

credential-store Credential store to keep alias for sensitive information such as passwords for

external services.

dir-context The configuration to connect to a directory (LDAP) server.

provider-loader A definition for a provider loader.

security-domain A security domain definition.

security-property A definition of a security property to be set.

15.3.3 Out of the Box Configuration

WildFly provides a set of components configured by default. While these components are ready to use, the

legacy subsystem and legacy core management authentication is still used by default. To configuresecurity

WildFly to use the these configured components as well as create new ones, see the Using the Elytron

 section.Subsystem

Default Component Description

ApplicationDomain The security domain uses ApplicationDomain

 and for authentication. ItApplicationRealm groups-to-roles

also uses to assign the logindefault-permission-mapper

permission.

ManagementDomain The security domain uses two securityManagementDomain

realms for authentication: with ManagementRealm

 and with . It also usesgroups-to-roles local super-user-mapper

 to assign the login permission.default-permission-mapper

local (security realm) The security realm does no authentication and sets thelocal

identity of principals to $local

Latest WildFly Documentation

JBoss Community Documentation Page of 2006 2293

ApplicationRealm The security realm is a properties realm thatApplicationRealm

authenticates principals using andapplication-users.properties

assigns roles using . These filesapplication-roles.properties

are located under , which by default,jboss.server.config.dir

maps to . They are alsoEAP_HOME/standalone/configuration

the same files used by the legacy security default

configuration.

ManagementRealm The security realm is a properties realmManagementRealm

that authenticates principals using andmgmt-users.properties

assigns roles using . These files aremgmt-groups.properties

located under , which by default, mapsjboss.server.config.dir

to . They are also theEAP_HOME/standalone/configuration

same files used by the legacy security default configuration.

default-permission-mapper The mapper is a constantdefault-permission-mapper

permission mapper that uses

 to assignorg.wildfly.security.auth.permission.LoginPermission

the login permission and

org.wildfly.extension.batch.jberet.deployment.BatchPermission

to assign permission for batch jobs. The batch permissions

are , , , , and which aligns with start stop restart abandon read

.javax.batch.operations.JobOperator

local (mapper) The mapper is a constant role mapper that maps to the local

 security realm. This is used to map authentication to the local

 security realm.local

groups-to-roles The mapper is a simple-role-decoder that willgroups-to-roles

decode the information of a principal and use it for the groups

 information.role

super-user-mapper The mapper is a constant role mapper thatsuper-user-mapper

maps the role to a principal.SuperUser

management-http-authentication The management-http-authentication

http-authentication-factory can be used for doing

authentication over http. It uses the global

provider-http-server-mechanism-factory to filter authentication

mechanism and uses for authenticatingManagementDomain

principals. It accepts the authentication mechanismsDIGEST

and exposes it as to applications.ManagementRealm

Latest WildFly Documentation

JBoss Community Documentation Page of 2007 2293

application-http-authentication The http-authentication-factoryapplication-http-authentication

can be used for doing authentication over http. It uses the

 provider-http-server-mechanism-factory to filterglobal

authentication mechanism and uses forApplicationDomain

authenticating principals. It accepts and BASIC FORM

authentication mechanisms and exposes as BASIC

 to applications.Application Realm

global (provider-http-server-mechanism-factory) This is the HTTP server factory mechanism definition used to

list the provided authentication mechanisms when creating an

http authentication factory.

management-sasl-authentication The management-sasl-authentication

sasl-authentication-factory can be used for authentication

using SASL. It uses the sasl-server-factory to filterconfigured

authentication mechanisms, which also uses the global

provider-sasl-server-factory to filter by provider names.

 uses the management-sasl-authentication

 security domain for authentication ofManagementDomain

principals. It also maps authentication using

 mechanisms using the realmJBOSS-LOCAL-USER local

mapper and authentication using to DIGEST-MD5

.ManagementRealm

application-sasl-authentication The sasl-authentication-factoryapplication-sasl-authentication

can be used for authentication using SASL. It uses the

 sasl-server-factory to filter authenticationconfigured

mechanisms, which also uses the global

provider-sasl-server-factory to filter by provider names.

 uses the application-sasl-authentication ApplicationDomain

security domain for authentication of principals.

global (provider-sasl-server-factory) This is the SASL server factory definition used to create SASL

authentication factories.

elytron

(mechanism-provider-filtering-sasl-server-factor)

This is used to filter which is usedsasl-authentication-factory

based on the provider. In this case, will match on the elytron

 provider name.WildFlyElytron

configured (configurable-sasl-server-factory) This is used to filter is used basedsasl-authentication-factory

on the mechanism name. In this case, will matchconfigured

on and . It also sets the JBOSS-LOCAL-USER DIGEST-MD5

 to .wildfly.sasl.local-user.default-user $local

combined-providers Is an aggregate provider that aggreates the and elytron

 provider loaders.openssl

elytron A provider loader

Latest WildFly Documentation

JBoss Community Documentation Page of 2008 2293

openssl A provider loader

Default WildFly Configuration

/subsystem=elytron:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {

 "default-authentication-context" => undefined,

 "final-providers" => undefined,

 "initial-providers" => "combined-providers",

 "add-prefix-role-mapper" => undefined,

 "add-suffix-role-mapper" => undefined,

 "aggregate-http-server-mechanism-factory" => undefined,

 "aggregate-principal-decoder" => undefined,

 "aggregate-principal-transformer" => undefined,

 "aggregate-providers" => {"combined-providers" => {"providers" => [

 "elytron",

 "openssl"

]}},

 "aggregate-realm" => undefined,

 "aggregate-role-mapper" => undefined,

 "aggregate-sasl-server-factory" => undefined,

 "authentication-configuration" => undefined,

 "authentication-context" => undefined,

 "caching-realm" => undefined,

 "chained-principal-transformer" => undefined,

 "client-ssl-context" => undefined,

 "concatenating-principal-decoder" => undefined,

 "configurable-http-server-mechanism-factory" => undefined,

 "configurable-sasl-server-factory" => {"configured" => {

 "filters" => [

 {"pattern-filter" => "JBOSS-LOCAL-USER"},

 {"pattern-filter" => "DIGEST-MD5"}

],

 "properties" => {"wildfly.sasl.local-user.default-user" => "$local"},

 "protocol" => undefined,

 "sasl-server-factory" => "elytron",

 "server-name" => undefined

 }},

 "constant-permission-mapper" => {"default-permission-mapper" => {"permissions" => [

 {"class-name" => "org.wildfly.security.auth.permission.LoginPermission"},

 {

 "class-name" => "org.wildfly.extension.batch.jberet.deployment.BatchPermission",

 "module" => "org.wildfly.extension.batch.jberet",

 "target-name" => "*"

 }

]}},

 "constant-principal-decoder" => undefined,

 "constant-principal-transformer" => undefined,

 "constant-realm-mapper" => {"local" => {"realm-name" => "local"}},

 "constant-role-mapper" => {"super-user-mapper" => {"roles" => ["SuperUser"]}},

 "credential-store" => undefined,

 "custom-credential-security-factory" => undefined,

 "custom-modifiable-realm" => undefined,

Latest WildFly Documentation

JBoss Community Documentation Page of 2009 2293

 "custom-permission-mapper" => undefined,

 "custom-principal-decoder" => undefined,

 "custom-principal-transformer" => undefined,

 "custom-realm" => undefined,

 "custom-realm-mapper" => undefined,

 "custom-role-decoder" => undefined,

 "custom-role-mapper" => undefined,

 "dir-context" => undefined,

 "filesystem-realm" => undefined,

 "filtering-key-store" => undefined,

 "http-authentication-factory" => {

 "management-http-authentication" => {

 "http-server-mechanism-factory" => "global",

 "mechanism-configurations" => [{

 "mechanism-name" => "DIGEST",

 "mechanism-realm-configurations" => [{"realm-name" => "ManagementRealm"}]

 }],

 "security-domain" => "ManagementDomain"

 },

 "application-http-authentication" => {

 "http-server-mechanism-factory" => "global",

 "mechanism-configurations" => [

 {

 "mechanism-name" => "BASIC",

 "mechanism-realm-configurations" => [{"realm-name" => "Application

Realm"}]

 },

 {"mechanism-name" => "FORM"}

],

 "security-domain" => "ApplicationDomain"

 }

 },

 "identity-realm" => {"local" => {

 "attribute-name" => undefined,

 "attribute-values" => undefined,

 "identity" => "$local"

 }},

 "jdbc-realm" => undefined,

 "kerberos-security-factory" => undefined,

 "key-managers" => undefined,

 "key-store" => undefined,

 "key-store-realm" => undefined,

 "ldap-key-store" => undefined,

 "ldap-realm" => undefined,

 "logical-permission-mapper" => undefined,

 "logical-role-mapper" => undefined,

 "mapped-regex-realm-mapper" => undefined,

 "mechanism-provider-filtering-sasl-server-factory" => {"elytron" => {

 "enabling" => true,

 "filters" => [{"provider-name" => "WildFlyElytron"}],

 "sasl-server-factory" => "global"

 }},

 "properties-realm" => {

 "ApplicationRealm" => {

 "groups-attribute" => "groups",

 "groups-properties" => {

 "path" => "application-roles.properties",

 "relative-to" => "jboss.server.config.dir"

Latest WildFly Documentation

JBoss Community Documentation Page of 2010 2293

 },

 "users-properties" => {

 "path" => "application-users.properties",

 "relative-to" => "jboss.server.config.dir",

 "digest-realm-name" => "ApplicationRealm"

 }

 },

 "ManagementRealm" => {

 "groups-attribute" => "groups",

 "groups-properties" => {

 "path" => "mgmt-groups.properties",

 "relative-to" => "jboss.server.config.dir"

 },

 "users-properties" => {

 "path" => "mgmt-users.properties",

 "relative-to" => "jboss.server.config.dir",

 "digest-realm-name" => "ManagementRealm"

 }

 }

 },

 "provider-http-server-mechanism-factory" => {"global" => {"providers" => undefined}},

 "provider-loader" => {

 "elytron" => {

 "class-names" => undefined,

 "configuration" => undefined,

 "module" => "org.wildfly.security.elytron",

 "path" => undefined,

 "relative-to" => undefined

 },

 "openssl" => {

 "class-names" => undefined,

 "configuration" => undefined,

 "module" => "org.wildfly.openssl",

 "path" => undefined,

 "relative-to" => undefined

 }

 },

 "provider-sasl-server-factory" => {"global" => {"providers" => undefined}},

 "regex-principal-transformer" => undefined,

 "regex-validating-principal-transformer" => undefined,

 "sasl-authentication-factory" => {

 "management-sasl-authentication" => {

 "mechanism-configurations" => [

 {

 "mechanism-name" => "JBOSS-LOCAL-USER",

 "realm-mapper" => "local"

 },

 {

 "mechanism-name" => "DIGEST-MD5",

 "mechanism-realm-configurations" => [{"realm-name" =>

"ManagementRealm"}]

 }

],

 "sasl-server-factory" => "configured",

 "security-domain" => "ManagementDomain"

 },

 "application-sasl-authentication" => {

 "mechanism-configurations" => undefined,

Latest WildFly Documentation

JBoss Community Documentation Page of 2011 2293

 "sasl-server-factory" => "configured",

 "security-domain" => "ApplicationDomain"

 }

 },

 "security-domain" => {

 "ApplicationDomain" => {

 "default-realm" => "ApplicationRealm",

 "permission-mapper" => "default-permission-mapper",

 "post-realm-principal-transformer" => undefined,

 "pre-realm-principal-transformer" => undefined,

 "principal-decoder" => undefined,

 "realm-mapper" => undefined,

 "realms" => [{

 "realm" => "ApplicationRealm",

 "role-decoder" => "groups-to-roles"

 }],

 "role-mapper" => undefined,

 "trusted-security-domains" => undefined

 },

 "ManagementDomain" => {

 "default-realm" => "ManagementRealm",

 "permission-mapper" => "default-permission-mapper",

 "post-realm-principal-transformer" => undefined,

 "pre-realm-principal-transformer" => undefined,

 "principal-decoder" => undefined,

 "realm-mapper" => undefined,

 "realms" => [

 {

 "realm" => "ManagementRealm",

 "role-decoder" => "groups-to-roles"

 },

 {

 "realm" => "local",

 "role-mapper" => "super-user-mapper"

 }

],

 "role-mapper" => undefined,

 "trusted-security-domains" => undefined

 }

 },

 "security-property" => undefined,

 "server-ssl-context" => undefined,

 "service-loader-http-server-mechanism-factory" => undefined,

 "service-loader-sasl-server-factory" => undefined,

 "simple-permission-mapper" => undefined,

 "simple-regex-realm-mapper" => undefined,

 "simple-role-decoder" => {"groups-to-roles" => {"attribute" => "groups"}},

 "token-realm" => undefined,

 "trust-managers" => undefined,

 "x500-attribute-principal-decoder" => undefined

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 2012 2293

15.3.4 Default Application Authentication Configuration

By default, applications are secured using legacy security domains. Applications must specify a security

domain in their as well as the authentication method. If no security domain is specified by theweb.xml

application, WildFly will use the provided legacy security domain.other

Update WildFly to Use the Default Elytron Components for Application

Authentication

/subsystem=undertow/application-security-domain=exampleApplicationDomain:add(http-authentication-factory=application-http-authentication)

Default Elytron Application HTTP Authentication Configuration
By default, the http-authentication-factory is provided for application httpapplication-http-authentication

authentication.

/subsystem=elytron/http-authentication-factory=application-http-authentication:read-resource()

{

 "outcome" => "success",

 "result" => {

 "http-server-mechanism-factory" => "global",

 "mechanism-configurations" => [

 {

 "mechanism-name" => "BASIC",

 "mechanism-realm-configurations" => [{"realm-name" => "Application Realm"}]

 },

 {"mechanism-name" => "FORM"}

],

 "security-domain" => "ApplicationDomain"

 }

}

The http-authentication-factory is configured to use the application-http-authentication ApplicationDomain

security domain.

Latest WildFly Documentation

JBoss Community Documentation Page of 2013 2293

/subsystem=elytron/security-domain=ApplicationDomain:read-resource()

{

 "outcome" => "success",

 "result" => {

 "default-realm" => "ApplicationRealm",

 "permission-mapper" => "default-permission-mapper",

 "post-realm-principal-transformer" => undefined,

 "pre-realm-principal-transformer" => undefined,

 "principal-decoder" => undefined,

 "realm-mapper" => undefined,

 "realms" => [{

 "realm" => "ApplicationRealm",

 "role-decoder" => "groups-to-roles"

 }],

 "role-mapper" => undefined,

 "trusted-security-domains" => undefined

 }

}

The security domain is backed by the Elytron security realm, which is aApplicationDomain ApplicationRealm

properties-based realm.

/subsystem=elytron/properties-realm=ApplicationRealm:read-resource()

{

 "outcome" => "success",

 "result" => {

 "groups-attribute" => "groups",

 "groups-properties" => {

 "path" => "application-roles.properties",

 "relative-to" => "jboss.server.config.dir"

 },

 "users-properties" => {

 "path" => "application-users.properties",

 "relative-to" => "jboss.server.config.dir",

 "digest-realm-name" => "ApplicationRealm"

 }

 }

}

15.3.5 Default Management Authentication Configuration

By default, the WildFly management interfaces are secured by the legacy core management authentication.

Default Configuration

Latest WildFly Documentation

JBoss Community Documentation Page of 2014 2293

/core-service=management/management-interface=http-interface:read-resource()

{

 "outcome" => "success",

 "result" => {

 "allowed-origins" => undefined,

 "console-enabled" => true,

 "http-authentication-factory" => undefined,

 "http-upgrade" => {"enabled" => true},

 "http-upgrade-enabled" => true,

 "sasl-protocol" => "remote",

 "secure-socket-binding" => undefined,

 "security-realm" => "ManagementRealm",

 "server-name" => undefined,

 "socket-binding" => "management-http",

 "ssl-context" => undefined

 }

WildFly does provide and in the management-http-authentication management-sasl-authentication elytron

subsystem for securing the management interfaces as well.

Latest WildFly Documentation

JBoss Community Documentation Page of 2015 2293

Update WildFly to Use the Default Elytron Components for Management

Authentication

Set http-authentication-factory to use management-http-authentication

/core-service=management/management-interface=http-interface:write-attribute(\

 name=http-authentication-factory, \

 value=management-http-authentication \

)

Set sasl-authentication-factory to use management-sasl-authentication

/core-service=management/management-interface=http-interface:write-attribute(\

 name=http-upgrade.sasl-authentication-factory, \

 value=management-sasl-authentication \

)

Undefine security-realm

/core-service=management/management-interface=http-interface:undefine-attribute(name=security-realm)

Reload WildFly for the changes to take affect.

reload

The management interfaces are now secured using the default components provided by the 'elytron'

subsystem.

Default Elytron Management HTTP Authentication Configuration
When you access the management interface over HTTP, for example when using the web-based

management console, WildFly will use the http-authentication-factory.management-http-authentication

Latest WildFly Documentation

JBoss Community Documentation Page of 2016 2293

/subsystem=elytron/http-authentication-factory=management-http-authentication:read-resource()

{

 "outcome" => "success",

 "result" => {

 "http-server-mechanism-factory" => "global",

 "mechanism-configurations" => [{

 "mechanism-name" => "DIGEST",

 "mechanism-realm-configurations" => [{"realm-name" => "ManagementRealm"}]

 }],

 "security-domain" => "ManagementDomain"

 }

}

The http-authentication-factory, is configured to use the management-http-authentication

 security domain.ManagementDomain

/subsystem=elytron/security-domain=ManagementDomain:read-resource()

{

 "outcome" => "success",

 "result" => {

 "default-realm" => "ManagementRealm",

 "permission-mapper" => "default-permission-mapper",

 "post-realm-principal-transformer" => undefined,

 "pre-realm-principal-transformer" => undefined,

 "principal-decoder" => undefined,

 "realm-mapper" => undefined,

 "realms" => [

 {

 "realm" => "ManagementRealm",

 "role-decoder" => "groups-to-roles"

 },

 {

 "realm" => "local",

 "role-mapper" => "super-user-mapper"

 }

],

 "role-mapper" => undefined,

 "trusted-security-domains" => undefined

 }

}

The security domain is backed by the Elytron security realm, whichManagementDomain ManagementRealm

is a properties-based realm.

Latest WildFly Documentation

JBoss Community Documentation Page of 2017 2293

/subsystem=elytron/properties-realm=ManagementRealm:read-resource()

{

 "outcome" => "success",

 "result" => {

 "groups-attribute" => "groups",

 "groups-properties" => {

 "path" => "mgmt-groups.properties",

 "relative-to" => "jboss.server.config.dir"

 },

 "plain-text" => false,

 "users-properties" => {

 "path" => "mgmt-users.properties",

 "relative-to" => "jboss.server.config.dir"

 }

 }

}

Default Elytron Management CLI Authentication
By default, the management CLI () is configured to connect over .jboss-cli.sh remotehttp

Default jboss-cli.xml

<jboss-cli xmlns="urn:jboss:cli:3.1">

 <default-protocol use-legacy-override="true">remotehttp</default-protocol>

 <!-- The default controller to connect to when 'connect' command is executed w/o arguments

-->

 <default-controller>

 <protocol>remotehttp</protocol>

 <host>localhost</host>

 <port>9990</port>

 </default-controller>

This will establish a connection over HTTP and use HTTP upgrade to change the communication protocol to

. The HTTP upgrade connection is secured in the section of the using a native http-upgrade http-interface

.sasl-authentication-factory

Example Configuration with Default Components

Latest WildFly Documentation

JBoss Community Documentation Page of 2018 2293

/core-service=management/management-interface=http-interface:read-resource()

{

 "outcome" => "success",

 "result" => {

 "allowed-origins" => undefined,

 "console-enabled" => true,

 "http-authentication-factory" => "management-http-authentication",

 "http-upgrade" => {

 "enabled" => true,

 "sasl-authentication-factory" => "management-sasl-authentication"

 },

 "http-upgrade-enabled" => true,

 "sasl-protocol" => "remote",

 "secure-socket-binding" => undefined,

 "security-realm" => undefined,

 "server-name" => undefined,

 "socket-binding" => "management-http",

 "ssl-context" => undefined

 }

}

The default sasl-authentication-factory is .management-sasl-authentication

/subsystem=elytron/sasl-authentication-factory=management-sasl-authentication:read-resource()

{

 "outcome" => "success",

 "result" => {

 "mechanism-configurations" => [

 {

 "mechanism-name" => "JBOSS-LOCAL-USER",

 "realm-mapper" => "local"

 },

 {

 "mechanism-name" => "DIGEST-MD5",

 "mechanism-realm-configurations" => [{"realm-name" => "ManagementRealm"}]

 }

],

 "sasl-server-factory" => "configured",

 "security-domain" => "ManagementDomain"

 }

}

The sasl-authentication-factory specifies and management-sasl-authentication JBOSS-LOCAL-USER

 mechanisms.DIGEST-MD5

JBOSS-LOCAL-USER Realm

Latest WildFly Documentation

JBoss Community Documentation Page of 2019 2293

/subsystem=elytron/identity-realm=local:read-resource()

{

 "outcome" => "success",

 "result" => {

 "attribute-name" => undefined,

 "attribute-values" => undefined,

 "identity" => "$local"

 }

}

The Elytron security realm is for handling silent authentication for local users.local

The Elytron security realm is the same realm used in the ManagementRealm

 http-authentication-factory.management-http-authentication

15.3.6 Comparing Legacy Approaches to Elytron Approaches

Legacy Approach Elytron Approach

UsersRoles Login Module Configure Authentication with a Properties File-Based Identity Store

Database Login Module Configure Authentication with a Database Identity Store

Ldap, LdapExtended,

AdvancedLdap, AdvancedADLdap

Login Modules

Configure Authentication with an LDAP-Based Identity Store

Certificate, Certificate Roles Login

Module

Configure Authentication with Certificates

Kerberos, SPNEGO Login Modules Configure Authentication with a Kerberos-Based Identity Store

Kerberos, SPNEGO Login Modules

with Fallback

Configure Authentication with a Form as a Fallback for Kerberos

Vault Create and Use a Credential Store

Legacy Security Realms , Secure the Management Interfaces with a New Identity Store Silent

Authentication

RBAC Using RBAC with Elytron

Legacy Security Realms for

One-way and Two-way SSL/TLS for

Applications

, Enable One-way SSL/TLS for Applications Enable Two-way

SSL/TLS in WildFly for Applications

Legacy Security Realms for

One-way and Two-way SSL/TLS for

Management Interfaces

Enable One-way for the Management Interfaces Using the Elytron

, Subsystem Enable Two-way SSL/TLS for the Management

Interfaces using the Elytron Subsystem

Latest WildFly Documentation

JBoss Community Documentation Page of 2020 2293

15.4 Using the Elytron Subsystem

Set Up and Configure Authentication for Applications

Configure Authentication with a Properties File-Based Identity Store

Configure Authentication with a Filesystem-Based Identity Store

Configure Authentication with a Database Identity Store

Configure Authentication with an LDAP-Based Identity Store

Configure Authentication with Certificates

Configure Authentication with a Kerberos-Based Identity Store

Configure Authentication with a Form as a Fallback for Kerberos

Configure Applications to Use Elytron or Legacy Security for Authentication

Override an Application's Authentication Configuration

Create and Use a Credential Store

Set up and Configure Authentication for the Management Interfaces

Secure the Management Interfaces with a New Identity Store

Silent Authentication

Using RBAC with Elytron

Configure SSL/TLS

Enable One-way SSL/TLS for Applications

Enable Two-way SSL/TLS in WildFly for Applications

Enable One-way SSL/TLS for the Management Interfaces Using the Elytron Subsystem

Enable Two-way SSL/TLS for the Management Interfaces using the Elytron Subsystem

Using an ldap-key-store

Using a filtering-key-store

Reload a Keystore

Check the Content of a Keystore by Alias

Custom Components

Configuring the Elytron and Security Subsystems

Enable and Disable the Elytron Subsystem

Enable and Disable the Security Subsystem

Use the Elytron and Security Subsystems in Parallel

Creating Elytron Subsystem Components

Create an Elytron Security Realm

Create an Elytron Role Decoder

Create an Elytron Permission Mapper

Create an Elytron Role Mapper

Create an Elytron Security Domain

Create an Elytron Authentication Factory

Create an Elytron Policy Provider

Latest WildFly Documentation

JBoss Community Documentation Page of 2021 2293

15.4.1 Set Up and Configure Authentication for Applications

Configure Authentication with a Properties File-Based Identity Store

Create properties files:
You need to create two properties files: one that maps user to passwords and another that maps users to

roles. Usually these files are located in the directory and follow the naming conventionjboss.server.config.dir

 and , but other locations and names may be used. The *-users.properties *-roles.properties

 file must also contain a reference to the , which you will create in the next*-users.properties properties-realm

step: #$REALM_NAME=YOUR_PROPERTIES_REALM_NAME$

Example user to password file: example-users.properties

#$REALM_NAME=examplePropRealm$

user1=password123

user2=password123

Example user to roles file: example-roles.properties

user1=Admin

user2=Guest

Configure a properties-realm in WildFly:

/subsystem=elytron/properties-realm=examplePropRealm:add(groups-attribute=groups,groups-properties={path=example-roles.properties,relative-to=jboss.server.config.dir},users-properties={path=example-users.properties,relative-to=jboss.server.config.dir,plain-text=true})

The name of the is , which is used in the previous step in the properties-realm examplePropRealm

 file. Also, if your properties files are located outside of , thenexample-users.properties jboss.server.config.dir

you need to change the and values appropriately.path relative-to

Configure a security-domain :

/subsystem=elytron/security-domain=exampleSD:add(realms=[{realm=examplePropRealm,role-decoder=groups-to-roles}],default-realm=examplePropRealm,permission-mapper=default-permission-mapper)

Configure an http-authentication-factory :

/subsystem=elytron/http-authentication-factory=example-http-auth:add(http-server-mechanism-factory=global,security-domain=exampleSD,mechanism-configurations=[{mechanism-name=BASIC,mechanism-realm-configurations=[{realm-name=exampleApplicationDomain}]}])

This example shows creating an using authentication, but it could behttp-authentication-factory BASIC

updated to other mechanisms such as .FORM

Latest WildFly Documentation

JBoss Community Documentation Page of 2022 2293

Configure an application-security-domain in the Undertow subsystem:

/subsystem=undertow/application-security-domain=exampleApplicationDomain:add(http-authentication-factory=example-http-auth)

Configure your application's web.xml and jboss-web.xml .
Your application's and must be updated to use the youweb.xml jboss-web.xml application-security-domain

configured in WildFly. An example of this is available in the Configure Applications to Use Elytron or Legacy

 section.Security for Authentication

Configure Authentication with a Filesystem-Based Identity Store

Chose a directory for users:
You need a directory where your users will be stored. In this example, we are using a directory called

 located in .fs-realm-users jboss.server.config.dir

Configure a filesystem-realm in WildFly:

/subsystem=elytron/filesystem-realm=exampleFsRealm:add(path=fs-realm-users,relative-to=jboss.server.config.dir)

If your directory is located outside of , then you need to change the and jboss.server.config.dir path relative-to

values appropriately.

Add a user:
When using the , you can add users using the management CLI.filesystem-realm

/subsystem=elytron/filesystem-realm=exampleFsRealm/identity=user1:add()

/subsystem=elytron/filesystem-realm=exampleFsRealm/identity=user1:set-password(

clear={password="password123"})

/subsystem=elytron/filesystem-realm=exampleFsRealm/identity=user1:add-attribute(name=Roles,

value=["Admin","Guest"])

Add a simple-role-decoder :

/subsystem=elytron/simple-role-decoder=from-roles-attribute:add(attribute=Roles)

This decodes a principal's roles from the attribute. You can change this value ifsimple-role-decoder Roles

your roles are in a different attribute.

Configure a security-domain :

/subsystem=elytron/security-domain=exampleFsSD:add(realms=[{realm=exampleFsRealm,role-decoder=from-roles-attribute}],default-realm=exampleFsRealm,permission-mapper=default-permission-mapper)

Latest WildFly Documentation

JBoss Community Documentation Page of 2023 2293

Configure an http-authentication-factory :

/subsystem=elytron/http-authentication-factory=example-fs-http-auth:add(http-server-mechanism-factory=global,security-domain=exampleFsSD,mechanism-configurations=[{mechanism-name=BASIC,mechanism-realm-configurations=[{realm-name=exampleApplicationDomain}]}])

This example shows creating an using authentication, but it could behttp-authentication-factory BASIC

updated to other mechanisms such as .FORM

Configure an application-security-domain in the Undertow subsystem:

/subsystem=undertow/application-security-domain=exampleApplicationDomain:add(http-authentication-factory=example-fs-http-auth)

Configure your application's web.xml and jboss-web.xml .
Your application's and must be updated to use the youweb.xml jboss-web.xml application-security-domain

configured in WildFly. An example of this is available in the Configure Applications to Use Elytron or Legacy

 section.Security for Authentication

Your application is now using a filesystem-based identity store for authentication.

Configure Authentication with a Database Identity Store

Determine your database format for usernames, passwords, and roles:
To set up authentication using a database for an identity store, you need to determine how your usernames,

passwords, and roles are stored in that database. In this example, we are using a single table with the

following sample data:

username password roles

user1 password123 Admin

user2 password123 Guest

Configure a datasource:
To connect to a database from WildFly, you must have the appropriate database driver deployed as well as

a datasource configured. This example shows deploying the driver for postgres and configuring a datasource

in WildFly:

deploy /path/to/postgresql-9.4.1210.jar

data-source add --name=examplePostgresDS --jndi-name=java:jboss/examplePostgresDS

--driver-name=postgresql-9.4.1210.jar

--connection-url=jdbc:postgresql://localhost:5432/postgresdb --user-name=postgresAdmin

--password=mysecretpassword

Latest WildFly Documentation

JBoss Community Documentation Page of 2024 2293

Configure a jdbc-realm in WildFly:

/subsystem=elytron/jdbc-realm=exampleDbRealm:add(principal-query=[{sql="SELECT password,roles

FROM wildfly_users WHERE

username=?",data-source=examplePostgresDS,clear-password-mapper={password-index=1},attribute-mapping=[{index=2,to=groups}]}])

 The above example shows how to obtain passwords and roles from a single . You canNOTE: principal-query

also create additional with attributes if you require multiple queries toprincipal-query attribute-mapping

obtain roles or additional authentication or authorization information.

Configure a security-domain :

/subsystem=elytron/security-domain=exampleDbSD:add(realms=[{realm=exampleDbRealm,role-decoder=groups-to-roles}],default-realm=exampleDbRealm,permission-mapper=default-permission-mapper)

Configure an http-authentication-factory :

/subsystem=elytron/http-authentication-factory=example-db-http-auth:add(http-server-mechanism-factory=global,security-domain=exampleDbSD,mechanism-configurations=[{mechanism-name=BASIC,mechanism-realm-configurations=[{realm-name=exampleDbSD}]}])

This example shows creating an using authentication, but it could behttp-authentication-factory BASIC

updated to other mechanisms such as .FORM

Configure an application-security-domain in the Undertow subsystem:

/subsystem=undertow/application-security-domain=exampleApplicationDomain:add(http-authentication-factory=example-db-http-auth)

Configure your application's web.xml and jboss-web.xml .
Your application's and must be updated to use the youweb.xml jboss-web.xml application-security-domain

configured in WildFly. An example of this is available in the Configure Applications to Use Elytron or Legacy

 section.Security for Authentication

Latest WildFly Documentation

JBoss Community Documentation Page of 2025 2293

Configure Authentication with an LDAP-Based Identity Store

Determine your LDAP format for usernames, passwords, and roles:
To set up authentication using an LDAP server for an identity store, you need to determine how your

usernames, passwords, and roles are stored. In this example, we are using the following structure:

dn: dc=wildfly,dc=org

dc: wildfly

objectClass: top

objectClass: domain

dn: ou=Users,dc=wildfly,dc=org

objectClass: organizationalUnit

objectClass: top

ou: Users

dn: uid=jsmith,ou=Users,dc=wildfly,dc=org

objectClass: top

objectClass: person

objectClass: inetOrgPerson

cn: John Smith

sn: smith

uid: jsmith

userPassword: password123

dn: ou=Roles,dc=wildfly,dc=org

objectclass: top

objectclass: organizationalUnit

ou: Roles

dn: cn=Admin,ou=Roles,dc=wildfly,dc=org

objectClass: top

objectClass: groupOfNames

cn: Admin

member: uid=jsmith,ou=Users,dc=wildfly,dc=org

Configure a dir-context :
To connect to the LDAP server from WildFly, you need to configure a that provides the URL asdir-context

well as the principal used to connect to the server.

/subsystem=elytron/dir-context=exampleDC:add(url="ldap://127.0.0.1:10389",principal="uid=admin,ou=system",credential-reference={clear-text="secret"})

Configure an ldap-realm in WildFly:

/subsystem=elytron/ldap-realm=exampleLR:add(dir-context=exampleDC,identity-mapping={search-base-dn="ou=Users,dc=wildfly,dc=org",rdn-identifier="uid",user-password-mapper={from="userPassword"},attribute-mapping=[{filter-base-dn="ou=Roles,dc=wildfly,dc=org",filter="(&(objectClass=groupOfNames)(member={1}))",from="cn",to="Roles"}]})

Latest WildFly Documentation

JBoss Community Documentation Page of 2026 2293

Add a simple-role-decoder :

/subsystem=elytron/simple-role-decoder=from-roles-attribute:add(attribute=Roles)

Configure a security-domain :

/subsystem=elytron/security-domain=exampleLdapSD:add(realms=[{realm=exampleLR,role-decoder=from-roles-attribute}],default-realm=exampleLR,permission-mapper=default-permission-mapper)

Configure an http-authentication-factory :

/subsystem=elytron/http-authentication-factory=example-ldap-http-auth:add(http-server-mechanism-factory=global,security-domain=exampleLdapSD,mechanism-configurations=[{mechanism-name=BASIC,mechanism-realm-configurations=[{realm-name=exampleApplicationDomain}]}])

This example shows creating an using authentication, but it could behttp-authentication-factory BASIC

updated to other mechanisms such as .FORM

Configure an application-security-domain in the Undertow subsystem:

/subsystem=undertow/application-security-domain=exampleApplicationDomain:add(http-authentication-factory=example-ldap-http-auth)

Configure your application's web.xml and jboss-web.xml .
Your application's and must be updated to use the youweb.xml jboss-web.xml application-security-domain

configured in WildFly. An example of this is available in the Configure Applications to Use Elytron or Legacy

 section.Security for Authentication

 In cases where you configure an LDAP server in the subsystem for authentication andIMPORTANT: elytron

that LDAP server then becomes unreachable, WildFly will return a , or internal server error, error code500

when attempting authentication using that unreachable LDAP server. This behavior differs from the legacy

 subsystem, which will return a , or unauthorized, error code under the same conditions.security 401

Configure Authentication with Certificates
 Before you can set up certificate-based authentication, you must have two-way SSLIMPORTANT:

configured.

Configure a key-store-realm .

/subsystem=elytron/key-store-realm=ksRealm:add(key-store=twoWayTS)

You must configure this realm with a truststore that contains the client's certificate. The authentication

process uses the same certificate presented by the client during the two-way SSL handshake.

Latest WildFly Documentation

JBoss Community Documentation Page of 2027 2293

Create a Decoder.
You need to create a to decode the principal you get from your certificate.x500-attribute-principal-decoder

The below example will decode the principal based on the first value.CN

/subsystem=elytron/x500-attribute-principal-decoder=CNDecoder:add(oid="2.5.4.3",maximum-segments=1)

For example, if the full was , DN CN=client,CN=client-certificate,DC=example,DC=jboss,DC=org CNDecoder

would decode the principal as . This decoded principal is used as the value to lookup a certificateclient alias

in the truststore configured in .ksRealm

 The decoded principal * * must be the value you set in your server's truststore forIMPORTANT: MUST alias

the client's certificate.

Add a constant-role-mapper for assigning roles.
This is example uses a to assign roles to a principal from but otherconstant-role-mapper ksRealm

approaches may also be used.

/subsystem=elytron/constant-role-mapper=constantClientCertRole:add(roles=[Admin,Guest])

Configure a security-domain .

/subsystem=elytron/security-domain=exampleCertSD:add(realms=[{realm=ksRealm}],default-realm=ksRealm,permission-mapper=default-permission-mapper,principal-decoder=CNDecoder,role-mapper=constantClientCertRole)

Configure an http-authentication-factory .

/subsystem=elytron/http-authentication-factory=exampleCertHttpAuth:add(http-server-mechanism-factory=global,security-domain=exampleCertSD,mechanism-configurations=[{mechanism-name=CLIENT_CERT,mechanism-realm-configurations=[{realm-name=exampleApplicationDomain}]}])

Configure an application-security-domain in the Undertow subsystem.

/subsystem=undertow/application-security-domain=exampleApplicationDomain:add(http-authentication-factory=exampleCertHttpAuth)

Update server-ssl-context .

/subsystem=elytron/server-ssl-context=twoWaySSC:write-attribute(name=security-domain,value=exampleCertSD)
/subsystem=elytron/server-ssl-context=twoWaySSC:write-attribute(name=authentication-optional,

value=true)

Latest WildFly Documentation

JBoss Community Documentation Page of 2028 2293

Configure your application's web.xml and jboss-web.xml .
Your application's and must be updated to use the youweb.xml jboss-web.xml application-security-domain

configured in WildFly. An example of this is available in the Configure Applications to Use Elytron or Legacy

 section.Security for Authentication

In addition, you need to update your to use as its authentication method.web.xml CLIENT-CERT

<login-config>

 <auth-method>CLIENT-CERT</auth-method>

 <realm-name>exampleApplicationDomain</realm-name>

</login-config>

Configure Authentication with a Kerberos-Based Identity Store
: The following steps assume you have a working KDC and Kerberos domain as well as yourIMPORTANT

client browsers configured.

Configure a kerberos-security-factory .

/subsystem=elytron/kerberos-security-factory=krbSF:add(principal="HTTP/host@REALM",path="/path/to/http.keytab",mechanism-oids=[1.2.840.113554.1.2.2,1.3.6.1.5.5.2])

Configure the system properties for Kerberos.
Depending on how your environment is configured, you will need to set some of the system properties

below.

System Property Description

java.security.krb5.kdc The host name of the KDC.

java.security.krb5.realm The name of the realm.

java.security.krb5.conf The path to the configuration file.krb5.conf

sun.security.krb5.debug If , debugging mode will be enabled.true

To configure a system property in WildFly:

/system-property=java.security.krb5.conf:add(value="/path/to/krb5.conf")

Latest WildFly Documentation

JBoss Community Documentation Page of 2029 2293

Configure an Eltyron security realm for assigning roles.
The the client's Kerberos token will provide the principal, but you need a way to map that principal to a role

for your application. There are several ways to accomplish this, but this example creates a ,filesystem-realm

adds a user to the realm that matches the principal from the Kerberos token, and assigns roles to that user.

/subsystem=elytron/filesystem-realm=exampleFsRealm:add(path=fs-realm-users,relative-to=jboss.server.config.dir)
/subsystem=elytron/filesystem-realm=exampleFsRealm/identity=user1@REALM:add()
/subsystem=elytron/filesystem-realm=exampleFsRealm/identity=user1@REALM:add-attribute(name=Roles,

value=["Admin","Guest"])

Add a simple-role-decoder .

/subsystem=elytron/simple-role-decoder=from-roles-attribute:add(attribute=Roles)

This decodes a principal's roles from the attribute. You can change this value ifsimple-role-decoder Roles

your roles are in a different attribute.

Configure a security-domain .

/subsystem=elytron/security-domain=exampleFsSD:add(realms=[{realm=exampleFsRealm,role-decoder=from-roles-attribute}],default-realm=exampleFsRealm,permission-mapper=default-permission-mapper)

Configure an http-authentication-factory that uses the kerberos-security-factory .

/subsystem=elytron/http-authentication-factory=example-krb-http-auth:add(http-server-mechanism-factory=global,security-domain=exampleFsSD,mechanism-configurations=[{mechanism-name=SPNEGO,mechanism-realm-configurations=[{realm-name=exampleFsSD}],credential-security-factory=krbSF}])

Configure an application-security-domain in the Undertow subsystem:

/subsystem=undertow/application-security-domain=exampleApplicationDomain:add(http-authentication-factory=example-krb-http-auth)

Configure your application's web.xml , jboss-web.xml and

jboss-deployment-structure.xml .
Your application's and must be updated to use the youweb.xml jboss-web.xml application-security-domain

configured in WildFly. An example of this is available in the Configure Applications to Use Elytron or Legacy

 section.Security for Authentication

In addition, you need to update your to use as its authentication method.web.xml SPNEGO

<login-config>

 <auth-method>SPNEGO</auth-method>

 <realm-name>exampleApplicationDomain</realm-name>

</login-config>

Latest WildFly Documentation

JBoss Community Documentation Page of 2030 2293

Configure Authentication with a Form as a Fallback for Kerberos

Configure kerberos-based authentication.
Configuring kerberos-based authentication is covered in a previous section.

Add a mechanism for FORM authentication in the http-authentication-factory .
You can use the existing you configured for kerberos-based authentication andhttp-authentication-factory

and an additional mechanism for authentication.FORM

/subsystem=elytron/http-authentication-factory=example-krb-http-auth:list-add(name=mechanism-configurations,

value={mechanism-name=FORM})

Add additional fallback principals.
The existing configuration for kerberos-based authentication should already have a security realm configured

for mapping principals from kerberos token to roles for the application. You can add additional users for

fallback authentication to that realm. For example if you used a , you can simply create afilesystem-realm

new user with the appropriate roles:

/subsystem=elytron/filesystem-realm=exampleFsRealm/identity=fallbackUser1:add()

/subsystem=elytron/filesystem-realm=exampleFsRealm/identity=fallbackUser1:set-password(clear={password="password123"})
/subsystem=elytron/filesystem-realm=exampleFsRealm/identity=fallbackUser1:add-attribute(name=Roles,

value=["Admin","Guest"])

Update the web.xml for FORM fallback.
You need to update the to use the value for the , which will use web.xml SPNEGO,FORM auth-method

 as a fallback authentication method if fails. You also need to specify the location of yourFORM SPNEGO

login and error pages.

<login-config>

 <auth-method>SPNEGO,FORM</auth-method>

 <realm-name>exampleApplicationDomain</realm-name>

 <form-login-config>

 <form-login-page>/login.jsp</form-login-page>

 <form-error-page>/error.jsp</form-error-page>

 </form-login-config>

</login-config>

Configure Applications to Use Elytron or Legacy Security for

Authentication
After you have configured the or legacy subsystems for authentication, you need to configureelytron security

your application to use it.

Latest WildFly Documentation

JBoss Community Documentation Page of 2031 2293

Configure your application's web.xml .
Your application's needs to be configured to use the appropriate authentication method. Whenweb.xml

using , this is defined in the you created. When using the legacy elytron http-authentication-factory security

subsystem, this depends on your login module and the type of authentication you want to configure.

Example with Authenticationweb.xml BASIC

<web-app>

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>secure</web-resource-name>

 <url-pattern>/secure/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>Admin</role-name>

 </auth-constraint>

 </security-constraint>

 <security-role>

 <description>The role that is required to log in to /secure/*</description>

 <role-name>Admin</role-name>

 </security-role>

 <login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>exampleApplicationDomain</realm-name>

 </login-config>

</web-app>

Latest WildFly Documentation

JBoss Community Documentation Page of 2032 2293

Configure your application to use a security domain.
You can configure your application's to specify the security domain you want to use forjboss-web.xml

authentication. When using the subsystem, this is defined when you created the elytron

. When using the legacy subsystem, this is the name of the legacyapplication-security-domain security

security domain.

Example jboss-web.xml

<jboss-web>

 <security-domain>exampleApplicationDomain</security-domain>

</jboss-web>

Using allows you to configure the security domain for a single application only. Alternatively,jboss-web.xml

you can specify a default security domain for all applications using the subsystem. This allows youundertow

to omit using to configure a security domain for an individual application.jboss-web.xml

/subsystem=undertow:write-attribute(name=default-security-domain,

value="exampleApplicationDomain")

: Setting in the subsystem will apply to applications. If IMPORTANT default-security-domain undertow ALL

 is set and an application specifies a security domain in a file, thedefault-security-domain jboss-web.xml

configuration in will override the in the subsystem.jboss-web.xml default-security-domain undertow

Using Elytron and Legacy Security Subsystems in Parallel
You can define authentication in both the and legacy subsystems and use them in parallel. Ifelytron security

you use both and in the subsystem, WildFly will first try tojboss-web.xml default-security-domain undertow

match the configured security domain in the subsystem. If a match is not found, then WildFly willelytron

attempt to match the security domain with one configured in the legacy subsystem. If the andsecurity elytron

legacy subsystem each have a security domain with the same name, the security domain issecurity elytron

used.

Latest WildFly Documentation

JBoss Community Documentation Page of 2033 2293

Override an Application's Authentication Configuration
You can override the authentication configuration of an application with one configured in WildFly. To do this,

use the property in the section of the override-deployment-configuration application-security-domain

 subsystem:undertow

/subsystem=undertow/application-security-domain=exampleApplicationDomain:write-attribute(name=override-deployment-config,value=true)

For example, an application is configured to use authentication with the FORM exampleApplicationDomain

in its .jboss-web.xml

Example jboss-web.xml

<login-config>

 <auth-method>FORM</auth-method>

 <realm-name>exampleApplicationDomain</realm-name>

</login-config>

By enabling , you can create a new thatoverride-deployment-configuration http-authentication-factory

specifies a different authentication mechanism such as .BASIC

Example http-authentication-factory

/subsystem=elytron/http-authentication-factory=exampleHttpAuth:read-resource()

{

 "outcome" => "success",

 "result" => {

 "http-server-mechanism-factory" => "global",

 "mechanism-configurations" => [{

 "mechanism-name" => "BASIC",

 "mechanism-realm-configurations" => [{"realm-name" => "exampleApplicationDomain"}]

 }],

 "security-domain" => "exampleSD"

 }

}

This will override the authentication mechanism defined in the application's and attempt tojboss-web.xml

authenticate a user using instead of .BASIC FORM

Latest WildFly Documentation

JBoss Community Documentation Page of 2034 2293

Create and Use a Credential Store

Create credential store.

/subsystem=elytron/credential-store=exampleCS:add(uri="cr-store://exampleCS?create=true",credential-reference={clear-text=cs-secret})

Add a credential to a credential store.

/subsystem=elytron/credential-store=exampleCS/alias=keystorepw:add(secret-value="secret")

List all credentials in a credential store.

/subsystem=elytron/credential-store=exampleCS:read-children-names(child-type=alias)

{

 "outcome" => "success",

 "result" => ["keystorepw"]

}

Remove a credential from a credential store.

/subsystem=elytron/credential-store=exampleCS/alias=keystorepw:remove

Use a credential store.

/subsystem=elytron/key-store=twoWayKS:write-attribute(name=credential-reference,value={store=exampleCS,alias=keystorepw})

15.4.2 Set up and Configure Authentication for the

Management Interfaces

Secure the Management Interfaces with a New Identity Store

Create a security domain and any supporting security realms, decoders, or mappers

for your identity store.
This process is covered in a previous section. For example, if you wanted to secure the management

interfaces using a filesystem-based identity store, you would follow the steps in Configure Authentication

.with a Filesystem-Based Identity Store

Latest WildFly Documentation

JBoss Community Documentation Page of 2035 2293

Create an http-authentication-factory or sasl-authentication-factory .
Example http-authentication-factory

/subsystem=elytron/http-authentication-factory=example-http-auth:add(http-server-mechanism-factory=global,security-domain=exampleSD,mechanism-configurations=[{mechanism-name=DIGEST,mechanism-realm-configurations=[{realm-name=exampleManagementRealm}]}])

Example sasl-authentication-factory

/subsystem=elytron/sasl-authentication-factory=example-sasl-auth:add(sasl-server-factory=configured,security-domain=exampleSD,mechanism-configurations=[{mechanism-name=DIGEST-MD5,mechanism-realm-configurations=[{realm-name=exampleManagementRealm}]}])

Update the management interfaces to use your http-authentication-factory or

sasl-authentication-factory .
Example update http-authentication-factory

/core-service=management/management-interface=http-interface:write-attribute(name=http-authentication-factory,

value=example-http-auth)

{

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-reload" => true,

 "process-state" => "reload-required"

 }

}

reload

Example update sasl-authentication-factory

/core-service=management/management-interface=http-interface:write-attribute(name=http-upgrade.sasl-authentication-factory,

value=example-sasl-auth)

{

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-reload" => true,

 "process-state" => "reload-required"

 }

}

reload

Latest WildFly Documentation

JBoss Community Documentation Page of 2036 2293

Silent Authentication
By default, WildFly provides an authentication mechanism for local users, also know as silent authentication,

through the security realm.local

Silent authentication must be used via a .sasl-authentication-factory

: When enabling silent authentication, you must ensure the security domain referenced by your IMPORTANT

 references a security realm that contains the user. By default, WildFlysasl-authentication-factory $local

provides the identity realm that provides this user.local

Add silent authentication to an existing sasl-authentication-factory .

/subsystem=elytron/sasl-authentication-factory=example-sasl-auth:list-add(name=mechanism-configurations,

value={mechanism-name=JBOSS-LOCAL-USER, realm-mapper=local})

reload

Create a new sasl-server-factory with silent authentication.

/subsystem=elytron/sasl-authentication-factory=example-sasl-auth:add(sasl-server-factory=configured,security-domain=exampleSD,mechanism-configurations=[{mechanism-name=DIGEST-MD5,mechanism-realm-configurations=[{realm-name=exampleManagementRealm}]},{mechanism-name=JBOSS-LOCAL-USER,

realm-mapper=local}])

reload

Remove silent authentication from an existing sasl-server-factory :

/subsystem=elytron/sasl-authentication-factory=managenet-sasl-authentication:read-resource

{

 "outcome" => "success",

 "result" => {

 "mechanism-configurations" => [

 {

 "mechanism-name" => "JBOSS-LOCAL-USER",

 "realm-mapper" => "local"

 },

 {

 "mechanism-name" => "DIGEST-MD5",

 "mechanism-realm-configurations" => [{"realm-name" => "ManagementRealm"}]

 }

],

 "sasl-server-factory" => "configured",

 "security-domain" => "ManagementDomain"

 }

}

/subsystem=elytron/sasl-authentication-factory=temp-sasl-authentication:list-remove(name=mechanism-configurations,index=0)

reload

Latest WildFly Documentation

JBoss Community Documentation Page of 2037 2293

Using RBAC with Elytron
RBAC can be configured to automatically assign or exclude roles for users that are members of groups. This

is configured in the section of the core management. When the management interfaces areaccess-control

secured with the subsystem, and users are assigned groups when they authenticate. You can alsoelytron

configure roles to be assigned to authenticated users in a variety of ways using the subsystem, forelytron

example using a role mapper or a role decoder.

15.4.3 Configure SSL/TLS

Enable One-way SSL/TLS for Applications
In WildFly, you can use the Elytron subsystem, along with the Undertow subsystem, to enable HTTPS for

deployed applications.

Obtain or generate your key store:
Before enabling HTTPS in WildFly, you must obtain or generate the keystore you plan on using. To generate

an example keystore:

$ keytool -genkeypair -alias localhost -keyalg RSA -keysize 1024 -validity 365 -keystore

/path/to/keystore.jks -dname "CN=localhost" -keypass secret -storepass secret

Configure a key-store in WildFly:

/subsystem=elytron/key-store=httpsKS:add(path=/path/to/keystore.jks,credential-reference={clear-text=secret},type=JKS)

The previous command uses an absolute path to the keystore. Alternatively you can use the relative-to

attribute to specify the base directory variable and specify a relative path.path

/subsystem=elytron/key-store=httpsKS:add(path=keystore.jks,relative-to=jboss.server.config.dir,credential-reference={clear-text=secret},type=JKS)

Configure a key-manager in that references your key-store :

/subsystem=elytron/key-manager=httpsKM:add(key-store=httpsKS,credential-reference={clear-text=secret})

Latest WildFly Documentation

JBoss Community Documentation Page of 2038 2293

Configure a server-ssl-context in that references your key-manager :

/subsystem=elytron/server-ssl-context=httpsSSC:add(key-manager=httpsKM,protocols=["TLSv1.2"])

: You need to determine what SSL/TLS protocols you want to support. The exampleIMPORTANT

commands above uses .TLSv1.2

Check and see if the https-listener is configured to use a legacy security realm for

its SSL configuration:

/subsystem=undertow/server=default-server/https-listener=https:read-attribute(name=security-realm)
{

"outcome" => "success",

 "result" => "ApplicationRealm"

}

The above command shows that the is configured to use the legacy securityhttps-listener ApplicationRealm

realm for its SSL configuration. Undertow cannot reference both a legacy security realm and an ssl-context

in Elytron at the same time so you must remove the reference to the legacy security realm. Also there has to

be always configured either or . Thus when changing between those, you have tossl-context security-realm

use batch operation:

 Remove the reference to the legacy security realm and update the https-listener to use the

 ssl-context from Elytron :

batch

/subsystem=undertow/server=default-server/https-listener=https:undefine-attribute(name=security-realm)
/subsystem=undertow/server=default-server/https-listener=https:write-attribute(name=ssl-context,value=httpsSSC)
run-batch

Reload the server:

reload

HTTPS is now enabled for applications.

Enable Two-way SSL/TLS in WildFly for Applications
In WildFly, you can use the Elytron subsystem, along with the Undertow subsystem, to enable two-way

SSL/TLS for deployed applications.

Latest WildFly Documentation

JBoss Community Documentation Page of 2039 2293

Obtain or generate your keystore:
Before enabling HTTPS in WildFly, you must obtain or generate the keystores, truststores and certificates

you plan on using.

Create server and client keystores:

$ keytool -genkeypair -alias localhost -keyalg RSA -keysize 1024 -validity 365 -keystore

server.keystore.jks -dname "CN=localhost" -keypass secret -storepass secret

$ keytool -genkeypair -alias client -keyalg RSA -keysize 1024 -validity 365 -keystore

client.keystore.jks -dname "CN=client" -keypass secret -storepass secret

Export the server and client certificates:

$ keytool -exportcert -keystore server.keystore.jks -alias localhost -keypass secret -storepass

secret -file server.cer

$ keytool -exportcert -keystore client.keystore.jks -alias client -keypass secret -storepass

secret -file client.cer

Import the sever and client certificates into the opposing truststores:

$ keytool -importcert -keystore server.truststore.jks -storepass secret -alias client

-trustcacerts -file client.cer

$ keytool -importcert -keystore client.truststore.jks -storepass secret -alias localhost

-trustcacerts -file server.cer

Configure a key-store for server keystore and truststore in WildFly:

/subsystem=elytron/key-store=twoWayKS:add(path=/path/to/server.keystore.jks,credential-reference={clear-text=secret},type=JKS)

/subsystem=elytron/key-store=twoWayTS:add(path=/path/to/server.truststore.jks,credential-reference={clear-text=secret},type=JKS)

NOTE

The previous command uses an absolute path to the keystore. Alternatively you can use the relative-to

attribute to specify the base directory variable and specify a relative path.path

/subsystem=elytron/key-store=myKS:add(path=keystore.jks,relative-to=jboss.server.config.dir,credential-reference={clear-text=secret},type=JKS)

Configure a key-manager in that references your key store key-store :

/subsystem=elytron/key-manager=twoWayKM:add(key-store=twoWayKS,credential-reference={clear-text=secret})

Latest WildFly Documentation

JBoss Community Documentation Page of 2040 2293

Configure a trust-manager in that references your truststore key-store :

/subsystem=elytron/trust-manager=twoWayTM:add(key-store=twoWayTS)

Configure a server-ssl-context in that references your key-manager , trust-manager ,

and enables client authentication:

/subsystem=elytron/server-ssl-context=twoWaySSC:add(key-manager=twoWayKM,protocols=["TLSv1.2"],trust-manager=twoWayTM,need-client-auth=true)

IMPORTANT

You need to determine what SSL/TLS protocols you want to support. The example commands above uses

.TLSv1.2

Check and see if the https-listener is configured to use a legacy security realm for

its SSL configuration:

/subsystem=undertow/server=default-server/https-listener=https:read-attribute(name=security-realm)
{

"outcome" => "success",

 "result" => "ApplicationRealm"

}

The above command shows that the is configured to use the legacy securityhttps-listener ApplicationRealm

realm for its SSL configuration. Undertow cannot reference both a legacy security realm and an ssl-context

in Elytron at the same time so you must remove the reference to the legacy security realm. Also there has to

be always configured either or . Thus when changing between those, you have tossl-context security-realm

use batch operation:

Remove the reference to the legacy security realm and update the https-listener to

use the ssl-context from Elytron:

batch

/subsystem=undertow/server=default-server/https-listener=https:undefine-attribute(name=security-realm)
/subsystem=undertow/server=default-server/https-listener=https:write-attribute(name=ssl-context,value=twoWaySSC)
run-batch

Reload the server

reload

Latest WildFly Documentation

JBoss Community Documentation Page of 2041 2293

Configure your client to use the client certificate
You need to configure your client to present the trusted client certificate to the server to complete the

two-way SSL/TLS authentication. For example, if using a browser, you need to import the trusted certificate

into the browser’s truststore.

Two-Way HTTPS is now enabled for applications.

Enable One-way SSL/TLS for the Management Interfaces Using the

Elytron Subsystem

Obtain or generate your key store:
Before enabling HTTPS in WildFly, you must obtain or generate the key store you plan on using. To

generate an example key store, use the following command.

$ keytool -genkeypair -alias localhost -keyalg RSA -keysize 1024 -validity 365 -keystore

keystore.jks -dname "CN=localhost" -keypass secret -storepass secret

Create a key-store , key-manager , and server-ssl-context .

/subsystem=elytron/key-store=httpsKS:add(path=keystore.jks,relative-to=jboss.server.config.dir,credential-reference={clear-text=secret},type=JKS)

/subsystem=elytron/key-manager=httpsKM:add(key-store=httpsKS,credential-reference={clear-text=secret})

/subsystem=elytron/server-ssl-context=httpsSSC:add(key-manager=httpsKM,protocols=["TLSv1.2"])

 You need to determine what SSL/TLS protocols you want to support. The exampleIMPORTANT:

commands above uses .TLSv1.2

 The above command uses to reference the location of the keystore file. Alternatively, youNOTE: relative-to

can specify the full path to the keystore in and omit .path relative-to

Enable HTTPS on the management interface.

/core-service=management/management-interface=http-interface:write-attribute(name=ssl-context,

value=httpsSSC)

/core-service=management/management-interface=http-interface:write-attribute(name=secure-socket-binding,

value=management-https)

Reload the WildFly instance.

reload

HTTPS is now enabled for the management interfaces.

Latest WildFly Documentation

JBoss Community Documentation Page of 2042 2293

Enable Two-way SSL/TLS for the Management Interfaces using the

Elytron Subsystem

Obtain or generate your key store.
Before enabling HTTPS in WildFly, you must obtain or generate the key stores, trust stores and certificates

you plan on using. To generate an example set of key stores, trust stores, and certificates use the following

commands.

Generate your server and client key stores.

$ keytool -genkeypair -alias localhost -keyalg RSA -keysize 1024 -validity 365 -keystore

server.keystore.jks -dname "CN=localhost" -keypass secret -storepass secret

$ keytool -genkeypair -alias client -keyalg RSA -keysize 1024 -validity 365 -keystore

client.keystore.jks -dname "CN=client" -keypass secret -storepass secret

Export your server and client certificates.

$ keytool -exportcert -keystore server.keystore.jks -alias localhost -keypass secret -storepass

secret -file server.cer

$ keytool -exportcert -keystore client.keystore.jks -alias client -keypass secret -storepass

secret -file client.cer

Import the sever and client certificates into the opposing trust stores.

$ keytool -importcert -keystore server.truststore.jks -storepass secret -alias client

-trustcacerts -file client.cer

$ keytool -importcert -keystore client.truststore.jks -storepass secret -alias localhost

-trustcacerts -file server.cer

Configure key-store , a key-manager , trust-manager , and server-ssl-context for the

server key store and trust store.

/subsystem=elytron/key-store=twoWayKS:add(path=server.keystore.jks,relative-to=jboss.server.config.dir,credential-reference={clear-text=secret},type=JKS)

/subsystem=elytron/key-store=twoWayTS:add(path=server.truststore.jks,relative-to=jboss.server.config.dir,credential-reference={clear-text=secret},type=JKS)

/subsystem=elytron/key-manager=twoWayKM:add(key-store=twoWayKS,credential-reference={clear-text=secret})

/subsystem=elytron/trust-manager=twoWayTM:add(key-store=twoWayTS)

/subsystem=elytron/server-ssl-context=twoWaySSC:add(key-manager=twoWayKM,protocols=["TLSv1.2"],trust-manager=twoWayTM,want-client-auth=true,need-client-auth=true)

 You need to determine what SSL/TLS protocols you want to support. The exampleIMPORTANT:

commands above uses .TLSv1.2

 The above command uses to reference the location of the keystore file. Alternatively, youNOTE: relative-to

can specify the full path to the keystore in and omit .path relative-to

Latest WildFly Documentation

JBoss Community Documentation Page of 2043 2293

Enable HTTPS on the management interface.

/core-service=management/management-interface=http-interface:write-attribute(name=ssl-context,

value=twoWaySSC)

/core-service=management/management-interface=http-interface:write-attribute(name=secure-socket-binding,

value=management-https)

Reload the WildFly instance.

reload

Configure your client to use the client certificate.
You need to configure your client to present the trusted client certificate to the server to complete the

two-way SSL/TLS authentication. For example, if using a browser, you need to import the trusted certificate

into the browser’s trust store.

Two-way SSL/TLS is now enabled for the management interfaces.

Latest WildFly Documentation

JBoss Community Documentation Page of 2044 2293

Using an ldap-key-store
An allows you to use a keystore stored in an LDAP server. You can use an inldap-key-store ldap-key-store

same way you can use a .key-store

To create and use an :ldap-key-store

Configure a dir-context .
To connect to the LDAP server from WildFly, you need to configure a that provides the URL asdir-context

well as the principal used to connect to the server.

Example dir-context

/subsystem=elytron/dir-context=exampleDC:add(\

 url="ldap://127.0.0.1:10389", \

 principal="uid=admin,ou=system", \

 credential-reference={clear-text=secret} \

)

Configure an ldap-key-store .
When configure an , you need to specify both the used to connect to the LDAPldap-key-store dir-context

server as well as how to locate the keystore stored in the LDAP server. At a minimum, this requires you

specify a .search-path

Example ldap-key-store

/subsystem=elytron/ldap-key-store=ldapKS:add(\

 dir-context=exampleDC, \

 search-path="ou=Keystores,dc=wildfly,dc=org" \

)

Use the ldap-key-store .
Once you have defined your , you can use it in the same places where a could beldap-key-store key-store

used. For example, you could use an when configuring HTTPS and Two-Way HTTPS forldap-key-store

applications.

Latest WildFly Documentation

JBoss Community Documentation Page of 2045 2293

Using a filtering-key-store
A allows you to expose a subset of aliases from an existing , and use it in thefiltering-key-store key-store

same places you could use a . For example, if a keystore contained , , and , butkey-store alias1 alias2 alias3

you only wanted to expose and , a provides you several ways to do that.alias1 alias3 filtering-key-store

To create a :filtering-key-store

Configure a key-store .

/subsystem=elytron/key-store=myKS:add(\

 path=keystore.jks, \

 relative-to=jboss.server.config.dir, \

 credential-reference={ \

 clear-text=secret \

 }, \

 type=JKS \

)

Configure a filtering-key-store .
When you configure a , you specify which you want to filter and the forfiltering-key-store key-store alias-filter

filtering aliases from the . The filter can be specified in one of the following formats:key-store

, which is a comma-delimited list of aliases to expose.alias1,alias3

, which exposes all aliases in the keystore except the ones listed.ALL:-alias2

, which exposes no aliases in the keystore except the ones listed.NONE:+alias1:+alias3

This example uses a comma-delimted list to expose and .alias1 alias3

/subsystem=elytron/filtering-key-store=filterKS:add(\

 key-store=myKS, \

 alias-filter="alias1,alias3" \

)

Use the filtering-key-store .
Once you have defined your , you can use it in the same places where a could befiltering-key-store key-store

used. For example, you could use a when configuring HTTPS and Two-Way HTTPS forfiltering-key-store

applications.

Latest WildFly Documentation

JBoss Community Documentation Page of 2046 2293

Reload a Keystore
You can reload a keystore configured in WildFly from the management CLI. This is useful in cases where

you have made changes to certificates referenced by a keystore.

To reload a keystore.

/subsystem=elytron/key-store=httpsKS:load

Check the Content of a Keystore by Alias
If you add a keystore to the subsystem using the component, you can check the keystore'selytron key-store

contents using the child element and reading its attributes.alias

For example:

/subsystem=elytron/key-store=httpsKS/alias=localhost:read-attribute(name=certificate-chain)

{

 "outcome" => "success",

 "result" => [{

 "type" => "X.509",

 "algorithm" => "RSA",

 "format" => "X.509",

 "public-key" => "30:81:9f:30:0d:06:09:2a:8......

The following attributes can be read:

Attribute Description

certificate The certificate associated with the alias. If the alias has a certificate chain this will always

be undefined.

certificate-chain The certificate chain associated with the alias.

creation-date The creation date of the entry represented by this alias.

entry-type The type of the entry for this alias. Available types: , , PasswordEntry PrivateKeyEntry

, , and . Unrecognized types will be reportedSecretKeyEntry TrustedCertificateEntry Other

as .Other

Latest WildFly Documentation

JBoss Community Documentation Page of 2047 2293

Custom Components
When configuring SSL/TLS in the subsystem, you can provide and use custom implementations ofelytron

the following components:

key-store

key-manager

trust-manager

client-ssl-context

server-ssl-context

When creating custom implementations of Elytron components, they must present the appropriate

capabilities and requirements.

15.4.4 Configuring the Elytron and Security Subsystems

Enable and Disable the Elytron Subsystem

To add the elytron extension required for the elytron subsystem:

/extension=org.wildfly.extension.elytron:add()

To enable the Elytron subsystem in WildFly:

/subsystem=elytron:add

reload

To disable the Elytron subsystem in WildFly:

/subsystem=elytron:remove

reload

 Other subsystems within WildFly may have dependencies on the subsystem. If theseIMPORTANT: elytron

dependencies are not resolved before disabling it, you will see errors when starting WildFly.

Latest WildFly Documentation

JBoss Community Documentation Page of 2048 2293

Enable and Disable the Security Subsystem

To disable the security subsystem in WildFly:

/subsystem=security:remove

reload

 Other subsystems within WildFly may have dependencies on the subsystem. If theseIMPORTANT: security

dependencies are not resolved before disabling it, you will see errors when starting WildFly.

To enable the security subsystem in WildFly:

/subsystem=security:add

reload

Use the Elytron and Security Subsystems in Parallel
By default the and subsystems will run in parallel if both are enabled. For authentication inelytron security

applications, you can use the property in the subsystem to configure aapplication-security-domain undertow

security domain in the subsystem.elytron

/subsystem=undertow/application-security-domain=exampleApplicationDomain:add(http-authentication-factory=example-http-auth)

 This must match the configured in the of your application.NOTE: security-domain jboss-web.xml

If the is not set, WildFly will look for a security domain configured in the application-security-domain security

subsystem that matches the configured in the of your application.security-domain jboss-web.xml

For enabling HTTPS using a legacy security realm, you can use the attribute in the security-realm

 section of the subsystem:https-listener undertow

/subsystem=undertow/server=default-server/https-listener=https:read-attribute(name=security-realm)
{

"outcome" => "success",

 "result" => "ApplicationRealm"

}

For enabling HTTPS using , you need to undefine the attribute and set the elytron security-realm ssl-context

attribute. As there has to be always configured either or you have to use batchssl-context security-realm

operation when changing between those:

batch

/subsystem=undertow/server=default-server/https-listener=https:undefine-attribute(name=security-realm)
/subsystem=undertow/server=default-server/https-listener=https:write-attribute(name=ssl-context,value=httpsSSC)
run-batch

Latest WildFly Documentation

JBoss Community Documentation Page of 2049 2293

15.4.5 Creating Elytron Subsystem Components

Create an Elytron Security Realm
Security realms in the Elytron subsystem, when used in conjunction with security domains, are use for both

core management authentication as well as for authentication with applications. Security realms are also

specifically typed based on their identity store, for example , , ,jdbc-realm filesystem-realm properties-realm

etc.

Adding a security realm takes the general form:

/subsystem=elytron/type-of-realm=realmName:add(....)

Examples of adding specific realms, such as , , and can bejdbc-realm filesystem-realm properties-realm

found in previous sections.

Create an Elytron Role Decoder
A role decoder converts attributes from the identity provided by the security realm into roles. Role decoders

are also specifically typed based on their functionality, for example , ,empty-role-decoder simple-role-decoder

and .custom-role-decoder

Adding a role decoder takes the general form:

/subsystem=elytron/ROLE-DECODER-TYPE=roleDeoderName:add(....)

Create an Elytron Permission Mapper
In addition to roles being assigned to a identity, permissions may also be assigned. A permission mapper

assigns permissions to an identity. Permission mappers are also specifically typed based on their

functionality, for example , , and logical-permission-mapper simple-permission-mapper

.custom-permission-mapper

Adding a permission mapper takes the general form:

/subsystem=elytron/simple-permission-mapper=PermissionMapperName:add(...)

Latest WildFly Documentation

JBoss Community Documentation Page of 2050 2293

Create an Elytron Role Mapper
A role mapper maps roles after they have been decoded to other roles. Examples include normalizing role

names or adding and removing specific roles from principals after they have been decoded. Role mappers

are also specifically typed based on their functionality, for example , add-prefix-role-mapper

, and .add-suffix-role-mapper constant-role-mapper

Adding a role mapper takes the general form:

/subsystem=elytron/ROLEM-MAPPER-TYPE=roleMapperName:add(...)

Create an Elytron Security Domain
Security domains in the Elytron subsystem, when used in conjunction with security realms, are use for both

core management authentication as well as for authentication with applications.

Adding a security domain takes the general form:

/subsystem=elytron/security-domain=domainName:add(realms=[{realm=realmName,role-decoder=roleDecoderName}],default-realm=realmName,permission-mapper=permissionMapperName,role-mapper=roleMapperName,...)

Create an Elytron Authentication Factory
An authentication factory is an authentication policy used for specific authentication mechanisms.

Authenticaion factories are specifically based on the authentication mechanism, for example

 andhttp-authentication-factory

 and .sasl-authentication-factory kerberos-security-factory

Adding an authentication factory takes the general form:

/subsystem=elytron/AUTH-FACTORY-TYPE=authFactoryName:add(....)

Create an Elytron Policy Provider
Elytron subsystem provides a specific resource definition that can be used to configure a default Java Policy

provider. The subsystem allows you to define multiple policy providers but select a single one as the default:

/subsystem=elytron/policy=policy-provider-a:add(custom-policy=\[{name=policy-provider-a,

class-name=MyPolicyProviderA, module=x.y.z}\])

Latest WildFly Documentation

JBoss Community Documentation Page of 2051 2293

15.5 Using Elytron within WildFly

15.5.1 Using the Out of the Box Elytron Components

Securing Management Interfaces
You can find more details on the enabling WildFly to use the out of the box Elytron components for securing

the management interfaces in the section.Default Management Authentication Configuration

Securing Applications
The subsystem provides by default which can be used to secureelytron application-http-authentication

applications. For more details on how is configured, see the application-http-authentication Out of the Box

 section.Configuration

To configure applications to use , see application-http-authentication Configure Applications to Use Elytron or

. You can also override the default behavior of all applications using theLegacy Security for Authentication

steps in .Override an Application's Authentication Configuration

Using SSL/TLS
WildFly does provide a default one-way SSL/TLS configuration using the legacy core management

authentication but does not provide one in the subsystem. You can find more details on configuringelytron

SSL/TLS using the subsystem for both the management interfaces as well as for applications in elytron

Configure SSL/TLS

Latest WildFly Documentation

JBoss Community Documentation Page of 2052 2293

Using Elytron with Other Subsystems
In addition to securing applications and management interfaces, Elytron also integrates with other

subsystems in WildFly.

Subsystem Details

batch-jberet You can configure the to run batch jobs using an Elytron securitybatch-jberet

domain.

datasources You can use a credential store or an Elytron security domain to provide

authentication information in a datasource definition.

messaging-activemq You can secure remote connections to the remote connections used by the

 subsystem.messaging-activemq

iiop-openjdk You can use the subsystem to configure SSL/TLS between clients andelytron

servers using the subsystem.iiop-openjdk

mail You can use a credential store to provide authentication information in a server

definition in the subsystem.mail

undertow You can use the subsystem to configure both SSL/TLS and applicationelytron

authentication.

15.5.2 Undertow Subsystem

Latest WildFly Documentation

JBoss Community Documentation Page of 2053 2293

15.5.3 EJB Subsystem

Configuration can be added to the EJB subsystem to map a security domain name referenced in a

deployment to an Elytron security domain:

/subsystem=ejb3/application-security-domain=MyAppSecurity:add(security-domain=ApplicationDomain)

Which results in:

<subsystem xmlns="urn:jboss:domain:ejb3:5.0">

...

 <application-security-domains>

 <application-security-domain name="MyAppSecurity" security-domain="ApplicationDomain"/>

 </application-security-domains>

...

</subsystem>

Note: If the deployment was already deployed at this point the application server should be reloaded or the

deployment redeployed for the application security domain mapping to take effect.

An has two main attributes:application-security-domain

name - the name of the security domain as specified in a deployment

security-domain - a reference to the Elytron security domain that should be used

When an application security domain mapping is configured for a bean in a deployment, this indicates that

security should be handled by Elytron.

15.5.4 WebServices Subsystem

There is adapter in webservices subsystem to make authentication works for elytron security domain

automatically. Like configure with legacy security domain, you can configure elytron security domain in

deployment descriptor or annotation to secure webservice endpoint.

15.5.5 Legacy Security Subsystem

As previously described, Elytron based security is configured by chaining together different capability

references to form a complete security policy. To allow an incremental migration from the legacy Security

subsystem some of the major components of this subsystem can be mapped to Elytron capabilities and used

within an Elytron based set up.

Latest WildFly Documentation

JBoss Community Documentation Page of 2054 2293

15.6 Client Authentication with Elytron Client

WildFly Elytron uses the Elytron Client project to enable remote clients to authenticate using Elytron. Elytron

Client has the following components:

Component Description

Authentication

Configuration

Contains authentication information such as usernames, passwords, allowed SASL

mechanisms, and the security realm to use during digest authentication.

MatchRule Rule used for deciding which authentication configuration to use.

Authentication

Context

Set of rules and authentication configurations to use with a client for establishing a

connection.

When a connection is established, the client makes use of an authentication context, which gives rules that

match which authentication configuration is used with an outbound connection. For example, you could have

a rules that use one authentication configuration when connecting to and another authenticationserver1

configuration when connecting with . The authentication context is comprised of a set ofserver2

authentication configurations and a set of rules that define how they are selected when establishing a

connection. An authentication context can also reference and can be matched with rules.ssl-context

To create a client that uses security information when establishing a connection:

Create one or more authentication configurations.

Create an authentication context by creating rule and authentication configuration pairs.

Create a runnable for establishing your connection.

Use your authentication context to run your runnable.

When you establish your connection, Elytron Client will use the set of rules provided by the authentication

context to match the correct authentication configuration to use during authentication.

You can use one of the following approaches to use security information when establishing a client

connection.

: When using Elytron Client to make EJB calls, any hard-coded programatic authenticationIMPORTANT

information, such as setting in the , will overrideContext.SECURITY_PRINCIPAL javax.naming.InitialContext

the Elytron Client configuration.

15.6.1 The Configuration File Approach

The configuration file approach involves creating an XML file with your authentication configuration,

authentication context, and match rules.

custom-config.xml

Latest WildFly Documentation

JBoss Community Documentation Page of 2055 2293

<configuration>

 <authentication-client xmlns="urn:elytron:1.0">

 <authentication-rules>

 <rule use-configuration="monitor">

 <match-host name="127.0.0.1" />

 </rule>

 <rule use-configuration="administrator">

 <match-host name="localhost" />

 </rule>

 </authentication-rules>

 <authentication-configurations>

 <configuration name="monitor">

 <sasl-mechanism-selector selector="DIGEST-MD5"/>

 <providers>

 <use-service-loader />

 </providers>

 <set-user-name name="monitor" />

 <credentials>

 <clear-password password="password1!" />

 </credentials>

 <set-mechanism-realm name="ManagementRealm" />

 </configuration>

 <configuration name="administrator">

 <sasl-mechanism-selector selector="DIGEST-MD5"/>

 <providers>

 <use-service-loader />

 </providers>

 <set-user-name name="administrator" />

 <credentials>

 <clear-password password="password1!" />

 </credentials>

 <set-mechanism-realm name="ManagementRealm" />

 </configuration>

 </authentication-configurations>

 </authentication-client>

</configuration>

You can then reference that file in your client's code by setting a system property when running your client.

$ java -Dwildfly.config.url=/path/to/the.xml …..

: If you use the , it will override any provided configuration filesIMPORTANT The Programmatic Approach

even if the system property is set.wildfly.config.url

When creating rules, you can look for matches on various parameters such as hostname, port, protocol, or

username. A full list of options for are available in the . Rules are evaluated in the orderMatchRule Javadocs

in which they are configured.

Common Rules

http://wildfly-security.github.io/wildfly-elytron/org/wildfly/security/auth/client/MatchRule.html

Latest WildFly Documentation

JBoss Community Documentation Page of 2056 2293

Rule Description

match-domain Takes a single attribute specifying the security domain to match against.name

match-host Takes a single attribute specifying the hostname to match against. For example,name

the host would match on .127.0.0.1 http://127.0.0.1:9990/my/path

match-no-userinfo Matches against URIs with no userinfo.

match-path Takes a single attribute specifying the path to match against. For example, thename

path would match on ./my/path/ http://127.0.0.1:9990/my/path

match-port Takes a single attribute specifying the port to match against. For example, thename

port would match on .9990 http://127.0.0.1:9990/my/path

match-protocol Takes a single attribute specifying the protocol to match against. For example,name

the protocol would match on .http http://127.0.0.1:9990/my/path

match-purpose Takes a attribute specifying the list of purposes to match against.names

match-urn Takes a single attribute specifying the URN to match against.name

match-userinfo Takes a single attribute specifying the userinfo to match against.name

15.6.2 The Programmatic Approach

The programatic approach configures all the Elytron Client configuration in the client's code:

http://127.0.0.1:9990/my/path
http://127.0.0.1:9990/my/path
http://127.0.0.1:9990/my/path
http://127.0.0.1:9990/my/path

Latest WildFly Documentation

JBoss Community Documentation Page of 2057 2293

//create your authentication configuration

AuthenticationConfiguration adminConfig =

 AuthenticationConfiguration.empty()

 .setSaslMechanismSelector(SaslMechanismSelector.NONE.addMechanism("DIGEST-MD5"))

 .useRealm("ManagementRealm")

 .useName("administrator")

 .usePassword("password1!");

//create your authentication context

AuthenticationContext context = AuthenticationContext.empty();

context = context.with(MatchRule.ALL.matchHost("127.0.0.1"), adminConfig);

//create your runnable for establishing a connection

Runnable runnable =

 new Runnable() {

 public void run() {

 try {

 //Establish your connection and do some work

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 };

//use your authentication context to run your client

context.run(runnable);

When adding configuration details to and , each methodAuthenticationConfiguration AuthenticationContext

call returns a new instance of that object. For example, if you wanted separate configurations when

connecting over different hostnames, you could do the following:

Latest WildFly Documentation

JBoss Community Documentation Page of 2058 2293

//create your authentication configuration

AuthenticationConfiguration commonConfig =

 AuthenticationConfiguration.empty()

 .setSaslMechanismSelector(SaslMechanismSelector.NONE.addMechanism("DIGEST-MD5"))

 .useRealm("ManagementRealm");

AuthenticationConfiguration administrator =

 commonConfig

 .useName("administrator")

 .usePassword("password1!");

AuthenticationConfiguration monitor =

 commonConfig

 .useName("monitor")

 .usePassword("password1!");

//create your authentication context

AuthenticationContext context = AuthenticationContext.empty();

context = context.with(MatchRule.ALL.matchHost("127.0.0.1"), administrator);

context = context.with(MatchRule.ALL.matchHost("localhost"), monitor);

Common Rules

Rule Description

matchLocalSecurityDomain(String

name)

This is the same as match-domain in the configuration file approach.

matchNoUser() This is the same as match-no-user in the configuration file approach.

matchPath(String pathSpec) This is the same as match-path in the configuration file approach.

matchPort(int port) This is the same as match-port in the configuration file approach.

matchProtocol(String protoName) This is the same as match-port in the configuration file approach.

matchPurpose(String purpose) Create a new rule which is the same as this rule, but also matches the

given purpose name.

matchPurposes(String...

purposes)

This is the same as match-purpose in the configuration file approach.

matchUrnName(String name) This is the same as match-urn in the configuration file approach.

matchUser(String userSpec) This is the same as match-userinfo in the configuration file approach.

Also, instead of starting with an empty authentication configuration, you can start with the current configured

one by using .captureCurrent()

Latest WildFly Documentation

JBoss Community Documentation Page of 2059 2293

//create your authentication configuration

AuthenticationConfiguration commonConfig = AuthenticationConfiguration.captureCurrent();

Using will capture any previously established authentication context and use it as your newcaptureCurrent()

base configuration. A authentication context is established once its been activated by calling . If run()

 is called and no context is currently active, it will try and use the default authentication ifcaptureCurrent()

available. You can find more details about this in , The Configuration File Approach The Default Configuration

, and sections.Approach Using Elytron Client with Clients Deployed to WildFly

Using should only be used as a base to build a configuration on top ofAuthenticationConfiguration.EMPTY

and should not be used on its own. It provides a configuration that uses the JVM-wide registered providers

and enables anonymous authentication.

When specifying the providers on top of the configuration, you canAuthenticationConfiguration.EMPTY

specify a custom list, but most users should use providers.WildFlyElytronProvider()

When creating an authentication context, using the will create a new context that merges thecontext.with(...)

rules and authentication configuration from the current context with the provided rule and authentication

configuration. The provided rule and authentication configuration will appear after the ones in the current

context.

Latest WildFly Documentation

JBoss Community Documentation Page of 2060 2293

15.6.3 The Default Configuration Approach

The default configuration approach relies completely on the configuration provided by Elytron Client:

//create your runnable for establishing a connection

Runnable runnable =

 new Runnable() {

 public void run() {

 try {

 //Establish your connection and do some work

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 };

// run runnable directly

runnable.run();

To provide a default configuration, Elytron Client tries to auto-discover a file on thewildfly-config.xml

filesystem. It looks in the following locations:

Location specified by the system property set outside of the client code.wildfly.config.url

The classpath root directory.

The directory on the classpath.META-INF

If it does not find one, it will try and use the default provided in the wildfly-config.xml

.$WILDFLY_HOME/bin/client/jboss-client.jar

default wildfly-config.xml

<configuration>

 <authentication-client xmlns="urn:elytron:1.0">

 <authentication-rules>

 <rule use-configuration="default" />

 </authentication-rules>

 <authentication-configurations>

 <configuration name="default">

 <sasl-mechanism-selector selector="#ALL" />

 <set-mechanism-properties>

 <property key="wildfly.sasl.local-user.quiet-auth" value="true" />

 </set-mechanism-properties>

 <providers>

 <use-service-loader />

 </providers>

 </configuration>

 </authentication-configurations>

 </authentication-client>

</configuration>

Latest WildFly Documentation

JBoss Community Documentation Page of 2061 2293

15.6.4 Using Elytron Client with Clients Deployed to WildFly

Clients deployed to WildFly can also make use of Elytron Client. In cases where you have included a

 with your deployment or the system property has been set, an iswildfly-config.xml AuthenticationContext

automatically parsed and created from that file.

To load a configuration file outside of the deployment, you can use the

 method. This method will return an whichparseAuthenticationClientConfiguration(URI) AuthentcationContext

you can then use in your client’s code using the .The Programmatic Approach

Additionally, clients will also automatically parse and create an AuthenticationContext from the client

configuration provided by the subsystem. The client configuration in the subsystem can alsoelytron elytron

take advantage of other components defined in the subsystem such as credential stores. If clientelytron

configuration is provided by BOTH the deployment and the subsystem, the subsystem’selytron elytron

configuration is used.

15.6.5 Client configuration using wildfly-config.xml

Prior to WildFly 11, many WildFly client libraries used different configuration strategies. WildFly 11

introduces a new file which unifies all client configuration in a single place. Inwildfly-config.xml

addition to being able to configure authentication using Elytron as described in the previous section, a

 file can also be used to:wildfly-config.xml

Configure EJB client connections, global interceptors, and invocation

timeout
Schema location:

https://github.com/wildfly/jboss-ejb-client/blob/4.0.2.Final/src/main/resources/schema/wildfly-client-ejb_3_0.xsd

Example configuration:

wildfly-config.xml

<configuration>

...

 <jboss-ejb-client xmlns="urn:jboss:wildfly-client-ejb:3.0">

 <invocation-timeout seconds="10"/>

 <connections>

 <connection uri="remote+http://10.20.30.40:8080"/>

 </connections>

 <global-interceptors>

 <interceptor class="org.jboss.example.ExampleInterceptor"/>

 </global-interceptors>

 </jboss-ejb-client>

...

</configuration>

https://github.com/wildfly/jboss-ejb-client/blob/4.0.2.Final/src/main/resources/schema/wildfly-client-ejb_3_0.xsd

Latest WildFly Documentation

JBoss Community Documentation Page of 2062 2293

Configure HTTP client
Schema location:

https://github.com/wildfly/wildfly-http-client/blob/1.0.2.Final/common/src/main/resources/schema/wildfly-http-client_1_0.xsd

Example configuration:

wildfly-config.xml

<configuration>

...

 <http-client xmlns="urn:wildfly-http-client:1.0">

 <defaults>

 <eagerly-acquire-session value="true" />

 <buffer-pool buffer-size="2000" max-size="10" direct="true" thread-local-size="1" />

 </defaults>

 </http-client>

...

</configuration>

Configure a remoting endpoint
Schema location:

https://github.com/jboss-remoting/jboss-remoting/blob/5.0.1.Final/src/main/resources/schema/jboss-remoting_5_0.xsd

Example configuration:

wildfly-config.xml

<configuration>

...

 <endpoint xmlns="urn:jboss-remoting:5.0">

 <connections>

 <connection destination="remote+http://10.20.30.40:8080" read-timeout="50"

write-timeout="50" heartbeat-interval="10000"/>

 </connections>

 </endpoint>

...

</configuration>

https://github.com/wildfly/wildfly-http-client/blob/1.0.2.Final/common/src/main/resources/schema/wildfly-http-client_1_0.xsd
https://github.com/jboss-remoting/jboss-remoting/blob/5.0.1.Final/src/main/resources/schema/jboss-remoting_5_0.xsd

Latest WildFly Documentation

JBoss Community Documentation Page of 2063 2293

Configure the default XNIO worker
Schema location:https://github.com/xnio/xnio/blob/3.5.1.Final/api/src/main/resources/schema/xnio_3_5.xsd

Example configuration:

wildfly-config.xml

<configuration>

...

 <worker xmlns="urn:xnio:3.5">

 <io-threads value="10"/>

 <task-keepalive value="100"/>

 <stack-size value="5000"/>

 </worker>

...

</configuration>

Note that WildFly client libraries do have reasonable default configuration. Thus, adding

configuration for these clients to isn’t mandatory.wildfly-config.xml

Couldn't find a page to include called: KeyCloak Integration

15.7 Client Authentication with Elytron Client

15.7.1 Client Authentication with Elytron Client

WildFly Elytron uses the Elytron Client project to enable remote clients to authenticate using Elytron. Elytron

Client has the following components:

Component Description

Authentication

Configuration

Contains authentication information such as usernames, passwords, allowed SASL

mechanisms, and the security realm to use during digest authentication.

MatchRule Rule used for deciding which authentication configuration to use.

Authentication

Context

Set of rules and authentication configurations to use with a client for establishing a

connection.

https://github.com/xnio/xnio/blob/3.5.1.Final/api/src/main/resources/schema/xnio_3_5.xsd

Latest WildFly Documentation

JBoss Community Documentation Page of 2064 2293

When a connection is established, the client makes use of an authentication context, which gives rules that

match which authentication configuration is used with an outbound connection. For example, you could have

a rules that use one authentication configuration when connecting to and another authenticationserver1

configuration when connecting with . The authentication context is comprised of a set ofserver2

authentication configurations and a set of rules that define how they are selected when establishing a

connection. An authentication context can also reference and can be matched with rules.ssl-context

To create a client that uses security information when establishing a connection:

Create one or more authentication configurations.

Create an authentication context by creating rule and authentication configuration pairs.

Create a runnable for establishing your connection.

Use your authentication context to run your runnable.

When you establish your connection, Elytron Client will use the set of rules provided by the authentication

context to match the correct authentication configuration to use during authentication.

You can use one of the following approaches to use security information when establishing a client

connection.

: When using Elytron Client to make EJB calls, any hard-coded programatic authenticationIMPORTANT

information, such as setting in the , will overrideContext.SECURITY_PRINCIPAL javax.naming.InitialContext

the Elytron Client configuration.

The Configuration File Approach
The configuration file approach involves creating an XML file with your authentication configuration,

authentication context, and match rules.

custom-config.xml

Latest WildFly Documentation

JBoss Community Documentation Page of 2065 2293

<configuration>

 <authentication-client xmlns="urn:elytron:1.0">

 <authentication-rules>

 <rule use-configuration="monitor">

 <match-host name="127.0.0.1" />

 </rule>

 <rule use-configuration="administrator">

 <match-host name="localhost" />

 </rule>

 </authentication-rules>

 <authentication-configurations>

 <configuration name="monitor">

 <sasl-mechanism-selector selector="DIGEST-MD5"/>

 <providers>

 <use-service-loader />

 </providers>

 <set-user-name name="monitor" />

 <credentials>

 <clear-password password="password1!" />

 </credentials>

 <set-mechanism-realm name="ManagementRealm" />

 </configuration>

 <configuration name="administrator">

 <sasl-mechanism-selector selector="DIGEST-MD5"/>

 <providers>

 <use-service-loader />

 </providers>

 <set-user-name name="administrator" />

 <credentials>

 <clear-password password="password1!" />

 </credentials>

 <set-mechanism-realm name="ManagementRealm" />

 </configuration>

 </authentication-configurations>

 </authentication-client>

</configuration>

You can then reference that file in your client's code by setting a system property when running your client.

$ java -Dwildfly.config.url=/path/to/the.xml …..

: If you use the , it will override any provided configuration filesIMPORTANT The Programmatic Approach

even if the system property is set.wildfly.config.url

When creating rules, you can look for matches on various parameters such as hostname, port, protocol, or

username. A full list of options for are available in the . Rules are evaluated in the orderMatchRule Javadocs

in which they are configured.

Common Rules

http://wildfly-security.github.io/wildfly-elytron/org/wildfly/security/auth/client/MatchRule.html

Latest WildFly Documentation

JBoss Community Documentation Page of 2066 2293

Rule Description

match-domain Takes a single attribute specifying the security domain to match against.name

match-host Takes a single attribute specifying the hostname to match against. For example,name

the host would match on .127.0.0.1 http://127.0.0.1:9990/my/path

match-no-userinfo Matches against URIs with no userinfo.

match-path Takes a single attribute specifying the path to match against. For example, thename

path would match on ./my/path/ http://127.0.0.1:9990/my/path

match-port Takes a single attribute specifying the port to match against. For example, thename

port would match on .9990 http://127.0.0.1:9990/my/path

match-protocol Takes a single attribute specifying the protocol to match against. For example,name

the protocol would match on .http http://127.0.0.1:9990/my/path

match-purpose Takes a attribute specifying the list of purposes to match against.names

match-urn Takes a single attribute specifying the URN to match against.name

match-userinfo Takes a single attribute specifying the userinfo to match against.name

The Programmatic Approach
The programatic approach configures all the Elytron Client configuration in the client's code:

http://127.0.0.1:9990/my/path
http://127.0.0.1:9990/my/path
http://127.0.0.1:9990/my/path
http://127.0.0.1:9990/my/path

Latest WildFly Documentation

JBoss Community Documentation Page of 2067 2293

//create your authentication configuration

AuthenticationConfiguration adminConfig =

 AuthenticationConfiguration.empty()

 .setSaslMechanismSelector(SaslMechanismSelector.NONE.addMechanism("DIGEST-MD5"))

 .useRealm("ManagementRealm")

 .useName("administrator")

 .usePassword("password1!");

//create your authentication context

AuthenticationContext context = AuthenticationContext.empty();

context = context.with(MatchRule.ALL.matchHost("127.0.0.1"), adminConfig);

//create your runnable for establishing a connection

Runnable runnable =

 new Runnable() {

 public void run() {

 try {

 //Establish your connection and do some work

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 };

//use your authentication context to run your client

context.run(runnable);

When adding configuration details to and , each methodAuthenticationConfiguration AuthenticationContext

call returns a new instance of that object. For example, if you wanted separate configurations when

connecting over different hostnames, you could do the following:

Latest WildFly Documentation

JBoss Community Documentation Page of 2068 2293

//create your authentication configuration

AuthenticationConfiguration commonConfig =

 AuthenticationConfiguration.empty()

 .setSaslMechanismSelector(SaslMechanismSelector.NONE.addMechanism("DIGEST-MD5"))

 .useRealm("ManagementRealm");

AuthenticationConfiguration administrator =

 commonConfig

 .useName("administrator")

 .usePassword("password1!");

AuthenticationConfiguration monitor =

 commonConfig

 .useName("monitor")

 .usePassword("password1!");

//create your authentication context

AuthenticationContext context = AuthenticationContext.empty();

context = context.with(MatchRule.ALL.matchHost("127.0.0.1"), administrator);

context = context.with(MatchRule.ALL.matchHost("localhost"), monitor);

Common Rules

Rule Description

matchLocalSecurityDomain(String

name)

This is the same as match-domain in the configuration file approach.

matchNoUser() This is the same as match-no-user in the configuration file approach.

matchPath(String pathSpec) This is the same as match-path in the configuration file approach.

matchPort(int port) This is the same as match-port in the configuration file approach.

matchProtocol(String protoName) This is the same as match-port in the configuration file approach.

matchPurpose(String purpose) Create a new rule which is the same as this rule, but also matches the

given purpose name.

matchPurposes(String...

purposes)

This is the same as match-purpose in the configuration file approach.

matchUrnName(String name) This is the same as match-urn in the configuration file approach.

matchUser(String userSpec) This is the same as match-userinfo in the configuration file approach.

Also, instead of starting with an empty authentication configuration, you can start with the current configured

one by using .captureCurrent()

Latest WildFly Documentation

JBoss Community Documentation Page of 2069 2293

//create your authentication configuration

AuthenticationConfiguration commonConfig = AuthenticationConfiguration.captureCurrent();

Using will capture any previously established authentication context and use it as your newcaptureCurrent()

base configuration. A authentication context is established once its been activated by calling . If run()

 is called and no context is currently active, it will try and use the default authentication ifcaptureCurrent()

available. You can find more details about this in , The Configuration File Approach The Default Configuration

, and sections.Approach Using Elytron Client with Clients Deployed to WildFly

Using should only be used as a base to build a configuration on top ofAuthenticationConfiguration.EMPTY

and should not be used on its own. It provides a configuration that uses the JVM-wide registered providers

and enables anonymous authentication.

When specifying the providers on top of the configuration, you canAuthenticationConfiguration.EMPTY

specify a custom list, but most users should use providers.WildFlyElytronProvider()

When creating an authentication context, using the will create a new context that merges thecontext.with(...)

rules and authentication configuration from the current context with the provided rule and authentication

configuration. The provided rule and authentication configuration will appear after the ones in the current

context.

Latest WildFly Documentation

JBoss Community Documentation Page of 2070 2293

The Default Configuration Approach
The default configuration approach relies completely on the configuration provided by Elytron Client:

//create your runnable for establishing a connection

Runnable runnable =

 new Runnable() {

 public void run() {

 try {

 //Establish your connection and do some work

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 };

// run runnable directly

runnable.run();

To provide a default configuration, Elytron Client tries to auto-discover a file on thewildfly-config.xml

filesystem. It looks in the following locations:

Location specified by the system property set outside of the client code.wildfly.config.url

The classpath root directory.

The directory on the classpath.META-INF

If it does not find one, it will try and use the default provided in the wildfly-config.xml

.$WILDFLY_HOME/bin/client/jboss-client.jar

default wildfly-config.xml

<configuration>

 <authentication-client xmlns="urn:elytron:1.0">

 <authentication-rules>

 <rule use-configuration="default" />

 </authentication-rules>

 <authentication-configurations>

 <configuration name="default">

 <sasl-mechanism-selector selector="#ALL" />

 <set-mechanism-properties>

 <property key="wildfly.sasl.local-user.quiet-auth" value="true" />

 </set-mechanism-properties>

 <providers>

 <use-service-loader />

 </providers>

 </configuration>

 </authentication-configurations>

 </authentication-client>

</configuration>

Latest WildFly Documentation

JBoss Community Documentation Page of 2071 2293

Using Elytron Client with Clients Deployed to WildFly
Clients deployed to WildFly can also make use of Elytron Client. In cases where you have included a

 with your deployment or the system property has been set, an iswildfly-config.xml AuthenticationContext

automatically parsed and created from that file.

To load a configuration file outside of the deployment, you can use the

 method. This method will return an whichparseAuthenticationClientConfiguration(URI) AuthentcationContext

you can then use in your client’s code using the .The Programmatic Approach

Additionally, clients will also automatically parse and create an AuthenticationContext from the client

configuration provided by the subsystem. The client configuration in the subsystem can alsoelytron elytron

take advantage of other components defined in the subsystem such as credential stores. If clientelytron

configuration is provided by BOTH the deployment and the subsystem, the subsystem’selytron elytron

configuration is used.

Client configuration using wildfly-config.xml
Prior to WildFly 11, many WildFly client libraries used different configuration strategies. WildFly 11

introduces a new file which unifies all client configuration in a single place. Inwildfly-config.xml

addition to being able to configure authentication using Elytron as described in the previous section, a

 file can also be used to:wildfly-config.xml

Configure EJB client connections, global interceptors, and invocation timeout
Schema location:

https://github.com/wildfly/jboss-ejb-client/blob/4.0.2.Final/src/main/resources/schema/wildfly-client-ejb_3_0.xsd

Example configuration:

wildfly-config.xml

<configuration>

...

 <jboss-ejb-client xmlns="urn:jboss:wildfly-client-ejb:3.0">

 <invocation-timeout seconds="10"/>

 <connections>

 <connection uri="remote+http://10.20.30.40:8080"/>

 </connections>

 <global-interceptors>

 <interceptor class="org.jboss.example.ExampleInterceptor"/>

 </global-interceptors>

 </jboss-ejb-client>

...

</configuration>

https://github.com/wildfly/jboss-ejb-client/blob/4.0.2.Final/src/main/resources/schema/wildfly-client-ejb_3_0.xsd

Latest WildFly Documentation

JBoss Community Documentation Page of 2072 2293

Configure HTTP client
Schema location:

https://github.com/wildfly/wildfly-http-client/blob/1.0.2.Final/common/src/main/resources/schema/wildfly-http-client_1_0.xsd

Example configuration:

wildfly-config.xml

<configuration>

...

 <http-client xmlns="urn:wildfly-http-client:1.0">

 <defaults>

 <eagerly-acquire-session value="true" />

 <buffer-pool buffer-size="2000" max-size="10" direct="true" thread-local-size="1" />

 </defaults>

 </http-client>

...

</configuration>

Configure a remoting endpoint
Schema location:

https://github.com/jboss-remoting/jboss-remoting/blob/5.0.1.Final/src/main/resources/schema/jboss-remoting_5_0.xsd

Example configuration:

wildfly-config.xml

<configuration>

...

 <endpoint xmlns="urn:jboss-remoting:5.0">

 <connections>

 <connection destination="remote+http://10.20.30.40:8080" read-timeout="50"

write-timeout="50" heartbeat-interval="10000"/>

 </connections>

 </endpoint>

...

</configuration>

https://github.com/wildfly/wildfly-http-client/blob/1.0.2.Final/common/src/main/resources/schema/wildfly-http-client_1_0.xsd
https://github.com/jboss-remoting/jboss-remoting/blob/5.0.1.Final/src/main/resources/schema/jboss-remoting_5_0.xsd

Latest WildFly Documentation

JBoss Community Documentation Page of 2073 2293

Configure the default XNIO worker
Schema location:https://github.com/xnio/xnio/blob/3.5.1.Final/api/src/main/resources/schema/xnio_3_5.xsd

Example configuration:

wildfly-config.xml

<configuration>

...

 <worker xmlns="urn:xnio:3.5">

 <io-threads value="10"/>

 <task-keepalive value="100"/>

 <stack-size value="5000"/>

 </worker>

...

</configuration>

Note that WildFly client libraries do have reasonable default configuration. Thus, adding

configuration for these clients to isn’t mandatory.wildfly-config.xml

15.7.2 Client configuration using wildfly-config.xml

Prior to WildFly 11, many WildFly client libraries used different configuration strategies. WildFly 11

introduces a new file which unifies all client configuration in a single place. Inwildfly-config.xml

addition to being able to configure authentication using Elytron as described in the previous section, a

 file can also be used to:wildfly-config.xml

https://github.com/xnio/xnio/blob/3.5.1.Final/api/src/main/resources/schema/xnio_3_5.xsd

Latest WildFly Documentation

JBoss Community Documentation Page of 2074 2293

Configure EJB client connections, global interceptors, and invocation

timeout
Schema location:

https://github.com/wildfly/jboss-ejb-client/blob/4.0.2.Final/src/main/resources/schema/wildfly-client-ejb_3_0.xsd

Example configuration:

wildfly-config.xml

<configuration>

...

 <jboss-ejb-client xmlns="urn:jboss:wildfly-client-ejb:3.0">

 <invocation-timeout seconds="10"/>

 <connections>

 <connection uri="remote+http://10.20.30.40:8080"/>

 </connections>

 <global-interceptors>

 <interceptor class="org.jboss.example.ExampleInterceptor"/>

 </global-interceptors>

 </jboss-ejb-client>

...

</configuration>

Configure HTTP client
Schema location:

https://github.com/wildfly/wildfly-http-client/blob/1.0.2.Final/common/src/main/resources/schema/wildfly-http-client_1_0.xsd

Example configuration:

wildfly-config.xml

<configuration>

...

 <http-client xmlns="urn:wildfly-http-client:1.0">

 <defaults>

 <eagerly-acquire-session value="true" />

 <buffer-pool buffer-size="2000" max-size="10" direct="true" thread-local-size="1" />

 </defaults>

 </http-client>

...

</configuration>

https://github.com/wildfly/jboss-ejb-client/blob/4.0.2.Final/src/main/resources/schema/wildfly-client-ejb_3_0.xsd
https://github.com/wildfly/wildfly-http-client/blob/1.0.2.Final/common/src/main/resources/schema/wildfly-http-client_1_0.xsd

Latest WildFly Documentation

JBoss Community Documentation Page of 2075 2293

Configure a remoting endpoint
Schema location:

https://github.com/jboss-remoting/jboss-remoting/blob/5.0.1.Final/src/main/resources/schema/jboss-remoting_5_0.xsd

Example configuration:

wildfly-config.xml

<configuration>

...

 <endpoint xmlns="urn:jboss-remoting:5.0">

 <connections>

 <connection destination="remote+http://10.20.30.40:8080" read-timeout="50"

write-timeout="50" heartbeat-interval="10000"/>

 </connections>

 </endpoint>

...

</configuration>

Configure the default XNIO worker
Schema location:https://github.com/xnio/xnio/blob/3.5.1.Final/api/src/main/resources/schema/xnio_3_5.xsd

Example configuration:

wildfly-config.xml

<configuration>

...

 <worker xmlns="urn:xnio:3.5">

 <io-threads value="10"/>

 <task-keepalive value="100"/>

 <stack-size value="5000"/>

 </worker>

...

</configuration>

Note that WildFly client libraries do have reasonable default configuration. Thus, adding

configuration for these clients to isn’t mandatory.wildfly-config.xml

https://github.com/jboss-remoting/jboss-remoting/blob/5.0.1.Final/src/main/resources/schema/jboss-remoting_5_0.xsd
https://github.com/xnio/xnio/blob/3.5.1.Final/api/src/main/resources/schema/xnio_3_5.xsd

Latest WildFly Documentation

JBoss Community Documentation Page of 2076 2293

15.8 Elytron and Java Authorization Contract for

Containers (JACC)

Overview

Disabling JACC in Legacy Security Subsystem (PicketBox)

Defining a JACC Policy Provider

Enabling JACC to a Web Deployment

Enabling JACC to a EJB Deployment

15.8.1 Overview

This document will guide you on how to enable JACC using Elytron Subsystem.

15.8.2 Disabling JACC in Legacy Security Subsystem

(PicketBox)

By default, the application server uses the legacy security subsystem (PicketBox) to configure the JACC

policy provider and factory. The default configuration maps to implementations from PicketBox.

In order to use Elytron to manage JACC configuration (or any other policy you want to install to the

application server) you must first disable JACC in legacy security subsystem. For that, please execute the

following CLI command:

/subsystem=security:write-attribute(name=initialize-jacc, value=false)

The command above tells the legacy security subsystem to not initialize any JACC related configuration, but

rely on the policies defined via Elytron subsystem as we'll see in the next sections.

15.8.3 Defining a JACC Policy Provider

Elytron subsystem provides a built-in policy provider based on JACC specification. To create the policy

provider you can execute a CLI command as follows:

[standalone@localhost:9990 /] /subsystem=elytron/policy=jacc:add(jacc-policy={})

After executing the command above, please reload the server configuration as follows:

[standalone@localhost:9990 /] reload

Latest WildFly Documentation

JBoss Community Documentation Page of 2077 2293

15.8.4 Enabling JACC to a Web Deployment

Once JACC Policy Provider is defined you can enable JACC to web deployments by executing the following

command:

[standalone@localhost:9990 /]

/subsystem=undertow/application-security-domain=other:add(http-authentication-factory=application-http-authentication,enable-jacc=true)

The command above defines a default security domain for applications if none is provided in

 In case you already have a defined and just want to enablejboss-web.xml. application-security-domain

JACC you can execute a command as follows:

[standalone@localhost:9990 /]

/subsystem=undertow/application-security-domain=my-security-domain:write-attribute(name=enable-jacc,value=true)

15.8.5 Enabling JACC to a EJB Deployment

Once JACC Policy Provider is defined you can enable JACC to EJB deployments by executing the following

command:

[standalone@localhost:9990 /]

/subsystem=ejb3/application-security-domain=other:add(security-domain=ApplicationDomain,enable-jacc=true)

The command above defines a default security domain for EJBs. In case you already have

a *application-security-domain *defined and just want to enable JACC you can execute a command as

follows:

[standalone@localhost:9990 /]

/subsystem=ejb3/application-security-domain=my-security-domain:write-attribute(name=enable-jacc,value=true)

15.9 Elytron Subsystem

WildFly Elytron is a security framework used to unify security across the entire application server. The

 subsystem enables a single point of configuration for securing both applications and theelytron

management interfaces. WildFly Elytron also provides a set of APIs and SPIs for providing custom

implementations of functionality and integrating with the subsystem.elytron

In addition, there are several other important features of the WildFly Elytron:

Latest WildFly Documentation

JBoss Community Documentation Page of 2078 2293

Stronger authentication mechanisms for HTTP and SASL authentication.

Improved architecture that allows for to be propagated across security domains andSecurityIdentities

transparently transformed ready to be used for authorization. This transformation takes place using

configurable role decoders, role mappers, and permission mappers.

Centralized point for SSL/TLS configuration including cipher suites and protocols.

SSL/TLS optimizations such as eager construction and closely tying authorization toSecureIdentity

establishing an SSL/TLS connection. Eager construction eliminates the need for a SecureIdentity

 to be constructed on a per-request basis. Closely tying authentication to establishingSecureIdentity

an SSL/TLS connection enables permission checks to happen the first request is received.BEFORE

A secure credential store that replaces the previous vault implementation to store clear text

credentials.

The new subsystem exists in parallel to the legacy subsystem and legacy core managementelytron security

authentication. Both the legacy and Elytron methods may be used for securing the management interfaces

as well as providing security for applications.

15.9.1 Get Started using the Elytron Subsystem

To get started using Elytron, refer to these topics:

Use the default Elytron components for and authenticationapplication management

Secure an application with a new identity store stored in a or .filesystem database

Set up one-way SSL/TLS for or the .applications management interfaces

Set up two-way SSL/TLS for or the .applications management interfaces

.Create a credential store and use it with your SSL/TLS configuration

.Use certificate-based authentication with applications

 with Elytron authentication.Override an application's authentication configuration

.Configure Kerberos authentication for applications

Secure and the with an LDAP-based identity store.applications management interfaces

15.9.2 Provided components

Wildfly Elytron provides a default set of implementations in the subsystem.elytron

Latest WildFly Documentation

JBoss Community Documentation Page of 2079 2293

Factories

Component Description

aggregate-http-server-mechanism-factory An HTTP server factory definition where the HTTP

server factory is an aggregation of other HTTP server

factories.

aggregate-sasl-server-factory A SASL server factory definition where the SASL server

factory is an aggregation of other SASL server factories.

configurable-http-server-mechanism-factory A SASL server factory definition where the SASL server

factory is an aggregation of other SASL server factories.

configurable-sasl-server-factory A SASL server factory definition where the SASL server

factory is an aggregation of other SASL server factories.

custom-credential-security-factory A custom credential definition.SecurityFactory

http-authentication-factory Resource containing the association of a security domain

with a .HttpServerAuthenticationMechanismFactory

kerberos-security-factory A security factory for obtaining a for useGSSCredential

during authentication.

mechanism-provider-filtering-sasl-server-factory A SASL server factory definition that enables filtering by

provider where the factory was loaded using a provider.

provider-http-server-mechanism-factory An HTTP server factory definition where the HTTP

server factory is an aggregation of factories from the

provider list.

provider-sasl-server-factory A SASL server factory definition where the SASL server

factory is an aggregation of factories from the provider

list.

sasl-authentication-factory Resource containing the association of a security domain

with a .SaslServerFactory

service-loader-http-server-mechanism-factory An HTTP server factory definition where the HTTP

server factory is an aggregation of factories identified

using a ServiceLoader

service-loader-sasl-server-factory A SASL server factory definition where the SASL server

factory is an aggregation of factories identified using a

ServiceLoader

Latest WildFly Documentation

JBoss Community Documentation Page of 2080 2293

Principal Transformers

Component Description

aggregate-principal-transformer A principal transformer definition where the principal transformer is

an aggregation of other principal transformers.

chained-principal-transformer A principal transformer definition where the principal transformer is

a chaining of other principal transformers.

constant-principal-transformer A principal transformer definition where the principal transformer

always returns the same constant.

custom-principal-transformer A custom principal transformer definition.

regex-principal-transformer A regular expression based principal transformer

regex-validating-principal-transformer A regular expression based principal transformer which uses the

regular expression to validate the name.

Principal Decoders

Component Description

aggregate-principal-decoder A principal decoder definition where the principal decoder is an

aggregation of other principal decoders.

concatenating-principal-decoder A principal decoder definition where the principal decoder is a

concatenation of other principal decoders.

constant-principal-decoder Definition of a principal decoder that always returns the same constant.

custom-principal-decoder Definition of a custom principal decoder.

x500-attribute-principal-decoder Definition of a X500 attribute based principal decoder.

Realm Mappers

Component Description

constant-realm-mapper Definition of a constant realm mapper that always returns the same value.

custom-realm-mapper Definition of a custom realm mapper

mapped-regex-realm-mapper Definition of a realm mapper implementation that first uses a regular

expression to extract the realm name, this is then converted using the

configured mapping of realm names.

simple-regex-realm-mapper Definition of a simple realm mapper that attempts to extract the realm name

using the capture group from the regular expression, if that does not

provide a match then the delegate realm mapper is used instead.

Latest WildFly Documentation

JBoss Community Documentation Page of 2081 2293

Realms

Component Description

aggregate-realm A realm definition that is an aggregation of two realms, one for the

authentication steps and one for loading the identity for the authorization steps.

caching-realm A realm definition that enables caching to another security realm. Caching

strategy is where least accessed entries are discardedLeast Recently Used

when maximum number of entries is reached.

custom-modifiable-realm Custom realm configured as being modifiable will be expected to implement the

 interface. By configuring a realm as being modifiableModifiableSecurityRealm

management operations will be made available to manipulate the realm.

custom-realm A custom realm definitions can implement either the s interfaceSecurityRealm

or the interface. Regardless of which interface isModifiableSecurityRealm

implemented management operations will not be exposed to manage the realm.

However other services that depend on the realm will still be able to perform a

type check and cast to gain access to the modification API.

filesystem-realm A simple security realm definition backed by the filesystem.

identity-realm A security realm definition where identities are represented in the management

model.

jdbc-realm A security realm definition backed by database using JDBC.

key-store-realm A security realm definition backed by a keystore.

ldap-realm A security realm definition backed by LDAP.

properties-realm A security realm definition backed by properties files.

token-realm A security realm definition capable of validating and extracting identities from

security tokens.

trust-managers A trust manager definition for creating the list as used to createTrustManager

an SSL context.

Permission Mappers

Component Description

custom-permission-mapper Definition of a custom permission mapper.

logical-permission-mapper Definition of a logical permission mapper.

simple-permission-mapper Definition of a simple configured permission mapper.

constant-permission-mapper Definition of a permission mapper that always returns the same constant.

Latest WildFly Documentation

JBoss Community Documentation Page of 2082 2293

Role Decoders

Component Description

custom-role-decoder Definition of a custom RoleDecoder

simple-role-decoder Definition of a simple RoleDecoder that takes a single attribute and maps it directly

to roles.

Role Mappers

Component Description

add-prefix-role-mapper A role mapper definition for a role mapper that adds a prefix to each provided.

add-suffix-role-mapper A role mapper definition for a role mapper that adds a suffix to each provided.

constant-role-mapper A role mapper definition where a constant set of roles is always returned.

aggregate-role-mapper A role mapper definition where the role mapper is an aggregation of other role

mappers.

logical-role-mapper A role mapper definition for a role mapper that performs a logical operation using

two referenced role mappers.

custom-role-mapper Definition of a custom role mapper

SSL Components

Component Description

client-ssl-context An SSLContext for use on the client side of a connection.

filtering-key-store A filtering keystore definition, which provides a keystore by filtering a .key-store

key-managers A key manager definition for creating the key manager list as used to create an SSL

context.

key-store A keystore definition.

ldap-key-store An LDAP keystore definition, which loads a keystore from an LDAP server.

server-ssl-context An SSL context for use on the server side of a connection.

Latest WildFly Documentation

JBoss Community Documentation Page of 2083 2293

Other

Component Description

aggregate-providers An aggregation of two or more resources.Provider[]

authentication-configuration An individual authentication configuration definition, which is used by clients

deployed to Wildfly and other resources for authenticating when making a

remote connection.

authentication-context An individual authentication context definition, which is used to supply an

 and when clients deployed to Wildflyssl-context authentication-configuration

and other resources make a remoting connection.

credential-store Credential store to keep alias for sensitive information such as passwords for

external services.

dir-context The configuration to connect to a directory (LDAP) server.

provider-loader A definition for a provider loader.

security-domain A security domain definition.

security-property A definition of a security property to be set.

15.9.3 Out of the Box Configuration

WildFly provides a set of components configured by default. While these components are ready to use, the

legacy subsystem and legacy core management authentication is still used by default. To configuresecurity

WildFly to use the these configured components as well as create new ones, see the Using the Elytron

 section.Subsystem

Default Component Description

ApplicationDomain The security domain uses ApplicationDomain

 and for authentication. ItApplicationRealm groups-to-roles

also uses to assign the logindefault-permission-mapper

permission.

ManagementDomain The security domain uses two securityManagementDomain

realms for authentication: with ManagementRealm

 and with . It also usesgroups-to-roles local super-user-mapper

 to assign the login permission.default-permission-mapper

local (security realm) The security realm does no authentication and sets thelocal

identity of principals to $local

Latest WildFly Documentation

JBoss Community Documentation Page of 2084 2293

ApplicationRealm The security realm is a properties realm thatApplicationRealm

authenticates principals using andapplication-users.properties

assigns roles using . These filesapplication-roles.properties

are located under , which by default,jboss.server.config.dir

maps to . They are alsoEAP_HOME/standalone/configuration

the same files used by the legacy security default

configuration.

ManagementRealm The security realm is a properties realmManagementRealm

that authenticates principals using andmgmt-users.properties

assigns roles using . These files aremgmt-groups.properties

located under , which by default, mapsjboss.server.config.dir

to . They are also theEAP_HOME/standalone/configuration

same files used by the legacy security default configuration.

default-permission-mapper The mapper is a constantdefault-permission-mapper

permission mapper that uses

 to assignorg.wildfly.security.auth.permission.LoginPermission

the login permission and

org.wildfly.extension.batch.jberet.deployment.BatchPermission

to assign permission for batch jobs. The batch permissions

are , , , , and which aligns with start stop restart abandon read

.javax.batch.operations.JobOperator

local (mapper) The mapper is a constant role mapper that maps to the local

 security realm. This is used to map authentication to the local

 security realm.local

groups-to-roles The mapper is a simple-role-decoder that willgroups-to-roles

decode the information of a principal and use it for the groups

 information.role

super-user-mapper The mapper is a constant role mapper thatsuper-user-mapper

maps the role to a principal.SuperUser

management-http-authentication The management-http-authentication

http-authentication-factory can be used for doing

authentication over http. It uses the global

provider-http-server-mechanism-factory to filter authentication

mechanism and uses for authenticatingManagementDomain

principals. It accepts the authentication mechanismsDIGEST

and exposes it as to applications.ManagementRealm

Latest WildFly Documentation

JBoss Community Documentation Page of 2085 2293

application-http-authentication The http-authentication-factoryapplication-http-authentication

can be used for doing authentication over http. It uses the

 provider-http-server-mechanism-factory to filterglobal

authentication mechanism and uses forApplicationDomain

authenticating principals. It accepts and BASIC FORM

authentication mechanisms and exposes as BASIC

 to applications.Application Realm

global (provider-http-server-mechanism-factory) This is the HTTP server factory mechanism definition used to

list the provided authentication mechanisms when creating an

http authentication factory.

management-sasl-authentication The management-sasl-authentication

sasl-authentication-factory can be used for authentication

using SASL. It uses the sasl-server-factory to filterconfigured

authentication mechanisms, which also uses the global

provider-sasl-server-factory to filter by provider names.

 uses the management-sasl-authentication

 security domain for authentication ofManagementDomain

principals. It also maps authentication using

 mechanisms using the realmJBOSS-LOCAL-USER local

mapper and authentication using to DIGEST-MD5

.ManagementRealm

application-sasl-authentication The sasl-authentication-factoryapplication-sasl-authentication

can be used for authentication using SASL. It uses the

 sasl-server-factory to filter authenticationconfigured

mechanisms, which also uses the global

provider-sasl-server-factory to filter by provider names.

 uses the application-sasl-authentication ApplicationDomain

security domain for authentication of principals.

global (provider-sasl-server-factory) This is the SASL server factory definition used to create SASL

authentication factories.

elytron

(mechanism-provider-filtering-sasl-server-factor)

This is used to filter which is usedsasl-authentication-factory

based on the provider. In this case, will match on the elytron

 provider name.WildFlyElytron

configured (configurable-sasl-server-factory) This is used to filter is used basedsasl-authentication-factory

on the mechanism name. In this case, will matchconfigured

on and . It also sets the JBOSS-LOCAL-USER DIGEST-MD5

 to .wildfly.sasl.local-user.default-user $local

combined-providers Is an aggregate provider that aggreates the and elytron

 provider loaders.openssl

elytron A provider loader

Latest WildFly Documentation

JBoss Community Documentation Page of 2086 2293

openssl A provider loader

Default WildFly Configuration

/subsystem=elytron:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {

 "default-authentication-context" => undefined,

 "final-providers" => undefined,

 "initial-providers" => "combined-providers",

 "add-prefix-role-mapper" => undefined,

 "add-suffix-role-mapper" => undefined,

 "aggregate-http-server-mechanism-factory" => undefined,

 "aggregate-principal-decoder" => undefined,

 "aggregate-principal-transformer" => undefined,

 "aggregate-providers" => {"combined-providers" => {"providers" => [

 "elytron",

 "openssl"

]}},

 "aggregate-realm" => undefined,

 "aggregate-role-mapper" => undefined,

 "aggregate-sasl-server-factory" => undefined,

 "authentication-configuration" => undefined,

 "authentication-context" => undefined,

 "caching-realm" => undefined,

 "chained-principal-transformer" => undefined,

 "client-ssl-context" => undefined,

 "concatenating-principal-decoder" => undefined,

 "configurable-http-server-mechanism-factory" => undefined,

 "configurable-sasl-server-factory" => {"configured" => {

 "filters" => [

 {"pattern-filter" => "JBOSS-LOCAL-USER"},

 {"pattern-filter" => "DIGEST-MD5"}

],

 "properties" => {"wildfly.sasl.local-user.default-user" => "$local"},

 "protocol" => undefined,

 "sasl-server-factory" => "elytron",

 "server-name" => undefined

 }},

 "constant-permission-mapper" => {"default-permission-mapper" => {"permissions" => [

 {"class-name" => "org.wildfly.security.auth.permission.LoginPermission"},

 {

 "class-name" => "org.wildfly.extension.batch.jberet.deployment.BatchPermission",

 "module" => "org.wildfly.extension.batch.jberet",

 "target-name" => "*"

 }

]}},

 "constant-principal-decoder" => undefined,

 "constant-principal-transformer" => undefined,

 "constant-realm-mapper" => {"local" => {"realm-name" => "local"}},

 "constant-role-mapper" => {"super-user-mapper" => {"roles" => ["SuperUser"]}},

 "credential-store" => undefined,

 "custom-credential-security-factory" => undefined,

 "custom-modifiable-realm" => undefined,

Latest WildFly Documentation

JBoss Community Documentation Page of 2087 2293

 "custom-permission-mapper" => undefined,

 "custom-principal-decoder" => undefined,

 "custom-principal-transformer" => undefined,

 "custom-realm" => undefined,

 "custom-realm-mapper" => undefined,

 "custom-role-decoder" => undefined,

 "custom-role-mapper" => undefined,

 "dir-context" => undefined,

 "filesystem-realm" => undefined,

 "filtering-key-store" => undefined,

 "http-authentication-factory" => {

 "management-http-authentication" => {

 "http-server-mechanism-factory" => "global",

 "mechanism-configurations" => [{

 "mechanism-name" => "DIGEST",

 "mechanism-realm-configurations" => [{"realm-name" => "ManagementRealm"}]

 }],

 "security-domain" => "ManagementDomain"

 },

 "application-http-authentication" => {

 "http-server-mechanism-factory" => "global",

 "mechanism-configurations" => [

 {

 "mechanism-name" => "BASIC",

 "mechanism-realm-configurations" => [{"realm-name" => "Application

Realm"}]

 },

 {"mechanism-name" => "FORM"}

],

 "security-domain" => "ApplicationDomain"

 }

 },

 "identity-realm" => {"local" => {

 "attribute-name" => undefined,

 "attribute-values" => undefined,

 "identity" => "$local"

 }},

 "jdbc-realm" => undefined,

 "kerberos-security-factory" => undefined,

 "key-managers" => undefined,

 "key-store" => undefined,

 "key-store-realm" => undefined,

 "ldap-key-store" => undefined,

 "ldap-realm" => undefined,

 "logical-permission-mapper" => undefined,

 "logical-role-mapper" => undefined,

 "mapped-regex-realm-mapper" => undefined,

 "mechanism-provider-filtering-sasl-server-factory" => {"elytron" => {

 "enabling" => true,

 "filters" => [{"provider-name" => "WildFlyElytron"}],

 "sasl-server-factory" => "global"

 }},

 "properties-realm" => {

 "ApplicationRealm" => {

 "groups-attribute" => "groups",

 "groups-properties" => {

 "path" => "application-roles.properties",

 "relative-to" => "jboss.server.config.dir"

Latest WildFly Documentation

JBoss Community Documentation Page of 2088 2293

 },

 "users-properties" => {

 "path" => "application-users.properties",

 "relative-to" => "jboss.server.config.dir",

 "digest-realm-name" => "ApplicationRealm"

 }

 },

 "ManagementRealm" => {

 "groups-attribute" => "groups",

 "groups-properties" => {

 "path" => "mgmt-groups.properties",

 "relative-to" => "jboss.server.config.dir"

 },

 "users-properties" => {

 "path" => "mgmt-users.properties",

 "relative-to" => "jboss.server.config.dir",

 "digest-realm-name" => "ManagementRealm"

 }

 }

 },

 "provider-http-server-mechanism-factory" => {"global" => {"providers" => undefined}},

 "provider-loader" => {

 "elytron" => {

 "class-names" => undefined,

 "configuration" => undefined,

 "module" => "org.wildfly.security.elytron",

 "path" => undefined,

 "relative-to" => undefined

 },

 "openssl" => {

 "class-names" => undefined,

 "configuration" => undefined,

 "module" => "org.wildfly.openssl",

 "path" => undefined,

 "relative-to" => undefined

 }

 },

 "provider-sasl-server-factory" => {"global" => {"providers" => undefined}},

 "regex-principal-transformer" => undefined,

 "regex-validating-principal-transformer" => undefined,

 "sasl-authentication-factory" => {

 "management-sasl-authentication" => {

 "mechanism-configurations" => [

 {

 "mechanism-name" => "JBOSS-LOCAL-USER",

 "realm-mapper" => "local"

 },

 {

 "mechanism-name" => "DIGEST-MD5",

 "mechanism-realm-configurations" => [{"realm-name" =>

"ManagementRealm"}]

 }

],

 "sasl-server-factory" => "configured",

 "security-domain" => "ManagementDomain"

 },

 "application-sasl-authentication" => {

 "mechanism-configurations" => undefined,

Latest WildFly Documentation

JBoss Community Documentation Page of 2089 2293

 "sasl-server-factory" => "configured",

 "security-domain" => "ApplicationDomain"

 }

 },

 "security-domain" => {

 "ApplicationDomain" => {

 "default-realm" => "ApplicationRealm",

 "permission-mapper" => "default-permission-mapper",

 "post-realm-principal-transformer" => undefined,

 "pre-realm-principal-transformer" => undefined,

 "principal-decoder" => undefined,

 "realm-mapper" => undefined,

 "realms" => [{

 "realm" => "ApplicationRealm",

 "role-decoder" => "groups-to-roles"

 }],

 "role-mapper" => undefined,

 "trusted-security-domains" => undefined

 },

 "ManagementDomain" => {

 "default-realm" => "ManagementRealm",

 "permission-mapper" => "default-permission-mapper",

 "post-realm-principal-transformer" => undefined,

 "pre-realm-principal-transformer" => undefined,

 "principal-decoder" => undefined,

 "realm-mapper" => undefined,

 "realms" => [

 {

 "realm" => "ManagementRealm",

 "role-decoder" => "groups-to-roles"

 },

 {

 "realm" => "local",

 "role-mapper" => "super-user-mapper"

 }

],

 "role-mapper" => undefined,

 "trusted-security-domains" => undefined

 }

 },

 "security-property" => undefined,

 "server-ssl-context" => undefined,

 "service-loader-http-server-mechanism-factory" => undefined,

 "service-loader-sasl-server-factory" => undefined,

 "simple-permission-mapper" => undefined,

 "simple-regex-realm-mapper" => undefined,

 "simple-role-decoder" => {"groups-to-roles" => {"attribute" => "groups"}},

 "token-realm" => undefined,

 "trust-managers" => undefined,

 "x500-attribute-principal-decoder" => undefined

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 2090 2293

15.9.4 Default Application Authentication Configuration

By default, applications are secured using legacy security domains. Applications must specify a security

domain in their as well as the authentication method. If no security domain is specified by theweb.xml

application, WildFly will use the provided legacy security domain.other

Update WildFly to Use the Default Elytron Components for Application

Authentication

/subsystem=undertow/application-security-domain=exampleApplicationDomain:add(http-authentication-factory=application-http-authentication)

Default Elytron Application HTTP Authentication Configuration
By default, the http-authentication-factory is provided for application httpapplication-http-authentication

authentication.

/subsystem=elytron/http-authentication-factory=application-http-authentication:read-resource()

{

 "outcome" => "success",

 "result" => {

 "http-server-mechanism-factory" => "global",

 "mechanism-configurations" => [

 {

 "mechanism-name" => "BASIC",

 "mechanism-realm-configurations" => [{"realm-name" => "Application Realm"}]

 },

 {"mechanism-name" => "FORM"}

],

 "security-domain" => "ApplicationDomain"

 }

}

The http-authentication-factory is configured to use the application-http-authentication ApplicationDomain

security domain.

Latest WildFly Documentation

JBoss Community Documentation Page of 2091 2293

/subsystem=elytron/security-domain=ApplicationDomain:read-resource()

{

 "outcome" => "success",

 "result" => {

 "default-realm" => "ApplicationRealm",

 "permission-mapper" => "default-permission-mapper",

 "post-realm-principal-transformer" => undefined,

 "pre-realm-principal-transformer" => undefined,

 "principal-decoder" => undefined,

 "realm-mapper" => undefined,

 "realms" => [{

 "realm" => "ApplicationRealm",

 "role-decoder" => "groups-to-roles"

 }],

 "role-mapper" => undefined,

 "trusted-security-domains" => undefined

 }

}

The security domain is backed by the Elytron security realm, which is aApplicationDomain ApplicationRealm

properties-based realm.

/subsystem=elytron/properties-realm=ApplicationRealm:read-resource()

{

 "outcome" => "success",

 "result" => {

 "groups-attribute" => "groups",

 "groups-properties" => {

 "path" => "application-roles.properties",

 "relative-to" => "jboss.server.config.dir"

 },

 "users-properties" => {

 "path" => "application-users.properties",

 "relative-to" => "jboss.server.config.dir",

 "digest-realm-name" => "ApplicationRealm"

 }

 }

}

15.9.5 Default Management Authentication Configuration

By default, the WildFly management interfaces are secured by the legacy core management authentication.

Default Configuration

Latest WildFly Documentation

JBoss Community Documentation Page of 2092 2293

/core-service=management/management-interface=http-interface:read-resource()

{

 "outcome" => "success",

 "result" => {

 "allowed-origins" => undefined,

 "console-enabled" => true,

 "http-authentication-factory" => undefined,

 "http-upgrade" => {"enabled" => true},

 "http-upgrade-enabled" => true,

 "sasl-protocol" => "remote",

 "secure-socket-binding" => undefined,

 "security-realm" => "ManagementRealm",

 "server-name" => undefined,

 "socket-binding" => "management-http",

 "ssl-context" => undefined

 }

WildFly does provide and in the management-http-authentication management-sasl-authentication elytron

subsystem for securing the management interfaces as well.

Latest WildFly Documentation

JBoss Community Documentation Page of 2093 2293

Update WildFly to Use the Default Elytron Components for Management

Authentication

Set http-authentication-factory to use management-http-authentication

/core-service=management/management-interface=http-interface:write-attribute(\

 name=http-authentication-factory, \

 value=management-http-authentication \

)

Set sasl-authentication-factory to use management-sasl-authentication

/core-service=management/management-interface=http-interface:write-attribute(\

 name=http-upgrade.sasl-authentication-factory, \

 value=management-sasl-authentication \

)

Undefine security-realm

/core-service=management/management-interface=http-interface:undefine-attribute(name=security-realm)

Reload WildFly for the changes to take affect.

reload

The management interfaces are now secured using the default components provided by the 'elytron'

subsystem.

Default Elytron Management HTTP Authentication Configuration
When you access the management interface over HTTP, for example when using the web-based

management console, WildFly will use the http-authentication-factory.management-http-authentication

Latest WildFly Documentation

JBoss Community Documentation Page of 2094 2293

/subsystem=elytron/http-authentication-factory=management-http-authentication:read-resource()

{

 "outcome" => "success",

 "result" => {

 "http-server-mechanism-factory" => "global",

 "mechanism-configurations" => [{

 "mechanism-name" => "DIGEST",

 "mechanism-realm-configurations" => [{"realm-name" => "ManagementRealm"}]

 }],

 "security-domain" => "ManagementDomain"

 }

}

The http-authentication-factory, is configured to use the management-http-authentication

 security domain.ManagementDomain

/subsystem=elytron/security-domain=ManagementDomain:read-resource()

{

 "outcome" => "success",

 "result" => {

 "default-realm" => "ManagementRealm",

 "permission-mapper" => "default-permission-mapper",

 "post-realm-principal-transformer" => undefined,

 "pre-realm-principal-transformer" => undefined,

 "principal-decoder" => undefined,

 "realm-mapper" => undefined,

 "realms" => [

 {

 "realm" => "ManagementRealm",

 "role-decoder" => "groups-to-roles"

 },

 {

 "realm" => "local",

 "role-mapper" => "super-user-mapper"

 }

],

 "role-mapper" => undefined,

 "trusted-security-domains" => undefined

 }

}

The security domain is backed by the Elytron security realm, whichManagementDomain ManagementRealm

is a properties-based realm.

Latest WildFly Documentation

JBoss Community Documentation Page of 2095 2293

/subsystem=elytron/properties-realm=ManagementRealm:read-resource()

{

 "outcome" => "success",

 "result" => {

 "groups-attribute" => "groups",

 "groups-properties" => {

 "path" => "mgmt-groups.properties",

 "relative-to" => "jboss.server.config.dir"

 },

 "plain-text" => false,

 "users-properties" => {

 "path" => "mgmt-users.properties",

 "relative-to" => "jboss.server.config.dir"

 }

 }

}

Default Elytron Management CLI Authentication
By default, the management CLI () is configured to connect over .jboss-cli.sh remotehttp

Default jboss-cli.xml

<jboss-cli xmlns="urn:jboss:cli:3.1">

 <default-protocol use-legacy-override="true">remotehttp</default-protocol>

 <!-- The default controller to connect to when 'connect' command is executed w/o arguments

-->

 <default-controller>

 <protocol>remotehttp</protocol>

 <host>localhost</host>

 <port>9990</port>

 </default-controller>

This will establish a connection over HTTP and use HTTP upgrade to change the communication protocol to

. The HTTP upgrade connection is secured in the section of the using a native http-upgrade http-interface

.sasl-authentication-factory

Example Configuration with Default Components

Latest WildFly Documentation

JBoss Community Documentation Page of 2096 2293

/core-service=management/management-interface=http-interface:read-resource()

{

 "outcome" => "success",

 "result" => {

 "allowed-origins" => undefined,

 "console-enabled" => true,

 "http-authentication-factory" => "management-http-authentication",

 "http-upgrade" => {

 "enabled" => true,

 "sasl-authentication-factory" => "management-sasl-authentication"

 },

 "http-upgrade-enabled" => true,

 "sasl-protocol" => "remote",

 "secure-socket-binding" => undefined,

 "security-realm" => undefined,

 "server-name" => undefined,

 "socket-binding" => "management-http",

 "ssl-context" => undefined

 }

}

The default sasl-authentication-factory is .management-sasl-authentication

/subsystem=elytron/sasl-authentication-factory=management-sasl-authentication:read-resource()

{

 "outcome" => "success",

 "result" => {

 "mechanism-configurations" => [

 {

 "mechanism-name" => "JBOSS-LOCAL-USER",

 "realm-mapper" => "local"

 },

 {

 "mechanism-name" => "DIGEST-MD5",

 "mechanism-realm-configurations" => [{"realm-name" => "ManagementRealm"}]

 }

],

 "sasl-server-factory" => "configured",

 "security-domain" => "ManagementDomain"

 }

}

The sasl-authentication-factory specifies and management-sasl-authentication JBOSS-LOCAL-USER

 mechanisms.DIGEST-MD5

JBOSS-LOCAL-USER Realm

Latest WildFly Documentation

JBoss Community Documentation Page of 2097 2293

/subsystem=elytron/identity-realm=local:read-resource()

{

 "outcome" => "success",

 "result" => {

 "attribute-name" => undefined,

 "attribute-values" => undefined,

 "identity" => "$local"

 }

}

The Elytron security realm is for handling silent authentication for local users.local

The Elytron security realm is the same realm used in the ManagementRealm

 http-authentication-factory.management-http-authentication

15.9.6 Comparing Legacy Approaches to Elytron Approaches

Legacy Approach Elytron Approach

UsersRoles Login Module Configure Authentication with a Properties File-Based Identity Store

Database Login Module Configure Authentication with a Database Identity Store

Ldap, LdapExtended,

AdvancedLdap, AdvancedADLdap

Login Modules

Configure Authentication with an LDAP-Based Identity Store

Certificate, Certificate Roles Login

Module

Configure Authentication with Certificates

Kerberos, SPNEGO Login Modules Configure Authentication with a Kerberos-Based Identity Store

Kerberos, SPNEGO Login Modules

with Fallback

Configure Authentication with a Form as a Fallback for Kerberos

Vault Create and Use a Credential Store

Legacy Security Realms , Secure the Management Interfaces with a New Identity Store Silent

Authentication

RBAC Using RBAC with Elytron

Legacy Security Realms for

One-way and Two-way SSL/TLS for

Applications

, Enable One-way SSL/TLS for Applications Enable Two-way

SSL/TLS in WildFly for Applications

Legacy Security Realms for

One-way and Two-way SSL/TLS for

Management Interfaces

Enable One-way for the Management Interfaces Using the Elytron

, Subsystem Enable Two-way SSL/TLS for the Management

Interfaces using the Elytron Subsystem

Latest WildFly Documentation

JBoss Community Documentation Page of 2098 2293

15.10 General Elytron Architecture

The overall architecture for WildFly Elytron is building up a full security policy from assembling smaller

components together, by default we include various implementations of the components - in addition to this,

custom implementations of many components can be provided in order to provide more specialised

implementations.

Within WildFly the different Elytron components are handled as capabilities meaning that different

implementations can be mixed and matched, however the different implementations are modelled using

distinct resources. This section contains a number of diagrams to show the general relationships between

different components to provide a high level view, however the different resource definitions may use

different dependencies depending on their purpose.

15.10.1 Security Domains

Within WildFly Elytron a SecurityDomain can be considered as a security policy backed by one or more

SecurityRealm instances. Resources that make authorization decisions will be associated with a

SecurityDomain, from the SecurityDomain a SecurityIdentity can be obtained which is a representation of the

current identity, from this the identities roles and permissions can be checked to make the authorization

decision for the resource.

Latest WildFly Documentation

JBoss Community Documentation Page of 2099 2293

SecurityDomain

The SecurityDomain is the general wrapper around the policy describing a resulting SecurityIdentity and

makes use of the following components to define this policy.

NameRewriter

NameRewriters are used in multiple places within the Elytron configuration, as their name implies, their

purpose is to take a name and map it to another representation of the name or perform some normalisation

or clean up of the name.

RealmMapper

As a SecurityDomain is able to reference multiple SecurityRealms the RealmMapper is responsible for

identifying which SecurityRealm to use based on the supplied name for authentication.

SecurityRealm

One more more named SecurityRealms are associated with a SecurityDomain, the SecurityRealms are the

access to the underlying repository of identities and are used for obtaining credentials to allow authentication

mechanisms to perform verification, for validation of Evidence and for obtaining the raw AuthorizationIdentity

performing the authentication.

Latest WildFly Documentation

JBoss Community Documentation Page of 2100 2293

Some SecurityRealm implementations are also modifiable so expose an API that allows for updates to be

made to the repository containing the identities.

RoleDecoder

Along with the SecurityRealm association is also a reference to a RoleDecoder, the RoleDecoder takes the

raw AuthorizationIdentity returned from the SecurityRealm and converts it's attributes into roles.

RoleMapper

After the roles have been decoded for an identity further mapping can be applied, this could be as simple at

normalising the format of the names through to adding or removing specific role names. If a RoleMapper is

referenced by the SecurityRealm association that RoleMapper is applied first before applying the

RoleMapper associated with the SecurityDomain.

PrincipalDecoder

A PrincipalDecoder converts from a Principal to a String representation of a name, one example for this is

we have an X500PrincipalDecoder which is able to extract an attribute from a distinguished name.

PermissionMapper

In addition to having roles a SecurityIdentity can also have a set of permissions, the PermissionMapper

assigns those permissions to the identity.

Different secured resources can be associated with different SecurityDomains for their authorization

decisions, within WildFly Elytron we have the ability to configure inflow between different SecurityDomains.

The inflow process means that a SecurityIdentity inflowed into a second SecurityDomain has the mappings

of the new SecurityDomain applied to it so although a common identity may be calling different resources

each of those resources could have a very different view.

Latest WildFly Documentation

JBoss Community Documentation Page of 2101 2293

15.10.2 SASL Authentication

The SaslAuthenticationFactory is an authentication policy for authentication using SASL authentication

mechanisms, in addition to being a policy it is also a factory for configured authentication mechanisms

backed by a SecurityDomain.

SaslAuthenticationFactory

The SaslAuthenticationFactory references the following: -

SecurityDomain

This is the security domain that any mechanism authentication will be performed against.

SaslServerFactory

This is the general factory for server side SASL authentication mechanisms.

MechanismConfigurationSelector

Additional configuration can be supplied for the authentication mechanisms, the configuration will be

described in more detail later but the purpose of the MechanismConfigurationSelector is to obtain

configuration specific to the mechanism selected. This can include information about realm names a

mechanism should present to a remote client plus additional NameRewriters and RealmMappers to use

during the authentication process.

The reason some of the components referenced by the SecurityDomain are duplicated is so that mechanism

specific mappings can be applied.

Latest WildFly Documentation

JBoss Community Documentation Page of 2102 2293

15.10.3 HTTP Authentication

The HttpAuthenticationFactory is an authentication policy for authentication using HTTP authentication

mechanisms, in addition to being a policy it is also a factory for configured authentication mechanisms

backed by a SecurityDomain.

HttpAuthenticationFactory

The HttpAuthenticationFactory references the following: -

SecurityDomain

This is the security domain that any mechanism authentication will be performed against.

HttpServerAuthenticationMechanismFactory

This is the general factory for server side HTTP authentication mechanisms.

MechanismConfigurationSelector

Additional configuration can be supplied for the authentication mechanisms, the configuration will be

described in more detail later but the purpose of the MechanismConfigurationSelector is to obtain

configuration specific to the mechanism selected. This can include information about realm names a

mechanism should present to a remote client plus additional NameRewriters and RealmMappers to use

during the authentication process.

The reason some of the components referenced by the SecurityDomain are duplicated is so that mechanism

specific mappings can be applied.

Latest WildFly Documentation

JBoss Community Documentation Page of 2103 2293

15.10.4 SSL / TLS

The SSLContext defined within Elytron is a javax.net.ssl.SSLContext meaning it can be used by anything

that uses an SSLContext directly.

SSLContext

In addition to the usual configuration for an SSLContext it is possible to configure additional items such as

cipher suites and protocols and the SSLContext returned will wrap any engines created to set these values.

The SSLContext within Elytron can also reference the following: -

KeyManagers

An array of KeyManager instances to be used by the SSLContext, this in turn can reference a KeyStore to

load the keys.

TrustManagers

An array of TrustManager instances to be used by the SSLContext, this in turn can also reference a

KeyStore to load the certificates.

SecurityDomain

This is optional, however if an SSLContext is configured to reference a SecurityDomain then verification of a

clients certificate can be performed as an authentication ensuring the appropriate permissions to Logon are

assigned before even allowing the connection to be fully opened, additionally the SecurityIdentity can be

established at the time the connection is opened and used for any invocations over the connection.

Latest WildFly Documentation

JBoss Community Documentation Page of 2104 2293

15.11 Migrate Legacy Security to Elytron Security

Authentication Configuration

Properties Based Authentication / Authorization

PicketBox Based Configuration

Original Configuration

Intermediate Configuration

Fully Migrated Configuration

Legacy Security Realm

Original Configuration

Migrated Configuration

LDAP Authentication Migration

Legacy Security Realm

PicketBox LdapExtLoginModule

Migrated

Composite Stores Migration

PicketBox Based Configuration

Legacy Security Realm Configuration

Migrated WildFly Elytron Configuration

Database Authentication

PicketBox Database LoginModule

Migrated

N-M relation beetween user and roles

Kerberos Authentication Migration

HTTP Authentication

Legacy Security Realm

Application SPNEGO

Migrated SPNEGO

Remoting / SASL Authentication

Legacy Security Realm

Migrated GSSAPI

Caching Migration

PicketBox Example

Migrated Example

Latest WildFly Documentation

JBoss Community Documentation Page of 2105 2293

Clients

Application Client Migration

Naming Client

Original Configuration

Migrated Configuration

Configuration File Approach

Programmatic Approach

EJB Client

Original Configuration

Migrated Configuration

Configuration File Approach

Programmatic Approach

General Utilities

Security Vault Migration

Single Security Vault Conversion

Notes:

Bulk Security Vault Conversion

References:

Security Properties

SSL Migration

Simple SSL Migration

Client-Cert SSL Authentication Migration

SSL with Client Cert Migration

KeyStores, KeyManagers, and TrustManagers.

Realms and Domains

HTTP Authentication Factory

SASL Authentication Factory

SSL Context

Using for Management

Admin Clients

Web Browser Configuration

CLI Configuration

Documentation Still Needed

15.11.1 Authentication Configuration

Properties Based Authentication / Authorization

PicketBox Based Configuration
This migration example assumes a deployed web application is configured to require authentication using

FORM based authentication and is referencing a PicketBox based security domain using the

UsersRolesLoginModule to load user information from a pair or properties files.

Latest WildFly Documentation

JBoss Community Documentation Page of 2106 2293

Original Configuration
A security domain can be defined in the legacy security subsystem using the following management

operations: -

./subsystem=security/security-domain=application-security:add

./subsystem=security/security-domain=application-security/authentication=classic:add(login-modules=[{code=UsersRoles,

flag=Required,

module-options={usersProperties=file://${jboss.server.config.dir}/example-users.properties,

rolesProperties=file://${jboss.server.config.dir}/example-roles.properties}}])

This would result in a security domain definition: -

<security-domain name="application-security">

 <authentication>

 <login-module code="UsersRoles" flag="required">

 <module-option name="usersProperties"

value="file://${jboss.server.config.dir}/example-users.properties"/>

 <module-option name="rolesProperties"

value="file://${jboss.server.config.dir}/example-roles.properties"/>

 </login-module>

 </authentication>

 </security-domain>

Intermediate Configuration
It is possible to take a previously defined PicketBox security domain and expose it as an Elytron security

realm so it can be wired into a complete Elytron based configuration, if only properties based authentication

was to be migrated it would be recommended to jump to the fully migration configuration and avoid the

unnecessary dependency on the legacy security subsystem but for situations where that is not immediately

possible these commands illustrate an intermediate solution.

These steps assume the original configuration is already in place.

The first step is to add a mapping to an Elytron security realm within the legacy security subsystem.

./subsystem=security/elytron-realm=application-security:add(legacy-jaas-config=application-security)

This results in the following configuration.

<subsystem xmlns="urn:jboss:domain:security:2.0">

 ...

 <elytron-integration>

 <security-realms>

 <elytron-realm name="application-security" legacy-jaas-config="application-security"/>

 </security-realms>

 </elytron-integration>

 ...

 </subsystem>

Latest WildFly Documentation

JBoss Community Documentation Page of 2107 2293

Within the Elytron subsystem a security domain can be defined which references the exported security realm

and also a http authentication factory which supports FORM based authentication.

./subsystem=elytron/security-domain=application-security:add(realms=[{realm=application-security}],

default-realm=application-security, permission-mapper=default-permission-mapper)

./subsystem=elytron/http-authentication-factory=application-security-http:add(http-server-mechanism-factory=global,

security-domain=application-security, mechanism-configurations=[{mechanism-name=FORM}])

And the resulting configuration: -

<subsystem xmlns="urn:wildfly:elytron:1.0" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <security-domains>

 ...

 <security-domain name="application-security" default-realm="application-security"

permission-mapper="default-permission-mapper">

 <realm name="application-security"/>

 </security-domain>

 </security-domains>

 ...

 <http>

 ...

 <http-authentication-factory name="application-security-http"

http-server-mechanism-factory="global" security-domain="application-security">

 <mechanism-configuration>

 <mechanism mechanism-name="FORM"/>

 </mechanism-configuration>

 </http-authentication-factory>

 ...

 </http>

 ...

 </subsystem>

Finally configuration needs to be added to the Undertow subsystem to map the security domain referenced

by the deployment to the newly defined http authentication factory.

./subsystem=undertow/application-security-domain=application-security:add(http-authentication-factory=application-security-http)

Which results in: -

<subsystem xmlns="urn:jboss:domain:undertow:4.0">

 ...

 <application-security-domains>

 <application-security-domain name="application-security"

http-authentication-factory="application-security-http"/>

 </application-security-domains>

 ...

 </subsystem>

Latest WildFly Documentation

JBoss Community Documentation Page of 2108 2293

Note: If the deployment was already deployed at this point the application server should be reloaded or the

deployment redeployed for the application security domain mapping to take effect.

The following command can then be used to verify the mapping was applied to the deployment.

[standalone@localhost:9990 /]

./subsystem=undertow/application-security-domain=application-security:read-resource(include-runtime=true)
{

"outcome" => "success",

 "result" => {

 "enable-jacc" => false,

 "http-authentication-factory" => "application-security-http",

 "override-deployment-config" => false,

 "referencing-deployments" => ["HelloWorld.war"],

 "setting" => undefined

 }

}

The deployment being tested here is 'HelloWorld.war' and the output from the previous command shows this

deployment is referencing the mapping.

At this stage the previously defined security domain is used for it's LoginModule configuration but this is

wrapped by Elytron components which take over authentication.

Fully Migrated Configuration
Alternatively the configuration can be completely defined within the Elytron subsystem, in this case it is

assumed none of the previous commands have been executed and this is started from a clean configuration

- however if the security domain definition does exist in the legacy security subsystem that will remain

completely independent.

First a new security realm can be defined within the Elytron subsystem referencing the files referenced

previously: -

./subsystem=elytron/properties-realm=application-properties:add(users-properties={path=example-users.properties,

relative-to=jboss.server.config.dir, plain-text=true, digest-realm-name="Application Security"},

groups-properties={path=example-roles.properties, relative-to=jboss.server.config.dir},

groups-attribute=Roles)

As before a security domain and http authentication factory can be defined.

./subsystem=elytron/security-domain=application-security:add(realms=[{realm=application-properties}],

default-realm=application-properties, permission-mapper=default-permission-mapper)

./subsystem=elytron/http-authentication-factory=application-security-http:add(http-server-mechanism-factory=global,

security-domain=application-security, mechanism-configurations=[{mechanism-name=FORM}])

This results in the following overall configuration.

Latest WildFly Documentation

JBoss Community Documentation Page of 2109 2293

<subsystem xmlns="urn:wildfly:elytron:1.0" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <security-domains>

 ...

 <security-domain name="application-security" default-realm="application-properties"

permission-mapper="default-permission-mapper">

 <realm name="application-properties"/>

 </security-domain>

 </security-domains>

 <security-realms>

 ...

 <properties-realm name="application-properties" groups-attribute="Roles">

 <users-properties path="example-users.properties" relative-to="jboss.server.config.dir"

digest-realm-name="Application Security" plain-text="true"/>

 <groups-properties path="example-roles.properties"

relative-to="jboss.server.config.dir"/>

 </properties-realm>

 </security-realms>

 ...

 <http>

 ...

 <http-authentication-factory name="application-security-http"

http-server-mechanism-factory="global" security-domain="application-security">

 <mechanism-configuration>

 <mechanism mechanism-name="FORM"/>

 </mechanism-configuration>

 </http-authentication-factory>

 ...

 </http>

 ...

 </subsystem>

As before the application-security-domain mapping should be added to the Undertow subsystem and the

server reloaded or the deployment redeployed as required.

./subsystem=undertow/application-security-domain=application-security:add(http-authentication-factory=application-security-http)

Which results in: -

<subsystem xmlns="urn:jboss:domain:undertow:4.0">

 ...

 <application-security-domains>

 <application-security-domain name="application-security"

http-authentication-factory="application-security-http"/>

 </application-security-domains>

 ...

 </subsystem>

At this stage the authentication is the equivalent of the original configuration however now Elytron

components are used exclusively.

Latest WildFly Documentation

JBoss Community Documentation Page of 2110 2293

Legacy Security Realm

Original Configuration
A legacy security realm can be defined using the following commands to load users passwords and group

information from properties files.

./core-service=management/security-realm=ApplicationSecurity:add

./core-service=management/security-realm=ApplicationSecurity/authentication=properties:add(relative-to=jboss.server.config.dir,

path=example-users.properties, plain-text=true)

./core-service=management/security-realm=ApplicationSecurity/authorization=properties:add(relative-to=jboss.server.config.dir,

path=example-roles.properties)

This results in the following realm definition.

<security-realm name="ApplicationSecurity">

 <authentication>

 <properties path="example-users.properties" relative-to="jboss.server.config.dir"

plain-text="true"/>

 </authentication>

 <authorization>

 <properties path="example-roles.properties" relative-to="jboss.server.config.dir"/>

 </authorization>

 </security-realm>

A legacy security realm would typically be used to secure either the management interfaces or remoting

connectors.

Migrated Configuration

One of the motivations for adding the Elytron based security to the application server is to allow a consistent

security solution to be used across the server, to replace the security realm the same steps as described in

the previous 'Fully Migrated' section can be followed again up until the http-authentication-factory is defined.

A legacy security realm can also be used for SASL based authentication so a sasl-authentication-factory

should also be defined.

./subsystem=elytron/sasl-authentication-factory=application-security-sasl:add(sasl-server-factory=elytron,

security-domain=application-security, mechanism-configurations=[{mechanism-name=PLAIN}])

Latest WildFly Documentation

JBoss Community Documentation Page of 2111 2293

<subsystem xmlns="urn:wildfly:elytron:1.0" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <sasl>

 ...

 <sasl-authentication-factory name="application-security-sasl"

sasl-server-factory="elytron" security-domain="application-security">

 <mechanism-configuration>

 <mechanism mechanism-name="PLAIN"/>

 </mechanism-configuration>

 </sasl-authentication-factory>

 ...

 </sasl>

 </subsystem>

This can be associated with a Remoting connector to use for authentication and the existing security realm

reference cleared.

./subsystem=remoting/http-connector=http-remoting-connector:write-attribute(name=sasl-authentication-factory,

value=application-security-sasl)

./subsystem=remoting/http-connector=http-remoting-connector:undefine-attribute(name=security-realm)

<subsystem xmlns="urn:jboss:domain:remoting:4.0">

 ...

 <http-connector name="http-remoting-connector" connector-ref="default"

sasl-authentication-factory="application-security-sasl"/>

 </subsystem>

If this new configuration was to be used to secure the management interfaces more suitable names should

be chosen but the following commands illustrate how to set the two authentication factories and clear the

existing security realm reference.

./core-service=management/management-interface=http-interface:write-attribute(name=http-authentication-factory,

value=application-security-http)

./core-service=management/management-interface=http-interface:write-attribute(name=http-upgrade.sasl-authentication-factory,

value=application-security-sasl)

./core-service=management/management-interface=http-interface:undefine-attribute(name=security-realm)

<management-interfaces>

 <http-interface http-authentication-factory="application-security-http">

 <http-upgrade enabled="true" sasl-authentication-factory="application-security-sasl"/>

 <socket-binding http="management-http"/>

 </http-interface>

 </management-interfaces>

Latest WildFly Documentation

JBoss Community Documentation Page of 2112 2293

LDAP Authentication Migration

The section describing how to migrate from properties based authentication using either PicketBox or legacy

security realms to Elytron also contained a lot of additional information regarding defining security domains,

authentication factories, and how these are mapped to be used for authentication. This section will illustrate

some equivalent LDAP configuration using legacy security realms and PicketBox security domains and show

the equivalent configuration using Elytron but will not repeat the steps to wire it all together covered in the

previous section.

These configuration examples are developed against a test LDAP sever with user entries like: -

dn: uid=TestUserOne,ou=users,dc=group-to-principal,dc=wildfly,dc=org

objectClass: top

objectClass: inetOrgPerson

objectClass: uidObject

objectClass: person

objectClass: organizationalPerson

cn: Test User One

sn: Test User One

uid: TestUserOne

userPassword: {SSHA}UG8ov2rnrnBKakcARVvraZHqTa7mFWJZlWt2HA==

The group entries then look like: -

dn: uid=GroupOne,ou=groups,dc=group-to-principal,dc=wildfly,dc=org

objectClass: top

objectClass: groupOfUniqueNames

objectClass: uidObject

cn: Group One

uid: GroupOne

uniqueMember: uid=TestUserOne,ou=users,dc=group-to-principal,dc=wildfly,dc=org

For authentication purposes the username will be matched against the 'uid' attribute, also the resulting group

name will be taken from the 'uid' attribute of the group entry.

Latest WildFly Documentation

JBoss Community Documentation Page of 2113 2293

Legacy Security Realm
A connection to the LDAP server and related security realm can be created with the following commands: -

batch

./core-service=management/ldap-connection=MyLdapConnection:add(url="ldap://localhost:10389",

search-dn="uid=admin,ou=system", search-credential="secret")

./core-service=management/security-realm=LDAPRealm:add

./core-service=management/security-realm=LDAPRealm/authentication=ldap:add(connection="MyLdapConnection",

username-attribute=uid, base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org")

./core-service=management/security-realm=LDAPRealm/authorization=ldap:add(connection=MyLdapConnection)
./core-service=management/security-realm=LDAPRealm/authorization=ldap/username-to-dn=username-filter:add(attribute=uid,

base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org")

./core-service=management/security-realm=LDAPRealm/authorization=ldap/group-search=group-to-principal:add(base-dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org",

iterative=true, prefer-original-connection=true, principal-attribute=uniqueMember,

search-by=DISTINGUISHED_NAME, group-name=SIMPLE, group-name-attribute=uid)

run-batch

This results in the following configuration.

<management>

 <security-realms>

 ...

 <security-realm name="LDAPRealm">

 <authentication>

 <ldap connection="MyLdapConnection"

base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org">

 <username-filter attribute="uid"/>

 </ldap>

 </authentication>

 <authorization>

 <ldap connection="MyLdapConnection">

 <username-to-dn>

 <username-filter base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org"

attribute="uid"/>

 </username-to-dn>

 <group-search group-name="SIMPLE" iterative="true" group-name-attribute="uid">

 <group-to-principal search-by="DISTINGUISHED_NAME"

base-dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org" prefer-original-connection="true">

 <membership-filter principal-attribute="uniqueMember"/>

 </group-to-principal>

 </group-search>

 </ldap>

 </authorization>

 </security-realm>

 </security-realms>

 <outbound-connections>

 <ldap name="MyLdapConnection" url="ldap://localhost:10389" search-dn="uid=admin,ou=system"

search-credential="secret"/>

 </outbound-connections>

 ...

 </management>

Latest WildFly Documentation

JBoss Community Documentation Page of 2114 2293

PicketBox LdapExtLoginModule
The following commands can create a PicketBox security domain configured to use the

LdapExtLoginModule to verify a username and password.

./subsystem=security/security-domain=application-security:add

./subsystem=security/security-domain=application-security/authentication=classic:add(login-modules=[{code=LdapExtended,

flag=Required, module-options={ \

java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory, \

java.naming.provider.url=ldap://localhost:10389, \

java.naming.security.authentication=simple, \

bindDN="uid=admin,ou=system", \

bindCredential=secret, \

baseCtxDN="ou=users,dc=group-to-principal,dc=wildfly,dc=org", \

baseFilter="(uid={0})", \

rolesCtxDN="ou=groups,dc=group-to-principal,dc=wildfly,dc=org",\

roleFilter="(uniqueMember={1})", \

roleAttributeID="uid" \

}}])

This results in the following configuration.

<subsystem xmlns="urn:jboss:domain:security:2.0">

 ...

 <security-domains>

 ...

 <security-domain name="application-security">

 <authentication>

 <login-module code="LdapExtended" flag="required">

 <module-option name="java.naming.factory.initial"

value="com.sun.jndi.ldap.LdapCtxFactory"/>

 <module-option name="java.naming.provider.url" value="ldap://localhost:10389"/>

 <module-option name="java.naming.security.authentication" value="simple"/>

 <module-option name="bindDN" value="uid=admin,ou=system"/>

 <module-option name="bindCredential" value="secret"/>

 <module-option name="baseCtxDN"

value="ou=users,dc=group-to-principal,dc=wildfly,dc=org"/>

 <module-option name="baseFilter" value="(uid={0})"/>

 <module-option name="rolesCtxDN"

value="ou=groups,dc=group-to-principal,dc=wildfly,dc=org"/>

 <module-option name="roleFilter" value="(uniqueMember={1})"/>

 <module-option name="roleAttributeID" value="uid"/>

 </login-module>

 </authentication>

 </security-domain>

 </security-domains>

 </subsystem>

Latest WildFly Documentation

JBoss Community Documentation Page of 2115 2293

Migrated
Within the Elytron subsystem a directory context can be defined for the connection to LDAP: -

./subsystem=elytron/dir-context=ldap-connection:add(url=ldap://localhost:10389,

principal="uid=admin,ou=system", credential-reference={clear-text=secret})

Then a security realm can be created to search LDAP and verify the supplied password: -

./subsystem=elytron/ldap-realm=ldap-realm:add(dir-context=ldap-connection, \

direct-verification=true, \

identity-mapping={search-base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org", \

rdn-identifier="uid", \

attribute-mapping=[{filter-base-dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org",filter="(uniqueMember={1})",from="uid",to="Roles"}]})

In the prior two examples information is loaded from LDAP to use directly as groups or roles, in the Elytron

case information can be loaded from LDAP to associate with the identity as attributes - these can

subsequently be mapped to roles but attributes can be loaded for other purposes as well.

By default, if no is defined for given , identity attribute " "role-decoder security-domain Roles

is mapped to the identity roles.

This leads to the following configuration.

<subsystem xmlns="urn:wildfly:elytron:1.0" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <security-realms>

 ...

 <ldap-realm name="ldap-realm" dir-context="ldap-connection" direct-verification="true">

 <identity-mapping rdn-identifier="uid"

search-base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org">

 <attribute-mapping>

 <attribute from="uid" to="Roles" filter="(uniqueMember={1})"

filter-base-dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org"/>

 </attribute-mapping>

 </identity-mapping>

 </ldap-realm>

 </security-realms>

 ...

 <dir-contexts>

 <dir-context name="ldap-connection" url="ldap://localhost:10389"

principal="uid=admin,ou=system">

 <credential-reference clear-text="secret"/>

 </dir-context>

 </dir-contexts>

 </subsystem>

Latest WildFly Documentation

JBoss Community Documentation Page of 2116 2293

Composite Stores Migration
When using either PicketBox or the legacy security realms it is possible to define a configuration where

authentication is performed against one identity store whilst the information used for authorization is loaded

from a different store, when using WildFly Elytron this can be achieved by using an aggregate security

realm.

The example here makes use of a properties file for authentication and then searches LDAP to load group /

role information. Both of these are based on the previous examples within this document so the

environmental information is not repeated here.

PicketBox Based Configuration
A PicketBox based security domain can be created by using the following CLI commands: -

./subsystem=security/security-domain=application-security:add

./subsystem=security/security-domain=application-security/authentication=classic:add(login-modules=[

\

{code=UsersRoles, flag=Required, module-options={ \

password-stacking=useFirstPass, \

usersProperties=file://${jboss.server.config.dir}/example-users.properties, \

rolesProperties=file://${jboss.server.config.dir}/example-roles.properties}} \

{code=LdapExtended, flag=Required, module-options={ \

password-stacking=useFirstPass, \

java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory, \

java.naming.provider.url=ldap://localhost:10389, \

java.naming.security.authentication=simple, \

bindDN="uid=admin,ou=system", \

bindCredential=secret, \

baseCtxDN="ou=users,dc=group-to-principal,dc=wildfly,dc=org", \

baseFilter="(uid={0})", \

rolesCtxDN="ou=groups,dc=group-to-principal,dc=wildfly,dc=org",\

roleFilter="(uniqueMember={1})", \

roleAttributeID="uid" \

}}])

This results in the following domain definition: -

Latest WildFly Documentation

JBoss Community Documentation Page of 2117 2293

<security-domain name="application-security">

 <authentication>

 <login-module code="UsersRoles" flag="required">

 <module-option name="password-stacking" value="useFirstPass"/>

 <module-option name="usersProperties"

value="file://${jboss.server.config.dir}/example-users.properties"/>

 <module-option name="rolesProperties"

value="file://${jboss.server.config.dir}/example-roles.properties"/>

 </login-module>

 <login-module code="LdapExtended" flag="required">

 <module-option name="password-stacking" value="useFirstPass"/>

 <module-option name="java.naming.factory.initial"

value="com.sun.jndi.ldap.LdapCtxFactory"/>

 <module-option name="java.naming.provider.url" value="ldap://localhost:10389"/>

 <module-option name="java.naming.security.authentication" value="simple"/>

 <module-option name="bindDN" value="uid=admin,ou=system"/>

 <module-option name="bindCredential" value="secret"/>

 <module-option name="baseCtxDN"

value="ou=users,dc=group-to-principal,dc=wildfly,dc=org"/>

 <module-option name="baseFilter" value="(uid={0})"/>

 <module-option name="rolesCtxDN"

value="ou=groups,dc=group-to-principal,dc=wildfly,dc=org"/>

 <module-option name="roleFilter" value="(uniqueMember={1})"/>

 <module-option name="roleAttributeID" value="uid"/>

 </login-module>

 </authentication>

 </security-domain>

During an authentication attempt the 'UsersRoles' login module will first be called to perform authentication

based on the supplied credential, then the 'LdapExtLoginModule' will be called which will proceed to query

LDAP to load the roles for the identity.

Latest WildFly Documentation

JBoss Community Documentation Page of 2118 2293

Legacy Security Realm Configuration
An equivalent configuration can also be created using the legacy security realms with the following

commands: -

./core-service=management/ldap-connection=MyLdapConnection:add(url="ldap://localhost:10389",

search-dn="uid=admin,ou=system", search-credential="secret")

./core-service=management/security-realm=ApplicationSecurity:add

./core-service=management/security-realm=ApplicationSecurity/authentication=properties:add(path=example-users.properties,

relative-to=jboss.server.config.dir, plain-text=true)

batch

./core-service=management/security-realm=ApplicationSecurity/authorization=ldap:add(connection=MyLdapConnection)
./core-service=management/security-realm=ApplicationSecurity/authorization=ldap/username-to-dn=username-filter:add(attribute=uid,

base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org")

./core-service=management/security-realm=ApplicationSecurity/authorization=ldap/group-search=group-to-principal:add(base-dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org",

iterative=true, prefer-original-connection=true, principal-attribute=uniqueMember,

search-by=DISTINGUISHED_NAME, group-name=SIMPLE, group-name-attribute=uid)

run-batch

This results in the following realm definition: -

<security-realm name="ApplicationSecurity">

 <authentication>

 <properties path="example-users.properties" relative-to="jboss.server.config.dir"

plain-text="true"/>

 </authentication>

 <authorization>

 <ldap connection="MyLdapConnection">

 <username-to-dn>

 <username-filter base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org"

attribute="uid"/>

 </username-to-dn>

 <group-search group-name="SIMPLE" iterative="true" group-name-attribute="uid">

 <group-to-principal search-by="DISTINGUISHED_NAME"

base-dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org" prefer-original-connection="true">

 <membership-filter principal-attribute="uniqueMember"/>

 </group-to-principal>

 </group-search>

 </ldap>

 </authorization>

 </security-realm>

 <outbound-connections>

 <ldap name="MyLdapConnection" url="ldap://localhost:10389" search-dn="uid=admin,ou=system"

search-credential="secret"/>

 </outbound-connections>

As with the PicketBox example, authentication is first performed using the properties file - then group

searching is performed against LDAP.

Latest WildFly Documentation

JBoss Community Documentation Page of 2119 2293

Migrated WildFly Elytron Configuration
The equivalent WildFly Elytron configuration can be defined with the following commands: -

./subsystem=elytron/dir-context=ldap-connection:add(url=ldap://localhost:10389,

principal="uid=admin,ou=system", credential-reference={clear-text=secret})

./subsystem=elytron/ldap-realm=ldap-realm:add(dir-context=ldap-connection, \

direct-verification=true, \

identity-mapping={search-base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org", \

rdn-identifier="uid", \

attribute-mapping=[{filter-base-dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org",filter="(uniqueMember={1})",from="uid",to="Roles"}]})

./subsystem=elytron/properties-realm=application-properties:add(users-properties={path=example-users.properties,

relative-to=jboss.server.config.dir, plain-text=true, digest-realm-name="Application Security"},

groups-properties={path=example-roles.properties, relative-to=jboss.server.config.dir},

groups-attribute=Roles)

./subsystem=elytron/aggregate-realm=combined-realm:add(authentication-realm=application-properties,

authorization-realm=ldap-realm)

./subsystem=elytron/security-domain=application-security:add(realms=[{realm=combined-realm}],

default-realm=combined-realm, permission-mapper=default-permission-mapper)

./subsystem=elytron/http-authentication-factory=application-security-http:add(http-server-mechanism-factory=global,

security-domain=application-security, mechanism-configurations=[{mechanism-name=BASIC}])

This results in the following definitions: -

Latest WildFly Documentation

JBoss Community Documentation Page of 2120 2293

<subsystem xmlns="urn:wildfly:elytron:1.1" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <security-domains>

 ...

 <security-domain name="application-security" default-realm="combined-realm"

permission-mapper="default-permission-mapper">

 <realm name="combined-realm"/>

 </security-domain>

 </security-domains>

 <security-realms>

 <aggregate-realm name="combined-realm" authentication-realm="application-properties"

authorization-realm="ldap-realm"/>

 ...

 <properties-realm name="application-properties" groups-attribute="Roles">

 <users-properties path="example-users.properties"

relative-to="jboss.server.config.dir" digest-realm-name="Application Security"

plain-text="true"/>

 <groups-properties path="example-roles.properties"

relative-to="jboss.server.config.dir"/>

 </properties-realm>

 <ldap-realm name="ldap-realm" dir-context="ldap-connection" direct-verification="true">

 <identity-mapping rdn-identifier="uid"

search-base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org">

 <attribute-mapping>

 <attribute from="uid" to="Roles" filter="(uniqueMember={1})"

filter-base-dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org"/>

 </attribute-mapping>

 </identity-mapping>

 </ldap-realm>

 </security-realms>

 ...

 <http>

 ...

 <http-authentication-factory name="application-security-http"

http-server-mechanism-factory="global" security-domain="application-security">

 <mechanism-configuration>

 <mechanism mechanism-name="BASIC"/>

 </mechanism-configuration>

 </http-authentication-factory>

 ...

 </http>

 ...

 <dir-contexts>

 <dir-context name="ldap-connection" url="ldap://localhost:10389"

principal="uid=admin,ou=system">

 <credential-reference clear-text="secret"/>

 </dir-context>

 </dir-contexts>

 </subsystem>

Within the WildFly Elytron example a new security realm 'aggregate-realm' has been defined, this definition

specifies which of the defined security realms should be used for the authentication step and which of the

security realms should be used for the loading of the identity used for subsequent authorization decisions.

Latest WildFly Documentation

JBoss Community Documentation Page of 2121 2293

Database Authentication
The section describing how to migrate from database accessible via JDBC datasource based authentication

using PicketBox to Elytron. This section will illustrate some equivalent configuration using PicketBox security

domains and show the equivalent configuration using Elytron but will not repeat the steps to wire it all

together covered in the previous sections.

These configuration examples are developed against a test database with users table like:

CREATE TABLE User (

 id BIGINT NOT NULL,

 username VARCHAR(255),

 password VARCHAR(255),

 role ENUM('admin', 'manager', 'user'),

 PRIMARY KEY (id),

 UNIQUE (username)

)

For authentication purposes the username will be matched against the ' ' column, password will beusername

expected in hex-encoded MD5 hash in ' ' column. User role for authorization purposes will bepassword

taken from ' ' column.role

Latest WildFly Documentation

JBoss Community Documentation Page of 2122 2293

PicketBox Database LoginModule
The following commands can create a PicketBox security domain configured to use database accessible via

JDBC datasource to verify a username and password and to assign roles.

./subsystem=security/security-domain=application-security/:add

./subsystem=security/security-domain=application-security/authentication=classic:add(login-modules=[{code=Database,

flag=Required, module-options={ \

 dsJndiName="java:jboss/datasources/ExampleDS", \

 principalsQuery="SELECT password FROM User WHERE username = ?", \

 rolesQuery="SELECT role, 'Roles' FROM User WHERE username = ?", \

 hashAlgorithm=MD5, \

 hashEncoding=base64 \

}}])

This results in the following configuration.

<subsystem xmlns="urn:jboss:domain:security:2.0">

 <security-domains>

 ...

 <security-domain name="application-security">

 <authentication>

 <login-module code="Database" flag="required">

 <module-option name="dsJndiName"

value="java:jboss/datasources/ExampleDS"/>

 <module-option name="principalsQuery" value="SELECT password FROM

User WHERE username = ?"/>

 <module-option name="rolesQuery" value="SELECT role, 'Roles' FROM

User WHERE username = ?"/>

 <module-option name="hashAlgorithm" value="MD5"/>

 <module-option name="hashEncoding" value="base64"/>

 </login-module>

 </authentication>

 </security-domain>

 </security-domains>

 </subsystem>

Latest WildFly Documentation

JBoss Community Documentation Page of 2123 2293

Migrated
Within the Elytron subsystem to use database accesible via JDBC you need to define :jdbc-realm

./subsystem=elytron/jdbc-realm=jdbc-realm:add(principal-query=[{ \

 data-source=ExampleDS, \

 sql="SELECT role, password FROM User WHERE username = ?", \

 attribute-mapping=[{index=1, to=Roles}] \

 simple-digest-mapper={algorithm=simple-digest-md5, password-index=2}, \

}])

This results in the following overall configuration:

<subsystem xmlns="urn:wildfly:elytron:1.0" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <security-realms>

 ...

 <jdbc-realm name="jdbc-realm">

 <principal-query sql="SELECT role, password FROM User WHERE username = ?"

data-source="ExampleDS">

 <attribute-mapping>

 <attribute to="Roles" index="1"/>

 </attribute-mapping>

 <simple-digest-mapper password-index="2"/>

 </principal-query>

 </jdbc-realm>

 ...

 </security-realms>

 ...

 </subsystem>

In comparison with PicketBox solution, Elytron use one SQL query to obtain all user attributesjdbc-realm

and credentials. Their extraction from SQL result specifies mappers.

N-M relation beetween user and roles
When using a n:m-relation beetween user and roles (which means: the user has multiple roles), the previous

configuration does not work.

The database:

Latest WildFly Documentation

JBoss Community Documentation Page of 2124 2293

CREATE TABLE User (

 id BIGINT NOT NULL,

 username VARCHAR(255),

 password VARCHAR(255),

 PRIMARY KEY (id),

 UNIQUE (username)

)

CREATE TABLE Role(

 id BIGINT NOT NULL,

 rolename VARCHAR(255),

 PRIMARY KEY (id),

 UNIQUE (rolename)

)

CREATE TABLE Userrole(

 userid BIGINT not null,

 roleid BIGINT not null,

 PRIMARY KEY (userid, roleid),

 FOREIGN KEY (userid) references User(id,

 FOREIGN KEY (roleid) references Role(id)

)

Here you need two configure two principal queries:

<jdbc-realm name="jdbc-realm">

 <principal-query sql="SELECT PASSWORD FROM USER WHERE USERNAME = ?" data-source="ExampleDS">

 <clear-password-mapper password-index="1"/>

 </principal-query>

 <principal-query sql="SELECT R.ROLENAME from ROLE AS R, USERROLE AS UR, USER AS U WHERE

U.USERNAME=? AND UR.ROLEID = R.ID AND UR.USERID = U.ID" data-source="ExampleDS">

 <attribute-mapping>

 <attribute to="roles" index="1"/>

 </attribute-mapping>

 </principal-query>

 </jdbc-realm>

The second query needs an attribute mapping to decode the selected rolename column (index 1):

<mappers>

 ...

 <simple-role-decoder name="from-roles-attribute" attribute="roles"/>

 ...

 </mappers>

The role decoder is referenced by the security domain:

Latest WildFly Documentation

JBoss Community Documentation Page of 2125 2293

<security-domain name="MyDomain" default-realm="jdbc-realm"

permission-mapper="default-permission-mapper">

 <realm name="MyDbRealm" role-decoder="from-roles-attribute"/>

 </security-domain>

Kerberos Authentication Migration
When working with Kerberos configuration it is possible for the application server to rely on configuration

from the environment or the key configuration can be specified using system properties, for the purpose of

these examples I define system properties - these properties are applicable to both the legacy configuration

and the migrated Elytron configuration.

./system-property=sun.security.krb5.debug:add(value=true)

./system-property=java.security.krb5.realm:add(value=ELYTRON.ORG)

./system-property=java.security.krb5.kdc:add(value=kdc.elytron.org)

The first line makes debugging easier but the last two lines specify the Kerberos realm in use and the

address of the KDC.

<system-properties>

 <property name="sun.security.krb5.debug" value="true"/>

 <property name="java.security.krb5.realm" value="ELYTRON.ORG"/>

 <property name="java.security.krb5.kdc" value="kdc.elytron.org"/>

 </system-properties>

Latest WildFly Documentation

JBoss Community Documentation Page of 2126 2293

HTTP Authentication

Legacy Security Realm
A legacy security realm can be define so that SPNEGO authentication can be enabled for the HTTP

management interface.

./core-service=management/security-realm=Kerberos:add

./core-service=management/security-realm=Kerberos/server-identity=kerberos:add

./core-service=management/security-realm=Kerberos/server-identity=kerberos/keytab=HTTP\/test-server.elytron.org@ELYTRON.ORG:add(path=/home/darranl/src/kerberos/test-server.keytab,

debug=true)

./core-service=management/security-realm=Kerberos/authentication=kerberos:add(remove-realm=true)

This results in the following configuration: -

<security-realms>

 ...

 <security-realm name="Kerberos">

 <server-identities>

 <kerberos>

 <keytab principal="HTTP/test-server.elytron.org@ELYTRON.ORG"

path="/home/darranl/src/kerberos/test-server.keytab" debug="true"/>

 </kerberos>

 </server-identities>

 <authentication>

 <kerberos remove-realm="true"/>

 </authentication>

 </security-realm>

 </security-realms>

Application SPNEGO
Alternatively deployed applications would make use of a pair of security domains.

./subsystem=security/security-domain=host:add

./subsystem=security/security-domain=host/authentication=classic:add

./subsystem=security/security-domain=host/authentication=classic/login-module=1:add(code=Kerberos,

flag=Required, module-options={storeKey=true, useKeyTab=true,

principal=HTTP/test-server.elytron.org@ELYTRON.ORG,

keyTab=/home/darranl/src/kerberos/test-server.keytab, debug=true}

Latest WildFly Documentation

JBoss Community Documentation Page of 2127 2293

./subsystem=security/security-domain=SPNEGO:add

./subsystem=security/security-domain=SPNEGO/authentication=classic:add

./subsystem=security/security-domain=SPNEGO/authentication=classic/login-module=1:add(code=SPNEGO,

flag=requisite, module-options={password-stacking=useFirstPass, serverSecurityDomain=host})

./subsystem=security/security-domain=SPNEGO/authentication=classic/login-module=1:write-attribute(name=module,

value=org.jboss.security.negotiation)

./subsystem=security/security-domain=SPNEGO/authentication=classic/login-module=2:add(code=UsersRoles,

flag=required, module-options={password-stacking=useFirstPass,

usersProperties=file:///home/darranl/src/kerberos/spnego-users.properties,

rolesProperties=file:///home/darranl/src/kerberos/spnego-roles.properties,

defaultUsersProperties=file:///home/darranl/src/kerberos/spnego-users.properties,

defaultRolesProperties=file:///home/darranl/src/kerberos/spnego-roles.properties})

This results in: -

<subsystem xmlns="urn:jboss:domain:security:2.0">

 <security-domains>

 ...

 <security-domain name="host">

 <authentication>

 <login-module name="1" code="Kerberos" flag="required">

 <module-option name="storeKey" value="true"/>

 <module-option name="useKeyTab" value="true"/>

 <module-option name="principal" value="HTTP/test-server.elytron.org@ELYTRON.ORG"/>

 <module-option name="keyTab" value="/home/darranl/src/kerberos/test-server.keytab"/>

 <module-option name="debug" value="true"/>

 </login-module>

 </authentication>

 </security-domain>

 <security-domain name="SPNEGO">

 <authentication>

 <login-module name="1" code="SPNEGO" flag="requisite"

module="org.jboss.security.negotiation">

 <module-option name="password-stacking" value="useFirstPass"/>

 <module-option name="serverSecurityDomain" value="host"/>

 </login-module>

 <login-module name="2" code="UsersRoles" flag="required">

 <module-option name="password-stacking" value="useFirstPass"/>

 <module-option name="usersProperties"

value="file:///home/darranl/src/kerberos/spnego-users.properties"/>

 <module-option name="rolesProperties"

value="file:///home/darranl/src/kerberos/spnego-roles.properties"/>

 <module-option name="defaultUsersProperties"

value="file:///home/darranl/src/kerberos/spnego-users.properties"/>

 <module-option name="defaultRolesProperties"

value="file:///home/darranl/src/kerberos/spnego-roles.properties"/>

 </login-module>

 </authentication>

 </security-domain>

 </security-domains>

 </subsystem>

Latest WildFly Documentation

JBoss Community Documentation Page of 2128 2293

An application can now be deployed referencing the SPNEGO security domain and secured with SPNEGO

mechanism.

Migrated SPNEGO
The equivalent configuration can be achieved with WildFly Elytron by first defining a security realm which will

be used to load identity information.

./subsystem=elytron/properties-realm=spnego-properties:add(users-properties={path=/home/darranl/src/kerberos/spnego-users.properties,

plain-text=true, digest-realm-name=ELYTRON.ORG},

groups-properties={path=/home/darranl/src/kerberos/spnego-roles.properties})

Next a Kerberos security factory is defined which allows the server to load it's own Kerberos identity.

./subsystem=elytron/kerberos-security-factory=test-server:add(path=/home/darranl/src/kerberos/test-server.keytab,

principal=HTTP/test-server.elytron.org@ELYTRON.ORG, debug=true)

As with the previous examples we define a security realm to pull together the policy as well as a HTTP

authentication factory for the authentication policy.

./subsystem=elytron/security-domain=SPNEGODomain:add(default-realm=spnego-properties,

realms=[{realm=spnego-properties, role-decoder=groups-to-roles}],

permission-mapper=default-permission-mapper)

./subsystem=elytron/http-authentication-factory=spnego-http-authentication:add(security-domain=SPNEGODomain,

http-server-mechanism-factory=global,mechanism-configurations=[{mechanism-name=SPNEGO,

credential-security-factory=test-server}])

Overall this results in the following configuration: -

Latest WildFly Documentation

JBoss Community Documentation Page of 2129 2293

<subsystem xmlns="urn:wildfly:elytron:1.0" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <security-domains>

 ...

 <security-domain name="SPNEGODomain" default-realm="spnego-properties"

permission-mapper="default-permission-mapper">

 <realm name="spnego-properties" role-decoder="groups-to-roles"/>

 </security-domain>

 </security-domains>

 <security-realms>

 ...

 <properties-realm name="spnego-properties">

 <users-properties path="/home/darranl/src/kerberos/spnego-users.properties"

digest-realm-name="ELYTRON.ORG" plain-text="true"/>

 <groups-properties path="/home/darranl/src/kerberos/spnego-roles.properties"/>

 </properties-realm>

 </security-realms>

 <credential-security-factories>

 <kerberos-security-factory name="test-server"

principal="HTTP/test-server.elytron.org@ELYTRON.ORG"

path="/home/darranl/src/kerberos/test-server.keytab" debug="true"/>

 </credential-security-factories>

 ...

 <http>

 ...

 <http-authentication-factory name="spnego-http-authentication"

http-server-mechanism-factory="global" security-domain="SPNEGODomain">

 <mechanism-configuration>

 <mechanism mechanism-name="SPNEGO" credential-security-factory="test-server"/>

 </mechanism-configuration>

 </http-authentication-factory>

 ...

 </http>

 ...

 </subsystem>

Now, to enable SPNEGO authentication for the HTTP management interface, update this interface to

reference the defined above, as described in the http-authentication-factory properties

.authentication section

Alternatively, to secure an application using SPNEGO authentication, an application security domain can be

defined in the Undertow subsystem to map security domains to the http-authentication-factory

defined above, as described in the .properties authentication section

https://docs.jboss.org/author/display/WFLY/Migrate+Legacy+Security+to+Elytron+Security#MigrateLegacySecuritytoElytronSecurity-MigratedConfiguration
https://docs.jboss.org/author/display/WFLY/Migrate+Legacy+Security+to+Elytron+Security#MigrateLegacySecuritytoElytronSecurity-MigratedConfiguration
https://docs.jboss.org/author/display/WFLY/Migrate+Legacy+Security+to+Elytron+Security#MigrateLegacySecuritytoElytronSecurity-FullyMigratedConfiguration

Latest WildFly Documentation

JBoss Community Documentation Page of 2130 2293

Remoting / SASL Authentication

Legacy Security Realm
It is also possible to define a legacy security realm for Kerberos / GSSAPI SASL authenticatio for Remoting

authentication such as the native management interface.

./core-service=management/security-realm=Kerberos:add

./core-service=management/security-realm=Kerberos/server-identity=kerberos:add

./core-service=management/security-realm=Kerberos/server-identity=kerberos/keytab=remote\/test-server.elytron.org@ELYTRON.ORG:add(path=/home/darranl/src/kerberos/remote-test-server.keytab,

debug=true)

./core-service=management/security-realm=Kerberos/authentication=kerberos:add(remove-realm=true)

<management>

 <security-realms>

 ...

 <security-realm name="Kerberos">

 <server-identities>

 <kerberos>

 <keytab principal="remote/test-server.elytron.org@ELYTRON.ORG"

path="/home/darranl/src/kerberos/remote-test-server.keytab" debug="true"/>

 </kerberos>

 </server-identities>

 <authentication>

 <kerberos remove-realm="true"/>

 </authentication>

 </security-realm>

 </security-realms>

 ...

 </management>

Migrated GSSAPI
The steps to define the equivalent Elytron configuration are very similar to the HTTP example.

First define the security realm to load the identity from: -

./path=kerberos:add(relative-to=user.home, path=src/kerberos)

./subsystem=elytron/properties-realm=kerberos-properties:add(users-properties={path=kerberos-users.properties,

relative-to=kerberos, digest-realm-name=ELYTRON.ORG},

groups-properties={path=kerberos-groups.properties, relative-to=kerberos})

Then define the Kerberos security factory for the server's identity.

./subsystem=elytron/kerberos-security-factory=test-server:add(relative-to=kerberos,

path=remote-test-server.keytab, principal=remote/test-server.elytron.org@ELYTRON.ORG)

Finally define the security domain and this time a SASL authentication factory.

Latest WildFly Documentation

JBoss Community Documentation Page of 2131 2293

./subsystem=elytron/security-domain=KerberosDomain:add(default-realm=kerberos-properties,

realms=[{realm=kerberos-properties, role-decoder=groups-to-roles}],

permission-mapper=default-permission-mapper)

./subsystem=elytron/sasl-authentication-factory=gssapi-authentication-factory:add(security-domain=KerberosDomain,

sasl-server-factory=elytron, mechanism-configurations=[{mechanism-name=GSSAPI,

credential-security-factory=test-server}])

This results in the following subsystem configuration: -

<subsystem xmlns="urn:wildfly:elytron:1.0" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <security-domains>

 ...

 <security-domain name="KerberosDomain" default-realm="kerberos-properties"

permission-mapper="default-permission-mapper">

 <realm name="kerberos-properties" role-decoder="groups-to-roles"/>

 </security-domain>

 </security-domains>

 <security-realms>

 ...

 <properties-realm name="kerberos-properties">

 <users-properties path="kerberos-users.properties" relative-to="kerberos"

digest-realm-name="ELYTRON.ORG"/>

 <groups-properties path="kerberos-groups.properties" relative-to="kerberos"/>

 </properties-realm>

 </security-realms>

 <credential-security-factories>

 <kerberos-security-factory name="test-server"

principal="remote/test-server.elytron.org@ELYTRON.ORG" path="remote-test-server.keytab"

relative-to="kerberos"/>

 </credential-security-factories>

 ...

 <sasl>

 ...

 <sasl-authentication-factory name="gssapi-authentication-factory"

sasl-server-factory="elytron" security-domain="KerberosDomain">

 <mechanism-configuration>

 <mechanism mechanism-name="GSSAPI" credential-security-factory="test-server"/>

 </mechanism-configuration>

 </sasl-authentication-factory>

 ...

 </sasl>

 </subsystem>

The management interface or Remoting connectors can now be updated to reference the SASL

authentication factory.

The two Elytron examples defined here could also be combined into one to use a shared security domain

and security realm and just use protocol specific authentication factories each referencing their own

Kerberos security factory.

Latest WildFly Documentation

JBoss Community Documentation Page of 2132 2293

Caching Migration
Where a PicketBox based security domain is defined it is possible to enable caching for that security

domain, this enables subsequent hits to the identity store to be avoided as an in memory cache can be used

instead, this example demonstrates how caching can be used with a WildFly Elytron based configuration.

The purpose of this chapter is to highlight the migration of a configuration with caching enabled, this example

is based in the previous LDAP example but with caching enabled.

Latest WildFly Documentation

JBoss Community Documentation Page of 2133 2293

PicketBox Example
A PicketBox based security domain can be defined with the following commands.

./subsystem=security/security-domain=application-security:add(cache-type=default)

./subsystem=security/security-domain=application-security/authentication=classic:add(login-modules=[{code=LdapExtended,

flag=Required, module-options={ \

java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory, \

java.naming.provider.url=ldap://localhost:10389, \

java.naming.security.authentication=simple, \

bindDN="uid=admin,ou=system", \

bindCredential=secret, \

baseCtxDN="ou=users,dc=group-to-principal,dc=wildfly,dc=org", \

baseFilter="(uid={0})", \

rolesCtxDN="ou=groups,dc=group-to-principal,dc=wildfly,dc=org",\

roleFilter="(uniqueMember={1})", \

roleAttributeID="uid" \

}}])

Resulting in the following security domain definition: -

<subsystem xmlns="urn:jboss:domain:security:2.0">

 <security-domains>

 ...

 <security-domain name="application-security" cache-type="default">

 <authentication>

 <login-module code="LdapExtended" flag="required">

 <module-option name="java.naming.factory.initial"

value="com.sun.jndi.ldap.LdapCtxFactory"/>

 <module-option name="java.naming.provider.url" value="ldap://localhost:10389"/>

 <module-option name="java.naming.security.authentication" value="simple"/>

 <module-option name="bindDN" value="uid=admin,ou=system"/>

 <module-option name="bindCredential" value="secret"/>

 <module-option name="baseCtxDN"

value="ou=users,dc=group-to-principal,dc=wildfly,dc=org"/>

 <module-option name="baseFilter" value="(uid={0})"/>

 <module-option name="rolesCtxDN"

value="ou=groups,dc=group-to-principal,dc=wildfly,dc=org"/>

 <module-option name="roleFilter" value="(uniqueMember={1})"/>

 <module-option name="roleAttributeID" value="uid"/>

 </login-module>

 </authentication>

 </security-domain>

 </security-domains>

 </subsystem>

The key difference to the raw LDAP example is that a cache-type of 'default' has been specified on the

security domain. The default cache-type is an in memory cache, when using PicketBox it is also possible to

specify a cache-type of 'infinispan' although this is not supported with WildFly Elytron as various aspects of a

SecurityIdentity are not suitable for replication.

Latest WildFly Documentation

JBoss Community Documentation Page of 2134 2293

Migrated Example
When using WildFly Elytron where caching is required the individual security realm is wrapped using a

cache, a migrated configuration can be defined with the following commands: -

./subsystem=elytron/dir-context=ldap-connection:add(url=ldap://localhost:10389,

principal="uid=admin,ou=system", credential-reference={clear-text=secret})

./subsystem=elytron/ldap-realm=ldap-realm:add(dir-context=ldap-connection, \

direct-verification=true, \

identity-mapping={search-base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org", \

rdn-identifier="uid", \

attribute-mapping=[{filter-base-dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org",filter="(uniqueMember={1})",from="uid",to="Roles"}]})
./subsystem=elytron/caching-realm=cached-ldap:add(realm=ldap-realm)

These can then be used in a security domain and subsequently an authentication factory.

./subsystem=elytron/security-domain=application-security:add(realms=[{realm=cached-ldap}],

default-realm=cached-ldap, permission-mapper=default-permission-mapper)

./subsystem=elytron/http-authentication-factory=application-security-http:add(http-server-mechanism-factory=global,

security-domain=application-security, mechanism-configurations=[{mechanism-name=BASIC}])

In this final step it is very important that the caching-realm is referenced rather than the original realm

otherwise caching will be bypassed.

This results in the following definitions: -

Latest WildFly Documentation

JBoss Community Documentation Page of 2135 2293

<subsystem xmlns="urn:wildfly:elytron:1.1" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <security-domains>

 ...

 <security-domain name="application-security" default-realm="cached-ldap"

permission-mapper="default-permission-mapper">

 <realm name="cached-ldap"/>

 </security-domain>

 </security-domains>

 <security-realms>

 ...

 <ldap-realm name="ldap-realm" dir-context="ldap-connection" direct-verification="true">

 <identity-mapping rdn-identifier="uid"

search-base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org">

 <attribute-mapping>

 <attribute from="uid" to="Roles" filter="(uniqueMember={1})"

filter-base-dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org"/>

 </attribute-mapping>

 </identity-mapping>

 </ldap-realm>

 <caching-realm name="cached-ldap" realm="ldap-realm"/>

 </security-realms>

 ...

 <http>

 ...

 <http-authentication-factory name="application-security-http"

http-server-mechanism-factory="global" security-domain="application-security">

 <mechanism-configuration>

 <mechanism mechanism-name="BASIC"/>

 </mechanism-configuration>

 </http-authentication-factory>

 ...

 </http>

 ...

 <dir-contexts>

 <dir-context name="ldap-connection" url="ldap://localhost:10389"

principal="uid=admin,ou=system">

 <credential-reference clear-text="secret"/>

 </dir-context>

 </dir-contexts>

 </subsystem>

15.11.2 Clients

Application Client Migration

Latest WildFly Documentation

JBoss Community Documentation Page of 2136 2293

Naming Client
This migration example assumes a client application performs a remote JNDI lookup using an

 backed by the InitialContext org.jboss.naming.remote.client.InitialContextFactory

class.

Original Configuration
An backed by the InitialContext org.jboss.naming.remote.client.InitialContextFactory

class can be created by specifying properties that contain the URL of the naming provider to connect to

along with appropriate user credentials:

Properties properties = new Properties();

properties.put(Context.INITIAL_CONTEXT_FACTORY,

"org.jboss.naming.remote.client.InitialContextFactory");

properties.put(Context.PROVIDER_URL, "http-remoting://127.0.0.1:8080");

properties.put(Context.SECURITY_PRINCIPAL, "bob");

properties.put(Context.SECURITY_CREDENTIALS, "secret");

InitialContext context = new InitialContext(properties);

Bar bar = (Bar) context.lookup("foo/bar");

...

Migrated Configuration
An backed by the InitialContext

 class can be created by specifyingorg.wildfly.naming.client.WildFlyInitialContextFactory

a property that contains the URL of the naming provider to connect to. The user credentials can be specified

using a WildFly client configuration file or programmatically.

Latest WildFly Documentation

JBoss Community Documentation Page of 2137 2293

Configuration File Approach

A file that contains the user credentials to use when establishing a connection towildfly-config.xml

the naming provider can be added to the client application's directory:META-INF

wildfly-config.xml

<configuration>

 <authentication-client xmlns="urn:elytron:1.0">

 <authentication-rules>

 <rule use-configuration="namingConfig">

 <match-host name="127.0.0.1"/>

 </rule>

 </authentication-rules>

 <authentication-configurations>

 <configuration name="namingConfig">

 <set-user-name name="bob"/>

 <credentials>

 <clear-password password="secret"/>

 </credentials>

 </configuration>

 </authentication-configurations>

 </authentication-client>

</configuration>

An can then be created as follows:InitialContext

Properties properties = new Properties();

properties.put(Context.INITIAL_CONTEXT_FACTORY,

"org.wildfly.naming.client.WildFlyInitialContextFactory");

properties.put(Context.PROVIDER_URL, "remote+http://127.0.0.1:8080");

InitialContext context = new InitialContext(properties);

Bar bar = (Bar) context.lookup("foo/bar");

...

Latest WildFly Documentation

JBoss Community Documentation Page of 2138 2293

Programmatic Approach

The user credentials to use when establishing a connection to the naming provider can be specified directly

in the client application’s code:

// create your authentication configuration

AuthenticationConfiguration namingConfig =

AuthenticationConfiguration.empty().useName("bob").usePassword("secret");

// create your authentication context

AuthenticationContext context =

AuthenticationContext.empty().with(MatchRule.ALL.matchHost("127.0.0.1"), namingConfig);

// create a callable that creates and uses an InitialContext

Callable<Void> callable = () -> {

 Properties properties = new Properties();

 properties.put(Context.INITIAL_CONTEXT_FACTORY,

"org.wildfly.naming.client.WildFlyInitialContextFactory");

 properties.put(Context.PROVIDER_URL, "remote+http://127.0.0.1:8080");

 InitialContext context = new InitialContext(properties);

 Bar bar = (Bar) context.lookup("foo/bar");

 ...

 return null;

};

// use your authentication context to run your callable

context.runCallable(callable);

EJB Client
This migration example assumes a client application is configured to invoke an EJB deployed on a remote

server using a file.jboss-ejb-client.properties

Latest WildFly Documentation

JBoss Community Documentation Page of 2139 2293

Original Configuration
A file that contains the information needed to connect to the remotejboss-ejb-client.properties

server can be specified in a client application’s directory:META-INF

jboss-ejb-client.properties

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false

remote.connections=default

remote.connection.default.host=127.0.0.1

remote.connection.default.port = 8080

remote.connection.default.username=bob

remote.connection.default.password=secret

An EJB can then be looked up and a method can be invoked on it as follows:

// create an InitialContext

Properties properties = new Properties();

properties.put(Context.INITIAL_CONTEXT_FACTORY,

"org.jboss.naming.remote.client.InitialContextFactory");

properties.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");

InitialContext context = new InitialContext(properties);

// look up an EJB and invoke one of its methods

RemoteCalculator statelessRemoteCalculator = (RemoteCalculator) context.lookup(

 "ejb:/ejb-remote-server-side//CalculatorBean!" + RemoteCalculator.class.getName());

int sum = statelessRemoteCalculator.add(101, 202);

Migrated Configuration

The information needed to connect to the remote server can be specified using a WildFly client configuration

file or programmatically.

Latest WildFly Documentation

JBoss Community Documentation Page of 2140 2293

Configuration File Approach

A file that contains the information needed to connect to the remote server can bewildfly-config.xml

added to the client application's directory:META-INF

wildfly-config.xml

<configuration>

 <authentication-client xmlns="urn:elytron:1.0">

 <authentication-rules>

 <rule use-configuration="ejbConfig">

 <match-host name="127.0.0.1"/>

 </rule>

 </authentication-rules>

 <authentication-configurations>

 <configuration name="ejbConfig">

 <set-user-name name="bob"/>

 <credentials>

 <clear-password password="secret"/>

 </credentials>

 </configuration>

 </authentication-configurations>

 </authentication-client>

 <jboss-ejb-client xmlns="urn:jboss:wildfly-client-ejb:3.0">

 <connections>

 <connection uri="remote+http://127.0.0.1:8080" />

 </connections>

 </jboss-ejb-client>

</configuration>

An EJB can then be looked up and a method can be invoked on it as follows:

// create an InitialContext

Properties properties = new Properties();

properties.put(Context.INITIAL_CONTEXT_FACTORY,

"org.wildfly.naming.client.WildFlyInitialContextFactory");

InitialContext context = new InitialContext(properties);

// look up an EJB and invoke one of its methods (same as before)

RemoteCalculator statelessRemoteCalculator = (RemoteCalculator) context.lookup(

 "ejb:/ejb-remote-server-side//CalculatorBean!" + RemoteCalculator.class.getName());

int sum = statelessRemoteCalculator.add(101, 202);

Latest WildFly Documentation

JBoss Community Documentation Page of 2141 2293

Programmatic Approach

The information needed to connect to the remote server can be specified directly in the client application’s

code:

// create your authentication configuration

AuthenticationConfiguration ejbConfig =

AuthenticationConfiguration.empty().useName("bob").usePassword("secret");

// create your authentication context

AuthenticationContext context =

AuthenticationContext.empty().with(MatchRule.ALL.matchHost("127.0.0.1"), ejbConfig);

// create a callable that invokes an EJB

Callable<Void> callable = () -> {

 // create an InitialContext

 Properties properties = new Properties();

 properties.put(Context.INITIAL_CONTEXT_FACTORY,

"org.wildfly.naming.client.WildFlyInitialContextFactory");

 properties.put(Context.PROVIDER_URL, "remote+http://127.0.0.1:8080");

 InitialContext context = new InitialContext(properties);

 // look up an EJB and invoke one of its methods (same as before)

 RemoteCalculator statelessRemoteCalculator = (RemoteCalculator) context.lookup(

 "ejb:/ejb-remote-server-side//CalculatorBean!" + RemoteCalculator.class.getName());

 int sum = statelessRemoteCalculator.add(101, 202);

 ...

 return null;

};

// use your authentication context to run your callable

context.runCallable(callable);

15.11.3 General Utilities

Security Vault Migration
Security Vault is primarily used in legacy configurations, a vault is used to store sensitive strings outside of

the configuration files. WildFly server may only contain a single security vault.

Credential Store introduced in WildFly 11 is meant to expand Security Vault in terms of storing different

credential types and introduce easy to implement SPI which allows to deploy custom implementations of

CredentialStore SPI. Credentials are stored safely encrypted in storage file outside WildFly configuration

files. Each WildFly server may contain multiple credential stores.

Latest WildFly Documentation

JBoss Community Documentation Page of 2142 2293

To easily migrate vault content into credential store we have added "vault" command into WildFly Elytron

Tool. The tool could be found at $JBOSS_HOME/bin directory. It has several scripts named "elytron-tool.*"

dependent on your platform of choice. One can use also simple form "java -jar

$JBOSS_HOME/bin/wildfly-elytron-tool.jar <command> <arguments>" if it better suites ones needs.

Single Security Vault Conversion
To convert security vault credential store use following example:single

- to get sample vault use testing resources of Elytron Tool project from GitHub [1]

Command to run actual conversion:

./bin/elytron-tool.sh vault --enc-dir vault_data/ --keystore

vault-jceks.keystore --keystore-password MASK-2hKo56F1a3jYGnJwhPmiF5

--iteration 34 --salt 12345678 --alias test --location cs-v1.store --summary

Output:

Vault (enc-dir="vault_data/";keystore="vault-jceks.keystore") converted to

credential store "cs-v1.store"

Vault Conversion summary:

Vault Conversion Successful

CLI command to add new credential store:

/subsystem=elytron/credential-store=test:add(relative-to=jboss.server.data.dir,create=true,modifiable=true,location="cs-v1.store",implementation-properties={"keyStoreType"=>"JCEKS"},credential-reference={clear-text="MASK-2hKo56F1a3jYGnJwhPmiF5;12345678;34"})

Use elytron-tool.sh vault --help to get description of all parameters.

Notes:
- Elytron Tool cannot handle very first version of Security Vault data file.

- --keystore-password can come in two forms (1) masked as shown in the example or (2) clear text.

Parameter --salt and --iteration are there to supply information to decrypt the masked password or to

generate masked password in output. In case --salt and --iteration are omitted default values are used.

- When --summary parameter is specified, one can see nice output with CLI command to be used in WildFly

console to add converted credential store to the configuration.

Bulk Security Vault Conversion
There is possibility to convert multiple vaults to credential store using --bulk-convert parameter with

description file.

Example of description file from our tests [2]:

Latest WildFly Documentation

JBoss Community Documentation Page of 2143 2293

Bulk conversion descriptor

keystore:target/test-classes/vault-v1/vault-jceks.keystore

keystore-password:MASK-2hKo56F1a3jYGnJwhPmiF5

enc-dir:target/test-classes/vault-v1/vault_data/

salt:12345678

iteration:34

location:target/v1-cs-1.store

alias:test

keystore:target/test-classes/vault-v1/vault-jceks.keystore

keystore-password:secretsecret

enc-dir:target/test-classes/vault-v1/vault_data/

location:target/v1-cs-2.store

alias:test

different vault vault-v1-more

keystore:target/test-classes/vault-v1-more/vault-jceks.keystore

keystore-password:MASK-2hKo56F1a3jYGnJwhPmiF5

enc-dir:target/test-classes/vault-v1-more/vault_data/

salt:12345678

iteration:34

location:target/v1-cs-more.store

alias:test

After each "keystore:" option new conversion starts. All options are mandatory except "salt:", "iteration:" and

"properties:"

Execute following command:

./bin/elytron-tool.sh vault --bulk-convert bulk-vault-conversion-desc

--summary

Output:

Latest WildFly Documentation

JBoss Community Documentation Page of 2144 2293

Vault

(enc-dir="vault-v1/vault_data/";keystore="vault-v1/vault-jceks.keystore")

converted to credential store "v1-cs-1.store"

Vault Conversion summary:

Vault Conversion Successful

CLI command to add new credential store:

/subsystem=elytron/credential-store=test:add(relative-to=jboss.server.data.dir,create=true,modifiable=true,location="v1-cs-1.store",implementation-properties={"keyStoreType"=>"JCEKS"},credential-reference={clear-text="MASK-2hKo56F1a3jYGnJwhPmiF5;12345678;34"})

Vault

(enc-dir="vault-v1/vault_data/";keystore="vault-v1/vault-jceks.keystore")

converted to credential store "v1-cs-2.store"

Vault Conversion summary:

Vault Conversion Successful

CLI command to add new credential store:

/subsystem=elytron/credential-store=test:add(relative-to=jboss.server.data.dir,create=true,modifiable=true,location="v1-cs-2.store",implementation-properties={"keyStoreType"=>"JCEKS"},credential-reference={clear-text="secretsecret"})

Vault

(enc-dir="vault-v1-more/vault_data/";keystore="vault-v1-more/vault-jceks.keystore")

converted to credential store "v1-cs-more.store"

Vault Conversion summary:

Vault Conversion Successful

CLI command to add new credential store:

/subsystem=elytron/credential-store=test:add(relative-to=jboss.server.data.dir,create=true,modifiable=true,location="v1-cs-more.store",implementation-properties={"keyStoreType"=>"JCEKS"},credential-reference={clear-text="MASK-2hKo56F1a3jYGnJwhPmiF5;12345678;34"})

The result is conversion of all vaults with proper CLI commands.

References:
[1] https://github.com/wildfly-security/wildfly-elytron-tool/tree/master/src/test/resources/vault-v1

[2]

https://github.com/wildfly-security/wildfly-elytron-tool/blob/master/src/test/java/org/wildfly/security/tool/VaultCommandTest.java

https://github.com/wildfly-security/wildfly-elytron-tool/tree/master/src/test/resources/vault-v1
https://github.com/wildfly-security/wildfly-elytron-tool/blob/master/src/test/java/org/wildfly/security/tool/VaultCommandTest.java

Latest WildFly Documentation

JBoss Community Documentation Page of 2145 2293

Security Properties
Lets suppose security properties "a" and "c" defined in legacy security:

<subsystem xmlns="urn:jboss:domain:security:2.0">

 ...

 <security-properties>

 <property name="a" value="b" />

 <property name="c" value="d" />

 </security-properties>

 </subsystem>

To define security properties in Elytron subsystem you need to set attribute of thesecurity-properties

subsystem:

./subsystem=elytron:write-attribute(name=security-properties, value={ \

 a = "b", \

 c = "d" \

})

You can also add or change one another property without modification of others using map operations.

Following command will set property "e":

./subsystem=elytron:map-put(name=security-properties, key=e, value=f)

By the same way you can also remove one of properties - in example newly created property "e":

./subsystem=elytron:map-remove(name=security-properties, key=e)

Output XML configuration will be:

<subsystem xmlns="urn:wildfly:elytron:1.0" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 <security-properties>

 <security-property name="a" value="b"/>

 <security-property name="c" value="d"/>

 </security-properties>

 ...

 </subsystem>

Latest WildFly Documentation

JBoss Community Documentation Page of 2146 2293

1.

2.

3.

4.

5.

15.11.4 SSL Migration

Simple SSL Migration
This section describe securing HTTP connections to the server using SSL using Elytron.

It suppose you have already configured SSL using legacy , for example by security-realm Admin

, and your configuration looks like:Guide#Enable SSL

<security-realm name="ApplicationRealm">

 <server-identities>

 <ssl>

 <keystore path="server.keystore" relative-to="jboss.server.config.dir"

keystore-password="keystore_password" alias="server" key-password="key_password" />

 </ssl>

 </server-identities>

</security-realm>

To switch to Elytron you need to:

Create Elytron - specifying where is the keystore file stored and password by which it iskey-store

encrypted. Default type of keystore generated using keytool is JKS:

/subsystem=elytron/key-store=LocalhostKeyStore:add(path=server.keystore,relative-to=jboss.server.config.dir,credential-reference={clear-text="keystore_password"},type=JKS)

Create Elytron - specifying keystore, alias (using) and password ofkey-manager alias-filter

key:

/subsystem=elytron/key-manager=LocalhostKeyManager:add(key-store=LocalhostKeyStore,alias-filter=server,credential-reference={clear-text="key_password"})

Create Elytron - specifying only reference to defined above:server-ssl-context key-manager

/subsystem=elytron/server-ssl-context=LocalhostSslContext:add(key-manager=LocalhostKeyManager)

Switch from legacy to newly created Elytron :https-listener security-realm ssl-context

/subsystem=undertow/server=default-server/https-listener=https:undefine-attribute(name=security-realm)
/subsystem=undertow/server=default-server/https-listener=https:write-attribute(name=ssl-context,value=LocalhostSslContext)

And reload the server:

reload

Output XML configuration of Elytron subsystem should look like:

Latest WildFly Documentation

JBoss Community Documentation Page of 2147 2293

<subsystem xmlns="urn:wildfly:elytron:1.0" ...>

 ...

 <tls>

 <key-stores>

 <key-store name="LocalhostKeyStore">

 <credential-reference clear-text="keystore_password"/>

 <implementation type="JKS"/>

 <file path="server.keystore" relative-to="jboss.server.config.dir"/>

 </key-store>

 </key-stores>

 <key-managers>

 <key-manager name="LocalhostKeyManager" key-store="LocalhostKeyStore">

 <credential-reference clear-text="key_password"/>

 </key-manager>

 </key-managers>

 <server-ssl-contexts>

 <server-ssl-context name="LocalhostSslContext"

key-manager="LocalhostKeyManager"/>

 </server-ssl-contexts>

 </tls>

 </subsystem>

Output in Undertow subsystem should be:https-listener

<https-listener name="https" socket-binding="https" ssl-context="LocalhostSslContext"

enable-http2="true"/>

Client-Cert SSL Authentication Migration
This suppose you have already configured Client-Cert SSL authentication using in legacy truststore

, for example by , and your configuration looks like:security-realm Admin Guide#Add Client-Cert to SSL

<security-realm name="ApplicationRealm">

 <server-identities>

 <ssl>

 <keystore path="server.keystore" relative-to="jboss.server.config.dir"

keystore-password="keystore_password" alias="server" key-password="key_password" />

 </ssl>

 </server-identities>

 <authentication>

 <truststore path="server.truststore" relative-to="jboss.server.config.dir"

keystore-password="truststore_password" />

 <local default-user="$local"/>

 <properties path="application-users.properties" relative-to="jboss.server.config.dir"/>

 </authentication>

</security-realm>

Latest WildFly Documentation

JBoss Community Documentation Page of 2148 2293

1.

2.

3.

4.

5.

Following configuration is sufficient to prevent users without valid certificate and private key to

access the server, but it does not provide user identity to the application. That require to define

 HTTP mechanism / SASL mechanism, which will be described later.)CLIENT_CERT EXTERNAL

At first use steps above to migrate basic part of the configuration. Then continue by following:

Create of truststore - like for keystore above:key-store

/subsystem=elytron/key-store=TrustStore:add(path=server.truststore,relative-to=jboss.server.config.dir,credential-reference={clear-text="truststore_password"},type=JKS)

Create - specifying of trustore, created above:trust-manager key-store

/subsystem=elytron/trust-manager=TrustManager:add(key-store=TrustStore)

Modify to use newly created trustmanager:server-ssl-context

/subsystem=elytron/server-ssl-context=LocalhostSslContext:write-attribute(name=trust-manager,value=TrustManager)

Enable client authentication for :server-ssl-context

/subsystem=elytron/server-ssl-context=LocalhostSslContext:write-attribute(name=need-client-auth,value=true)

And reload the server:

reload

Output XML configuration of Elytron subsystem should look like:

Latest WildFly Documentation

JBoss Community Documentation Page of 2149 2293

<subsystem xmlns="urn:wildfly:elytron:1.0" ...>

 ...

 <tls>

 <key-stores>

 <key-store name="LocalhostKeyStore">

 <credential-reference clear-text="keystore_password"/>

 <implementation type="JKS"/>

 <file path="server.keystore" relative-to="jboss.server.config.dir"/>

 </key-store>

 <key-store name="TrustStore">

 <credential-reference clear-text="truststore_password"/>

 <implementation type="JKS"/>

 <file path="server.truststore" relative-to="jboss.server.config.dir"/>

 </key-store>

 </key-stores>

 <key-managers>

 <key-manager name="LocalhostKeyManager" key-store="LocalhostKeyStore"

alias-filter="server">

 <credential-reference clear-text="key_password"/>

 </key-manager>

 </key-managers>

 <trust-managers>

 <trust-manager name="TrustManager" key-store="TrustStore"/>

 </trust-managers>

 <server-ssl-contexts>

 <server-ssl-context name="LocalhostSslContext" need-client-auth="true"

key-manager="LocalhostKeyManager" trust-manager="TrustManager"/>

 </server-ssl-contexts>

 </tls>

 </subsystem>

SSL with Client Cert Migration
As this documentation is primarily intended for users migrating to WildFly Elytron I am going to jump straight

into the configuration required with WildFly Elytron.

This section will cover how to create the various resources required to achieve CLIENT_CERT

authentication with fallback to username / password authentication for both HTTP and SASL (i.e. Remoting)

- both are being covered at the same time as predominantly they require the same core configuration, it is

not until the definition of the authentication factories that the configuration becomes really specific.

The WildFly Elytron project already contains a dummy certificate authority set up that we use for testing, the

KeyStores within this documentation are from the dummy certificate authority although for anything other

than testing these should be replaced with your own.

As a first step we define some paths that point to the wildfly-elytron project so we can use these in the

subsequent configuration.

Latest WildFly Documentation

JBoss Community Documentation Page of 2150 2293

1.

2.

3.

./path=elytron.project:add(path=/home/darranl/src/wildfly10/wildfly-elytron)

./path=elytron.project.jks:add(path=src/test/resources/ca/jks, relative-to=elytron.project)

./path=elytron.project.properties:add(path=src/test/resources/org/wildfly/security/auth/realm,

relative-to=elytron.project)

This results in the following configuration.

<paths>

 <path name="elytron.project" path="/home/darranl/src/wildfly10/wildfly-elytron"/>

 <path name="elytron.project.jks" path="src/test/resources/ca/jks"

relative-to="elytron.project"/>

 <path name="elytron.project.properties"

path="src/test/resources/org/wildfly/security/auth/realm" relative-to="elytron.project"/>

 </paths>

KeyStores, KeyManagers, and TrustManagers.
The next step is to define the KeyStore resources, for this example three different keystores are used: -

 - Contains the servers key and certificate for 'localhost'.localhost.keystore

 - Contains the individual client certificates.beetles.keystore

 - Contains the certificate of the certificate authority.ca.keystore

When we define the overall configuration we will use the localhost keystore along with the ca keystore for the

incoming connections so initially all client certificates signed by the certificate authority will be accepted and

subsequently a security realm will check it against the actual certificates within beetles keystore.

./subsystem=elytron/key-store=localhost:add(type=jks, relative-to=elytron.project.jks,

path=localhost.keystore, credential-reference={clear-text=Elytron})

./subsystem=elytron/key-store=beetles:add(type=jks, relative-to=elytron.project.jks,

path=beetles.keystore, credential-reference={clear-text=Elytron})

./subsystem=elytron/key-store=ca:add(type=jks, relative-to=elytron.project.jks,

path=ca.truststore, credential-reference={clear-text=Elytron})

This results in the following definitions: -

Latest WildFly Documentation

JBoss Community Documentation Page of 2151 2293

<subsystem xmlns="urn:wildfly:elytron:1.1" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <tls>

 <key-stores>

 <key-store name="localhost">

 <credential-reference clear-text="Elytron"/>

 <implementation type="jks"/>

 <file path="localhost.keystore" relative-to="elytron.project.jks"/>

 </key-store>

 <key-store name="beetles">

 <credential-reference clear-text="Elytron"/>

 <implementation type="jks"/>

 <file path="beetles.keystore" relative-to="elytron.project.jks"/>

 </key-store>

 <key-store name="ca">

 <credential-reference clear-text="Elytron"/>

 <implementation type="jks"/>

 <file path="ca.truststore" relative-to="elytron.project.jks"/>

 </key-store>

 </key-stores>

 </tls>

 </subsystem>

Next the key and trust manager resources will be defined using these keystores.

./subsystem=elytron/key-manager=localhost-manager:add(algorithm=SunX509, key-store=localhost,

credential-reference={clear-text=Elytron})

./subsystem=elytron/trust-manager=ca-manager:add(algorithm=SunX509, key-store=ca)

Resulting in: -

<subsystem xmlns="urn:wildfly:elytron:1.1" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <tls>

 ...

 <key-managers>

 <key-manager name="localhost-manager" algorithm="SunX509" key-store="localhost">

 <credential-reference clear-text="Elytron"/>

 </key-manager>

 </key-managers>

 <trust-managers>

 <trust-manager name="ca-manager" algorithm="SunX509" key-store="ca"/>

 </trust-managers>

 </tls>

 </subsystem>

Latest WildFly Documentation

JBoss Community Documentation Page of 2152 2293

Realms and Domains
Two security realms are now defined, one of these uses properties files from within the WildFly Elytron

project to support username/password authentication and the other using the clients certificates for

verification.

./subsystem=elytron/properties-realm=test-users:add(users-properties={relative-to=elytron.project.properties,

path=clear.properties, plain-text=true, digest-realm-name=ManagementRealm},

groups-properties={relative-to=elytron.project.properties, path=groups.properties})

./subsystem=elytron/key-store-realm=key-store-realm:add(key-store=beetles)

Resulting in: -

<subsystem xmlns="urn:wildfly:elytron:1.1" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <security-realms>

 ...

 <key-store-realm name="key-store-realm" key-store="beetles"/>

 ...

 <properties-realm name="test-users">

 <users-properties path="clear.properties" relative-to="elytron.project.properties"

digest-realm-name="ManagementRealm" plain-text="true"/>

 <groups-properties path="groups.properties" relative-to="elytron.project.properties"/>

 </properties-realm>

 </security-realms>

 ...

 </subsystem>

These security realms can now be referenced from a security domain: -

./subsystem=elytron/security-domain=client-cert-domain:add(realms=[{realm=test-users},{realm=key-store-realm}],

\

 default-realm=test-users, \

 permission-mapper=default-permission-mapper)

Resulting in: -

Latest WildFly Documentation

JBoss Community Documentation Page of 2153 2293

<subsystem xmlns="urn:wildfly:elytron:1.1" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <security-domains>

 ...

 <security-domain name="client-cert-domain" default-realm="test-users"

permission-mapper="default-permission-mapper">

 <realm name="test-users"/>

 <realm name="key-store-realm"/>

 </security-domain>

 </security-domains>

 ...

 </subsystem>

Before moving onto the individual authentication factories a couple of additional utility resources are also

required: -

./subsystem=elytron/constant-realm-mapper=key-store-realm:add(realm-name=key-store-realm)

./subsystem=elytron/x500-attribute-principal-decoder=x500-decoder:add(attribute-name=CN,

maximum-segments=1)

Resulting in: -

<subsystem xmlns="urn:wildfly:elytron:1.1" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <mappers>

 ...

 <x500-attribute-principal-decoder name="x500-decoder" attribute-name="CN"

maximum-segments="1"/>

 ...

 <constant-realm-mapper name="key-store-realm" realm-name="key-store-realm"/>

 ...

 </mappers>

 ...

 </subsystem>

Latest WildFly Documentation

JBoss Community Documentation Page of 2154 2293

HTTP Authentication Factory
For the HTTP connections we now define a HTTP authentication factory using the previously defined

resources and it is configured to support CLIENT_CERT and DIGEST authentication.

./subsystem=elytron/http-authentication-factory=client-cert-digest:add(http-server-mechanism-factory=global,

\

 security-domain=client-cert-domain, \

 mechanism-configurations=[{ \

 mechanism-name=CLIENT_CERT, \

 realm-mapper=key-store-realm, \

 pre-realm-principal-transformer=x500-decoder}, \

 {mechanism-name=DIGEST, mechanism-realm-configurations=[{realm-name=ManagementRealm}]}])

Resulting in: -

<subsystem xmlns="urn:wildfly:elytron:1.1" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <http>

 ...

 <http-authentication-factory name="client-cert-digest"

http-server-mechanism-factory="global" security-domain="client-cert-domain">

 <mechanism-configuration>

 <mechanism mechanism-name="CLIENT_CERT" pre-realm-principal-transformer="x500-decoder"

realm-mapper="key-store-realm"/>

 <mechanism mechanism-name="DIGEST">

 <mechanism-realm realm-name="ManagementRealm"/>

 </mechanism>

 </mechanism-configuration>

 </http-authentication-factory>

 ...

 </http>

 ...

 </subsystem>

Where DIGEST authentication is used we rely on the default configuration within the security domain to

select the 'test-users' realm, however where CLIENT_CERT authentication is in use an alternative

realm-mapper is referenced to ensure the 'key-store-realm' is used.

Additionally for CLIENT_CERT authentication a principal-transformer is referenced to extract the CN

attribute from the distinguished name of the client certificate and use this when accessing the identity from

the security realm.

Latest WildFly Documentation

JBoss Community Documentation Page of 2155 2293

SASL Authentication Factory
The architecture of the two authentication factories if very similar so a SASL authentication factory can be

defined in the same way as the HTTP equivalent.

./subsystem=elytron/sasl-authentication-factory=client-cert-digest:add(sasl-server-factory=elytron,

\

 security-domain=client-cert-domain, \

 mechanism-configurations=[{mechanism-name=EXTERNAL, \

 realm-mapper=key-store-realm, \

 pre-realm-principal-transformer=x500-decoder}, \

 {mechanism-name=DIGEST-MD5, mechanism-realm-configurations=[{realm-name=ManagementRealm}]}])

This results in: -

<subsystem xmlns="urn:wildfly:elytron:1.1" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <sasl>

 ...

 <sasl-authentication-factory name="client-cert-digest" sasl-server-factory="elytron"

security-domain="client-cert-domain">

 <mechanism-configuration>

 <mechanism mechanism-name="EXTERNAL" pre-realm-principal-transformer="x500-decoder"

realm-mapper="key-store-realm"/>

 <mechanism mechanism-name="DIGEST-MD5">

 <mechanism-realm realm-name="ManagementRealm"/>

 </mechanism>

 </mechanism-configuration>

 </sasl-authentication-factory>

 ...

 </sasl>

 ...

 </subsystem>

Realm mappers and principal transformers are defined in the same way as were defined for HTTP.

Latest WildFly Documentation

JBoss Community Documentation Page of 2156 2293

SSL Context
An SSL context is also defined for use by the server.

./subsystem=elytron/server-ssl-context=localhost:add(key-manager=localhost-manager,

trust-manager=ca-manager, \

 security-domain=client-cert-domain, \

 authentication-optional=true, \

 want-client-auth=true, \

 need-client-auth=false)

Resulting in: -

<subsystem xmlns="urn:wildfly:elytron:1.1" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <tls>

 ...

 <server-ssl-contexts>

 <server-ssl-context name="localhost" security-domain="client-cert-domain"

want-client-auth="true" need-client-auth="false" authentication-optional="true"

key-manager="localhost-manager" trust-manager="ca-manager"/>

 </server-ssl-contexts>

 </tls>

 </subsystem>

As we will be supporting fallback to username/password authentication is set to asneed-client-auth false

well as being set to , this allows connections to be established but an alternativeauthentication-optional false

form of authentication will be required.

Using for Management
At this point the management interfaces can be updated to use the newly defined resources, we need to add

references to the two new authentication factories and the SSL context, we can also remove the existing

reference to the legacy security realm. As this is modifying existing interfaces a server reload will also be

required.

./core-service=management/management-interface=http-interface:write-attribute(name=ssl-context,

value=localhost)

./core-service=management/management-interface=http-interface:write-attribute(name=secure-socket-binding,

value=management-https)

./core-service=management/management-interface=http-interface:write-attribute(name=http-authentication-factory,

value=client-cert-digest)

./core-service=management/management-interface=http-interface:write-attribute(name=http-upgrade.sasl-authentication-factory,

value=client-cert-digest)

./core-service=management/management-interface=http-interface:undefine-attribute(name=security-realm)
:reload

The management interface configuration then becomes: -

Latest WildFly Documentation

JBoss Community Documentation Page of 2157 2293

<management>

 ...

 <management-interfaces>

 <http-interface http-authentication-factory="client-cert-digest" ssl-context="localhost">

 <http-upgrade enabled="true" sasl-authentication-factory="client-cert-digest"/>

 <socket-binding http="management-http" https="management-https"/>

 </http-interface>

 </management-interfaces>

 ...

 </management>

Admin Clients
At this stage assuming the same files have been used as in this example it should be possible to connect to

the management interface of the server either using a web browser or the JBoss CLI with the username

 and password elytron passwd12#$

For certificate based authentication the keys and certificates from the WildFly Elytron tests can be used,

these are found in JKS keystores under 'src/test/resources/ca/jks', these keystores have a password of

.Elytron

Web Browser Configuration

A PKCS#12 file can be created from the test keystores,this can then be imported into the web browser to

use when connecting to the server.

keytool -importkeystore -srckeystore ladybird.keystore \

 -destkeystore ladybird.pkcs12 \

 -srcstoretype jks \

 -deststoretype pkcs12 \

 -deststorepass Elytron \

 -srcalias ladybird \

 -destalias ladybird

Latest WildFly Documentation

JBoss Community Documentation Page of 2158 2293

CLI Configuration

Since the integration of WildFly Elytron it is possible with the CLI to use a configuration file wildfly-config.xml

to define the security settings including the settings for the client side SSL context.

For the purpose of this example copy the ladybird,keystore and ca.truststore from the Wildfly Elytron

testsuite to the location the JBoss CLI is being started from, the following wildfly-config.xml can be created in

this location as well: -

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <authentication-client xmlns="urn:elytron:1.0">

 <key-stores>

 <key-store name="ladybird" type="jks" >

 <file name="ladybird.keystore"/>

 <key-store-clear-password password="Elytron" />

 </key-store>

 <key-store name="ca" type="jks">

 <file name="ca.truststore"/>

 <key-store-clear-password password="Elytron" />

 </key-store>

 </key-stores>

 <ssl-context-rules>

 <rule use-ssl-context="default" />

 </ssl-context-rules>

 <ssl-contexts>

 <ssl-context name="default">

 <key-store-ssl-certificate key-store-name="ladybird" alias="ladybird">

 <key-store-clear-password password="Elytron" />

 </key-store-ssl-certificate>

 <trust-store key-store-name="ca" />

 </ssl-context>

 </ssl-contexts>

 </authentication-client>

</configuration>

The CLI can now be started using the following command: -

./jboss-cli.sh -c -Dwildfly.config.url=wildfly-config.xml

The command can be used within the CLI to double check the current identity.:whoami

[standalone@localhost:9993 /] :whoami(verbose=true)

{

 "outcome" => "success",

 "result" => {

 "identity" => {"username" => "Ladybird"},

 "mapped-roles" => ["SuperUser"]

 }

}

Latest WildFly Documentation

JBoss Community Documentation Page of 2159 2293

15.11.5 Documentation Still Needed

How to migrate application which uses different identity store for authentication and authorization

(migration to Elytron aggregate-realm).

How migrate to using cache (migration to caching-realm)

Limitations for migration from PicketBox/legacy security to Elytron, for example, Infinispan cache

cannot be used, any others?

15.11.6 Application Client Migration

Naming Client
This migration example assumes a client application performs a remote JNDI lookup using an

 backed by the InitialContext org.jboss.naming.remote.client.InitialContextFactory

class.

Original Configuration
An backed by the InitialContext org.jboss.naming.remote.client.InitialContextFactory

class can be created by specifying properties that contain the URL of the naming provider to connect to

along with appropriate user credentials:

Properties properties = new Properties();

properties.put(Context.INITIAL_CONTEXT_FACTORY,

"org.jboss.naming.remote.client.InitialContextFactory");

properties.put(Context.PROVIDER_URL, "http-remoting://127.0.0.1:8080");

properties.put(Context.SECURITY_PRINCIPAL, "bob");

properties.put(Context.SECURITY_CREDENTIALS, "secret");

InitialContext context = new InitialContext(properties);

Bar bar = (Bar) context.lookup("foo/bar");

...

Migrated Configuration
An backed by the InitialContext

 class can be created by specifyingorg.wildfly.naming.client.WildFlyInitialContextFactory

a property that contains the URL of the naming provider to connect to. The user credentials can be specified

using a WildFly client configuration file or programmatically.

Latest WildFly Documentation

JBoss Community Documentation Page of 2160 2293

Configuration File Approach
A file that contains the user credentials to use when establishing a connection towildfly-config.xml

the naming provider can be added to the client application's directory:META-INF

wildfly-config.xml

<configuration>

 <authentication-client xmlns="urn:elytron:1.0">

 <authentication-rules>

 <rule use-configuration="namingConfig">

 <match-host name="127.0.0.1"/>

 </rule>

 </authentication-rules>

 <authentication-configurations>

 <configuration name="namingConfig">

 <set-user-name name="bob"/>

 <credentials>

 <clear-password password="secret"/>

 </credentials>

 </configuration>

 </authentication-configurations>

 </authentication-client>

</configuration>

An can then be created as follows:InitialContext

Properties properties = new Properties();

properties.put(Context.INITIAL_CONTEXT_FACTORY,

"org.wildfly.naming.client.WildFlyInitialContextFactory");

properties.put(Context.PROVIDER_URL, "remote+http://127.0.0.1:8080");

InitialContext context = new InitialContext(properties);

Bar bar = (Bar) context.lookup("foo/bar");

...

Latest WildFly Documentation

JBoss Community Documentation Page of 2161 2293

Programmatic Approach
The user credentials to use when establishing a connection to the naming provider can be specified directly

in the client application’s code:

// create your authentication configuration

AuthenticationConfiguration namingConfig =

AuthenticationConfiguration.empty().useName("bob").usePassword("secret");

// create your authentication context

AuthenticationContext context =

AuthenticationContext.empty().with(MatchRule.ALL.matchHost("127.0.0.1"), namingConfig);

// create a callable that creates and uses an InitialContext

Callable<Void> callable = () -> {

 Properties properties = new Properties();

 properties.put(Context.INITIAL_CONTEXT_FACTORY,

"org.wildfly.naming.client.WildFlyInitialContextFactory");

 properties.put(Context.PROVIDER_URL, "remote+http://127.0.0.1:8080");

 InitialContext context = new InitialContext(properties);

 Bar bar = (Bar) context.lookup("foo/bar");

 ...

 return null;

};

// use your authentication context to run your callable

context.runCallable(callable);

EJB Client
This migration example assumes a client application is configured to invoke an EJB deployed on a remote

server using a file.jboss-ejb-client.properties

Latest WildFly Documentation

JBoss Community Documentation Page of 2162 2293

Original Configuration
A file that contains the information needed to connect to the remotejboss-ejb-client.properties

server can be specified in a client application’s directory:META-INF

jboss-ejb-client.properties

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false

remote.connections=default

remote.connection.default.host=127.0.0.1

remote.connection.default.port = 8080

remote.connection.default.username=bob

remote.connection.default.password=secret

An EJB can then be looked up and a method can be invoked on it as follows:

// create an InitialContext

Properties properties = new Properties();

properties.put(Context.INITIAL_CONTEXT_FACTORY,

"org.jboss.naming.remote.client.InitialContextFactory");

properties.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");

InitialContext context = new InitialContext(properties);

// look up an EJB and invoke one of its methods

RemoteCalculator statelessRemoteCalculator = (RemoteCalculator) context.lookup(

 "ejb:/ejb-remote-server-side//CalculatorBean!" + RemoteCalculator.class.getName());

int sum = statelessRemoteCalculator.add(101, 202);

Migrated Configuration
The information needed to connect to the remote server can be specified using a WildFly client configuration

file or programmatically.

Latest WildFly Documentation

JBoss Community Documentation Page of 2163 2293

Configuration File Approach
A file that contains the information needed to connect to the remote server can bewildfly-config.xml

added to the client application's directory:META-INF

wildfly-config.xml

<configuration>

 <authentication-client xmlns="urn:elytron:1.0">

 <authentication-rules>

 <rule use-configuration="ejbConfig">

 <match-host name="127.0.0.1"/>

 </rule>

 </authentication-rules>

 <authentication-configurations>

 <configuration name="ejbConfig">

 <set-user-name name="bob"/>

 <credentials>

 <clear-password password="secret"/>

 </credentials>

 </configuration>

 </authentication-configurations>

 </authentication-client>

 <jboss-ejb-client xmlns="urn:jboss:wildfly-client-ejb:3.0">

 <connections>

 <connection uri="remote+http://127.0.0.1:8080" />

 </connections>

 </jboss-ejb-client>

</configuration>

An EJB can then be looked up and a method can be invoked on it as follows:

// create an InitialContext

Properties properties = new Properties();

properties.put(Context.INITIAL_CONTEXT_FACTORY,

"org.wildfly.naming.client.WildFlyInitialContextFactory");

InitialContext context = new InitialContext(properties);

// look up an EJB and invoke one of its methods (same as before)

RemoteCalculator statelessRemoteCalculator = (RemoteCalculator) context.lookup(

 "ejb:/ejb-remote-server-side//CalculatorBean!" + RemoteCalculator.class.getName());

int sum = statelessRemoteCalculator.add(101, 202);

Latest WildFly Documentation

JBoss Community Documentation Page of 2164 2293

Programmatic Approach
The information needed to connect to the remote server can be specified directly in the client application’s

code:

// create your authentication configuration

AuthenticationConfiguration ejbConfig =

AuthenticationConfiguration.empty().useName("bob").usePassword("secret");

// create your authentication context

AuthenticationContext context =

AuthenticationContext.empty().with(MatchRule.ALL.matchHost("127.0.0.1"), ejbConfig);

// create a callable that invokes an EJB

Callable<Void> callable = () -> {

 // create an InitialContext

 Properties properties = new Properties();

 properties.put(Context.INITIAL_CONTEXT_FACTORY,

"org.wildfly.naming.client.WildFlyInitialContextFactory");

 properties.put(Context.PROVIDER_URL, "remote+http://127.0.0.1:8080");

 InitialContext context = new InitialContext(properties);

 // look up an EJB and invoke one of its methods (same as before)

 RemoteCalculator statelessRemoteCalculator = (RemoteCalculator) context.lookup(

 "ejb:/ejb-remote-server-side//CalculatorBean!" + RemoteCalculator.class.getName());

 int sum = statelessRemoteCalculator.add(101, 202);

 ...

 return null;

};

// use your authentication context to run your callable

context.runCallable(callable);

15.11.7 Caching Migration

Where a PicketBox based security domain is defined it is possible to enable caching for that security

domain, this enables subsequent hits to the identity store to be avoided as an in memory cache can be used

instead, this example demonstrates how caching can be used with a WildFly Elytron based configuration.

The purpose of this chapter is to highlight the migration of a configuration with caching enabled, this example

is based in the previous LDAP example but with caching enabled.

Latest WildFly Documentation

JBoss Community Documentation Page of 2165 2293

PicketBox Example
A PicketBox based security domain can be defined with the following commands.

./subsystem=security/security-domain=application-security:add(cache-type=default)

./subsystem=security/security-domain=application-security/authentication=classic:add(login-modules=[{code=LdapExtended,

flag=Required, module-options={ \

java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory, \

java.naming.provider.url=ldap://localhost:10389, \

java.naming.security.authentication=simple, \

bindDN="uid=admin,ou=system", \

bindCredential=secret, \

baseCtxDN="ou=users,dc=group-to-principal,dc=wildfly,dc=org", \

baseFilter="(uid={0})", \

rolesCtxDN="ou=groups,dc=group-to-principal,dc=wildfly,dc=org",\

roleFilter="(uniqueMember={1})", \

roleAttributeID="uid" \

}}])

Resulting in the following security domain definition: -

<subsystem xmlns="urn:jboss:domain:security:2.0">

 <security-domains>

 ...

 <security-domain name="application-security" cache-type="default">

 <authentication>

 <login-module code="LdapExtended" flag="required">

 <module-option name="java.naming.factory.initial"

value="com.sun.jndi.ldap.LdapCtxFactory"/>

 <module-option name="java.naming.provider.url" value="ldap://localhost:10389"/>

 <module-option name="java.naming.security.authentication" value="simple"/>

 <module-option name="bindDN" value="uid=admin,ou=system"/>

 <module-option name="bindCredential" value="secret"/>

 <module-option name="baseCtxDN"

value="ou=users,dc=group-to-principal,dc=wildfly,dc=org"/>

 <module-option name="baseFilter" value="(uid={0})"/>

 <module-option name="rolesCtxDN"

value="ou=groups,dc=group-to-principal,dc=wildfly,dc=org"/>

 <module-option name="roleFilter" value="(uniqueMember={1})"/>

 <module-option name="roleAttributeID" value="uid"/>

 </login-module>

 </authentication>

 </security-domain>

 </security-domains>

 </subsystem>

The key difference to the raw LDAP example is that a cache-type of 'default' has been specified on the

security domain. The default cache-type is an in memory cache, when using PicketBox it is also possible to

specify a cache-type of 'infinispan' although this is not supported with WildFly Elytron as various aspects of a

SecurityIdentity are not suitable for replication.

Latest WildFly Documentation

JBoss Community Documentation Page of 2166 2293

Migrated Example
When using WildFly Elytron where caching is required the individual security realm is wrapped using a

cache, a migrated configuration can be defined with the following commands: -

./subsystem=elytron/dir-context=ldap-connection:add(url=ldap://localhost:10389,

principal="uid=admin,ou=system", credential-reference={clear-text=secret})

./subsystem=elytron/ldap-realm=ldap-realm:add(dir-context=ldap-connection, \

direct-verification=true, \

identity-mapping={search-base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org", \

rdn-identifier="uid", \

attribute-mapping=[{filter-base-dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org",filter="(uniqueMember={1})",from="uid",to="Roles"}]})
./subsystem=elytron/caching-realm=cached-ldap:add(realm=ldap-realm)

These can then be used in a security domain and subsequently an authentication factory.

./subsystem=elytron/security-domain=application-security:add(realms=[{realm=cached-ldap}],

default-realm=cached-ldap, permission-mapper=default-permission-mapper)

./subsystem=elytron/http-authentication-factory=application-security-http:add(http-server-mechanism-factory=global,

security-domain=application-security, mechanism-configurations=[{mechanism-name=BASIC}])

In this final step it is very important that the caching-realm is referenced rather than the original realm

otherwise caching will be bypassed.

This results in the following definitions: -

Latest WildFly Documentation

JBoss Community Documentation Page of 2167 2293

<subsystem xmlns="urn:wildfly:elytron:1.1" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <security-domains>

 ...

 <security-domain name="application-security" default-realm="cached-ldap"

permission-mapper="default-permission-mapper">

 <realm name="cached-ldap"/>

 </security-domain>

 </security-domains>

 <security-realms>

 ...

 <ldap-realm name="ldap-realm" dir-context="ldap-connection" direct-verification="true">

 <identity-mapping rdn-identifier="uid"

search-base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org">

 <attribute-mapping>

 <attribute from="uid" to="Roles" filter="(uniqueMember={1})"

filter-base-dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org"/>

 </attribute-mapping>

 </identity-mapping>

 </ldap-realm>

 <caching-realm name="cached-ldap" realm="ldap-realm"/>

 </security-realms>

 ...

 <http>

 ...

 <http-authentication-factory name="application-security-http"

http-server-mechanism-factory="global" security-domain="application-security">

 <mechanism-configuration>

 <mechanism mechanism-name="BASIC"/>

 </mechanism-configuration>

 </http-authentication-factory>

 ...

 </http>

 ...

 <dir-contexts>

 <dir-context name="ldap-connection" url="ldap://localhost:10389"

principal="uid=admin,ou=system">

 <credential-reference clear-text="secret"/>

 </dir-context>

 </dir-contexts>

 </subsystem>

15.11.8 Composite Stores Migration

When using either PicketBox or the legacy security realms it is possible to define a configuration where

authentication is performed against one identity store whilst the information used for authorization is loaded

from a different store, when using WildFly Elytron this can be achieved by using an aggregate security

realm.

Latest WildFly Documentation

JBoss Community Documentation Page of 2168 2293

The example here makes use of a properties file for authentication and then searches LDAP to load group /

role information. Both of these are based on the previous examples within this document so the

environmental information is not repeated here.

PicketBox Based Configuration
A PicketBox based security domain can be created by using the following CLI commands: -

./subsystem=security/security-domain=application-security:add

./subsystem=security/security-domain=application-security/authentication=classic:add(login-modules=[

\

{code=UsersRoles, flag=Required, module-options={ \

password-stacking=useFirstPass, \

usersProperties=file://${jboss.server.config.dir}/example-users.properties, \

rolesProperties=file://${jboss.server.config.dir}/example-roles.properties}} \

{code=LdapExtended, flag=Required, module-options={ \

password-stacking=useFirstPass, \

java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory, \

java.naming.provider.url=ldap://localhost:10389, \

java.naming.security.authentication=simple, \

bindDN="uid=admin,ou=system", \

bindCredential=secret, \

baseCtxDN="ou=users,dc=group-to-principal,dc=wildfly,dc=org", \

baseFilter="(uid={0})", \

rolesCtxDN="ou=groups,dc=group-to-principal,dc=wildfly,dc=org",\

roleFilter="(uniqueMember={1})", \

roleAttributeID="uid" \

}}])

This results in the following domain definition: -

Latest WildFly Documentation

JBoss Community Documentation Page of 2169 2293

<security-domain name="application-security">

 <authentication>

 <login-module code="UsersRoles" flag="required">

 <module-option name="password-stacking" value="useFirstPass"/>

 <module-option name="usersProperties"

value="file://${jboss.server.config.dir}/example-users.properties"/>

 <module-option name="rolesProperties"

value="file://${jboss.server.config.dir}/example-roles.properties"/>

 </login-module>

 <login-module code="LdapExtended" flag="required">

 <module-option name="password-stacking" value="useFirstPass"/>

 <module-option name="java.naming.factory.initial"

value="com.sun.jndi.ldap.LdapCtxFactory"/>

 <module-option name="java.naming.provider.url" value="ldap://localhost:10389"/>

 <module-option name="java.naming.security.authentication" value="simple"/>

 <module-option name="bindDN" value="uid=admin,ou=system"/>

 <module-option name="bindCredential" value="secret"/>

 <module-option name="baseCtxDN"

value="ou=users,dc=group-to-principal,dc=wildfly,dc=org"/>

 <module-option name="baseFilter" value="(uid={0})"/>

 <module-option name="rolesCtxDN"

value="ou=groups,dc=group-to-principal,dc=wildfly,dc=org"/>

 <module-option name="roleFilter" value="(uniqueMember={1})"/>

 <module-option name="roleAttributeID" value="uid"/>

 </login-module>

 </authentication>

 </security-domain>

During an authentication attempt the 'UsersRoles' login module will first be called to perform authentication

based on the supplied credential, then the 'LdapExtLoginModule' will be called which will proceed to query

LDAP to load the roles for the identity.

Latest WildFly Documentation

JBoss Community Documentation Page of 2170 2293

Legacy Security Realm Configuration
An equivalent configuration can also be created using the legacy security realms with the following

commands: -

./core-service=management/ldap-connection=MyLdapConnection:add(url="ldap://localhost:10389",

search-dn="uid=admin,ou=system", search-credential="secret")

./core-service=management/security-realm=ApplicationSecurity:add

./core-service=management/security-realm=ApplicationSecurity/authentication=properties:add(path=example-users.properties,

relative-to=jboss.server.config.dir, plain-text=true)

batch

./core-service=management/security-realm=ApplicationSecurity/authorization=ldap:add(connection=MyLdapConnection)
./core-service=management/security-realm=ApplicationSecurity/authorization=ldap/username-to-dn=username-filter:add(attribute=uid,

base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org")

./core-service=management/security-realm=ApplicationSecurity/authorization=ldap/group-search=group-to-principal:add(base-dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org",

iterative=true, prefer-original-connection=true, principal-attribute=uniqueMember,

search-by=DISTINGUISHED_NAME, group-name=SIMPLE, group-name-attribute=uid)

run-batch

This results in the following realm definition: -

<security-realm name="ApplicationSecurity">

 <authentication>

 <properties path="example-users.properties" relative-to="jboss.server.config.dir"

plain-text="true"/>

 </authentication>

 <authorization>

 <ldap connection="MyLdapConnection">

 <username-to-dn>

 <username-filter base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org"

attribute="uid"/>

 </username-to-dn>

 <group-search group-name="SIMPLE" iterative="true" group-name-attribute="uid">

 <group-to-principal search-by="DISTINGUISHED_NAME"

base-dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org" prefer-original-connection="true">

 <membership-filter principal-attribute="uniqueMember"/>

 </group-to-principal>

 </group-search>

 </ldap>

 </authorization>

 </security-realm>

 <outbound-connections>

 <ldap name="MyLdapConnection" url="ldap://localhost:10389" search-dn="uid=admin,ou=system"

search-credential="secret"/>

 </outbound-connections>

As with the PicketBox example, authentication is first performed using the properties file - then group

searching is performed against LDAP.

Latest WildFly Documentation

JBoss Community Documentation Page of 2171 2293

Migrated WildFly Elytron Configuration
The equivalent WildFly Elytron configuration can be defined with the following commands: -

./subsystem=elytron/dir-context=ldap-connection:add(url=ldap://localhost:10389,

principal="uid=admin,ou=system", credential-reference={clear-text=secret})

./subsystem=elytron/ldap-realm=ldap-realm:add(dir-context=ldap-connection, \

direct-verification=true, \

identity-mapping={search-base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org", \

rdn-identifier="uid", \

attribute-mapping=[{filter-base-dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org",filter="(uniqueMember={1})",from="uid",to="Roles"}]})

./subsystem=elytron/properties-realm=application-properties:add(users-properties={path=example-users.properties,

relative-to=jboss.server.config.dir, plain-text=true, digest-realm-name="Application Security"},

groups-properties={path=example-roles.properties, relative-to=jboss.server.config.dir},

groups-attribute=Roles)

./subsystem=elytron/aggregate-realm=combined-realm:add(authentication-realm=application-properties,

authorization-realm=ldap-realm)

./subsystem=elytron/security-domain=application-security:add(realms=[{realm=combined-realm}],

default-realm=combined-realm, permission-mapper=default-permission-mapper)

./subsystem=elytron/http-authentication-factory=application-security-http:add(http-server-mechanism-factory=global,

security-domain=application-security, mechanism-configurations=[{mechanism-name=BASIC}])

This results in the following definitions: -

Latest WildFly Documentation

JBoss Community Documentation Page of 2172 2293

<subsystem xmlns="urn:wildfly:elytron:1.1" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <security-domains>

 ...

 <security-domain name="application-security" default-realm="combined-realm"

permission-mapper="default-permission-mapper">

 <realm name="combined-realm"/>

 </security-domain>

 </security-domains>

 <security-realms>

 <aggregate-realm name="combined-realm" authentication-realm="application-properties"

authorization-realm="ldap-realm"/>

 ...

 <properties-realm name="application-properties" groups-attribute="Roles">

 <users-properties path="example-users.properties"

relative-to="jboss.server.config.dir" digest-realm-name="Application Security"

plain-text="true"/>

 <groups-properties path="example-roles.properties"

relative-to="jboss.server.config.dir"/>

 </properties-realm>

 <ldap-realm name="ldap-realm" dir-context="ldap-connection" direct-verification="true">

 <identity-mapping rdn-identifier="uid"

search-base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org">

 <attribute-mapping>

 <attribute from="uid" to="Roles" filter="(uniqueMember={1})"

filter-base-dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org"/>

 </attribute-mapping>

 </identity-mapping>

 </ldap-realm>

 </security-realms>

 ...

 <http>

 ...

 <http-authentication-factory name="application-security-http"

http-server-mechanism-factory="global" security-domain="application-security">

 <mechanism-configuration>

 <mechanism mechanism-name="BASIC"/>

 </mechanism-configuration>

 </http-authentication-factory>

 ...

 </http>

 ...

 <dir-contexts>

 <dir-context name="ldap-connection" url="ldap://localhost:10389"

principal="uid=admin,ou=system">

 <credential-reference clear-text="secret"/>

 </dir-context>

 </dir-contexts>

 </subsystem>

Within the WildFly Elytron example a new security realm 'aggregate-realm' has been defined, this definition

specifies which of the defined security realms should be used for the authentication step and which of the

security realms should be used for the loading of the identity used for subsequent authorization decisions.

Latest WildFly Documentation

JBoss Community Documentation Page of 2173 2293

15.11.9 Database Authentication

The section describing how to migrate from database accessible via JDBC datasource based authentication

using PicketBox to Elytron. This section will illustrate some equivalent configuration using PicketBox security

domains and show the equivalent configuration using Elytron but will not repeat the steps to wire it all

together covered in the previous sections.

These configuration examples are developed against a test database with users table like:

CREATE TABLE User (

 id BIGINT NOT NULL,

 username VARCHAR(255),

 password VARCHAR(255),

 role ENUM('admin', 'manager', 'user'),

 PRIMARY KEY (id),

 UNIQUE (username)

)

For authentication purposes the username will be matched against the ' ' column, password will beusername

expected in hex-encoded MD5 hash in ' ' column. User role for authorization purposes will bepassword

taken from ' ' column.role

Latest WildFly Documentation

JBoss Community Documentation Page of 2174 2293

PicketBox Database LoginModule
The following commands can create a PicketBox security domain configured to use database accessible via

JDBC datasource to verify a username and password and to assign roles.

./subsystem=security/security-domain=application-security/:add

./subsystem=security/security-domain=application-security/authentication=classic:add(login-modules=[{code=Database,

flag=Required, module-options={ \

 dsJndiName="java:jboss/datasources/ExampleDS", \

 principalsQuery="SELECT password FROM User WHERE username = ?", \

 rolesQuery="SELECT role, 'Roles' FROM User WHERE username = ?", \

 hashAlgorithm=MD5, \

 hashEncoding=base64 \

}}])

This results in the following configuration.

<subsystem xmlns="urn:jboss:domain:security:2.0">

 <security-domains>

 ...

 <security-domain name="application-security">

 <authentication>

 <login-module code="Database" flag="required">

 <module-option name="dsJndiName"

value="java:jboss/datasources/ExampleDS"/>

 <module-option name="principalsQuery" value="SELECT password FROM

User WHERE username = ?"/>

 <module-option name="rolesQuery" value="SELECT role, 'Roles' FROM

User WHERE username = ?"/>

 <module-option name="hashAlgorithm" value="MD5"/>

 <module-option name="hashEncoding" value="base64"/>

 </login-module>

 </authentication>

 </security-domain>

 </security-domains>

 </subsystem>

Latest WildFly Documentation

JBoss Community Documentation Page of 2175 2293

Migrated
Within the Elytron subsystem to use database accesible via JDBC you need to define :jdbc-realm

./subsystem=elytron/jdbc-realm=jdbc-realm:add(principal-query=[{ \

 data-source=ExampleDS, \

 sql="SELECT role, password FROM User WHERE username = ?", \

 attribute-mapping=[{index=1, to=Roles}] \

 simple-digest-mapper={algorithm=simple-digest-md5, password-index=2}, \

}])

This results in the following overall configuration:

<subsystem xmlns="urn:wildfly:elytron:1.0" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <security-realms>

 ...

 <jdbc-realm name="jdbc-realm">

 <principal-query sql="SELECT role, password FROM User WHERE username = ?"

data-source="ExampleDS">

 <attribute-mapping>

 <attribute to="Roles" index="1"/>

 </attribute-mapping>

 <simple-digest-mapper password-index="2"/>

 </principal-query>

 </jdbc-realm>

 ...

 </security-realms>

 ...

 </subsystem>

In comparison with PicketBox solution, Elytron use one SQL query to obtain all user attributesjdbc-realm

and credentials. Their extraction from SQL result specifies mappers.

N-M relation beetween user and roles
When using a n:m-relation beetween user and roles (which means: the user has multiple roles), the previous

configuration does not work.

The database:

Latest WildFly Documentation

JBoss Community Documentation Page of 2176 2293

CREATE TABLE User (

 id BIGINT NOT NULL,

 username VARCHAR(255),

 password VARCHAR(255),

 PRIMARY KEY (id),

 UNIQUE (username)

)

CREATE TABLE Role(

 id BIGINT NOT NULL,

 rolename VARCHAR(255),

 PRIMARY KEY (id),

 UNIQUE (rolename)

)

CREATE TABLE Userrole(

 userid BIGINT not null,

 roleid BIGINT not null,

 PRIMARY KEY (userid, roleid),

 FOREIGN KEY (userid) references User(id,

 FOREIGN KEY (roleid) references Role(id)

)

Here you need two configure two principal queries:

<jdbc-realm name="jdbc-realm">

 <principal-query sql="SELECT PASSWORD FROM USER WHERE USERNAME = ?" data-source="ExampleDS">

 <clear-password-mapper password-index="1"/>

 </principal-query>

 <principal-query sql="SELECT R.ROLENAME from ROLE AS R, USERROLE AS UR, USER AS U WHERE

U.USERNAME=? AND UR.ROLEID = R.ID AND UR.USERID = U.ID" data-source="ExampleDS">

 <attribute-mapping>

 <attribute to="roles" index="1"/>

 </attribute-mapping>

 </principal-query>

 </jdbc-realm>

The second query needs an attribute mapping to decode the selected rolename column (index 1):

<mappers>

 ...

 <simple-role-decoder name="from-roles-attribute" attribute="roles"/>

 ...

 </mappers>

The role decoder is referenced by the security domain:

Latest WildFly Documentation

JBoss Community Documentation Page of 2177 2293

<security-domain name="MyDomain" default-realm="jdbc-realm"

permission-mapper="default-permission-mapper">

 <realm name="MyDbRealm" role-decoder="from-roles-attribute"/>

 </security-domain>

15.11.10 Kerberos Authentication Migration

When working with Kerberos configuration it is possible for the application server to rely on configuration

from the environment or the key configuration can be specified using system properties, for the purpose of

these examples I define system properties - these properties are applicable to both the legacy configuration

and the migrated Elytron configuration.

./system-property=sun.security.krb5.debug:add(value=true)

./system-property=java.security.krb5.realm:add(value=ELYTRON.ORG)

./system-property=java.security.krb5.kdc:add(value=kdc.elytron.org)

The first line makes debugging easier but the last two lines specify the Kerberos realm in use and the

address of the KDC.

<system-properties>

 <property name="sun.security.krb5.debug" value="true"/>

 <property name="java.security.krb5.realm" value="ELYTRON.ORG"/>

 <property name="java.security.krb5.kdc" value="kdc.elytron.org"/>

 </system-properties>

Latest WildFly Documentation

JBoss Community Documentation Page of 2178 2293

HTTP Authentication

Legacy Security Realm
A legacy security realm can be define so that SPNEGO authentication can be enabled for the HTTP

management interface.

./core-service=management/security-realm=Kerberos:add

./core-service=management/security-realm=Kerberos/server-identity=kerberos:add

./core-service=management/security-realm=Kerberos/server-identity=kerberos/keytab=HTTP\/test-server.elytron.org@ELYTRON.ORG:add(path=/home/darranl/src/kerberos/test-server.keytab,

debug=true)

./core-service=management/security-realm=Kerberos/authentication=kerberos:add(remove-realm=true)

This results in the following configuration: -

<security-realms>

 ...

 <security-realm name="Kerberos">

 <server-identities>

 <kerberos>

 <keytab principal="HTTP/test-server.elytron.org@ELYTRON.ORG"

path="/home/darranl/src/kerberos/test-server.keytab" debug="true"/>

 </kerberos>

 </server-identities>

 <authentication>

 <kerberos remove-realm="true"/>

 </authentication>

 </security-realm>

 </security-realms>

Application SPNEGO
Alternatively deployed applications would make use of a pair of security domains.

./subsystem=security/security-domain=host:add

./subsystem=security/security-domain=host/authentication=classic:add

./subsystem=security/security-domain=host/authentication=classic/login-module=1:add(code=Kerberos,

flag=Required, module-options={storeKey=true, useKeyTab=true,

principal=HTTP/test-server.elytron.org@ELYTRON.ORG,

keyTab=/home/darranl/src/kerberos/test-server.keytab, debug=true}

Latest WildFly Documentation

JBoss Community Documentation Page of 2179 2293

./subsystem=security/security-domain=SPNEGO:add

./subsystem=security/security-domain=SPNEGO/authentication=classic:add

./subsystem=security/security-domain=SPNEGO/authentication=classic/login-module=1:add(code=SPNEGO,

flag=requisite, module-options={password-stacking=useFirstPass, serverSecurityDomain=host})

./subsystem=security/security-domain=SPNEGO/authentication=classic/login-module=1:write-attribute(name=module,

value=org.jboss.security.negotiation)

./subsystem=security/security-domain=SPNEGO/authentication=classic/login-module=2:add(code=UsersRoles,

flag=required, module-options={password-stacking=useFirstPass,

usersProperties=file:///home/darranl/src/kerberos/spnego-users.properties,

rolesProperties=file:///home/darranl/src/kerberos/spnego-roles.properties,

defaultUsersProperties=file:///home/darranl/src/kerberos/spnego-users.properties,

defaultRolesProperties=file:///home/darranl/src/kerberos/spnego-roles.properties})

This results in: -

<subsystem xmlns="urn:jboss:domain:security:2.0">

 <security-domains>

 ...

 <security-domain name="host">

 <authentication>

 <login-module name="1" code="Kerberos" flag="required">

 <module-option name="storeKey" value="true"/>

 <module-option name="useKeyTab" value="true"/>

 <module-option name="principal" value="HTTP/test-server.elytron.org@ELYTRON.ORG"/>

 <module-option name="keyTab" value="/home/darranl/src/kerberos/test-server.keytab"/>

 <module-option name="debug" value="true"/>

 </login-module>

 </authentication>

 </security-domain>

 <security-domain name="SPNEGO">

 <authentication>

 <login-module name="1" code="SPNEGO" flag="requisite"

module="org.jboss.security.negotiation">

 <module-option name="password-stacking" value="useFirstPass"/>

 <module-option name="serverSecurityDomain" value="host"/>

 </login-module>

 <login-module name="2" code="UsersRoles" flag="required">

 <module-option name="password-stacking" value="useFirstPass"/>

 <module-option name="usersProperties"

value="file:///home/darranl/src/kerberos/spnego-users.properties"/>

 <module-option name="rolesProperties"

value="file:///home/darranl/src/kerberos/spnego-roles.properties"/>

 <module-option name="defaultUsersProperties"

value="file:///home/darranl/src/kerberos/spnego-users.properties"/>

 <module-option name="defaultRolesProperties"

value="file:///home/darranl/src/kerberos/spnego-roles.properties"/>

 </login-module>

 </authentication>

 </security-domain>

 </security-domains>

 </subsystem>

Latest WildFly Documentation

JBoss Community Documentation Page of 2180 2293

An application can now be deployed referencing the SPNEGO security domain and secured with SPNEGO

mechanism.

Migrated SPNEGO
The equivalent configuration can be achieved with WildFly Elytron by first defining a security realm which will

be used to load identity information.

./subsystem=elytron/properties-realm=spnego-properties:add(users-properties={path=/home/darranl/src/kerberos/spnego-users.properties,

plain-text=true, digest-realm-name=ELYTRON.ORG},

groups-properties={path=/home/darranl/src/kerberos/spnego-roles.properties})

Next a Kerberos security factory is defined which allows the server to load it's own Kerberos identity.

./subsystem=elytron/kerberos-security-factory=test-server:add(path=/home/darranl/src/kerberos/test-server.keytab,

principal=HTTP/test-server.elytron.org@ELYTRON.ORG, debug=true)

As with the previous examples we define a security realm to pull together the policy as well as a HTTP

authentication factory for the authentication policy.

./subsystem=elytron/security-domain=SPNEGODomain:add(default-realm=spnego-properties,

realms=[{realm=spnego-properties, role-decoder=groups-to-roles}],

permission-mapper=default-permission-mapper)

./subsystem=elytron/http-authentication-factory=spnego-http-authentication:add(security-domain=SPNEGODomain,

http-server-mechanism-factory=global,mechanism-configurations=[{mechanism-name=SPNEGO,

credential-security-factory=test-server}])

Overall this results in the following configuration: -

Latest WildFly Documentation

JBoss Community Documentation Page of 2181 2293

<subsystem xmlns="urn:wildfly:elytron:1.0" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <security-domains>

 ...

 <security-domain name="SPNEGODomain" default-realm="spnego-properties"

permission-mapper="default-permission-mapper">

 <realm name="spnego-properties" role-decoder="groups-to-roles"/>

 </security-domain>

 </security-domains>

 <security-realms>

 ...

 <properties-realm name="spnego-properties">

 <users-properties path="/home/darranl/src/kerberos/spnego-users.properties"

digest-realm-name="ELYTRON.ORG" plain-text="true"/>

 <groups-properties path="/home/darranl/src/kerberos/spnego-roles.properties"/>

 </properties-realm>

 </security-realms>

 <credential-security-factories>

 <kerberos-security-factory name="test-server"

principal="HTTP/test-server.elytron.org@ELYTRON.ORG"

path="/home/darranl/src/kerberos/test-server.keytab" debug="true"/>

 </credential-security-factories>

 ...

 <http>

 ...

 <http-authentication-factory name="spnego-http-authentication"

http-server-mechanism-factory="global" security-domain="SPNEGODomain">

 <mechanism-configuration>

 <mechanism mechanism-name="SPNEGO" credential-security-factory="test-server"/>

 </mechanism-configuration>

 </http-authentication-factory>

 ...

 </http>

 ...

 </subsystem>

Now, to enable SPNEGO authentication for the HTTP management interface, update this interface to

reference the defined above, as described in the http-authentication-factory properties

.authentication section

Alternatively, to secure an application using SPNEGO authentication, an application security domain can be

defined in the Undertow subsystem to map security domains to the http-authentication-factory

defined above, as described in the .properties authentication section

https://docs.jboss.org/author/display/WFLY/Migrate+Legacy+Security+to+Elytron+Security#MigrateLegacySecuritytoElytronSecurity-MigratedConfiguration
https://docs.jboss.org/author/display/WFLY/Migrate+Legacy+Security+to+Elytron+Security#MigrateLegacySecuritytoElytronSecurity-MigratedConfiguration
https://docs.jboss.org/author/display/WFLY/Migrate+Legacy+Security+to+Elytron+Security#MigrateLegacySecuritytoElytronSecurity-FullyMigratedConfiguration

Latest WildFly Documentation

JBoss Community Documentation Page of 2182 2293

Remoting / SASL Authentication

Legacy Security Realm
It is also possible to define a legacy security realm for Kerberos / GSSAPI SASL authenticatio for Remoting

authentication such as the native management interface.

./core-service=management/security-realm=Kerberos:add

./core-service=management/security-realm=Kerberos/server-identity=kerberos:add

./core-service=management/security-realm=Kerberos/server-identity=kerberos/keytab=remote\/test-server.elytron.org@ELYTRON.ORG:add(path=/home/darranl/src/kerberos/remote-test-server.keytab,

debug=true)

./core-service=management/security-realm=Kerberos/authentication=kerberos:add(remove-realm=true)

<management>

 <security-realms>

 ...

 <security-realm name="Kerberos">

 <server-identities>

 <kerberos>

 <keytab principal="remote/test-server.elytron.org@ELYTRON.ORG"

path="/home/darranl/src/kerberos/remote-test-server.keytab" debug="true"/>

 </kerberos>

 </server-identities>

 <authentication>

 <kerberos remove-realm="true"/>

 </authentication>

 </security-realm>

 </security-realms>

 ...

 </management>

Migrated GSSAPI
The steps to define the equivalent Elytron configuration are very similar to the HTTP example.

First define the security realm to load the identity from: -

./path=kerberos:add(relative-to=user.home, path=src/kerberos)

./subsystem=elytron/properties-realm=kerberos-properties:add(users-properties={path=kerberos-users.properties,

relative-to=kerberos, digest-realm-name=ELYTRON.ORG},

groups-properties={path=kerberos-groups.properties, relative-to=kerberos})

Then define the Kerberos security factory for the server's identity.

./subsystem=elytron/kerberos-security-factory=test-server:add(relative-to=kerberos,

path=remote-test-server.keytab, principal=remote/test-server.elytron.org@ELYTRON.ORG)

Finally define the security domain and this time a SASL authentication factory.

Latest WildFly Documentation

JBoss Community Documentation Page of 2183 2293

./subsystem=elytron/security-domain=KerberosDomain:add(default-realm=kerberos-properties,

realms=[{realm=kerberos-properties, role-decoder=groups-to-roles}],

permission-mapper=default-permission-mapper)

./subsystem=elytron/sasl-authentication-factory=gssapi-authentication-factory:add(security-domain=KerberosDomain,

sasl-server-factory=elytron, mechanism-configurations=[{mechanism-name=GSSAPI,

credential-security-factory=test-server}])

This results in the following subsystem configuration: -

<subsystem xmlns="urn:wildfly:elytron:1.0" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <security-domains>

 ...

 <security-domain name="KerberosDomain" default-realm="kerberos-properties"

permission-mapper="default-permission-mapper">

 <realm name="kerberos-properties" role-decoder="groups-to-roles"/>

 </security-domain>

 </security-domains>

 <security-realms>

 ...

 <properties-realm name="kerberos-properties">

 <users-properties path="kerberos-users.properties" relative-to="kerberos"

digest-realm-name="ELYTRON.ORG"/>

 <groups-properties path="kerberos-groups.properties" relative-to="kerberos"/>

 </properties-realm>

 </security-realms>

 <credential-security-factories>

 <kerberos-security-factory name="test-server"

principal="remote/test-server.elytron.org@ELYTRON.ORG" path="remote-test-server.keytab"

relative-to="kerberos"/>

 </credential-security-factories>

 ...

 <sasl>

 ...

 <sasl-authentication-factory name="gssapi-authentication-factory"

sasl-server-factory="elytron" security-domain="KerberosDomain">

 <mechanism-configuration>

 <mechanism mechanism-name="GSSAPI" credential-security-factory="test-server"/>

 </mechanism-configuration>

 </sasl-authentication-factory>

 ...

 </sasl>

 </subsystem>

The management interface or Remoting connectors can now be updated to reference the SASL

authentication factory.

The two Elytron examples defined here could also be combined into one to use a shared security domain

and security realm and just use protocol specific authentication factories each referencing their own

Kerberos security factory.

Latest WildFly Documentation

JBoss Community Documentation Page of 2184 2293

15.11.11 LDAP Authentication Migration

The section describing how to migrate from properties based authentication using either PicketBox or legacy

security realms to Elytron also contained a lot of additional information regarding defining security domains,

authentication factories, and how these are mapped to be used for authentication. This section will illustrate

some equivalent LDAP configuration using legacy security realms and PicketBox security domains and show

the equivalent configuration using Elytron but will not repeat the steps to wire it all together covered in the

previous section.

These configuration examples are developed against a test LDAP sever with user entries like: -

dn: uid=TestUserOne,ou=users,dc=group-to-principal,dc=wildfly,dc=org

objectClass: top

objectClass: inetOrgPerson

objectClass: uidObject

objectClass: person

objectClass: organizationalPerson

cn: Test User One

sn: Test User One

uid: TestUserOne

userPassword: {SSHA}UG8ov2rnrnBKakcARVvraZHqTa7mFWJZlWt2HA==

The group entries then look like: -

dn: uid=GroupOne,ou=groups,dc=group-to-principal,dc=wildfly,dc=org

objectClass: top

objectClass: groupOfUniqueNames

objectClass: uidObject

cn: Group One

uid: GroupOne

uniqueMember: uid=TestUserOne,ou=users,dc=group-to-principal,dc=wildfly,dc=org

For authentication purposes the username will be matched against the 'uid' attribute, also the resulting group

name will be taken from the 'uid' attribute of the group entry.

Legacy Security Realm
A connection to the LDAP server and related security realm can be created with the following commands: -

Latest WildFly Documentation

JBoss Community Documentation Page of 2185 2293

batch

./core-service=management/ldap-connection=MyLdapConnection:add(url="ldap://localhost:10389",

search-dn="uid=admin,ou=system", search-credential="secret")

./core-service=management/security-realm=LDAPRealm:add

./core-service=management/security-realm=LDAPRealm/authentication=ldap:add(connection="MyLdapConnection",

username-attribute=uid, base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org")

./core-service=management/security-realm=LDAPRealm/authorization=ldap:add(connection=MyLdapConnection)
./core-service=management/security-realm=LDAPRealm/authorization=ldap/username-to-dn=username-filter:add(attribute=uid,

base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org")

./core-service=management/security-realm=LDAPRealm/authorization=ldap/group-search=group-to-principal:add(base-dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org",

iterative=true, prefer-original-connection=true, principal-attribute=uniqueMember,

search-by=DISTINGUISHED_NAME, group-name=SIMPLE, group-name-attribute=uid)

run-batch

This results in the following configuration.

<management>

 <security-realms>

 ...

 <security-realm name="LDAPRealm">

 <authentication>

 <ldap connection="MyLdapConnection"

base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org">

 <username-filter attribute="uid"/>

 </ldap>

 </authentication>

 <authorization>

 <ldap connection="MyLdapConnection">

 <username-to-dn>

 <username-filter base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org"

attribute="uid"/>

 </username-to-dn>

 <group-search group-name="SIMPLE" iterative="true" group-name-attribute="uid">

 <group-to-principal search-by="DISTINGUISHED_NAME"

base-dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org" prefer-original-connection="true">

 <membership-filter principal-attribute="uniqueMember"/>

 </group-to-principal>

 </group-search>

 </ldap>

 </authorization>

 </security-realm>

 </security-realms>

 <outbound-connections>

 <ldap name="MyLdapConnection" url="ldap://localhost:10389" search-dn="uid=admin,ou=system"

search-credential="secret"/>

 </outbound-connections>

 ...

 </management>

Latest WildFly Documentation

JBoss Community Documentation Page of 2186 2293

PicketBox LdapExtLoginModule
The following commands can create a PicketBox security domain configured to use the

LdapExtLoginModule to verify a username and password.

./subsystem=security/security-domain=application-security:add

./subsystem=security/security-domain=application-security/authentication=classic:add(login-modules=[{code=LdapExtended,

flag=Required, module-options={ \

java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory, \

java.naming.provider.url=ldap://localhost:10389, \

java.naming.security.authentication=simple, \

bindDN="uid=admin,ou=system", \

bindCredential=secret, \

baseCtxDN="ou=users,dc=group-to-principal,dc=wildfly,dc=org", \

baseFilter="(uid={0})", \

rolesCtxDN="ou=groups,dc=group-to-principal,dc=wildfly,dc=org",\

roleFilter="(uniqueMember={1})", \

roleAttributeID="uid" \

}}])

This results in the following configuration.

<subsystem xmlns="urn:jboss:domain:security:2.0">

 ...

 <security-domains>

 ...

 <security-domain name="application-security">

 <authentication>

 <login-module code="LdapExtended" flag="required">

 <module-option name="java.naming.factory.initial"

value="com.sun.jndi.ldap.LdapCtxFactory"/>

 <module-option name="java.naming.provider.url" value="ldap://localhost:10389"/>

 <module-option name="java.naming.security.authentication" value="simple"/>

 <module-option name="bindDN" value="uid=admin,ou=system"/>

 <module-option name="bindCredential" value="secret"/>

 <module-option name="baseCtxDN"

value="ou=users,dc=group-to-principal,dc=wildfly,dc=org"/>

 <module-option name="baseFilter" value="(uid={0})"/>

 <module-option name="rolesCtxDN"

value="ou=groups,dc=group-to-principal,dc=wildfly,dc=org"/>

 <module-option name="roleFilter" value="(uniqueMember={1})"/>

 <module-option name="roleAttributeID" value="uid"/>

 </login-module>

 </authentication>

 </security-domain>

 </security-domains>

 </subsystem>

Migrated
Within the Elytron subsystem a directory context can be defined for the connection to LDAP: -

Latest WildFly Documentation

JBoss Community Documentation Page of 2187 2293

./subsystem=elytron/dir-context=ldap-connection:add(url=ldap://localhost:10389,

principal="uid=admin,ou=system", credential-reference={clear-text=secret})

Then a security realm can be created to search LDAP and verify the supplied password: -

./subsystem=elytron/ldap-realm=ldap-realm:add(dir-context=ldap-connection, \

direct-verification=true, \

identity-mapping={search-base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org", \

rdn-identifier="uid", \

attribute-mapping=[{filter-base-dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org",filter="(uniqueMember={1})",from="uid",to="Roles"}]})

In the prior two examples information is loaded from LDAP to use directly as groups or roles, in the Elytron

case information can be loaded from LDAP to associate with the identity as attributes - these can

subsequently be mapped to roles but attributes can be loaded for other purposes as well.

By default, if no is defined for given , identity attribute " "role-decoder security-domain Roles

is mapped to the identity roles.

This leads to the following configuration.

<subsystem xmlns="urn:wildfly:elytron:1.0" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <security-realms>

 ...

 <ldap-realm name="ldap-realm" dir-context="ldap-connection" direct-verification="true">

 <identity-mapping rdn-identifier="uid"

search-base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org">

 <attribute-mapping>

 <attribute from="uid" to="Roles" filter="(uniqueMember={1})"

filter-base-dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org"/>

 </attribute-mapping>

 </identity-mapping>

 </ldap-realm>

 </security-realms>

 ...

 <dir-contexts>

 <dir-context name="ldap-connection" url="ldap://localhost:10389"

principal="uid=admin,ou=system">

 <credential-reference clear-text="secret"/>

 </dir-context>

 </dir-contexts>

 </subsystem>

Latest WildFly Documentation

JBoss Community Documentation Page of 2188 2293

15.11.12 Properties Based Authentication / Authorization

PicketBox Based Configuration
This migration example assumes a deployed web application is configured to require authentication using

FORM based authentication and is referencing a PicketBox based security domain using the

UsersRolesLoginModule to load user information from a pair or properties files.

Original Configuration
A security domain can be defined in the legacy security subsystem using the following management

operations: -

./subsystem=security/security-domain=application-security:add

./subsystem=security/security-domain=application-security/authentication=classic:add(login-modules=[{code=UsersRoles,

flag=Required,

module-options={usersProperties=file://${jboss.server.config.dir}/example-users.properties,

rolesProperties=file://${jboss.server.config.dir}/example-roles.properties}}])

This would result in a security domain definition: -

<security-domain name="application-security">

 <authentication>

 <login-module code="UsersRoles" flag="required">

 <module-option name="usersProperties"

value="file://${jboss.server.config.dir}/example-users.properties"/>

 <module-option name="rolesProperties"

value="file://${jboss.server.config.dir}/example-roles.properties"/>

 </login-module>

 </authentication>

 </security-domain>

Intermediate Configuration
It is possible to take a previously defined PicketBox security domain and expose it as an Elytron security

realm so it can be wired into a complete Elytron based configuration, if only properties based authentication

was to be migrated it would be recommended to jump to the fully migration configuration and avoid the

unnecessary dependency on the legacy security subsystem but for situations where that is not immediately

possible these commands illustrate an intermediate solution.

These steps assume the original configuration is already in place.

The first step is to add a mapping to an Elytron security realm within the legacy security subsystem.

./subsystem=security/elytron-realm=application-security:add(legacy-jaas-config=application-security)

This results in the following configuration.

Latest WildFly Documentation

JBoss Community Documentation Page of 2189 2293

<subsystem xmlns="urn:jboss:domain:security:2.0">

 ...

 <elytron-integration>

 <security-realms>

 <elytron-realm name="application-security" legacy-jaas-config="application-security"/>

 </security-realms>

 </elytron-integration>

 ...

 </subsystem>

Within the Elytron subsystem a security domain can be defined which references the exported security realm

and also a http authentication factory which supports FORM based authentication.

./subsystem=elytron/security-domain=application-security:add(realms=[{realm=application-security}],

default-realm=application-security, permission-mapper=default-permission-mapper)

./subsystem=elytron/http-authentication-factory=application-security-http:add(http-server-mechanism-factory=global,

security-domain=application-security, mechanism-configurations=[{mechanism-name=FORM}])

And the resulting configuration: -

<subsystem xmlns="urn:wildfly:elytron:1.0" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <security-domains>

 ...

 <security-domain name="application-security" default-realm="application-security"

permission-mapper="default-permission-mapper">

 <realm name="application-security"/>

 </security-domain>

 </security-domains>

 ...

 <http>

 ...

 <http-authentication-factory name="application-security-http"

http-server-mechanism-factory="global" security-domain="application-security">

 <mechanism-configuration>

 <mechanism mechanism-name="FORM"/>

 </mechanism-configuration>

 </http-authentication-factory>

 ...

 </http>

 ...

 </subsystem>

Finally configuration needs to be added to the Undertow subsystem to map the security domain referenced

by the deployment to the newly defined http authentication factory.

./subsystem=undertow/application-security-domain=application-security:add(http-authentication-factory=application-security-http)

Latest WildFly Documentation

JBoss Community Documentation Page of 2190 2293

Which results in: -

<subsystem xmlns="urn:jboss:domain:undertow:4.0">

 ...

 <application-security-domains>

 <application-security-domain name="application-security"

http-authentication-factory="application-security-http"/>

 </application-security-domains>

 ...

 </subsystem>

Note: If the deployment was already deployed at this point the application server should be reloaded or the

deployment redeployed for the application security domain mapping to take effect.

The following command can then be used to verify the mapping was applied to the deployment.

[standalone@localhost:9990 /]

./subsystem=undertow/application-security-domain=application-security:read-resource(include-runtime=true)
{

"outcome" => "success",

 "result" => {

 "enable-jacc" => false,

 "http-authentication-factory" => "application-security-http",

 "override-deployment-config" => false,

 "referencing-deployments" => ["HelloWorld.war"],

 "setting" => undefined

 }

}

The deployment being tested here is 'HelloWorld.war' and the output from the previous command shows this

deployment is referencing the mapping.

At this stage the previously defined security domain is used for it's LoginModule configuration but this is

wrapped by Elytron components which take over authentication.

Fully Migrated Configuration
Alternatively the configuration can be completely defined within the Elytron subsystem, in this case it is

assumed none of the previous commands have been executed and this is started from a clean configuration

- however if the security domain definition does exist in the legacy security subsystem that will remain

completely independent.

First a new security realm can be defined within the Elytron subsystem referencing the files referenced

previously: -

./subsystem=elytron/properties-realm=application-properties:add(users-properties={path=example-users.properties,

relative-to=jboss.server.config.dir, plain-text=true, digest-realm-name="Application Security"},

groups-properties={path=example-roles.properties, relative-to=jboss.server.config.dir},

groups-attribute=Roles)

As before a security domain and http authentication factory can be defined.

Latest WildFly Documentation

JBoss Community Documentation Page of 2191 2293

./subsystem=elytron/security-domain=application-security:add(realms=[{realm=application-properties}],

default-realm=application-properties, permission-mapper=default-permission-mapper)

./subsystem=elytron/http-authentication-factory=application-security-http:add(http-server-mechanism-factory=global,

security-domain=application-security, mechanism-configurations=[{mechanism-name=FORM}])

This results in the following overall configuration.

<subsystem xmlns="urn:wildfly:elytron:1.0" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <security-domains>

 ...

 <security-domain name="application-security" default-realm="application-properties"

permission-mapper="default-permission-mapper">

 <realm name="application-properties"/>

 </security-domain>

 </security-domains>

 <security-realms>

 ...

 <properties-realm name="application-properties" groups-attribute="Roles">

 <users-properties path="example-users.properties" relative-to="jboss.server.config.dir"

digest-realm-name="Application Security" plain-text="true"/>

 <groups-properties path="example-roles.properties"

relative-to="jboss.server.config.dir"/>

 </properties-realm>

 </security-realms>

 ...

 <http>

 ...

 <http-authentication-factory name="application-security-http"

http-server-mechanism-factory="global" security-domain="application-security">

 <mechanism-configuration>

 <mechanism mechanism-name="FORM"/>

 </mechanism-configuration>

 </http-authentication-factory>

 ...

 </http>

 ...

 </subsystem>

As before the application-security-domain mapping should be added to the Undertow subsystem and the

server reloaded or the deployment redeployed as required.

./subsystem=undertow/application-security-domain=application-security:add(http-authentication-factory=application-security-http)

Which results in: -

Latest WildFly Documentation

JBoss Community Documentation Page of 2192 2293

<subsystem xmlns="urn:jboss:domain:undertow:4.0">

 ...

 <application-security-domains>

 <application-security-domain name="application-security"

http-authentication-factory="application-security-http"/>

 </application-security-domains>

 ...

 </subsystem>

At this stage the authentication is the equivalent of the original configuration however now Elytron

components are used exclusively.

Legacy Security Realm

Original Configuration
A legacy security realm can be defined using the following commands to load users passwords and group

information from properties files.

./core-service=management/security-realm=ApplicationSecurity:add

./core-service=management/security-realm=ApplicationSecurity/authentication=properties:add(relative-to=jboss.server.config.dir,

path=example-users.properties, plain-text=true)

./core-service=management/security-realm=ApplicationSecurity/authorization=properties:add(relative-to=jboss.server.config.dir,

path=example-roles.properties)

This results in the following realm definition.

<security-realm name="ApplicationSecurity">

 <authentication>

 <properties path="example-users.properties" relative-to="jboss.server.config.dir"

plain-text="true"/>

 </authentication>

 <authorization>

 <properties path="example-roles.properties" relative-to="jboss.server.config.dir"/>

 </authorization>

 </security-realm>

A legacy security realm would typically be used to secure either the management interfaces or remoting

connectors.

Migrated Configuration
One of the motivations for adding the Elytron based security to the application server is to allow a consistent

security solution to be used across the server, to replace the security realm the same steps as described in

the previous 'Fully Migrated' section can be followed again up until the http-authentication-factory is defined.

A legacy security realm can also be used for SASL based authentication so a sasl-authentication-factory

should also be defined.

Latest WildFly Documentation

JBoss Community Documentation Page of 2193 2293

./subsystem=elytron/sasl-authentication-factory=application-security-sasl:add(sasl-server-factory=elytron,

security-domain=application-security, mechanism-configurations=[{mechanism-name=PLAIN}])

<subsystem xmlns="urn:wildfly:elytron:1.0" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <sasl>

 ...

 <sasl-authentication-factory name="application-security-sasl"

sasl-server-factory="elytron" security-domain="application-security">

 <mechanism-configuration>

 <mechanism mechanism-name="PLAIN"/>

 </mechanism-configuration>

 </sasl-authentication-factory>

 ...

 </sasl>

 </subsystem>

This can be associated with a Remoting connector to use for authentication and the existing security realm

reference cleared.

./subsystem=remoting/http-connector=http-remoting-connector:write-attribute(name=sasl-authentication-factory,

value=application-security-sasl)

./subsystem=remoting/http-connector=http-remoting-connector:undefine-attribute(name=security-realm)

<subsystem xmlns="urn:jboss:domain:remoting:4.0">

 ...

 <http-connector name="http-remoting-connector" connector-ref="default"

sasl-authentication-factory="application-security-sasl"/>

 </subsystem>

If this new configuration was to be used to secure the management interfaces more suitable names should

be chosen but the following commands illustrate how to set the two authentication factories and clear the

existing security realm reference.

./core-service=management/management-interface=http-interface:write-attribute(name=http-authentication-factory,

value=application-security-http)

./core-service=management/management-interface=http-interface:write-attribute(name=http-upgrade.sasl-authentication-factory,

value=application-security-sasl)

./core-service=management/management-interface=http-interface:undefine-attribute(name=security-realm)

<management-interfaces>

 <http-interface http-authentication-factory="application-security-http">

 <http-upgrade enabled="true" sasl-authentication-factory="application-security-sasl"/>

 <socket-binding http="management-http"/>

 </http-interface>

 </management-interfaces>

Latest WildFly Documentation

JBoss Community Documentation Page of 2194 2293

15.11.13 Security Properties

Lets suppose security properties "a" and "c" defined in legacy security:

<subsystem xmlns="urn:jboss:domain:security:2.0">

 ...

 <security-properties>

 <property name="a" value="b" />

 <property name="c" value="d" />

 </security-properties>

 </subsystem>

To define security properties in Elytron subsystem you need to set attribute of thesecurity-properties

subsystem:

./subsystem=elytron:write-attribute(name=security-properties, value={ \

 a = "b", \

 c = "d" \

})

You can also add or change one another property without modification of others using map operations.

Following command will set property "e":

./subsystem=elytron:map-put(name=security-properties, key=e, value=f)

By the same way you can also remove one of properties - in example newly created property "e":

./subsystem=elytron:map-remove(name=security-properties, key=e)

Output XML configuration will be:

<subsystem xmlns="urn:wildfly:elytron:1.0" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 <security-properties>

 <security-property name="a" value="b"/>

 <security-property name="c" value="d"/>

 </security-properties>

 ...

 </subsystem>

Latest WildFly Documentation

JBoss Community Documentation Page of 2195 2293

15.11.14 Security Vault Migration

Security Vault is primarily used in legacy configurations, a vault is used to store sensitive strings outside of

the configuration files. WildFly server may only contain a single security vault.

Credential Store introduced in WildFly 11 is meant to expand Security Vault in terms of storing different

credential types and introduce easy to implement SPI which allows to deploy custom implementations of

CredentialStore SPI. Credentials are stored safely encrypted in storage file outside WildFly configuration

files. Each WildFly server may contain multiple credential stores.

To easily migrate vault content into credential store we have added "vault" command into WildFly Elytron

Tool. The tool could be found at $JBOSS_HOME/bin directory. It has several scripts named "elytron-tool.*"

dependent on your platform of choice. One can use also simple form "java -jar

$JBOSS_HOME/bin/wildfly-elytron-tool.jar <command> <arguments>" if it better suites ones needs.

Latest WildFly Documentation

JBoss Community Documentation Page of 2196 2293

Single Security Vault Conversion
To convert security vault credential store use following example:single

- to get sample vault use testing resources of Elytron Tool project from GitHub [1]

Command to run actual conversion:

./bin/elytron-tool.sh vault --enc-dir vault_data/ --keystore

vault-jceks.keystore --keystore-password MASK-2hKo56F1a3jYGnJwhPmiF5

--iteration 34 --salt 12345678 --alias test --location cs-v1.store --summary

Output:

Vault (enc-dir="vault_data/";keystore="vault-jceks.keystore") converted to

credential store "cs-v1.store"

Vault Conversion summary:

Vault Conversion Successful

CLI command to add new credential store:

/subsystem=elytron/credential-store=test:add(relative-to=jboss.server.data.dir,create=true,modifiable=true,location="cs-v1.store",implementation-properties={"keyStoreType"=>"JCEKS"},credential-reference={clear-text="MASK-2hKo56F1a3jYGnJwhPmiF5;12345678;34"})

Use elytron-tool.sh vault --help to get description of all parameters.

Notes:
- Elytron Tool cannot handle very first version of Security Vault data file.

- --keystore-password can come in two forms (1) masked as shown in the example or (2) clear text.

Parameter --salt and --iteration are there to supply information to decrypt the masked password or to

generate masked password in output. In case --salt and --iteration are omitted default values are used.

- When --summary parameter is specified, one can see nice output with CLI command to be used in WildFly

console to add converted credential store to the configuration.

Bulk Security Vault Conversion
There is possibility to convert multiple vaults to credential store using --bulk-convert parameter with

description file.

Example of description file from our tests [2]:

Latest WildFly Documentation

JBoss Community Documentation Page of 2197 2293

Bulk conversion descriptor

keystore:target/test-classes/vault-v1/vault-jceks.keystore

keystore-password:MASK-2hKo56F1a3jYGnJwhPmiF5

enc-dir:target/test-classes/vault-v1/vault_data/

salt:12345678

iteration:34

location:target/v1-cs-1.store

alias:test

keystore:target/test-classes/vault-v1/vault-jceks.keystore

keystore-password:secretsecret

enc-dir:target/test-classes/vault-v1/vault_data/

location:target/v1-cs-2.store

alias:test

different vault vault-v1-more

keystore:target/test-classes/vault-v1-more/vault-jceks.keystore

keystore-password:MASK-2hKo56F1a3jYGnJwhPmiF5

enc-dir:target/test-classes/vault-v1-more/vault_data/

salt:12345678

iteration:34

location:target/v1-cs-more.store

alias:test

After each "keystore:" option new conversion starts. All options are mandatory except "salt:", "iteration:" and

"properties:"

Execute following command:

./bin/elytron-tool.sh vault --bulk-convert bulk-vault-conversion-desc

--summary

Output:

Latest WildFly Documentation

JBoss Community Documentation Page of 2198 2293

Vault

(enc-dir="vault-v1/vault_data/";keystore="vault-v1/vault-jceks.keystore")

converted to credential store "v1-cs-1.store"

Vault Conversion summary:

Vault Conversion Successful

CLI command to add new credential store:

/subsystem=elytron/credential-store=test:add(relative-to=jboss.server.data.dir,create=true,modifiable=true,location="v1-cs-1.store",implementation-properties={"keyStoreType"=>"JCEKS"},credential-reference={clear-text="MASK-2hKo56F1a3jYGnJwhPmiF5;12345678;34"})

Vault

(enc-dir="vault-v1/vault_data/";keystore="vault-v1/vault-jceks.keystore")

converted to credential store "v1-cs-2.store"

Vault Conversion summary:

Vault Conversion Successful

CLI command to add new credential store:

/subsystem=elytron/credential-store=test:add(relative-to=jboss.server.data.dir,create=true,modifiable=true,location="v1-cs-2.store",implementation-properties={"keyStoreType"=>"JCEKS"},credential-reference={clear-text="secretsecret"})

Vault

(enc-dir="vault-v1-more/vault_data/";keystore="vault-v1-more/vault-jceks.keystore")

converted to credential store "v1-cs-more.store"

Vault Conversion summary:

Vault Conversion Successful

CLI command to add new credential store:

/subsystem=elytron/credential-store=test:add(relative-to=jboss.server.data.dir,create=true,modifiable=true,location="v1-cs-more.store",implementation-properties={"keyStoreType"=>"JCEKS"},credential-reference={clear-text="MASK-2hKo56F1a3jYGnJwhPmiF5;12345678;34"})

The result is conversion of all vaults with proper CLI commands.

References:
[1] https://github.com/wildfly-security/wildfly-elytron-tool/tree/master/src/test/resources/vault-v1

[2]

https://github.com/wildfly-security/wildfly-elytron-tool/blob/master/src/test/java/org/wildfly/security/tool/VaultCommandTest.java

https://github.com/wildfly-security/wildfly-elytron-tool/tree/master/src/test/resources/vault-v1
https://github.com/wildfly-security/wildfly-elytron-tool/blob/master/src/test/java/org/wildfly/security/tool/VaultCommandTest.java

Latest WildFly Documentation

JBoss Community Documentation Page of 2199 2293

1.

2.

3.

4.

5.

15.11.15 Simple SSL Migration

Simple SSL Migration
This section describe securing HTTP connections to the server using SSL using Elytron.

It suppose you have already configured SSL using legacy , for example by security-realm Admin

, and your configuration looks like:Guide#Enable SSL

<security-realm name="ApplicationRealm">

 <server-identities>

 <ssl>

 <keystore path="server.keystore" relative-to="jboss.server.config.dir"

keystore-password="keystore_password" alias="server" key-password="key_password" />

 </ssl>

 </server-identities>

</security-realm>

To switch to Elytron you need to:

Create Elytron - specifying where is the keystore file stored and password by which it iskey-store

encrypted. Default type of keystore generated using keytool is JKS:

/subsystem=elytron/key-store=LocalhostKeyStore:add(path=server.keystore,relative-to=jboss.server.config.dir,credential-reference={clear-text="keystore_password"},type=JKS)

Create Elytron - specifying keystore, alias (using) and password ofkey-manager alias-filter

key:

/subsystem=elytron/key-manager=LocalhostKeyManager:add(key-store=LocalhostKeyStore,alias-filter=server,credential-reference={clear-text="key_password"})

Create Elytron - specifying only reference to defined above:server-ssl-context key-manager

/subsystem=elytron/server-ssl-context=LocalhostSslContext:add(key-manager=LocalhostKeyManager)

Switch from legacy to newly created Elytron :https-listener security-realm ssl-context

/subsystem=undertow/server=default-server/https-listener=https:undefine-attribute(name=security-realm)
/subsystem=undertow/server=default-server/https-listener=https:write-attribute(name=ssl-context,value=LocalhostSslContext)

And reload the server:

reload

Output XML configuration of Elytron subsystem should look like:

Latest WildFly Documentation

JBoss Community Documentation Page of 2200 2293

<subsystem xmlns="urn:wildfly:elytron:1.0" ...>

 ...

 <tls>

 <key-stores>

 <key-store name="LocalhostKeyStore">

 <credential-reference clear-text="keystore_password"/>

 <implementation type="JKS"/>

 <file path="server.keystore" relative-to="jboss.server.config.dir"/>

 </key-store>

 </key-stores>

 <key-managers>

 <key-manager name="LocalhostKeyManager" key-store="LocalhostKeyStore">

 <credential-reference clear-text="key_password"/>

 </key-manager>

 </key-managers>

 <server-ssl-contexts>

 <server-ssl-context name="LocalhostSslContext"

key-manager="LocalhostKeyManager"/>

 </server-ssl-contexts>

 </tls>

 </subsystem>

Output in Undertow subsystem should be:https-listener

<https-listener name="https" socket-binding="https" ssl-context="LocalhostSslContext"

enable-http2="true"/>

Client-Cert SSL Authentication Migration
This suppose you have already configured Client-Cert SSL authentication using in legacy truststore

, for example by , and your configuration looks like:security-realm Admin Guide#Add Client-Cert to SSL

<security-realm name="ApplicationRealm">

 <server-identities>

 <ssl>

 <keystore path="server.keystore" relative-to="jboss.server.config.dir"

keystore-password="keystore_password" alias="server" key-password="key_password" />

 </ssl>

 </server-identities>

 <authentication>

 <truststore path="server.truststore" relative-to="jboss.server.config.dir"

keystore-password="truststore_password" />

 <local default-user="$local"/>

 <properties path="application-users.properties" relative-to="jboss.server.config.dir"/>

 </authentication>

</security-realm>

Latest WildFly Documentation

JBoss Community Documentation Page of 2201 2293

1.

2.

3.

4.

5.

Following configuration is sufficient to prevent users without valid certificate and private key to

access the server, but it does not provide user identity to the application. That require to define

 HTTP mechanism / SASL mechanism, which will be described later.)CLIENT_CERT EXTERNAL

At first use steps above to migrate basic part of the configuration. Then continue by following:

Create of truststore - like for keystore above:key-store

/subsystem=elytron/key-store=TrustStore:add(path=server.truststore,relative-to=jboss.server.config.dir,credential-reference={clear-text="truststore_password"},type=JKS)

Create - specifying of trustore, created above:trust-manager key-store

/subsystem=elytron/trust-manager=TrustManager:add(key-store=TrustStore)

Modify to use newly created trustmanager:server-ssl-context

/subsystem=elytron/server-ssl-context=LocalhostSslContext:write-attribute(name=trust-manager,value=TrustManager)

Enable client authentication for :server-ssl-context

/subsystem=elytron/server-ssl-context=LocalhostSslContext:write-attribute(name=need-client-auth,value=true)

And reload the server:

reload

Output XML configuration of Elytron subsystem should look like:

Latest WildFly Documentation

JBoss Community Documentation Page of 2202 2293

<subsystem xmlns="urn:wildfly:elytron:1.0" ...>

 ...

 <tls>

 <key-stores>

 <key-store name="LocalhostKeyStore">

 <credential-reference clear-text="keystore_password"/>

 <implementation type="JKS"/>

 <file path="server.keystore" relative-to="jboss.server.config.dir"/>

 </key-store>

 <key-store name="TrustStore">

 <credential-reference clear-text="truststore_password"/>

 <implementation type="JKS"/>

 <file path="server.truststore" relative-to="jboss.server.config.dir"/>

 </key-store>

 </key-stores>

 <key-managers>

 <key-manager name="LocalhostKeyManager" key-store="LocalhostKeyStore"

alias-filter="server">

 <credential-reference clear-text="key_password"/>

 </key-manager>

 </key-managers>

 <trust-managers>

 <trust-manager name="TrustManager" key-store="TrustStore"/>

 </trust-managers>

 <server-ssl-contexts>

 <server-ssl-context name="LocalhostSslContext" need-client-auth="true"

key-manager="LocalhostKeyManager" trust-manager="TrustManager"/>

 </server-ssl-contexts>

 </tls>

 </subsystem>

15.11.16 SSL with Client Cert Migration

As this documentation is primarily intended for users migrating to WildFly Elytron I am going to jump straight

into the configuration required with WildFly Elytron.

This section will cover how to create the various resources required to achieve CLIENT_CERT

authentication with fallback to username / password authentication for both HTTP and SASL (i.e. Remoting)

- both are being covered at the same time as predominantly they require the same core configuration, it is

not until the definition of the authentication factories that the configuration becomes really specific.

The WildFly Elytron project already contains a dummy certificate authority set up that we use for testing, the

KeyStores within this documentation are from the dummy certificate authority although for anything other

than testing these should be replaced with your own.

As a first step we define some paths that point to the wildfly-elytron project so we can use these in the

subsequent configuration.

Latest WildFly Documentation

JBoss Community Documentation Page of 2203 2293

1.

2.

3.

./path=elytron.project:add(path=/home/darranl/src/wildfly10/wildfly-elytron)

./path=elytron.project.jks:add(path=src/test/resources/ca/jks, relative-to=elytron.project)

./path=elytron.project.properties:add(path=src/test/resources/org/wildfly/security/auth/realm,

relative-to=elytron.project)

This results in the following configuration.

<paths>

 <path name="elytron.project" path="/home/darranl/src/wildfly10/wildfly-elytron"/>

 <path name="elytron.project.jks" path="src/test/resources/ca/jks"

relative-to="elytron.project"/>

 <path name="elytron.project.properties"

path="src/test/resources/org/wildfly/security/auth/realm" relative-to="elytron.project"/>

 </paths>

KeyStores, KeyManagers, and TrustManagers.
The next step is to define the KeyStore resources, for this example three different keystores are used: -

 - Contains the servers key and certificate for 'localhost'.localhost.keystore

 - Contains the individual client certificates.beetles.keystore

 - Contains the certificate of the certificate authority.ca.keystore

When we define the overall configuration we will use the localhost keystore along with the ca keystore for the

incoming connections so initially all client certificates signed by the certificate authority will be accepted and

subsequently a security realm will check it against the actual certificates within beetles keystore.

./subsystem=elytron/key-store=localhost:add(type=jks, relative-to=elytron.project.jks,

path=localhost.keystore, credential-reference={clear-text=Elytron})

./subsystem=elytron/key-store=beetles:add(type=jks, relative-to=elytron.project.jks,

path=beetles.keystore, credential-reference={clear-text=Elytron})

./subsystem=elytron/key-store=ca:add(type=jks, relative-to=elytron.project.jks,

path=ca.truststore, credential-reference={clear-text=Elytron})

This results in the following definitions: -

Latest WildFly Documentation

JBoss Community Documentation Page of 2204 2293

<subsystem xmlns="urn:wildfly:elytron:1.1" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <tls>

 <key-stores>

 <key-store name="localhost">

 <credential-reference clear-text="Elytron"/>

 <implementation type="jks"/>

 <file path="localhost.keystore" relative-to="elytron.project.jks"/>

 </key-store>

 <key-store name="beetles">

 <credential-reference clear-text="Elytron"/>

 <implementation type="jks"/>

 <file path="beetles.keystore" relative-to="elytron.project.jks"/>

 </key-store>

 <key-store name="ca">

 <credential-reference clear-text="Elytron"/>

 <implementation type="jks"/>

 <file path="ca.truststore" relative-to="elytron.project.jks"/>

 </key-store>

 </key-stores>

 </tls>

 </subsystem>

Next the key and trust manager resources will be defined using these keystores.

./subsystem=elytron/key-manager=localhost-manager:add(algorithm=SunX509, key-store=localhost,

credential-reference={clear-text=Elytron})

./subsystem=elytron/trust-manager=ca-manager:add(algorithm=SunX509, key-store=ca)

Resulting in: -

<subsystem xmlns="urn:wildfly:elytron:1.1" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <tls>

 ...

 <key-managers>

 <key-manager name="localhost-manager" algorithm="SunX509" key-store="localhost">

 <credential-reference clear-text="Elytron"/>

 </key-manager>

 </key-managers>

 <trust-managers>

 <trust-manager name="ca-manager" algorithm="SunX509" key-store="ca"/>

 </trust-managers>

 </tls>

 </subsystem>

Latest WildFly Documentation

JBoss Community Documentation Page of 2205 2293

Realms and Domains
Two security realms are now defined, one of these uses properties files from within the WildFly Elytron

project to support username/password authentication and the other using the clients certificates for

verification.

./subsystem=elytron/properties-realm=test-users:add(users-properties={relative-to=elytron.project.properties,

path=clear.properties, plain-text=true, digest-realm-name=ManagementRealm},

groups-properties={relative-to=elytron.project.properties, path=groups.properties})

./subsystem=elytron/key-store-realm=key-store-realm:add(key-store=beetles)

Resulting in: -

<subsystem xmlns="urn:wildfly:elytron:1.1" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <security-realms>

 ...

 <key-store-realm name="key-store-realm" key-store="beetles"/>

 ...

 <properties-realm name="test-users">

 <users-properties path="clear.properties" relative-to="elytron.project.properties"

digest-realm-name="ManagementRealm" plain-text="true"/>

 <groups-properties path="groups.properties" relative-to="elytron.project.properties"/>

 </properties-realm>

 </security-realms>

 ...

 </subsystem>

These security realms can now be referenced from a security domain: -

./subsystem=elytron/security-domain=client-cert-domain:add(realms=[{realm=test-users},{realm=key-store-realm}],

\

 default-realm=test-users, \

 permission-mapper=default-permission-mapper)

Resulting in: -

Latest WildFly Documentation

JBoss Community Documentation Page of 2206 2293

<subsystem xmlns="urn:wildfly:elytron:1.1" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <security-domains>

 ...

 <security-domain name="client-cert-domain" default-realm="test-users"

permission-mapper="default-permission-mapper">

 <realm name="test-users"/>

 <realm name="key-store-realm"/>

 </security-domain>

 </security-domains>

 ...

 </subsystem>

Before moving onto the individual authentication factories a couple of additional utility resources are also

required: -

./subsystem=elytron/constant-realm-mapper=key-store-realm:add(realm-name=key-store-realm)

./subsystem=elytron/x500-attribute-principal-decoder=x500-decoder:add(attribute-name=CN,

maximum-segments=1)

Resulting in: -

<subsystem xmlns="urn:wildfly:elytron:1.1" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <mappers>

 ...

 <x500-attribute-principal-decoder name="x500-decoder" attribute-name="CN"

maximum-segments="1"/>

 ...

 <constant-realm-mapper name="key-store-realm" realm-name="key-store-realm"/>

 ...

 </mappers>

 ...

 </subsystem>

Latest WildFly Documentation

JBoss Community Documentation Page of 2207 2293

HTTP Authentication Factory
For the HTTP connections we now define a HTTP authentication factory using the previously defined

resources and it is configured to support CLIENT_CERT and DIGEST authentication.

./subsystem=elytron/http-authentication-factory=client-cert-digest:add(http-server-mechanism-factory=global,

\

 security-domain=client-cert-domain, \

 mechanism-configurations=[{ \

 mechanism-name=CLIENT_CERT, \

 realm-mapper=key-store-realm, \

 pre-realm-principal-transformer=x500-decoder}, \

 {mechanism-name=DIGEST, mechanism-realm-configurations=[{realm-name=ManagementRealm}]}])

Resulting in: -

<subsystem xmlns="urn:wildfly:elytron:1.1" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <http>

 ...

 <http-authentication-factory name="client-cert-digest"

http-server-mechanism-factory="global" security-domain="client-cert-domain">

 <mechanism-configuration>

 <mechanism mechanism-name="CLIENT_CERT" pre-realm-principal-transformer="x500-decoder"

realm-mapper="key-store-realm"/>

 <mechanism mechanism-name="DIGEST">

 <mechanism-realm realm-name="ManagementRealm"/>

 </mechanism>

 </mechanism-configuration>

 </http-authentication-factory>

 ...

 </http>

 ...

 </subsystem>

Where DIGEST authentication is used we rely on the default configuration within the security domain to

select the 'test-users' realm, however where CLIENT_CERT authentication is in use an alternative

realm-mapper is referenced to ensure the 'key-store-realm' is used.

Additionally for CLIENT_CERT authentication a principal-transformer is referenced to extract the CN

attribute from the distinguished name of the client certificate and use this when accessing the identity from

the security realm.

Latest WildFly Documentation

JBoss Community Documentation Page of 2208 2293

SASL Authentication Factory
The architecture of the two authentication factories if very similar so a SASL authentication factory can be

defined in the same way as the HTTP equivalent.

./subsystem=elytron/sasl-authentication-factory=client-cert-digest:add(sasl-server-factory=elytron,

\

 security-domain=client-cert-domain, \

 mechanism-configurations=[{mechanism-name=EXTERNAL, \

 realm-mapper=key-store-realm, \

 pre-realm-principal-transformer=x500-decoder}, \

 {mechanism-name=DIGEST-MD5, mechanism-realm-configurations=[{realm-name=ManagementRealm}]}])

This results in: -

<subsystem xmlns="urn:wildfly:elytron:1.1" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <sasl>

 ...

 <sasl-authentication-factory name="client-cert-digest" sasl-server-factory="elytron"

security-domain="client-cert-domain">

 <mechanism-configuration>

 <mechanism mechanism-name="EXTERNAL" pre-realm-principal-transformer="x500-decoder"

realm-mapper="key-store-realm"/>

 <mechanism mechanism-name="DIGEST-MD5">

 <mechanism-realm realm-name="ManagementRealm"/>

 </mechanism>

 </mechanism-configuration>

 </sasl-authentication-factory>

 ...

 </sasl>

 ...

 </subsystem>

Realm mappers and principal transformers are defined in the same way as were defined for HTTP.

Latest WildFly Documentation

JBoss Community Documentation Page of 2209 2293

SSL Context
An SSL context is also defined for use by the server.

./subsystem=elytron/server-ssl-context=localhost:add(key-manager=localhost-manager,

trust-manager=ca-manager, \

 security-domain=client-cert-domain, \

 authentication-optional=true, \

 want-client-auth=true, \

 need-client-auth=false)

Resulting in: -

<subsystem xmlns="urn:wildfly:elytron:1.1" final-providers="combined-providers"

disallowed-providers="OracleUcrypto">

 ...

 <tls>

 ...

 <server-ssl-contexts>

 <server-ssl-context name="localhost" security-domain="client-cert-domain"

want-client-auth="true" need-client-auth="false" authentication-optional="true"

key-manager="localhost-manager" trust-manager="ca-manager"/>

 </server-ssl-contexts>

 </tls>

 </subsystem>

As we will be supporting fallback to username/password authentication is set to asneed-client-auth false

well as being set to , this allows connections to be established but an alternativeauthentication-optional false

form of authentication will be required.

Using for Management
At this point the management interfaces can be updated to use the newly defined resources, we need to add

references to the two new authentication factories and the SSL context, we can also remove the existing

reference to the legacy security realm. As this is modifying existing interfaces a server reload will also be

required.

./core-service=management/management-interface=http-interface:write-attribute(name=ssl-context,

value=localhost)

./core-service=management/management-interface=http-interface:write-attribute(name=secure-socket-binding,

value=management-https)

./core-service=management/management-interface=http-interface:write-attribute(name=http-authentication-factory,

value=client-cert-digest)

./core-service=management/management-interface=http-interface:write-attribute(name=http-upgrade.sasl-authentication-factory,

value=client-cert-digest)

./core-service=management/management-interface=http-interface:undefine-attribute(name=security-realm)
:reload

The management interface configuration then becomes: -

Latest WildFly Documentation

JBoss Community Documentation Page of 2210 2293

<management>

 ...

 <management-interfaces>

 <http-interface http-authentication-factory="client-cert-digest" ssl-context="localhost">

 <http-upgrade enabled="true" sasl-authentication-factory="client-cert-digest"/>

 <socket-binding http="management-http" https="management-https"/>

 </http-interface>

 </management-interfaces>

 ...

 </management>

Admin Clients
At this stage assuming the same files have been used as in this example it should be possible to connect to

the management interface of the server either using a web browser or the JBoss CLI with the username

 and password elytron passwd12#$

For certificate based authentication the keys and certificates from the WildFly Elytron tests can be used,

these are found in JKS keystores under 'src/test/resources/ca/jks', these keystores have a password of

.Elytron

Web Browser Configuration
A PKCS#12 file can be created from the test keystores,this can then be imported into the web browser to

use when connecting to the server.

keytool -importkeystore -srckeystore ladybird.keystore \

 -destkeystore ladybird.pkcs12 \

 -srcstoretype jks \

 -deststoretype pkcs12 \

 -deststorepass Elytron \

 -srcalias ladybird \

 -destalias ladybird

CLI Configuration
Since the integration of WildFly Elytron it is possible with the CLI to use a configuration file wildfly-config.xml

to define the security settings including the settings for the client side SSL context.

For the purpose of this example copy the ladybird,keystore and ca.truststore from the Wildfly Elytron

testsuite to the location the JBoss CLI is being started from, the following wildfly-config.xml can be created in

this location as well: -

Latest WildFly Documentation

JBoss Community Documentation Page of 2211 2293

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <authentication-client xmlns="urn:elytron:1.0">

 <key-stores>

 <key-store name="ladybird" type="jks" >

 <file name="ladybird.keystore"/>

 <key-store-clear-password password="Elytron" />

 </key-store>

 <key-store name="ca" type="jks">

 <file name="ca.truststore"/>

 <key-store-clear-password password="Elytron" />

 </key-store>

 </key-stores>

 <ssl-context-rules>

 <rule use-ssl-context="default" />

 </ssl-context-rules>

 <ssl-contexts>

 <ssl-context name="default">

 <key-store-ssl-certificate key-store-name="ladybird" alias="ladybird">

 <key-store-clear-password password="Elytron" />

 </key-store-ssl-certificate>

 <trust-store key-store-name="ca" />

 </ssl-context>

 </ssl-contexts>

 </authentication-client>

</configuration>

The CLI can now be started using the following command: -

./jboss-cli.sh -c -Dwildfly.config.url=wildfly-config.xml

The command can be used within the CLI to double check the current identity.:whoami

[standalone@localhost:9993 /] :whoami(verbose=true)

{

 "outcome" => "success",

 "result" => {

 "identity" => {"username" => "Ladybird"},

 "mapped-roles" => ["SuperUser"]

 }

}

15.12 OpenSSL

Latest WildFly Documentation

JBoss Community Documentation Page of 2212 2293

15.13 Protecting Wildfly Adminstration Console With

Keycloak

Overview

System Requirements

Installing Keycloak Wildfly Elytron Adapters

Creating a Keycloak Realm for Wildfly Management Services

Protecting Wildfly Console and Management API

Accessing Wildfly Administration Console

15.13.1 Overview

In this document you will learn how to integrate security for Wildfly Administration Console with Keycloak

using Elytron subsystem.

15.13.2 System Requirements

To follow the instructions in this document, make sure you have both and servers properlyWildfly Keycloak

installed. You need the latest versions for both servers.

When running Wildfly, it must be using port 8080 (default port). The following command can be used to start

the server:

WILDFLY_HOME/bin/standalone.sh

For Keycloak, use the following command to start the server on port 8180:

KEYCLOAK_HOME/bin/standalone.sh \-Djboss.socket.binding.port-offset=100

https://docs.jboss.org/author/display/WFLY/Getting+Started+Guide
http://www.keycloak.org/docs/latest/server_installation/index.html

Latest WildFly Documentation

JBoss Community Documentation Page of 2213 2293

15.13.3 Installing Keycloak Wildfly Elytron Adapters

Keycloak integration is only possible when using Keycloak Wildfly Elytron Adapter. This adapter is fully

integrated with the new security infrastructure in Wildfly provided by Elytron and its subsystem.

Download the latest version of and follow the instructions in this toWildfly Client Adapters document

extract/install the adapters in your Wildfly installation. Make sure you run the following script when installing

the adapter:

WILDFLY_HOME/bin/jboss-cli.sh --file=adapter-elytron-install-offline.cli

15.13.4 Creating a Keycloak Realm for Wildfly Management

Services

We'll be protecting both administration console and HTTP management interface in Wildfly. For that, we

need to create a Keycloak realm and two client applications, where these clients will be used to configure

security for both administration console and HTTP management interface.

Start your Keycloak server using the following command:

KEYCLOAK_HOME/bin/standalone.sh -Djboss.socket.binding.port-offset=100

After running the command above you should be able to access Keycloak Administration Console at

 and log in.http://localhost:8180/auth

If you are running the server for the first name, you will be prompted to create an initial admin user

to get started. Once you provide the username and password for the admin user you'll be

redirected to Keycloak Administration Console login page.

Create a realm with a name .wildfly-infra

Create a client application with a name and configure it as follows:wildfly-console

Select in the fieldpublic Access Type

Add a new with a value Valid Redirect URI http://localhost:9990/console/*

Add a new with a value Web Origins http://localhost:9990

Save changes for client wildfly-console and make sure it is properly updated. The client should have a

configuration similar to following:

http://www.keycloak.org/downloads.html
http://www.keycloak.org/docs/latest/securing_apps/index.html#_jboss_adapter
http://localhost:8180/auth
http://localhost:9990/console/*.*
http://localhost:9990*

Latest WildFly Documentation

JBoss Community Documentation Page of 2214 2293

Create another client application with a name and configure it as follows:wildfly-management

Select in the fieldbearer-only Access Type

Save changes for client wildfly-management and make sure it is properly updated. The client should have a

configuration similar to following:

For last, we need to create an user to realm and also a role to grant to this user access to thejboss-infra

Wildfly Administration Console.

Create a with a name . It is important to keep the name in uppercase.Realm Role ADMINISTRATOR

For example purposes, we are only using the ADMINISTRATOR role to grant users access to the

administration console. However, Wildfly also supports other roles with different access scopes.

For more details, please take a look at .https://docs.jboss.org/author/display/WFLY/RBAC

Create a new user with a name . You can choose whatever password you like, just make sure you setadmin

one. After creating the user, map the role to the user.ADMINISTRATOR admin

https://docs.jboss.org/author/download/attachments/110231594/wildfly-console.png
https://docs.jboss.org/author/download/attachments/110231594/wildfly-mgmt.png
https://docs.jboss.org/author/display/WFLY/RBAC
https://docs.jboss.org/author/download/attachments/110231594/create-role.png
https://docs.jboss.org/author/download/attachments/110231594/map-admin-role.png

Latest WildFly Documentation

JBoss Community Documentation Page of 2215 2293

15.13.5 Protecting Wildfly Console and Management API

As a last configuration step, you need to configure Keycloak, Elytron and core subsystems to protect both

management services.

Copy and paste the following commands to a new file with a name protect-wildfly-mgmt-services.cli:

Create a realm for both wildfly console and mgmt interface

/subsystem=keycloak/realm=jboss-infra:add(auth-server-url=http://localhost:8180/auth,realm-public-key=[REALM_PUBLIC_KEY])

#

Create a secure-deployment in order to protect mgmt interface

/subsystem=keycloak/secure-deployment=wildfly-management:add(realm=jboss-infra,resource=wildfly-management,principal-attribute=preferred_username,bearer-only=true,ssl-required=EXTERNAL)

#

Protect HTTP mgmt interface with Keycloak adapter

/core-service=management/management-interface=http-interface:undefine-attribute(name=security-realm)
/subsystem=elytron/http-authentication-factory=keycloak-mgmt-http-authentication:add(security-domain=KeycloakDomain,http-server-mechanism-factory=wildfly-management,mechanism-configurations=[{mechanism-name=KEYCLOAK,mechanism-realm-configurations=[{realm-name=KeycloakOIDCRealm,realm-mapper=keycloak-oidc-realm-mapper}]}])
/core-service=management/management-interface=http-interface:write-attribute(name=http-authentication-factory,value=keycloak-mgmt-http-authentication)
/core-service=management/management-interface=http-interface:write-attribute(name=http-upgrade,

value={enabled=true, sasl-authentication-factory=management-sasl-authentication})

Enable RBAC where roles are obtained from the identity

/core-service=management/access=authorization:write-attribute(name=provider,value=rbac)

/core-service=management/access=authorization:write-attribute(name=use-identity-roles,value=true)

#

Create a secure-server in order to publish the wildfly console configuration via mgmt interface

/subsystem=keycloak/secure-server=wildfly-console:add(realm=jboss-infra,resource=wildfly-console,public-client=true)

#

reload

reload

Before saving the new file, you need to obtain the public key of realm and replace jboss-infra

 in the first command above with the value of the public key. To obtain realm's[REALM_PUBLIC_KEY]

public key, go to Keycloak Administration Console, select on the left side menu and thanRealm Settings

click on the tab. You should see a page as follows:Keys

For last, execute the script using JBoss CLI. Make sure your Wildflyprotect-wildfly-mgmt-services.cli

instance is running before running the script:

WILFLY_HOME/bin/jboss-cli.sh --connect --file=protect-wildfly-mgmt-services.cli

15.13.6 Accessing Wildfly Administration Console

If everything is correct you should be able to access the Wildfly Administration Console now after

authenticating in Keycloak.

Try to access Wildfly Administration Console and you should be redirected to a login page in Keycloak. You

should be able to log in as the user you created in the realm. admin jboss-infra

https://docs.jboss.org/author/download/attachments/110231594/export-realm-pk.png

Latest WildFly Documentation

JBoss Community Documentation Page of 2216 2293

15.14 Using the Elytron Subsystem

Set Up and Configure Authentication for Applications

Configure Authentication with a Properties File-Based Identity Store

Configure Authentication with a Filesystem-Based Identity Store

Configure Authentication with a Database Identity Store

Configure Authentication with an LDAP-Based Identity Store

Configure Authentication with Certificates

Configure Authentication with a Kerberos-Based Identity Store

Configure Authentication with a Form as a Fallback for Kerberos

Configure Applications to Use Elytron or Legacy Security for Authentication

Override an Application's Authentication Configuration

Create and Use a Credential Store

Set up and Configure Authentication for the Management Interfaces

Secure the Management Interfaces with a New Identity Store

Silent Authentication

Using RBAC with Elytron

Configure SSL/TLS

Enable One-way SSL/TLS for Applications

Enable Two-way SSL/TLS in WildFly for Applications

Enable One-way SSL/TLS for the Management Interfaces Using the Elytron Subsystem

Enable Two-way SSL/TLS for the Management Interfaces using the Elytron Subsystem

Using an ldap-key-store

Using a filtering-key-store

Reload a Keystore

Check the Content of a Keystore by Alias

Custom Components

Configuring the Elytron and Security Subsystems

Enable and Disable the Elytron Subsystem

Enable and Disable the Security Subsystem

Use the Elytron and Security Subsystems in Parallel

Creating Elytron Subsystem Components

Create an Elytron Security Realm

Create an Elytron Role Decoder

Create an Elytron Permission Mapper

Create an Elytron Role Mapper

Create an Elytron Security Domain

Create an Elytron Authentication Factory

Create an Elytron Policy Provider

Latest WildFly Documentation

JBoss Community Documentation Page of 2217 2293

15.14.1 Set Up and Configure Authentication for Applications

Configure Authentication with a Properties File-Based Identity Store

Create properties files:
You need to create two properties files: one that maps user to passwords and another that maps users to

roles. Usually these files are located in the directory and follow the naming conventionjboss.server.config.dir

 and , but other locations and names may be used. The *-users.properties *-roles.properties

 file must also contain a reference to the , which you will create in the next*-users.properties properties-realm

step: #$REALM_NAME=YOUR_PROPERTIES_REALM_NAME$

Example user to password file: example-users.properties

#$REALM_NAME=examplePropRealm$

user1=password123

user2=password123

Example user to roles file: example-roles.properties

user1=Admin

user2=Guest

Configure a properties-realm in WildFly:

/subsystem=elytron/properties-realm=examplePropRealm:add(groups-attribute=groups,groups-properties={path=example-roles.properties,relative-to=jboss.server.config.dir},users-properties={path=example-users.properties,relative-to=jboss.server.config.dir,plain-text=true})

The name of the is , which is used in the previous step in the properties-realm examplePropRealm

 file. Also, if your properties files are located outside of , thenexample-users.properties jboss.server.config.dir

you need to change the and values appropriately.path relative-to

Configure a security-domain :

/subsystem=elytron/security-domain=exampleSD:add(realms=[{realm=examplePropRealm,role-decoder=groups-to-roles}],default-realm=examplePropRealm,permission-mapper=default-permission-mapper)

Configure an http-authentication-factory :

/subsystem=elytron/http-authentication-factory=example-http-auth:add(http-server-mechanism-factory=global,security-domain=exampleSD,mechanism-configurations=[{mechanism-name=BASIC,mechanism-realm-configurations=[{realm-name=exampleApplicationDomain}]}])

This example shows creating an using authentication, but it could behttp-authentication-factory BASIC

updated to other mechanisms such as .FORM

Latest WildFly Documentation

JBoss Community Documentation Page of 2218 2293

Configure an application-security-domain in the Undertow subsystem:

/subsystem=undertow/application-security-domain=exampleApplicationDomain:add(http-authentication-factory=example-http-auth)

Configure your application's web.xml and jboss-web.xml .
Your application's and must be updated to use the youweb.xml jboss-web.xml application-security-domain

configured in WildFly. An example of this is available in the Configure Applications to Use Elytron or Legacy

 section.Security for Authentication

Configure Authentication with a Filesystem-Based Identity Store

Chose a directory for users:
You need a directory where your users will be stored. In this example, we are using a directory called

 located in .fs-realm-users jboss.server.config.dir

Configure a filesystem-realm in WildFly:

/subsystem=elytron/filesystem-realm=exampleFsRealm:add(path=fs-realm-users,relative-to=jboss.server.config.dir)

If your directory is located outside of , then you need to change the and jboss.server.config.dir path relative-to

values appropriately.

Add a user:
When using the , you can add users using the management CLI.filesystem-realm

/subsystem=elytron/filesystem-realm=exampleFsRealm/identity=user1:add()

/subsystem=elytron/filesystem-realm=exampleFsRealm/identity=user1:set-password(

clear={password="password123"})

/subsystem=elytron/filesystem-realm=exampleFsRealm/identity=user1:add-attribute(name=Roles,

value=["Admin","Guest"])

Add a simple-role-decoder :

/subsystem=elytron/simple-role-decoder=from-roles-attribute:add(attribute=Roles)

This decodes a principal's roles from the attribute. You can change this value ifsimple-role-decoder Roles

your roles are in a different attribute.

Configure a security-domain :

/subsystem=elytron/security-domain=exampleFsSD:add(realms=[{realm=exampleFsRealm,role-decoder=from-roles-attribute}],default-realm=exampleFsRealm,permission-mapper=default-permission-mapper)

Latest WildFly Documentation

JBoss Community Documentation Page of 2219 2293

Configure an http-authentication-factory :

/subsystem=elytron/http-authentication-factory=example-fs-http-auth:add(http-server-mechanism-factory=global,security-domain=exampleFsSD,mechanism-configurations=[{mechanism-name=BASIC,mechanism-realm-configurations=[{realm-name=exampleApplicationDomain}]}])

This example shows creating an using authentication, but it could behttp-authentication-factory BASIC

updated to other mechanisms such as .FORM

Configure an application-security-domain in the Undertow subsystem:

/subsystem=undertow/application-security-domain=exampleApplicationDomain:add(http-authentication-factory=example-fs-http-auth)

Configure your application's web.xml and jboss-web.xml .
Your application's and must be updated to use the youweb.xml jboss-web.xml application-security-domain

configured in WildFly. An example of this is available in the Configure Applications to Use Elytron or Legacy

 section.Security for Authentication

Your application is now using a filesystem-based identity store for authentication.

Configure Authentication with a Database Identity Store

Determine your database format for usernames, passwords, and roles:
To set up authentication using a database for an identity store, you need to determine how your usernames,

passwords, and roles are stored in that database. In this example, we are using a single table with the

following sample data:

username password roles

user1 password123 Admin

user2 password123 Guest

Configure a datasource:
To connect to a database from WildFly, you must have the appropriate database driver deployed as well as

a datasource configured. This example shows deploying the driver for postgres and configuring a datasource

in WildFly:

deploy /path/to/postgresql-9.4.1210.jar

data-source add --name=examplePostgresDS --jndi-name=java:jboss/examplePostgresDS

--driver-name=postgresql-9.4.1210.jar

--connection-url=jdbc:postgresql://localhost:5432/postgresdb --user-name=postgresAdmin

--password=mysecretpassword

Latest WildFly Documentation

JBoss Community Documentation Page of 2220 2293

Configure a jdbc-realm in WildFly:

/subsystem=elytron/jdbc-realm=exampleDbRealm:add(principal-query=[{sql="SELECT password,roles

FROM wildfly_users WHERE

username=?",data-source=examplePostgresDS,clear-password-mapper={password-index=1},attribute-mapping=[{index=2,to=groups}]}])

 The above example shows how to obtain passwords and roles from a single . You canNOTE: principal-query

also create additional with attributes if you require multiple queries toprincipal-query attribute-mapping

obtain roles or additional authentication or authorization information.

Configure a security-domain :

/subsystem=elytron/security-domain=exampleDbSD:add(realms=[{realm=exampleDbRealm,role-decoder=groups-to-roles}],default-realm=exampleDbRealm,permission-mapper=default-permission-mapper)

Configure an http-authentication-factory :

/subsystem=elytron/http-authentication-factory=example-db-http-auth:add(http-server-mechanism-factory=global,security-domain=exampleDbSD,mechanism-configurations=[{mechanism-name=BASIC,mechanism-realm-configurations=[{realm-name=exampleDbSD}]}])

This example shows creating an using authentication, but it could behttp-authentication-factory BASIC

updated to other mechanisms such as .FORM

Configure an application-security-domain in the Undertow subsystem:

/subsystem=undertow/application-security-domain=exampleApplicationDomain:add(http-authentication-factory=example-db-http-auth)

Configure your application's web.xml and jboss-web.xml .
Your application's and must be updated to use the youweb.xml jboss-web.xml application-security-domain

configured in WildFly. An example of this is available in the Configure Applications to Use Elytron or Legacy

 section.Security for Authentication

Latest WildFly Documentation

JBoss Community Documentation Page of 2221 2293

Configure Authentication with an LDAP-Based Identity Store

Determine your LDAP format for usernames, passwords, and roles:
To set up authentication using an LDAP server for an identity store, you need to determine how your

usernames, passwords, and roles are stored. In this example, we are using the following structure:

dn: dc=wildfly,dc=org

dc: wildfly

objectClass: top

objectClass: domain

dn: ou=Users,dc=wildfly,dc=org

objectClass: organizationalUnit

objectClass: top

ou: Users

dn: uid=jsmith,ou=Users,dc=wildfly,dc=org

objectClass: top

objectClass: person

objectClass: inetOrgPerson

cn: John Smith

sn: smith

uid: jsmith

userPassword: password123

dn: ou=Roles,dc=wildfly,dc=org

objectclass: top

objectclass: organizationalUnit

ou: Roles

dn: cn=Admin,ou=Roles,dc=wildfly,dc=org

objectClass: top

objectClass: groupOfNames

cn: Admin

member: uid=jsmith,ou=Users,dc=wildfly,dc=org

Configure a dir-context :
To connect to the LDAP server from WildFly, you need to configure a that provides the URL asdir-context

well as the principal used to connect to the server.

/subsystem=elytron/dir-context=exampleDC:add(url="ldap://127.0.0.1:10389",principal="uid=admin,ou=system",credential-reference={clear-text="secret"})

Configure an ldap-realm in WildFly:

/subsystem=elytron/ldap-realm=exampleLR:add(dir-context=exampleDC,identity-mapping={search-base-dn="ou=Users,dc=wildfly,dc=org",rdn-identifier="uid",user-password-mapper={from="userPassword"},attribute-mapping=[{filter-base-dn="ou=Roles,dc=wildfly,dc=org",filter="(&(objectClass=groupOfNames)(member={1}))",from="cn",to="Roles"}]})

Latest WildFly Documentation

JBoss Community Documentation Page of 2222 2293

Add a simple-role-decoder :

/subsystem=elytron/simple-role-decoder=from-roles-attribute:add(attribute=Roles)

Configure a security-domain :

/subsystem=elytron/security-domain=exampleLdapSD:add(realms=[{realm=exampleLR,role-decoder=from-roles-attribute}],default-realm=exampleLR,permission-mapper=default-permission-mapper)

Configure an http-authentication-factory :

/subsystem=elytron/http-authentication-factory=example-ldap-http-auth:add(http-server-mechanism-factory=global,security-domain=exampleLdapSD,mechanism-configurations=[{mechanism-name=BASIC,mechanism-realm-configurations=[{realm-name=exampleApplicationDomain}]}])

This example shows creating an using authentication, but it could behttp-authentication-factory BASIC

updated to other mechanisms such as .FORM

Configure an application-security-domain in the Undertow subsystem:

/subsystem=undertow/application-security-domain=exampleApplicationDomain:add(http-authentication-factory=example-ldap-http-auth)

Configure your application's web.xml and jboss-web.xml .
Your application's and must be updated to use the youweb.xml jboss-web.xml application-security-domain

configured in WildFly. An example of this is available in the Configure Applications to Use Elytron or Legacy

 section.Security for Authentication

 In cases where you configure an LDAP server in the subsystem for authentication andIMPORTANT: elytron

that LDAP server then becomes unreachable, WildFly will return a , or internal server error, error code500

when attempting authentication using that unreachable LDAP server. This behavior differs from the legacy

 subsystem, which will return a , or unauthorized, error code under the same conditions.security 401

Configure Authentication with Certificates
 Before you can set up certificate-based authentication, you must have two-way SSLIMPORTANT:

configured.

Configure a key-store-realm .

/subsystem=elytron/key-store-realm=ksRealm:add(key-store=twoWayTS)

You must configure this realm with a truststore that contains the client's certificate. The authentication

process uses the same certificate presented by the client during the two-way SSL handshake.

Latest WildFly Documentation

JBoss Community Documentation Page of 2223 2293

Create a Decoder.
You need to create a to decode the principal you get from your certificate.x500-attribute-principal-decoder

The below example will decode the principal based on the first value.CN

/subsystem=elytron/x500-attribute-principal-decoder=CNDecoder:add(oid="2.5.4.3",maximum-segments=1)

For example, if the full was , DN CN=client,CN=client-certificate,DC=example,DC=jboss,DC=org CNDecoder

would decode the principal as . This decoded principal is used as the value to lookup a certificateclient alias

in the truststore configured in .ksRealm

 The decoded principal * * must be the value you set in your server's truststore forIMPORTANT: MUST alias

the client's certificate.

Add a constant-role-mapper for assigning roles.
This is example uses a to assign roles to a principal from but otherconstant-role-mapper ksRealm

approaches may also be used.

/subsystem=elytron/constant-role-mapper=constantClientCertRole:add(roles=[Admin,Guest])

Configure a security-domain .

/subsystem=elytron/security-domain=exampleCertSD:add(realms=[{realm=ksRealm}],default-realm=ksRealm,permission-mapper=default-permission-mapper,principal-decoder=CNDecoder,role-mapper=constantClientCertRole)

Configure an http-authentication-factory .

/subsystem=elytron/http-authentication-factory=exampleCertHttpAuth:add(http-server-mechanism-factory=global,security-domain=exampleCertSD,mechanism-configurations=[{mechanism-name=CLIENT_CERT,mechanism-realm-configurations=[{realm-name=exampleApplicationDomain}]}])

Configure an application-security-domain in the Undertow subsystem.

/subsystem=undertow/application-security-domain=exampleApplicationDomain:add(http-authentication-factory=exampleCertHttpAuth)

Update server-ssl-context .

/subsystem=elytron/server-ssl-context=twoWaySSC:write-attribute(name=security-domain,value=exampleCertSD)
/subsystem=elytron/server-ssl-context=twoWaySSC:write-attribute(name=authentication-optional,

value=true)

Latest WildFly Documentation

JBoss Community Documentation Page of 2224 2293

Configure your application's web.xml and jboss-web.xml .
Your application's and must be updated to use the youweb.xml jboss-web.xml application-security-domain

configured in WildFly. An example of this is available in the Configure Applications to Use Elytron or Legacy

 section.Security for Authentication

In addition, you need to update your to use as its authentication method.web.xml CLIENT-CERT

<login-config>

 <auth-method>CLIENT-CERT</auth-method>

 <realm-name>exampleApplicationDomain</realm-name>

</login-config>

Configure Authentication with a Kerberos-Based Identity Store
: The following steps assume you have a working KDC and Kerberos domain as well as yourIMPORTANT

client browsers configured.

Configure a kerberos-security-factory .

/subsystem=elytron/kerberos-security-factory=krbSF:add(principal="HTTP/host@REALM",path="/path/to/http.keytab",mechanism-oids=[1.2.840.113554.1.2.2,1.3.6.1.5.5.2])

Configure the system properties for Kerberos.
Depending on how your environment is configured, you will need to set some of the system properties

below.

System Property Description

java.security.krb5.kdc The host name of the KDC.

java.security.krb5.realm The name of the realm.

java.security.krb5.conf The path to the configuration file.krb5.conf

sun.security.krb5.debug If , debugging mode will be enabled.true

To configure a system property in WildFly:

/system-property=java.security.krb5.conf:add(value="/path/to/krb5.conf")

Latest WildFly Documentation

JBoss Community Documentation Page of 2225 2293

Configure an Eltyron security realm for assigning roles.
The the client's Kerberos token will provide the principal, but you need a way to map that principal to a role

for your application. There are several ways to accomplish this, but this example creates a ,filesystem-realm

adds a user to the realm that matches the principal from the Kerberos token, and assigns roles to that user.

/subsystem=elytron/filesystem-realm=exampleFsRealm:add(path=fs-realm-users,relative-to=jboss.server.config.dir)
/subsystem=elytron/filesystem-realm=exampleFsRealm/identity=user1@REALM:add()
/subsystem=elytron/filesystem-realm=exampleFsRealm/identity=user1@REALM:add-attribute(name=Roles,

value=["Admin","Guest"])

Add a simple-role-decoder .

/subsystem=elytron/simple-role-decoder=from-roles-attribute:add(attribute=Roles)

This decodes a principal's roles from the attribute. You can change this value ifsimple-role-decoder Roles

your roles are in a different attribute.

Configure a security-domain .

/subsystem=elytron/security-domain=exampleFsSD:add(realms=[{realm=exampleFsRealm,role-decoder=from-roles-attribute}],default-realm=exampleFsRealm,permission-mapper=default-permission-mapper)

Configure an http-authentication-factory that uses the kerberos-security-factory .

/subsystem=elytron/http-authentication-factory=example-krb-http-auth:add(http-server-mechanism-factory=global,security-domain=exampleFsSD,mechanism-configurations=[{mechanism-name=SPNEGO,mechanism-realm-configurations=[{realm-name=exampleFsSD}],credential-security-factory=krbSF}])

Configure an application-security-domain in the Undertow subsystem:

/subsystem=undertow/application-security-domain=exampleApplicationDomain:add(http-authentication-factory=example-krb-http-auth)

Configure your application's web.xml , jboss-web.xml and

jboss-deployment-structure.xml .
Your application's and must be updated to use the youweb.xml jboss-web.xml application-security-domain

configured in WildFly. An example of this is available in the Configure Applications to Use Elytron or Legacy

 section.Security for Authentication

In addition, you need to update your to use as its authentication method.web.xml SPNEGO

<login-config>

 <auth-method>SPNEGO</auth-method>

 <realm-name>exampleApplicationDomain</realm-name>

</login-config>

Latest WildFly Documentation

JBoss Community Documentation Page of 2226 2293

Configure Authentication with a Form as a Fallback for Kerberos

Configure kerberos-based authentication.
Configuring kerberos-based authentication is covered in a previous section.

Add a mechanism for FORM authentication in the http-authentication-factory .
You can use the existing you configured for kerberos-based authentication andhttp-authentication-factory

and an additional mechanism for authentication.FORM

/subsystem=elytron/http-authentication-factory=example-krb-http-auth:list-add(name=mechanism-configurations,

value={mechanism-name=FORM})

Add additional fallback principals.
The existing configuration for kerberos-based authentication should already have a security realm configured

for mapping principals from kerberos token to roles for the application. You can add additional users for

fallback authentication to that realm. For example if you used a , you can simply create afilesystem-realm

new user with the appropriate roles:

/subsystem=elytron/filesystem-realm=exampleFsRealm/identity=fallbackUser1:add()

/subsystem=elytron/filesystem-realm=exampleFsRealm/identity=fallbackUser1:set-password(clear={password="password123"})
/subsystem=elytron/filesystem-realm=exampleFsRealm/identity=fallbackUser1:add-attribute(name=Roles,

value=["Admin","Guest"])

Update the web.xml for FORM fallback.
You need to update the to use the value for the , which will use web.xml SPNEGO,FORM auth-method

 as a fallback authentication method if fails. You also need to specify the location of yourFORM SPNEGO

login and error pages.

<login-config>

 <auth-method>SPNEGO,FORM</auth-method>

 <realm-name>exampleApplicationDomain</realm-name>

 <form-login-config>

 <form-login-page>/login.jsp</form-login-page>

 <form-error-page>/error.jsp</form-error-page>

 </form-login-config>

</login-config>

Configure Applications to Use Elytron or Legacy Security for

Authentication
After you have configured the or legacy subsystems for authentication, you need to configureelytron security

your application to use it.

Latest WildFly Documentation

JBoss Community Documentation Page of 2227 2293

Configure your application's web.xml .
Your application's needs to be configured to use the appropriate authentication method. Whenweb.xml

using , this is defined in the you created. When using the legacy elytron http-authentication-factory security

subsystem, this depends on your login module and the type of authentication you want to configure.

Example with Authenticationweb.xml BASIC

<web-app>

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>secure</web-resource-name>

 <url-pattern>/secure/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>Admin</role-name>

 </auth-constraint>

 </security-constraint>

 <security-role>

 <description>The role that is required to log in to /secure/*</description>

 <role-name>Admin</role-name>

 </security-role>

 <login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>exampleApplicationDomain</realm-name>

 </login-config>

</web-app>

Latest WildFly Documentation

JBoss Community Documentation Page of 2228 2293

Configure your application to use a security domain.
You can configure your application's to specify the security domain you want to use forjboss-web.xml

authentication. When using the subsystem, this is defined when you created the elytron

. When using the legacy subsystem, this is the name of the legacyapplication-security-domain security

security domain.

Example jboss-web.xml

<jboss-web>

 <security-domain>exampleApplicationDomain</security-domain>

</jboss-web>

Using allows you to configure the security domain for a single application only. Alternatively,jboss-web.xml

you can specify a default security domain for all applications using the subsystem. This allows youundertow

to omit using to configure a security domain for an individual application.jboss-web.xml

/subsystem=undertow:write-attribute(name=default-security-domain,

value="exampleApplicationDomain")

: Setting in the subsystem will apply to applications. If IMPORTANT default-security-domain undertow ALL

 is set and an application specifies a security domain in a file, thedefault-security-domain jboss-web.xml

configuration in will override the in the subsystem.jboss-web.xml default-security-domain undertow

Using Elytron and Legacy Security Subsystems in Parallel
You can define authentication in both the and legacy subsystems and use them in parallel. Ifelytron security

you use both and in the subsystem, WildFly will first try tojboss-web.xml default-security-domain undertow

match the configured security domain in the subsystem. If a match is not found, then WildFly willelytron

attempt to match the security domain with one configured in the legacy subsystem. If the andsecurity elytron

legacy subsystem each have a security domain with the same name, the security domain issecurity elytron

used.

Latest WildFly Documentation

JBoss Community Documentation Page of 2229 2293

Override an Application's Authentication Configuration
You can override the authentication configuration of an application with one configured in WildFly. To do this,

use the property in the section of the override-deployment-configuration application-security-domain

 subsystem:undertow

/subsystem=undertow/application-security-domain=exampleApplicationDomain:write-attribute(name=override-deployment-config,value=true)

For example, an application is configured to use authentication with the FORM exampleApplicationDomain

in its .jboss-web.xml

Example jboss-web.xml

<login-config>

 <auth-method>FORM</auth-method>

 <realm-name>exampleApplicationDomain</realm-name>

</login-config>

By enabling , you can create a new thatoverride-deployment-configuration http-authentication-factory

specifies a different authentication mechanism such as .BASIC

Example http-authentication-factory

/subsystem=elytron/http-authentication-factory=exampleHttpAuth:read-resource()

{

 "outcome" => "success",

 "result" => {

 "http-server-mechanism-factory" => "global",

 "mechanism-configurations" => [{

 "mechanism-name" => "BASIC",

 "mechanism-realm-configurations" => [{"realm-name" => "exampleApplicationDomain"}]

 }],

 "security-domain" => "exampleSD"

 }

}

This will override the authentication mechanism defined in the application's and attempt tojboss-web.xml

authenticate a user using instead of .BASIC FORM

Latest WildFly Documentation

JBoss Community Documentation Page of 2230 2293

Create and Use a Credential Store

Create credential store.

/subsystem=elytron/credential-store=exampleCS:add(uri="cr-store://exampleCS?create=true",credential-reference={clear-text=cs-secret})

Add a credential to a credential store.

/subsystem=elytron/credential-store=exampleCS/alias=keystorepw:add(secret-value="secret")

List all credentials in a credential store.

/subsystem=elytron/credential-store=exampleCS:read-children-names(child-type=alias)

{

 "outcome" => "success",

 "result" => ["keystorepw"]

}

Remove a credential from a credential store.

/subsystem=elytron/credential-store=exampleCS/alias=keystorepw:remove

Use a credential store.

/subsystem=elytron/key-store=twoWayKS:write-attribute(name=credential-reference,value={store=exampleCS,alias=keystorepw})

15.14.2 Set up and Configure Authentication for the

Management Interfaces

Secure the Management Interfaces with a New Identity Store

Create a security domain and any supporting security realms, decoders, or mappers

for your identity store.
This process is covered in a previous section. For example, if you wanted to secure the management

interfaces using a filesystem-based identity store, you would follow the steps in Configure Authentication

.with a Filesystem-Based Identity Store

Latest WildFly Documentation

JBoss Community Documentation Page of 2231 2293

Create an http-authentication-factory or sasl-authentication-factory .
Example http-authentication-factory

/subsystem=elytron/http-authentication-factory=example-http-auth:add(http-server-mechanism-factory=global,security-domain=exampleSD,mechanism-configurations=[{mechanism-name=DIGEST,mechanism-realm-configurations=[{realm-name=exampleManagementRealm}]}])

Example sasl-authentication-factory

/subsystem=elytron/sasl-authentication-factory=example-sasl-auth:add(sasl-server-factory=configured,security-domain=exampleSD,mechanism-configurations=[{mechanism-name=DIGEST-MD5,mechanism-realm-configurations=[{realm-name=exampleManagementRealm}]}])

Update the management interfaces to use your http-authentication-factory or

sasl-authentication-factory .
Example update http-authentication-factory

/core-service=management/management-interface=http-interface:write-attribute(name=http-authentication-factory,

value=example-http-auth)

{

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-reload" => true,

 "process-state" => "reload-required"

 }

}

reload

Example update sasl-authentication-factory

/core-service=management/management-interface=http-interface:write-attribute(name=http-upgrade.sasl-authentication-factory,

value=example-sasl-auth)

{

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-reload" => true,

 "process-state" => "reload-required"

 }

}

reload

Latest WildFly Documentation

JBoss Community Documentation Page of 2232 2293

Silent Authentication
By default, WildFly provides an authentication mechanism for local users, also know as silent authentication,

through the security realm.local

Silent authentication must be used via a .sasl-authentication-factory

: When enabling silent authentication, you must ensure the security domain referenced by your IMPORTANT

 references a security realm that contains the user. By default, WildFlysasl-authentication-factory $local

provides the identity realm that provides this user.local

Add silent authentication to an existing sasl-authentication-factory .

/subsystem=elytron/sasl-authentication-factory=example-sasl-auth:list-add(name=mechanism-configurations,

value={mechanism-name=JBOSS-LOCAL-USER, realm-mapper=local})

reload

Create a new sasl-server-factory with silent authentication.

/subsystem=elytron/sasl-authentication-factory=example-sasl-auth:add(sasl-server-factory=configured,security-domain=exampleSD,mechanism-configurations=[{mechanism-name=DIGEST-MD5,mechanism-realm-configurations=[{realm-name=exampleManagementRealm}]},{mechanism-name=JBOSS-LOCAL-USER,

realm-mapper=local}])

reload

Remove silent authentication from an existing sasl-server-factory :

/subsystem=elytron/sasl-authentication-factory=managenet-sasl-authentication:read-resource

{

 "outcome" => "success",

 "result" => {

 "mechanism-configurations" => [

 {

 "mechanism-name" => "JBOSS-LOCAL-USER",

 "realm-mapper" => "local"

 },

 {

 "mechanism-name" => "DIGEST-MD5",

 "mechanism-realm-configurations" => [{"realm-name" => "ManagementRealm"}]

 }

],

 "sasl-server-factory" => "configured",

 "security-domain" => "ManagementDomain"

 }

}

/subsystem=elytron/sasl-authentication-factory=temp-sasl-authentication:list-remove(name=mechanism-configurations,index=0)

reload

Latest WildFly Documentation

JBoss Community Documentation Page of 2233 2293

Using RBAC with Elytron
RBAC can be configured to automatically assign or exclude roles for users that are members of groups. This

is configured in the section of the core management. When the management interfaces areaccess-control

secured with the subsystem, and users are assigned groups when they authenticate. You can alsoelytron

configure roles to be assigned to authenticated users in a variety of ways using the subsystem, forelytron

example using a role mapper or a role decoder.

15.14.3 Configure SSL/TLS

Enable One-way SSL/TLS for Applications
In WildFly, you can use the Elytron subsystem, along with the Undertow subsystem, to enable HTTPS for

deployed applications.

Obtain or generate your key store:
Before enabling HTTPS in WildFly, you must obtain or generate the keystore you plan on using. To generate

an example keystore:

$ keytool -genkeypair -alias localhost -keyalg RSA -keysize 1024 -validity 365 -keystore

/path/to/keystore.jks -dname "CN=localhost" -keypass secret -storepass secret

Configure a key-store in WildFly:

/subsystem=elytron/key-store=httpsKS:add(path=/path/to/keystore.jks,credential-reference={clear-text=secret},type=JKS)

The previous command uses an absolute path to the keystore. Alternatively you can use the relative-to

attribute to specify the base directory variable and specify a relative path.path

/subsystem=elytron/key-store=httpsKS:add(path=keystore.jks,relative-to=jboss.server.config.dir,credential-reference={clear-text=secret},type=JKS)

Configure a key-manager in that references your key-store :

/subsystem=elytron/key-manager=httpsKM:add(key-store=httpsKS,credential-reference={clear-text=secret})

Latest WildFly Documentation

JBoss Community Documentation Page of 2234 2293

Configure a server-ssl-context in that references your key-manager :

/subsystem=elytron/server-ssl-context=httpsSSC:add(key-manager=httpsKM,protocols=["TLSv1.2"])

: You need to determine what SSL/TLS protocols you want to support. The exampleIMPORTANT

commands above uses .TLSv1.2

Check and see if the https-listener is configured to use a legacy security realm for

its SSL configuration:

/subsystem=undertow/server=default-server/https-listener=https:read-attribute(name=security-realm)
{

"outcome" => "success",

 "result" => "ApplicationRealm"

}

The above command shows that the is configured to use the legacy securityhttps-listener ApplicationRealm

realm for its SSL configuration. Undertow cannot reference both a legacy security realm and an ssl-context

in Elytron at the same time so you must remove the reference to the legacy security realm. Also there has to

be always configured either or . Thus when changing between those, you have tossl-context security-realm

use batch operation:

 Remove the reference to the legacy security realm and update the https-listener to use the

 ssl-context from Elytron :

batch

/subsystem=undertow/server=default-server/https-listener=https:undefine-attribute(name=security-realm)
/subsystem=undertow/server=default-server/https-listener=https:write-attribute(name=ssl-context,value=httpsSSC)
run-batch

Reload the server:

reload

HTTPS is now enabled for applications.

Enable Two-way SSL/TLS in WildFly for Applications
In WildFly, you can use the Elytron subsystem, along with the Undertow subsystem, to enable two-way

SSL/TLS for deployed applications.

Latest WildFly Documentation

JBoss Community Documentation Page of 2235 2293

Obtain or generate your keystore:
Before enabling HTTPS in WildFly, you must obtain or generate the keystores, truststores and certificates

you plan on using.

Create server and client keystores:

$ keytool -genkeypair -alias localhost -keyalg RSA -keysize 1024 -validity 365 -keystore

server.keystore.jks -dname "CN=localhost" -keypass secret -storepass secret

$ keytool -genkeypair -alias client -keyalg RSA -keysize 1024 -validity 365 -keystore

client.keystore.jks -dname "CN=client" -keypass secret -storepass secret

Export the server and client certificates:

$ keytool -exportcert -keystore server.keystore.jks -alias localhost -keypass secret -storepass

secret -file server.cer

$ keytool -exportcert -keystore client.keystore.jks -alias client -keypass secret -storepass

secret -file client.cer

Import the sever and client certificates into the opposing truststores:

$ keytool -importcert -keystore server.truststore.jks -storepass secret -alias client

-trustcacerts -file client.cer

$ keytool -importcert -keystore client.truststore.jks -storepass secret -alias localhost

-trustcacerts -file server.cer

Configure a key-store for server keystore and truststore in WildFly:

/subsystem=elytron/key-store=twoWayKS:add(path=/path/to/server.keystore.jks,credential-reference={clear-text=secret},type=JKS)

/subsystem=elytron/key-store=twoWayTS:add(path=/path/to/server.truststore.jks,credential-reference={clear-text=secret},type=JKS)

NOTE

The previous command uses an absolute path to the keystore. Alternatively you can use the relative-to

attribute to specify the base directory variable and specify a relative path.path

/subsystem=elytron/key-store=myKS:add(path=keystore.jks,relative-to=jboss.server.config.dir,credential-reference={clear-text=secret},type=JKS)

Configure a key-manager in that references your key store key-store :

/subsystem=elytron/key-manager=twoWayKM:add(key-store=twoWayKS,credential-reference={clear-text=secret})

Latest WildFly Documentation

JBoss Community Documentation Page of 2236 2293

Configure a trust-manager in that references your truststore key-store :

/subsystem=elytron/trust-manager=twoWayTM:add(key-store=twoWayTS)

Configure a server-ssl-context in that references your key-manager , trust-manager ,

and enables client authentication:

/subsystem=elytron/server-ssl-context=twoWaySSC:add(key-manager=twoWayKM,protocols=["TLSv1.2"],trust-manager=twoWayTM,need-client-auth=true)

IMPORTANT

You need to determine what SSL/TLS protocols you want to support. The example commands above uses

.TLSv1.2

Check and see if the https-listener is configured to use a legacy security realm for

its SSL configuration:

/subsystem=undertow/server=default-server/https-listener=https:read-attribute(name=security-realm)
{

"outcome" => "success",

 "result" => "ApplicationRealm"

}

The above command shows that the is configured to use the legacy securityhttps-listener ApplicationRealm

realm for its SSL configuration. Undertow cannot reference both a legacy security realm and an ssl-context

in Elytron at the same time so you must remove the reference to the legacy security realm. Also there has to

be always configured either or . Thus when changing between those, you have tossl-context security-realm

use batch operation:

Remove the reference to the legacy security realm and update the https-listener to

use the ssl-context from Elytron:

batch

/subsystem=undertow/server=default-server/https-listener=https:undefine-attribute(name=security-realm)
/subsystem=undertow/server=default-server/https-listener=https:write-attribute(name=ssl-context,value=twoWaySSC)
run-batch

Reload the server

reload

Latest WildFly Documentation

JBoss Community Documentation Page of 2237 2293

Configure your client to use the client certificate
You need to configure your client to present the trusted client certificate to the server to complete the

two-way SSL/TLS authentication. For example, if using a browser, you need to import the trusted certificate

into the browser’s truststore.

Two-Way HTTPS is now enabled for applications.

Enable One-way SSL/TLS for the Management Interfaces Using the

Elytron Subsystem

Obtain or generate your key store:
Before enabling HTTPS in WildFly, you must obtain or generate the key store you plan on using. To

generate an example key store, use the following command.

$ keytool -genkeypair -alias localhost -keyalg RSA -keysize 1024 -validity 365 -keystore

keystore.jks -dname "CN=localhost" -keypass secret -storepass secret

Create a key-store , key-manager , and server-ssl-context .

/subsystem=elytron/key-store=httpsKS:add(path=keystore.jks,relative-to=jboss.server.config.dir,credential-reference={clear-text=secret},type=JKS)

/subsystem=elytron/key-manager=httpsKM:add(key-store=httpsKS,credential-reference={clear-text=secret})

/subsystem=elytron/server-ssl-context=httpsSSC:add(key-manager=httpsKM,protocols=["TLSv1.2"])

 You need to determine what SSL/TLS protocols you want to support. The exampleIMPORTANT:

commands above uses .TLSv1.2

 The above command uses to reference the location of the keystore file. Alternatively, youNOTE: relative-to

can specify the full path to the keystore in and omit .path relative-to

Enable HTTPS on the management interface.

/core-service=management/management-interface=http-interface:write-attribute(name=ssl-context,

value=httpsSSC)

/core-service=management/management-interface=http-interface:write-attribute(name=secure-socket-binding,

value=management-https)

Reload the WildFly instance.

reload

HTTPS is now enabled for the management interfaces.

Latest WildFly Documentation

JBoss Community Documentation Page of 2238 2293

Enable Two-way SSL/TLS for the Management Interfaces using the

Elytron Subsystem

Obtain or generate your key store.
Before enabling HTTPS in WildFly, you must obtain or generate the key stores, trust stores and certificates

you plan on using. To generate an example set of key stores, trust stores, and certificates use the following

commands.

Generate your server and client key stores.

$ keytool -genkeypair -alias localhost -keyalg RSA -keysize 1024 -validity 365 -keystore

server.keystore.jks -dname "CN=localhost" -keypass secret -storepass secret

$ keytool -genkeypair -alias client -keyalg RSA -keysize 1024 -validity 365 -keystore

client.keystore.jks -dname "CN=client" -keypass secret -storepass secret

Export your server and client certificates.

$ keytool -exportcert -keystore server.keystore.jks -alias localhost -keypass secret -storepass

secret -file server.cer

$ keytool -exportcert -keystore client.keystore.jks -alias client -keypass secret -storepass

secret -file client.cer

Import the sever and client certificates into the opposing trust stores.

$ keytool -importcert -keystore server.truststore.jks -storepass secret -alias client

-trustcacerts -file client.cer

$ keytool -importcert -keystore client.truststore.jks -storepass secret -alias localhost

-trustcacerts -file server.cer

Configure key-store , a key-manager , trust-manager , and server-ssl-context for the

server key store and trust store.

/subsystem=elytron/key-store=twoWayKS:add(path=server.keystore.jks,relative-to=jboss.server.config.dir,credential-reference={clear-text=secret},type=JKS)

/subsystem=elytron/key-store=twoWayTS:add(path=server.truststore.jks,relative-to=jboss.server.config.dir,credential-reference={clear-text=secret},type=JKS)

/subsystem=elytron/key-manager=twoWayKM:add(key-store=twoWayKS,credential-reference={clear-text=secret})

/subsystem=elytron/trust-manager=twoWayTM:add(key-store=twoWayTS)

/subsystem=elytron/server-ssl-context=twoWaySSC:add(key-manager=twoWayKM,protocols=["TLSv1.2"],trust-manager=twoWayTM,want-client-auth=true,need-client-auth=true)

 You need to determine what SSL/TLS protocols you want to support. The exampleIMPORTANT:

commands above uses .TLSv1.2

 The above command uses to reference the location of the keystore file. Alternatively, youNOTE: relative-to

can specify the full path to the keystore in and omit .path relative-to

Latest WildFly Documentation

JBoss Community Documentation Page of 2239 2293

Enable HTTPS on the management interface.

/core-service=management/management-interface=http-interface:write-attribute(name=ssl-context,

value=twoWaySSC)

/core-service=management/management-interface=http-interface:write-attribute(name=secure-socket-binding,

value=management-https)

Reload the WildFly instance.

reload

Configure your client to use the client certificate.
You need to configure your client to present the trusted client certificate to the server to complete the

two-way SSL/TLS authentication. For example, if using a browser, you need to import the trusted certificate

into the browser’s trust store.

Two-way SSL/TLS is now enabled for the management interfaces.

Latest WildFly Documentation

JBoss Community Documentation Page of 2240 2293

Using an ldap-key-store
An allows you to use a keystore stored in an LDAP server. You can use an inldap-key-store ldap-key-store

same way you can use a .key-store

To create and use an :ldap-key-store

Configure a dir-context .
To connect to the LDAP server from WildFly, you need to configure a that provides the URL asdir-context

well as the principal used to connect to the server.

Example dir-context

/subsystem=elytron/dir-context=exampleDC:add(\

 url="ldap://127.0.0.1:10389", \

 principal="uid=admin,ou=system", \

 credential-reference={clear-text=secret} \

)

Configure an ldap-key-store .
When configure an , you need to specify both the used to connect to the LDAPldap-key-store dir-context

server as well as how to locate the keystore stored in the LDAP server. At a minimum, this requires you

specify a .search-path

Example ldap-key-store

/subsystem=elytron/ldap-key-store=ldapKS:add(\

 dir-context=exampleDC, \

 search-path="ou=Keystores,dc=wildfly,dc=org" \

)

Use the ldap-key-store .
Once you have defined your , you can use it in the same places where a could beldap-key-store key-store

used. For example, you could use an when configuring HTTPS and Two-Way HTTPS forldap-key-store

applications.

Latest WildFly Documentation

JBoss Community Documentation Page of 2241 2293

Using a filtering-key-store
A allows you to expose a subset of aliases from an existing , and use it in thefiltering-key-store key-store

same places you could use a . For example, if a keystore contained , , and , butkey-store alias1 alias2 alias3

you only wanted to expose and , a provides you several ways to do that.alias1 alias3 filtering-key-store

To create a :filtering-key-store

Configure a key-store .

/subsystem=elytron/key-store=myKS:add(\

 path=keystore.jks, \

 relative-to=jboss.server.config.dir, \

 credential-reference={ \

 clear-text=secret \

 }, \

 type=JKS \

)

Configure a filtering-key-store .
When you configure a , you specify which you want to filter and the forfiltering-key-store key-store alias-filter

filtering aliases from the . The filter can be specified in one of the following formats:key-store

, which is a comma-delimited list of aliases to expose.alias1,alias3

, which exposes all aliases in the keystore except the ones listed.ALL:-alias2

, which exposes no aliases in the keystore except the ones listed.NONE:+alias1:+alias3

This example uses a comma-delimted list to expose and .alias1 alias3

/subsystem=elytron/filtering-key-store=filterKS:add(\

 key-store=myKS, \

 alias-filter="alias1,alias3" \

)

Use the filtering-key-store .
Once you have defined your , you can use it in the same places where a could befiltering-key-store key-store

used. For example, you could use a when configuring HTTPS and Two-Way HTTPS forfiltering-key-store

applications.

Latest WildFly Documentation

JBoss Community Documentation Page of 2242 2293

Reload a Keystore
You can reload a keystore configured in WildFly from the management CLI. This is useful in cases where

you have made changes to certificates referenced by a keystore.

To reload a keystore.

/subsystem=elytron/key-store=httpsKS:load

Check the Content of a Keystore by Alias
If you add a keystore to the subsystem using the component, you can check the keystore'selytron key-store

contents using the child element and reading its attributes.alias

For example:

/subsystem=elytron/key-store=httpsKS/alias=localhost:read-attribute(name=certificate-chain)

{

 "outcome" => "success",

 "result" => [{

 "type" => "X.509",

 "algorithm" => "RSA",

 "format" => "X.509",

 "public-key" => "30:81:9f:30:0d:06:09:2a:8......

The following attributes can be read:

Attribute Description

certificate The certificate associated with the alias. If the alias has a certificate chain this will always

be undefined.

certificate-chain The certificate chain associated with the alias.

creation-date The creation date of the entry represented by this alias.

entry-type The type of the entry for this alias. Available types: , , PasswordEntry PrivateKeyEntry

, , and . Unrecognized types will be reportedSecretKeyEntry TrustedCertificateEntry Other

as .Other

Latest WildFly Documentation

JBoss Community Documentation Page of 2243 2293

Custom Components
When configuring SSL/TLS in the subsystem, you can provide and use custom implementations ofelytron

the following components:

key-store

key-manager

trust-manager

client-ssl-context

server-ssl-context

When creating custom implementations of Elytron components, they must present the appropriate

capabilities and requirements.

15.14.4 Configuring the Elytron and Security Subsystems

Enable and Disable the Elytron Subsystem

To add the elytron extension required for the elytron subsystem:

/extension=org.wildfly.extension.elytron:add()

To enable the Elytron subsystem in WildFly:

/subsystem=elytron:add

reload

To disable the Elytron subsystem in WildFly:

/subsystem=elytron:remove

reload

 Other subsystems within WildFly may have dependencies on the subsystem. If theseIMPORTANT: elytron

dependencies are not resolved before disabling it, you will see errors when starting WildFly.

Latest WildFly Documentation

JBoss Community Documentation Page of 2244 2293

Enable and Disable the Security Subsystem

To disable the security subsystem in WildFly:

/subsystem=security:remove

reload

 Other subsystems within WildFly may have dependencies on the subsystem. If theseIMPORTANT: security

dependencies are not resolved before disabling it, you will see errors when starting WildFly.

To enable the security subsystem in WildFly:

/subsystem=security:add

reload

Use the Elytron and Security Subsystems in Parallel
By default the and subsystems will run in parallel if both are enabled. For authentication inelytron security

applications, you can use the property in the subsystem to configure aapplication-security-domain undertow

security domain in the subsystem.elytron

/subsystem=undertow/application-security-domain=exampleApplicationDomain:add(http-authentication-factory=example-http-auth)

 This must match the configured in the of your application.NOTE: security-domain jboss-web.xml

If the is not set, WildFly will look for a security domain configured in the application-security-domain security

subsystem that matches the configured in the of your application.security-domain jboss-web.xml

For enabling HTTPS using a legacy security realm, you can use the attribute in the security-realm

 section of the subsystem:https-listener undertow

/subsystem=undertow/server=default-server/https-listener=https:read-attribute(name=security-realm)
{

"outcome" => "success",

 "result" => "ApplicationRealm"

}

For enabling HTTPS using , you need to undefine the attribute and set the elytron security-realm ssl-context

attribute. As there has to be always configured either or you have to use batchssl-context security-realm

operation when changing between those:

batch

/subsystem=undertow/server=default-server/https-listener=https:undefine-attribute(name=security-realm)
/subsystem=undertow/server=default-server/https-listener=https:write-attribute(name=ssl-context,value=httpsSSC)
run-batch

Latest WildFly Documentation

JBoss Community Documentation Page of 2245 2293

15.14.5 Creating Elytron Subsystem Components

Create an Elytron Security Realm
Security realms in the Elytron subsystem, when used in conjunction with security domains, are use for both

core management authentication as well as for authentication with applications. Security realms are also

specifically typed based on their identity store, for example , , ,jdbc-realm filesystem-realm properties-realm

etc.

Adding a security realm takes the general form:

/subsystem=elytron/type-of-realm=realmName:add(....)

Examples of adding specific realms, such as , , and can bejdbc-realm filesystem-realm properties-realm

found in previous sections.

Create an Elytron Role Decoder
A role decoder converts attributes from the identity provided by the security realm into roles. Role decoders

are also specifically typed based on their functionality, for example , ,empty-role-decoder simple-role-decoder

and .custom-role-decoder

Adding a role decoder takes the general form:

/subsystem=elytron/ROLE-DECODER-TYPE=roleDeoderName:add(....)

Create an Elytron Permission Mapper
In addition to roles being assigned to a identity, permissions may also be assigned. A permission mapper

assigns permissions to an identity. Permission mappers are also specifically typed based on their

functionality, for example , , and logical-permission-mapper simple-permission-mapper

.custom-permission-mapper

Adding a permission mapper takes the general form:

/subsystem=elytron/simple-permission-mapper=PermissionMapperName:add(...)

Latest WildFly Documentation

JBoss Community Documentation Page of 2246 2293

Create an Elytron Role Mapper
A role mapper maps roles after they have been decoded to other roles. Examples include normalizing role

names or adding and removing specific roles from principals after they have been decoded. Role mappers

are also specifically typed based on their functionality, for example , add-prefix-role-mapper

, and .add-suffix-role-mapper constant-role-mapper

Adding a role mapper takes the general form:

/subsystem=elytron/ROLEM-MAPPER-TYPE=roleMapperName:add(...)

Create an Elytron Security Domain
Security domains in the Elytron subsystem, when used in conjunction with security realms, are use for both

core management authentication as well as for authentication with applications.

Adding a security domain takes the general form:

/subsystem=elytron/security-domain=domainName:add(realms=[{realm=realmName,role-decoder=roleDecoderName}],default-realm=realmName,permission-mapper=permissionMapperName,role-mapper=roleMapperName,...)

Create an Elytron Authentication Factory
An authentication factory is an authentication policy used for specific authentication mechanisms.

Authenticaion factories are specifically based on the authentication mechanism, for example

 andhttp-authentication-factory

 and .sasl-authentication-factory kerberos-security-factory

Adding an authentication factory takes the general form:

/subsystem=elytron/AUTH-FACTORY-TYPE=authFactoryName:add(....)

Create an Elytron Policy Provider
Elytron subsystem provides a specific resource definition that can be used to configure a default Java Policy

provider. The subsystem allows you to define multiple policy providers but select a single one as the default:

/subsystem=elytron/policy=policy-provider-a:add(custom-policy=\[{name=policy-provider-a,

class-name=MyPolicyProviderA, module=x.y.z}\])

Latest WildFly Documentation

JBoss Community Documentation Page of 2247 2293

15.15 Using Elytron within WildFly

15.15.1 Using the Out of the Box Elytron Components

Securing Management Interfaces
You can find more details on the enabling WildFly to use the out of the box Elytron components for securing

the management interfaces in the section.Default Management Authentication Configuration

Securing Applications
The subsystem provides by default which can be used to secureelytron application-http-authentication

applications. For more details on how is configured, see the application-http-authentication Out of the Box

 section.Configuration

To configure applications to use , see application-http-authentication Configure Applications to Use Elytron or

. You can also override the default behavior of all applications using theLegacy Security for Authentication

steps in .Override an Application's Authentication Configuration

Using SSL/TLS
WildFly does provide a default one-way SSL/TLS configuration using the legacy core management

authentication but does not provide one in the subsystem. You can find more details on configuringelytron

SSL/TLS using the subsystem for both the management interfaces as well as for applications in elytron

Configure SSL/TLS

Latest WildFly Documentation

JBoss Community Documentation Page of 2248 2293

Using Elytron with Other Subsystems
In addition to securing applications and management interfaces, Elytron also integrates with other

subsystems in WildFly.

Subsystem Details

batch-jberet You can configure the to run batch jobs using an Elytron securitybatch-jberet

domain.

datasources You can use a credential store or an Elytron security domain to provide

authentication information in a datasource definition.

messaging-activemq You can secure remote connections to the remote connections used by the

 subsystem.messaging-activemq

iiop-openjdk You can use the subsystem to configure SSL/TLS between clients andelytron

servers using the subsystem.iiop-openjdk

mail You can use a credential store to provide authentication information in a server

definition in the subsystem.mail

undertow You can use the subsystem to configure both SSL/TLS and applicationelytron

authentication.

15.15.2 Undertow Subsystem

Latest WildFly Documentation

JBoss Community Documentation Page of 2249 2293

15.15.3 EJB Subsystem

Configuration can be added to the EJB subsystem to map a security domain name referenced in a

deployment to an Elytron security domain:

/subsystem=ejb3/application-security-domain=MyAppSecurity:add(security-domain=ApplicationDomain)

Which results in:

<subsystem xmlns="urn:jboss:domain:ejb3:5.0">

...

 <application-security-domains>

 <application-security-domain name="MyAppSecurity" security-domain="ApplicationDomain"/>

 </application-security-domains>

...

</subsystem>

Note: If the deployment was already deployed at this point the application server should be reloaded or the

deployment redeployed for the application security domain mapping to take effect.

An has two main attributes:application-security-domain

name - the name of the security domain as specified in a deployment

security-domain - a reference to the Elytron security domain that should be used

When an application security domain mapping is configured for a bean in a deployment, this indicates that

security should be handled by Elytron.

15.15.4 WebServices Subsystem

There is adapter in webservices subsystem to make authentication works for elytron security domain

automatically. Like configure with legacy security domain, you can configure elytron security domain in

deployment descriptor or annotation to secure webservice endpoint.

15.15.5 Legacy Security Subsystem

As previously described, Elytron based security is configured by chaining together different capability

references to form a complete security policy. To allow an incremental migration from the legacy Security

subsystem some of the major components of this subsystem can be mapped to Elytron capabilities and used

within an Elytron based set up.

Latest WildFly Documentation

JBoss Community Documentation Page of 2250 2293

15.16 Web Single Sign-On

Overview

Create a Server Configuration Template

Create a HTTP Authentication Factory

Create a Application Security Domain in Undertow

Create a Key Store

Enable Single Sign-On

Create Two Server Instances

Deploy an Application

15.16.1 Overview

This document will guide on how to enable single sign-on across different applications deployed into different

servers, where these applications belong to same security domain.

15.16.2 Create a Server Configuration Template

For this document, you'll need to run at least two server instances in order to check single sign-on and how it

affect usability in your applications. Users should be able to log in once and have access to any application

using the same security domain.

All configuration described in the next sections should be done with a server instance using

 (or standalone-full-ha.xml).standalone-ha.xml

Run a server instance using the following command:

bin/standalone.sh -c standalone-ha.xml

Latest WildFly Documentation

JBoss Community Documentation Page of 2251 2293

Create a HTTP Authentication Factory

If you already have a defined in Elytron subsystem and just want to usehttp-authentication-factory

it to enable single sign-on to your applications, please skip this section.

First, you need a which we'll use to authenticate users. Please, execute the following CLIsecurity-domain

commands:

Creates a FileSystem Realm, an identity store where users are stored in the local filesystem

/subsystem=elytron/filesystem-realm=example-realm:add(path=/tmp/example-realm)

Creates a Security Domain

/subsystem=elytron/security-domain=example-domain:add(default-realm=example-realm,

permission-mapper=default-permission-mapper,realms=[{realm=example-realm,

role-decoder=groups-to-roles}]

Creates an user that you can use to access your applications

/subsystem=elytron/filesystem-realm=example-realm:add-identity(identity=alice)

/subsystem=elytron/filesystem-realm=example-realm:add-identity-attribute(identity=alice,

name=groups, value=["user"])

/subsystem=elytron/filesystem-realm=example-realm:set-password(identity=alice,

clear={password=alice})

Now you can create a that you'll use to actually protect your web applicationshttp-authentication-factory

using Undertow:

Create a Http Authentication Factory

/subsystem=elytron/http-authentication-factory=example-http-authentication:add(security-domain=example-domain,

http-server-mechanism-factory=global, mechanism-configurations=[{mechanism-name=FORM}]

Create a Application Security Domain in Undertow

If you already have a defined in Undertow subsystem and just want toapplication-security-domain

use it to enable single sign-on to your applications, please skip this section.

In order to protect applications using the configuration defined in Elytron subsystem, you should create a

application-security-domain definition in Undertow subsystem as follows:

/subsystem=undertow/application-security-domain=other:add(http-authentication-factory=example-http-authentication)

By default, if your application does not define any specific in , the applicationsecurity-domain jboss-web.xml

server will choose one with a name .other

Latest WildFly Documentation

JBoss Community Documentation Page of 2252 2293

Create a Key Store
In order to create a in Elytron subsystem, first create a Java Key Store as follows:key-store

keytool -genkeypair -alias localhost -keyalg RSA -keysize 1024 -validity 365 -keystore

keystore.jks -dname "CN=localhost" -keypass secret -storepass secret

Once the file is created, execute the following CLI commands to create a definition inkeystore.jks key-store

Elytron:

/subsystem=elytron/key-store=example-keystore:add(path=keystore.jks,

relative-to=jboss.server.config.dir, credential-reference={clear-text=secret}, type=JKS)

Enable Single Sign-On
Single Sign-On is enabled to a specific definition in Undertow subsystem. It isapplication-security-domain

important that the servers you will be using to deploy applications are using the same configuration.

To enable single-sign on, just change an existing application-security-domain in Undertow subsystem as

follows:

/subsystem=undertow/application-security-domain=other/setting=single-sign-on:add(key-store=example-keystore,

key-alias=localhost, domain=localhost, credential-reference={clear-text=secret})

After restarting the servers, users should be able to log in once and have access to any application using the

same .application-security-domain

15.16.3 Create Two Server Instances

All configuration you did so far should be reflect in / You can$JBOSS_HOME standalone/standalone-ha.xml.

now create two distinct server configuration directories_:_

cp -r standalone standalone-a

cp -r standalone standalone-b

And you can run the two instances using the command below:

$JBOSS_HOME/bin/standalone.sh -c standalone-ha.xml -Djboss.node.name=node-a

-Djboss.socket.binding.port-offset=200 -Djboss.server.base.dir=$JBOSS_HOME/standalone-a

$JBOSS_HOME/bin/standalone.sh -c standalone-ha.xml -Djboss.node.name=node-b

-Djboss.socket.binding.port-offset=300 -Djboss.server.base.dir=$JBOSS_HOME/standalone-b

Latest WildFly Documentation

JBoss Community Documentation Page of 2253 2293

15.16.4 Deploy an Application

For the sake of simplicity, these are the minimum files you need in your application:

WEB-INF/web.xml

<web-app version="3.1" xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd">

 <security-constraint>

 <display-name>SecurityConstraint</display-name>

 <web-resource-collection>

 <web-resource-name>All Resources</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>user</role-name>

 </auth-constraint>

 </security-constraint>

 <login-config>

 <auth-method>FORM</auth-method>

 <form-login-config>

 <form-login-page>/login.html</form-login-page>

 <form-error-page>/login.html</form-error-page>

 </form-login-config>

 </login-config>

 <security-role>

 <role-name>user</role-name>

 </security-role>

</web-app>

login.html

<html>

 <body>

 <form method="post" action="j_security_check">

 <input type="text" name="j_username">

 <input type="password" name="j_password">

 <input type="submit" value="Log In">

 </form>

 </body>

</html>

Make sure you have at least a welcome file (e.g.: index.html|jsp).

Latest WildFly Documentation

JBoss Community Documentation Page of 2254 2293

Deploy your application into both server instances and try to log in using the user you created at the

beginning of this document:

Username: alice

Password: alice

Latest WildFly Documentation

JBoss Community Documentation Page of 2255 2293

16 WildFly Client Configuration

Introduction

wildfly-config.xml Discovery

Configuration Sections

<authentication-client /> - WildFly Elytron

<credential-stores />

<key-stores />

<authentication-rules /> and <ssl-context-rules />

<authentication-configurations />

<net-authenticator />

<ssl-contexts />

<providers />

<jboss-ejb-client /> - EJB Client

<invocation-timeout />

<global-interceptors />

<interceptor />

<connections />

<connection />

<interceptors />

<endpoint /> - Remoting Client

<providers />

<provider />

<connections />

<connection />

Example Remoting Client Configuration in the wildfly-config.xml File

<worker /> - XNIO Client

<daemon-threads />

<worker-name />

<pool-size />

<task-keepalive />

<io-threads />

<stack-size />

<outbound-bind-addresses />

<bind-address />

Latest WildFly Documentation

JBoss Community Documentation Page of 2256 2293

16.1 Introduction

As of WildFly 11 a common configuration framework has been introduced for use by the client libraries to

define configuration, this allows for the configuration to be shared across multiple clients rather than relying

on their own configuration files. As an example the configuration used by an EJB client can be shared with

the JBoss CLI, if both of these required SSL configuration this can now be defined once and re-used.

Programatic APIs are also available for many of the options however this document is focusing on the

configuration available within the common configuration file.wildfly-config.xml

16.1.1 wildfly-config.xml Discovery

At the time a client requires access to its configuration, the class path is scanned for a wildfly-config.xml or

META-INF/wildfly-config.xml file. Once the file is located the configuration will be parsed to be made

available for that client.

Alternatively, the wildfly.config.url system property can also be specified to identify the location of the

configuration that should be used.

16.2 Configuration Sections

16.2.1 <authentication-client /> - WildFly Elytron

The element can be added to the wildfly-config.xml configuration to define<authentication-client/>

configuration in relation to authentication configuration for outbound connections and SSL configuration for

outbound connections e.g.

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <authentication-client xmlns="urn:elytron:1.0">

 ...

 </authentication-client>

</configuration>

Note: A single wildfly-config.xml could be used by multiple projects using multiple versions of Wildfly Elytron,

newer versions of WildFly Elytron will introduce new configuration using later namespace versions however

they will still continue to support the previously released schemas until advertised otherwise. For the

configuration to be compatible with this either use a schema and namespace compatible with all the versions

in use, or multiple authentication-client elements can be added, these should be added ordered by

namespace youngest to oldest. If a configuration with a later namespace is discovered by a newer WildFly

Elytron client it will be used and parsing will not look for an older version as well.

Latest WildFly Documentation

JBoss Community Documentation Page of 2257 2293

1.

2.

The configuration can contain the following sections: -<authentication-client />

 - Definitions of credential stores to be referenced from elsewhere in the<credential-stores />

configuration.

 - Definitions of KeyStores to be referenced elsewhere in the configuration.<key-stores />

 - Rules to be applied for outbound connections to match against an<authentication-rules />

appropriate authentication configuration.

 - The individual authentication configurations that will be matched<authentication-configurations />

by the authentication rules.

 - Flag to enable integration with the .<net-authenticator /> java.net.Authenticator

 - Rules to be applied for outbound connections to match against an appropriate<ssl-context-rules />

SSL context configuration.

 - Individual SSL context definitions that will be matched by the ssl context rules.<ssl-contexts />

 - Definition of how instances will be discovered.<providers/> java.security.Provider

<credential-stores />
The <credential-stores /> element can be used to define individual named credential stores that can

subsequently be used elsewhere in the configuration to reference stored credentials as an alternative to the

credentials being embedded in the configuration.

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <authentication-client xmlns="urn:elytron:1.0">

 <credential-stores>

 <credential-store name="..." type="..." provider="..." >

 <attributes>

 <attribute name="..." value="..." />

 </attributes>

 <protection-parameter-credentials>...</protection-parameter-credentials>

 </credential-store>

 </credential-stores>

 </authentication-client>

</configuration>

In addition to the name an individual <credential-store /> definition can contain the following optional

attributes: -

 - The type of the credential store, e.g.KeyStoreCredentialStore.type

 - The name of the to use to load the credential store.provider java.security.Provider

The following child elements can also be added to configure the credential store.

 - Definition of configuration attributes used to initialise the credential store.<attributes .>

e.g.

https://docs.oracle.com/javase/8/docs/api/java/net/Authenticator.html
https://docs.oracle.com/javase/8/docs/api/java/security/Provider.html
https://docs.oracle.com/javase/8/docs/api/java/security/Provider.html

Latest WildFly Documentation

JBoss Community Documentation Page of 2258 2293

<attributes>

 <attribute name="..." value="..." />

</attributes>

The <attribute/> element can be repeated as many times as is required for the configuration.

 - One or more credentials to be assembled into a protection<protection-parameter-credentials />

parameter when initialising the credential store.

The <protection-paramter-credentials /> element can contain one more more child elements, which of these

are actually supported will depend on the credential store implementation: -

<protection-parameter-credentials>

 <key-store-reference>...</key-store-reference>

 <credential-store-reference store="..." alias="..." clear-text="..." />

 <clear-password password="..." />

 <key-pair public-key-pem="..." private-key-pem="..." />

 <certificate private-key-pem="..." pem="..." />

 <public-key-pem>...</public-key-pem>

 <bearer-token value="..." />

 <oauth2-bearer-token token-endpoint-uri="...">...</oauth2-bearer-token>

</protection-parameter-credentials>

The potential child elements of <protection-parameter-credentials /> are: -

 - Defines a reference to an entry within a KeyStore for an entry to use.<key-store-reference>

The overall structure of this element is: -

<key-store-reference key-store-name="..." alias="...">

 <key-store-clear-password password="..." />

 <credential-store-reference store="..." alias="..." clear-text="..." />

 <key-store-credential>...</key-store-credential>

</key-store-reference>

This structure is identical to the structure use in .<key-store-credential />

 - Reference to a credential<credential-store-reference store="..." alias="..." clear-text="..." />

stored in a credential store.

 - A password specified in the clear.<clear-password password="..." />

 - A public and private key pair.<key-pair public-key-pem="..." private-key-pem="..." />

<certificate private-key-pem="..." pem="..." />* - A pem encoded private key and corresponding

certificate.

 - A pem encoded public key.<public-key-pem>...</public-key-pem>

Latest WildFly Documentation

JBoss Community Documentation Page of 2259 2293

1.

2.

3.

<bearer-token value="..." />* - A bearer token

 - An oath2 bearer token.<oauth2-bearer-token>...</oauth2-bearer-token>

The full structure of this element is: -

<oauth2-bearer-token token-endpoint-uri="...">

 <client-credentials client-id="..." client-secret="..." />

 <resource-owner-credentials name="..." password="..." />

</oauth2-bearer-token>

<key-stores />
The <key-stores /> element can be used to define individual key-store definitions that can subsequently be

referenced from alternative locations within the configuration.

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <authentication-client xmlns="urn:elytron:1.0">

 <key-stores>

 <key-store name="...">

 <!-- One of the following to specify where to load the KeyStore from. -->

 <file-name name="..." />

 <load-from uri-"..." />

 <resource name="..." />

 <!-- One of the following to specify the protection parameter to unlock the

KeyStore. -->

 <key-store-clear-password password="..." />

 <key-store-credential>...</key-store-credential>

 </key-store>

 </key-stores>

 ...

 </authentication-client>

</configuration>

An individual <key-store /> definition must contain exactly one of the following elements to define where to

load the store from.

 - Load from file where 'name' is the name of the file.<file name="..." />

 - Load the file from the URI specified.<load-from uri="..." />

 - Load as a resource from the Thread context classloader where 'name' is<resource name="..." />

the name of the resource to load.

Exactly one of the following elements must also be present to specify the protection parameter for

initialisation of the KeyStore.

Latest WildFly Documentation

JBoss Community Documentation Page of 2260 2293

1.

2.

1.

2.

1.

2.

3.

 - A password specified in the clear.<key-store-clear-password password="..." />

 - A reference to another KeyStore to obtain an<key-store-credential>...</key-store-credential>

Entry to use as the protection parameter to access this KeyStore.

The structure of the <key-store-credential /> element is.

<key-store-credential key-store-name="..." alias="...">

 <key-store-clear-password password="..." />

 <credential-store-reference store="..." alias="..." clear-text="..." />

 <key-store-credential>...</key-store-credential>

</key-store-credential>

This element contains two attributes: -

 - Name of the KeyStore being referenced to load the entry from.key-store-name (Mandatory)

 - The alias of the entry to load from the referenced KeyStore, this can only be omittedalias (Optional)

for KeyStores that contain only a single entry.

Java KeyStores also make use of a protection parameter when accessing a single entry in addition to the

protection parameter to load the KeyStore, exactly one of the following elements must be present to specify

the protection parameter of the entry being loaded.

 - A password specified in the clear.<key-store-clear-password password="..." />

 - Reference to a credential<credential-store-reference store="..." alias="..." clear-text="..." />

stored in a credential store.

 - A reference to another KeyStore to obtain an<key-store-credential>...</key-store-credential>

Entry to use as the protection parameter to access the alias.

The <key-store-credential /> is exactly the same, this means theoretically a chain of references could be

used to lead to the unlocking of the required alias.

<authentication-rules /> and <ssl-context-rules />
When either an authentication-configuration or an ssl-context is required the URI of the resources being

accessed as well as an optional abstract type and abstract type authority and matched against the rules

defined in the configuration to identify which authentication-configuration or ssl-context should be used.

The rules to match <authentication-configuration /> instances are defined within the <authentication-rules />

element.

Latest WildFly Documentation

JBoss Community Documentation Page of 2261 2293

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <authentication-client xmlns="urn:elytron:1.0">

 <authentication-rules>

 <rule use-configuration="...">

 ...

 </rule>

 </authentication-rules>

 ...

 </authentication-client>

</configuration>

The rules to match against the <ssl-context /> definitions are contains within the <ssl-context-rules />

element.

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <authentication-client xmlns="urn:elytron:1.0">

 <ssl-context-rules>

 <rule use-ssl-context="...">

 ...

 </rule>

 </ssl-context-rules>

 ...

 </authentication-client>

</configuration>

Overall this means that authentication configuration matching is independent of SSLContext matching. By

separating the rules from the configurations is means multiple rules can be defined that match against the

same configuration.

The rules applied so first match wins and not most specific match wins, to achieve a most specific match

wins configuration place the most specific rules at the beginning leaving the more general matches towards

the end.

For both the <authentication-rules /> and the <ssl-context-rules /> the structure of the rules is identical other

than one references an authentication configuration and the other references an SSLContext.

Latest WildFly Documentation

JBoss Community Documentation Page of 2262 2293

<rule use-configuration|use-ssl-context="...">

 <!-- At most one of the following two can be defined. -->

 <match-no-user />

 <match-user name="..." />

 <!-- Each of the following can be defined at most once. -->

 <match-protocol name="..." />

 <match-host name="..." />

 <match-path name="..." />

 <match-port number="..." />

 <match-urn name="..." />

 <match-domain name="..." />

 <match-abstract-type name="..." authority="..." />

</rule>

Where multiple matches are defined within a rule they must all match for the rule to apply. If a rule is defined

with no match elements then it becomes a match all rule and will match anything, these can be useful at the

end of the configuration to ensure something matches.

The individual match elements are: -

 - user-info can be embedded within a URI, this rule matches when there is no<match-no-user />

user-info.

*<match-user name="..." /> - Matches when the user-info embedded in the URI matches the name

specified within this element.

*<match-protocol name="..." /> - Matches the protocol within the URI against the name specified in

this match element.

*<match-host-name name="..." /> - Matches the host name from within the URI against the name

specified in this match element.

*<match-path name="..." /> - Matches the path from the URI against the name specified in this match

element.

*<match-port number="..." /> - Matches the port number specified within the URI against the number

in this match element. This only matches against the number specified within the URI and not against

any default derrived from the protocol.

*<match-urn name="..." />" - Matches the scheme specific part of the URI against the name specified

within this element.

<match-domain-name name="..."/>* - Matches where the protocol of the URI is 'domain' and the

scheme specific part of the URI is the name specified within this match element.

 - Matches the abstract type and/or authority<match-abstract-type name="..." authority="..." />

against the values specified within this match element.

<authentication-configurations />
The <authentication-configurations /> element contains named configurations that can then be matched from

the <authentication-rules />

Latest WildFly Documentation

JBoss Community Documentation Page of 2263 2293

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <authentication-client xmlns="urn:elytron:1.0">

 <authentication-configurations>

 <configuration name="...">

 <!-- Destination Overrides. -->

 <set-host name="..." />

 <set-port number="..." />

 <set-protocol name="..." />

 <!-- At most one of the following two elements. -->

 <set-user-name name="..." />

 <set-anonymous />

 <set-mechanism-realm name="..." />

 <rewrite-user-name-regex pattern="..." replacement="..." />

 <sasl-mechanism-selector selector="..." />

 <set-mechanism-properties>

 <property key="..." value="..." />

 </set-mechanism-properties>

 <credentials>...</credentials>

 <set-authorization-name name="..." />

 <providers>...</providers>

 <!-- At most one of the following two elements. -->

 <use-provider-sasl-factory />

 <use-service-loader-sasl-factory module-name="..." />

 </configuration>

 </authentication-configurations>

 </authentication-client>

</configuration>

The elements within the <configuration /> element provide the following features: -

The first three elements override the destination.

 - Override the host name for the authenticated call.<set-host-name name="..." />

 - Override the port number for the authenticated call.<set-port-number number="..." />

 - Override the protocol for the authenticated call.<set-protocol name="..."/>

The next two are mutually exclusive and can be used to set the name for authentication or switch to

anonymous authentication.

 - Set the user name to use for authentication.<set-user-name name="..."/>

 - Switch to anonymous authentication.<set-anonymous />

Latest WildFly Documentation

JBoss Community Documentation Page of 2264 2293

 - Specify the name of the realm that will be selected by<set-mechanism-realm-name name="..." />

the SASL mechanism if required.

 - A regular expression pattern and<rewrite-user-name-regex pattern="..." replacement="..." />

replacement to re-write the user name used for authentication.

 - A SASL mechanism selector using the syntax from <sasl-mechanism-selector selector="..." />

org.wildfly.security.sasl.SaslMechanismSelector,fromString()

 - One or more properties defined as<set-mechanism-properties>...</set-mechanism-properties>

<property key="..." value="..." /> to be passed to the authentication mechanisms.

 - One or more credentials available for use during authentication.<credentials>...</credentials>

The content of this element is the same as documented for <protection-parameter-credentials />

<credentials>

 <key-store-reference>...</key-store-reference>

 <credential-store-reference store="..." alias="..." clear-text="..." />

 <clear-password password="..." />

 <key-pair public-key-pem="..." private-key-pem="..." />

 <certificate private-key-pem="..." pem="..." />

 <public-key-pem>...</public-key-pem>

 <bearer-token value="..." />

 <oauth2-bearer-token token-endpoint-uri="...">...</oauth2-bearer-token>

</credentials>

 - Specify the name that should be used for authorization if<set-authorization-name name="..." />

different from the authentication identity.

 - This element is described in more detail within and overrides the default<providers/> <providers />

or inherited provider discovery with a definition specific to this authentication configuration definition.

The final two elements are mutually exclusive and define how the SASL mechanism factories will be

discovered for authentication.

 - The instances either inherited or defined in<use-provider-sasl-factory /> java.security.Provider

this configuration will be used to locate the available SASL client factories.

 - SASL client factories will be discovered<use-service-loader-sasl-factory module-name="..." />

using service loader discovery on the specified module or if not specified using the ClassLoader

loading the configuration.

https://github.com/wildfly-security/wildfly-elytron/blob/1.1.4.Final/src/main/java/org/wildfly/security/sasl/SaslMechanismSelector.java#L544
https://docs.oracle.com/javase/8/docs/api/java/security/Provider.html

Latest WildFly Documentation

JBoss Community Documentation Page of 2265 2293

<net-authenticator />
This element contains no specific configuration, however if present the

 will be registered with org.wildfly.security.auth.util.ElytronAuthenticator

 meaning that the WildFly Elytron authentication clientjava.net.Authenticator.setDefault(Authenticator)

configuration can be used for authentication where the JDK APIs are used for HTTP calls which require

authentication.

There are some limitations within this integration as the JDK will cache the authentication JVM wide from the

first call so is better used in stand alone processes that don't require different credentials for different calls to

the same URI,

<ssl-contexts />
The <ssl-contexts /> element holds individual names SSLContext definitions that can subsequently be

matched by the .<ssl-context-rules />

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <authentication-client xmlns="urn:elytron:1.0">

 <ssl-contexts>

 <default-ssl-context name="..."/>

 <ssl-context name="...">

 <key-store-ssl-certificate>...</key-store-ssl-certificate>

 <trust-store key-store-name="..." />

 <cipher-suite selector="..." />

 <protocol names="... ..." />

 <provider-name name="..." />

 <providers>...</providers>

 <certificate-revocation-list path="..." maximum-cert-path="..." />

 </ssl-context>

 </ssl-contexts>

 </authentication-client>

</configuration>

The element <default-ssl-context name="..." /> simply takes the SSLContext obtainable from

 and assigns it a name so it can referenced from the javax.net.ssl.SSLContext.getDefault() <ssl-context-rules

. This element can be repeated meaning the default SSLContext can be referenced using different names./>

The element <ssl-context /> is used to define a named configured SSLContext, each of the child elements is

optional and can be specified at most once to build up the configuration of the SSLContext.

 - Defines a reference to an entry within a KeyStore for the key and<key-store-ssl-certificate>

certificate to use in this SSLContext.

The overall structure of this element is: -

http://wildfly-security.github.io/wildfly-elytron/1.1.x/org/wildfly/security/auth/util/ElytronAuthenticator.html
https://docs.oracle.com/javase/8/docs/api/java/net/Authenticator.html#setDefault-java.net.Authenticator-
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLContext.html#getDefault--

Latest WildFly Documentation

JBoss Community Documentation Page of 2266 2293

<key-store-ssl-certificate key-store-name="..." alias="...">

 <key-store-clear-password password="..." />

 <credential-store-reference store="..." alias="..." clear-text="..." />

 <key-store-credential>...</key-store-credential>

</key-store-ssl-certificate>

This structure is identical to the structure use in , the only difference being it is now<key-store-credential />

to obtain the entry for the key and certificate, the nested elements however remain the protection parameter

to unlock the entry.

 - A reference to a KeyStore that will be used to initialise the<trust-store-key-store-name />

TrustManager.

 - Configuration to filter the enabled cipher suites, the format of the selector<cipher-suite-selector />

is .org.wildfly.security.ssl.CipherSuiteSelector.fromString(selector)

The following would be a cipher suite selector performing the default filtering.

<cipher-suite selector="DEFAULT" />

 - used to define a space separated list of the protocols to be supported.<protocol />

 - Once the available providers have been identified only the provider with the<provider-name />

name defined on this element will be used.

 - This element is described in more detail within and overrides the default<providers/> <providers />

or inherited provider discovery with a definition specific to this SSLContext definition.

 - The presence of this element enabled checking the peer's certificate<certificate-revocation-list />

against a certificate revocation list, this element defines both a path to the certificate revocation list

and also specifies the maximum number of non-self-issued intermediate certificates that may exist in

a certification path

<providers />
The element is used to define how instances are located when required.<providers /> java.security.Provider

The other configuration sections of are independent of each other, the <authentication-client /> <providers />

configuration however applies to the current element and it's children unless overridden, this configuration

can be specified in the following locations.

http://wildfly-security.github.io/wildfly-elytron/1.1.x/org/wildfly/security/ssl/CipherSuiteSelector.html#fromString-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/security/Provider.html

Latest WildFly Documentation

JBoss Community Documentation Page of 2267 2293

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <authentication-client xmlns="urn:elytron:1.0">

 <providers />

 ...

 <credential-stores>

 <credential-store name="..">

 ...

 <providers />

 </credential-store>

 <credential-stores>

 ...

 <authentication-configurations>

 <authentication-configuration name="...">

 ...

 <providers />

 </authentication-configuration>

 </authentication-configurations>

 ...

 <ssl-contexts>

 <ssl-context name="...">

 ...

 <providers />

 </ssl-context>

 </ssl-contexts>

 </authentication-client>

</configuration>

If an individual <credential-store />, <authentication-configuration />, or <ssl-context /> contains a <providers

/> definition that that definition will apply specifically to that instance. If a configured item does not contain a

<providers /> definition but a top level <providers /> is defined within <authentication-configuration /> then

that will be used instead.

The <providers /> element can be defined as: -

<providers>

 <global />

 <use-service-loader module-name="..." />

</providers>

Both the child elements are optional, can appear in any order and can be repeated although repeating

<global /> would not really be beneficial.

 - The providers from <global /> java.security.Security.getProviders()

 - Providers loaded using service loader discovery from the module specified, if<credential-stores />

no module is specified the ClassLoader which loaded the authentication client is used.

Where no <provider /> configuration exists the default behaviour is the equivalent of: -

https://docs.oracle.com/javase/8/docs/api/java/security/Security.html#getProviders--

Latest WildFly Documentation

JBoss Community Documentation Page of 2268 2293

<providers>

 <use-service-loader />

 <global />

</providers>

This gives the WildFly Elytron Provider priority over any globally registered Providers but also allows for the

globally registered providers to be used.

16.2.2 <jboss-ejb-client /> - EJB Client

The element in a wildfly-config.xml file can be used to specify EJB Client configuration.<jboss-ejb-client />

This element is from the “urn:jboss:wildfly-client-ejb:3.0” namespace, e.g.

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

...

 <jboss-ejb-client xmlns="urn:jboss:wildfly-client-ejb:3.0">

 ...

 </jboss-ejb-client>

...

</configuration>

This section describes the child elements and attributes that can be configured within this element.

The element can optionally contain the following three child elements, as described in<jboss-ejb-client />

the next sections:

<invocation-timeout />

<global-interceptors />

<connections />

<invocation-timeout />
This element is used to specify an EJB invocation timeout. It has one attribute which is required:

Attribute Description

seconds The timeout, in seconds, for the EJB handshake or method invocation request/response cycle.

The invocation of any method throws a if thejava.util.concurrent.TimeoutException

execution takes longer than the timeout period. The server side will not be interrupted.

<global-interceptors />
This element is used to specify global EJB client interceptors. It can contain any number of <interceptor />

elements.

Latest WildFly Documentation

JBoss Community Documentation Page of 2269 2293

<interceptor />
This element is used to specify an EJB client interceptor. It has two attributes:

Attribute Description

class The name of a class that implements the

 interface.org.jboss.ejb.client.EJBClientInterceptor

module The optional name of the module that should be used to load the interceptor class.

<connections />
This element is used to specify EJB client connections. It can contain any number of <connection />

elements.

<connection />
This element is used to specify an EJB client connection. It has one required attribute. It can also optionally

contain an element.<interceptors />

Attribute Description

uri The connection destination URI.

<interceptors />
This element is used to specify EJB client interceptors and can contain any number of <interceptor />

elements.

16.2.3 <endpoint /> - Remoting Client

You can use the element, which is in the namespace, to configureendpoint urn:jboss-remoting:5.0

a JBoss Remoting client endpoint using the file. This section describes how towildfly-config.xml

configure a JBoss Remoting client using this element.

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

...

 <endpoint xmlns="urn:jboss-remoting:5.0">

 ...

 </endpoint>

...

</configuration>

This section describes the child elements and attributes that can be configured within this element.

Latest WildFly Documentation

JBoss Community Documentation Page of 2270 2293

The element contains the following optional attribute:<endpoint />

Attribute

Name

Attribute Description

name The endpoint name. If not given, an endpoint name will be derived from the system's host

name, if possible.

The element can optionally contain the following two child elements, as described in the next<endpoint />

sections:

<providers />

<connections />

The configured endpoint will use the default XNIO configuration.

<providers />
This optional element specifies transport providers for the remote endpoint. It can contain any number of

 sub-elements.<provider />

<provider />
This element defines a remote transport provider provider. It has the following attributes.

Attribute

Name

Attribute Description

scheme The primary URI scheme which corresponds to this provider. This attribute is required.

aliases A space-separated list of other URI scheme names that are also recognized for this provider .

This attribute is optional.

module The name of the module that contains the provider implementation. This attribute is optional; if

not given, the class loader of JBoss Remoting itself will be searched for the provider class.

class The name of the class that implements the transport provider. This attribute is optional; if not

given, the Java facility will be used to search for the providerjava.util.ServiceLoader

class.

This element has no content.

Latest WildFly Documentation

JBoss Community Documentation Page of 2271 2293

<connections />
This optional element specifies connections for the remote endpoint. It can contain any number of

 elements.connection

<connection />
This element defines a connection for the remote endpoint. It has the following attributes.

Attribute Name Attribute Description

destination The destination URI for the connection. This attribute is required.

read-timeout The timeout, in seconds, for read operations on the corresponding socket. This

attribute is optional, however it should only be given if a heartbeat-interval

is defined.

write-timeout The timeout, in seconds, for a write operation. This attribute is optional, however

it should only be given if a is defined..heartbeat-interval

ip-traffic-class Defines the numeric IP traffic class to use for this connection's traffic. This

attribute is optional.

tcp-keepalive Boolean setting that determines whether to use TCP keepalive. This attribute is

optional.

heartbeat-interval The interval, in milliseconds, to use when checking for a connection heartbeat.

This attribute is optional.

Example Remoting Client Configuration in the wildfly-config.xml File

<configuration>

...

 <endpoint xmlns="urn:jboss-remoting:5.0">

 <connections>

 <connection destination="remote+http://10.20.30.40:8080" read-timeout="50"

write-timeout="50" heartbeat-interval="10000"/>

 </connections>

 </endpoint>

...

</configuration>

16.2.4 <worker /> - XNIO Client

You can use the element, which is in the namespace, to configure a default XNIOworker urn:xnio:3.5

worker using the file. This section describes how to do this.wildfly-config.xml

Latest WildFly Documentation

JBoss Community Documentation Page of 2272 2293

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

...

 <worker xmlns="urn:xnio:3.5">

 ...

 </worker>

...

</configuration>

This section describes the child elements that can be configured within this root element.worker

The element can optionally contain the following child elements, as described in the next<worker />

sections:

<daemon-threads />

<worker-name />

<pool-size />

<task-keepalive />

<io-threads />

<stack-size />

<outbound-bind-addresses />

<daemon-threads />
This optional element takes a single required attribute:

Attribute

Name

Attribute Description

value The value of the setting (required). A value of indicates that worker and task threadstrue

should be daemon threads, and indicates that they should not be daemon threads. Iffalse

this element is not given, a value of is assumed.true

This element has no content.

<worker-name />
This element defines the name of the worker. The worker name will appear in thread dumps and in JMX.

Attribute Name Attribute Description

value The worker's name (required).

This element has no content.

Latest WildFly Documentation

JBoss Community Documentation Page of 2273 2293

<pool-size />
This optional element defines the size parameters of the worker's task thread pool. The following attributes

are allowed:

Attribute

Name

Attribute Description

max-threads A positive integer which specifies the maximum number of threads that should be created

(required).

<task-keepalive />
This optional element establishes the keep-alive time of task threads before they may be expired.

Attribute

Name

Attribute Description

value A positive integer which represents the minimum number of seconds to keep idle threads

alive (required).

<io-threads />
This optional element determines how many I/O (selector) threads should be maintained. Generally this

number should be a small constant multiple of the number of available cores.

Attribute Name Attribute Description

value A positive integer value for the number of I/O threads (required).

<stack-size />
This optional element establishes the desired minimum thread stack size for worker threads.

Attribute Name Attribute Description

value A positive integer value which indicates the requested stack size, in bytes (required).

Latest WildFly Documentation

JBoss Community Documentation Page of 2274 2293

<outbound-bind-addresses />
This optional element specifies bind addresses to use for outbound connections. Each bind address

mapping consists of a destination IP address block, and a bind address and optional port number to use for

connections to destinations within that block.

<bind-address />
This element defines an individual bind address mapping.

Attribute Name Attribute Description

match The IP address block in CIDR notation to match (required).

bind-address The IP address to bind to if the address block matches (required).

bind-port A specific port number to bind to if the address block matches (optional, defaults to 0

meaning "any port").

16.3 <authentication-client /> - WildFly Elytron

The element can be added to the wildfly-config.xml configuration to define<authentication-client/>

configuration in relation to authentication configuration for outbound connections and SSL configuration for

outbound connections e.g.

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <authentication-client xmlns="urn:elytron:1.0">

 ...

 </authentication-client>

</configuration>

Note: A single wildfly-config.xml could be used by multiple projects using multiple versions of Wildfly Elytron,

newer versions of WildFly Elytron will introduce new configuration using later namespace versions however

they will still continue to support the previously released schemas until advertised otherwise. For the

configuration to be compatible with this either use a schema and namespace compatible with all the versions

in use, or multiple authentication-client elements can be added, these should be added ordered by

namespace youngest to oldest. If a configuration with a later namespace is discovered by a newer WildFly

Elytron client it will be used and parsing will not look for an older version as well.

The configuration can contain the following sections: -<authentication-client />

Latest WildFly Documentation

JBoss Community Documentation Page of 2275 2293

1.

2.

 - Definitions of credential stores to be referenced from elsewhere in the<credential-stores />

configuration.

 - Definitions of KeyStores to be referenced elsewhere in the configuration.<key-stores />

 - Rules to be applied for outbound connections to match against an<authentication-rules />

appropriate authentication configuration.

 - The individual authentication configurations that will be matched<authentication-configurations />

by the authentication rules.

 - Flag to enable integration with the .<net-authenticator /> java.net.Authenticator

 - Rules to be applied for outbound connections to match against an appropriate<ssl-context-rules />

SSL context configuration.

 - Individual SSL context definitions that will be matched by the ssl context rules.<ssl-contexts />

 - Definition of how instances will be discovered.<providers/> java.security.Provider

16.3.1 <credential-stores />

The <credential-stores /> element can be used to define individual named credential stores that can

subsequently be used elsewhere in the configuration to reference stored credentials as an alternative to the

credentials being embedded in the configuration.

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <authentication-client xmlns="urn:elytron:1.0">

 <credential-stores>

 <credential-store name="..." type="..." provider="..." >

 <attributes>

 <attribute name="..." value="..." />

 </attributes>

 <protection-parameter-credentials>...</protection-parameter-credentials>

 </credential-store>

 </credential-stores>

 </authentication-client>

</configuration>

In addition to the name an individual <credential-store /> definition can contain the following optional

attributes: -

 - The type of the credential store, e.g.KeyStoreCredentialStore.type

 - The name of the to use to load the credential store.provider java.security.Provider

The following child elements can also be added to configure the credential store.

 - Definition of configuration attributes used to initialise the credential store.<attributes .>

e.g.

https://docs.oracle.com/javase/8/docs/api/java/net/Authenticator.html
https://docs.oracle.com/javase/8/docs/api/java/security/Provider.html
https://docs.oracle.com/javase/8/docs/api/java/security/Provider.html

Latest WildFly Documentation

JBoss Community Documentation Page of 2276 2293

<attributes>

 <attribute name="..." value="..." />

</attributes>

The <attribute/> element can be repeated as many times as is required for the configuration.

 - One or more credentials to be assembled into a protection<protection-parameter-credentials />

parameter when initialising the credential store.

The <protection-paramter-credentials /> element can contain one more more child elements, which of these

are actually supported will depend on the credential store implementation: -

<protection-parameter-credentials>

 <key-store-reference>...</key-store-reference>

 <credential-store-reference store="..." alias="..." clear-text="..." />

 <clear-password password="..." />

 <key-pair public-key-pem="..." private-key-pem="..." />

 <certificate private-key-pem="..." pem="..." />

 <public-key-pem>...</public-key-pem>

 <bearer-token value="..." />

 <oauth2-bearer-token token-endpoint-uri="...">...</oauth2-bearer-token>

</protection-parameter-credentials>

The potential child elements of <protection-parameter-credentials /> are: -

 - Defines a reference to an entry within a KeyStore for an entry to use.<key-store-reference>

The overall structure of this element is: -

<key-store-reference key-store-name="..." alias="...">

 <key-store-clear-password password="..." />

 <credential-store-reference store="..." alias="..." clear-text="..." />

 <key-store-credential>...</key-store-credential>

</key-store-reference>

This structure is identical to the structure use in .<key-store-credential />

 - Reference to a credential<credential-store-reference store="..." alias="..." clear-text="..." />

stored in a credential store.

 - A password specified in the clear.<clear-password password="..." />

 - A public and private key pair.<key-pair public-key-pem="..." private-key-pem="..." />

<certificate private-key-pem="..." pem="..." />* - A pem encoded private key and corresponding

certificate.

 - A pem encoded public key.<public-key-pem>...</public-key-pem>

Latest WildFly Documentation

JBoss Community Documentation Page of 2277 2293

1.

2.

3.

<bearer-token value="..." />* - A bearer token

 - An oath2 bearer token.<oauth2-bearer-token>...</oauth2-bearer-token>

The full structure of this element is: -

<oauth2-bearer-token token-endpoint-uri="...">

 <client-credentials client-id="..." client-secret="..." />

 <resource-owner-credentials name="..." password="..." />

</oauth2-bearer-token>

16.3.2 <key-stores />

The <key-stores /> element can be used to define individual key-store definitions that can subsequently be

referenced from alternative locations within the configuration.

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <authentication-client xmlns="urn:elytron:1.0">

 <key-stores>

 <key-store name="...">

 <!-- One of the following to specify where to load the KeyStore from. -->

 <file-name name="..." />

 <load-from uri-"..." />

 <resource name="..." />

 <!-- One of the following to specify the protection parameter to unlock the

KeyStore. -->

 <key-store-clear-password password="..." />

 <key-store-credential>...</key-store-credential>

 </key-store>

 </key-stores>

 ...

 </authentication-client>

</configuration>

An individual <key-store /> definition must contain exactly one of the following elements to define where to

load the store from.

 - Load from file where 'name' is the name of the file.<file name="..." />

 - Load the file from the URI specified.<load-from uri="..." />

 - Load as a resource from the Thread context classloader where 'name' is<resource name="..." />

the name of the resource to load.

Exactly one of the following elements must also be present to specify the protection parameter for

initialisation of the KeyStore.

Latest WildFly Documentation

JBoss Community Documentation Page of 2278 2293

1.

2.

1.

2.

1.

2.

3.

 - A password specified in the clear.<key-store-clear-password password="..." />

 - A reference to another KeyStore to obtain an<key-store-credential>...</key-store-credential>

Entry to use as the protection parameter to access this KeyStore.

The structure of the <key-store-credential /> element is.

<key-store-credential key-store-name="..." alias="...">

 <key-store-clear-password password="..." />

 <credential-store-reference store="..." alias="..." clear-text="..." />

 <key-store-credential>...</key-store-credential>

</key-store-credential>

This element contains two attributes: -

 - Name of the KeyStore being referenced to load the entry from.key-store-name (Mandatory)

 - The alias of the entry to load from the referenced KeyStore, this can only be omittedalias (Optional)

for KeyStores that contain only a single entry.

Java KeyStores also make use of a protection parameter when accessing a single entry in addition to the

protection parameter to load the KeyStore, exactly one of the following elements must be present to specify

the protection parameter of the entry being loaded.

 - A password specified in the clear.<key-store-clear-password password="..." />

 - Reference to a credential<credential-store-reference store="..." alias="..." clear-text="..." />

stored in a credential store.

 - A reference to another KeyStore to obtain an<key-store-credential>...</key-store-credential>

Entry to use as the protection parameter to access the alias.

The <key-store-credential /> is exactly the same, this means theoretically a chain of references could be

used to lead to the unlocking of the required alias.

16.3.3 <authentication-rules /> and <ssl-context-rules />

When either an authentication-configuration or an ssl-context is required the URI of the resources being

accessed as well as an optional abstract type and abstract type authority and matched against the rules

defined in the configuration to identify which authentication-configuration or ssl-context should be used.

The rules to match <authentication-configuration /> instances are defined within the <authentication-rules />

element.

Latest WildFly Documentation

JBoss Community Documentation Page of 2279 2293

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <authentication-client xmlns="urn:elytron:1.0">

 <authentication-rules>

 <rule use-configuration="...">

 ...

 </rule>

 </authentication-rules>

 ...

 </authentication-client>

</configuration>

The rules to match against the <ssl-context /> definitions are contains within the <ssl-context-rules />

element.

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <authentication-client xmlns="urn:elytron:1.0">

 <ssl-context-rules>

 <rule use-ssl-context="...">

 ...

 </rule>

 </ssl-context-rules>

 ...

 </authentication-client>

</configuration>

Overall this means that authentication configuration matching is independent of SSLContext matching. By

separating the rules from the configurations is means multiple rules can be defined that match against the

same configuration.

The rules applied so first match wins and not most specific match wins, to achieve a most specific match

wins configuration place the most specific rules at the beginning leaving the more general matches towards

the end.

For both the <authentication-rules /> and the <ssl-context-rules /> the structure of the rules is identical other

than one references an authentication configuration and the other references an SSLContext.

Latest WildFly Documentation

JBoss Community Documentation Page of 2280 2293

<rule use-configuration|use-ssl-context="...">

 <!-- At most one of the following two can be defined. -->

 <match-no-user />

 <match-user name="..." />

 <!-- Each of the following can be defined at most once. -->

 <match-protocol name="..." />

 <match-host name="..." />

 <match-path name="..." />

 <match-port number="..." />

 <match-urn name="..." />

 <match-domain name="..." />

 <match-abstract-type name="..." authority="..." />

</rule>

Where multiple matches are defined within a rule they must all match for the rule to apply. If a rule is defined

with no match elements then it becomes a match all rule and will match anything, these can be useful at the

end of the configuration to ensure something matches.

The individual match elements are: -

 - user-info can be embedded within a URI, this rule matches when there is no<match-no-user />

user-info.

*<match-user name="..." /> - Matches when the user-info embedded in the URI matches the name

specified within this element.

*<match-protocol name="..." /> - Matches the protocol within the URI against the name specified in

this match element.

*<match-host-name name="..." /> - Matches the host name from within the URI against the name

specified in this match element.

*<match-path name="..." /> - Matches the path from the URI against the name specified in this match

element.

*<match-port number="..." /> - Matches the port number specified within the URI against the number

in this match element. This only matches against the number specified within the URI and not against

any default derrived from the protocol.

*<match-urn name="..." />" - Matches the scheme specific part of the URI against the name specified

within this element.

<match-domain-name name="..."/>* - Matches where the protocol of the URI is 'domain' and the

scheme specific part of the URI is the name specified within this match element.

 - Matches the abstract type and/or authority<match-abstract-type name="..." authority="..." />

against the values specified within this match element.

16.3.4 <authentication-configurations />

The <authentication-configurations /> element contains named configurations that can then be matched from

the <authentication-rules />

Latest WildFly Documentation

JBoss Community Documentation Page of 2281 2293

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <authentication-client xmlns="urn:elytron:1.0">

 <authentication-configurations>

 <configuration name="...">

 <!-- Destination Overrides. -->

 <set-host name="..." />

 <set-port number="..." />

 <set-protocol name="..." />

 <!-- At most one of the following two elements. -->

 <set-user-name name="..." />

 <set-anonymous />

 <set-mechanism-realm name="..." />

 <rewrite-user-name-regex pattern="..." replacement="..." />

 <sasl-mechanism-selector selector="..." />

 <set-mechanism-properties>

 <property key="..." value="..." />

 </set-mechanism-properties>

 <credentials>...</credentials>

 <set-authorization-name name="..." />

 <providers>...</providers>

 <!-- At most one of the following two elements. -->

 <use-provider-sasl-factory />

 <use-service-loader-sasl-factory module-name="..." />

 </configuration>

 </authentication-configurations>

 </authentication-client>

</configuration>

The elements within the <configuration /> element provide the following features: -

The first three elements override the destination.

 - Override the host name for the authenticated call.<set-host-name name="..." />

 - Override the port number for the authenticated call.<set-port-number number="..." />

 - Override the protocol for the authenticated call.<set-protocol name="..."/>

The next two are mutually exclusive and can be used to set the name for authentication or switch to

anonymous authentication.

 - Set the user name to use for authentication.<set-user-name name="..."/>

 - Switch to anonymous authentication.<set-anonymous />

Latest WildFly Documentation

JBoss Community Documentation Page of 2282 2293

 - Specify the name of the realm that will be selected by<set-mechanism-realm-name name="..." />

the SASL mechanism if required.

 - A regular expression pattern and<rewrite-user-name-regex pattern="..." replacement="..." />

replacement to re-write the user name used for authentication.

 - A SASL mechanism selector using the syntax from <sasl-mechanism-selector selector="..." />

org.wildfly.security.sasl.SaslMechanismSelector,fromString()

 - One or more properties defined as<set-mechanism-properties>...</set-mechanism-properties>

<property key="..." value="..." /> to be passed to the authentication mechanisms.

 - One or more credentials available for use during authentication.<credentials>...</credentials>

The content of this element is the same as documented for <protection-parameter-credentials />

<credentials>

 <key-store-reference>...</key-store-reference>

 <credential-store-reference store="..." alias="..." clear-text="..." />

 <clear-password password="..." />

 <key-pair public-key-pem="..." private-key-pem="..." />

 <certificate private-key-pem="..." pem="..." />

 <public-key-pem>...</public-key-pem>

 <bearer-token value="..." />

 <oauth2-bearer-token token-endpoint-uri="...">...</oauth2-bearer-token>

</credentials>

 - Specify the name that should be used for authorization if<set-authorization-name name="..." />

different from the authentication identity.

 - This element is described in more detail within and overrides the default<providers/> <providers />

or inherited provider discovery with a definition specific to this authentication configuration definition.

The final two elements are mutually exclusive and define how the SASL mechanism factories will be

discovered for authentication.

 - The instances either inherited or defined in<use-provider-sasl-factory /> java.security.Provider

this configuration will be used to locate the available SASL client factories.

 - SASL client factories will be discovered<use-service-loader-sasl-factory module-name="..." />

using service loader discovery on the specified module or if not specified using the ClassLoader

loading the configuration.

https://github.com/wildfly-security/wildfly-elytron/blob/1.1.4.Final/src/main/java/org/wildfly/security/sasl/SaslMechanismSelector.java#L544
https://docs.oracle.com/javase/8/docs/api/java/security/Provider.html

Latest WildFly Documentation

JBoss Community Documentation Page of 2283 2293

16.3.5 <net-authenticator />

This element contains no specific configuration, however if present the

 will be registered with org.wildfly.security.auth.util.ElytronAuthenticator

 meaning that the WildFly Elytron authentication clientjava.net.Authenticator.setDefault(Authenticator)

configuration can be used for authentication where the JDK APIs are used for HTTP calls which require

authentication.

There are some limitations within this integration as the JDK will cache the authentication JVM wide from the

first call so is better used in stand alone processes that don't require different credentials for different calls to

the same URI,

16.3.6 <ssl-contexts />

The <ssl-contexts /> element holds individual names SSLContext definitions that can subsequently be

matched by the .<ssl-context-rules />

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <authentication-client xmlns="urn:elytron:1.0">

 <ssl-contexts>

 <default-ssl-context name="..."/>

 <ssl-context name="...">

 <key-store-ssl-certificate>...</key-store-ssl-certificate>

 <trust-store key-store-name="..." />

 <cipher-suite selector="..." />

 <protocol names="... ..." />

 <provider-name name="..." />

 <providers>...</providers>

 <certificate-revocation-list path="..." maximum-cert-path="..." />

 </ssl-context>

 </ssl-contexts>

 </authentication-client>

</configuration>

The element <default-ssl-context name="..." /> simply takes the SSLContext obtainable from

 and assigns it a name so it can referenced from the javax.net.ssl.SSLContext.getDefault() <ssl-context-rules

. This element can be repeated meaning the default SSLContext can be referenced using different names./>

The element <ssl-context /> is used to define a named configured SSLContext, each of the child elements is

optional and can be specified at most once to build up the configuration of the SSLContext.

 - Defines a reference to an entry within a KeyStore for the key and<key-store-ssl-certificate>

certificate to use in this SSLContext.

The overall structure of this element is: -

http://wildfly-security.github.io/wildfly-elytron/1.1.x/org/wildfly/security/auth/util/ElytronAuthenticator.html
https://docs.oracle.com/javase/8/docs/api/java/net/Authenticator.html#setDefault-java.net.Authenticator-
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLContext.html#getDefault--

Latest WildFly Documentation

JBoss Community Documentation Page of 2284 2293

<key-store-ssl-certificate key-store-name="..." alias="...">

 <key-store-clear-password password="..." />

 <credential-store-reference store="..." alias="..." clear-text="..." />

 <key-store-credential>...</key-store-credential>

</key-store-ssl-certificate>

This structure is identical to the structure use in , the only difference being it is now<key-store-credential />

to obtain the entry for the key and certificate, the nested elements however remain the protection parameter

to unlock the entry.

 - A reference to a KeyStore that will be used to initialise the<trust-store-key-store-name />

TrustManager.

 - Configuration to filter the enabled cipher suites, the format of the selector<cipher-suite-selector />

is .org.wildfly.security.ssl.CipherSuiteSelector.fromString(selector)

The following would be a cipher suite selector performing the default filtering.

<cipher-suite selector="DEFAULT" />

 - used to define a space separated list of the protocols to be supported.<protocol />

 - Once the available providers have been identified only the provider with the<provider-name />

name defined on this element will be used.

 - This element is described in more detail within and overrides the default<providers/> <providers />

or inherited provider discovery with a definition specific to this SSLContext definition.

 - The presence of this element enabled checking the peer's certificate<certificate-revocation-list />

against a certificate revocation list, this element defines both a path to the certificate revocation list

and also specifies the maximum number of non-self-issued intermediate certificates that may exist in

a certification path

16.3.7 <providers />

The element is used to define how instances are located when required.<providers /> java.security.Provider

The other configuration sections of are independent of each other, the <authentication-client /> <providers />

configuration however applies to the current element and it's children unless overridden, this configuration

can be specified in the following locations.

http://wildfly-security.github.io/wildfly-elytron/1.1.x/org/wildfly/security/ssl/CipherSuiteSelector.html#fromString-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/security/Provider.html

Latest WildFly Documentation

JBoss Community Documentation Page of 2285 2293

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <authentication-client xmlns="urn:elytron:1.0">

 <providers />

 ...

 <credential-stores>

 <credential-store name="..">

 ...

 <providers />

 </credential-store>

 <credential-stores>

 ...

 <authentication-configurations>

 <authentication-configuration name="...">

 ...

 <providers />

 </authentication-configuration>

 </authentication-configurations>

 ...

 <ssl-contexts>

 <ssl-context name="...">

 ...

 <providers />

 </ssl-context>

 </ssl-contexts>

 </authentication-client>

</configuration>

If an individual <credential-store />, <authentication-configuration />, or <ssl-context /> contains a <providers

/> definition that that definition will apply specifically to that instance. If a configured item does not contain a

<providers /> definition but a top level <providers /> is defined within <authentication-configuration /> then

that will be used instead.

The <providers /> element can be defined as: -

<providers>

 <global />

 <use-service-loader module-name="..." />

</providers>

Both the child elements are optional, can appear in any order and can be repeated although repeating

<global /> would not really be beneficial.

 - The providers from <global /> java.security.Security.getProviders()

 - Providers loaded using service loader discovery from the module specified, if<credential-stores />

no module is specified the ClassLoader which loaded the authentication client is used.

Where no <provider /> configuration exists the default behaviour is the equivalent of: -

https://docs.oracle.com/javase/8/docs/api/java/security/Security.html#getProviders--

Latest WildFly Documentation

JBoss Community Documentation Page of 2286 2293

<providers>

 <use-service-loader />

 <global />

</providers>

This gives the WildFly Elytron Provider priority over any globally registered Providers but also allows for the

globally registered providers to be used.

16.4 <jboss-ejb-client /> - EJB Client

The element in a wildfly-config.xml file can be used to specify EJB Client configuration.<jboss-ejb-client />

This element is from the “urn:jboss:wildfly-client-ejb:3.0” namespace, e.g.

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

...

 <jboss-ejb-client xmlns="urn:jboss:wildfly-client-ejb:3.0">

 ...

 </jboss-ejb-client>

...

</configuration>

This section describes the child elements and attributes that can be configured within this element.

The element can optionally contain the following three child elements, as described in<jboss-ejb-client />

the next sections:

<invocation-timeout />

<global-interceptors />

<connections />

16.4.1 <invocation-timeout />

This element is used to specify an EJB invocation timeout. It has one attribute which is required:

Attribute Description

seconds The timeout, in seconds, for the EJB handshake or method invocation request/response cycle.

The invocation of any method throws a if thejava.util.concurrent.TimeoutException

execution takes longer than the timeout period. The server side will not be interrupted.

Latest WildFly Documentation

JBoss Community Documentation Page of 2287 2293

16.4.2 <global-interceptors />

This element is used to specify global EJB client interceptors. It can contain any number of <interceptor />

elements.

16.4.3 <interceptor />

This element is used to specify an EJB client interceptor. It has two attributes:

Attribute Description

class The name of a class that implements the

 interface.org.jboss.ejb.client.EJBClientInterceptor

module The optional name of the module that should be used to load the interceptor class.

16.4.4 <connections />

This element is used to specify EJB client connections. It can contain any number of <connection />

elements.

16.4.5 <connection />

This element is used to specify an EJB client connection. It has one required attribute. It can also optionally

contain an element.<interceptors />

Attribute Description

uri The connection destination URI.

16.4.6 <interceptors />

This element is used to specify EJB client interceptors and can contain any number of <interceptor />

elements.

16.5 <endpoint /> - Remoting Client

You can use the element, which is in the namespace, to configureendpoint urn:jboss-remoting:5.0

a JBoss Remoting client endpoint using the file. This section describes how towildfly-config.xml

configure a JBoss Remoting client using this element.

Latest WildFly Documentation

JBoss Community Documentation Page of 2288 2293

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

...

 <endpoint xmlns="urn:jboss-remoting:5.0">

 ...

 </endpoint>

...

</configuration>

This section describes the child elements and attributes that can be configured within this element.

The element contains the following optional attribute:<endpoint />

Attribute

Name

Attribute Description

name The endpoint name. If not given, an endpoint name will be derived from the system's host

name, if possible.

The element can optionally contain the following two child elements, as described in the next<endpoint />

sections:

<providers />

<connections />

The configured endpoint will use the default XNIO configuration.

Latest WildFly Documentation

JBoss Community Documentation Page of 2289 2293

16.5.1 <providers />

This optional element specifies transport providers for the remote endpoint. It can contain any number of

 sub-elements.<provider />

<provider />
This element defines a remote transport provider provider. It has the following attributes.

Attribute

Name

Attribute Description

scheme The primary URI scheme which corresponds to this provider. This attribute is required.

aliases A space-separated list of other URI scheme names that are also recognized for this provider .

This attribute is optional.

module The name of the module that contains the provider implementation. This attribute is optional; if

not given, the class loader of JBoss Remoting itself will be searched for the provider class.

class The name of the class that implements the transport provider. This attribute is optional; if not

given, the Java facility will be used to search for the providerjava.util.ServiceLoader

class.

This element has no content.

Latest WildFly Documentation

JBoss Community Documentation Page of 2290 2293

16.5.2 <connections />

This optional element specifies connections for the remote endpoint. It can contain any number of

 elements.connection

<connection />
This element defines a connection for the remote endpoint. It has the following attributes.

Attribute Name Attribute Description

destination The destination URI for the connection. This attribute is required.

read-timeout The timeout, in seconds, for read operations on the corresponding socket. This

attribute is optional, however it should only be given if a heartbeat-interval

is defined.

write-timeout The timeout, in seconds, for a write operation. This attribute is optional, however

it should only be given if a is defined..heartbeat-interval

ip-traffic-class Defines the numeric IP traffic class to use for this connection's traffic. This

attribute is optional.

tcp-keepalive Boolean setting that determines whether to use TCP keepalive. This attribute is

optional.

heartbeat-interval The interval, in milliseconds, to use when checking for a connection heartbeat.

This attribute is optional.

16.5.3 Example Remoting Client Configuration in the

wildfly-config.xml File

<configuration>

...

 <endpoint xmlns="urn:jboss-remoting:5.0">

 <connections>

 <connection destination="remote+http://10.20.30.40:8080" read-timeout="50"

write-timeout="50" heartbeat-interval="10000"/>

 </connections>

 </endpoint>

...

</configuration>

Latest WildFly Documentation

JBoss Community Documentation Page of 2291 2293

16.6 <worker /> - XNIO Client

You can use the element, which is in the namespace, to configure a default XNIOworker urn:xnio:3.5

worker using the file. This section describes how to do this.wildfly-config.xml

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

...

 <worker xmlns="urn:xnio:3.5">

 ...

 </worker>

...

</configuration>

This section describes the child elements that can be configured within this root element.worker

The element can optionally contain the following child elements, as described in the next<worker />

sections:

<daemon-threads />

<worker-name />

<pool-size />

<task-keepalive />

<io-threads />

<stack-size />

<outbound-bind-addresses />

16.6.1 <daemon-threads />

This optional element takes a single required attribute:

Attribute

Name

Attribute Description

value The value of the setting (required). A value of indicates that worker and task threadstrue

should be daemon threads, and indicates that they should not be daemon threads. Iffalse

this element is not given, a value of is assumed.true

This element has no content.

Latest WildFly Documentation

JBoss Community Documentation Page of 2292 2293

16.6.2 <worker-name />

This element defines the name of the worker. The worker name will appear in thread dumps and in JMX.

Attribute Name Attribute Description

value The worker's name (required).

This element has no content.

16.6.3 <pool-size />

This optional element defines the size parameters of the worker's task thread pool. The following attributes

are allowed:

Attribute

Name

Attribute Description

max-threads A positive integer which specifies the maximum number of threads that should be created

(required).

16.6.4 <task-keepalive />

This optional element establishes the keep-alive time of task threads before they may be expired.

Attribute

Name

Attribute Description

value A positive integer which represents the minimum number of seconds to keep idle threads

alive (required).

16.6.5 <io-threads />

This optional element determines how many I/O (selector) threads should be maintained. Generally this

number should be a small constant multiple of the number of available cores.

Attribute Name Attribute Description

value A positive integer value for the number of I/O threads (required).

Latest WildFly Documentation

JBoss Community Documentation Page of 2293 2293

16.6.6 <stack-size />

This optional element establishes the desired minimum thread stack size for worker threads.

Attribute Name Attribute Description

value A positive integer value which indicates the requested stack size, in bytes (required).

16.6.7 <outbound-bind-addresses />

This optional element specifies bind addresses to use for outbound connections. Each bind address

mapping consists of a destination IP address block, and a bind address and optional port number to use for

connections to destinations within that block.

<bind-address />
This element defines an individual bind address mapping.

Attribute Name Attribute Description

match The IP address block in CIDR notation to match (required).

bind-address The IP address to bind to if the address block matches (required).

bind-port A specific port number to bind to if the address block matches (optional, defaults to 0

meaning "any port").

	Administrator Guides
	Developer Guides
	Quickstarts
	More Resources
	Admin Guide
	Target audience
	Prerequisites
	Examples in this guide

	Management clients
	Web Management Interface
	HTTP Management Endpoint
	Accessing the web console
	Default HTTP Management Interface Security

	Command Line Interface
	Configuration Files
	Standalone Server Configuration File
	Managed Domain Configuration Files
	Host Specific Configuration – host.xml
	Domain Wide Configuration – domain.xml

	Core management concepts
	Operating modes
	Standalone Server
	Managed Domain
	Host
	Host Controller
	Domain Controller
	Server Group
	Server

	Deciding between running standalone servers or a managed domain

	General configuration concepts
	Extensions
	Profiles and Subsystems
	Paths
	Interfaces
	Socket Bindings and Socket Binding Groups
	System Properties

	Management resources
	Address
	Operations
	Attributes
	Children
	Descriptions
	Comparison to JMX MBeans
	Basic structure of the management resource trees
	Standalone server
	Managed domain

	Configuring interfaces and ports
	Interface declarations
	The -b command line argument

	Socket Binding Groups
	IPv4 versus IPv6
	Stack and address preference
	IP address literals

	Administrative security
	Security realms
	General Structure
	Using a Realm
	Inbound Connections
	Management Interfaces
	Remoting Subsystem

	Outbound Connections
	Remoting Subsystem
	Slave Host Controller

	Authentication
	Authorization
	Out Of The Box Configuration
	Management Realm
	Application Realm
	Authentication
	Authorization
	other security domain

	add-user.sh
	Adding a User
	A Management User
	Interactive Mode
	Non-Interactive Mode

	An Application User
	Interactive Mode
	Non-Interactive Mode

	Updating a User
	A Management User
	Interactive Mode
	Non-Interactive Mode

	An Application User
	Interactive Mode
	Non-Interactive Mode

	Community Contributions

	JMX Security
	Detailed Configuration
	<server-identities />
	<ssl />
	<secret />

	<authentication />
	<truststore />
	<local />
	<jaas />
	<ldap />
	<username-filter />
	<advanced-filter />

	<properties />
	<users />

	<authorization />
	<properties />

	<outbound-connection />
	<ldap />

	Plug Ins
	AuthenticationPlugIn
	PasswordCredential
	DigestCredential
	ValidatePasswordCredential

	AuthorizationPlugIn
	PlugInConfigurationSupport
	Installing and Configuring a Plug-In
	PlugInProvider
	Package as a Module
	The AuthenticationPlugIn
	The AuthorizationPlugIn
	Forcing Plain Text Authentication

	Example Configurations
	LDAP Authentication
	Enable SSL
	Add Client-Cert to SSL

	Authorizing management actions with Role Based Access Control
	Access Control Providers
	RBAC provider overview
	RBAC roles
	Access control constraints
	Addressing a resource

	Switching to the "rbac" provider
	Mapping users and groups to roles
	Mapping individual users
	User groups
	Mapping groups to roles
	Including all authenticated users in a role
	Excluding users and groups
	Users who map to multiple roles

	Adding custom roles in a managed domain
	Server group scoped roles
	Host scoped roles
	Using the admin console to create scoped roles

	Configuring constraints
	Configuring sensitivity
	Sensitive resources, attributes and operations
	Classifications with broad use

	Values with security vault expressions

	Configuring "Deployer" role access
	Application classifications shipped with WildFly

	RBAC effect on administrator user experience
	Admin console
	CLI
	Description of access control constraints in the management model metadata

	Learning about your own role mappings
	"Run-as" capability for SuperUsers
	CLI run-as
	Admin console run-as
	Using run-as roles with the "simple" access control provider

	Application deployment
	Managed Domain
	Deployment Commands
	Exploded managed deployments
	XML Configuration File

	Standalone Server
	Deployment Commands
	Deploying Using the Deployment Scanner
	Deployment Scanner Modes
	Marker Files

	Managed and Unmanaged Deployments
	Content Repository
	Unmanaged Deployments

	Deployment overlays
	Creating a deployment overlay

	Subsystem configuration
	EE Subsystem Configuration
	Overview
	Java EE Application Deployment
	Global Modules
	EAR Subdeployments Isolation
	Property Replacement
	Spec Descriptor Property Replacement
	JBoss Descriptor Property Replacement
	Annotation Property Replacement

	EE Concurrency Utilities
	Context Services
	Managed Thread Factories
	Managed Executor Services
	Managed Scheduled Executor Services

	Default EE Bindings

	Naming
	Overview
	Global Bindings Configuration
	Simple Bindings
	Object Factories
	External Context Federation

	Remote JNDI Configuration

	Data sources
	JDBC Driver Installation
	Datasource Definitions
	Using security domains
	Component Reference

	Logging
	Overview
	Attributes
	add-logging-api-dependencies
	use-deployment-logging-config

	Per-deployment Logging
	Logging Profiles
	Default Log File Locations
	Managed Domain
	Standalone Server

	Filter Expressions
	List Log Files and Reading Log Files
	List Log Files
	Read Log File

	FAQ
	Why is there a logging.properties file?

	Web (Undertow)
	Buffer cache configuration
	Server configuration
	Connector configuration
	Common settings
	HTTP Connector
	HTTPS listener
	AJP listener

	Host configuration

	Servlet container configuration
	JSP configuration
	Session Cookie Configuration
	Persistent Session Configuration

	Messaging
	Required Extension
	Connectors
	JMS Connection Factories
	JMS Queues and Topics
	Dead Letter & Redelivery
	Security Settings for Artemis addresses and JMS destinations
	Security Domain for Users
	Using the Elytron Subsystem
	Cluster Authentication
	Deployment of -jms.xml files
	JMS Bridge
	Modules for other messaging brokers
	Configuration
	Management commands

	Component Reference

	Security
	Structure of the Security Subsystem
	Authentication Manager
	Authorization Manager
	Audit Manager
	Mapping Manager

	Security Subsystem Configuration
	security-management
	subject-factory
	security-domains
	authentication
	authentication-jaspi
	authorization
	mapping
	audit
	jsse

	security-properties

	Web services
	Structure of the webservices subsystem
	Published endpoint address
	Predefined endpoint configurations
	Endpoint configs
	Handler chains
	Handlers

	Runtime information
	Component Reference

	Resource adapters
	Resource Adapter Definitions
	Using security domains
	Automatic activation of resource adapter archives
	Component Reference

	Batch
	Overview
	Default Subsystem Configuration
	Security
	Deployment Descriptors
	Deployment Resources

	JSF
	Overview
	Installing a new JSF implementation manually
	Add a module slot for the new JSF implementation JAR
	Add a module slot for the new JSF API JAR
	Add a module slot for the JSF injection JAR
	For MyFaces only - add a module for the commons-digester JAR
	Start the server

	Changing the default JSF implementation
	Configuring a JSF app to use a non-default JSF implementation

	JMX
	Audit logging
	JSON Formatter

	Deployment Scanner
	Core Management
	Overview
	Lifecycle listener
	Configuration changes

	Simple configuration subsystems

	Domain setup
	Domain Controller Configuration
	Host Controller Configuration
	Server groups
	Servers
	JVM

	Other management tasks
	Controlling operation via command line parameters
	System properties
	Controlling filesystem locations with system properties
	Standalone
	Managed Domain

	Other command line parameters
	Standalone
	Managed Domain
	Common parameters

	Controlling the Bind Address with -b
	Controlling the Default Multicast Address with -u

	Suspend, resume and graceful shutdown
	Core Concepts
	Starting Suspended
	The Request Controller Subsystem
	Subsystem Integrations
	Standalone Mode
	Domain Mode

	Starting & stopping Servers in a Managed Domain
	Controlling JVM settings
	Managed Domain
	Standalone Server

	Administrative audit logging
	JSON Formatter
	Handlers
	File handler
	Syslog handler
	UDP
	TCP
	TLS
	TLS with Client certificate authentication.

	Logger configuration
	Domain Mode (host specific configuration)

	Canceling management operations
	The cancel-non-progressing-operation operation
	The find-non-progressing-operation operation
	Examining the status of an active operation
	Canceling a specific operation
	Controlling operation blocking time

	Configuration file history
	Snapshots
	Subsequent Starts

	Management API reference
	Global operations
	The read-resource operation
	The read-attribute operation
	The write-attribute operation
	The undefine-attribute operation
	The list-add operation
	The list-remove operation
	The list-get operation
	The list-clear operation
	The map-put operation
	The map-remove operation
	The map-get operation
	The map-clear operation
	The read-resource-description operation
	The read-operation-names operation
	The read-operation-description operation
	The read-children-types operation
	The read-children-names operation
	The read-children-resources operation
	The read-attribute-group operation
	The read-attribute-group-names operation
	Standard Operations
	The add operation
	The remove operation

	Detyped management and the jboss-dmr library
	ModelNode and ModelType
	Basic ModelNode manipulation
	Lists
	Properties
	ModelType.OBJECT
	ModelType.EXPRESSION
	ModelType.TYPE
	Full list of ModelNode types
	Text representation of a ModelNode
	JSON representation of a ModelNode

	Description of the Management Model
	Description of the WildFly Managed Resources
	Description of an Attribute
	Description of an Operation
	Description of an Operation Parameter or Return Value

	Arbitrary Descriptors
	Description of Parent/Child Relationships
	Applying Updates to Runtime Services

	The native management API
	Native Management Client Dependencies
	Working with a ModelControllerClient
	Creating the ModelControllerClient
	Creating an operation request object
	Execute the operation and manipulate the result:
	Close the ModelControllerClient

	Format of a Detyped Operation Request
	Simple Operations
	Operation Headers
	Composite Operations
	Operations with a Rollout Plan
	Default Rollout Plan
	Creating and reusing a Rollout Plan

	Format of a Detyped Operation Response
	Simple Responses
	Response Headers
	Basic Composite Operation Responses
	Multi-Server Responses

	CLI Recipes
	Properties
	Adding, reading and removing system property using CLI
	Overview of all system properties

	Configuration
	List Subsystems
	List description of available attributes and childs
	View configuration as XML for domain model or host model
	Take a snapshot of what the current domain is
	Take the latest snapshot of the host.xml for a particular host
	How to get interface address

	Runtime
	Get all configuration and runtime details from CLI

	Scripting
	Windows and "Press any key to continue ..." issue

	Statistics
	Read statistics of active datasources

	Deployment
	Undeploying and redeploying multiple deployments
	Incremental deployment with the CLI
	Notes for server side operation Handler implementors

	Downloading files with the CLI

	All WildFly documentation
	CLI Recipes
	Properties
	Adding, reading and removing system property using CLI
	Overview of all system properties

	Configuration
	List Subsystems
	List description of available attributes and childs
	View configuration as XML for domain model or host model
	Take a snapshot of what the current domain is
	Take the latest snapshot of the host.xml for a particular host
	How to get interface address

	Runtime
	Get all configuration and runtime details from CLI

	Scripting
	Windows and "Press any key to continue ..." issue

	Statistics
	Read statistics of active datasources

	Deployment
	Undeploying and redeploying multiple deployments
	Incremental deployment with the CLI
	Notes for server side operation Handler implementors

	Downloading files with the CLI

	Core management concepts
	Operating modes
	Standalone Server
	Managed Domain
	Host
	Host Controller
	Domain Controller
	Server Group
	Server

	Deciding between running standalone servers or a managed domain

	General configuration concepts
	Extensions
	Profiles and Subsystems
	Paths
	Interfaces
	Socket Bindings and Socket Binding Groups
	System Properties

	Management resources
	Address
	Operations
	Attributes
	Children
	Descriptions
	Comparison to JMX MBeans
	Basic structure of the management resource trees
	Standalone server
	Managed domain

	General configuration concepts
	Extensions
	Profiles and Subsystems
	Paths
	Interfaces
	Socket Bindings and Socket Binding Groups
	System Properties

	Management resources
	Address
	Operations
	Attributes
	Children
	Descriptions
	Comparison to JMX MBeans
	Basic structure of the management resource trees
	Standalone server
	Managed domain

	Operating modes
	Standalone Server
	Managed Domain
	Host
	Host Controller
	Domain Controller
	Server Group
	Server

	Deciding between running standalone servers or a managed domain

	Domain Setup
	Domain Controller Configuration
	Host Controller Configuration
	Server groups
	Servers
	JVM

	Interfaces and ports
	Interface declarations
	The -b command line argument

	Socket Binding Groups
	IPv4 versus IPv6
	Stack and address preference
	IP address literals

	Management API reference
	Global operations
	The read-resource operation
	The read-attribute operation
	The write-attribute operation
	The undefine-attribute operation
	The list-add operation
	The list-remove operation
	The list-get operation
	The list-clear operation
	The map-put operation
	The map-remove operation
	The map-get operation
	The map-clear operation
	The read-resource-description operation
	The read-operation-names operation
	The read-operation-description operation
	The read-children-types operation
	The read-children-names operation
	The read-children-resources operation
	The read-attribute-group operation
	The read-attribute-group-names operation
	Standard Operations
	The add operation
	The remove operation

	Detyped management and the jboss-dmr library
	ModelNode and ModelType
	Basic ModelNode manipulation
	Lists
	Properties
	ModelType.OBJECT
	ModelType.EXPRESSION
	ModelType.TYPE
	Full list of ModelNode types
	Text representation of a ModelNode
	JSON representation of a ModelNode

	Description of the Management Model
	Description of the WildFly Managed Resources
	Description of an Attribute
	Description of an Operation
	Description of an Operation Parameter or Return Value

	Arbitrary Descriptors
	Description of Parent/Child Relationships
	Applying Updates to Runtime Services

	The native management API
	Native Management Client Dependencies
	Working with a ModelControllerClient
	Creating the ModelControllerClient
	Creating an operation request object
	Execute the operation and manipulate the result:
	Close the ModelControllerClient

	Format of a Detyped Operation Request
	Simple Operations
	Operation Headers
	Composite Operations
	Operations with a Rollout Plan
	Default Rollout Plan
	Creating and reusing a Rollout Plan

	Format of a Detyped Operation Response
	Simple Responses
	Response Headers
	Basic Composite Operation Responses
	Multi-Server Responses

	Description of the Management Model
	Description of the WildFly Managed Resources
	Description of an Attribute
	Description of an Operation
	Description of an Operation Parameter or Return Value

	Arbitrary Descriptors
	Description of Parent/Child Relationships
	Applying Updates to Runtime Services

	Detyped management and the jboss-dmr library
	ModelNode and ModelType
	Basic ModelNode manipulation
	Lists
	Properties
	ModelType.OBJECT
	ModelType.EXPRESSION
	ModelType.TYPE
	Full list of ModelNode types
	Text representation of a ModelNode
	JSON representation of a ModelNode

	Global operations
	The read-resource operation
	The read-attribute operation
	The write-attribute operation
	The undefine-attribute operation
	The list-add operation
	The list-remove operation
	The list-get operation
	The list-clear operation
	The map-put operation
	The map-remove operation
	The map-get operation
	The map-clear operation
	The read-resource-description operation
	The read-operation-names operation
	The read-operation-description operation
	The read-children-types operation
	The read-children-names operation
	The read-children-resources operation
	The read-attribute-group operation
	The read-attribute-group-names operation
	Standard Operations
	The add operation
	The remove operation

	The HTTP management API
	Introduction
	Interacting with the model
	GET for Reading
	Let's read some resource
	Using some JAX-RS code

	The native management API
	Native Management Client Dependencies
	Working with a ModelControllerClient
	Creating the ModelControllerClient
	Creating an operation request object
	Execute the operation and manipulate the result:
	Close the ModelControllerClient

	Format of a Detyped Operation Request
	Simple Operations
	Operation Headers
	Composite Operations
	Operations with a Rollout Plan
	Default Rollout Plan
	Creating and reusing a Rollout Plan

	Format of a Detyped Operation Response
	Simple Responses
	Response Headers
	Basic Composite Operation Responses
	Multi-Server Responses

	Management Clients
	Web Management Interface
	HTTP Management Endpoint
	Accessing the web console
	Default HTTP Management Interface Security

	Command Line Interface
	Configuration Files
	Standalone Server Configuration File
	Managed Domain Configuration Files
	Host Specific Configuration – host.xml
	Domain Wide Configuration – domain.xml

	Command Line Interface
	Running the CLI
	Non-interactive Mode
	Command timeout
	Command Timeout behavior
	Configuring the Command timeout
	Managing the Command Timeout
	Retrieving the command timeout
	Setting the command timeout
	Resetting the command timeout

	Default Native Management Interface Security
	Operation Requests
	Addressing resources
	Available Operation Types and Descriptions

	Command History
	Batch Processing

	Default HTTP Interface Security
	Default Native Interface Security

	Management tasks
	Controlling operation via command line parameters
	System properties
	Controlling filesystem locations with system properties
	Standalone
	Managed Domain

	Other command line parameters
	Standalone
	Managed Domain
	Common parameters

	Controlling the Bind Address with -b
	Controlling the Default Multicast Address with -u

	Suspend, resume and graceful shutdown
	Core Concepts
	Starting Suspended
	The Request Controller Subsystem
	Subsystem Integrations
	Standalone Mode
	Domain Mode

	Starting & stopping Servers in a Managed Domain
	Controlling JVM settings
	Managed Domain
	Standalone Server

	Administrative audit logging
	JSON Formatter
	Handlers
	File handler
	Syslog handler
	UDP
	TCP
	TLS
	TLS with Client certificate authentication.

	Logger configuration
	Domain Mode (host specific configuration)

	Canceling management operations
	The cancel-non-progressing-operation operation
	The find-non-progressing-operation operation
	Examining the status of an active operation
	Canceling a specific operation
	Controlling operation blocking time

	Configuration file history
	Snapshots
	Subsequent Starts

	Application deployment
	Managed Domain
	Deployment Commands
	Exploded managed deployments
	XML Configuration File

	Standalone Server
	Deployment Commands
	Deploying Using the Deployment Scanner
	Deployment Scanner Modes
	Marker Files

	Managed and Unmanaged Deployments
	Content Repository
	Unmanaged Deployments

	Deployment overlays
	Creating a deployment overlay

	Audit logging
	JSON Formatter
	Handlers
	File handler
	Syslog handler
	UDP
	TCP
	TLS
	TLS with Client certificate authentication.

	Logger configuration
	Domain Mode (host specific configuration)

	Canceling Management Operations
	The cancel-non-progressing-operation operation
	The find-non-progressing-operation operation
	Examining the status of an active operation
	Canceling a specific operation
	Controlling operation blocking time

	Command line parameters
	System properties
	Controlling filesystem locations with system properties
	Standalone
	Managed Domain

	Other command line parameters
	Standalone
	Managed Domain
	Common parameters

	Controlling the Bind Address with -b
	Controlling the Default Multicast Address with -u

	Configuration file history
	Snapshots
	Subsequent Starts

	Deployment Overlays
	Creating a deployment overlay

	JVM settings
	Managed Domain
	Standalone Server

	Starting & stopping Servers in a Managed Domain
	Suspend, Resume and Graceful shutdown
	Core Concepts
	Starting Suspended
	The Request Controller Subsystem
	Subsystem Integrations
	Standalone Mode
	Domain Mode

	Authorizing management actions with Role Based Access Control
	Access Control Providers
	RBAC provider overview
	RBAC roles
	Access control constraints
	Addressing a resource

	Switching to the "rbac" provider
	Mapping users and groups to roles
	Mapping individual users
	User groups
	Mapping groups to roles
	Including all authenticated users in a role
	Excluding users and groups
	Users who map to multiple roles

	Adding custom roles in a managed domain
	Server group scoped roles
	Host scoped roles
	Using the admin console to create scoped roles

	Configuring constraints
	Configuring sensitivity
	Sensitive resources, attributes and operations
	Classifications with broad use

	Values with security vault expressions

	Configuring "Deployer" role access
	Application classifications shipped with WildFly

	RBAC effect on administrator user experience
	Admin console
	CLI
	Description of access control constraints in the management model metadata

	Learning about your own role mappings
	"Run-as" capability for SuperUsers
	CLI run-as
	Admin console run-as
	Using run-as roles with the "simple" access control provider

	Security Realms
	General Structure
	Using a Realm
	Inbound Connections
	Management Interfaces
	Remoting Subsystem

	Outbound Connections
	Remoting Subsystem
	Slave Host Controller

	Authentication
	Authorization
	Out Of The Box Configuration
	Management Realm
	Application Realm
	Authentication
	Authorization
	other security domain

	add-user.sh
	Adding a User
	A Management User
	Interactive Mode
	Non-Interactive Mode

	An Application User
	Interactive Mode
	Non-Interactive Mode

	Updating a User
	A Management User
	Interactive Mode
	Non-Interactive Mode

	An Application User
	Interactive Mode
	Non-Interactive Mode

	Community Contributions

	JMX Security
	Detailed Configuration
	<server-identities />
	<ssl />
	<secret />

	<authentication />
	<truststore />
	<local />
	<jaas />
	<ldap />
	<username-filter />
	<advanced-filter />

	<properties />
	<users />

	<authorization />
	<properties />

	<outbound-connection />
	<ldap />

	Plug Ins
	AuthenticationPlugIn
	PasswordCredential
	DigestCredential
	ValidatePasswordCredential

	AuthorizationPlugIn
	PlugInConfigurationSupport
	Installing and Configuring a Plug-In
	PlugInProvider
	Package as a Module
	The AuthenticationPlugIn
	The AuthorizationPlugIn
	Forcing Plain Text Authentication

	Example Configurations
	LDAP Authentication
	Enable SSL
	Add Client-Cert to SSL

	add-user utility
	Adding a User
	A Management User
	Interactive Mode
	Non-Interactive Mode

	An Application User
	Interactive Mode
	Non-Interactive Mode

	Updating a User
	A Management User
	Interactive Mode
	Non-Interactive Mode

	An Application User
	Interactive Mode
	Non-Interactive Mode

	Community Contributions

	Detailed Configuration
	<server-identities />
	<ssl />
	<secret />

	<authentication />
	<truststore />
	<local />
	<jaas />
	<ldap />
	<username-filter />
	<advanced-filter />

	<properties />
	<users />

	<authorization />
	<properties />

	<outbound-connection />
	<ldap />

	Examples
	LDAP Authentication
	Enable SSL
	Add Client-Cert to SSL

	Plug Ins
	AuthenticationPlugIn
	PasswordCredential
	DigestCredential
	ValidatePasswordCredential

	AuthorizationPlugIn
	PlugInConfigurationSupport
	Installing and Configuring a Plug-In
	PlugInProvider
	Package as a Module
	The AuthenticationPlugIn
	The AuthorizationPlugIn
	Forcing Plain Text Authentication

	Subsystem configuration
	EE Subsystem Configuration
	Overview
	Java EE Application Deployment
	Global Modules
	EAR Subdeployments Isolation
	Property Replacement
	Spec Descriptor Property Replacement
	JBoss Descriptor Property Replacement
	Annotation Property Replacement

	EE Concurrency Utilities
	Context Services
	Managed Thread Factories
	Managed Executor Services
	Managed Scheduled Executor Services

	Default EE Bindings

	Naming
	Overview
	Global Bindings Configuration
	Simple Bindings
	Object Factories
	External Context Federation

	Remote JNDI Configuration

	Data sources
	JDBC Driver Installation
	Datasource Definitions
	Using security domains
	Component Reference

	Logging
	Overview
	Attributes
	add-logging-api-dependencies
	use-deployment-logging-config

	Per-deployment Logging
	Logging Profiles
	Default Log File Locations
	Managed Domain
	Standalone Server

	Filter Expressions
	List Log Files and Reading Log Files
	List Log Files
	Read Log File

	FAQ
	Why is there a logging.properties file?

	Web (Undertow)
	Buffer cache configuration
	Server configuration
	Connector configuration
	Common settings
	HTTP Connector
	HTTPS listener
	AJP listener

	Host configuration

	Servlet container configuration
	JSP configuration
	Session Cookie Configuration
	Persistent Session Configuration

	Messaging
	Required Extension
	Connectors
	JMS Connection Factories
	JMS Queues and Topics
	Dead Letter & Redelivery
	Security Settings for Artemis addresses and JMS destinations
	Security Domain for Users
	Using the Elytron Subsystem
	Cluster Authentication
	Deployment of -jms.xml files
	JMS Bridge
	Modules for other messaging brokers
	Configuration
	Management commands

	Component Reference

	Security
	Structure of the Security Subsystem
	Authentication Manager
	Authorization Manager
	Audit Manager
	Mapping Manager

	Security Subsystem Configuration
	security-management
	subject-factory
	security-domains
	authentication
	authentication-jaspi
	authorization
	mapping
	audit
	jsse

	security-properties

	Web services
	Structure of the webservices subsystem
	Published endpoint address
	Predefined endpoint configurations
	Endpoint configs
	Handler chains
	Handlers

	Runtime information
	Component Reference

	Resource adapters
	Resource Adapter Definitions
	Using security domains
	Automatic activation of resource adapter archives
	Component Reference

	Batch
	Overview
	Default Subsystem Configuration
	Security
	Deployment Descriptors
	Deployment Resources

	JSF
	Overview
	Installing a new JSF implementation manually
	Add a module slot for the new JSF implementation JAR
	Add a module slot for the new JSF API JAR
	Add a module slot for the JSF injection JAR
	For MyFaces only - add a module for the commons-digester JAR
	Start the server

	Changing the default JSF implementation
	Configuring a JSF app to use a non-default JSF implementation

	JMX
	Audit logging
	JSON Formatter

	Deployment Scanner
	Core Management
	Overview
	Lifecycle listener
	Configuration changes

	Simple configuration subsystems
	Batch (JSR-352) Subsystem Configuration
	Overview
	Default Subsystem Configuration
	Security
	Deployment Descriptors
	Deployment Resources

	Core Management Subsystem Configuration
	Overview
	Lifecycle listener
	Configuration changes

	DataSource configuration
	JDBC Driver Installation
	Datasource Definitions
	Using security domains
	Component Reference

	Deployment Scanner configuration
	EE Subsystem Configuration
	Overview
	Java EE Application Deployment
	Global Modules
	EAR Subdeployments Isolation
	Property Replacement
	Spec Descriptor Property Replacement
	JBoss Descriptor Property Replacement
	Annotation Property Replacement

	EE Concurrency Utilities
	Context Services
	Managed Thread Factories
	Managed Executor Services
	Managed Scheduled Executor Services

	Default EE Bindings
	Default EE Bindings
	EE Concurrency Utilities
	Context Services
	Managed Thread Factories
	Managed Executor Services
	Managed Scheduled Executor Services

	Java EE Application Deployment
	Global Modules
	EAR Subdeployments Isolation
	Property Replacement
	Spec Descriptor Property Replacement
	JBoss Descriptor Property Replacement
	Annotation Property Replacement

	JMX subsystem configuration
	Audit logging
	JSON Formatter

	JSF Configuration
	Overview
	Installing a new JSF implementation manually
	Add a module slot for the new JSF implementation JAR
	Add a module slot for the new JSF API JAR
	Add a module slot for the JSF injection JAR
	For MyFaces only - add a module for the commons-digester JAR
	Start the server

	Changing the default JSF implementation
	Configuring a JSF app to use a non-default JSF implementation

	Logging Configuration
	Overview
	Attributes
	add-logging-api-dependencies
	use-deployment-logging-config

	Per-deployment Logging
	Logging Profiles
	Default Log File Locations
	Managed Domain
	Standalone Server

	Filter Expressions
	List Log Files and Reading Log Files
	List Log Files
	Read Log File

	FAQ
	Why is there a logging.properties file?

	Handlers
	Overview
	async-handler
	Attributes

	console-handler
	Attributes

	file-handler
	Attributes

	periodic-rotating-file-handler
	Attributes

	size-rotating-file-handler
	Attributes

	syslog-handler
	Attributes

	custom-handler
	Attributes
	autoflush
	enabled
	encoding
	file
	named-formatter
	formatter
	filter-spec
	level
	max-backup-index
	overflow-action
	queue-length
	rotate-on-boot
	rotate-size
	subhandlers
	suffix
	target

	How To
	How do I add a log category?
	How do I change a log level?
	How do I log my applications messages to their own file?
	How do I use log4j.properties or log4j.xml instead of using the logging subsystem configuration?
	How do I use my own version of log4j?

	Loggers
	Overview
	Logger Resource
	filter-spec
	handlers
	level
	use-parent-handlers

	Root Logger Resource
	Logger Hierarchy

	Messaging configuration
	Required Extension
	Connectors
	JMS Connection Factories
	JMS Queues and Topics
	Dead Letter & Redelivery
	Security Settings for Artemis addresses and JMS destinations
	Security Domain for Users
	Using the Elytron Subsystem
	Cluster Authentication
	Deployment of -jms.xml files
	JMS Bridge
	Modules for other messaging brokers
	Configuration
	Management commands

	Component Reference
	Connect a pooled-connection-factory to a Remote Artemis Server
	Configuration of a MDB using a pooled-connection-factory
	Configuration of the destination

	Backward & Forward Compatibility
	Forward Compatibility
	Migration

	Backward Compatibility

	AIO - NIO for messaging journal
	AIO issue on WildFly 10
	AIO issue on WildFly 9

	JDBC Store for Messaging Journal
	Reference

	Naming Subsystem Configuration
	Overview
	Global Bindings Configuration
	Simple Bindings
	Object Factories
	External Context Federation

	Remote JNDI Configuration
	Global Bindings Configuration
	Simple Bindings
	Object Factories
	External Context Federation

	Remote JNDI Configuration

	Resource adapters
	Resource Adapter Definitions
	Using security domains
	Automatic activation of resource adapter archives
	Component Reference

	Security subsystem configuration
	Structure of the Security Subsystem
	Authentication Manager
	Authorization Manager
	Audit Manager
	Mapping Manager

	Security Subsystem Configuration
	security-management
	subject-factory
	security-domains
	authentication
	authentication-jaspi
	authorization
	mapping
	audit
	jsse

	security-properties

	Authentication Modules
	Client
	Database
	Certificate
	CertificateRoles
	DatabaseCertificate

	Simple configuration subsystems
	Undertow subsystem configuration
	Buffer cache configuration
	Server configuration
	Connector configuration
	Common settings
	HTTP Connector
	HTTPS listener
	AJP listener

	Host configuration

	Servlet container configuration
	JSP configuration
	Session Cookie Configuration
	Persistent Session Configuration

	AJP listeners
	Using Wildfly as a Load Balancer
	General Overview
	Load balancer server profiles
	Example: Start standalone load balancer
	Example: Start worker node

	Using Wildly as a static load balancer

	Web services configuration
	Structure of the webservices subsystem
	Published endpoint address
	Predefined endpoint configurations
	Endpoint configs
	Handler chains
	Handlers

	Runtime information
	Component Reference

	Target Audience
	Prerequisites
	Examples in this guide

	Developer Guide
	WildFly Developer Guide
	Target Audience
	Prerequisites

	Class loading in WildFly
	Deployment Module Names
	Automatic Dependencies
	Class Loading Precedence
	WAR Class Loading
	EAR Class Loading
	Class Path Entries

	Global Modules
	JBoss Deployment Structure File
	Accessing JDK classes
	The "jboss.api" property and application use of modules shipped with WildFly

	Implicit module dependencies for deployments
	What's an implicit module dependency?
	How and when is an implicit module dependency added?
	Which are the implicit module dependencies?

	How do I migrate my application from JBoss AS 5 or AS 6 to WildFly?
	EJB invocations from a remote standalone client using JNDI
	Deploying your EJBs on the server side:
	Writing a remote client application for accessing and invoking the EJBs deployed on the server
	Setting up EJB client context properties
	Summary

	EJB invocations from a remote server
	Application packaging
	Beans
	Security
	Configuring a user on the "Destination Server"
	Start the "Destination Server"
	Deploying the application
	Configuring the "Client Server" to point to the EJB remoting connector on the "Destination Server"
	Start the "Client Server"
	Create a security realm on the client server
	Create a outbound-socket-binding on the "Client Server"
	Create a "remote-outbound-connection" which uses this newly created "outbound-socket-binding"
	Packaging the client application on the "Client Server"
	Contents on jboss-ejb-client.xml
	Deploy the client application
	Client code invoking the bean

	Remote EJB invocations via JNDI - Which approach to use?
	JBoss EJB 3 reference guide
	Resource Adapter for Message Driven Beans
	Specification of Resource Adapter using Metadata Annotations

	Run-as Principal
	Specification of Run-as Principal using Metadata Annotations

	Security Domain
	Specification of Security Domain using Metadata Annotations

	Transaction Timeout
	Specification of Transaction Timeout with Metadata Annotations
	Specification of Transaction Timeout in the Deployment Descriptor
	Example of trans-timeout

	Timer service
	Single event timer
	Recurring timer
	Calendar timer
	Programmatic calendar timer
	Annotated calendar timer

	JPA reference guide
	Introduction
	Update your Persistence.xml for Hibernate 5.1
	Entity manager
	Container-managed entity manager
	Application-managed entity manager
	Persistence Context
	Transaction-scoped Persistence Context
	Extended Persistence Context
	Extended Persistence Context Inheritance

	Entities
	Deployment
	Troubleshooting
	Using the Infinispan second level cache
	Replacing the current Hibernate 5.x jars with a newer version
	Using Hibernate Search
	Packaging the Hibernate JPA persistence provider with your application
	Migrating from OpenJPA
	Migrating from EclipseLink
	Migrating from DataNucleus
	Native Hibernate use
	Injection of Hibernate Session and SessionFactoryInjection of Hibernate Session and SessionFactory
	Hibernate properties
	Persistence unit properties
	Determine the persistence provider module
	Binding EntityManagerFactory/EntityManager to JNDI
	Community
	People who have contributed to the WildFly JPA layer:

	OSGi developer guide
	JNDI reference guide
	Overview
	Local JNDI
	Binding entries to JNDI
	Using a deployment descriptor
	Programatically
	Java EE Applications
	
	WildFly Modules and Extensions

	

	Naming Subsystem Configuration

	Retrieving entries from JNDI
	Resource Injection
	Standard Java SE JNDI API

	Remote JNDI
	remote:
	ejb:

	Spring applications development and migration guide
	Dependencies and Modularity
	Persistence usage guide
	Native Spring/Hibernate applications
	JPA-based applications
	Using server-deployed persistence units
	Using Spring-managed persistence units
	Placement of the persistence unit definitions

	Managing dependencies

	All WildFly documentation
	Application Client Reference
	Getting Started
	Connecting to more than one host
	Example

	CDI Reference
	Using CDI Beans from outside the deployment
	Suppressing implicit bean archives
	Per-deployment configuration
	Global configuration

	Development mode
	Per-deployment configuration
	Global configuration

	Non-portable mode
	Per-deployment configuration
	Global configuration

	Class Loading in WildFly
	Deployment Module Names
	Automatic Dependencies
	Class Loading Precedence
	WAR Class Loading
	EAR Class Loading
	Class Path Entries

	Global Modules
	JBoss Deployment Structure File
	Accessing JDK classes
	The "jboss.api" property and application use of modules shipped with WildFly

	Deployment Descriptors used In WildFly
	Development Guidelines and Recommended Practices
	EE Concurrency Utilities
	Overview
	Context Service
	Managed Thread Factory
	Managed Executor Service
	Managed Scheduled Executor Service

	EJB 3 Reference Guide
	Resource Adapter for Message Driven Beans
	Specification of Resource Adapter using Metadata Annotations

	Run-as Principal
	Specification of Run-as Principal using Metadata Annotations

	Security Domain
	Specification of Security Domain using Metadata Annotations

	Transaction Timeout
	Specification of Transaction Timeout with Metadata Annotations
	Specification of Transaction Timeout in the Deployment Descriptor
	Example of trans-timeout

	Timer service
	Single event timer
	Recurring timer
	Calendar timer
	Programmatic calendar timer
	Annotated calendar timer

	Container interceptors
	Overview
	Typical EJB invocation call path on the server
	Feature request for WildFly
	Configuring container interceptors
	Container interceptor positioning in the interceptor chain
	Semantic difference between container interceptor(s) and Java EE interceptor(s) API
	Testcase

	EJB3 Clustered Database Timers
	Overview
	Setup
	Non clustered timers

	Using clustered timers in a deployment
	Technical details

	EJB3 subsystem configuration guide
	<session-bean>
	<stateless>
	<stateful>
	<singleton>

	<mdb>
	<resource-adaptor-ref>
	<bean-instance-pool-ref>

	<entity-bean>
	<bean-instance-pool-ref>

	
	<pools>
	<caches>
	<passivation-stores>
	<async>
	<timer-service>
	<data-store>

	<remote>
	<thread-pools>
	<iiop>
	<in-vm-remote-interface-invocation>

	EJB IIOP Guide
	Enabling IIOP
	Enabling JTS
	Dynamic Stub's
	Configuring EJB IIOP settings via jboss-ejb3.xml

	EJB over HTTP
	Server Configuration
	Performing Invocations
	Implementation details

	jboss-ejb3.xml Reference
	Example File
	The root namespace http://www.jboss.com/xml/ns/javaee
	Assembly descriptor namespaces
	The security namespace urn:security
	The resource adaptor namespace urn:resource-adapter-binding
	The IIOP namespace urn:iiop
	The pool namespace urn:ejb-pool:1.0
	The cache namespace urn:ejb-cache:1.0
	The clustering namespace urn:clustering:1.0

	Message Driven Beans Controlled Delivery
	Delivery Active
	Start-delivery and Stop-Delivery

	Delivery Groups
	Reading and Writing the Delivery State of a Delivery Group
	Using Delivery Groups

	Clustered Singleton Delivery
	Using Multiple MDB Delivery Control Mechanisms

	Securing EJBs
	Overview
	Security Domain
	Absence of security domain configuration but presence of other security metadata
	Access to methods without explicit security metadata, on a secured bean

	EJB invocations from a remote client using JNDI
	Deploying your EJBs on the server side:
	Writing a remote client application for accessing and invoking the EJBs deployed on the server
	Setting up EJB client context properties
	Summary

	EJB invocations from a remote server instance
	Application packaging
	Beans
	Security
	Configuring a user on the "Destination Server"
	Start the "Destination Server"
	Deploying the application
	Configuring the "Client Server" to point to the EJB remoting connector on the "Destination Server"
	Start the "Client Server"
	Create a security realm on the client server
	Create a outbound-socket-binding on the "Client Server"
	Create a "remote-outbound-connection" which uses this newly created "outbound-socket-binding"
	Packaging the client application on the "Client Server"
	Contents on jboss-ejb-client.xml
	Deploy the client application
	Client code invoking the bean

	Example Applications - Migrated to WildFly
	Example Applications Migrated from Previous Releases
	Seam 2 JPA example
	Seam 2 DVD Store example
	Seam 2 Booking example
	Seam 2 Booking - step-by-step migration of binaries
	jBPM-Console application
	Order application used for performance testing
	Migrate example application

	Example Applications Based on EE6
	Porting the Order Application from EAP 5.1 to WildFly 8
	Overview of the application
	Summary of changes
	Code Changes
	Modify JNDI lookup code

	Modify logging code
	Modify the code to use Infinispan for 2nd level cache
	EAR Packaging Changes
	Summary

	Seam 2 Booking Application - Migration of Binaries from EAP5.1 to WildFly
	Step 1: Build and deploy the EAP5.1 version of the Seam Booking application
	Step 2: Debug and resolve deployment errors and exceptions
	First Issue: java.lang.ClassNotFoundException: javax.faces.FacesException
	What it means:
	How to resolve it:

	Next Issue: java.lang.ClassNotFoundException: org.apache.commons.logging.Log
	What it means:
	How to resolve it:

	Next Issue: java.lang.ClassNotFoundException: org.dom4j.DocumentException
	What it means:
	How to resolve it:

	Next Issue: java.lang.ClassNotFoundException: org.hibernate.validator.InvalidValue
	What it means:
	How to resolve it:

	Next Issue: java.lang.InstantiationException: org.jboss.seam.jsf.SeamApplicationFactory
	What it means:
	How to resolve it:

	Next Issue: java.lang.ClassNotFoundException: org.apache.commons.collections.ArrayStack
	What it means:
	How to resolve it:

	Next Issue: Services with missing/unavailable dependencies
	What it means:
	How to resolve it:

	Next Issue: java.lang.ClassNotFoundException: org.hibernate.cache.HashtableCacheProvider
	What it means:
	How to resolve it:

	Next Issue: java.lang.ClassCastException: org.hibernate.cache.HashtableCacheProvider
	What it means:
	How to resolve it:

	No more issues: Deployment errors should be resolved

	Step 3: Debug and resolve runtime errors and exceptions
	First Issue: javax.naming.NameNotFoundException: Name 'jboss-seam-booking' not found in context ''
	What it means:
	How to resolve it:

	Step 4: Access the application
	Summary of Changes

	How do I migrate my application from AS7 to WildFly
	About this Document
	Overview of WildFly
	Server Migration
	JacORB Subsystem
	JacORB Subsystem Configuration

	JBoss Web Subsystem
	JBoss Web Subsystem Configuration
	WebSockets

	Messaging Subsystem
	Messaging Subsystem Configuration
	Management model
	XML Configuration
	Messaging Interceptors
	JMS Destinations

	Messaging Logging
	Messaging Data

	Application Migration
	EJBs
	CMP Entity EJBs
	EJB Client
	Default Remote Connection Port
	Default Connector

	JMS
	Proprietary JMS Resource Definitions
	External JMS Clients

	JPA (and Hibernate)
	Applications That Plan to Use Hibernate ORM 5.0
	Applications that currently use Hibernate ORM 4.0 - 4.3
	Applications that currently use Hibernate 3

	Web Applications
	JBoss Web Valves

	Web Services
	CXF Spring Webservices
	JAX-RPC
	JAX-RS 2.0
	REST Client API

	Application Clustering
	HA Singleton
	Stateful Session EJB Clustering
	Web Session Clustering

	Other Specifications and Frameworks
	Remote JNDI Clients
	JSR-88
	Module Dependencies

	How do I migrate my application to WildFly from other application servers
	Choose from the list below:
	How do I migrate my application from WebLogic to WildFly
	Introduction
	About this Guide
	

	How do I migrate my application from WebSphere to WildFly
	Introduction
	About this Guide

	Implicit module dependencies for deployments
	What's an implicit module dependency?
	How and when is an implicit module dependency added?
	Which are the implicit module dependencies?

	JAX-RS Reference Guide
	Subclassing javax.ws.rs.core.Application and using @ApplicationPath
	Subclassing javax.ws.rs.core.Application and using web.xml
	Using web.xml

	JNDI Reference
	Overview
	Local JNDI
	Binding entries to JNDI
	Using a deployment descriptor
	Programatically
	Java EE Applications
	
	WildFly Modules and Extensions

	

	Naming Subsystem Configuration

	Retrieving entries from JNDI
	Resource Injection
	Standard Java SE JNDI API

	Remote JNDI
	remote:
	ejb:

	Local JNDI
	Binding entries to JNDI
	Using a deployment descriptor
	Programatically
	Java EE Applications
	
	WildFly Modules and Extensions

	

	Naming Subsystem Configuration

	Retrieving entries from JNDI
	Resource Injection
	Standard Java SE JNDI API

	Remote JNDI Reference
	Remote JNDI
	remote:
	ejb:

	Remote JNDI Access
	http-remoting:
	ejb:

	JPA Reference Guide
	Introduction
	Update your Persistence.xml for Hibernate 5.1
	Entity manager
	Container-managed entity manager
	Application-managed entity manager
	Persistence Context
	Transaction-scoped Persistence Context
	Extended Persistence Context
	Extended Persistence Context Inheritance

	Entities
	Deployment
	Troubleshooting
	Using the Infinispan second level cache
	Replacing the current Hibernate 5.x jars with a newer version
	Using Hibernate Search
	Packaging the Hibernate JPA persistence provider with your application
	Migrating from OpenJPA
	Migrating from EclipseLink
	Migrating from DataNucleus
	Native Hibernate use
	Injection of Hibernate Session and SessionFactoryInjection of Hibernate Session and SessionFactory
	Hibernate properties
	Persistence unit properties
	Determine the persistence provider module
	Binding EntityManagerFactory/EntityManager to JNDI
	Community
	People who have contributed to the WildFly JPA layer:

	OSGi
	Remote EJB invocations via JNDI - EJB client API or remote-naming project
	Purpose
	History
	Overview
	Client code relying on jndi.properties in classpath
	How does remoting naming work
	JNDI operations allowed using remote-naming project
	Pre-requisites of remotely accessible JNDI objects
	JNDI lookup strings for remote clients backed by the remote-naming project
	How does remote-naming project implementation transfer the JNDI objects to the clients

	Summary
	Remote EJB invocations backed by the remote-naming project
	Why use the EJB client API approach then?
	Is the lookup optimization applicable for all bean types?
	Restrictions for EJB's

	Scoped EJB client contexts
	Overview
	Potential shortcomings of a single EJB client context
	Scoped EJB client contexts
	Lifecycle management of scoped EJB client contexts
	How to close EJB client contexts?
	How to close scoped EJB client contexts?
	Can that code be simplified a bit?

	Can't the scoped EJB client context be automatically closed by the EJB client API when the JNDI context is no longer in scope (i.e. on GC)?

	Spring applications development and migration guide
	Dependencies and Modularity
	Persistence usage guide
	Native Spring/Hibernate applications
	JPA-based applications
	Using server-deployed persistence units
	Using Spring-managed persistence units
	Placement of the persistence unit definitions

	Managing dependencies

	Sharing sessions between wars in an ear
	Webservices reference guide
	JAX-WS User Guide
	Web Service Endpoints
	Plain old Java Object (POJO)
	The endpoint as a web application
	Packaging the endpoint
	Accessing the generated WSDL

	EJB3 Stateless Session Bean (SLSB)
	Packaging the endpoint
	Accessing the generated WSDL

	Endpoint Provider

	Web Service Clients
	Service
	Service Usage
	Static case
	Dynamic case

	Handler Resolver
	Executor

	Dynamic Proxy
	WebServiceRef
	Dispatch
	Asynchronous Invocations
	Oneway Invocations
	Timeout Configuration

	Common API
	Handler Framework
	Logical Handler
	Protocol Handler
	Service endpoint handlers
	Service client handlers

	Message Context
	Logical Message Context
	SOAP Message Context

	Fault Handling

	JAX-WS Annotations
	javax.xml.ws.ServiceMode
	javax.xml.ws.WebFault
	javax.xml.ws.RequestWrapper
	javax.xml.ws.ResponseWrapper
	javax.xml.ws.WebServiceClient
	javax.xml.ws.WebEndpoint
	javax.xml.ws.WebServiceProvider
	javax.xml.ws.BindingType
	javax.xml.ws.WebServiceRef
	javax.xml.ws.WebServiceRefs
	javax.xml.ws.Action
	javax.xml.ws.FaultAction

	JSR-181 Annotations
	javax.jws.WebService
	javax.jws.WebMethod
	javax.jws.OneWay
	javax.jws.WebParam
	javax.jws.WebResult
	javax.jws.SOAPBinding
	javax.jws.HandlerChain

	JAX-WS Tools
	Server side
	Bottom-Up (Using wsprovide)
	Top-Down (Using wsconsume)

	Client Side
	wsconsume
	Command Line Tool
	Examples

	Maven Plugin
	Examples

	Ant Task
	Examples

	wsprovide
	Command Line Tool
	Examples

	Maven Plugin
	Examples

	Ant Task
	Examples

	Advanced User Guide
	Logging
	JAX-WS Handler approach
	Apache CXF approach
	System property
	Manual interceptor addition and logging feature

	WS-* support
	Address rewrite
	Server configuration options
	Dynamic rewrite

	Configuration through deployment descriptor
	context-root element
	config-name and config-file elements
	property element
	port-component element
	webservice-description element

	Schema validation of SOAP messages
	JAXB Introductions
	WSDL system properties expansion
	Predefined client and endpoint configurations
	Overview
	Assigning configurations
	Endpoint configuration assignment
	Endpoint Configuration Deployment Descriptor
	Application server configurations
	Standard configurations
	Handlers classloading
	Examples

	EndpointConfig annotation
	JAXWS Feature
	Explicit setup through API

	Automatic configuration from default descriptors
	Automatic configuration assignment from container setup

	Authentication
	Authentication
	Specify the security domain
	Use BindingProvider to set principal/credential
	Using HTTP Basic Auth for security

	JASPI Authentication

	Apache CXF integration
	JBossWS integration layer with Apache CXF
	Building WS applications the JBoss way
	Portable applications
	Direct Apache CXF API usage

	Bus usage
	Creating a Bus instance
	Using existing Bus instances
	Bus selection strategies for JAXWS clients
	Thread bus strategy (THREAD_BUS)
	New bus strategy (NEW_BUS)
	Thread context classloader bus strategy (TCCL_BUS)
	Strategy configuration

	Server Side Integration Customization
	Deployment descriptor properties
	WorkQueue configuration
	Policy alternative selector
	MBean management
	Schema validation
	Interceptors
	Features
	WS-Discovery enablement

	Apache CXF interceptors
	Apache CXF features
	Properties driven bean creation
	HTTPConduit configuration

	WS-Addressing
	Enabling WS-Addressing
	WS-Addressing Policy
	Example
	Endpoint
	Client

	WS-Security
	WS-Security overview
	JBoss WS-Security support
	Apache CXF WS-Security implementation
	WS-Security Policy support

	JBossWS configuration additions
	Apache CXF annotations

	Examples
	Signature and encryption
	Endpoint
	Client
	Endpoint serving multiple clients

	Authentication and authorization
	Endpoint
	Client

	Secure transport
	Secure conversation

	WS-Trust and STS
	WS-Trust overview
	Security Token Service
	Apache CXF support
	A Basic WS-Trust Scenario
	Web service provider
	Web service provider WSDL
	Web service provider Interface
	Web service provider Implementation
	ServerCallbackHandler
	Crypto properties and keystore files
	MANIFEST.MF

	Security Token Service (STS)
	STS WSDL
	STS Implementation
	STSCallbackHandler
	Crypto properties and keystore files
	MANIFEST.MF
	Security Domain

	Web service requester
	Web service requester Implementation
	ClientCallbackHandler
	Requester Crypto properties and keystore files

	PicketLink STS

	ActAs WS-Trust Scenario
	ActAs WS-Trust Scenario
	Web service provider
	Web service provider WSDL
	Web Service Interface
	Web Service Implementation
	ActAsCallbackHandler
	UsernameTokenCallbackHandler
	Crypto properties and keystore files
	MANIFEST.MF

	Security Token Service
	STS Implementation class
	STSCallbackHandler

	Web service requester
	Web service requester Implementation

	OnBehalfOf WS-Trust Scenario
	OnBehalfOf WS-Trust Scenario
	Web service provider
	Web service provider WSDL
	Web Service Interface
	Web Service Implementation
	OnBehalfOfCallbackHandler

	Web service requester
	Web service requester Implementation

	SAML Bearer Assertion Scenario
	SAML Bearer Assertion Scenario
	Web service Provider
	Web service provider WSDL
	SSL configuration
	Web service Interface
	Web service Implementation
	Crypto properties and keystore files
	MANIFEST.MF

	Bearer Security Token Service
	Security Domain
	STS's WSDL
	STS's implementation class
	STSBearerCallbackHandler
	Crypto properties and keystore files
	MANIFEST.MF

	Web service requester
	Web service requester Implementation
	ClientCallbackHandler
	Crypto properties and keystore files

	SAML Holder-Of-Key Assertion Scenario
	SAML Holder-Of-Key Assertion Scenario
	Web service Provider
	Web service provider WSDL
	SSL configuration
	Web service Interface
	Web service Implementation
	Crypto properties and keystore files
	MANIFEST.MF

	Security Token Service
	Security Domain
	STS's WSDL
	STS's implementation class
	HolderOfKeyCallbackHandler
	Crypto properties and keystore files
	MANIFEST.MF

	Web service requester
	Web service requester Implementation
	ClientCallbackHandler
	Crypto properties and keystore files

	WS-Reliable Messaging
	Enabling WS-Reliable Messaging
	Example
	Endpoint
	Client
	Additional configuration

	SOAP over JMS
	Configuring SOAP over JMS
	Examples
	JMS endpoint only deployment
	JMS and HTTP endpoints deployment
	Use of Endpoint.publish() API

	HTTP Proxy
	Configuration

	WS-Discovery
	Enabling WS-Discovery
	Probing services

	WS-Policy
	Apache CXF WS-Policy support
	Contract-first approach
	Code-first approach

	JBossWS additions
	Policy sets

	Published WSDL customization
	Endpoint address rewrite
	System property references

	JBoss Modules and WS applications
	Setting module dependencies
	Using MANIFEST.MF
	Using JAXB
	Using Apache CXF
	Client side WS aggregation module
	Annotation scanning

	Using jboss-deployment-descriptor.xml

	High Availability Guide
	Introduction to High Availability Services
	What are High Availability services?
	High Availability through fail-over
	High Availability through load balancing
	Aims of the guide
	Organization of the guide

	HTTP Services
	Subsystem Support
	JGroups Subsystem
	Purpose
	Configuration example
	<subsystem>
	<stack>
	<transport>
	<property>

	<protocol>
	<property>

	<relay>
	<remote-site>

	Use Cases
	Add a stack
	Add a protocol to a stack
	Add a property to a protocol
	Infinispan Subsystem

	Purpose
	Configuration Example
	<cache-container>
	<transport>
	<abstract cache>
	<indexing-properties>
	<locking>
	<transaction>
	<eviction>
	<expiration>
	<abstract base-store>
	<write-behind>
	<abstract base-jdbc-store> extends <abstract base-store>
	<file-store> extends <abstract base-store>
	<remote-store> extends <abstract base-store>
	<remote-servers>
	<remote-server>

	
	<local-cache> extends <abstract cache>
	<abstract clustered-cache> extends <abstract cache>
	
	<invalidation-cache> extends <abstract clustered-cache>
	<abstract shared-cache> extends <abstract clustered-cache>
	<state-transfer>
	<backups>
	<backup>
	<backup-for>

	<replicated-cache> extends <abstract shared-cache>
	<distributed-cache> extends <abstract shared-cache>

	Use Cases
	Add a cache container
	Add a cache
	Configure the transaction component of a cache

	Clustered Web Sessions
	Clustered SSO
	Load Balancing
	Load balancing with Apache + mod_jk
	Load balancing with Apache + mod_cluster
	mod_cluster Subsystem

	Configuration
	Instance ID or JVMRoute
	Proxies

	Runtime Operations
	operations displaying httpd informations
	read-proxies-configuration
	read-proxies-info

	
	operations that handle the proxies the node is connected too
	list-proxies:
	remove-proxy
	add-proxy

	Context related operations
	enable-context
	disable-context
	stop-context

	Node related operations
	refresh
	reset

	Configuration
	Metric configuration
	add-metric
	remove-metric
	add-custom-metric / remove-custom-metric

	EJB Services
	EJB Subsystem

	EJB Timer
	Marking an EJB as clustered
	Deploying clustered EJBs
	Failover for clustered EJBs
	Remote standalone clients
	Cluster topology communication
	Remote clients on another instance of WildFly 8
	Testcases for failover of stateful beans

	Hibernate
	HA Singleton Features
	Singleton subsystem
	Configuration
	Cache configuration
	Election policies
	Preferences

	Quorum

	Non-HA environments

	Singleton deployments
	Usage

	Singleton MSC services
	Installing an MSC service using an existing singleton policy
	Installing an MSC service using dynamic singleton policy

	Related Issues
	Changes From Previous Versions
	Key changes
	Migration to Wildfly

	WildFly 8 Cluster Howto
	References
	All WildFly 8 documentation
	Introduction To High Availability Services
	What are High Availability services?
	High Availability through fail-over
	High Availability through load balancing
	Aims of the guide
	Organization of the guide

	Subsystem Support
	JGroups Subsystem
	Purpose
	Configuration example
	<subsystem>
	<stack>
	<transport>
	<property>

	<protocol>
	<property>

	<relay>
	<remote-site>

	Use Cases
	Add a stack
	Add a protocol to a stack
	Add a property to a protocol
	Infinispan Subsystem

	Purpose
	Configuration Example
	<cache-container>
	<transport>
	<abstract cache>
	<indexing-properties>
	<locking>
	<transaction>
	<eviction>
	<expiration>
	<abstract base-store>
	<write-behind>
	<abstract base-jdbc-store> extends <abstract base-store>
	<file-store> extends <abstract base-store>
	<remote-store> extends <abstract base-store>
	<remote-servers>
	<remote-server>

	
	<local-cache> extends <abstract cache>
	<abstract clustered-cache> extends <abstract cache>
	
	<invalidation-cache> extends <abstract clustered-cache>
	<abstract shared-cache> extends <abstract clustered-cache>
	<state-transfer>
	<backups>
	<backup>
	<backup-for>

	<replicated-cache> extends <abstract shared-cache>
	<distributed-cache> extends <abstract shared-cache>

	Use Cases
	Add a cache container
	Add a cache
	Configure the transaction component of a cache

	JGroups Subsystem
	Purpose
	Configuration example
	<subsystem>
	<stack>
	<transport>
	<property>

	<protocol>
	<property>

	<relay>
	<remote-site>

	Use Cases
	Add a stack
	Add a protocol to a stack
	Add a property to a protocol

	Infinispan Subsystem
	Purpose
	Configuration Example
	<cache-container>
	<transport>
	<abstract cache>
	<indexing-properties>
	<locking>
	<transaction>
	<eviction>
	<expiration>
	<abstract base-store>
	<write-behind>
	<abstract base-jdbc-store> extends <abstract base-store>
	<file-store> extends <abstract base-store>
	<remote-store> extends <abstract base-store>
	<remote-servers>
	<remote-server>

	
	<local-cache> extends <abstract cache>
	<abstract clustered-cache> extends <abstract cache>
	
	<invalidation-cache> extends <abstract clustered-cache>
	<abstract shared-cache> extends <abstract clustered-cache>
	<state-transfer>
	<backups>
	<backup>
	<backup-for>

	<replicated-cache> extends <abstract shared-cache>
	<distributed-cache> extends <abstract shared-cache>

	Use Cases
	Add a cache container
	Add a cache
	Configure the transaction component of a cache

	mod_cluster Subsystem
	Configuration
	Instance ID or JVMRoute
	Proxies

	Runtime Operations
	operations displaying httpd informations
	read-proxies-configuration
	read-proxies-info

	
	operations that handle the proxies the node is connected too
	list-proxies:
	remove-proxy
	add-proxy

	Context related operations
	enable-context
	disable-context
	stop-context

	Node related operations
	refresh
	reset

	Configuration
	Metric configuration
	add-metric
	remove-metric
	add-custom-metric / remove-custom-metric

	SSL Configuration using Elytron Subsystem
	Overview
	Defining a Trust Store with the Trusted Certificates
	Defining a Trust Manager To Validate Certificates
	Defining a Client SSL Context and Configuring mod_cluster Subsystem
	Using a Certificate Revocation List

	HTTP Services
	Subsystem Support
	JGroups Subsystem
	Purpose
	Configuration example
	<subsystem>
	<stack>
	<transport>
	<property>

	<protocol>
	<property>

	<relay>
	<remote-site>

	Use Cases
	Add a stack
	Add a protocol to a stack
	Add a property to a protocol
	Infinispan Subsystem

	Purpose
	Configuration Example
	<cache-container>
	<transport>
	<abstract cache>
	<indexing-properties>
	<locking>
	<transaction>
	<eviction>
	<expiration>
	<abstract base-store>
	<write-behind>
	<abstract base-jdbc-store> extends <abstract base-store>
	<file-store> extends <abstract base-store>
	<remote-store> extends <abstract base-store>
	<remote-servers>
	<remote-server>

	
	<local-cache> extends <abstract cache>
	<abstract clustered-cache> extends <abstract cache>
	
	<invalidation-cache> extends <abstract clustered-cache>
	<abstract shared-cache> extends <abstract clustered-cache>
	<state-transfer>
	<backups>
	<backup>
	<backup-for>

	<replicated-cache> extends <abstract shared-cache>
	<distributed-cache> extends <abstract shared-cache>

	Use Cases
	Add a cache container
	Add a cache
	Configure the transaction component of a cache

	Clustered Web Sessions
	Clustered SSO
	Load Balancing
	Load balancing with Apache + mod_jk
	Load balancing with Apache + mod_cluster
	mod_cluster Subsystem

	Configuration
	Instance ID or JVMRoute
	Proxies

	Runtime Operations
	operations displaying httpd informations
	read-proxies-configuration
	read-proxies-info

	
	operations that handle the proxies the node is connected too
	list-proxies:
	remove-proxy
	add-proxy

	Context related operations
	enable-context
	disable-context
	stop-context

	Node related operations
	refresh
	reset

	Configuration
	Metric configuration
	add-metric
	remove-metric
	add-custom-metric / remove-custom-metric

	Clustered Web Sessions
	Clustered SSO
	Load Balancing
	Load balancing with Apache + mod_jk
	Load balancing with Apache + mod_cluster
	mod_cluster Subsystem

	Configuration
	Instance ID or JVMRoute
	Proxies

	Runtime Operations
	operations displaying httpd informations
	read-proxies-configuration
	read-proxies-info

	
	operations that handle the proxies the node is connected too
	list-proxies:
	remove-proxy
	add-proxy

	Context related operations
	enable-context
	disable-context
	stop-context

	Node related operations
	refresh
	reset

	Configuration
	Metric configuration
	add-metric
	remove-metric
	add-custom-metric / remove-custom-metric

	Apache httpd

	EJB Services
	EJB Subsystem
	EJB Timer
	Marking an EJB as clustered
	Deploying clustered EJBs
	Failover for clustered EJBs
	Remote standalone clients
	Cluster topology communication
	Remote clients on another instance of WildFly 8
	Testcases for failover of stateful beans

	EJB Timer

	HA Singleton Features
	Singleton subsystem
	Configuration
	Cache configuration
	Election policies
	Preferences

	Quorum

	Non-HA environments

	Singleton deployments
	Usage

	Singleton MSC services
	Installing an MSC service using an existing singleton policy
	Installing an MSC service using dynamic singleton policy

	Singleton subsystem
	Configuration
	Cache configuration
	Election policies
	Preferences

	Quorum

	Non-HA environments

	Singleton deployments
	Usage

	Singleton MSC services
	Installing an MSC service using an existing singleton policy
	Installing an MSC service using dynamic singleton policy

	Hibernate
	Clustering and Domain Setup Walkthrough
	Preparation & Scenario
	Preparation
	Scenario

	Download WildFly 9
	Domain Configuration
	Interface config on master
	Interface config on slave
	Security Configuration
	Master
	Slave
	Dry Run

	Deployment
	Cluster Configuration
	Testing
	Special Thanks

	Changes From Previous Versions
	Key changes
	Migration to Wildfly

	Related Topics
	Modularity And Class Loading
	Monitoring

	Getting Started Developing Applications Guide
	Introduction
	Getting started with WildFly
	Helloworld quickstart
	Deploying the Helloworld example using Eclipse
	The helloworld example in depth

	Numberguess quickstart
	Deploying the Numberguess example using Eclipse
	The numberguess example in depth

	Greeter quickstart
	Deploying the Login example using Eclipse
	The login example in depth

	Kitchensink quickstart
	Deploying the Kitchensink example using Eclipse
	The kitchensink example in depth

	Creating your own application
	Creating your own application using Eclipse

	More Resources
	Developing JSF Project Using JBoss AS7, Maven and IntelliJ
	Create a project using Maven
	Add JSF into project
	Writing Code
	Add JBoss AS 7 deploy plugin into project
	Deploy project to JBoss AS 7
	Import project into IntelliJ
	Adding IntelliJ JSF support to project
	Add JBoss AS7 to IntelliJ
	Debugging project with IntelliJ and AS7
	Conclusion
	References

	Getting Started Developing Applications Presentation & Demo
	Introduction
	Prerequisites for using the script
	Import examples into Eclipse and set up JBoss AS
	The Helloworld Quickstart
	Introduction
	Using Maven
	Using the Command Line Interface (CLI)
	Using the web management interface
	Using the filesystem
	Using Eclipse
	Digging into the app

	The numberguess quickstart
	Introduction
	Run the app
	Deployment descriptors src/main/webapp/WEB-INF
	Views
	Beans

	The login quickstart
	Introduction
	Run the app
	Deployment Descriptors
	Views
	Beans

	The kitchensink quickstart
	Introduction
	Run the app
	Bean Validation
	JAX-RS
	Arquillian

	Getting Started Guide
	Getting Started with WildFly 10
	Download
	Requirements
	Installation
	WildFly - A Quick Tour
	WildFly 10 Directory Structure
	Standalone Directory Structure
	Domain Directory Structure

	WildFly 10 Configurations
	Standalone Server Configurations
	Domain Server Configurations

	Starting WildFly 10
	Starting WildFly 10 with an Alternate Configuration
	Test Your Installation

	Managing your WildFly 10
	Authentication
	Administration Console
	Command-Line Interface

	Modifying the Example DataSource
	Configure Logging in WildFly 10

	JavaEE 6 Tutorial
	Standard JavaEE 6 Technologies
	JBoss AS7 Extension Technologies
	Standard JavaEE 6 Technologies
	Java API for RESTful Web Services (JAX-RS)
	Content
	Tutorial Overview
	What are RESTful Web Services?
	Creating a RESTful endpoint
	Package and build the endpoint
	Deploy the endpoint to OpenShift
	Building the mobile client
	Exploring the mobile client

	Java Servlet Technology
	Content
	Asynchronous Support

	Java Server Faces Technology (JSF)
	Java Persistence API (JPA)
	Java Transaction API (JTA)
	Managed Beans
	Contexts and Dependency Injection (CDI)
	Bean Validation
	Java Message Service API (JMS)
	Configure JBossAS for Messaging
	Adding the message destinations

	JavaEE Connector Architecture (JCA)
	JavaMail API
	Java Authorization Contract for Containers (JACC)
	Java Authentication Service Provider Interface for Containers (JASPIC)
	Enterprise JavaBeans Technology (EJB)
	Session Beans
	Stateful Session Beans
	Stateless Session Beans
	Singleton Session Beans

	Message Driven Beans
	How can Enterprise JavaBeans can be accessed?
	Remote call invocation
	Local call invocation
	Web Services

	Packaging

	Java API for XML Web Services (JAX-WS)
	Developing web service implementations
	The service implementation class
	Implementing the service
	What about the payload?

	Deploying service implementations
	EJB3 services
	 The JAR package structure

	Consuming web services
	Creating the client artifacts
	Using wsconsume
	 The generated artifacts explained

	Constructing a service stub
	Appendix
	Sample wsdl contract

	JBoss AS7 Extension Technologies
	Management Interface
	Management via the Java Management Extension (JMX)
	Management via RESTful services
	Batch Management / Command Line Interface (CLI)

	Glossary
	Module
	Module

	Extending WildFly
	Target Audience
	Prerequisites
	Examples in this guide

	Overview
	Example subsystem
	Create the skeleton project
	Create the schema
	Design and define the model structure
	Registering the core subsystem model
	Registering the subsystem child

	Parsing and marshalling of the subsystem xml
	Testing the parsers

	Add the deployers
	Deployment phases and attachments
	STRUCTURE
	PARSE
	DEPENDENCIES
	CONFIGURE_MODULE
	POST_MODULE
	INSTALL
	CLEANUP

	Integrate with WildFly
	Expressions
	What expression types are supported
	How to support expressions in subsystems

	Working with WildFly Capabilities
	Capabilities
	Comparison to other concepts
	Capabilities vs modules
	Capabilities vs Extensions

	Capability Names
	Statically vs Dynamically Named Capabilities
	Service provided by a capability
	Custom integration APIs provided by a capability
	Capability Requirements
	Supporting runtime-only requirements

	Capability Contract
	Capability Registry
	Using Capabilities
	Basics of Using Your Own Capability
	Creating your capability
	Registering and unregistering your capability
	Installing, accessing and removing the service provided by your capability

	Basics of Using Other Capabilities
	Registering a hard requirement for a static capability
	Registering a requirement for a dynamically named capability
	Depending upon a service provided by another capability
	Using a custom integration API provided by another capability
	Runtime-only requirements
	Using a capability in a DeploymentUnitProcessor

	Detailed API

	Domain mode subsystem transformers
	Abstract
	Background
	Getting the initial domain model
	An operation changes something in the domain configuration

	Versions and backward compatibility
	Versioning of subsystems

	The role of transformers
	Resource transformers
	Rejection in resource transformers

	Operation transformers
	Rejection in operation transformers

	Different profiles for different versions
	Ignoring resources on legacy hosts

	How do I know what needs to be transformed?
	Getting data for a previous version
	See what changed

	How do I write a transformer?
	ResourceTransformationDescriptionBuilder
	Silently discard child resources
	Reject child resource
	Redirect address for child resource
	Getting a child resource builder

	AttributeTransformationDescriptionBuilder
	Attribute transformation lifecycle
	Discarding attributes
	The DiscardAttributeChecker interface
	DiscardAttributeChecker helper classes/implementations
	DiscardAttributeChecker.DefaultDiscardAttributeChecker
	DiscardAttributeChecker.DiscardAttributeValueChecker
	DiscardAttributeChecker.ALWAYS
	DiscardAttributeChecker.UNDEFINED

	Rejecting attributes
	The RejectAttributeChecker interface
	RejectAttributeChecker helper classes/implementations
	RejectAttributeChecker.DefaultRejectAttributeChecker
	RejectAttributeChecker.DEFINED
	RejectAttributeChecker.SIMPLE_EXPRESSIONS
	RejectAttributeChecker.ListRejectAttributeChecker
	RejectAttributeChecker.ObjectFieldsRejectAttributeChecker

	Converting attributes
	The AttributeConverter interface
	Introducing attributes during transformation

	Renaming attributes

	OperationTransformationOverrideBuilder

	Evolving transformers with subsystem ModelVersions
	The old way
	Chained transformers

	Testing transformers
	Testing a configuration that works
	Testing a configuration that does not work

	Common transformation use-cases
	Child resource type does not exist in legacy model
	Attribute does not exist in the legacy subsystem
	Default value of the attribute is the same as legacy implied behavior
	Default value of the attribute is different from legacy implied behaviour

	Attribute has a different default value
	Attribute has a different type

	Key Interfaces and Classes Relevant to Extension Developers
	Extension Interface
	WildFly Managed Resources
	ManagementResourceRegistration Interface
	ResourceDefinition Interface
	ResourceDescriptionResolver

	AttributeDefinition Class
	Key Uses of AttributeDefinition
	Use in XML Parsing
	Use in Storing Data Provided by the User to the Configuration Model
	Use in Extracting Data from the Configuration Model for Use in Runtime Services
	Use in Marshaling Configuration Model Data to XML

	OperationDefinition and OperationStepHandler Interfaces
	Operation Execution and the OperationContext
	Execution Process
	Stage.MODEL
	Stage.RUNTIME
	Stage.VERIFY
	Stage.DOMAIN
	Stage.DONE and ResultHandler / RollbackHandler Execution
	Tips About Adding Steps
	Passing Data to an Added Step
	Controlling Output from an Added Step

	OperationStepHandler use of the OperationContext
	Locking and Change Visibility

	Resource Interface
	Creating Resources
	Runtime-Only and Synthetic Resources and the PlaceholderResourceEntry Class

	DeploymentUnitProcessor Interface
	Useful classes for implementing OperationStepHandler
	Add Handlers
	Remove Handlers
	Write attribute handlers
	Reload-required handlers
	Restart Parent Resource Handlers
	Model Only Handlers
	Misc

	 CLI Extensibility for Layered Products
	All WildFly documentation
	CLI extensibility for layered products
	Domain Mode Subsystem Transformers
	Abstract
	Background
	Getting the initial domain model
	An operation changes something in the domain configuration

	Versions and backward compatibility
	Versioning of subsystems

	The role of transformers
	Resource transformers
	Rejection in resource transformers

	Operation transformers
	Rejection in operation transformers

	Different profiles for different versions
	Ignoring resources on legacy hosts

	How do I know what needs to be transformed?
	Getting data for a previous version
	See what changed

	How do I write a transformer?
	ResourceTransformationDescriptionBuilder
	Silently discard child resources
	Reject child resource
	Redirect address for child resource
	Getting a child resource builder

	AttributeTransformationDescriptionBuilder
	Attribute transformation lifecycle
	Discarding attributes
	The DiscardAttributeChecker interface
	DiscardAttributeChecker helper classes/implementations
	DiscardAttributeChecker.DefaultDiscardAttributeChecker
	DiscardAttributeChecker.DiscardAttributeValueChecker
	DiscardAttributeChecker.ALWAYS
	DiscardAttributeChecker.UNDEFINED

	Rejecting attributes
	The RejectAttributeChecker interface
	RejectAttributeChecker helper classes/implementations
	RejectAttributeChecker.DefaultRejectAttributeChecker
	RejectAttributeChecker.DEFINED
	RejectAttributeChecker.SIMPLE_EXPRESSIONS
	RejectAttributeChecker.ListRejectAttributeChecker
	RejectAttributeChecker.ObjectFieldsRejectAttributeChecker

	Converting attributes
	The AttributeConverter interface
	Introducing attributes during transformation

	Renaming attributes

	OperationTransformationOverrideBuilder

	Evolving transformers with subsystem ModelVersions
	The old way
	Chained transformers

	Testing transformers
	Testing a configuration that works
	Testing a configuration that does not work

	Common transformation use-cases
	Child resource type does not exist in legacy model
	Attribute does not exist in the legacy subsystem
	Default value of the attribute is the same as legacy implied behavior
	Default value of the attribute is different from legacy implied behaviour

	Attribute has a different default value
	Attribute has a different type

	Example subsystem
	Create the skeleton project
	Create the schema
	Design and define the model structure
	Registering the core subsystem model
	Registering the subsystem child

	Parsing and marshalling of the subsystem xml
	Testing the parsers

	Add the deployers
	Deployment phases and attachments
	STRUCTURE
	PARSE
	DEPENDENCIES
	CONFIGURE_MODULE
	POST_MODULE
	INSTALL
	CLEANUP

	Integrate with WildFly
	Expressions
	What expression types are supported
	How to support expressions in subsystems

	Add the deployers
	Deployment phases and attachments
	STRUCTURE
	PARSE
	DEPENDENCIES
	CONFIGURE_MODULE
	POST_MODULE
	INSTALL
	CLEANUP

	Create the schema
	Create the skeleton project
	Design and define the model structure
	Registering the core subsystem model
	Registering the subsystem child

	Expressions
	What expression types are supported
	How to support expressions in subsystems

	Integrate with WildFly
	Parsing and marshalling of the subsystem xml
	Testing the parsers

	Key Interfaces and Classes Relevant to Extension Developers
	Extension Interface
	WildFly Managed Resources
	ManagementResourceRegistration Interface
	ResourceDefinition Interface
	ResourceDescriptionResolver

	AttributeDefinition Class
	Key Uses of AttributeDefinition
	Use in XML Parsing
	Use in Storing Data Provided by the User to the Configuration Model
	Use in Extracting Data from the Configuration Model for Use in Runtime Services
	Use in Marshaling Configuration Model Data to XML

	OperationDefinition and OperationStepHandler Interfaces
	Operation Execution and the OperationContext
	Execution Process
	Stage.MODEL
	Stage.RUNTIME
	Stage.VERIFY
	Stage.DOMAIN
	Stage.DONE and ResultHandler / RollbackHandler Execution
	Tips About Adding Steps
	Passing Data to an Added Step
	Controlling Output from an Added Step

	OperationStepHandler use of the OperationContext
	Locking and Change Visibility

	Resource Interface
	Creating Resources
	Runtime-Only and Synthetic Resources and the PlaceholderResourceEntry Class

	DeploymentUnitProcessor Interface
	Useful classes for implementing OperationStepHandler
	Add Handlers
	Remove Handlers
	Write attribute handlers
	Reload-required handlers
	Restart Parent Resource Handlers
	Model Only Handlers
	Misc

	WildFly 9 JNDI Implementation
	Introduction
	Architecture
	Binding APIs
	Subsystem
	EE Deployment

	Resource Ref Processing

	Working with WildFly Capabilities
	Capabilities
	Comparison to other concepts
	Capabilities vs modules
	Capabilities vs Extensions

	Capability Names
	Statically vs Dynamically Named Capabilities
	Service provided by a capability
	Custom integration APIs provided by a capability
	Capability Requirements
	Supporting runtime-only requirements

	Capability Contract
	Capability Registry
	Using Capabilities
	Basics of Using Your Own Capability
	Creating your capability
	Registering and unregistering your capability
	Installing, accessing and removing the service provided by your capability

	Basics of Using Other Capabilities
	Registering a hard requirement for a static capability
	Registering a requirement for a dynamically named capability
	Depending upon a service provided by another capability
	Using a custom integration API provided by another capability
	Runtime-only requirements
	Using a capability in a DeploymentUnitProcessor

	Detailed API

	Common
	All WildFly documentation

	Testsuite
	JBoss AS 7 Testsuite
	WildFly Testsuite Overview
	Test Suite Organization
	Profiles
	Integration tests
	Smoke -Dts.smoke, -Dts.noSmoke
	Basic -Dts.basic
	Cluster -Dts.clust
	IIOP -Dts.iiop
	XTS -Dts.XTS
	Multinode -Dts.multinode

	WildFly Integration Testsuite User Guide
	Running the testsuite
	Supported Maven phases
	Testsuite structure
	Test groups

	Examples
	
	Output to console
	Other options
	Timeouts
	Surefire execution timeout
	In-test timeout ratios

	Running a single test (or specified tests)
	Running against existing AS copy (not the one from build/target/jboss-as-*)
	Running against a running JBoss AS instance
	Running against JBoss Enterprise Application Platform (EAP) 6.0

	Running with a debugger
	Examples

	Running tests with custom database
	Default values

	Running tests with IPv6
	Running tests with security manager / custom security policy
	Creating test reports
	Creating coverage reports
	Usage

	Cleaning the project

	Troubleshooting Common Issues
	Timeouts
	"Server already running"
	Database failures
	Build gets stuck at first test of a module

	WildFly Testsuite Harness Developer Guide
	Testsuite requirements
	Adding a new maven plugin
	Shortened Maven run overview
	How the AS instance is built
	Properties and their propagation
	JBoss AS instance dir
	Server JVM arguments
	IP settings
	Testsuite directories
	Clustering properties

	Debug parameters propagation
	How the JBoss AS instance is built and configured for testsuite modules.
	Arquillian config file location

	Plugin executions matrix
	Shortened Maven Run Overview
	How to get it
	How it's done
	Example output with comments.
	Example output, unchanged

	WildFly Testsuite Test Developer Guide
	Pre-requisites
	Arquillian container configuration
	ManagementClient and ModelNode usage example
	Arquillian features available in tests
	Properties available in tests
	Directories
	Networking
	Time-related coefficients (ratios)

	Negative tests
	Clustering tests (WFLY-616)
	How to get the tests to master
	How to Add a Test Case
	1) Create a test case.
	2) Push your test case to GitHub and create a pull request.
	3) Wait for the outcome.

	Before you add a test
	Shared Test Classes and Resources
	Among Testsuite Modules
	Between Components and Testsuite Modules

	Quickstarts
	Getting Started
	Contributing
	Contributing a Quickstart
	Maven POM Versions Checklist
	Writing a quickstart

	WildFly Elytron Security
	About
	Authentication
	Authorization
	SSL / TLS
	Secure Credential Storage

	General Elytron Architecture
	Security Domains
	SASL Authentication
	HTTP Authentication
	SSL / TLS

	Elytron Subsystem
	Get Started using the Elytron Subsystem
	Provided components
	Factories
	Principal Transformers
	Principal Decoders
	Realm Mappers
	Realms
	Permission Mappers
	Role Decoders
	Role Mappers
	SSL Components
	Other

	Out of the Box Configuration
	Default Application Authentication Configuration
	Update WildFly to Use the Default Elytron Components for Application Authentication
	Default Elytron Application HTTP Authentication Configuration

	Default Management Authentication Configuration
	Update WildFly to Use the Default Elytron Components for Management Authentication
	Set http-authentication-factory to use management-http-authentication
	Set sasl-authentication-factory to use management-sasl-authentication
	Undefine security-realm
	Reload WildFly for the changes to take affect.

	Default Elytron Management HTTP Authentication Configuration
	Default Elytron Management CLI Authentication

	Comparing Legacy Approaches to Elytron Approaches

	Using the Elytron Subsystem
	Set Up and Configure Authentication for Applications
	Configure Authentication with a Properties File-Based Identity Store
	Create properties files:
	Configure a properties-realm in WildFly:
	Configure a security-domain :
	Configure an http-authentication-factory :
	Configure an application-security-domain in the Undertow subsystem:
	Configure your application's web.xml and jboss-web.xml .

	Configure Authentication with a Filesystem-Based Identity Store
	Chose a directory for users:
	Configure a filesystem-realm in WildFly:
	Add a user:
	Add a simple-role-decoder :
	Configure a security-domain :
	Configure an http-authentication-factory :
	Configure an application-security-domain in the Undertow subsystem:
	Configure your application's web.xml and jboss-web.xml .

	Configure Authentication with a Database Identity Store
	Determine your database format for usernames, passwords, and roles:
	Configure a datasource:
	Configure a jdbc-realm in WildFly:
	Configure a security-domain :
	Configure an http-authentication-factory :
	Configure an application-security-domain in the Undertow subsystem:
	Configure your application's web.xml and jboss-web.xml .

	Configure Authentication with an LDAP-Based Identity Store
	Determine your LDAP format for usernames, passwords, and roles:
	Configure a dir-context :
	Configure an ldap-realm in WildFly:
	Add a simple-role-decoder :
	Configure a security-domain :
	Configure an http-authentication-factory :
	Configure an application-security-domain in the Undertow subsystem:
	Configure your application's web.xml and jboss-web.xml .

	Configure Authentication with Certificates
	Configure a key-store-realm .
	Create a Decoder.
	Add a constant-role-mapper for assigning roles.
	Configure a security-domain .
	Configure an http-authentication-factory .
	Configure an application-security-domain in the Undertow subsystem.
	Update server-ssl-context .
	Configure your application's web.xml and jboss-web.xml .

	Configure Authentication with a Kerberos-Based Identity Store
	Configure a kerberos-security-factory .
	Configure the system properties for Kerberos.
	Configure an Eltyron security realm for assigning roles.
	Add a simple-role-decoder .
	Configure a security-domain .
	Configure an http-authentication-factory that uses the kerberos-security-factory .
	Configure an application-security-domain in the Undertow subsystem:
	Configure your application's web.xml , jboss-web.xml and jboss-deployment-structure.xml .

	Configure Authentication with a Form as a Fallback for Kerberos
	Configure kerberos-based authentication.
	Add a mechanism for FORM authentication in the http-authentication-factory .
	Add additional fallback principals.
	Update the web.xml for FORM fallback.

	Configure Applications to Use Elytron or Legacy Security for Authentication
	Configure your application's web.xml .
	Configure your application to use a security domain.
	Using Elytron and Legacy Security Subsystems in Parallel

	Override an Application's Authentication Configuration
	Create and Use a Credential Store
	Create credential store.
	Add a credential to a credential store.
	List all credentials in a credential store.
	Remove a credential from a credential store.
	Use a credential store.

	Set up and Configure Authentication for the Management Interfaces
	Secure the Management Interfaces with a New Identity Store
	Create a security domain and any supporting security realms, decoders, or mappers for your identity store.
	Create an http-authentication-factory or sasl-authentication-factory .
	Update the management interfaces to use your http-authentication-factory or sasl-authentication-factory .

	Silent Authentication
	Add silent authentication to an existing sasl-authentication-factory .
	Create a new sasl-server-factory with silent authentication.
	Remove silent authentication from an existing sasl-server-factory :

	Using RBAC with Elytron

	Configure SSL/TLS
	Enable One-way SSL/TLS for Applications
	Obtain or generate your key store:
	Configure a key-store in WildFly:
	Configure a key-manager in that references your key-store :
	Configure a server-ssl-context in that references your key-manager :
	Check and see if the https-listener is configured to use a legacy security realm for its SSL configuration:
	Reload the server:

	Enable Two-way SSL/TLS in WildFly for Applications
	Obtain or generate your keystore:
	Configure a key-store for server keystore and truststore in WildFly:
	Configure a key-manager in that references your key store key-store :
	Configure a trust-manager in that references your truststore key-store :
	Configure a server-ssl-context in that references your key-manager , trust-manager , and enables client authentication:
	Check and see if the https-listener is configured to use a legacy security realm for its SSL configuration:
	Remove the reference to the legacy security realm and update the https-listener to use the ssl-context from Elytron:
	Reload the server
	Configure your client to use the client certificate

	Enable One-way SSL/TLS for the Management Interfaces Using the Elytron Subsystem
	Obtain or generate your key store:
	Create a key-store , key-manager , and server-ssl-context .
	Enable HTTPS on the management interface.
	Reload the WildFly instance.

	Enable Two-way SSL/TLS for the Management Interfaces using the Elytron Subsystem
	Obtain or generate your key store.
	Configure key-store , a key-manager , trust-manager , and server-ssl-context for the server key store and trust store.
	Enable HTTPS on the management interface.
	Reload the WildFly instance.
	Configure your client to use the client certificate.

	Using an ldap-key-store
	Configure a dir-context .
	Configure an ldap-key-store .
	Use the ldap-key-store .

	Using a filtering-key-store
	Configure a key-store .
	Configure a filtering-key-store .
	Use the filtering-key-store .

	Reload a Keystore
	Check the Content of a Keystore by Alias
	Custom Components

	Configuring the Elytron and Security Subsystems
	Enable and Disable the Elytron Subsystem
	To add the elytron extension required for the elytron subsystem:
	To enable the Elytron subsystem in WildFly:
	To disable the Elytron subsystem in WildFly:

	Enable and Disable the Security Subsystem
	To disable the security subsystem in WildFly:
	To enable the security subsystem in WildFly:

	Use the Elytron and Security Subsystems in Parallel

	Creating Elytron Subsystem Components
	Create an Elytron Security Realm
	Create an Elytron Role Decoder
	Create an Elytron Permission Mapper
	Create an Elytron Role Mapper
	Create an Elytron Security Domain
	Create an Elytron Authentication Factory
	Create an Elytron Policy Provider

	Using Elytron within WildFly
	Using the Out of the Box Elytron Components
	Securing Management Interfaces
	Securing Applications
	Using SSL/TLS
	Using Elytron with Other Subsystems

	Undertow Subsystem
	EJB Subsystem
	WebServices Subsystem
	Legacy Security Subsystem

	Client Authentication with Elytron Client
	The Configuration File Approach
	The Programmatic Approach
	The Default Configuration Approach
	Using Elytron Client with Clients Deployed to WildFly
	Client configuration using wildfly-config.xml
	Configure EJB client connections, global interceptors, and invocation timeout
	Configure HTTP client
	Configure a remoting endpoint
	Configure the default XNIO worker

	Client Authentication with Elytron Client
	Client Authentication with Elytron Client
	The Configuration File Approach
	The Programmatic Approach
	The Default Configuration Approach
	Using Elytron Client with Clients Deployed to WildFly
	Client configuration using wildfly-config.xml
	Configure EJB client connections, global interceptors, and invocation timeout
	Configure HTTP client
	Configure a remoting endpoint
	Configure the default XNIO worker

	Client configuration using wildfly-config.xml
	Configure EJB client connections, global interceptors, and invocation timeout
	Configure HTTP client
	Configure a remoting endpoint
	Configure the default XNIO worker

	Elytron and Java Authorization Contract for Containers (JACC)
	Overview
	Disabling JACC in Legacy Security Subsystem (PicketBox)
	Defining a JACC Policy Provider
	Enabling JACC to a Web Deployment
	Enabling JACC to a EJB Deployment

	Elytron Subsystem
	Get Started using the Elytron Subsystem
	Provided components
	Factories
	Principal Transformers
	Principal Decoders
	Realm Mappers
	Realms
	Permission Mappers
	Role Decoders
	Role Mappers
	SSL Components
	Other

	Out of the Box Configuration
	Default Application Authentication Configuration
	Update WildFly to Use the Default Elytron Components for Application Authentication
	Default Elytron Application HTTP Authentication Configuration

	Default Management Authentication Configuration
	Update WildFly to Use the Default Elytron Components for Management Authentication
	Set http-authentication-factory to use management-http-authentication
	Set sasl-authentication-factory to use management-sasl-authentication
	Undefine security-realm
	Reload WildFly for the changes to take affect.

	Default Elytron Management HTTP Authentication Configuration
	Default Elytron Management CLI Authentication

	Comparing Legacy Approaches to Elytron Approaches

	General Elytron Architecture
	Security Domains
	SASL Authentication
	HTTP Authentication
	SSL / TLS

	Migrate Legacy Security to Elytron Security
	Authentication Configuration
	Properties Based Authentication / Authorization
	PicketBox Based Configuration
	Original Configuration
	Intermediate Configuration
	Fully Migrated Configuration

	Legacy Security Realm
	Original Configuration
	Migrated Configuration

	LDAP Authentication Migration
	Legacy Security Realm
	PicketBox LdapExtLoginModule
	Migrated

	Composite Stores Migration
	PicketBox Based Configuration
	Legacy Security Realm Configuration
	Migrated WildFly Elytron Configuration

	Database Authentication
	PicketBox Database LoginModule
	Migrated
	N-M relation beetween user and roles

	Kerberos Authentication Migration
	HTTP Authentication
	Legacy Security Realm
	Application SPNEGO
	Migrated SPNEGO

	Remoting / SASL Authentication
	Legacy Security Realm
	Migrated GSSAPI

	Caching Migration
	PicketBox Example
	Migrated Example

	Clients
	Application Client Migration
	Naming Client
	Original Configuration
	Migrated Configuration
	Configuration File Approach
	Programmatic Approach

	EJB Client
	Original Configuration
	Migrated Configuration
	Configuration File Approach
	Programmatic Approach

	General Utilities
	Security Vault Migration
	Single Security Vault Conversion
	Notes:

	Bulk Security Vault Conversion
	References:

	Security Properties

	SSL Migration
	Simple SSL Migration
	Client-Cert SSL Authentication Migration
	SSL with Client Cert Migration
	KeyStores, KeyManagers, and TrustManagers.
	Realms and Domains
	HTTP Authentication Factory
	SASL Authentication Factory
	SSL Context
	Using for Management
	Admin Clients
	Web Browser Configuration
	CLI Configuration

	Documentation Still Needed
	Application Client Migration
	Naming Client
	Original Configuration
	Migrated Configuration
	Configuration File Approach
	Programmatic Approach

	EJB Client
	Original Configuration
	Migrated Configuration
	Configuration File Approach
	Programmatic Approach

	Caching Migration
	PicketBox Example
	Migrated Example

	Composite Stores Migration
	PicketBox Based Configuration
	Legacy Security Realm Configuration
	Migrated WildFly Elytron Configuration

	Database Authentication
	PicketBox Database LoginModule
	Migrated
	N-M relation beetween user and roles

	Kerberos Authentication Migration
	HTTP Authentication
	Legacy Security Realm
	Application SPNEGO
	Migrated SPNEGO

	Remoting / SASL Authentication
	Legacy Security Realm
	Migrated GSSAPI

	LDAP Authentication Migration
	Legacy Security Realm
	PicketBox LdapExtLoginModule
	Migrated

	Properties Based Authentication / Authorization
	PicketBox Based Configuration
	Original Configuration
	Intermediate Configuration
	Fully Migrated Configuration

	Legacy Security Realm
	Original Configuration
	Migrated Configuration

	Security Properties
	Security Vault Migration
	Single Security Vault Conversion
	Notes:

	Bulk Security Vault Conversion
	References:

	Simple SSL Migration
	Simple SSL Migration
	Client-Cert SSL Authentication Migration

	SSL with Client Cert Migration
	KeyStores, KeyManagers, and TrustManagers.
	Realms and Domains
	HTTP Authentication Factory
	SASL Authentication Factory
	SSL Context
	Using for Management
	Admin Clients
	Web Browser Configuration
	CLI Configuration

	OpenSSL
	Protecting Wildfly Adminstration Console With Keycloak
	Overview
	System Requirements
	Installing Keycloak Wildfly Elytron Adapters
	Creating a Keycloak Realm for Wildfly Management Services
	Protecting Wildfly Console and Management API
	Accessing Wildfly Administration Console

	Using the Elytron Subsystem
	Set Up and Configure Authentication for Applications
	Configure Authentication with a Properties File-Based Identity Store
	Create properties files:
	Configure a properties-realm in WildFly:
	Configure a security-domain :
	Configure an http-authentication-factory :
	Configure an application-security-domain in the Undertow subsystem:
	Configure your application's web.xml and jboss-web.xml .

	Configure Authentication with a Filesystem-Based Identity Store
	Chose a directory for users:
	Configure a filesystem-realm in WildFly:
	Add a user:
	Add a simple-role-decoder :
	Configure a security-domain :
	Configure an http-authentication-factory :
	Configure an application-security-domain in the Undertow subsystem:
	Configure your application's web.xml and jboss-web.xml .

	Configure Authentication with a Database Identity Store
	Determine your database format for usernames, passwords, and roles:
	Configure a datasource:
	Configure a jdbc-realm in WildFly:
	Configure a security-domain :
	Configure an http-authentication-factory :
	Configure an application-security-domain in the Undertow subsystem:
	Configure your application's web.xml and jboss-web.xml .

	Configure Authentication with an LDAP-Based Identity Store
	Determine your LDAP format for usernames, passwords, and roles:
	Configure a dir-context :
	Configure an ldap-realm in WildFly:
	Add a simple-role-decoder :
	Configure a security-domain :
	Configure an http-authentication-factory :
	Configure an application-security-domain in the Undertow subsystem:
	Configure your application's web.xml and jboss-web.xml .

	Configure Authentication with Certificates
	Configure a key-store-realm .
	Create a Decoder.
	Add a constant-role-mapper for assigning roles.
	Configure a security-domain .
	Configure an http-authentication-factory .
	Configure an application-security-domain in the Undertow subsystem.
	Update server-ssl-context .
	Configure your application's web.xml and jboss-web.xml .

	Configure Authentication with a Kerberos-Based Identity Store
	Configure a kerberos-security-factory .
	Configure the system properties for Kerberos.
	Configure an Eltyron security realm for assigning roles.
	Add a simple-role-decoder .
	Configure a security-domain .
	Configure an http-authentication-factory that uses the kerberos-security-factory .
	Configure an application-security-domain in the Undertow subsystem:
	Configure your application's web.xml , jboss-web.xml and jboss-deployment-structure.xml .

	Configure Authentication with a Form as a Fallback for Kerberos
	Configure kerberos-based authentication.
	Add a mechanism for FORM authentication in the http-authentication-factory .
	Add additional fallback principals.
	Update the web.xml for FORM fallback.

	Configure Applications to Use Elytron or Legacy Security for Authentication
	Configure your application's web.xml .
	Configure your application to use a security domain.
	Using Elytron and Legacy Security Subsystems in Parallel

	Override an Application's Authentication Configuration
	Create and Use a Credential Store
	Create credential store.
	Add a credential to a credential store.
	List all credentials in a credential store.
	Remove a credential from a credential store.
	Use a credential store.

	Set up and Configure Authentication for the Management Interfaces
	Secure the Management Interfaces with a New Identity Store
	Create a security domain and any supporting security realms, decoders, or mappers for your identity store.
	Create an http-authentication-factory or sasl-authentication-factory .
	Update the management interfaces to use your http-authentication-factory or sasl-authentication-factory .

	Silent Authentication
	Add silent authentication to an existing sasl-authentication-factory .
	Create a new sasl-server-factory with silent authentication.
	Remove silent authentication from an existing sasl-server-factory :

	Using RBAC with Elytron

	Configure SSL/TLS
	Enable One-way SSL/TLS for Applications
	Obtain or generate your key store:
	Configure a key-store in WildFly:
	Configure a key-manager in that references your key-store :
	Configure a server-ssl-context in that references your key-manager :
	Check and see if the https-listener is configured to use a legacy security realm for its SSL configuration:
	Reload the server:

	Enable Two-way SSL/TLS in WildFly for Applications
	Obtain or generate your keystore:
	Configure a key-store for server keystore and truststore in WildFly:
	Configure a key-manager in that references your key store key-store :
	Configure a trust-manager in that references your truststore key-store :
	Configure a server-ssl-context in that references your key-manager , trust-manager , and enables client authentication:
	Check and see if the https-listener is configured to use a legacy security realm for its SSL configuration:
	Remove the reference to the legacy security realm and update the https-listener to use the ssl-context from Elytron:
	Reload the server
	Configure your client to use the client certificate

	Enable One-way SSL/TLS for the Management Interfaces Using the Elytron Subsystem
	Obtain or generate your key store:
	Create a key-store , key-manager , and server-ssl-context .
	Enable HTTPS on the management interface.
	Reload the WildFly instance.

	Enable Two-way SSL/TLS for the Management Interfaces using the Elytron Subsystem
	Obtain or generate your key store.
	Configure key-store , a key-manager , trust-manager , and server-ssl-context for the server key store and trust store.
	Enable HTTPS on the management interface.
	Reload the WildFly instance.
	Configure your client to use the client certificate.

	Using an ldap-key-store
	Configure a dir-context .
	Configure an ldap-key-store .
	Use the ldap-key-store .

	Using a filtering-key-store
	Configure a key-store .
	Configure a filtering-key-store .
	Use the filtering-key-store .

	Reload a Keystore
	Check the Content of a Keystore by Alias
	Custom Components

	Configuring the Elytron and Security Subsystems
	Enable and Disable the Elytron Subsystem
	To add the elytron extension required for the elytron subsystem:
	To enable the Elytron subsystem in WildFly:
	To disable the Elytron subsystem in WildFly:

	Enable and Disable the Security Subsystem
	To disable the security subsystem in WildFly:
	To enable the security subsystem in WildFly:

	Use the Elytron and Security Subsystems in Parallel

	Creating Elytron Subsystem Components
	Create an Elytron Security Realm
	Create an Elytron Role Decoder
	Create an Elytron Permission Mapper
	Create an Elytron Role Mapper
	Create an Elytron Security Domain
	Create an Elytron Authentication Factory
	Create an Elytron Policy Provider

	Using Elytron within WildFly
	Using the Out of the Box Elytron Components
	Securing Management Interfaces
	Securing Applications
	Using SSL/TLS
	Using Elytron with Other Subsystems

	Undertow Subsystem
	EJB Subsystem
	WebServices Subsystem
	Legacy Security Subsystem

	Web Single Sign-On
	Overview
	Create a Server Configuration Template
	Create a HTTP Authentication Factory
	Create a Application Security Domain in Undertow
	Create a Key Store
	Enable Single Sign-On

	Create Two Server Instances
	Deploy an Application

	WildFly Client Configuration
	Introduction
	wildfly-config.xml Discovery

	Configuration Sections
	<authentication-client /> - WildFly Elytron
	<credential-stores />
	<key-stores />
	<authentication-rules /> and <ssl-context-rules />
	<authentication-configurations />
	<net-authenticator />
	<ssl-contexts />
	<providers />

	<jboss-ejb-client /> - EJB Client
	<invocation-timeout />
	<global-interceptors />
	<interceptor />
	<connections />
	<connection />
	<interceptors />

	<endpoint /> - Remoting Client
	<providers />
	<provider />

	<connections />
	<connection />

	Example Remoting Client Configuration in the wildfly-config.xml File

	<worker /> - XNIO Client
	<daemon-threads />
	<worker-name />
	<pool-size />
	<task-keepalive />
	<io-threads />
	<stack-size />
	<outbound-bind-addresses />
	<bind-address />

	<authentication-client /> - WildFly Elytron
	<credential-stores />
	<key-stores />
	<authentication-rules /> and <ssl-context-rules />
	<authentication-configurations />
	<net-authenticator />
	<ssl-contexts />
	<providers />

	<jboss-ejb-client /> - EJB Client
	<invocation-timeout />
	<global-interceptors />
	<interceptor />
	<connections />
	<connection />
	<interceptors />

	<endpoint /> - Remoting Client
	<providers />
	<provider />

	<connections />
	<connection />

	Example Remoting Client Configuration in the wildfly-config.xml File

	<worker /> - XNIO Client
	<daemon-threads />
	<worker-name />
	<pool-size />
	<task-keepalive />
	<io-threads />
	<stack-size />
	<outbound-bind-addresses />
	<bind-address />

