Uses of Class
edu.jas.poly.GenPolynomial
Packages that use GenPolynomial
Package
Description
Groebner base application package.
Factorization domain package for solvable polynomial rings.
Groebner bases package.
Module Groebner base package.
Groebner bases using unique factorization package.
Elementary Integration package.
Generic coefficients polynomial package.
Generic coefficients power series package.
Real and Complex Root Computation package.
Unique factorization domain package.
Unique Factorization Domain and Roots package.
-
Uses of GenPolynomial in edu.jas.application
Subclasses of GenPolynomial in edu.jas.applicationModifier and TypeClassDescriptionclass
LocalSolvablePolynomial<C extends GcdRingElem<C>>
LocalSolvablePolynomial generic recursive solvable polynomials implementing RingElem.class
ResidueSolvablePolynomial<C extends GcdRingElem<C>>
ResidueSolvablePolynomial generic solvable polynomials with solvable residue coefficients implementing RingElem.class
ResidueSolvableWordPolynomial<C extends GcdRingElem<C>>
ResidueSolvableWordPolynomial solvable polynomials with WordResidue coefficients implementing RingElem.Fields in edu.jas.application declared as GenPolynomialModifier and TypeFieldDescriptionprotected final GenPolynomial
<C> Local.den
Denominator part of the element data structure.final GenPolynomial
<GenPolynomial<C>> ColorPolynomial.green
The part with green (= zero) terms and coefficients.protected final GenPolynomial
<C> Local.num
Numerator part of the element data structure.final GenPolynomial
<GenPolynomial<C>> ColorPolynomial.red
The part with red (= non zero) terms and coefficients.(package private) GenPolynomial
<BigInteger> IntegerProgram.S
final GenPolynomial
<C> Residue.val
Value part of the element data structure.final GenPolynomial
<GenPolynomial<C>> ColorPolynomial.white
The part with white (= unknown color) terms and coefficients.Fields in edu.jas.application with type parameters of type GenPolynomialModifier and TypeFieldDescriptionprotected PolynomialList
<GenPolynomial<C>> GroebnerSystem.cgb
Comprehensive Groebner base for this Groebner system.final GenPolynomial
<GenPolynomial<C>> ColorPolynomial.green
The part with green (= zero) terms and coefficients.final List
<GenPolynomial<C>> IdealWithUniv.others
A list of other useful polynomials.final GenPolynomial
<GenPolynomial<C>> ColorPolynomial.red
The part with red (= non zero) terms and coefficients.protected final GenPolynomialRing
<GenPolynomial<C>> OrderedCPairlist.ring
final List
<GenPolynomial<C>> IdealWithUniv.upolys
The list of univariate polynomials.final GenPolynomial
<GenPolynomial<C>> ColorPolynomial.white
The part with white (= unknown color) terms and coefficients.Methods in edu.jas.application that return GenPolynomialModifier and TypeMethodDescriptionIdeal.constructUnivariate
(int i) Construct univariate polynomial of minimal degree in variable i in zero dimensional ideal(G).(package private) static <C extends RingElem<C>>
GenPolynomial<C> PolyUtilApp.convert
(GenPolynomialRing<C> fac, GenPolynomial<C> p) (package private) static <C extends RingElem<C>>
GenPolynomial<Complex<C>> PolyUtilApp.convertComplex
(GenPolynomialRing<Complex<C>> fac, GenPolynomial<C> p) (package private) static <C extends RingElem<C>>
GenPolynomial<Complex<C>> PolyUtilApp.convertComplexComplex
(GenPolynomialRing<Complex<C>> fac, GenPolynomial<Complex<C>> p) static <C extends GcdRingElem<C> & Rational>
GenPolynomial<Complex<RealAlgebraicNumber<C>>> PolyUtilApp.convertToComplexRealCoefficients
(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> pfac, GenPolynomial<Complex<C>> A) Convert to Complex<RealAlgebraicNumber> coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtilApp.convertToPrimitiveElem
(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, AlgebraicNumber<C> B, GenPolynomial<AlgebraicNumber<AlgebraicNumber<C>>> a) Convert to primitive element ring.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtilApp.convertToPrimitiveElem
(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, GenPolynomial<AlgebraicNumber<C>> a) Convert coefficients to primitive element ring.Local.denominator()
Denominator.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<Complex<RealAlgebraicNumber<C>>> PolyUtilApp.evaluateToComplexRealCoefficients
(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> pfac, GenPolynomial<GenPolynomial<Complex<C>>> A, Complex<RealAlgebraicNumber<C>> r) Evaluate to Complex<RealAlgebraicNumber> coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtilApp.fromProduct
(GenPolynomialRing<GenPolynomial<C>> pfac, GenPolynomial<Product<Residue<C>>> P, int i) From product representation.ColorPolynomial.getEssentialPolynomial()
Get essential polynomial.ColorPolynomial.getPolynomial()
Get full polynomial.Ideal.inverse
(GenPolynomial<C> h) Inverse for element modulo this ideal.Ideal.normalform
(GenPolynomial<C> h) Normalform for element.Local.numerator()
Numerator.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilApp.realAlgFromRealCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> afac, GenPolynomial<RealAlgebraicNumber<C>> A) Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilApp.realFromRealAlgCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> rfac, GenPolynomial<RealAlgebraicNumber<C>> A) Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<Product<Residue<C>>> PolyUtilApp.toProductRes
(GenPolynomialRing<Product<Residue<C>>> pfac, GenPolynomial<GenPolynomial<C>> A) Product representation.static <C extends GcdRingElem<C>>
GenPolynomial<Residue<C>> PolyUtilApp.toResidue
(GenPolynomialRing<Residue<C>> pfac, GenPolynomial<GenPolynomial<C>> A) Residue coefficient representation.Methods in edu.jas.application that return types with arguments of type GenPolynomialModifier and TypeMethodDescriptionFactorAlgebraicPrim.baseFactorsSquarefree
(GenPolynomial<AlgebraicNumber<C>> P) GenPolynomial base factorization of a squarefree polynomial.FactorRealReal.baseFactorsSquarefree
(GenPolynomial<RealAlgebraicNumber<C>> P) GenPolynomial base factorization of a squarefree polynomial.Ideal.constructUnivariate()
Construct univariate polynomials of minimal degree in all variables in zero dimensional ideal(G).static <C extends GcdRingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtilApp.fromProduct
(GenPolynomialRing<GenPolynomial<C>> pfac, GenPolynomial<Product<Residue<C>>> P, int i) From product representation.static <C extends GcdRingElem<C>>
List<GenPolynomial<GenPolynomial<C>>> PolyUtilApp.fromProduct
(GenPolynomialRing<GenPolynomial<C>> pfac, List<GenPolynomial<Product<Residue<C>>>> L, int i) From product representation.static <C extends GcdRingElem<C>>
List<GenPolynomial<GenPolynomial<C>>> PolyUtilApp.fromProduct
(GenPolynomialRing<GenPolynomial<C>> pfac, List<GenPolynomial<Product<Residue<C>>>> L, int i) From product representation.ComprehensiveGroebnerBaseSeq.GB
(List<GenPolynomial<GenPolynomial<C>>> F) Comprehensive Groebner base via Groebner system.ComprehensiveGroebnerBaseSeq.GB
(List<GenPolynomial<GenPolynomial<C>>> F) Comprehensive Groebner base via Groebner system.GroebnerSystem.getCGB()
Get comprehensive Groebner base.GroebnerSystem.getCGB()
Get comprehensive Groebner base.ColoredSystem.getConditionNonZero()
Get non zero condition.ColoredSystem.getConditionZero()
Get zero condition.ColorPolynomial.getEssentialPolynomial()
Get essential polynomial.ColoredSystem.getEssentialPolynomialList()
Get list of essential polynomials.ColoredSystem.getEssentialPolynomialList()
Get list of essential polynomials.static List
<GenPolynomial<BigRational>> ExamplesGeoTheorems.getExample()
get Pappus Example.ColoredSystem.getGreenCoefficients()
Get list of green coefficients of polynomials.ColorPolynomial.getGreenCoefficients()
Get zero condition on coefficients.Ideal.getList()
Get the List of GenPolynomials.ColorPolynomial.getPolynomial()
Get full polynomial.ColoredSystem.getPolynomialList()
Get list of full polynomials.ColoredSystem.getPolynomialList()
Get list of full polynomials.ColoredSystem.getRedCoefficients()
Get list of red coefficients of polynomials.ColorPolynomial.getRedCoefficients()
Get non zero condition on coefficients.ColorPolynomial.leadingMonomial()
Get leading monomial.Ideal.normalform
(List<GenPolynomial<C>> L) Normalform for list of elements.static <C extends GcdRingElem<C>>
Map<Ideal<C>, PolynomialList<GenPolynomial<C>>> PolyUtilApp.productSlice
(PolynomialList<Product<Residue<C>>> L) Product slice.static <C extends GcdRingElem<C>>
PolynomialList<GenPolynomial<C>> PolyUtilApp.productSlice
(PolynomialList<Product<Residue<C>>> L, int i) Product slice at i.static <C extends GcdRingElem<C>>
List<GenPolynomial<Product<Residue<C>>>> PolyUtilApp.toProductRes
(GenPolynomialRing<Product<Residue<C>>> pfac, List<GenPolynomial<GenPolynomial<C>>> L) Product representation.static <C extends GcdRingElem<C>>
List<GenPolynomial<Product<Residue<C>>>> PolyUtilApp.toProductRes
(List<ColoredSystem<C>> CS) Product residue representation.static <C extends GcdRingElem<C>>
List<GenPolynomial<Residue<C>>> PolyUtilApp.toResidue
(GenPolynomialRing<Residue<C>> pfac, List<GenPolynomial<GenPolynomial<C>>> L) Residue coefficient representation.Methods in edu.jas.application with parameters of type GenPolynomialModifier and TypeMethodDescriptionIdeal.annihilator
(GenPolynomial<C> h) Annihilator for element modulo this ideal.FactorAlgebraicPrim.baseFactorsSquarefree
(GenPolynomial<AlgebraicNumber<C>> P) GenPolynomial base factorization of a squarefree polynomial.FactorRealReal.baseFactorsSquarefree
(GenPolynomial<RealAlgebraicNumber<C>> P) GenPolynomial base factorization of a squarefree polynomial.CReductionSeq.caseDistinction
(Condition<C> cond, GenPolynomial<GenPolynomial<C>> A) Case distinction conditions of parametric polynomial list.CReductionSeq.caseDistinction
(List<Condition<C>> cd, GenPolynomial<GenPolynomial<C>> A) Case distinction conditions of parametric polynomial list.Condition.color
(GenPolynomial<C> c) Determine color of polynomial.static <C extends GcdRingElem<C> & Rational>
List<Complex<RealAlgebraicNumber<C>>> RootFactoryApp.complexAlgebraicNumbersComplex
(GenPolynomial<Complex<C>> f) Complex algebraic number roots.static <C extends GcdRingElem<C> & Rational>
List<Complex<RealAlgebraicNumber<C>>> RootFactoryApp.complexAlgebraicNumbersSquarefree
(GenPolynomial<Complex<C>> f) Complex algebraic number roots.boolean
Ideal.contains
(GenPolynomial<C> b) Ideal containment.(package private) static <C extends RingElem<C>>
GenPolynomial<C> PolyUtilApp.convert
(GenPolynomialRing<C> fac, GenPolynomial<C> p) (package private) static <C extends RingElem<C>>
GenPolynomial<Complex<C>> PolyUtilApp.convertComplex
(GenPolynomialRing<Complex<C>> fac, GenPolynomial<C> p) (package private) static <C extends RingElem<C>>
GenPolynomial<Complex<C>> PolyUtilApp.convertComplexComplex
(GenPolynomialRing<Complex<C>> fac, GenPolynomial<Complex<C>> p) static <C extends GcdRingElem<C> & Rational>
GenPolynomial<Complex<RealAlgebraicNumber<C>>> PolyUtilApp.convertToComplexRealCoefficients
(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> pfac, GenPolynomial<Complex<C>> A) Convert to Complex<RealAlgebraicNumber> coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtilApp.convertToPrimitiveElem
(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, AlgebraicNumber<C> B, GenPolynomial<AlgebraicNumber<AlgebraicNumber<C>>> a) Convert to primitive element ring.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtilApp.convertToPrimitiveElem
(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, GenPolynomial<AlgebraicNumber<C>> a) Convert coefficients to primitive element ring.LocalRing.create
(GenPolynomial<C> n) Create from numerator.LocalRing.create
(GenPolynomial<C> n, GenPolynomial<C> d) Create from numerator, denominator pair.SolvableLocalResidueRing.create
(GenPolynomial<C> n) Create from numerator.SolvableLocalResidueRing.create
(GenPolynomial<C> n, GenPolynomial<C> d) Create from numerator, denominator pair.SolvableLocalRing.create
(GenPolynomial<C> n) Create from numerator.SolvableLocalRing.create
(GenPolynomial<C> n, GenPolynomial<C> d) Create from numerator, denominator pair.SolvableResidueRing.create
(GenPolynomial<C> n) Create from numerator.SolvableResidueRing.create
(GenPolynomial<C> n, GenPolynomial<C> d) Create from numerator, denominator pair.Condition.determine
(GenPolynomial<GenPolynomial<C>> A) Determine polynomial.ColorPolynomial.divide
(GenPolynomial<C> s) ColorPolynomial division by coefficient.EvaluateToComplexReal.eval
(GenPolynomial<Complex<C>> c) static <C extends GcdRingElem<C> & Rational>
GenPolynomial<Complex<RealAlgebraicNumber<C>>> PolyUtilApp.evaluateToComplexRealCoefficients
(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> pfac, GenPolynomial<GenPolynomial<Complex<C>>> A, Complex<RealAlgebraicNumber<C>> r) Evaluate to Complex<RealAlgebraicNumber> coefficients.Condition.extendNonZero
(GenPolynomial<C> nz) Extend condition with non-zero polynomial.Condition.extendZero
(GenPolynomial<C> z) Extend condition with zero polynomial.static <C extends GcdRingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtilApp.fromProduct
(GenPolynomialRing<GenPolynomial<C>> pfac, GenPolynomial<Product<Residue<C>>> P, int i) From product representation.Ideal.infiniteQuotient
(GenPolynomial<C> h) Infinite quotient.int
Ideal.infiniteQuotientExponent
(GenPolynomial<C> h, Ideal<C> Q) Infinite quotient exponent.Ideal.infiniteQuotientOld
(GenPolynomial<C> h) Infinite quotient.Ideal.infiniteQuotientRab
(GenPolynomial<C> h) Infinite quotient.Ideal.inverse
(GenPolynomial<C> h) Inverse for element modulo this ideal.boolean
Ideal.isAnnihilator
(GenPolynomial<C> h, Ideal<C> A) Test for annihilator of element modulo this ideal.boolean
Ideal.isRadicalMember
(GenPolynomial<C> h) Radical membership test.static <C extends GcdRingElem<C> & Rational>
booleanRootFactoryApp.isRoot
(GenPolynomial<Complex<C>> f, Complex<RealAlgebraicNumber<C>> r) Is complex algebraic number a root of a polynomial.static <C extends GcdRingElem<C> & Rational>
booleanRootFactoryApp.isRoot
(GenPolynomial<Complex<C>> f, List<Complex<RealAlgebraicNumber<C>>> R) Is complex algebraic number a root of a polynomial.static <C extends GcdRingElem<C> & Rational>
booleanRootFactoryApp.isRootRealCoeff
(GenPolynomial<C> f, Complex<RealAlgebraicNumber<C>> r) Is complex algebraic number a root of a polynomial.boolean
Ideal.isUnit
(GenPolynomial<C> h) Test if element is a unit modulo this ideal.ColorPolynomial.multiply
(GenPolynomial<C> s) ColorPolynomial multiplication by coefficient.ColorPolynomial.multiply
(GenPolynomial<C> s, ExpVector e) ColorPolynomial multiplication by monomial.Local.multiply
(GenPolynomial<C> b) Local multiplication by GenPolynomial.Ideal.normalform
(GenPolynomial<C> h) Normalform for element.Ideal.product
(GenPolynomial<C> b) Product.Ideal.quotient
(GenPolynomial<C> h) Quotient.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilApp.realAlgFromRealCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> afac, GenPolynomial<RealAlgebraicNumber<C>> A) Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilApp.realFromRealAlgCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> rfac, GenPolynomial<RealAlgebraicNumber<C>> A) Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
AlgebraicRootsPrimElem<C> RootFactoryApp.rootReduce
(GenPolynomial<C> a, GenPolynomial<C> b) Root reduce of real and complex algebraic numbers.ColorPolynomial.subtract
(GenPolynomial<C> s, ExpVector e) ColorPolynomial subtract.ColorPolynomial.sum
(GenPolynomial<C> s, ExpVector e) ColorPolynomial summation.Ideal.sum
(GenPolynomial<C> b) Summation.LocalSolvablePolynomialRing.toPolyCoefficients
(GenPolynomial<SolvableLocal<C>> A) Integral function from rational polynomial coefficients.ResidueSolvablePolynomialRing.toPolyCoefficients
(GenPolynomial<SolvableResidue<C>> A) Integral function from solvable residue coefficients.ResidueSolvableWordPolynomialRing.toPolyCoefficients
(GenPolynomial<WordResidue<C>> A) Integral word function from word residue coefficients.static <C extends GcdRingElem<C>>
Product<Residue<C>> PolyUtilApp.toProductRes
(ProductRing<Residue<C>> pfac, GenPolynomial<C> c) Product representation.static <C extends GcdRingElem<C>>
GenPolynomial<Product<Residue<C>>> PolyUtilApp.toProductRes
(GenPolynomialRing<Product<Residue<C>>> pfac, GenPolynomial<GenPolynomial<C>> A) Product representation.static <C extends GcdRingElem<C>>
GenPolynomial<Residue<C>> PolyUtilApp.toResidue
(GenPolynomialRing<Residue<C>> pfac, GenPolynomial<GenPolynomial<C>> A) Residue coefficient representation.Method parameters in edu.jas.application with type arguments of type GenPolynomialModifier and TypeMethodDescriptionCReductionSeq.caseDistinction
(Condition<C> cond, GenPolynomial<GenPolynomial<C>> A) Case distinction conditions of parametric polynomial list.CReductionSeq.caseDistinction
(List<Condition<C>> cd, GenPolynomial<GenPolynomial<C>> A) Case distinction conditions of parametric polynomial list.CReductionSeq.caseDistinction
(List<GenPolynomial<GenPolynomial<C>>> L) Case distinction conditions of parametric polynomial list.CReductionSeq.caseDistinction
(List<GenPolynomial<GenPolynomial<C>>> L) Case distinction conditions of parametric polynomial list.static <D extends GcdRingElem<D> & Rational>
List<List<Complex<BigDecimal>>> PolyUtilApp.complexRoots
(Ideal<D> I, List<GenPolynomial<D>> univs, BigRational eps) Construct superset of complex roots for zero dimensional ideal(G).boolean
Ideal.contains
(List<GenPolynomial<C>> B) Ideal containment.protected boolean
Ideal.containsHT
(Set<Integer> H, List<GenPolynomial<C>> G) Ideal head term containment test.Condition.determine
(GenPolynomial<GenPolynomial<C>> A) Determine polynomial.Condition.determine
(List<GenPolynomial<GenPolynomial<C>>> L) Determine list of polynomials.Condition.determine
(List<GenPolynomial<GenPolynomial<C>>> L) Determine list of polynomials.CReductionSeq.determine
(List<GenPolynomial<GenPolynomial<C>>> H) Determine polynomial list.CReductionSeq.determine
(List<GenPolynomial<GenPolynomial<C>>> H) Determine polynomial list.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<Complex<RealAlgebraicNumber<C>>> PolyUtilApp.evaluateToComplexRealCoefficients
(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> pfac, GenPolynomial<GenPolynomial<Complex<C>>> A, Complex<RealAlgebraicNumber<C>> r) Evaluate to Complex<RealAlgebraicNumber> coefficients.LocalSolvablePolynomialRing.fromPolyCoefficients
(GenSolvablePolynomial<GenPolynomial<C>> A) Rational function from integral polynomial coefficients.ResidueSolvablePolynomialRing.fromPolyCoefficients
(GenSolvablePolynomial<GenPolynomial<C>> A) Solvable residue coefficients from integral polynomial coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtilApp.fromProduct
(GenPolynomialRing<GenPolynomial<C>> pfac, GenPolynomial<Product<Residue<C>>> P, int i) From product representation.static <C extends GcdRingElem<C>>
List<GenPolynomial<GenPolynomial<C>>> PolyUtilApp.fromProduct
(GenPolynomialRing<GenPolynomial<C>> pfac, List<GenPolynomial<Product<Residue<C>>>> L, int i) From product representation.static <C extends GcdRingElem<C>>
List<GenPolynomial<GenPolynomial<C>>> PolyUtilApp.fromProduct
(GenPolynomialRing<GenPolynomial<C>> pfac, List<GenPolynomial<Product<Residue<C>>>> L, int i) From product representation.ComprehensiveGroebnerBaseSeq.GB
(List<GenPolynomial<GenPolynomial<C>>> F) Comprehensive Groebner base via Groebner system.ComprehensiveGroebnerBaseSeq.GB
(List<GenPolynomial<GenPolynomial<C>>> F) Comprehensive Groebner base via Groebner system.ComprehensiveGroebnerBaseSeq.GBsys
(List<GenPolynomial<GenPolynomial<C>>> F) Comprehensive Groebner base system using pairlist class.ComprehensiveGroebnerBaseSeq.GBsys
(List<GenPolynomial<GenPolynomial<C>>> F) Comprehensive Groebner base system using pairlist class.static boolean
PolyUtilApp.isComplexRoots
(List<GenPolynomial<Complex<BigDecimal>>> L, List<List<Complex<BigDecimal>>> roots, BigDecimal eps) Test for complex roots of zero dimensional ideal(L).boolean
ComprehensiveGroebnerBaseSeq.isGB
(int modv, List<GenPolynomial<GenPolynomial<C>>> F) Comprehensive-Groebner base test.boolean
ComprehensiveGroebnerBaseSeq.isGB
(int modv, List<GenPolynomial<GenPolynomial<C>>> F) Comprehensive-Groebner base test.boolean
ComprehensiveGroebnerBaseSeq.isGB
(List<GenPolynomial<GenPolynomial<C>>> F) Comprehensive-Groebner base test.boolean
ComprehensiveGroebnerBaseSeq.isGB
(List<GenPolynomial<GenPolynomial<C>>> F) Comprehensive-Groebner base test.boolean
ComprehensiveGroebnerBaseSeq.isGBcol
(int modv, List<GenPolynomial<GenPolynomial<C>>> F) Comprehensive-Groebner base test using colored systems.boolean
ComprehensiveGroebnerBaseSeq.isGBcol
(int modv, List<GenPolynomial<GenPolynomial<C>>> F) Comprehensive-Groebner base test using colored systems.boolean
ComprehensiveGroebnerBaseSeq.isGBcol
(List<GenPolynomial<GenPolynomial<C>>> F) Comprehensive-Groebner base test using colored systems.boolean
ComprehensiveGroebnerBaseSeq.isGBcol
(List<GenPolynomial<GenPolynomial<C>>> F) Comprehensive-Groebner base test using colored systems.boolean
ComprehensiveGroebnerBaseSeq.isGBsubst
(int modv, List<GenPolynomial<GenPolynomial<C>>> F) Comprehensive-Groebner base test using substitution.boolean
ComprehensiveGroebnerBaseSeq.isGBsubst
(int modv, List<GenPolynomial<GenPolynomial<C>>> F) Comprehensive-Groebner base test using substitution.boolean
ComprehensiveGroebnerBaseSeq.isGBsubst
(List<GenPolynomial<GenPolynomial<C>>> F) Comprehensive-Groebner base test using substitution.boolean
ComprehensiveGroebnerBaseSeq.isGBsubst
(List<GenPolynomial<GenPolynomial<C>>> F) Comprehensive-Groebner base test using substitution.static boolean
PolyUtilApp.isRealRoots
(List<GenPolynomial<BigDecimal>> L, List<List<BigDecimal>> roots, BigDecimal eps) Test for real roots of zero dimensional ideal(L).Ideal.normalform
(List<GenPolynomial<C>> L) Normalform for list of elements.Ideal.normalPositionFor
(int i, int j, List<GenPolynomial<C>> og) Compute normal position for variables i and j.(package private) IdealWithUniv
<C> Ideal.normalPositionForChar0
(int i, int j, List<GenPolynomial<C>> og) Compute normal position for variables i and j, characteristic zero.(package private) IdealWithUniv
<C> Ideal.normalPositionForCharP
(int i, int j, List<GenPolynomial<C>> og) Compute normal position for variables i and j, positive characteristic.static <C extends GcdRingElem<C>>
StringPolyUtilApp.productSliceToString
(Map<Ideal<C>, PolynomialList<GenPolynomial<C>>> L) Product slice to String.static <D extends GcdRingElem<D> & Rational>
List<List<BigDecimal>> PolyUtilApp.realRoots
(Ideal<D> I, List<GenPolynomial<D>> univs, BigRational eps) Construct superset of real roots for zero dimensional ideal(G).Ideal.sum
(List<GenPolynomial<C>> L) Summation.static <C extends GcdRingElem<C>>
GenPolynomial<Product<Residue<C>>> PolyUtilApp.toProductRes
(GenPolynomialRing<Product<Residue<C>>> pfac, GenPolynomial<GenPolynomial<C>> A) Product representation.static <C extends GcdRingElem<C>>
List<GenPolynomial<Product<Residue<C>>>> PolyUtilApp.toProductRes
(GenPolynomialRing<Product<Residue<C>>> pfac, List<GenPolynomial<GenPolynomial<C>>> L) Product representation.static <C extends GcdRingElem<C>>
List<GenPolynomial<Product<Residue<C>>>> PolyUtilApp.toProductRes
(GenPolynomialRing<Product<Residue<C>>> pfac, List<GenPolynomial<GenPolynomial<C>>> L) Product representation.static <C extends GcdRingElem<C>>
GenPolynomial<Residue<C>> PolyUtilApp.toResidue
(GenPolynomialRing<Residue<C>> pfac, GenPolynomial<GenPolynomial<C>> A) Residue coefficient representation.static <C extends GcdRingElem<C>>
List<GenPolynomial<Residue<C>>> PolyUtilApp.toResidue
(GenPolynomialRing<Residue<C>> pfac, List<GenPolynomial<GenPolynomial<C>>> L) Residue coefficient representation.static <C extends GcdRingElem<C>>
List<GenPolynomial<Residue<C>>> PolyUtilApp.toResidue
(GenPolynomialRing<Residue<C>> pfac, List<GenPolynomial<GenPolynomial<C>>> L) Residue coefficient representation.Ideal.zeroDimDecompositionExtension
(List<GenPolynomial<C>> upol, List<GenPolynomial<C>> og) Zero dimensional ideal irreducible decomposition extension.Constructors in edu.jas.application with parameters of type GenPolynomialModifierConstructorDescriptionAlgebraicRootsPrimElem
(GenPolynomial<C> p, GenPolynomial<Complex<C>> cp, List<RealAlgebraicNumber<C>> r, List<ComplexAlgebraicNumber<C>> c, PrimitiveElement<C> pe, List<AlgebraicNumber<C>> ru) Constructor.ColorPolynomial
(GenPolynomial<GenPolynomial<C>> g, GenPolynomial<GenPolynomial<C>> r, GenPolynomial<GenPolynomial<C>> w) The constructor creates a colored polynomial from the colored parts.Local
(LocalRing<C> r, GenPolynomial<C> n) The constructor creates a Local object from a ring factory and a numerator polynomial.Local
(LocalRing<C> r, GenPolynomial<C> n, GenPolynomial<C> d) The constructor creates a Local object from a ring factory and a numerator and denominator polynomial.protected
Local
(LocalRing<C> r, GenPolynomial<C> n, GenPolynomial<C> d, boolean isred) The constructor creates a Local object from a ring factory and a numerator and denominator polynomial.The constructor creates a RealAlgebraicNumber object from a GenPolynomial value.Residue
(ResidueRing<C> r, GenPolynomial<C> a) The constructor creates a Residue object from a ring factory and a polynomial.Residue
(ResidueRing<C> r, GenPolynomial<C> a, int u) The constructor creates a Residue object from a ring factory, a polynomial and an indicator if a is a unit.Constructor parameters in edu.jas.application with type arguments of type GenPolynomialModifierConstructorDescriptionColorPolynomial
(GenPolynomial<GenPolynomial<C>> g, GenPolynomial<GenPolynomial<C>> r, GenPolynomial<GenPolynomial<C>> w) The constructor creates a colored polynomial from the colored parts.Ideal
(GenPolynomialRing<C> ring, List<GenPolynomial<C>> F) Constructor.Ideal
(GenPolynomialRing<C> ring, List<GenPolynomial<C>> F, boolean gb) Constructor.Ideal
(GenPolynomialRing<C> ring, List<GenPolynomial<C>> F, boolean gb, boolean topt) Constructor.IdealWithComplexAlgebraicRoots
(Ideal<D> id, List<GenPolynomial<D>> up, List<List<Complex<RealAlgebraicNumber<D>>>> cr) Constructor.IdealWithComplexRoots
(Ideal<C> id, List<GenPolynomial<C>> up, List<List<Complex<BigDecimal>>> cr) Constructor.IdealWithRealAlgebraicRoots
(Ideal<D> id, List<GenPolynomial<D>> up, List<List<RealAlgebraicNumber<D>>> rr) Constructor.IdealWithRealRoots
(Ideal<C> id, List<GenPolynomial<C>> up, List<List<BigDecimal>> rr) Constructor.protected
IdealWithUniv
(Ideal<C> id, List<GenPolynomial<C>> up) Constructor.protected
IdealWithUniv
(Ideal<C> id, List<GenPolynomial<C>> up, List<GenPolynomial<C>> og) Constructor.OrderedCPairlist
(int m, GenPolynomialRing<GenPolynomial<C>> r) Constructor for OrderedPairlist.private
OrderedCPairlist
(int m, GenPolynomialRing<GenPolynomial<C>> r, List<ColorPolynomial<C>> P, SortedMap<ExpVector, LinkedList<CPair<C>>> pl, List<BitSet> red, CReductionSeq<C> cred, int pc, int rc) Internal constructor for OrderedPairlist.Constructor for OrderedPairlist. -
Uses of GenPolynomial in edu.jas.fd
Subclasses of GenPolynomial in edu.jas.fdModifier and TypeClassDescriptionclass
QuotSolvablePolynomial<C extends GcdRingElem<C>>
QuotSolvablePolynomial generic recursive solvable polynomials implementing RingElem.Methods in edu.jas.fd that return types with arguments of type GenPolynomialModifier and TypeMethodDescriptionGreatestCommonDivisorAbstract.baseRecursivePrimitivePart
(GenSolvablePolynomial<GenPolynomial<C>> P) GenSolvablePolynomial base recursive primitive part.(package private) static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.experimentalRecursiveLeftDivide
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<C> s) static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.integralFromQuotientCoefficients
(GenSolvablePolynomialRing<GenPolynomial<C>> fac, GenSolvablePolynomial<SolvableQuotient<C>> A) Integral solvable polynomial from solvable rational function coefficients.static <C extends GcdRingElem<C>>
List<GenSolvablePolynomial<GenPolynomial<C>>> FDUtil.integralFromQuotientCoefficients
(GenSolvablePolynomialRing<GenPolynomial<C>> fac, Collection<GenSolvablePolynomial<SolvableQuotient<C>>> L) Integral solvable polynomial from solvable rational function coefficients.GreatestCommonDivisorAbstract.leftRecursiveGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) GenSolvablePolynomial left recursive greatest common divisor.GreatestCommonDivisorAbstract.leftRecursivePrimitivePart
(GenSolvablePolynomial<GenPolynomial<C>> P) GenSolvablePolynomial left recursive primitive part.abstract GenSolvablePolynomial
<GenPolynomial<C>> GreatestCommonDivisorAbstract.leftRecursiveUnivariateGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) Univariate GenSolvablePolynomial recursive greatest common divisor.GreatestCommonDivisorFake.leftRecursiveUnivariateGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) Univariate GenSolvablePolynomial left recursive greatest common divisor.GreatestCommonDivisorPrimitive.leftRecursiveUnivariateGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) Univariate GenSolvablePolynomial left recursive greatest common divisor.GreatestCommonDivisorSimple.leftRecursiveUnivariateGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) Univariate GenSolvablePolynomial left recursive greatest common divisor.GreatestCommonDivisorSyzygy.leftRecursiveUnivariateGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) Univariate GenSolvablePolynomial left recursive greatest common divisor.SGCDParallelProxy.leftRecursiveUnivariateGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) left univariate GenSolvablePolynomial recursive greatest common divisor.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.recursiveDivide
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<C> s) GenSolvablePolynomial left recursive quotient for recursive polynomials and exact division by coefficient ring element.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.recursiveDivideRightEval
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<C> s) GenSolvablePolynomial recursive quotient for recursive polynomials and exact division by coefficient ring element.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.recursiveLeftDivide
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<C> s) GenSolvablePolynomial recursive quotient for recursive polynomials and partial left exact division by coefficient ring element.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.recursivePseudoQuotient
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) GenSolvablePolynomial recursive pseudo quotient for recursive polynomials.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>>[]FDUtil.recursivePseudoQuotientRemainder
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) GenSolvablePolynomial recursive pseudo quotient and remainder for recursive polynomials.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.recursiveRightDivide
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<C> s) GenSolvablePolynomial recursive quotient for recursive polynomials and partial right exact division by coefficient ring element.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.recursiveRightPseudoQuotient
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) GenSolvablePolynomial recursive right pseudo quotient for recursive polynomials.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>>[]FDUtil.recursiveRightPseudoQuotientRemainder
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) GenSolvablePolynomial right sparse pseudo quotient and remainder for recursive solvable polynomials.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.recursiveRightSparsePseudoRemainder
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) GenSolvablePolynomial right sparse pseudo remainder for recursive solvable polynomials.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.recursiveSparsePseudoRemainder
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) GenSolvablePolynomial sparse pseudo remainder for recursive solvable polynomials.GreatestCommonDivisorAbstract.rightRecursiveGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) GenSolvablePolynomial right recursive greatest common divisor.GreatestCommonDivisorAbstract.rightRecursivePrimitivePart
(GenSolvablePolynomial<GenPolynomial<C>> P) GenSolvablePolynomial right recursive primitive part.abstract GenSolvablePolynomial
<GenPolynomial<C>> GreatestCommonDivisorAbstract.rightRecursiveUnivariateGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) Univariate GenSolvablePolynomial right recursive greatest common divisor.GreatestCommonDivisorFake.rightRecursiveUnivariateGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) Univariate GenSolvablePolynomial right recursive greatest common divisor.GreatestCommonDivisorPrimitive.rightRecursiveUnivariateGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) Univariate GenSolvablePolynomial right recursive greatest common divisor.GreatestCommonDivisorSimple.rightRecursiveUnivariateGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) Univariate GenSolvablePolynomial right recursive greatest common divisor.GreatestCommonDivisorSyzygy.rightRecursiveUnivariateGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) Univariate GenSolvablePolynomial right recursive greatest common divisor.SGCDParallelProxy.rightRecursiveUnivariateGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) right univariate GenSolvablePolynomial recursive greatest common divisor.Methods in edu.jas.fd with parameters of type GenPolynomialModifier and TypeMethodDescriptionSolvableQuotientRing.create
(GenPolynomial<C> n) Create from numerator.SolvableQuotientRing.create
(GenPolynomial<C> n, GenPolynomial<C> d) Create from numerator, denominator pair.static <C extends GcdRingElem<C>>
booleanFDUtil.isLeftBasePseudoQuotientRemainder
(GenPolynomial<C> P, GenPolynomial<C> S, GenPolynomial<C> q, GenPolynomial<C> r) Is GenSolvablePolynomial left base pseudo quotient and remainder.static <C extends GcdRingElem<C>>
booleanFDUtil.isRightBasePseudoQuotientRemainder
(GenPolynomial<C> P, GenPolynomial<C> S, GenPolynomial<C> q, GenPolynomial<C> r) Is GenSolvablePolynomial right base pseudo quotient and remainder.QuotSolvablePolynomialRing.toPolyCoefficients
(GenPolynomial<SolvableQuotient<C>> A) Integral function from rational polynomial coefficients.Method parameters in edu.jas.fd with type arguments of type GenPolynomialModifier and TypeMethodDescriptionGreatestCommonDivisorAbstract.baseRecursiveContent
(GenSolvablePolynomial<GenPolynomial<C>> P) GenSolvablePolynomial base recursive content.GreatestCommonDivisorAbstract.baseRecursivePrimitivePart
(GenSolvablePolynomial<GenPolynomial<C>> P) GenSolvablePolynomial base recursive primitive part.(package private) static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.experimentalRecursiveLeftDivide
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<C> s) QuotSolvablePolynomialRing.fromPolyCoefficients
(GenSolvablePolynomial<GenPolynomial<C>> A) Rational function from integral polynomial coefficients.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.integralFromQuotientCoefficients
(GenSolvablePolynomialRing<GenPolynomial<C>> fac, GenSolvablePolynomial<SolvableQuotient<C>> A) Integral solvable polynomial from solvable rational function coefficients.static <C extends GcdRingElem<C>>
List<GenSolvablePolynomial<GenPolynomial<C>>> FDUtil.integralFromQuotientCoefficients
(GenSolvablePolynomialRing<GenPolynomial<C>> fac, Collection<GenSolvablePolynomial<SolvableQuotient<C>>> L) Integral solvable polynomial from solvable rational function coefficients.static <C extends GcdRingElem<C>>
booleanFDUtil.isRecursivePseudoQuotientRemainder
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S, GenSolvablePolynomial<GenPolynomial<C>> q, GenSolvablePolynomial<GenPolynomial<C>> r) Is recursive GenSolvablePolynomial pseudo quotient and remainder.static <C extends GcdRingElem<C>>
booleanFDUtil.isRecursiveRightPseudoQuotientRemainder
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S, GenSolvablePolynomial<GenPolynomial<C>> q, GenSolvablePolynomial<GenPolynomial<C>> r) Is recursive GenSolvablePolynomial right pseudo quotient and remainder.GreatestCommonDivisorAbstract.leftRecursiveContent
(GenSolvablePolynomial<GenPolynomial<C>> P) GenSolvablePolynomial left recursive content.GreatestCommonDivisorAbstract.leftRecursiveGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) GenSolvablePolynomial left recursive greatest common divisor.GreatestCommonDivisorAbstract.leftRecursivePrimitivePart
(GenSolvablePolynomial<GenPolynomial<C>> P) GenSolvablePolynomial left recursive primitive part.abstract GenSolvablePolynomial
<GenPolynomial<C>> GreatestCommonDivisorAbstract.leftRecursiveUnivariateGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) Univariate GenSolvablePolynomial recursive greatest common divisor.GreatestCommonDivisorFake.leftRecursiveUnivariateGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) Univariate GenSolvablePolynomial left recursive greatest common divisor.GreatestCommonDivisorPrimitive.leftRecursiveUnivariateGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) Univariate GenSolvablePolynomial left recursive greatest common divisor.GreatestCommonDivisorSimple.leftRecursiveUnivariateGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) Univariate GenSolvablePolynomial left recursive greatest common divisor.GreatestCommonDivisorSyzygy.leftRecursiveUnivariateGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) Univariate GenSolvablePolynomial left recursive greatest common divisor.SGCDParallelProxy.leftRecursiveUnivariateGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) left univariate GenSolvablePolynomial recursive greatest common divisor.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<SolvableQuotient<C>> FDUtil.quotientFromIntegralCoefficients
(GenSolvablePolynomialRing<SolvableQuotient<C>> fac, GenSolvablePolynomial<GenPolynomial<C>> A) Solvable rational function from integral solvable polynomial coefficients.static <C extends GcdRingElem<C>>
List<GenSolvablePolynomial<SolvableQuotient<C>>> FDUtil.quotientFromIntegralCoefficients
(GenSolvablePolynomialRing<SolvableQuotient<C>> fac, Collection<GenSolvablePolynomial<GenPolynomial<C>>> L) Solvable rational function from integral solvable polynomial coefficients.GreatestCommonDivisorAbstract.recursiveContent
(GenSolvablePolynomial<GenPolynomial<C>> P) GenSolvablePolynomial commuting recursive content.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.recursiveDivide
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<C> s) GenSolvablePolynomial left recursive quotient for recursive polynomials and exact division by coefficient ring element.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.recursiveDivideRightEval
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<C> s) GenSolvablePolynomial recursive quotient for recursive polynomials and exact division by coefficient ring element.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.recursiveLeftDivide
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<C> s) GenSolvablePolynomial recursive quotient for recursive polynomials and partial left exact division by coefficient ring element.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.recursivePseudoQuotient
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) GenSolvablePolynomial recursive pseudo quotient for recursive polynomials.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>>[]FDUtil.recursivePseudoQuotientRemainder
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) GenSolvablePolynomial recursive pseudo quotient and remainder for recursive polynomials.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.recursiveRightDivide
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<C> s) GenSolvablePolynomial recursive quotient for recursive polynomials and partial right exact division by coefficient ring element.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.recursiveRightPseudoQuotient
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) GenSolvablePolynomial recursive right pseudo quotient for recursive polynomials.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>>[]FDUtil.recursiveRightPseudoQuotientRemainder
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) GenSolvablePolynomial right sparse pseudo quotient and remainder for recursive solvable polynomials.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.recursiveRightSparsePseudoRemainder
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) GenSolvablePolynomial right sparse pseudo remainder for recursive solvable polynomials.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.recursiveSparsePseudoRemainder
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) GenSolvablePolynomial sparse pseudo remainder for recursive solvable polynomials.GreatestCommonDivisorAbstract.rightRecursiveContent
(GenSolvablePolynomial<GenPolynomial<C>> P) GenSolvablePolynomial right recursive content.GreatestCommonDivisorAbstract.rightRecursiveGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) GenSolvablePolynomial right recursive greatest common divisor.GreatestCommonDivisorAbstract.rightRecursivePrimitivePart
(GenSolvablePolynomial<GenPolynomial<C>> P) GenSolvablePolynomial right recursive primitive part.abstract GenSolvablePolynomial
<GenPolynomial<C>> GreatestCommonDivisorAbstract.rightRecursiveUnivariateGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) Univariate GenSolvablePolynomial right recursive greatest common divisor.GreatestCommonDivisorFake.rightRecursiveUnivariateGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) Univariate GenSolvablePolynomial right recursive greatest common divisor.GreatestCommonDivisorPrimitive.rightRecursiveUnivariateGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) Univariate GenSolvablePolynomial right recursive greatest common divisor.GreatestCommonDivisorSimple.rightRecursiveUnivariateGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) Univariate GenSolvablePolynomial right recursive greatest common divisor.GreatestCommonDivisorSyzygy.rightRecursiveUnivariateGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) Univariate GenSolvablePolynomial right recursive greatest common divisor.SGCDParallelProxy.rightRecursiveUnivariateGcd
(GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) right univariate GenSolvablePolynomial recursive greatest common divisor. -
Uses of GenPolynomial in edu.jas.gb
Fields in edu.jas.gb declared as GenPolynomialModifier and TypeFieldDescriptionprivate GenPolynomial
<C> MiReducer.H
private GenPolynomial
<C> MiReducerClient.H
private GenPolynomial
<C> MiReducerClientEC.H
private GenPolynomial
<C> MiReducerClientSeqPair.H
private GenPolynomial
<C> MiReducerIter.H
private GenPolynomial
<C> MiReducerSeqPair.H
private GenPolynomial
<C> MiReducerServer.H
private GenPolynomial
<C> MiReducerServerEC.H
private GenPolynomial
<C> MiReducerServerSeqPair.H
final GenPolynomial
<C> AbstractPair.pi
final GenPolynomial
<C> AbstractPair.pj
final GenPolynomial
<C> GBSPTransportMessPoly.pol
The polynomial for transport.final GenPolynomial
<C> GBTransportMessPoly.pol
The polynomial to transport.final GenPolynomial
<C> SigPoly.poly
protected GenPolynomial
<C> CriticalPair.reductum
final GenPolynomial
<C> SigPair.sigma
final GenPolynomial
<C> SigPoly.sigma
Fields in edu.jas.gb with type parameters of type GenPolynomialModifier and TypeFieldDescriptionfinal BasicLinAlg
<GenPolynomial<C>> GroebnerBaseAbstract.blas
linear algebra engine.protected final BasicLinAlg
<GenPolynomial<C>> SolvableGroebnerBaseAbstract.blas
Linear algebra engine.final List
<GenPolynomial<C>> ExtendedGB.F
final List
<List<GenPolynomial<C>>> ExtendedGB.F2G
final List
<GenPolynomial<C>> ExtendedGB.G
private final List
<GenPolynomial<C>> MiReducer.G
private final List
<GenPolynomial<C>> MiReducerClient.G
private final List
<GenPolynomial<C>> MiReducerClientEC.G
private final List
<GenPolynomial<C>> MiReducerClientSeqPair.G
private final List
<GenPolynomial<C>> MiReducerIter.G
private final List
<GenPolynomial<C>> MiReducerSeqPair.G
private final List
<GenPolynomial<C>> MiReducerServer.G
private final List
<GenPolynomial<C>> MiReducerServerEC.G
private final List
<GenPolynomial<C>> MiReducerServerSeqPair.G
private final List
<GenPolynomial<C>> Reducer.G
private final List
<GenPolynomial<C>> ReducerIter.G
private final List
<GenPolynomial<C>> ReducerSeqPair.G
final List
<List<GenPolynomial<C>>> ExtendedGB.G2F
protected final List
<GenPolynomial<C>> OrderedPairlist.P
private final DistHashTable
<Integer, GenPolynomial<C>> HybridReducerClientEC.theList
private final DistHashTable
<Integer, GenPolynomial<C>> HybridReducerReceiverEC.theList
private final DistHashTable
<Integer, GenPolynomial<C>> HybridReducerServerEC.theList
private final DistHashTable
<Integer, GenPolynomial<C>> ReducerClientEC.theList
private final DistHashTable
<Integer, GenPolynomial<C>> ReducerClientSeqPair.theList
private final DistHashTable
<Integer, GenPolynomial<C>> ReducerServerEC.theList
private final DistHashTable
<Integer, GenPolynomial<C>> ReducerServerSeqPair.theList
Methods in edu.jas.gb that return GenPolynomialModifier and TypeMethodDescriptionGroebnerBaseAbstract.constructUnivariate
(int i, List<GenPolynomial<C>> G) Construct univariate polynomial of minimal degree in variable i of a zero dimensional ideal(G).(package private) GenPolynomial
<BigInteger> Cyclic.cyclicPoly
(GenPolynomialRing<BigInteger> ring, int n, int i) MiReducer.getNF()
getNF.MiReducerClient.getNF()
getNF.MiReducerClientEC.getNF()
getNF.MiReducerClientSeqPair.getNF()
getNF.MiReducerIter.getNF()
getNF.MiReducerSeqPair.getNF()
getNF.MiReducerServer.getNF()
getNF.MiReducerServerEC.getNF()
getNF.MiReducerServerSeqPair.getNF()
getNF.(package private) GenPolynomial
<C> SigPoly.getPoly()
getter for polynomialCriticalPair.getReductum()
Get reduced polynomial.(package private) GenPolynomial
<C> SigPair.getSigma()
getter for sigma(package private) GenPolynomial
<C> SigPoly.getSigma()
getter for sigmaDReduction.GPolynomial
(GenPolynomial<C> Ap, GenPolynomial<C> Bp) G-Polynomial.DReduction.GPolynomial
(List<GenPolynomial<C>> S, int i, GenPolynomial<C> Ap, int j, GenPolynomial<C> Bp) G-Polynomial with recording.DReductionSeq.GPolynomial
(GenPolynomial<C> Ap, GenPolynomial<C> Bp) G-Polynomial.DReductionSeq.GPolynomial
(List<GenPolynomial<C>> row, int i, GenPolynomial<C> Ap, int j, GenPolynomial<C> Bp) G-Polynomial with recording.DGroebnerBaseSeq.inverse
(GenPolynomial<C> h, List<GenPolynomial<C>> F) Inverse for element modulo ideal.DReductionSeq.normalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform using d-reduction.DReductionSeq.normalform
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with recording.EReductionSeq.normalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform using e-reduction.EReductionSeq.normalform
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with recording.Reduction.normalform
(List<GenPolynomial<C>> P, GenPolynomial<C> A) Normalform.Reduction.normalform
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with recording.ReductionPar.normalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform.ReductionPar.normalform
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with recording.ReductionPar.normalform
(Map<Integer, GenPolynomial<C>> mp, GenPolynomial<C> Ap) Normalform.ReductionSeq.normalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform.ReductionSeq.normalform
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with recording.ReductionAbstract.normalformMarked
(List<Monomial<C>> Mp, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with respect to marked head terms.ReductionSeq.normalformMarked
(List<Monomial<C>> Mp, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with respect to marked head terms.DReductionSeq.SPolynomial
(GenPolynomial<C> Ap, GenPolynomial<C> Bp) S-Polynomial.DReductionSeq.SPolynomial
(List<GenPolynomial<C>> row, int i, GenPolynomial<C> Ap, int j, GenPolynomial<C> Bp) S-Polynomial with recording.(package private) GenPolynomial
<C> GroebnerBaseArriSigSeqIter.SPolynomial
(SigPair<C> P) S-Polynomial.(package private) GenPolynomial
<C> GroebnerBaseGGVSigSeqIter.SPolynomial
(SigPoly<C> A, SigPoly<C> B) S-Polynomial.(package private) GenPolynomial
<C> GroebnerBaseSigSeqIter.SPolynomial
(SigPair<C> P) S-Polynomial.(package private) GenPolynomial
<C> GroebnerBaseSigSeqIter.SPolynomial
(SigPoly<C> A, SigPoly<C> B) S-Polynomial.Reduction.SPolynomial
(GenPolynomial<C> Ap, GenPolynomial<C> Bp) S-Polynomial.Reduction.SPolynomial
(List<GenPolynomial<C>> S, int i, GenPolynomial<C> Ap, int j, GenPolynomial<C> Bp) S-Polynomial with recording.ReductionAbstract.SPolynomial
(GenPolynomial<C> A, GenPolynomial<C> B) S-Polynomial.ReductionAbstract.SPolynomial
(List<GenPolynomial<C>> S, int i, GenPolynomial<C> A, int j, GenPolynomial<C> B) S-Polynomial with recording.SigReduction.SPolynomial
(SigPoly<C> Ap, SigPoly<C> Bp) S-Polynomial.SigReductionSeq.SPolynomial
(SigPoly<C> A, SigPoly<C> B) S-Polynomial.(package private) GenPolynomial<C>[]
GroebnerBaseSigSeqIter.SPolynomialFactors
(SigPoly<C> A, SigPoly<C> B) S-Polynomial polynomial factors.GenPolynomial<C>[]
SigReductionSeq.SPolynomialFactors
(SigPoly<C> A, SigPoly<C> B) S-Polynomial polynomial factors.SigReductionSeq.SPolynomialHalf
(SigPoly<C> A, SigPoly<C> B) S-Polynomial half.Methods in edu.jas.gb that return types with arguments of type GenPolynomialModifier and TypeMethodDescriptionCyclic.cyclicPolys()
Compute list of polynomials.(package private) List
<GenPolynomial<BigInteger>> Cyclic.cyclicPolys
(GenPolynomialRing<BigInteger> ring) Compute list of polynomials.GBDistSP.execute
(List<GenPolynomial<C>> F) Deprecated.Execute a distributed GB example.DGroebnerBaseSeq.GB
(int modv, List<GenPolynomial<C>> F) D-Groebner base using pairlist class.GBOptimized.GB
(int modv, List<GenPolynomial<C>> F) Groebner base.GBProxy.GB
(int modv, List<GenPolynomial<C>> F) Groebner base.GroebnerBase.GB
(int modv, List<GenPolynomial<C>> F) Groebner base using pairlist class.GroebnerBase.GB
(List<GenPolynomial<C>> F) Groebner base using pairlist class.GroebnerBaseAbstract.GB
(List<GenPolynomial<C>> F) Groebner base using pairlist class.GroebnerBaseDistributedEC.GB
(int modv, List<GenPolynomial<C>> F) Distributed Groebner base.GroebnerBaseDistributedHybridEC.GB
(int modv, List<GenPolynomial<C>> F) Distributed Groebner base.GroebnerBaseParallel.GB
(int modv, List<GenPolynomial<C>> F) Parallel Groebner base using pairlist class.GroebnerBaseParIter.GB
(int modv, List<GenPolynomial<C>> F) Parallel iterative Groebner base using pairlist class.GroebnerBaseParIter.GB
(int modv, List<GenPolynomial<C>> G, GenPolynomial<C> f) Groebner base using pairlist class.GroebnerBaseSeq.GB
(int modv, List<GenPolynomial<C>> F) Groebner base using pairlist class.GroebnerBaseSeqIter.GB
(int modv, List<GenPolynomial<C>> F) Groebner base using pairlist class, iterative algorithm.GroebnerBaseSeqIter.GB
(int modv, List<GenPolynomial<C>> G, GenPolynomial<C> f) Groebner base using pairlist class.GroebnerBaseSeqPairDistributed.GB
(int modv, List<GenPolynomial<C>> F) Deprecated.Distributed Groebner base.GroebnerBaseSeqPairParallel.GB
(int modv, List<GenPolynomial<C>> F) Parallel Groebner base using sequential pair order class.GroebnerBaseSeqPairSeq.GB
(int modv, List<GenPolynomial<C>> F) Groebner base using pairlist class.GroebnerBaseSigSeqIter.GB
(int modv, List<GenPolynomial<C>> F) Groebner base signature iterative algorithm.GroebnerBaseSigSeqIter.GB
(int modv, List<GenPolynomial<C>> G, GenPolynomial<C> f) Groebner base iterated.(package private) List
<GenPolynomial<C>> GroebnerBaseDistributedEC.GBMaster
(int modv, List<GenPolynomial<C>> F) Distributed Groebner base.(package private) List
<GenPolynomial<C>> GroebnerBaseDistributedHybridEC.GBMaster
(int modv, List<GenPolynomial<C>> F) Distributed hybrid Groebner base.OrderedPairlist.getList()
Get the list of polynomials.PairList.getList()
Get the list of polynomials.DReductionSeq.irreducibleSet
(List<GenPolynomial<C>> Pp) Irreducible set.EReductionSeq.irreducibleSet
(List<GenPolynomial<C>> Pp) Irreducible set.Reduction.irreducibleSet
(List<GenPolynomial<C>> Pp) Irreducible set.ReductionAbstract.irreducibleSet
(List<GenPolynomial<C>> Pp) Irreducible set.GroebnerBase.minimalGB
(List<GenPolynomial<C>> Gp) Minimal ordered groebner basis.GroebnerBaseAbstract.minimalGB
(List<GenPolynomial<C>> Gp) Minimal ordered Groebner basis.GroebnerBaseDistributedEC.minimalGB
(List<GenPolynomial<C>> Fp) Minimal ordered groebner basis.GroebnerBaseDistributedHybridEC.minimalGB
(List<GenPolynomial<C>> Fp) Minimal ordered groebner basis.GroebnerBaseParallel.minimalGB
(List<GenPolynomial<C>> Fp) Minimal ordered groebner basis, parallel.GroebnerBaseParIter.minimalGB
(List<GenPolynomial<C>> Fp) Minimal ordered groebner basis, parallel.GroebnerBaseSeqPairDistributed.minimalGB
(List<GenPolynomial<C>> Fp) Deprecated.Minimal ordered groebner basis.GroebnerBaseSeqPairParallel.minimalGB
(List<GenPolynomial<C>> Fp) Minimal ordered groebner basis, parallel.Reduction.normalform
(List<GenPolynomial<C>> Pp, List<GenPolynomial<C>> Ap) Normalform Set.ReductionAbstract.normalform
(List<GenPolynomial<C>> Pp, List<GenPolynomial<C>> Ap) Normalform Set.List
<List<GenPolynomial<C>>> GroebnerBaseAbstract.normalizeMatrix
(int flen, List<List<GenPolynomial<C>>> M) Normalize M.GroebnerBaseAbstract.normalizeZerosOnes
(List<GenPolynomial<C>> A) Normalize polynomial list.Select polynomials.Select signatures.Methods in edu.jas.gb with parameters of type GenPolynomialModifier and TypeMethodDescriptionboolean
DReductionSeq.criterion4
(GenPolynomial<C> A, GenPolynomial<C> B) GB criterium 4.boolean
DReductionSeq.criterion4
(GenPolynomial<C> A, GenPolynomial<C> B, ExpVector e) GB criterium 4.boolean
Reduction.criterion4
(GenPolynomial<C> A, GenPolynomial<C> B) GB criterium 4.boolean
Reduction.criterion4
(GenPolynomial<C> A, GenPolynomial<C> B, ExpVector e) GB criterium 4.boolean
ReductionAbstract.criterion4
(GenPolynomial<C> A, GenPolynomial<C> B) GB criterium 4.boolean
ReductionAbstract.criterion4
(GenPolynomial<C> A, GenPolynomial<C> B, ExpVector e) GB criterium 4.GroebnerBaseParIter.GB
(int modv, List<GenPolynomial<C>> G, GenPolynomial<C> f) Groebner base using pairlist class.GroebnerBaseSeqIter.GB
(int modv, List<GenPolynomial<C>> G, GenPolynomial<C> f) Groebner base using pairlist class.GroebnerBaseSigSeqIter.GB
(int modv, List<GenPolynomial<C>> G, GenPolynomial<C> f) Groebner base iterated.DReduction.GPolynomial
(GenPolynomial<C> Ap, GenPolynomial<C> Bp) G-Polynomial.DReduction.GPolynomial
(List<GenPolynomial<C>> S, int i, GenPolynomial<C> Ap, int j, GenPolynomial<C> Bp) G-Polynomial with recording.DReductionSeq.GPolynomial
(GenPolynomial<C> Ap, GenPolynomial<C> Bp) G-Polynomial.DReductionSeq.GPolynomial
(List<GenPolynomial<C>> row, int i, GenPolynomial<C> Ap, int j, GenPolynomial<C> Bp) G-Polynomial with recording.DGroebnerBaseSeq.inverse
(GenPolynomial<C> h, List<GenPolynomial<C>> F) Inverse for element modulo ideal.boolean
DReductionSeq.isNormalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Is in Normalform.boolean
EReductionSeq.isNormalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Is in Normalform.boolean
Reduction.isNormalform
(List<GenPolynomial<C>> P, GenPolynomial<C> A) Is in Normalform.boolean
ReductionAbstract.isNormalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Is in Normalform.boolean
Reduction.isReducible
(List<GenPolynomial<C>> P, GenPolynomial<C> A) Is reducible.boolean
ReductionAbstract.isReducible
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Is reducible.boolean
Reduction.isReductionNF
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap, GenPolynomial<C> Np) Is reduction of normal form.boolean
ReductionAbstract.isReductionNF
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap, GenPolynomial<C> Np) Is reduction of normal form.boolean
DReductionSeq.isTopReducible
(List<GenPolynomial<C>> P, GenPolynomial<C> A) Is top reducible.boolean
EReductionSeq.isTopReducible
(List<GenPolynomial<C>> P, GenPolynomial<C> A) Is top reducible.boolean
Reduction.isTopReducible
(List<GenPolynomial<C>> P, GenPolynomial<C> A) Is top reducible.boolean
ReductionAbstract.isTopReducible
(List<GenPolynomial<C>> P, GenPolynomial<C> A) Is top reducible.boolean
Reduction.moduleCriterion
(int modv, GenPolynomial<C> A, GenPolynomial<C> B) Module criterium.boolean
ReductionAbstract.moduleCriterion
(int modv, GenPolynomial<C> A, GenPolynomial<C> B) Module criterium.GroebnerBaseArriSigSeqIter.newPair
(GenPolynomial<C> s, SigPoly<C> A, SigPoly<C> B, List<SigPoly<C>> G) Pair with signature.Pair with signature.DReductionSeq.normalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform using d-reduction.DReductionSeq.normalform
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with recording.EReductionSeq.normalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform using e-reduction.EReductionSeq.normalform
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with recording.Reduction.normalform
(List<GenPolynomial<C>> P, GenPolynomial<C> A) Normalform.Reduction.normalform
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with recording.ReductionPar.normalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform.ReductionPar.normalform
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with recording.ReductionPar.normalform
(Map<Integer, GenPolynomial<C>> mp, GenPolynomial<C> Ap) Normalform.ReductionSeq.normalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform.ReductionSeq.normalform
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with recording.ReductionAbstract.normalformMarked
(List<Monomial<C>> Mp, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with respect to marked head terms.ReductionSeq.normalformMarked
(List<Monomial<C>> Mp, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with respect to marked head terms.int
CriticalPairList.put
(GenPolynomial<C> p) Put a polynomial to the pairlist and reduction matrix.int
OrderedMinPairlist.put
(GenPolynomial<C> p) Put one Polynomial to the pairlist and reduction matrix.int
OrderedPairlist.put
(GenPolynomial<C> p) Put one Polynomial to the pairlist and reduction matrix.int
OrderedSyzPairlist.put
(GenPolynomial<C> p) Put one Polynomial to the pairlist and reduction matrix.int
PairList.put
(GenPolynomial<C> p) Put one Polynomial to the pairlist and reduction matrix.int
OrderedPairlist.putOne
(GenPolynomial<C> one) Put the ONE-Polynomial to the pairlist.int
CriticalPairList.record
(CriticalPair<C> pair, GenPolynomial<C> p) Record reduced polynomial.void
CriticalPair.setReductum
(GenPolynomial<C> r) Set reduced polynomial.DReductionSeq.SPolynomial
(GenPolynomial<C> Ap, GenPolynomial<C> Bp) S-Polynomial.DReductionSeq.SPolynomial
(List<GenPolynomial<C>> row, int i, GenPolynomial<C> Ap, int j, GenPolynomial<C> Bp) S-Polynomial with recording.Reduction.SPolynomial
(GenPolynomial<C> Ap, GenPolynomial<C> Bp) S-Polynomial.Reduction.SPolynomial
(List<GenPolynomial<C>> S, int i, GenPolynomial<C> Ap, int j, GenPolynomial<C> Bp) S-Polynomial with recording.ReductionAbstract.SPolynomial
(GenPolynomial<C> A, GenPolynomial<C> B) S-Polynomial.ReductionAbstract.SPolynomial
(List<GenPolynomial<C>> S, int i, GenPolynomial<C> A, int j, GenPolynomial<C> B) S-Polynomial with recording.int
CriticalPairList.update
(CriticalPair<C> pair, GenPolynomial<C> p) Record reduced polynomial and update critical pair list.Method parameters in edu.jas.gb with type arguments of type GenPolynomialModifier and TypeMethodDescriptionint
GroebnerBaseAbstract.commonZeroTest
(List<GenPolynomial<C>> F) Common zero test.GroebnerBaseAbstract.constructUnivariate
(int i, List<GenPolynomial<C>> G) Construct univariate polynomial of minimal degree in variable i of a zero dimensional ideal(G).(package private) boolean
GroebnerBaseAbstract.criterion3
(int i, int j, ExpVector eij, List<GenPolynomial<C>> P) GB criterium 3.GBDistSP.execute
(List<GenPolynomial<C>> F) Deprecated.Execute a distributed GB example.DGroebnerBaseSeq.extGB
(int modv, List<GenPolynomial<C>> F) Extended Groebner base using pairlist class.GroebnerBase.extGB
(int modv, List<GenPolynomial<C>> F) Extended Groebner base using critical pair class.GroebnerBase.extGB
(List<GenPolynomial<C>> F) Extended Groebner base using critical pair class.GroebnerBaseAbstract.extGB
(int modv, List<GenPolynomial<C>> F) Extended Groebner base using critical pair class.GroebnerBaseAbstract.extGB
(List<GenPolynomial<C>> F) Extended Groebner base using critical pair class.GroebnerBaseSeq.extGB
(int modv, List<GenPolynomial<C>> F) Extended Groebner base using critical pair class.GroebnerBaseSeqPairSeq.extGB
(int modv, List<GenPolynomial<C>> F) Extended Groebner base using critical pair class.DGroebnerBaseSeq.GB
(int modv, List<GenPolynomial<C>> F) D-Groebner base using pairlist class.GBOptimized.GB
(int modv, List<GenPolynomial<C>> F) Groebner base.GBProxy.GB
(int modv, List<GenPolynomial<C>> F) Groebner base.GroebnerBase.GB
(int modv, List<GenPolynomial<C>> F) Groebner base using pairlist class.GroebnerBase.GB
(List<GenPolynomial<C>> F) Groebner base using pairlist class.GroebnerBaseAbstract.GB
(List<GenPolynomial<C>> F) Groebner base using pairlist class.GroebnerBaseDistributedEC.GB
(int modv, List<GenPolynomial<C>> F) Distributed Groebner base.GroebnerBaseDistributedHybridEC.GB
(int modv, List<GenPolynomial<C>> F) Distributed Groebner base.GroebnerBaseParallel.GB
(int modv, List<GenPolynomial<C>> F) Parallel Groebner base using pairlist class.GroebnerBaseParIter.GB
(int modv, List<GenPolynomial<C>> F) Parallel iterative Groebner base using pairlist class.GroebnerBaseParIter.GB
(int modv, List<GenPolynomial<C>> G, GenPolynomial<C> f) Groebner base using pairlist class.GroebnerBaseSeq.GB
(int modv, List<GenPolynomial<C>> F) Groebner base using pairlist class.GroebnerBaseSeqIter.GB
(int modv, List<GenPolynomial<C>> F) Groebner base using pairlist class, iterative algorithm.GroebnerBaseSeqIter.GB
(int modv, List<GenPolynomial<C>> G, GenPolynomial<C> f) Groebner base using pairlist class.GroebnerBaseSeqPairDistributed.GB
(int modv, List<GenPolynomial<C>> F) Deprecated.Distributed Groebner base.GroebnerBaseSeqPairParallel.GB
(int modv, List<GenPolynomial<C>> F) Parallel Groebner base using sequential pair order class.GroebnerBaseSeqPairSeq.GB
(int modv, List<GenPolynomial<C>> F) Groebner base using pairlist class.GroebnerBaseSigSeqIter.GB
(int modv, List<GenPolynomial<C>> F) Groebner base signature iterative algorithm.GroebnerBaseSigSeqIter.GB
(int modv, List<GenPolynomial<C>> G, GenPolynomial<C> f) Groebner base iterated.(package private) List
<GenPolynomial<C>> GroebnerBaseDistributedEC.GBMaster
(int modv, List<GenPolynomial<C>> F) Distributed Groebner base.(package private) List
<GenPolynomial<C>> GroebnerBaseDistributedHybridEC.GBMaster
(int modv, List<GenPolynomial<C>> F) Distributed hybrid Groebner base.DReduction.GPolynomial
(List<GenPolynomial<C>> S, int i, GenPolynomial<C> Ap, int j, GenPolynomial<C> Bp) G-Polynomial with recording.DReductionSeq.GPolynomial
(List<GenPolynomial<C>> row, int i, GenPolynomial<C> Ap, int j, GenPolynomial<C> Bp) G-Polynomial with recording.GroebnerBaseArriSigSeqIter.initializeSyz
(List<GenPolynomial<C>> F, List<SigPoly<C>> G) Initializes syzygy list.GroebnerBaseF5zSigSeqIter.initializeSyz
(List<GenPolynomial<C>> F, List<SigPoly<C>> G) Initializes syzygy list.GroebnerBaseGGVSigSeqIter.initializeSyz
(List<GenPolynomial<C>> F, List<SigPoly<C>> G) Initializes syzygy list.GroebnerBaseSigSeqIter.initializeSyz
(List<GenPolynomial<C>> F, List<SigPoly<C>> G) Initializes syzygy list.DGroebnerBaseSeq.inverse
(GenPolynomial<C> h, List<GenPolynomial<C>> F) Inverse for element modulo ideal.DReductionSeq.irreducibleSet
(List<GenPolynomial<C>> Pp) Irreducible set.EReductionSeq.irreducibleSet
(List<GenPolynomial<C>> Pp) Irreducible set.Reduction.irreducibleSet
(List<GenPolynomial<C>> Pp) Irreducible set.ReductionAbstract.irreducibleSet
(List<GenPolynomial<C>> Pp) Irreducible set.boolean
DGroebnerBaseSeq.isGB
(int modv, List<GenPolynomial<C>> F) D-Groebner base test.boolean
GroebnerBase.isGB
(int modv, List<GenPolynomial<C>> F) Groebner base test.boolean
GroebnerBase.isGB
(List<GenPolynomial<C>> F) Groebner base test.boolean
GroebnerBaseAbstract.isGB
(int modv, List<GenPolynomial<C>> F) Groebner base test.boolean
GroebnerBaseAbstract.isGB
(int modv, List<GenPolynomial<C>> F, boolean b) Groebner base test.boolean
GroebnerBaseAbstract.isGB
(List<GenPolynomial<C>> F) Groebner base test.boolean
GroebnerBaseAbstract.isGB
(List<GenPolynomial<C>> F, boolean b) Groebner base test.boolean
GroebnerBaseAbstract.isGBidem
(int modv, List<GenPolynomial<C>> F) Groebner base idempotence test.boolean
GroebnerBaseAbstract.isGBsimple
(int modv, List<GenPolynomial<C>> F) Groebner base simple test.boolean
GroebnerBaseAbstract.isMinimalGB
(List<GenPolynomial<C>> Gp) Test for minimal ordered Groebner basis.boolean
GroebnerBaseAbstract.isMinReductionMatrix
(List<GenPolynomial<C>> F, List<GenPolynomial<C>> G, List<List<GenPolynomial<C>>> Mf, List<List<GenPolynomial<C>>> Mg) Test if minimal reduction matrix.boolean
DReductionSeq.isNormalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Is in Normalform.boolean
EReductionSeq.isNormalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Is in Normalform.boolean
Reduction.isNormalform
(List<GenPolynomial<C>> Pp) Is in Normalform.boolean
Reduction.isNormalform
(List<GenPolynomial<C>> P, GenPolynomial<C> A) Is in Normalform.boolean
ReductionAbstract.isNormalform
(List<GenPolynomial<C>> Pp) Is in Normalform.boolean
ReductionAbstract.isNormalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Is in Normalform.boolean
Reduction.isReducible
(List<GenPolynomial<C>> P, GenPolynomial<C> A) Is reducible.boolean
ReductionAbstract.isReducible
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Is reducible.boolean
GroebnerBase.isReductionMatrix
(List<GenPolynomial<C>> F, List<GenPolynomial<C>> G, List<List<GenPolynomial<C>>> Mf, List<List<GenPolynomial<C>>> Mg) Test if reduction matrix.boolean
GroebnerBaseAbstract.isReductionMatrix
(List<GenPolynomial<C>> F, List<GenPolynomial<C>> G, List<List<GenPolynomial<C>>> Mf, List<List<GenPolynomial<C>>> Mg) Test if reduction matrix.boolean
Reduction.isReductionNF
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap, GenPolynomial<C> Np) Is reduction of normal form.boolean
ReductionAbstract.isReductionNF
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap, GenPolynomial<C> Np) Is reduction of normal form.boolean
DReductionSeq.isTopReducible
(List<GenPolynomial<C>> P, GenPolynomial<C> A) Is top reducible.boolean
EReductionSeq.isTopReducible
(List<GenPolynomial<C>> P, GenPolynomial<C> A) Is top reducible.boolean
Reduction.isTopReducible
(List<GenPolynomial<C>> P, GenPolynomial<C> A) Is top reducible.boolean
ReductionAbstract.isTopReducible
(List<GenPolynomial<C>> P, GenPolynomial<C> A) Is top reducible.DGroebnerBaseSeq.minimalExtendedGB
(int flen, List<GenPolynomial<C>> Gp, List<List<GenPolynomial<C>>> M) Minimal extended groebner basis.GroebnerBaseAbstract.minimalExtendedGB
(int flen, List<GenPolynomial<C>> Gp, List<List<GenPolynomial<C>>> M) Minimal extended groebner basis.GroebnerBase.minimalGB
(List<GenPolynomial<C>> Gp) Minimal ordered groebner basis.GroebnerBaseAbstract.minimalGB
(List<GenPolynomial<C>> Gp) Minimal ordered Groebner basis.GroebnerBaseDistributedEC.minimalGB
(List<GenPolynomial<C>> Fp) Minimal ordered groebner basis.GroebnerBaseDistributedHybridEC.minimalGB
(List<GenPolynomial<C>> Fp) Minimal ordered groebner basis.GroebnerBaseParallel.minimalGB
(List<GenPolynomial<C>> Fp) Minimal ordered groebner basis, parallel.GroebnerBaseParIter.minimalGB
(List<GenPolynomial<C>> Fp) Minimal ordered groebner basis, parallel.GroebnerBaseSeqPairDistributed.minimalGB
(List<GenPolynomial<C>> Fp) Deprecated.Minimal ordered groebner basis.GroebnerBaseSeqPairParallel.minimalGB
(List<GenPolynomial<C>> Fp) Minimal ordered groebner basis, parallel.DReductionSeq.normalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform using d-reduction.DReductionSeq.normalform
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with recording.EReductionSeq.normalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform using e-reduction.EReductionSeq.normalform
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with recording.Reduction.normalform
(List<GenPolynomial<C>> P, GenPolynomial<C> A) Normalform.Reduction.normalform
(List<GenPolynomial<C>> Pp, List<GenPolynomial<C>> Ap) Normalform Set.Reduction.normalform
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with recording.ReductionAbstract.normalform
(List<GenPolynomial<C>> Pp, List<GenPolynomial<C>> Ap) Normalform Set.ReductionPar.normalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform.ReductionPar.normalform
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with recording.ReductionPar.normalform
(Map<Integer, GenPolynomial<C>> mp, GenPolynomial<C> Ap) Normalform.ReductionSeq.normalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform.ReductionSeq.normalform
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with recording.List
<List<GenPolynomial<C>>> GroebnerBaseAbstract.normalizeMatrix
(int flen, List<List<GenPolynomial<C>>> M) Normalize M.GroebnerBaseAbstract.normalizeZerosOnes
(List<GenPolynomial<C>> A) Normalize polynomial list.int
OrderedPairlist.put
(List<GenPolynomial<C>> F) Put all polynomials in F to the pairlist and reduction matrix.int
PairList.put
(List<GenPolynomial<C>> F) Put all polynomials in F to the pairlist and reduction matrix.void
OrderedPairlist.setList
(List<GenPolynomial<C>> F) Set the list of polynomials.void
PairList.setList
(List<GenPolynomial<C>> F) Set the list of polynomials.GroebnerBaseArriSigSeqIter.sigNormalform
(List<GenPolynomial<C>> F, List<SigPoly<C>> G, SigPoly<C> A) Top normalform.GroebnerBaseF5zSigSeqIter.sigNormalform
(List<GenPolynomial<C>> F, List<SigPoly<C>> G, SigPoly<C> A) Top normalform.GroebnerBaseSigSeqIter.sigNormalform
(List<GenPolynomial<C>> F, List<SigPoly<C>> G, SigPoly<C> A) Top normalform.SigReduction.sigNormalform
(List<GenPolynomial<C>> F, List<SigPoly<C>> G, SigPoly<C> A) Normalform.SigReductionSeq.sigNormalform
(List<GenPolynomial<C>> F, List<SigPoly<C>> G, SigPoly<C> A) Top normalform.SigReductionSeq.sigSemiNormalform
(List<GenPolynomial<C>> F, List<SigPoly<C>> G, SigPoly<C> A) Top semi-complete normalform.DReductionSeq.SPolynomial
(List<GenPolynomial<C>> row, int i, GenPolynomial<C> Ap, int j, GenPolynomial<C> Bp) S-Polynomial with recording.Reduction.SPolynomial
(List<GenPolynomial<C>> S, int i, GenPolynomial<C> Ap, int j, GenPolynomial<C> Bp) S-Polynomial with recording.ReductionAbstract.SPolynomial
(List<GenPolynomial<C>> S, int i, GenPolynomial<C> A, int j, GenPolynomial<C> B) S-Polynomial with recording.GroebnerBaseAbstract.univariateDegrees
(List<GenPolynomial<C>> A) Univariate head term degrees.Constructors in edu.jas.gb with parameters of type GenPolynomialModifierConstructorDescriptionAbstractPair
(ExpVector lcm, GenPolynomial<C> a, GenPolynomial<C> b, int i, int j) AbstractPair constructor.AbstractPair
(ExpVector lcm, GenPolynomial<C> a, GenPolynomial<C> b, int i, int j, int s) AbstractPair constructor.AbstractPair
(GenPolynomial<C> a, GenPolynomial<C> b, int i, int j) AbstractPair constructor.AbstractPair
(GenPolynomial<C> a, GenPolynomial<C> b, int i, int j, int s) AbstractPair constructor.CriticalPair
(ExpVector e, GenPolynomial<C> pi, GenPolynomial<C> pj, int i, int j) CriticalPair constructor.GBSPTransportMessPoly.GBTransportMessPoly.(package private)
MiReducer
(List<GenPolynomial<C>> G, GenPolynomial<C> p) (package private)
MiReducerClient
(List<GenPolynomial<C>> G, GenPolynomial<C> p) (package private)
MiReducerClientEC
(List<GenPolynomial<C>> G, GenPolynomial<C> p) (package private)
MiReducerClientSeqPair
(List<GenPolynomial<C>> G, GenPolynomial<C> p) (package private)
MiReducerIter
(List<GenPolynomial<C>> G, GenPolynomial<C> p) (package private)
MiReducerSeqPair
(List<GenPolynomial<C>> G, GenPolynomial<C> p) (package private)
MiReducerServer
(List<GenPolynomial<C>> G, GenPolynomial<C> p) (package private)
MiReducerServerEC
(List<GenPolynomial<C>> G, GenPolynomial<C> p) (package private)
MiReducerServerSeqPair
(List<GenPolynomial<C>> G, GenPolynomial<C> p) Pair
(ExpVector lcm, GenPolynomial<C> a, GenPolynomial<C> b, int i, int j) Pair constructor.Pair
(ExpVector lcm, GenPolynomial<C> a, GenPolynomial<C> b, int i, int j, int s) Pair constructor.Pair
(GenPolynomial<C> a, GenPolynomial<C> b, int i, int j) Pair constructor.Pair
(GenPolynomial<C> a, GenPolynomial<C> b, int i, int j, int s) Pair constructor.SigPair constructor.SigPoly
(GenPolynomial<C> s, GenPolynomial<C> p) Constructor.Constructor parameters in edu.jas.gb with type arguments of type GenPolynomialModifierConstructorDescriptionExtendedGB
(List<GenPolynomial<C>> F, List<GenPolynomial<C>> G, List<List<GenPolynomial<C>>> F2G, List<List<GenPolynomial<C>>> G2F) Container for a GB and transformation matrices.(package private)
Constructor.(package private)
HybridReducerReceiverEC
(Terminator fin, AtomicInteger a, TaggedSocketChannel pc, DistHashTable<Integer, GenPolynomial<C>> dl, PairList<C> L) Constructor.(package private)
HybridReducerServerEC
(int tpn, Terminator fin, ChannelFactory cf, DistHashTable<Integer, GenPolynomial<C>> dl, PairList<C> L) Constructor.(package private)
MiReducer
(List<GenPolynomial<C>> G, GenPolynomial<C> p) (package private)
MiReducerClient
(List<GenPolynomial<C>> G, GenPolynomial<C> p) (package private)
MiReducerClientEC
(List<GenPolynomial<C>> G, GenPolynomial<C> p) (package private)
MiReducerClientSeqPair
(List<GenPolynomial<C>> G, GenPolynomial<C> p) (package private)
MiReducerIter
(List<GenPolynomial<C>> G, GenPolynomial<C> p) (package private)
MiReducerSeqPair
(List<GenPolynomial<C>> G, GenPolynomial<C> p) (package private)
MiReducerServer
(List<GenPolynomial<C>> G, GenPolynomial<C> p) (package private)
MiReducerServerEC
(List<GenPolynomial<C>> G, GenPolynomial<C> p) (package private)
MiReducerServerSeqPair
(List<GenPolynomial<C>> G, GenPolynomial<C> p) (package private)
Reducer
(Terminator fin, List<GenPolynomial<C>> G, PairList<C> L) (package private)
(package private)
(package private)
ReducerIter
(Terminator fin, List<GenPolynomial<C>> G, PairList<C> L) (package private)
ReducerSeqPair
(Terminator fin, List<GenPolynomial<C>> G, CriticalPairList<C> L) (package private)
ReducerServerEC
(Terminator fin, ChannelFactory cf, DistHashTable<Integer, GenPolynomial<C>> dl, PairList<C> L) (package private)
ReducerServerSeqPair
(Terminator fin, ChannelFactory cf, DistHashTable<Integer, GenPolynomial<C>> dl, CriticalPairList<C> L) -
Uses of GenPolynomial in edu.jas.gbmod
Methods in edu.jas.gbmod that return types with arguments of type GenPolynomialModifier and TypeMethodDescriptionModGroebnerBase.GB
(int modv, List<GenPolynomial<C>> F) Deprecated.Groebner base using pairlist class.ModGroebnerBaseSeq.GB
(int modv, List<GenPolynomial<C>> F) Deprecated.Groebner base using pairlist class.Method parameters in edu.jas.gbmod with type arguments of type GenPolynomialModifier and TypeMethodDescriptionModGroebnerBase.GB
(int modv, List<GenPolynomial<C>> F) Deprecated.Groebner base using pairlist class.ModGroebnerBaseSeq.GB
(int modv, List<GenPolynomial<C>> F) Deprecated.Groebner base using pairlist class.boolean
ModGroebnerBase.isGB
(int modv, List<GenPolynomial<C>> F) Deprecated.Module Groebner base test.boolean
ModGroebnerBaseSeq.isGB
(int modv, List<GenPolynomial<C>> F) Deprecated.Module Groebner base test. -
Uses of GenPolynomial in edu.jas.gbufd
Fields in edu.jas.gbufd declared as GenPolynomialModifier and TypeFieldDescriptionprivate GenPolynomial
<C> PseudoMiReducer.H
private GenPolynomial
<GenPolynomial<C>> PseudoMiReducerRec.H
final GenPolynomial
<C> PseudoReductionEntry.pol
Fields in edu.jas.gbufd with type parameters of type GenPolynomialModifier and TypeFieldDescriptionfinal GroebnerBaseAbstract
<GenPolynomial<C>> GroebnerBaseQuotient.bba
protected BasicLinAlg
<GenPolynomial<C>> SolvableSyzygyAbstract.blas
Linear algebra engine.protected BasicLinAlg
<GenPolynomial<C>> SyzygyAbstract.blas
Linear algebra engine.protected final RingFactory
<GenPolynomial<C>> GroebnerBasePseudoRecParallel.cofac
Coefficient ring factory.protected final RingFactory
<GenPolynomial<C>> GroebnerBasePseudoRecSeq.cofac
Coefficient ring factory.private final List
<GenPolynomial<C>> PseudoMiReducer.G
private final List
<GenPolynomial<GenPolynomial<C>>> PseudoMiReducerRec.G
private final List
<GenPolynomial<GenPolynomial<C>>> PseudoMiReducerRec.G
private final List
<GenPolynomial<C>> PseudoReducer.G
private final List
<GenPolynomial<GenPolynomial<C>>> PseudoReducerRec.G
private final List
<GenPolynomial<GenPolynomial<C>>> PseudoReducerRec.G
private GenPolynomial
<GenPolynomial<C>> PseudoMiReducerRec.H
final List
<GenPolynomial<C>> MultiplicativeSet.mset
Data structure.private final PairList
<GenPolynomial<C>> PseudoReducerRec.pairlist
protected GroebnerBaseAbstract
<GenPolynomial<C>> GroebnerBasePartial.rbb
Backing recursive Groebner base engine.protected final PseudoReduction
<GenPolynomial<C>> GroebnerBasePseudoRecParallel.red
Pseudo reduction engine.protected final PseudoReduction
<GenPolynomial<C>> GroebnerBasePseudoRecSeq.red
Pseudo reduction engine.private final PseudoReductionPar
<GenPolynomial<C>> PseudoReducerRec.red
protected final WordPseudoReduction
<GenPolynomial<C>> WordGroebnerBasePseudoRecSeq.red
Reduction engine.protected final SolvablePseudoReduction
<GenPolynomial<C>> SolvableGroebnerBasePseudoRecSeq.sred
Pseudo reduction engine.Methods in edu.jas.gbufd that return GenPolynomialModifier and TypeMethodDescriptionRReduction.booleanClosure
(GenPolynomial<C> A) Boolean closure, compute idempotent(ldcf(A)) A.RReductionSeq.booleanClosure
(GenPolynomial<C> A) Boolean closure, compute idempotent(ldcf(A)) A.RReduction.booleanRemainder
(GenPolynomial<C> A) Boolean remainder, compute idemComplement(ldcf(A)) A.RReductionSeq.booleanRemainder
(GenPolynomial<C> A) Boolean remainder, compute idemComplement(ldcf(A)) A.CharacteristicSet.characteristicSetReduction
(List<GenPolynomial<C>> A, GenPolynomial<C> P) Characteristic set reduction.CharacteristicSetSimple.characteristicSetReduction
(List<GenPolynomial<C>> A, GenPolynomial<C> P) Characteristic set reduction.CharacteristicSetWu.characteristicSetReduction
(List<GenPolynomial<C>> A, GenPolynomial<C> P) Characteristic set reduction.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyGBUtil.chineseRemainderTheorem
(List<List<GenPolynomial<C>>> F, List<GenPolynomial<C>> A) Chinese remainder theorem.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<GenPolynomial<C>>> PolyGBUtil.coefficientPseudoRemainder
(GenPolynomial<GenPolynomial<GenPolynomial<C>>> P, GenPolynomial<GenPolynomial<C>> A) Polynomial leading coefficient pseudo remainder.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyGBUtil.coefficientPseudoRemainderBase
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<C> A) Polynomial leading coefficient pseudo remainder, base case.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyGBUtil.CRTInterpolation
(GenPolynomialRing<C> fac, List<List<C>> E, List<C> V) Chinese remainder theorem, interpolation.PseudoMiReducer.getNF()
getNF.PseudoMiReducerRec.getNF()
getNF.GroebnerBaseFGLM.lMinterm
(List<GenPolynomial<C>> G, GenPolynomial<C> t) Algorithm lMinterm: MINTERM algorithm for inverse lexicographical term order.PseudoReductionPar.normalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform.PseudoReductionPar.normalform
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with recording.PseudoReductionSeq.normalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform.PseudoReductionSeq.normalform
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with recording.RPseudoReductionSeq.normalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform using r-reduction.RPseudoReductionSeq.normalform
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with recording.RReductionSeq.normalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform using r-reduction.RReductionSeq.normalform
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with recording.PseudoReduction.normalformRecursive
(List<GenPolynomial<GenPolynomial<C>>> Pp, GenPolynomial<GenPolynomial<C>> Ap) Normalform recursive.PseudoReductionPar.normalformRecursive
(List<GenPolynomial<GenPolynomial<C>>> Pp, GenPolynomial<GenPolynomial<C>> Ap) Normalform recursive.PseudoReductionSeq.normalformRecursive
(List<GenPolynomial<GenPolynomial<C>>> Pp, GenPolynomial<GenPolynomial<C>> Ap) Normalform recursive.RPseudoReductionSeq.normalformRecursive
(List<GenPolynomial<GenPolynomial<C>>> Pp, GenPolynomial<GenPolynomial<C>> Ap) Normalform recursive.WordGroebnerBasePseudoRecSeq.recursiveContent
(GenWordPolynomial<GenPolynomial<C>> P) GenWordPolynomial recursive coefficient content.MultiplicativeSet.removeFactors
(GenPolynomial<C> cc) Remove factors by mset factors division.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyModUtil.syzGcd
(GenPolynomialRing<C> r, GenPolynomial<C> n, GenPolynomial<C> d) Greatest common divisor.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyModUtil.syzLcm
(GenPolynomialRing<C> r, GenPolynomial<C> n, GenPolynomial<C> d) Least common multiple.static <C extends RingElem<C>>
GenPolynomial<C> PolyGBUtil.topCoefficientPseudoRemainder
(List<GenPolynomial<C>> A, GenPolynomial<C> P) Top coefficient pseudo remainder of the leading coefficient of P wrt A in the main variables.static <C extends RingElem<C>>
GenPolynomial<C> PolyGBUtil.topPseudoRemainder
(List<GenPolynomial<C>> A, GenPolynomial<C> P) Top pseudo reduction wrt the main variables.Methods in edu.jas.gbufd that return types with arguments of type GenPolynomialModifier and TypeMethodDescriptionRReductionSeq.booleanClosure
(List<GenPolynomial<C>> F) Boolean closure, compute BC(A) for all A in F.CharacteristicSet.characteristicSet
(List<GenPolynomial<C>> A) Characteristic set.CharacteristicSetSimple.characteristicSet
(List<GenPolynomial<C>> A) Characteristic set.CharacteristicSetWu.characteristicSet
(List<GenPolynomial<C>> A) Characteristic set.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<GenPolynomial<C>>> PolyGBUtil.coefficientPseudoRemainder
(GenPolynomial<GenPolynomial<GenPolynomial<C>>> P, GenPolynomial<GenPolynomial<C>> A) Polynomial leading coefficient pseudo remainder.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<GenPolynomial<C>>> PolyGBUtil.coefficientPseudoRemainder
(GenPolynomial<GenPolynomial<GenPolynomial<C>>> P, GenPolynomial<GenPolynomial<C>> A) Polynomial leading coefficient pseudo remainder.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyGBUtil.coefficientPseudoRemainderBase
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<C> A) Polynomial leading coefficient pseudo remainder, base case.GroebnerBaseFGLM.convGroebnerToLex
(List<GenPolynomial<C>> groebnerBasis) Algorithm CONVGROEBNER: Converts Groebner bases w.r.t.GroebnerBaseFGLM.GB
(int modv, List<GenPolynomial<C>> F) Groebner base using FGLM algorithm.GroebnerBasePartial.GB
(int modv, List<GenPolynomial<C>> F) Groebner base using pairlist class.GroebnerBasePseudoParallel.GB
(int modv, List<GenPolynomial<C>> F) Groebner base using pairlist class.GroebnerBasePseudoRecParallel.GB
(int modv, List<GenPolynomial<GenPolynomial<C>>> F) Groebner base using pairlist class.GroebnerBasePseudoRecParallel.GB
(int modv, List<GenPolynomial<GenPolynomial<C>>> F) Groebner base using pairlist class.GroebnerBasePseudoRecSeq.GB
(int modv, List<GenPolynomial<GenPolynomial<C>>> F) Groebner base using pairlist class.GroebnerBasePseudoRecSeq.GB
(int modv, List<GenPolynomial<GenPolynomial<C>>> F) Groebner base using pairlist class.GroebnerBasePseudoSeq.GB
(int modv, List<GenPolynomial<C>> F) Groebner base using pairlist class.GroebnerBaseQuotient.GB
(int modv, List<GenPolynomial<Quotient<C>>> F) Groebner base using fraction free computation.GroebnerBaseRational.GB
(int modv, List<GenPolynomial<BigRational>> F) Groebner base using fraction free computation.GroebnerBaseWalk.GB
(int modv, List<GenPolynomial<C>> F) Groebner base using Groebner Walk algorithm.RGroebnerBasePseudoSeq.GB
(int modv, List<GenPolynomial<C>> F) R-Groebner base using pairlist class.RGroebnerBaseSeq.GB
(int modv, List<GenPolynomial<C>> F) R-Groebner base using pairlist class.WordGroebnerBasePseudoRecSeq.GB
(List<GenWordPolynomial<GenPolynomial<C>>> F) Word Groebner base using word pairlist class.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<GenPolynomial<C>> GBFactory.getImplementation
(GenPolynomialRing<C> fac) Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<GenPolynomial<C>> GBFactory.getImplementation
(GenPolynomialRing<C> fac, PairList<GenPolynomial<C>> pl) Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<GenPolynomial<C>> GBFactory.getImplementation
(GenPolynomialRing<C> fac, GBFactory.Algo a) Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<GenPolynomial<C>> GBFactory.getImplementation
(GenPolynomialRing<C> fac, GBFactory.Algo a, PairList<GenPolynomial<C>> pl) Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
SolvableGroebnerBaseAbstract<GenPolynomial<C>> SGBFactory.getImplementation
(GenPolynomialRing<C> fac) Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
SolvableGroebnerBaseAbstract<GenPolynomial<C>> SGBFactory.getImplementation
(GenPolynomialRing<C> fac, PairList<GenPolynomial<C>> pl) Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
SolvableGroebnerBaseAbstract<GenPolynomial<C>> SGBFactory.getImplementation
(GenPolynomialRing<C> fac, GBFactory.Algo a) Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
SolvableGroebnerBaseAbstract<GenPolynomial<C>> SGBFactory.getImplementation
(GenPolynomialRing<C> fac, GBFactory.Algo a, PairList<GenPolynomial<C>> pl) Determine suitable implementation of GB algorithms, case (recursive) polynomial.PseudoMiReducerRec.getNF()
getNF.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<GenPolynomial<C>> GBFactory.getProxy
(GenPolynomialRing<C> fac) Determine suitable parallel/concurrent implementation of GB algorithms if possible.static <C extends GcdRingElem<C>>
SolvableGroebnerBaseAbstract<GenPolynomial<C>> SGBFactory.getProxy
(GenPolynomialRing<C> fac) Determine suitable parallel/concurrent implementation of GB algorithms if possible.static <C extends GcdRingElem<C>>
List<GenPolynomial<C>> PolyGBUtil.intersect
(GenPolynomialRing<C> pfac, List<GenPolynomial<C>> A, List<GenPolynomial<C>> B) Intersection.RReductionSeq.irreducibleSet
(List<GenPolynomial<C>> Pp) Irreducible set.SolvableGroebnerBasePseudoRecSeq.leftGB
(int modv, List<GenSolvablePolynomial<GenPolynomial<C>>> F) Left Groebner base using pairlist class.SolvableGroebnerBasePseudoRecSeq.leftMinimalGB
(List<GenSolvablePolynomial<GenPolynomial<C>>> Gp) Minimal ordered Solvable Groebner basis.SolvablePseudoReduction.leftNormalformRecursive
(List<GenSolvablePolynomial<GenPolynomial<C>>> Pp, GenSolvablePolynomial<GenPolynomial<C>> Ap) Left normalform recursive.SolvablePseudoReductionSeq.leftNormalformRecursive
(List<GenSolvablePolynomial<GenPolynomial<C>>> Pp, GenSolvablePolynomial<GenPolynomial<C>> Ap) Left normalform recursive.GroebnerBaseWalk.liftReductas
(List<Monomial<C>> M, List<Monomial<C>> Mp, List<GenPolynomial<C>> G, List<GenPolynomial<C>> A) Lift leading polynomials to full Groebner base with respect to term order.GroebnerBasePseudoParallel.minimalGB
(List<GenPolynomial<C>> Gp) Minimal ordered Groebner basis.GroebnerBasePseudoRecParallel.minimalGB
(List<GenPolynomial<GenPolynomial<C>>> Gp) Minimal ordered Groebner basis.GroebnerBasePseudoRecParallel.minimalGB
(List<GenPolynomial<GenPolynomial<C>>> Gp) Minimal ordered Groebner basis.GroebnerBasePseudoRecSeq.minimalGB
(List<GenPolynomial<GenPolynomial<C>>> Gp) Minimal ordered Groebner basis.GroebnerBasePseudoRecSeq.minimalGB
(List<GenPolynomial<GenPolynomial<C>>> Gp) Minimal ordered Groebner basis.GroebnerBasePseudoSeq.minimalGB
(List<GenPolynomial<C>> Gp) Minimal ordered Groebner basis.GroebnerBaseQuotient.minimalGB
(List<GenPolynomial<Quotient<C>>> Gp) Minimal ordered Groebner basis.GroebnerBaseRational.minimalGB
(List<GenPolynomial<BigRational>> Gp) Minimal ordered Groebner basis.RGroebnerBasePseudoSeq.minimalGB
(List<GenPolynomial<C>> Gp) Minimal ordered Groebner basis.RGroebnerBaseSeq.minimalGB
(List<GenPolynomial<C>> Gp) Minimal ordered Groebner basis.WordGroebnerBasePseudoRecSeq.minimalGB
(List<GenWordPolynomial<GenPolynomial<C>>> Gp) Minimal ordered Groebner basis.(package private) List
<GenPolynomial<C>> RGroebnerBasePseudoSeq.minimalGBtesting
(List<GenPolynomial<C>> Gp) PseudoReduction.normalformRecursive
(List<GenPolynomial<GenPolynomial<C>>> Pp, GenPolynomial<GenPolynomial<C>> Ap) Normalform recursive.PseudoReductionPar.normalformRecursive
(List<GenPolynomial<GenPolynomial<C>>> Pp, GenPolynomial<GenPolynomial<C>> Ap) Normalform recursive.PseudoReductionSeq.normalformRecursive
(List<GenPolynomial<GenPolynomial<C>>> Pp, GenPolynomial<GenPolynomial<C>> Ap) Normalform recursive.RPseudoReductionSeq.normalformRecursive
(List<GenPolynomial<GenPolynomial<C>>> Pp, GenPolynomial<GenPolynomial<C>> Ap) Normalform recursive.WordPseudoReduction.normalformRecursive
(List<GenWordPolynomial<GenPolynomial<C>>> Pp, GenWordPolynomial<GenPolynomial<C>> Ap) Left normalform recursive.WordPseudoReductionSeq.normalformRecursive
(List<GenWordPolynomial<GenPolynomial<C>>> Pp, GenWordPolynomial<GenPolynomial<C>> Ap) Normalform with polynomial coefficients.GroebnerBasePartial.partialGBrec
(List<GenPolynomial<C>> F, String[] pvars) Partial recursive Groebner base for specific variables.WordGroebnerBasePseudoRecSeq.recursivePrimitivePart
(GenWordPolynomial<GenPolynomial<C>> P) GenWordPolynomial recursive coefficient primitive part.WordGroebnerBasePseudoRecSeq.recursivePrimitivePart
(List<GenWordPolynomial<GenPolynomial<C>>> F) List of GenWordPolynomial recursive coefficient primitive part.GroebnerBaseFGLM.redTerms
(List<GenPolynomial<C>> groebnerBasis) Compute the residues to given polynomial list.RReduction.reducedBooleanClosure
(List<GenPolynomial<C>> F) Reduced boolean closure, compute BC(A) for all A in F.RReduction.reducedBooleanClosure
(List<GenPolynomial<C>> F, GenPolynomial<C> A) Reduced boolean closure, compute BC(A) modulo F.RReductionSeq.reducedBooleanClosure
(List<GenPolynomial<C>> F) Reduced boolean closure, compute BC(A) for all A in F.RReductionSeq.reducedBooleanClosure
(List<GenPolynomial<C>> F, GenPolynomial<C> A) Reduced boolean closure, compute BC(A) modulo F.MultiplicativeSet.removeFactors
(List<GenPolynomial<C>> L) Remove factors by mset factors division.SolvablePseudoReduction.rightNormalformRecursive
(List<GenSolvablePolynomial<GenPolynomial<C>>> Pp, GenSolvablePolynomial<GenPolynomial<C>> Ap) Right normalform recursive.SolvablePseudoReductionSeq.rightNormalformRecursive
(List<GenSolvablePolynomial<GenPolynomial<C>>> Pp, GenSolvablePolynomial<GenPolynomial<C>> Ap) Right normalform recursive.static <C extends GcdRingElem<C>>
List<GenPolynomial<C>> PolyGBUtil.subRing
(List<GenPolynomial<C>> A) Subring generators.SolvableGroebnerBasePseudoRecSeq.twosidedGB
(int modv, List<GenSolvablePolynomial<GenPolynomial<C>>> Fp) Twosided Solvable Groebner base using pairlist class.GroebnerBaseWalk.walkGroebnerToTarget
(int modv, List<GenPolynomial<C>> Gl, GenPolynomialRing<C> ufac) Converts Groebner bases w.r.t.static <C extends RingElem<C>>
List<GenPolynomial<C>> PolyGBUtil.zeroDegrees
(List<GenPolynomial<C>> A) Extract polynomials with degree zero in the main variable.List
<List<GenPolynomial<C>>> Syzygy.zeroRelations
(int modv, GenVector<GenPolynomial<C>> v) Syzygy module from Groebner base.List
<List<GenPolynomial<C>>> Syzygy.zeroRelations
(int modv, List<GenPolynomial<C>> F) Syzygy module from Groebner base.List
<List<GenPolynomial<C>>> Syzygy.zeroRelations
(List<GenPolynomial<C>> F) Syzygy module from Groebner base.List
<List<GenPolynomial<C>>> SyzygyAbstract.zeroRelations
(int modv, GenVector<GenPolynomial<C>> v) Syzygy module from Groebner base.List
<List<GenPolynomial<C>>> SyzygyAbstract.zeroRelations
(int modv, List<GenPolynomial<C>> F) Syzygy module from Groebner base.List
<List<GenPolynomial<C>>> SyzygyAbstract.zeroRelations
(List<GenPolynomial<C>> F) Syzygy module from Groebner base.List
<List<GenPolynomial<C>>> Syzygy.zeroRelationsArbitrary
(int modv, List<GenPolynomial<C>> F) Syzygy module from arbitrary base.List
<List<GenPolynomial<C>>> Syzygy.zeroRelationsArbitrary
(List<GenPolynomial<C>> F) Syzygy module from arbitrary base.List
<List<GenPolynomial<C>>> SyzygyAbstract.zeroRelationsArbitrary
(List<GenPolynomial<C>> F) Syzygy module from arbitrary base.List
<List<GenPolynomial<C>>> SyzygySeq.zeroRelationsArbitrary
(int modv, List<GenPolynomial<C>> F) Syzygy module from arbitrary base.Methods in edu.jas.gbufd with parameters of type GenPolynomialModifier and TypeMethodDescriptionMultiplicativeSet.add
(GenPolynomial<C> cc) Add polynomial to mset.MultiplicativeSetCoPrime.add
(GenPolynomial<C> cc) Add polynomial to mset.MultiplicativeSetFactors.add
(GenPolynomial<C> cc) Add polynomial to mset.MultiplicativeSetSquarefree.add
(GenPolynomial<C> cc) Add polynomial to mset.RReduction.booleanClosure
(GenPolynomial<C> A) Boolean closure, compute idempotent(ldcf(A)) A.RReductionSeq.booleanClosure
(GenPolynomial<C> A) Boolean closure, compute idempotent(ldcf(A)) A.RReduction.booleanRemainder
(GenPolynomial<C> A) Boolean remainder, compute idemComplement(ldcf(A)) A.RReductionSeq.booleanRemainder
(GenPolynomial<C> A) Boolean remainder, compute idemComplement(ldcf(A)) A.CharacteristicSet.characteristicSetReduction
(List<GenPolynomial<C>> A, GenPolynomial<C> P) Characteristic set reduction.CharacteristicSetSimple.characteristicSetReduction
(List<GenPolynomial<C>> A, GenPolynomial<C> P) Characteristic set reduction.CharacteristicSetWu.characteristicSetReduction
(List<GenPolynomial<C>> A, GenPolynomial<C> P) Characteristic set reduction.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<GenPolynomial<C>>> PolyGBUtil.coefficientPseudoRemainder
(GenPolynomial<GenPolynomial<GenPolynomial<C>>> P, GenPolynomial<GenPolynomial<C>> A) Polynomial leading coefficient pseudo remainder.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyGBUtil.coefficientPseudoRemainderBase
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<C> A) Polynomial leading coefficient pseudo remainder, base case.boolean
MultiplicativeSet.contains
(GenPolynomial<C> c) Test if a polynomial is contained in this multiplicative set.boolean
RReductionSeq.criterion4
(GenPolynomial<C> A, GenPolynomial<C> B) GB criterium 4.boolean
RReductionSeq.criterion4
(GenPolynomial<C> A, GenPolynomial<C> B, ExpVector e) GB criterium 4.boolean
RReduction.isBooleanClosed
(GenPolynomial<C> A) Is boolean closed, test if A == idempotent(ldcf(A)) A.boolean
RReductionSeq.isBooleanClosed
(GenPolynomial<C> A) Is boolean closed, test if A == idempotent(ldcf(A)) A.static <C extends GcdRingElem<C>>
booleanPolyGBUtil.isChineseRemainder
(List<List<GenPolynomial<C>>> F, List<GenPolynomial<C>> A, GenPolynomial<C> h) Is Chinese remainder.boolean
RReductionSeq.isNormalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Is in Normalform.static <C extends GcdRingElem<C>>
booleanPolyGBUtil.isResultant
(GenPolynomial<C> A, GenPolynomial<C> B, GenPolynomial<C> r) Test for resultant.boolean
RReduction.isStrongTopReducible
(List<GenPolynomial<C>> P, GenPolynomial<C> A) Is strong top reducible.boolean
RReductionSeq.isStrongTopReducible
(List<GenPolynomial<C>> P, GenPolynomial<C> A) Is strong top reducible.boolean
RReductionSeq.isTopReducible
(List<GenPolynomial<C>> P, GenPolynomial<C> A) Is top reducible.GroebnerBaseFGLM.lMinterm
(List<GenPolynomial<C>> G, GenPolynomial<C> t) Algorithm lMinterm: MINTERM algorithm for inverse lexicographical term order.PseudoReductionPar.normalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform.PseudoReductionPar.normalform
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with recording.PseudoReductionSeq.normalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform.PseudoReductionSeq.normalform
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with recording.RPseudoReductionSeq.normalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform using r-reduction.RPseudoReductionSeq.normalform
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with recording.RReductionSeq.normalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform using r-reduction.RReductionSeq.normalform
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with recording.PseudoReduction.normalformFactor
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with multiplication factor.PseudoReductionPar.normalformFactor
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform.PseudoReductionSeq.normalformFactor
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform.RPseudoReductionSeq.normalformFactor
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform using r-reduction.PseudoReduction.normalformRecursive
(List<GenPolynomial<GenPolynomial<C>>> Pp, GenPolynomial<GenPolynomial<C>> Ap) Normalform recursive.PseudoReductionPar.normalformRecursive
(List<GenPolynomial<GenPolynomial<C>>> Pp, GenPolynomial<GenPolynomial<C>> Ap) Normalform recursive.PseudoReductionSeq.normalformRecursive
(List<GenPolynomial<GenPolynomial<C>>> Pp, GenPolynomial<GenPolynomial<C>> Ap) Normalform recursive.RPseudoReductionSeq.normalformRecursive
(List<GenPolynomial<GenPolynomial<C>>> Pp, GenPolynomial<GenPolynomial<C>> Ap) Normalform recursive.RReduction.reducedBooleanClosure
(List<GenPolynomial<C>> F, GenPolynomial<C> A) Reduced boolean closure, compute BC(A) modulo F.RReductionSeq.reducedBooleanClosure
(List<GenPolynomial<C>> F, GenPolynomial<C> A) Reduced boolean closure, compute BC(A) modulo F.MultiplicativeSet.removeFactors
(GenPolynomial<C> cc) Remove factors by mset factors division.static <C extends GcdRingElem<C>>
booleanPolyGBUtil.subRingAndMember
(List<GenPolynomial<C>> A, GenPolynomial<C> g) Subring and membership test.static <C extends GcdRingElem<C>>
booleanPolyGBUtil.subRingMember
(List<GenPolynomial<C>> A, GenPolynomial<C> g) Subring membership.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyModUtil.syzGcd
(GenPolynomialRing<C> r, GenPolynomial<C> n, GenPolynomial<C> d) Greatest common divisor.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyModUtil.syzLcm
(GenPolynomialRing<C> r, GenPolynomial<C> n, GenPolynomial<C> d) Least common multiple.static <C extends RingElem<C>>
GenPolynomial<C> PolyGBUtil.topCoefficientPseudoRemainder
(List<GenPolynomial<C>> A, GenPolynomial<C> P) Top coefficient pseudo remainder of the leading coefficient of P wrt A in the main variables.static <C extends RingElem<C>>
GenPolynomial<C> PolyGBUtil.topPseudoRemainder
(List<GenPolynomial<C>> A, GenPolynomial<C> P) Top pseudo reduction wrt the main variables.Method parameters in edu.jas.gbufd with type arguments of type GenPolynomialModifier and TypeMethodDescriptionint
GroebnerBaseFGLMExamples.bitHeight
(List<GenPolynomial<BigRational>> list) Method bitHeight returns the bitlength of the greatest number occurring during the computation of a Groebner base.RReductionSeq.booleanClosure
(List<GenPolynomial<C>> F) Boolean closure, compute BC(A) for all A in F.CharacteristicSet.characteristicSet
(List<GenPolynomial<C>> A) Characteristic set.CharacteristicSetSimple.characteristicSet
(List<GenPolynomial<C>> A) Characteristic set.CharacteristicSetWu.characteristicSet
(List<GenPolynomial<C>> A) Characteristic set.CharacteristicSet.characteristicSetReduction
(List<GenPolynomial<C>> A, GenPolynomial<C> P) Characteristic set reduction.CharacteristicSetSimple.characteristicSetReduction
(List<GenPolynomial<C>> A, GenPolynomial<C> P) Characteristic set reduction.CharacteristicSetWu.characteristicSetReduction
(List<GenPolynomial<C>> A, GenPolynomial<C> P) Characteristic set reduction.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyGBUtil.chineseRemainderTheorem
(List<List<GenPolynomial<C>>> F, List<GenPolynomial<C>> A) Chinese remainder theorem.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<GenPolynomial<C>>> PolyGBUtil.coefficientPseudoRemainder
(GenPolynomial<GenPolynomial<GenPolynomial<C>>> P, GenPolynomial<GenPolynomial<C>> A) Polynomial leading coefficient pseudo remainder.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<GenPolynomial<C>>> PolyGBUtil.coefficientPseudoRemainder
(GenPolynomial<GenPolynomial<GenPolynomial<C>>> P, GenPolynomial<GenPolynomial<C>> A) Polynomial leading coefficient pseudo remainder.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyGBUtil.coefficientPseudoRemainderBase
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<C> A) Polynomial leading coefficient pseudo remainder, base case.boolean
MultiplicativeSet.contains
(List<GenPolynomial<C>> L) Test if a list of polynomials is contained in multiplicative set.GroebnerBaseFGLM.convGroebnerToLex
(List<GenPolynomial<C>> groebnerBasis) Algorithm CONVGROEBNER: Converts Groebner bases w.r.t.GroebnerBasePartial.elimPartialGB
(List<GenPolynomial<C>> F, String[] evars, String[] pvars) Partial Groebner base for specific variables.GroebnerBaseFGLM.GB
(int modv, List<GenPolynomial<C>> F) Groebner base using FGLM algorithm.GroebnerBasePartial.GB
(int modv, List<GenPolynomial<C>> F) Groebner base using pairlist class.GroebnerBasePseudoParallel.GB
(int modv, List<GenPolynomial<C>> F) Groebner base using pairlist class.GroebnerBasePseudoRecParallel.GB
(int modv, List<GenPolynomial<GenPolynomial<C>>> F) Groebner base using pairlist class.GroebnerBasePseudoRecParallel.GB
(int modv, List<GenPolynomial<GenPolynomial<C>>> F) Groebner base using pairlist class.GroebnerBasePseudoRecSeq.GB
(int modv, List<GenPolynomial<GenPolynomial<C>>> F) Groebner base using pairlist class.GroebnerBasePseudoRecSeq.GB
(int modv, List<GenPolynomial<GenPolynomial<C>>> F) Groebner base using pairlist class.GroebnerBasePseudoSeq.GB
(int modv, List<GenPolynomial<C>> F) Groebner base using pairlist class.GroebnerBaseQuotient.GB
(int modv, List<GenPolynomial<Quotient<C>>> F) Groebner base using fraction free computation.GroebnerBaseRational.GB
(int modv, List<GenPolynomial<BigRational>> F) Groebner base using fraction free computation.GroebnerBaseWalk.GB
(int modv, List<GenPolynomial<C>> F) Groebner base using Groebner Walk algorithm.RGroebnerBasePseudoSeq.GB
(int modv, List<GenPolynomial<C>> F) R-Groebner base using pairlist class.RGroebnerBaseSeq.GB
(int modv, List<GenPolynomial<C>> F) R-Groebner base using pairlist class.WordGroebnerBasePseudoRecSeq.GB
(List<GenWordPolynomial<GenPolynomial<C>>> F) Word Groebner base using word pairlist class.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<GenPolynomial<C>> GBFactory.getImplementation
(GenPolynomialRing<C> fac, PairList<GenPolynomial<C>> pl) Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<GenPolynomial<C>> GBFactory.getImplementation
(GenPolynomialRing<C> fac, GBFactory.Algo a, PairList<GenPolynomial<C>> pl) Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
SolvableGroebnerBaseAbstract<GenPolynomial<C>> SGBFactory.getImplementation
(GenPolynomialRing<C> fac, PairList<GenPolynomial<C>> pl) Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
SolvableGroebnerBaseAbstract<GenPolynomial<C>> SGBFactory.getImplementation
(GenPolynomialRing<C> fac, GBFactory.Algo a, PairList<GenPolynomial<C>> pl) Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
List<GenPolynomial<C>> PolyGBUtil.intersect
(GenPolynomialRing<C> pfac, List<GenPolynomial<C>> A, List<GenPolynomial<C>> B) Intersection.RReductionSeq.irreducibleSet
(List<GenPolynomial<C>> Pp) Irreducible set.boolean
RReduction.isBooleanClosed
(List<GenPolynomial<C>> F) Is boolean closed, test if all A in F are boolean closed.boolean
RReductionSeq.isBooleanClosed
(List<GenPolynomial<C>> F) Is boolean closed, test if all A in F are boolean closed.boolean
CharacteristicSet.isCharacteristicSet
(List<GenPolynomial<C>> A) Characteristic set test.boolean
CharacteristicSetSimple.isCharacteristicSet
(List<GenPolynomial<C>> A) Characteristic set test.boolean
CharacteristicSetWu.isCharacteristicSet
(List<GenPolynomial<C>> A) Characteristic set test.static <C extends GcdRingElem<C>>
booleanPolyGBUtil.isChineseRemainder
(List<List<GenPolynomial<C>>> F, List<GenPolynomial<C>> A, GenPolynomial<C> h) Is Chinese remainder.boolean
RGroebnerBaseSeq.isGB
(int modv, List<GenPolynomial<C>> F) R-Groebner base test.boolean
WordGroebnerBasePseudoRecSeq.isGB
(List<GenWordPolynomial<GenPolynomial<C>>> F) Wird Groebner base simple test.boolean
GroebnerBasePartial.isGBrec
(int modv, List<GenPolynomial<GenPolynomial<C>>> F) Groebner base test.boolean
GroebnerBasePartial.isGBrec
(int modv, List<GenPolynomial<GenPolynomial<C>>> F) Groebner base test.boolean
GroebnerBasePartial.isGBrec
(List<GenPolynomial<GenPolynomial<C>>> F) Groebner base test.boolean
GroebnerBasePartial.isGBrec
(List<GenPolynomial<GenPolynomial<C>>> F) Groebner base test.boolean
GroebnerBasePseudoRecParallel.isGBsimple
(int modv, List<GenPolynomial<GenPolynomial<C>>> F) Groebner base simple test.boolean
GroebnerBasePseudoRecParallel.isGBsimple
(int modv, List<GenPolynomial<GenPolynomial<C>>> F) Groebner base simple test.boolean
GroebnerBasePseudoRecSeq.isGBsimple
(int modv, List<GenPolynomial<GenPolynomial<C>>> F) Groebner base simple test.boolean
GroebnerBasePseudoRecSeq.isGBsimple
(int modv, List<GenPolynomial<GenPolynomial<C>>> F) Groebner base simple test.boolean
SolvableGroebnerBasePseudoRecSeq.isLeftGBidem
(int modv, List<GenSolvablePolynomial<GenPolynomial<C>>> F) Left Groebner base idempotence test.boolean
SolvableGroebnerBasePseudoRecSeq.isLeftGBsimple
(int modv, List<GenSolvablePolynomial<GenPolynomial<C>>> F) Left Groebner base test.boolean
RReductionSeq.isNormalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Is in Normalform.boolean
RReductionSeq.isReducedBooleanClosed
(List<GenPolynomial<C>> F) Is reduced boolean closed, test if all A in F are boolean closed or br(A) reduces to zero.boolean
RReduction.isStrongTopReducible
(List<GenPolynomial<C>> P, GenPolynomial<C> A) Is strong top reducible.boolean
RReductionSeq.isStrongTopReducible
(List<GenPolynomial<C>> P, GenPolynomial<C> A) Is strong top reducible.boolean
RReductionSeq.isTopReducible
(List<GenPolynomial<C>> P, GenPolynomial<C> A) Is top reducible.boolean
SolvableGroebnerBasePseudoRecSeq.isTwosidedGB
(int modv, List<GenSolvablePolynomial<GenPolynomial<C>>> Fp) Twosided Groebner base test.boolean
Syzygy.isZeroRelation
(List<List<GenPolynomial<C>>> Z, List<GenPolynomial<C>> F) Test if sysygy.boolean
SyzygyAbstract.isZeroRelation
(List<List<GenPolynomial<C>>> Z, List<GenPolynomial<C>> F) Test if sysygy.SolvableGroebnerBasePseudoRecSeq.leftGB
(int modv, List<GenSolvablePolynomial<GenPolynomial<C>>> F) Left Groebner base using pairlist class.SolvableGroebnerBasePseudoRecSeq.leftMinimalGB
(List<GenSolvablePolynomial<GenPolynomial<C>>> Gp) Minimal ordered Solvable Groebner basis.SolvablePseudoReduction.leftNormalformRecursive
(List<GenSolvablePolynomial<GenPolynomial<C>>> Pp, GenSolvablePolynomial<GenPolynomial<C>> Ap) Left normalform recursive.SolvablePseudoReduction.leftNormalformRecursive
(List<GenSolvablePolynomial<GenPolynomial<C>>> Pp, GenSolvablePolynomial<GenPolynomial<C>> Ap) Left normalform recursive.SolvablePseudoReductionSeq.leftNormalformRecursive
(List<GenSolvablePolynomial<GenPolynomial<C>>> Pp, GenSolvablePolynomial<GenPolynomial<C>> Ap) Left normalform recursive.SolvablePseudoReductionSeq.leftNormalformRecursive
(List<GenSolvablePolynomial<GenPolynomial<C>>> Pp, GenSolvablePolynomial<GenPolynomial<C>> Ap) Left normalform recursive.GroebnerBaseFGLM.lMinterm
(List<GenPolynomial<C>> G, GenPolynomial<C> t) Algorithm lMinterm: MINTERM algorithm for inverse lexicographical term order.GroebnerBasePseudoParallel.minimalGB
(List<GenPolynomial<C>> Gp) Minimal ordered Groebner basis.GroebnerBasePseudoRecParallel.minimalGB
(List<GenPolynomial<GenPolynomial<C>>> Gp) Minimal ordered Groebner basis.GroebnerBasePseudoRecParallel.minimalGB
(List<GenPolynomial<GenPolynomial<C>>> Gp) Minimal ordered Groebner basis.GroebnerBasePseudoRecSeq.minimalGB
(List<GenPolynomial<GenPolynomial<C>>> Gp) Minimal ordered Groebner basis.GroebnerBasePseudoRecSeq.minimalGB
(List<GenPolynomial<GenPolynomial<C>>> Gp) Minimal ordered Groebner basis.GroebnerBasePseudoSeq.minimalGB
(List<GenPolynomial<C>> Gp) Minimal ordered Groebner basis.GroebnerBaseQuotient.minimalGB
(List<GenPolynomial<Quotient<C>>> Gp) Minimal ordered Groebner basis.GroebnerBaseRational.minimalGB
(List<GenPolynomial<BigRational>> Gp) Minimal ordered Groebner basis.RGroebnerBasePseudoSeq.minimalGB
(List<GenPolynomial<C>> Gp) Minimal ordered Groebner basis.RGroebnerBaseSeq.minimalGB
(List<GenPolynomial<C>> Gp) Minimal ordered Groebner basis.WordGroebnerBasePseudoRecSeq.minimalGB
(List<GenWordPolynomial<GenPolynomial<C>>> Gp) Minimal ordered Groebner basis.(package private) List
<GenPolynomial<C>> RGroebnerBasePseudoSeq.minimalGBtesting
(List<GenPolynomial<C>> Gp) PseudoReductionPar.normalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform.PseudoReductionPar.normalform
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with recording.PseudoReductionSeq.normalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform.PseudoReductionSeq.normalform
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with recording.RPseudoReductionSeq.normalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform using r-reduction.RPseudoReductionSeq.normalform
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with recording.RReductionSeq.normalform
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform using r-reduction.RReductionSeq.normalform
(List<GenPolynomial<C>> row, List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with recording.PseudoReduction.normalformFactor
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform with multiplication factor.PseudoReductionPar.normalformFactor
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform.PseudoReductionSeq.normalformFactor
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform.RPseudoReductionSeq.normalformFactor
(List<GenPolynomial<C>> Pp, GenPolynomial<C> Ap) Normalform using r-reduction.PseudoReduction.normalformRecursive
(List<GenPolynomial<GenPolynomial<C>>> Pp, GenPolynomial<GenPolynomial<C>> Ap) Normalform recursive.PseudoReduction.normalformRecursive
(List<GenPolynomial<GenPolynomial<C>>> Pp, GenPolynomial<GenPolynomial<C>> Ap) Normalform recursive.PseudoReduction.normalformRecursive
(List<GenPolynomial<GenPolynomial<C>>> Pp, GenPolynomial<GenPolynomial<C>> Ap) Normalform recursive.PseudoReductionPar.normalformRecursive
(List<GenPolynomial<GenPolynomial<C>>> Pp, GenPolynomial<GenPolynomial<C>> Ap) Normalform recursive.PseudoReductionPar.normalformRecursive
(List<GenPolynomial<GenPolynomial<C>>> Pp, GenPolynomial<GenPolynomial<C>> Ap) Normalform recursive.PseudoReductionPar.normalformRecursive
(List<GenPolynomial<GenPolynomial<C>>> Pp, GenPolynomial<GenPolynomial<C>> Ap) Normalform recursive.PseudoReductionSeq.normalformRecursive
(List<GenPolynomial<GenPolynomial<C>>> Pp, GenPolynomial<GenPolynomial<C>> Ap) Normalform recursive.PseudoReductionSeq.normalformRecursive
(List<GenPolynomial<GenPolynomial<C>>> Pp, GenPolynomial<GenPolynomial<C>> Ap) Normalform recursive.PseudoReductionSeq.normalformRecursive
(List<GenPolynomial<GenPolynomial<C>>> Pp, GenPolynomial<GenPolynomial<C>> Ap) Normalform recursive.RPseudoReductionSeq.normalformRecursive
(List<GenPolynomial<GenPolynomial<C>>> Pp, GenPolynomial<GenPolynomial<C>> Ap) Normalform recursive.RPseudoReductionSeq.normalformRecursive
(List<GenPolynomial<GenPolynomial<C>>> Pp, GenPolynomial<GenPolynomial<C>> Ap) Normalform recursive.RPseudoReductionSeq.normalformRecursive
(List<GenPolynomial<GenPolynomial<C>>> Pp, GenPolynomial<GenPolynomial<C>> Ap) Normalform recursive.WordPseudoReduction.normalformRecursive
(List<GenWordPolynomial<GenPolynomial<C>>> Pp, GenWordPolynomial<GenPolynomial<C>> Ap) Left normalform recursive.WordPseudoReduction.normalformRecursive
(List<GenWordPolynomial<GenPolynomial<C>>> Pp, GenWordPolynomial<GenPolynomial<C>> Ap) Left normalform recursive.WordPseudoReductionSeq.normalformRecursive
(List<GenWordPolynomial<GenPolynomial<C>>> Pp, GenWordPolynomial<GenPolynomial<C>> Ap) Normalform with polynomial coefficients.WordPseudoReductionSeq.normalformRecursive
(List<GenWordPolynomial<GenPolynomial<C>>> Pp, GenWordPolynomial<GenPolynomial<C>> Ap) Normalform with polynomial coefficients.GroebnerBasePartial.partialGB
(List<GenPolynomial<C>> F, String[] pvars) Partial Groebner base for specific variables.GroebnerBasePartial.partialGBrec
(List<GenPolynomial<C>> F, String[] pvars) Partial recursive Groebner base for specific variables.WordGroebnerBasePseudoRecSeq.recursiveContent
(GenWordPolynomial<GenPolynomial<C>> P) GenWordPolynomial recursive coefficient content.WordGroebnerBasePseudoRecSeq.recursivePrimitivePart
(GenWordPolynomial<GenPolynomial<C>> P) GenWordPolynomial recursive coefficient primitive part.WordGroebnerBasePseudoRecSeq.recursivePrimitivePart
(List<GenWordPolynomial<GenPolynomial<C>>> F) List of GenWordPolynomial recursive coefficient primitive part.GroebnerBaseFGLM.redTerms
(List<GenPolynomial<C>> groebnerBasis) Compute the residues to given polynomial list.RReduction.reducedBooleanClosure
(List<GenPolynomial<C>> F) Reduced boolean closure, compute BC(A) for all A in F.RReduction.reducedBooleanClosure
(List<GenPolynomial<C>> F, GenPolynomial<C> A) Reduced boolean closure, compute BC(A) modulo F.RReductionSeq.reducedBooleanClosure
(List<GenPolynomial<C>> F) Reduced boolean closure, compute BC(A) for all A in F.RReductionSeq.reducedBooleanClosure
(List<GenPolynomial<C>> F, GenPolynomial<C> A) Reduced boolean closure, compute BC(A) modulo F.MultiplicativeSet.removeFactors
(List<GenPolynomial<C>> L) Remove factors by mset factors division.MultiplicativeSet.replace
(List<GenPolynomial<C>> L) Replace polynomial list of mset.MultiplicativeSetCoPrime.replace
(List<GenPolynomial<C>> L) Replace polynomial list of mset.MultiplicativeSetFactors.replace
(List<GenPolynomial<C>> L) Replace polynomial list of mset.MultiplicativeSetSquarefree.replace
(List<GenPolynomial<C>> L) Replace polynomial list of mset.SolvablePseudoReduction.rightNormalformRecursive
(List<GenSolvablePolynomial<GenPolynomial<C>>> Pp, GenSolvablePolynomial<GenPolynomial<C>> Ap) Right normalform recursive.SolvablePseudoReduction.rightNormalformRecursive
(List<GenSolvablePolynomial<GenPolynomial<C>>> Pp, GenSolvablePolynomial<GenPolynomial<C>> Ap) Right normalform recursive.SolvablePseudoReductionSeq.rightNormalformRecursive
(List<GenSolvablePolynomial<GenPolynomial<C>>> Pp, GenSolvablePolynomial<GenPolynomial<C>> Ap) Right normalform recursive.SolvablePseudoReductionSeq.rightNormalformRecursive
(List<GenSolvablePolynomial<GenPolynomial<C>>> Pp, GenSolvablePolynomial<GenPolynomial<C>> Ap) Right normalform recursive.static <C extends GcdRingElem<C>>
List<GenPolynomial<C>> PolyGBUtil.subRing
(List<GenPolynomial<C>> A) Subring generators.static <C extends GcdRingElem<C>>
booleanPolyGBUtil.subRingAndMember
(List<GenPolynomial<C>> A, GenPolynomial<C> g) Subring and membership test.static <C extends GcdRingElem<C>>
booleanPolyGBUtil.subRingMember
(List<GenPolynomial<C>> A, GenPolynomial<C> g) Subring membership.static <C extends RingElem<C>>
GenPolynomial<C> PolyGBUtil.topCoefficientPseudoRemainder
(List<GenPolynomial<C>> A, GenPolynomial<C> P) Top coefficient pseudo remainder of the leading coefficient of P wrt A in the main variables.static <C extends RingElem<C>>
GenPolynomial<C> PolyGBUtil.topPseudoRemainder
(List<GenPolynomial<C>> A, GenPolynomial<C> P) Top pseudo reduction wrt the main variables.SolvableGroebnerBasePseudoRecSeq.twosidedGB
(int modv, List<GenSolvablePolynomial<GenPolynomial<C>>> Fp) Twosided Solvable Groebner base using pairlist class.GroebnerBaseWalk.walkGroebnerToTarget
(int modv, List<GenPolynomial<C>> Gl, GenPolynomialRing<C> ufac) Converts Groebner bases w.r.t.static <C extends RingElem<C>>
List<GenPolynomial<C>> PolyGBUtil.zeroDegrees
(List<GenPolynomial<C>> A) Extract polynomials with degree zero in the main variable.List
<List<GenPolynomial<C>>> Syzygy.zeroRelations
(int modv, GenVector<GenPolynomial<C>> v) Syzygy module from Groebner base.List
<List<GenPolynomial<C>>> Syzygy.zeroRelations
(int modv, List<GenPolynomial<C>> F) Syzygy module from Groebner base.List
<List<GenPolynomial<C>>> Syzygy.zeroRelations
(List<GenPolynomial<C>> F) Syzygy module from Groebner base.List
<List<GenPolynomial<C>>> SyzygyAbstract.zeroRelations
(int modv, GenVector<GenPolynomial<C>> v) Syzygy module from Groebner base.List
<List<GenPolynomial<C>>> SyzygyAbstract.zeroRelations
(int modv, List<GenPolynomial<C>> F) Syzygy module from Groebner base.List
<List<GenPolynomial<C>>> SyzygyAbstract.zeroRelations
(List<GenPolynomial<C>> F) Syzygy module from Groebner base.List
<List<GenPolynomial<C>>> Syzygy.zeroRelationsArbitrary
(int modv, List<GenPolynomial<C>> F) Syzygy module from arbitrary base.List
<List<GenPolynomial<C>>> Syzygy.zeroRelationsArbitrary
(List<GenPolynomial<C>> F) Syzygy module from arbitrary base.List
<List<GenPolynomial<C>>> SyzygyAbstract.zeroRelationsArbitrary
(List<GenPolynomial<C>> F) Syzygy module from arbitrary base.List
<List<GenPolynomial<C>>> SyzygySeq.zeroRelationsArbitrary
(int modv, List<GenPolynomial<C>> F) Syzygy module from arbitrary base.Constructors in edu.jas.gbufd with parameters of type GenPolynomialModifierConstructorDescription(package private)
PseudoMiReducer
(List<GenPolynomial<C>> G, GenPolynomial<C> p, GreatestCommonDivisorAbstract<C> engine) (package private)
PseudoMiReducerRec
(List<GenPolynomial<GenPolynomial<C>>> G, GenPolynomial<GenPolynomial<C>> p, GreatestCommonDivisorAbstract<C> engine) PseudoReductionEntry
(GenPolynomial<C> pol, C multiplicator) Constructor parameters in edu.jas.gbufd with type arguments of type GenPolynomialModifierConstructorDescriptionConstructor.GroebnerBasePseudoRecParallel
(int threads, RingFactory<GenPolynomial<C>> rf) Constructor.GroebnerBasePseudoRecParallel
(int threads, RingFactory<GenPolynomial<C>> rf, PairList<GenPolynomial<C>> pl) Constructor.GroebnerBasePseudoRecParallel
(int threads, RingFactory<GenPolynomial<C>> rf, PairList<GenPolynomial<C>> pl) Constructor.GroebnerBasePseudoRecParallel
(int threads, RingFactory<GenPolynomial<C>> rf, PseudoReduction<GenPolynomial<C>> red) Constructor.GroebnerBasePseudoRecParallel
(int threads, RingFactory<GenPolynomial<C>> rf, PseudoReduction<GenPolynomial<C>> red) Constructor.GroebnerBasePseudoRecParallel
(int threads, RingFactory<GenPolynomial<C>> rf, PseudoReduction<GenPolynomial<C>> red, ExecutorService pool) Constructor.GroebnerBasePseudoRecParallel
(int threads, RingFactory<GenPolynomial<C>> rf, PseudoReduction<GenPolynomial<C>> red, ExecutorService pool) Constructor.GroebnerBasePseudoRecParallel
(int threads, RingFactory<GenPolynomial<C>> rf, PseudoReduction<GenPolynomial<C>> red, ExecutorService pool, PairList<GenPolynomial<C>> pl) Constructor.GroebnerBasePseudoRecParallel
(int threads, RingFactory<GenPolynomial<C>> rf, PseudoReduction<GenPolynomial<C>> red, ExecutorService pool, PairList<GenPolynomial<C>> pl) Constructor.GroebnerBasePseudoRecParallel
(int threads, RingFactory<GenPolynomial<C>> rf, PseudoReduction<GenPolynomial<C>> red, ExecutorService pool, PairList<GenPolynomial<C>> pl) Constructor.GroebnerBasePseudoRecSeq
(PseudoReduction<GenPolynomial<C>> red, RingFactory<GenPolynomial<C>> rf, PairList<GenPolynomial<C>> pl) Constructor.GroebnerBasePseudoRecSeq
(PseudoReduction<GenPolynomial<C>> red, RingFactory<GenPolynomial<C>> rf, PairList<GenPolynomial<C>> pl) Constructor.GroebnerBasePseudoRecSeq
(PseudoReduction<GenPolynomial<C>> red, RingFactory<GenPolynomial<C>> rf, PairList<GenPolynomial<C>> pl) Constructor.Constructor.GroebnerBasePseudoRecSeq
(RingFactory<GenPolynomial<C>> rf, PairList<GenPolynomial<C>> pl) Constructor.GroebnerBasePseudoRecSeq
(RingFactory<GenPolynomial<C>> rf, PairList<GenPolynomial<C>> pl) Constructor.GroebnerBaseQuotient
(int threads, QuotientRing<C> rf, PairList<GenPolynomial<C>> pl) Constructor.Constructor.GroebnerBaseQuotient
(QuotientRing<C> rf, PairList<GenPolynomial<C>> pl) Constructor.protected
MultiplicativeSet
(GenPolynomialRing<C> ring, List<GenPolynomial<C>> ms) MultiplicativeSet constructor.protected
MultiplicativeSetCoPrime
(GenPolynomialRing<C> ring, List<GenPolynomial<C>> ms, GreatestCommonDivisorAbstract<C> eng) MultiplicativeSet constructor.protected
MultiplicativeSetFactors
(GenPolynomialRing<C> ring, List<GenPolynomial<C>> ms, FactorAbstract<C> eng) MultiplicativeSet constructor.protected
MultiplicativeSetSquarefree
(GenPolynomialRing<C> ring, List<GenPolynomial<C>> ms, SquarefreeAbstract<C> eng) MultiplicativeSet constructor.(package private)
PseudoMiReducer
(List<GenPolynomial<C>> G, GenPolynomial<C> p, GreatestCommonDivisorAbstract<C> engine) (package private)
PseudoMiReducerRec
(List<GenPolynomial<GenPolynomial<C>>> G, GenPolynomial<GenPolynomial<C>> p, GreatestCommonDivisorAbstract<C> engine) (package private)
PseudoMiReducerRec
(List<GenPolynomial<GenPolynomial<C>>> G, GenPolynomial<GenPolynomial<C>> p, GreatestCommonDivisorAbstract<C> engine) (package private)
PseudoMiReducerRec
(List<GenPolynomial<GenPolynomial<C>>> G, GenPolynomial<GenPolynomial<C>> p, GreatestCommonDivisorAbstract<C> engine) (package private)
PseudoReducer
(Terminator fin, List<GenPolynomial<C>> G, PairList<C> L, GreatestCommonDivisorAbstract<C> engine) (package private)
PseudoReducerRec
(Terminator fin, List<GenPolynomial<GenPolynomial<C>>> G, PairList<GenPolynomial<C>> L, GreatestCommonDivisorAbstract<C> engine) (package private)
PseudoReducerRec
(Terminator fin, List<GenPolynomial<GenPolynomial<C>>> G, PairList<GenPolynomial<C>> L, GreatestCommonDivisorAbstract<C> engine) (package private)
PseudoReducerRec
(Terminator fin, List<GenPolynomial<GenPolynomial<C>>> G, PairList<GenPolynomial<C>> L, GreatestCommonDivisorAbstract<C> engine) Constructor.Constructor.Constructor.Constructor.SolvableGroebnerBasePseudoRecSeq
(RingFactory<GenPolynomial<C>> rf, SolvablePseudoReduction<C> red, PairList<GenPolynomial<C>> pl) Constructor.SolvableGroebnerBasePseudoRecSeq
(RingFactory<GenPolynomial<C>> rf, SolvablePseudoReduction<C> red, PairList<GenPolynomial<C>> pl) Constructor.Constructor.WordGroebnerBasePseudoRecSeq
(RingFactory<GenPolynomial<C>> rf, WordPseudoReductionSeq<GenPolynomial<C>> red) Constructor.WordGroebnerBasePseudoRecSeq
(RingFactory<GenPolynomial<C>> rf, WordPseudoReductionSeq<GenPolynomial<C>> red) Constructor.WordGroebnerBasePseudoRecSeq
(RingFactory<GenPolynomial<C>> rf, WordPseudoReductionSeq<GenPolynomial<C>> red, WordPairList<GenPolynomial<C>> pl) Constructor.WordGroebnerBasePseudoRecSeq
(RingFactory<GenPolynomial<C>> rf, WordPseudoReductionSeq<GenPolynomial<C>> red, WordPairList<GenPolynomial<C>> pl) Constructor.WordGroebnerBasePseudoRecSeq
(RingFactory<GenPolynomial<C>> rf, WordPseudoReductionSeq<GenPolynomial<C>> red, WordPairList<GenPolynomial<C>> pl) Constructor. -
Uses of GenPolynomial in edu.jas.integrate
Fields in edu.jas.integrate declared as GenPolynomialModifier and TypeFieldDescriptionfinal GenPolynomial
<C> Integral.den
Original denominator polynomial with coefficients from C.final GenPolynomial
<C> LogIntegral.den
Original (irreducible) denominator polynomial with coefficients from C.final GenPolynomial
<C> Integral.num
Original numerator polynomial with coefficients from C.final GenPolynomial
<C> LogIntegral.num
Original numerator polynomial with coefficients from C and deg(num) < deg(den).final GenPolynomial
<C> Integral.pol
Integral of the polynomial part.Fields in edu.jas.integrate with type parameters of type GenPolynomialModifier and TypeFieldDescriptionfinal List
<GenPolynomial<AlgebraicNumber<C>>> LogIntegral.adenom
List of factors of the denominator with coefficients from an AlgebraicNumberRing<C>.final List
<GenPolynomial<C>> LogIntegral.cdenom
List of linear factors of the denominator with coefficients from C.final List
<GenPolynomial<C>> Integral.rational
Integral of the rational part.Methods in edu.jas.integrate that return types with arguments of type GenPolynomialModifier and TypeMethodDescriptionList<GenPolynomial<C>>[]
ElementaryIntegration.integrateHermite
(GenPolynomial<C> a, GenPolynomial<C> d) Integration of the rational part, Hermite reduction step.Methods in edu.jas.integrate with parameters of type GenPolynomialModifier and TypeMethodDescriptionElementaryIntegration.integrate
(GenPolynomial<C> a, GenPolynomial<C> d) Integration of a rational function.List<GenPolynomial<C>>[]
ElementaryIntegration.integrateHermite
(GenPolynomial<C> a, GenPolynomial<C> d) Integration of the rational part, Hermite reduction step.ElementaryIntegration.integrateLogPart
(GenPolynomial<C> A, GenPolynomial<C> P) Univariate GenPolynomial integration of the logarithmic part, Rothstein-Trager algorithm.ElementaryIntegrationBernoulli.integrateLogPart
(GenPolynomial<C> A, GenPolynomial<C> P) Univariate GenPolynomial integration of the logarithmic part, Bernoulli linear factorization algorithm.ElementaryIntegrationCzichowski.integrateLogPart
(GenPolynomial<C> A, GenPolynomial<C> P) Univariate GenPolynomial integration of the logarithmic part, CzichowskiElementaryIntegrationLazard.integrateLogPart
(GenPolynomial<C> A, GenPolynomial<C> P) Univariate GenPolynomial integration of the logarithmic part, Lazard - Rioboo - TragerElementaryIntegration.integrateLogPartPrepare
(GenPolynomial<C> A, GenPolynomial<C> P) Univariate GenPolynomial integration of the logarithmic part, eventual preparation for irreducible factorization of P.Constructors in edu.jas.integrate with parameters of type GenPolynomialModifierConstructorDescriptionIntegral
(GenPolynomial<C> n, GenPolynomial<C> d, GenPolynomial<C> p) Constructor.Integral
(GenPolynomial<C> n, GenPolynomial<C> d, GenPolynomial<C> p, List<GenPolynomial<C>> rat) Constructor.Integral
(GenPolynomial<C> n, GenPolynomial<C> d, GenPolynomial<C> p, List<GenPolynomial<C>> rat, List<LogIntegral<C>> log) Constructor.LogIntegral
(GenPolynomial<C> n, GenPolynomial<C> d, List<C> cf, List<GenPolynomial<C>> cd, List<AlgebraicNumber<C>> af, List<GenPolynomial<AlgebraicNumber<C>>> ad) Constructor.QuotIntegral
(Quotient<C> r, GenPolynomial<C> p, List<GenPolynomial<C>> rat) Constructor.QuotIntegral
(Quotient<C> r, GenPolynomial<C> p, List<GenPolynomial<C>> rat, List<LogIntegral<C>> log) Constructor.Constructor parameters in edu.jas.integrate with type arguments of type GenPolynomialModifierConstructorDescriptionIntegral
(GenPolynomial<C> n, GenPolynomial<C> d, GenPolynomial<C> p, List<GenPolynomial<C>> rat) Constructor.Integral
(GenPolynomial<C> n, GenPolynomial<C> d, GenPolynomial<C> p, List<GenPolynomial<C>> rat, List<LogIntegral<C>> log) Constructor.QuotIntegral
(Quotient<C> r, GenPolynomial<C> p, List<GenPolynomial<C>> rat) Constructor.QuotIntegral
(Quotient<C> r, GenPolynomial<C> p, List<GenPolynomial<C>> rat, List<LogIntegral<C>> log) Constructor. -
Uses of GenPolynomial in edu.jas.poly
Classes in edu.jas.poly with type parameters of type GenPolynomialModifier and TypeClassDescriptionclass
QLRSolvablePolynomial<C extends GcdRingElem<C> & QuotPair<GenPolynomial<D>>,
D extends GcdRingElem<D>> QLRSolvablePolynomial generic recursive solvable polynomials implementing RingElem.class
QLRSolvablePolynomialRing<C extends GcdRingElem<C> & QuotPair<GenPolynomial<D>>,
D extends GcdRingElem<D>> QLRSolvablePolynomialRing generic recursive solvable polynomial factory implementing RingFactory and extending GenSolvablePolynomialRing factory.Subclasses of GenPolynomial in edu.jas.polyModifier and TypeClassDescriptionclass
GenSolvablePolynomial<C extends RingElem<C>>
GenSolvablePolynomial generic solvable polynomials implementing RingElem.class
QLRSolvablePolynomial<C extends GcdRingElem<C> & QuotPair<GenPolynomial<D>>,
D extends GcdRingElem<D>> QLRSolvablePolynomial generic recursive solvable polynomials implementing RingElem.class
RecSolvablePolynomial<C extends RingElem<C>>
RecSolvablePolynomial generic recursive solvable polynomials implementing RingElem.class
RecSolvableWordPolynomial<C extends RingElem<C>>
RecSolvableWordPolynomial generic recursive solvable polynomials implementing RingElem.Fields in edu.jas.poly declared as GenPolynomialModifier and TypeFieldDescription(package private) GenPolynomial
<C> GenPolynomialIterator.current
(package private) GenPolynomial
<C> GenPolynomialMonomialIterator.current
final GenPolynomial
AlgebraicNotInvertibleException.f
final GenPolynomial
AlgebraicNotInvertibleException.f1
final GenPolynomial
AlgebraicNotInvertibleException.f2
final GenPolynomial
<C> AlgebraicNumberRing.modul
Module part of the factory data structure.GenPolynomialRing.ONE
The constant polynomial 1 for this ring.final GenPolynomial
<C> AlgebraicNumber.val
Value part of the element data structure.protected final GenPolynomial
<C> CoeffToAlg.zero
GenPolynomialRing.ZERO
The constant polynomial 0 for this ring.Fields in edu.jas.poly with type parameters of type GenPolynomialModifier and TypeFieldDescriptionfinal RelationTable
<GenPolynomial<C>> RecSolvablePolynomialRing.coeffTable
The solvable multiplication relations between variables and coefficients.(package private) GenPolynomialRing
<GenPolynomial<C>> DistToRec.fac
final List
<List<GenPolynomial<C>>> ModuleList.list
The data structure is a List of Lists of polynomials.final List
<GenPolynomial<C>> PolynomialList.list
The data structure is a List of polynomials.(package private) final List
<GenPolynomial<C>> AlgebraicNumberIterator.powers
final QuotPairFactory
<GenPolynomial<D>, C> QLRSolvablePolynomialRing.qpfac
Factory to create coefficients.Methods in edu.jas.poly that return GenPolynomialModifier and TypeMethodDescriptionGenPolynomial.abs()
GenPolynomial absolute value, i.e.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtil.algebraicFromComplex
(GenPolynomialRing<AlgebraicNumber<C>> fac, GenPolynomial<Complex<C>> A) AlgebraicNumber from complex coefficients.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.baseDensePseudoQuotient
(GenPolynomial<C> P, GenPolynomial<C> S) GenPolynomial dense pseudo quotient.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.baseDensePseudoRemainder
(GenPolynomial<C> P, GenPolynomial<C> S) GenPolynomial dense pseudo remainder.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.baseDerivative
(GenPolynomial<C> P) GenPolynomial polynomial derivative main variable.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.baseDerivative
(GenPolynomial<C> P, int r) GenPolynomial polynomial partial derivative variable r.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.baseIntegral
(GenPolynomial<C> P) GenPolynomial polynomial integral main variable.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.basePseudoDivide
(GenPolynomial<C> P, GenPolynomial<C> S) GenPolynomial sparse pseudo divide.static <C extends RingElem<C>>
GenPolynomial<C>[]PolyUtil.basePseudoQuotientRemainder
(GenPolynomial<C> P, GenPolynomial<C> S) GenPolynomial sparse pseudo quotient and remainder.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.basePseudoRemainder
(GenPolynomial<C> P, GenPolynomial<C> S) Deprecated.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.baseRecursiveDivide
(GenPolynomial<GenPolynomial<C>> P, C s) GenPolynomial base divide.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.baseRemainderPoly
(GenPolynomial<C> P, C s) GenPolynomial coefficient wise remainder.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.baseSparsePseudoRemainder
(GenPolynomial<C> P, GenPolynomial<C> S) GenPolynomial sparse pseudo remainder.GenPolynomialRing.charPolynomial
(GenMatrix<C> A) Characteristic polynomial of matrix.static <C extends RingElem<C> & Modular>
GenPolynomial<C> PolyUtil.chineseRemainder
(GenPolynomialRing<C> fac, GenPolynomial<C> A, C mi, GenPolynomial<C> B) ModInteger chinese remainder algorithm on coefficients.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.coefficientBasePseudoDivide
(GenPolynomial<C> P, C s) GenPolynomial pseudo divide.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.coefficientPseudoDivide
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<C> s) GenPolynomial pseudo divide.GenPolynomial.coeffPrimitivePart()
GenPolynomial coefficient primitive part.static <C extends RingElem<C> & Rational>
GenPolynomial<Complex<BigDecimal>> PolyUtil.complexDecimalFromRational
(GenPolynomialRing<Complex<BigDecimal>> fac, GenPolynomial<Complex<C>> A) Convert to complex decimal coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<Complex<C>> PolyUtil.complexFromAlgebraic
(GenPolynomialRing<Complex<C>> fac, GenPolynomial<AlgebraicNumber<C>> A) Complex from algebraic coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<Complex<C>> PolyUtil.complexFromAny
(GenPolynomialRing<Complex<C>> fac, GenPolynomial<C> A) Complex from ring element coefficients.static GenPolynomial
<BigComplex> PolyUtil.complexFromRational
(GenPolynomialRing<BigComplex> fac, GenPolynomial<BigRational> A) Complex from rational coefficients.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.conjugateCoeff
(GenPolynomial<C> A) Conjugate coefficients.GenPolynomial.contractCoeff
(GenPolynomialRing<C> pfac) Contract variables to coefficient polynomial.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtil.convertRecursiveToAlgebraicCoefficients
(GenPolynomialRing<AlgebraicNumber<C>> pfac, GenPolynomial<GenPolynomial<C>> A) Convert to AlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtil.convertToAlgebraicCoefficients
(GenPolynomialRing<AlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to AlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtil.convertToRecAlgebraicCoefficients
(int depth, GenPolynomialRing<AlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to recursive AlgebraicNumber coefficients.GenPolynomial.copy()
Copy this GenPolynomial.GenPolynomialRing.copy
(GenPolynomial<C> c) Copy polynomial c.static <C extends RingElem<C> & Rational>
GenPolynomial<BigDecimal> PolyUtil.decimalFromRational
(GenPolynomialRing<BigDecimal> fac, GenPolynomial<C> A) Convert to decimal coefficients.GenPolynomial.deHomogenize
(GenPolynomialRing<C> pfac) Dehomogenize.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.distribute
(GenPolynomialRing<C> dfac, GenPolynomial<GenPolynomial<C>> B) Distribute a recursive polynomial to a generic polynomial.GenPolynomial division.GenPolynomial.divide
(GenPolynomial<C> S) GenPolynomial division.GenPolynomial<C>[]
GenPolynomial.egcd
(GenPolynomial<C> S) GenPolynomial extended greatest common divisor.AlgToPoly.eval
(AlgebraicNumber<C> c) DistToRec.eval
(GenPolynomial<C> c) EvalMainPol.eval
(GenPolynomial<C> c) FromIntegerPoly.eval
(GenPolynomial<BigInteger> c) RatToIntPoly.eval
(GenPolynomial<BigRational> c) RecToDist.eval
(GenPolynomial<GenPolynomial<C>> c) static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.evaluate
(GenPolynomialRing<C> cfac, GenPolynomialRing<GenPolynomial<C>> rfac, GenPolynomialRing<GenPolynomial<C>> nfac, GenPolynomialRing<C> dfac, GenPolynomial<C> A, C a) Evaluate at k-th variable.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.evaluateFirst
(GenPolynomialRing<C> cfac, GenPolynomialRing<C> dfac, GenPolynomial<C> A, C a) Evaluate at first (lowest) variable.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.evaluateFirstRec
(GenPolynomialRing<C> cfac, GenPolynomialRing<C> dfac, GenPolynomial<GenPolynomial<C>> A, C a) Evaluate at first (lowest) variable.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.evaluateMain
(GenPolynomialRing<C> cfac, GenPolynomial<C> A, C a) Evaluate at main variable.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.evaluateMainRecursive
(GenPolynomialRing<C> cfac, GenPolynomial<GenPolynomial<C>> A, C a) Evaluate at main variable.GenPolynomial.extend
(GenPolynomialRing<C> pfac, int j, long k) Extend variables.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.extendCoefficients
(GenPolynomialRing<GenPolynomial<C>> pfac, GenPolynomial<GenPolynomial<C>> A, int j, long k) Extend coefficient variables.GenPolynomial.extendLower
(GenPolynomialRing<C> pfac, int j, long k) Extend lower variables.GenPolynomial.extendUnivariate
(GenPolynomialRing<C> pfac, int i) Extend univariate to multivariate polynomial.static <C extends GcdRingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.fromAlgebraicCoefficients
(GenPolynomialRing<GenPolynomial<C>> rfac, GenPolynomial<AlgebraicNumber<C>> A) From AlgebraicNumber coefficients.GenPolynomialRing.fromInteger
(long a) Get a (constant) GenPolynomial<C> element from a long value.GenPolynomialRing.fromInteger
(BigInteger a) Get a (constant) GenPolynomial<C> element from a BigInteger value.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.fromIntegerCoefficients
(GenPolynomialRing<C> fac, GenPolynomial<BigInteger> A) From BigInteger coefficients.GenPolynomialRing.fromVector
(GenVector<C> a) Get a GenPolynomial<C> from a GenVector<C>.GenPolynomial.gcd
(GenPolynomial<C> S) GenPolynomial greatest common divisor.AlgebraicNumberRing.getModul()
Get the module part.GenPolynomialRing.getONE()
Get the one element.AlgebraicNumber.getVal()
Get the value part.GenPolynomialRing.getZERO()
Get the zero element.GenPolynomial<C>[]
GenPolynomial.hegcd
(GenPolynomial<C> S) GenPolynomial half extended greatest common divisor.GenPolynomial.homogenize
(GenPolynomialRing<C> pfac) Make homogeneous.static GenPolynomial
<BigRational> PolyUtil.imaginaryPart
(GenPolynomialRing<BigRational> fac, GenPolynomial<BigComplex> A) Imaginary part.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.imaginaryPartFromComplex
(GenPolynomialRing<C> fac, GenPolynomial<Complex<C>> A) Imaginary part.GenPolynomial.inflate
(long e) GenPolynomial inflate.static <C extends RingElem<C> & Modular>
GenPolynomial<BigInteger> PolyUtil.integerFromModularCoefficients
(GenPolynomialRing<BigInteger> fac, GenPolynomial<C> A) BigInteger from ModInteger coefficients, symmetric.static <C extends RingElem<C> & Modular>
GenPolynomial<BigInteger> PolyUtil.integerFromModularCoefficientsPositive
(GenPolynomialRing<BigInteger> fac, GenPolynomial<C> A) BigInteger from ModInteger coefficients, positive.static GenPolynomial
<BigInteger> PolyUtil.integerFromRationalCoefficients
(GenPolynomialRing<BigInteger> fac, GenPolynomial<BigRational> A) BigInteger from BigRational coefficients.static GenPolynomial
<BigInteger> PolyUtil.integerFromRationalCoefficients
(GenPolynomialRing<BigInteger> fac, BigInteger gcd, BigInteger lcm, GenPolynomial<BigRational> A) BigInteger from BigRational coefficients.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.interpolate
(GenPolynomialRing<C> fac, GenPolynomial<C> A, GenPolynomial<C> M, C mi, C a, C am) Univariate polynomial interpolation.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.interpolate
(GenPolynomialRing<GenPolynomial<C>> fac, GenPolynomial<GenPolynomial<C>> A, GenPolynomial<C> M, C mi, GenPolynomial<C> B, C am) ModInteger interpolate on first variable.GenPolynomial.inverse()
GenPolynomial inverse.GenPolynomial.leadingFacetPolynomial
(ExpVector u, ExpVector uv) Leading facet normal polynomial.GenPolynomial.leadingWeightPolynomial()
Leading weight polynomial.GenPolynomial.leftDivideCoeff
(C s) GenPolynomial left division.GenPolynomial.map
(UnaryFunctor<? super C, C> f) Map a unary function to the coefficients.static <C extends RingElem<C>,
D extends RingElem<D>>
GenPolynomial<D> PolyUtil.map
(GenPolynomialRing<D> ring, GenPolynomial<C> p, UnaryFunctor<C, D> f) Map a unary function to the coefficients.GenPolynomial.mapOnStream
(Function<? super Map.Entry<ExpVector, C>, ? extends Map.Entry<ExpVector, C>> f) Map a function to the polynomial stream entries.GenPolynomial.mapOnStream
(Function<? super Map.Entry<ExpVector, C>, ? extends Map.Entry<ExpVector, C>> f, boolean parallel) Map a function to the polynomial stream entries.(package private) GenPolynomial
<C> GenPolynomial.mapWrong
(UnaryFunctor<? super C, C> f) GenPolynomial.modInverse
(GenPolynomial<C> m) GenPolynomial modular inverse.GenPolynomial.monic()
GenPolynomial monic, i.e.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.monic
(GenPolynomial<GenPolynomial<C>> p) GenPolynomial monic, i.e.GenPolynomial.monicRight()
GenPolynomial monic, i.e.GenPolynomial multiplication.GenPolynomial multiplication.GenPolynomial multiplication.GenPolynomial.multiply
(GenPolynomial<C> S) GenPolynomial multiplication.GenPolynomial multiplication.GenPolynomial.multiplyLeft
(C s) GenPolynomial left multiplication.GenPolynomial.negate()
GenPolynomial negation.GenPolynomial.negateAlt()
GenPolynomial negation, alternative implementation.GenPolynomialIterator.next()
Get next polynomial.GenPolynomialMonomialIterator.next()
Get next polynomial.GenPolynomialTokenizer.nextPolynomial()
Parsing method for GenPolynomial.Parse a polynomial with the use of GenPolynomialTokenizer.Parse a polynomial with the use of GenPolynomialTokenizer.static <C extends RingElem<C>>
GenPolynomial<C> TermOrderOptimization.permutation
(List<Integer> P, GenPolynomialRing<C> R, GenPolynomial<C> A) Permutation of polynomial exponent vectors.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> TermOrderOptimization.permutationOnCoefficients
(List<Integer> P, GenPolynomialRing<GenPolynomial<C>> R, GenPolynomial<GenPolynomial<C>> A) Permutation of polynomial exponent vectors of coefficient polynomials.GenPolynomial<C>[]
GenPolynomial.quotientRemainder
(GenPolynomial<C> S) GenPolynomial division with remainder.GenPolynomialRing.random
(int n) Random polynomial.GenPolynomialRing.random
(int k, int l, int d, float q) Generate a random polynomial.Generate a random polynomial.Random polynomial.static GenPolynomial
<BigRational> PolyUtil.realPart
(GenPolynomialRing<BigRational> fac, GenPolynomial<BigComplex> A) Real part.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.realPartFromComplex
(GenPolynomialRing<C> fac, GenPolynomial<Complex<C>> A) Real part.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.reciprocalTransformation
(GenPolynomial<C> A) Polynomial reciprocal transformation.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.reciprocalTransformation
(GenPolynomial<C> A, int i) Polynomial reciprocal transformation.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursive
(GenPolynomialRing<GenPolynomial<C>> rfac, GenPolynomial<C> A) Recursive representation.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursiveDensePseudoRemainder
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) GenPolynomial dense pseudo remainder.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursiveDerivative
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive polynomial derivative main variable.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursiveDivide
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<C> s) GenPolynomial divide.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursivePseudoDivide
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) GenPolynomial recursive pseudo divide.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursivePseudoRemainder
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Deprecated.(forRemoval=true) UsePolyUtil.recursiveSparsePseudoRemainder(edu.jas.poly.GenPolynomial,edu.jas.poly.GenPolynomial)
insteadstatic <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursiveSparsePseudoRemainder
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) GenPolynomial sparse pseudo remainder.GenPolynomial.reductum()
Reductum.GenPolynomial.remainder
(GenPolynomial<C> S) GenPolynomial remainder.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.removeUnusedLowerVariables
(GenPolynomial<C> p) Remove all lower variables which do not occur in polynomial.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.removeUnusedMiddleVariables
(GenPolynomial<C> p) Remove upper block of middle variables which do not occur in polynomial.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.removeUnusedUpperVariables
(GenPolynomial<C> p) Remove all upper variables which do not occur in polynomial.GenPolynomial.reverse
(GenPolynomialRing<C> oring) Reverse variables.GenPolynomial.rightDivideCoeff
(C s) GenPolynomial right division.GenPolynomial.rightGcd
(GenPolynomial<C> S) GenPolynomial greatest common divisor.GenPolynomial.scaleSubtractMultiple
(C b, C a, ExpVector e, GenPolynomial<C> S) GenPolynomial scale and subtract a multiple.GenPolynomial.scaleSubtractMultiple
(C b, C a, GenPolynomial<C> S) GenPolynomial scale and subtract a multiple.GenPolynomial.scaleSubtractMultiple
(C b, ExpVector g, C a, ExpVector e, GenPolynomial<C> S) GenPolynomial scale and subtract a multiple.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.selectWithVariable
(List<GenPolynomial<C>> P, int i) Select polynomial with univariate leading term in variable i.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.seriesOfTaylor
(GenPolynomial<C> f, C a) Taylor series for polynomial.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.substituteMain
(GenPolynomial<C> A, GenPolynomial<C> s) Substitute main variable.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.substituteUnivariate
(GenPolynomial<C> f, GenPolynomial<C> t) Substitute univariate polynomial.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.substituteUnivariateMult
(GenPolynomial<C> f, GenPolynomial<C> t) Substitute univariate polynomial with multivariate coefficients.GenPolynomial subtract.GenPolynomial subtraction.GenPolynomial.subtract
(GenPolynomial<C> S) GenPolynomial subtraction.GenPolynomial subtraction.GenPolynomial.subtractMultiple
(C a, ExpVector e, GenPolynomial<C> S) GenPolynomial subtract a multiple.GenPolynomial.subtractMultiple
(C a, GenPolynomial<C> S) GenPolynomial subtract a multiple.GenPolynomial addition.GenPolynomial addition.GenPolynomial.sum
(GenPolynomial<C> S) GenPolynomial summation.GenPolynomial addition.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.switchVariables
(GenPolynomial<GenPolynomial<C>> P) Recursive GenPolynomial switch variable blocks.static <C extends RingElem<C>>
GenPolynomial<Complex<C>> PolyUtil.toComplex
(GenPolynomialRing<Complex<C>> fac, GenPolynomial<C> A) Complex from real polynomial.static GenPolynomial
<Product<ModInteger>> PolyUtil.toProduct
(GenPolynomialRing<Product<ModInteger>> pfac, GenPolynomial<BigInteger> A) Product representation.static <C extends GcdRingElem<C>>
GenPolynomial<Product<C>> PolyUtil.toProductGen
(GenPolynomialRing<Product<C>> pfac, GenPolynomial<C> A) Product representation.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.toRecursive
(GenPolynomialRing<GenPolynomial<C>> rfac, GenPolynomial<C> A) To recursive representation.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.translation
(GenPolynomial<C> A, List<C> H) Polynomial translation, all variables.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.translation1
(GenPolynomial<C> A, List<C> H) Polynomial translation, r-1 variables.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.translationBase
(GenPolynomial<C> A, C h) Polynomial translation, base univariate.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.translationMain
(GenPolynomial<C> A, C h) Polynomial translation, main variable.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.translationMainRecursive
(GenPolynomial<GenPolynomial<C>> A, C h) Polynomial translation, main variable.GenPolynomialRing.univariate
(int i) Generate univariate polynomial in a given variable.GenPolynomialRing.univariate
(int modv, int i, long e) Generate univariate polynomial in a given variable with given exponent.GenPolynomialRing.univariate
(int i, long e) Generate univariate polynomial in a given variable with given exponent.GenPolynomialRing.univariate
(String x) Generate univariate polynomial in a given variable with given exponent.GenPolynomialRing.univariate
(String x, long e) Generate univariate polynomial in a given variable with given exponent.Get a (constant) GenPolynomial<C> element from a coefficient value.Get a GenPolynomial<C> element from a coefficient and an exponent vector.Get a GenPolynomial<C> element from an exponent vector.Get a GenPolynomial<C> element from a monomial.Methods in edu.jas.poly that return types with arguments of type GenPolynomialModifier and TypeMethodDescriptionstatic <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.baseRecursiveDivide
(GenPolynomial<GenPolynomial<C>> P, C s) GenPolynomial base divide.static <C extends RingElem<C>>
List<List<GenPolynomial<C>>> ModuleList.castToList
(List<List<GenSolvablePolynomial<C>>> slist) Get a solvable polynomials list as List of GenPolynomials.static <C extends RingElem<C>>
List<GenPolynomial<C>> PolynomialList.castToList
(List<? extends GenPolynomial<C>> slist) Get list of extensions of polynomials as List of GenPolynomials.static <C extends RingElem<C>>
List<List<GenPolynomial<C>>> PolynomialList.castToMatrix
(List<List<? extends GenPolynomial<C>>> slist) Get list of list of extensions of polynomials as List of List of GenPolynomials.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.coefficientPseudoDivide
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<C> s) GenPolynomial pseudo divide.GenPolynomial.contract
(GenPolynomialRing<C> pfac) Contract variables.GenPolynomialRing.copy
(List<GenPolynomial<C>> L) Copy polynomial list.static <C extends RingElem<C>>
List<GenPolynomial<BigInteger>> TermOrderOptimization.degreeMatrix
(GenPolynomial<C> A) Degree matrix.static <C extends RingElem<C>>
List<GenPolynomial<BigInteger>> TermOrderOptimization.degreeMatrix
(Collection<GenPolynomial<C>> L) Degree matrix.static <C extends RingElem<C>>
List<GenPolynomial<BigInteger>> TermOrderOptimization.degreeMatrixOfCoefficients
(GenPolynomial<GenPolynomial<C>> A) Degree matrix of coefficient polynomials.static <C extends RingElem<C>>
List<GenPolynomial<BigInteger>> TermOrderOptimization.degreeMatrixOfCoefficients
(Collection<GenPolynomial<GenPolynomial<C>>> L) Degree matrix of coefficient polynomials.static <C extends RingElem<C>>
List<GenPolynomial<C>> PolyUtil.distribute
(GenPolynomialRing<C> dfac, List<GenPolynomial<GenPolynomial<C>>> L) Distribute a recursive polynomial list to a generic polynomial list.DistToRec.eval
(GenPolynomial<C> c) RecSolvablePolynomial.evalAsRightRecursivePolynomial()
Evaluate RecSolvablePolynomial as right coefficients polynomial.static <C extends RingElem<C>>
List<GenPolynomial<C>> PolyUtil.evaluateMain
(GenPolynomialRing<C> cfac, List<GenPolynomial<C>> L, C a) Evaluate at main variable.static List
<GenPolynomial<BigInteger>> TermOrderOptimization.expVectorAdd
(List<GenPolynomial<BigInteger>> dm, ExpVector e) Degree matrix exponent vector add.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.extendCoefficients
(GenPolynomialRing<GenPolynomial<C>> pfac, GenPolynomial<GenPolynomial<C>> A, int j, long k) Extend coefficient variables.static <C extends RingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> PolyUtil.extendCoefficients
(GenSolvablePolynomialRing<GenPolynomial<C>> pfac, GenSolvablePolynomial<GenPolynomial<C>> A, int j, long k) Extend coefficient variables.static <C extends RingElem<C>>
GenExteriorPolynomial<GenPolynomial<C>> PolyUtil.exteriorDerivativePoly
(GenExteriorPolynomial<GenPolynomial<C>> P) GenExteriorPolynomial over polynomial exterior derivative.static <C extends GcdRingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.fromAlgebraicCoefficients
(GenPolynomialRing<GenPolynomial<C>> rfac, GenPolynomial<AlgebraicNumber<C>> A) From AlgebraicNumber coefficients.static <C extends RingElem<C>>
List<GenPolynomial<C>> PolyUtil.fromIntegerCoefficients
(GenPolynomialRing<C> fac, List<GenPolynomial<BigInteger>> L) From BigInteger coefficients.(package private) Map
<ExpVectorPair, GenPolynomial<C>> RelationTable.fromListDeg2
(List a) Convert mixed list to map for base relations.GenPolynomialRing.generators()
Get a list of the generating elements.GenPolynomialRing.generators
(int modv) Get a list of the generating elements excluding the module variables.GenPolynomialRing.getGenerators()
Get the generating elements excluding the generators for the coefficient ring.PolynomialList.getList()
Get list.static <C extends RingElem<C> & Modular>
List<GenPolynomial<BigInteger>> PolyUtil.integerFromModularCoefficients
(GenPolynomialRing<BigInteger> fac, List<GenPolynomial<C>> L) BigInteger from ModInteger coefficients, symmetric.static List
<GenPolynomial<BigInteger>> PolyUtil.integerFromRationalCoefficients
(GenPolynomialRing<BigInteger> fac, List<GenPolynomial<BigRational>> L) BigInteger from BigRational coefficients.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.interpolate
(GenPolynomialRing<GenPolynomial<C>> fac, GenPolynomial<GenPolynomial<C>> A, GenPolynomial<C> M, C mi, GenPolynomial<C> B, C am) ModInteger interpolate on first variable.static <C extends RingElem<C>>
List<GenPolynomial<C>> PolyUtil.intersect
(GenPolynomialRing<C> R, List<GenPolynomial<C>> F) Intersection.GenPolynomialRing.iterator()
Get a GenPolynomial iterator.PolynomialList.leadingWeightPolynomials()
Leading weight polynomials.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.monic
(GenPolynomial<GenPolynomial<C>> p) GenPolynomial monic, i.e.static <C extends RingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> PolyUtil.monic
(GenSolvablePolynomial<GenPolynomial<C>> p) GenSolvablePolynomial monic, i.e.static <C extends RingElem<C>>
List<GenPolynomial<C>> PolyUtil.monic
(List<GenPolynomial<C>> L) Polynomial list monic.static <C extends RingElem<C>>
List<GenPolynomial<GenPolynomial<C>>> PolyUtil.monicRec
(List<GenPolynomial<GenPolynomial<C>>> L) Recursive polynomial list monic.static <C extends RingElem<C>>
List<GenPolynomial<GenPolynomial<C>>> PolyUtil.monicRec
(List<GenPolynomial<GenPolynomial<C>>> L) Recursive polynomial list monic.GenPolynomialTokenizer.nextPolynomialList()
Parsing method for polynomial list.GenPolynomialTokenizer.nextSubModuleList()
Parsing method for submodule list.static <C extends RingElem<C>>
OptimizedPolynomialList<GenPolynomial<C>> TermOrderOptimization.optimizeTermOrderOnCoefficients
(GenPolynomialRing<GenPolynomial<C>> ring, List<GenPolynomial<GenPolynomial<C>>> L) Optimize variable order on coefficients.static <C extends RingElem<C>>
OptimizedModuleList<GenPolynomial<C>> TermOrderOptimization.optimizeTermOrderOnCoefficients
(ModuleList<GenPolynomial<C>> P) Optimize variable order on coefficients.static <C extends RingElem<C>>
OptimizedPolynomialList<GenPolynomial<C>> TermOrderOptimization.optimizeTermOrderOnCoefficients
(PolynomialList<GenPolynomial<C>> P) Optimize variable order on coefficients.static <C extends RingElem<C>>
List<List<GenPolynomial<C>>> ModuleList.padCols
(GenPolynomialRing<C> ring, List<List<GenPolynomial<C>>> l) Pad columns and remove zero rows.RecSolvablePolynomialRing.permutation
(List<Integer> P) Permutation of polynomial ring variables.static <C extends RingElem<C>>
List<GenPolynomial<C>> TermOrderOptimization.permutation
(List<Integer> P, GenPolynomialRing<C> R, List<GenPolynomial<C>> L) Permutation of polynomial exponent vectors.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> TermOrderOptimization.permutationOnCoefficients
(List<Integer> P, GenPolynomialRing<GenPolynomial<C>> R, GenPolynomial<GenPolynomial<C>> A) Permutation of polynomial exponent vectors of coefficient polynomials.static <C extends RingElem<C>>
List<GenPolynomial<GenPolynomial<C>>> TermOrderOptimization.permutationOnCoefficients
(List<Integer> P, GenPolynomialRing<GenPolynomial<C>> R, List<GenPolynomial<GenPolynomial<C>>> L) Permutation of polynomial exponent vectors of coefficients.static <C extends RingElem<C>>
List<GenPolynomial<GenPolynomial<C>>> TermOrderOptimization.permutationOnCoefficients
(List<Integer> P, GenPolynomialRing<GenPolynomial<C>> R, List<GenPolynomial<GenPolynomial<C>>> L) Permutation of polynomial exponent vectors of coefficients.GenPolynomialRing.recursive
(int i) Recursive representation as polynomial with i main variables.GenSolvablePolynomialRing.recursive
(int i) Recursive representation as polynomial ring with i main variables.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursive
(GenPolynomialRing<GenPolynomial<C>> rfac, GenPolynomial<C> A) Recursive representation.static <C extends RingElem<C>>
List<GenPolynomial<GenPolynomial<C>>> PolyUtil.recursive
(GenPolynomialRing<GenPolynomial<C>> rfac, List<GenPolynomial<C>> L) Recursive representation.static <C extends RingElem<C>>
List<GenPolynomial<GenPolynomial<C>>> PolyUtil.recursive
(GenPolynomialRing<GenPolynomial<C>> rfac, List<GenPolynomial<C>> L) Recursive representation.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursiveDensePseudoRemainder
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) GenPolynomial dense pseudo remainder.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursiveDerivative
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive polynomial derivative main variable.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursiveDivide
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<C> s) GenPolynomial divide.static <C extends RingElem<C>>
GenWordPolynomial<GenPolynomial<C>> PolyUtil.recursiveDivide
(GenWordPolynomial<GenPolynomial<C>> P, GenPolynomial<C> s) GenPolynomial divide.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursivePseudoDivide
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) GenPolynomial recursive pseudo divide.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursivePseudoRemainder
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Deprecated.(forRemoval=true) UsePolyUtil.recursiveSparsePseudoRemainder(edu.jas.poly.GenPolynomial,edu.jas.poly.GenPolynomial)
insteadstatic <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursiveSparsePseudoRemainder
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) GenPolynomial sparse pseudo remainder.static <C extends RingElem<C>>
List<GenPolynomial<C>> PolyUtil.rightMonic
(List<GenPolynomial<C>> L) Solvable polynomial list right monic.RecSolvablePolynomial.rightRecursivePolynomial()
RecSolvablePolynomial right coefficients from left coefficients.static <C extends RingElem<C>>
List<List<GenPolynomial<C>>> OrderedModuleList.sort
(GenPolynomialRing<C> r, List<List<GenPolynomial<C>>> l) Sort a list of vectors of polynomials with respect to the ascending order of the leading Exponent vectors of the first column.static <C extends RingElem<C>>
List<GenPolynomial<C>> OrderedPolynomialList.sort
(GenPolynomialRing<C> r, List<GenPolynomial<C>> L) Sort a list of polynomials with respect to the ascending order of the leading Exponent vectors.static <C extends RingElem<C>>
List<GenPolynomial<C>> OrderedPolynomialList.sort
(List<GenPolynomial<C>> L) Sort a list of polynomials with respect to the ascending order of the leading Exponent vectors.static <C extends RingElem<C>>
List<GenPolynomial<C>> OrderedPolynomialList.sortDegree
(List<GenPolynomial<C>> L) Sort a list of polynomials with respect to the ascending order of the degree.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.switchVariables
(GenPolynomial<GenPolynomial<C>> P) Recursive GenPolynomial switch variable blocks.static <C extends RingElem<C>>
Product<GenPolynomial<C>> PolyUtil.toProduct
(ProductRing<GenPolynomial<C>> pfac, C c, ExpVector e) Product representation.static <C extends RingElem<C>>
Product<GenPolynomial<C>> PolyUtil.toProduct
(ProductRing<GenPolynomial<C>> pfac, GenPolynomial<C> A) Product representation.static List
<GenPolynomial<Product<ModInteger>>> PolyUtil.toProduct
(GenPolynomialRing<Product<ModInteger>> pfac, List<GenPolynomial<BigInteger>> L) Product representation.static <C extends GcdRingElem<C>>
List<GenPolynomial<Product<C>>> PolyUtil.toProductGen
(GenPolynomialRing<Product<C>> pfac, List<GenPolynomial<C>> L) Product representation.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.toRecursive
(GenPolynomialRing<GenPolynomial<C>> rfac, GenPolynomial<C> A) To recursive representation.static <C extends RingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> PolyUtil.toRecursive
(GenSolvablePolynomialRing<GenPolynomial<C>> rfac, GenSolvablePolynomial<C> A) To recursive representation.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.translationMainRecursive
(GenPolynomial<GenPolynomial<C>> A, C h) Polynomial translation, main variable.List
<? extends GenPolynomial<C>> GenPolynomialRing.univariateList()
Generate list of univariate polynomials in all variables.List
<? extends GenPolynomial<C>> GenPolynomialRing.univariateList
(int modv) Generate list of univariate polynomials in all variables.List
<? extends GenPolynomial<C>> GenPolynomialRing.univariateList
(int modv, long e) Generate list of univariate polynomials in all variables with given exponent.Get a GenPolynomial<C> element from a list of exponent vectors.static <C extends RingElem<C>>
List<List<GenPolynomial<C>>> ModuleList.vecToList
(List<GenVector<GenPolynomial<C>>> vlist) Get a list of vectors as List of list of GenPolynomials.Methods in edu.jas.poly with parameters of type GenPolynomialModifier and TypeMethodDescriptionstatic <C extends RingElem<C>>
CPolyUtil.absNorm
(GenPolynomial<C> p) Absolute norm.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtil.algebraicFromComplex
(GenPolynomialRing<AlgebraicNumber<C>> fac, GenPolynomial<Complex<C>> A) AlgebraicNumber from complex coefficients.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.baseDensePseudoQuotient
(GenPolynomial<C> P, GenPolynomial<C> S) GenPolynomial dense pseudo quotient.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.baseDensePseudoRemainder
(GenPolynomial<C> P, GenPolynomial<C> S) GenPolynomial dense pseudo remainder.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.baseDerivative
(GenPolynomial<C> P) GenPolynomial polynomial derivative main variable.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.baseDerivative
(GenPolynomial<C> P, int r) GenPolynomial polynomial partial derivative variable r.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.baseIntegral
(GenPolynomial<C> P) GenPolynomial polynomial integral main variable.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.basePseudoDivide
(GenPolynomial<C> P, GenPolynomial<C> S) GenPolynomial sparse pseudo divide.static <C extends RingElem<C>>
GenPolynomial<C>[]PolyUtil.basePseudoQuotientRemainder
(GenPolynomial<C> P, GenPolynomial<C> S) GenPolynomial sparse pseudo quotient and remainder.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.basePseudoRemainder
(GenPolynomial<C> P, GenPolynomial<C> S) Deprecated.(forRemoval=true) UsePolyUtil.baseSparsePseudoRemainder(edu.jas.poly.GenPolynomial,edu.jas.poly.GenPolynomial)
insteadstatic <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.baseRecursiveDivide
(GenPolynomial<GenPolynomial<C>> P, C s) GenPolynomial base divide.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.baseRemainderPoly
(GenPolynomial<C> P, C s) GenPolynomial coefficient wise remainder.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.baseSparsePseudoRemainder
(GenPolynomial<C> P, GenPolynomial<C> S) GenPolynomial sparse pseudo remainder.static <C extends RingElem<C> & Modular>
GenPolynomial<C> PolyUtil.chineseRemainder
(GenPolynomialRing<C> fac, GenPolynomial<C> A, C mi, GenPolynomial<C> B) ModInteger chinese remainder algorithm on coefficients.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.coefficientBasePseudoDivide
(GenPolynomial<C> P, C s) GenPolynomial pseudo divide.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.coefficientPseudoDivide
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<C> s) GenPolynomial pseudo divide.static <C extends RingElem<C>>
longPolyUtil.coeffMaxDegree
(GenPolynomial<GenPolynomial<C>> A) Maximal degree in the coefficient polynomials.int
PolynomialComparator.compare
(GenPolynomial<C> p1, GenPolynomial<C> p2) Compare polynomials.int
GenPolynomial.compareTo
(GenPolynomial<C> b) GenPolynomial comparison.static <C extends RingElem<C> & Rational>
GenPolynomial<Complex<BigDecimal>> PolyUtil.complexDecimalFromRational
(GenPolynomialRing<Complex<BigDecimal>> fac, GenPolynomial<Complex<C>> A) Convert to complex decimal coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<Complex<C>> PolyUtil.complexFromAlgebraic
(GenPolynomialRing<Complex<C>> fac, GenPolynomial<AlgebraicNumber<C>> A) Complex from algebraic coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<Complex<C>> PolyUtil.complexFromAny
(GenPolynomialRing<Complex<C>> fac, GenPolynomial<C> A) Complex from ring element coefficients.static GenPolynomial
<BigComplex> PolyUtil.complexFromRational
(GenPolynomialRing<BigComplex> fac, GenPolynomial<BigRational> A) Complex from rational coefficients.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.conjugateCoeff
(GenPolynomial<C> A) Conjugate coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtil.convertRecursiveToAlgebraicCoefficients
(GenPolynomialRing<AlgebraicNumber<C>> pfac, GenPolynomial<GenPolynomial<C>> A) Convert to AlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtil.convertToAlgebraicCoefficients
(GenPolynomialRing<AlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to AlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtil.convertToRecAlgebraicCoefficients
(int depth, GenPolynomialRing<AlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to recursive AlgebraicNumber coefficients.GenPolynomialRing.copy
(GenPolynomial<C> c) Copy polynomial c.static <C extends RingElem<C> & Rational>
GenPolynomial<BigDecimal> PolyUtil.decimalFromRational
(GenPolynomialRing<BigDecimal> fac, GenPolynomial<C> A) Convert to decimal coefficients.static <C extends RingElem<C>>
List<GenPolynomial<BigInteger>> TermOrderOptimization.degreeMatrix
(GenPolynomial<C> A) Degree matrix.static <C extends RingElem<C>>
List<GenPolynomial<BigInteger>> TermOrderOptimization.degreeMatrixOfCoefficients
(GenPolynomial<GenPolynomial<C>> A) Degree matrix of coefficient polynomials.GenPolynomialRing.determinantFromCharPol
(GenPolynomial<C> P) Determinant of matrix from characteristic polynomial.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.distribute
(GenPolynomialRing<C> dfac, GenPolynomial<GenPolynomial<C>> B) Distribute a recursive polynomial to a generic polynomial.GenPolynomial.divide
(GenPolynomial<C> S) GenPolynomial division.void
GenPolynomial.doAddTo
(GenPolynomial<C> S) GenPolynomial destructive summation.GenPolynomial<C>[]
GenPolynomial.egcd
(GenPolynomial<C> S) GenPolynomial extended greatest common divisor.DistToRec.eval
(GenPolynomial<C> c) EvalAllPol.eval
(GenPolynomial<C> c) EvalMain.eval
(GenPolynomial<C> c) EvalMainPol.eval
(GenPolynomial<C> c) FromIntegerPoly.eval
(GenPolynomial<BigInteger> c) PolyToAlg.eval
(GenPolynomial<C> c) RatToIntPoly.eval
(GenPolynomial<BigRational> c) RecToDist.eval
(GenPolynomial<GenPolynomial<C>> c) static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.evaluate
(GenPolynomialRing<C> cfac, GenPolynomialRing<GenPolynomial<C>> rfac, GenPolynomialRing<GenPolynomial<C>> nfac, GenPolynomialRing<C> dfac, GenPolynomial<C> A, C a) Evaluate at k-th variable.static <C extends RingElem<C>>
CPolyUtil.evaluateAll
(RingFactory<C> cfac, GenPolynomial<C> A, List<C> a) Evaluate all variables.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.evaluateFirst
(GenPolynomialRing<C> cfac, GenPolynomialRing<C> dfac, GenPolynomial<C> A, C a) Evaluate at first (lowest) variable.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.evaluateFirstRec
(GenPolynomialRing<C> cfac, GenPolynomialRing<C> dfac, GenPolynomial<GenPolynomial<C>> A, C a) Evaluate at first (lowest) variable.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.evaluateMain
(GenPolynomialRing<C> cfac, GenPolynomial<C> A, C a) Evaluate at main variable.static <C extends RingElem<C>>
CPolyUtil.evaluateMain
(RingFactory<C> cfac, GenPolynomial<C> A, C a) Evaluate at main variable.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.evaluateMainRecursive
(GenPolynomialRing<C> cfac, GenPolynomial<GenPolynomial<C>> A, C a) Evaluate at main variable.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.extendCoefficients
(GenPolynomialRing<GenPolynomial<C>> pfac, GenPolynomial<GenPolynomial<C>> A, int j, long k) Extend coefficient variables.static <C extends GcdRingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.fromAlgebraicCoefficients
(GenPolynomialRing<GenPolynomial<C>> rfac, GenPolynomial<AlgebraicNumber<C>> A) From AlgebraicNumber coefficients.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.fromIntegerCoefficients
(GenPolynomialRing<C> fac, GenPolynomial<BigInteger> A) From BigInteger coefficients.GenExteriorPolynomialRing.fromPolynomial
(GenPolynomial<C> a) Get a GenExteriorPolynomial from a univariate GenPolynomial.GenPolynomial.gcd
(GenPolynomial<C> S) GenPolynomial greatest common divisor.GenPolynomial<C>[]
GenPolynomial.hegcd
(GenPolynomial<C> S) GenPolynomial half extended greatest common divisor.static GenPolynomial
<BigRational> PolyUtil.imaginaryPart
(GenPolynomialRing<BigRational> fac, GenPolynomial<BigComplex> A) Imaginary part.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.imaginaryPartFromComplex
(GenPolynomialRing<C> fac, GenPolynomial<Complex<C>> A) Imaginary part.static <C extends RingElem<C> & Modular>
GenPolynomial<BigInteger> PolyUtil.integerFromModularCoefficients
(GenPolynomialRing<BigInteger> fac, GenPolynomial<C> A) BigInteger from ModInteger coefficients, symmetric.static <C extends RingElem<C> & Modular>
GenPolynomial<BigInteger> PolyUtil.integerFromModularCoefficientsPositive
(GenPolynomialRing<BigInteger> fac, GenPolynomial<C> A) BigInteger from ModInteger coefficients, positive.static GenPolynomial
<BigInteger> PolyUtil.integerFromRationalCoefficients
(GenPolynomialRing<BigInteger> fac, GenPolynomial<BigRational> A) BigInteger from BigRational coefficients.static GenPolynomial
<BigInteger> PolyUtil.integerFromRationalCoefficients
(GenPolynomialRing<BigInteger> fac, BigInteger gcd, BigInteger lcm, GenPolynomial<BigRational> A) BigInteger from BigRational coefficients.static Object[]
PolyUtil.integerFromRationalCoefficientsFactor
(GenPolynomialRing<BigInteger> fac, GenPolynomial<BigRational> A) BigInteger from BigRational coefficients.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.interpolate
(GenPolynomialRing<C> fac, GenPolynomial<C> A, GenPolynomial<C> M, C mi, C a, C am) Univariate polynomial interpolation.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.interpolate
(GenPolynomialRing<GenPolynomial<C>> fac, GenPolynomial<GenPolynomial<C>> A, GenPolynomial<C> M, C mi, GenPolynomial<C> B, C am) ModInteger interpolate on first variable.static <C extends RingElem<C>>
booleanPolyUtil.isBasePseudoQuotientRemainder
(GenPolynomial<C> P, GenPolynomial<C> S, GenPolynomial<C> q, GenPolynomial<C> r) Is GenPolynomial pseudo quotient and remainder.static <C extends RingElem<C>>
booleanPolyUtil.isRecursivePseudoQuotientRemainder
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S, GenPolynomial<GenPolynomial<C>> q, GenPolynomial<GenPolynomial<C>> r) Is recursive GenPolynomial pseudo quotient and remainder.static <C extends RingElem<C>,
D extends RingElem<D>>
GenPolynomial<D> PolyUtil.map
(GenPolynomialRing<D> ring, GenPolynomial<C> p, UnaryFunctor<C, D> f) Map a unary function to the coefficients.GenPolynomial.modInverse
(GenPolynomial<C> m) GenPolynomial modular inverse.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.monic
(GenPolynomial<GenPolynomial<C>> p) GenPolynomial monic, i.e.AlgebraicNumber.multiply
(GenPolynomial<C> c) AlgebraicNumber multiplication.GenPolynomial.multiply
(GenPolynomial<C> S) GenPolynomial multiplication.RecSolvablePolynomial.multiply
(GenPolynomial<C> b, ExpVector e) RecSolvablePolynomial multiplication.RecSolvablePolynomial.multiply
(GenPolynomial<C> b, ExpVector e, GenPolynomial<C> c, ExpVector f) RecSolvablePolynomial left and right multiplication.RecSolvablePolynomial.multiply
(GenPolynomial<C> b, GenPolynomial<C> c) RecSolvablePolynomial left and right multiplication.RecSolvablePolynomial.multiplyLeft
(GenPolynomial<C> b) RecSolvablePolynomial multiplication.RecSolvablePolynomial.multiplyLeft
(GenPolynomial<C> b, ExpVector e) RecSolvablePolynomial multiplication.RecSolvablePolynomial.multiplyRightComm
(GenPolynomial<C> b) RecSolvablePolynomial multiplication.static <C extends RingElem<C>>
GenPolynomial<C> TermOrderOptimization.permutation
(List<Integer> P, GenPolynomialRing<C> R, GenPolynomial<C> A) Permutation of polynomial exponent vectors.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> TermOrderOptimization.permutationOnCoefficients
(List<Integer> P, GenPolynomialRing<GenPolynomial<C>> R, GenPolynomial<GenPolynomial<C>> A) Permutation of polynomial exponent vectors of coefficient polynomials.GenPolynomial<C>[]
GenPolynomial.quotientRemainder
(GenPolynomial<C> S) GenPolynomial division with remainder.static GenPolynomial
<BigRational> PolyUtil.realPart
(GenPolynomialRing<BigRational> fac, GenPolynomial<BigComplex> A) Real part.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.realPartFromComplex
(GenPolynomialRing<C> fac, GenPolynomial<Complex<C>> A) Real part.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.reciprocalTransformation
(GenPolynomial<C> A) Polynomial reciprocal transformation.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.reciprocalTransformation
(GenPolynomial<C> A, int i) Polynomial reciprocal transformation.RecSolvablePolynomial.recMultiply
(GenPolynomial<C> b) RecSolvablePolynomial multiplication.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursive
(GenPolynomialRing<GenPolynomial<C>> rfac, GenPolynomial<C> A) Recursive representation.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursiveDensePseudoRemainder
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) GenPolynomial dense pseudo remainder.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursiveDerivative
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive polynomial derivative main variable.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursiveDivide
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<C> s) GenPolynomial divide.static <C extends RingElem<C>>
GenWordPolynomial<GenPolynomial<C>> PolyUtil.recursiveDivide
(GenWordPolynomial<GenPolynomial<C>> P, GenPolynomial<C> s) GenPolynomial divide.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursivePseudoDivide
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) GenPolynomial recursive pseudo divide.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursivePseudoRemainder
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Deprecated.(forRemoval=true) UsePolyUtil.recursiveSparsePseudoRemainder(edu.jas.poly.GenPolynomial,edu.jas.poly.GenPolynomial)
insteadstatic <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursiveSparsePseudoRemainder
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) GenPolynomial sparse pseudo remainder.GenPolynomial.remainder
(GenPolynomial<C> S) GenPolynomial remainder.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.removeUnusedLowerVariables
(GenPolynomial<C> p) Remove all lower variables which do not occur in polynomial.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.removeUnusedMiddleVariables
(GenPolynomial<C> p) Remove upper block of middle variables which do not occur in polynomial.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.removeUnusedUpperVariables
(GenPolynomial<C> p) Remove all upper variables which do not occur in polynomial.GenExteriorPolynomialRing.resultant
(GenPolynomial<C> A, GenPolynomial<C> B) Resultant of two commutative polynaomials.GenPolynomial.rightGcd
(GenPolynomial<C> S) GenPolynomial greatest common divisor.GenPolynomial.scaleSubtractMultiple
(C b, C a, ExpVector e, GenPolynomial<C> S) GenPolynomial scale and subtract a multiple.GenPolynomial.scaleSubtractMultiple
(C b, C a, GenPolynomial<C> S) GenPolynomial scale and subtract a multiple.GenPolynomial.scaleSubtractMultiple
(C b, ExpVector g, C a, ExpVector e, GenPolynomial<C> S) GenPolynomial scale and subtract a multiple.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.seriesOfTaylor
(GenPolynomial<C> f, C a) Taylor series for polynomial.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.substituteMain
(GenPolynomial<C> A, GenPolynomial<C> s) Substitute main variable.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.substituteUnivariate
(GenPolynomial<C> f, GenPolynomial<C> t) Substitute univariate polynomial.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.substituteUnivariateMult
(GenPolynomial<C> f, GenPolynomial<C> t) Substitute univariate polynomial with multivariate coefficients.GenPolynomial.subtract
(GenPolynomial<C> S) GenPolynomial subtraction.GenPolynomial.subtractMultiple
(C a, ExpVector e, GenPolynomial<C> S) GenPolynomial subtract a multiple.GenPolynomial.subtractMultiple
(C a, GenPolynomial<C> S) GenPolynomial subtract a multiple.AlgebraicNumber.sum
(GenPolynomial<C> c) AlgebraicNumber summation.GenPolynomial.sum
(GenPolynomial<C> S) GenPolynomial summation.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.switchVariables
(GenPolynomial<GenPolynomial<C>> P) Recursive GenPolynomial switch variable blocks.static <C extends RingElem<C>>
GenPolynomial<Complex<C>> PolyUtil.toComplex
(GenPolynomialRing<Complex<C>> fac, GenPolynomial<C> A) Complex from real polynomial.QLRSolvablePolynomialRing.toPolyCoefficients
(GenPolynomial<C> A) Integral function from rational polynomial coefficients.static <C extends RingElem<C>>
Product<GenPolynomial<C>> PolyUtil.toProduct
(ProductRing<GenPolynomial<C>> pfac, GenPolynomial<C> A) Product representation.static GenPolynomial
<Product<ModInteger>> PolyUtil.toProduct
(GenPolynomialRing<Product<ModInteger>> pfac, GenPolynomial<BigInteger> A) Product representation.static <C extends GcdRingElem<C>>
GenPolynomial<Product<C>> PolyUtil.toProductGen
(GenPolynomialRing<Product<C>> pfac, GenPolynomial<C> A) Product representation.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.toRecursive
(GenPolynomialRing<GenPolynomial<C>> rfac, GenPolynomial<C> A) To recursive representation.GenPolynomialRing.traceFromCharPol
(GenPolynomial<C> P) Trace of matrix from characteristic polynomial.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.translation
(GenPolynomial<C> A, List<C> H) Polynomial translation, all variables.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.translation1
(GenPolynomial<C> A, List<C> H) Polynomial translation, r-1 variables.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.translationBase
(GenPolynomial<C> A, C h) Polynomial translation, base univariate.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.translationMain
(GenPolynomial<C> A, C h) Polynomial translation, main variable.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.translationMainRecursive
(GenPolynomial<GenPolynomial<C>> A, C h) Polynomial translation, main variable.void
RelationTable.update
(ExpVector e, ExpVector f, GenPolynomial<C> p) Update or initialize RelationTable with new relation.void
RelationTable.update
(GenPolynomial<C> E, GenPolynomial<C> F, GenPolynomial<C> p) Update or initialize RelationTable with new relation.void
RelationTable.update
(GenPolynomial<C> E, GenPolynomial<C> F, GenSolvablePolynomial<C> p) Update or initialize RelationTable with new relation.GenExteriorPolynomialRing.valueOf
(GenPolynomial<C> a) Get a GenExteriorPolynomial from a multivariate GenPolynomial, terms with exponents > 1 are set to zero.GenWordPolynomialRing.valueOf
(GenPolynomial<C> a) Get a GenWordPolynomial<C> element from a GenPolynomial<C>.RecSolvablePolynomialRing.valueOf
(GenPolynomial<C> a) Get a (constant) RecSolvablePolynomial<C> element from a coefficient value.RecSolvablePolynomialRing.valueOf
(GenPolynomial<C> a, ExpVector e) Get a RecSolvablePolynomial<C> element from a coefficient and an exponent vector.Method parameters in edu.jas.poly with type arguments of type GenPolynomialModifier and TypeMethodDescriptionvoid
RecSolvablePolynomialRing.addCoeffRelations
(List<GenPolynomial<GenPolynomial<C>>> rel) Generate the coefficient relation table of the solvable polynomial ring from a polynomial list of relations.void
RecSolvablePolynomialRing.addCoeffRelations
(List<GenPolynomial<GenPolynomial<C>>> rel) Generate the coefficient relation table of the solvable polynomial ring from a polynomial list of relations.void
GenSolvablePolynomialRing.addRelations
(List<GenPolynomial<C>> rel) Generate the relation table of the solvable polynomial ring from a polynomial list of relations.void
RelationTable.addRelations
(List<GenPolynomial<C>> rel) Add list of polynomial triples as relations.void
RecSolvablePolynomialRing.addSolvCoeffRelations
(List<GenSolvablePolynomial<GenPolynomial<C>>> rel) Generate the coefficient relation table of the solvable polynomial ring from a solvable polynomial list of relations.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.baseRecursiveDivide
(GenPolynomial<GenPolynomial<C>> P, C s) GenPolynomial base divide.static <C extends RingElem<C>>
List<GenPolynomial<C>> PolynomialList.castToList
(List<? extends GenPolynomial<C>> slist) Get list of extensions of polynomials as List of GenPolynomials.static <C extends RingElem<C>>
List<List<GenPolynomial<C>>> PolynomialList.castToMatrix
(List<List<? extends GenPolynomial<C>>> slist) Get list of list of extensions of polynomials as List of List of GenPolynomials.static <C extends RingElem<C>>
List<GenSolvablePolynomial<C>> PolynomialList.castToSolvableList
(List<GenPolynomial<C>> list) Get list as List of GenSolvablePolynomials.static <C extends RingElem<C>>
List<List<GenSolvablePolynomial<C>>> PolynomialList.castToSolvableMatrix
(List<List<GenPolynomial<C>>> list) Get list of list as List of List of GenSolvablePolynomials.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.coefficientPseudoDivide
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<C> s) GenPolynomial pseudo divide.static <C extends RingElem<C>>
longPolyUtil.coeffMaxDegree
(GenPolynomial<GenPolynomial<C>> A) Maximal degree in the coefficient polynomials.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtil.convertRecursiveToAlgebraicCoefficients
(GenPolynomialRing<AlgebraicNumber<C>> pfac, GenPolynomial<GenPolynomial<C>> A) Convert to AlgebraicNumber coefficients.GenPolynomialRing.copy
(List<GenPolynomial<C>> L) Copy polynomial list.static <C extends RingElem<C>>
List<GenPolynomial<BigInteger>> TermOrderOptimization.degreeMatrix
(Collection<GenPolynomial<C>> L) Degree matrix.static <C extends RingElem<C>>
List<GenPolynomial<BigInteger>> TermOrderOptimization.degreeMatrixOfCoefficients
(GenPolynomial<GenPolynomial<C>> A) Degree matrix of coefficient polynomials.static <C extends RingElem<C>>
List<GenPolynomial<BigInteger>> TermOrderOptimization.degreeMatrixOfCoefficients
(Collection<GenPolynomial<GenPolynomial<C>>> L) Degree matrix of coefficient polynomials.static <C extends RingElem<C>>
List<GenPolynomial<BigInteger>> TermOrderOptimization.degreeMatrixOfCoefficients
(Collection<GenPolynomial<GenPolynomial<C>>> L) Degree matrix of coefficient polynomials.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.distribute
(GenPolynomialRing<C> dfac, GenPolynomial<GenPolynomial<C>> B) Distribute a recursive polynomial to a generic polynomial.static <C extends RingElem<C>>
List<GenPolynomial<C>> PolyUtil.distribute
(GenPolynomialRing<C> dfac, List<GenPolynomial<GenPolynomial<C>>> L) Distribute a recursive polynomial list to a generic polynomial list.static <C extends RingElem<C>>
List<GenPolynomial<C>> PolyUtil.distribute
(GenPolynomialRing<C> dfac, List<GenPolynomial<GenPolynomial<C>>> L) Distribute a recursive polynomial list to a generic polynomial list.(package private) boolean
RelationTable.equalMaps
(Map<ExpVectorPair, GenPolynomial<C>> m1, Map<ExpVectorPair, GenPolynomial<C>> m2) Equals for special maps.RecToDist.eval
(GenPolynomial<GenPolynomial<C>> c) PolyUtil.evaluateAll
(RingFactory<C> cfac, List<GenPolynomial<C>> L, List<C> a) Evaluate all variables.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.evaluateFirstRec
(GenPolynomialRing<C> cfac, GenPolynomialRing<C> dfac, GenPolynomial<GenPolynomial<C>> A, C a) Evaluate at first (lowest) variable.static <C extends RingElem<C>>
List<GenPolynomial<C>> PolyUtil.evaluateMain
(GenPolynomialRing<C> cfac, List<GenPolynomial<C>> L, C a) Evaluate at main variable.PolyUtil.evaluateMain
(RingFactory<C> cfac, List<GenPolynomial<C>> L, C a) Evaluate at main variable.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.evaluateMainRecursive
(GenPolynomialRing<C> cfac, GenPolynomial<GenPolynomial<C>> A, C a) Evaluate at main variable.static List
<GenPolynomial<BigInteger>> TermOrderOptimization.expVectorAdd
(List<GenPolynomial<BigInteger>> dm, ExpVector e) Degree matrix exponent vector add.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.extendCoefficients
(GenPolynomialRing<GenPolynomial<C>> pfac, GenPolynomial<GenPolynomial<C>> A, int j, long k) Extend coefficient variables.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.extendCoefficients
(GenPolynomialRing<GenPolynomial<C>> pfac, GenPolynomial<GenPolynomial<C>> A, int j, long k) Extend coefficient variables.static <C extends RingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> PolyUtil.extendCoefficients
(GenSolvablePolynomialRing<GenPolynomial<C>> pfac, GenSolvablePolynomial<GenPolynomial<C>> A, int j, long k) Extend coefficient variables.static <C extends RingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> PolyUtil.extendCoefficients
(GenSolvablePolynomialRing<GenPolynomial<C>> pfac, GenSolvablePolynomial<GenPolynomial<C>> A, int j, long k) Extend coefficient variables.static <C extends RingElem<C>>
GenExteriorPolynomial<GenPolynomial<C>> PolyUtil.exteriorDerivativePoly
(GenExteriorPolynomial<GenPolynomial<C>> P) GenExteriorPolynomial over polynomial exterior derivative.static <C extends GcdRingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.fromAlgebraicCoefficients
(GenPolynomialRing<GenPolynomial<C>> rfac, GenPolynomial<AlgebraicNumber<C>> A) From AlgebraicNumber coefficients.static <C extends RingElem<C>>
List<GenPolynomial<C>> PolyUtil.fromIntegerCoefficients
(GenPolynomialRing<C> fac, List<GenPolynomial<BigInteger>> L) From BigInteger coefficients.QLRSolvablePolynomialRing.fromPolyCoefficients
(GenSolvablePolynomial<GenPolynomial<D>> A) Rational function from integral polynomial coefficients.static <C extends RingElem<C> & Modular>
List<GenPolynomial<BigInteger>> PolyUtil.integerFromModularCoefficients
(GenPolynomialRing<BigInteger> fac, List<GenPolynomial<C>> L) BigInteger from ModInteger coefficients, symmetric.static List
<GenPolynomial<BigInteger>> PolyUtil.integerFromRationalCoefficients
(GenPolynomialRing<BigInteger> fac, List<GenPolynomial<BigRational>> L) BigInteger from BigRational coefficients.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.interpolate
(GenPolynomialRing<GenPolynomial<C>> fac, GenPolynomial<GenPolynomial<C>> A, GenPolynomial<C> M, C mi, GenPolynomial<C> B, C am) ModInteger interpolate on first variable.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.interpolate
(GenPolynomialRing<GenPolynomial<C>> fac, GenPolynomial<GenPolynomial<C>> A, GenPolynomial<C> M, C mi, GenPolynomial<C> B, C am) ModInteger interpolate on first variable.static <C extends RingElem<C>>
List<GenPolynomial<C>> PolyUtil.intersect
(GenPolynomialRing<C> R, List<GenPolynomial<C>> F) Intersection.static <C extends RingElem<C>>
booleanPolyUtil.isRecursivePseudoQuotientRemainder
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S, GenPolynomial<GenPolynomial<C>> q, GenPolynomial<GenPolynomial<C>> r) Is recursive GenPolynomial pseudo quotient and remainder.boolean
RecSolvablePolynomial.isRightRecursivePolynomial
(GenSolvablePolynomial<GenPolynomial<C>> R) Test RecSolvablePolynomial right coefficients polynomial.PolyUtil.leadingExpVector
(List<GenPolynomial<C>> L) Polynomial list leading exponent vectors.static <C extends RingElem<C>>
longPolyUtil.maxDegree
(List<GenPolynomial<C>> P) Maximal degree of polynomial list.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.monic
(GenPolynomial<GenPolynomial<C>> p) GenPolynomial monic, i.e.static <C extends RingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> PolyUtil.monic
(GenSolvablePolynomial<GenPolynomial<C>> p) GenSolvablePolynomial monic, i.e.static <C extends RingElem<C>>
List<GenPolynomial<C>> PolyUtil.monic
(List<GenPolynomial<C>> L) Polynomial list monic.static <C extends RingElem<C>>
List<GenPolynomial<GenPolynomial<C>>> PolyUtil.monicRec
(List<GenPolynomial<GenPolynomial<C>>> L) Recursive polynomial list monic.static <C extends RingElem<C>>
List<GenPolynomial<GenPolynomial<C>>> PolyUtil.monicRec
(List<GenPolynomial<GenPolynomial<C>>> L) Recursive polynomial list monic.RecSolvablePolynomial.multiply
(Map.Entry<ExpVector, GenPolynomial<C>> m) RecSolvablePolynomial multiplication.RecSolvablePolynomial.multiplyLeft
(Map.Entry<ExpVector, GenPolynomial<C>> m) RecSolvablePolynomial multiplication.TermOrderOptimization.optimalPermutation
(List<GenPolynomial<BigInteger>> D) Optimal permutation for the Degree matrix.static <C extends RingElem<C>>
OptimizedPolynomialList<C> TermOrderOptimization.optimizeTermOrder
(GenPolynomialRing<C> R, List<GenPolynomial<C>> L) Optimize variable order.static <C extends RingElem<C>>
OptimizedModuleList<C> TermOrderOptimization.optimizeTermOrderModule
(GenPolynomialRing<C> R, List<List<GenPolynomial<C>>> L) Optimize variable order.static <C extends RingElem<C>>
OptimizedPolynomialList<GenPolynomial<C>> TermOrderOptimization.optimizeTermOrderOnCoefficients
(GenPolynomialRing<GenPolynomial<C>> ring, List<GenPolynomial<GenPolynomial<C>>> L) Optimize variable order on coefficients.static <C extends RingElem<C>>
OptimizedPolynomialList<GenPolynomial<C>> TermOrderOptimization.optimizeTermOrderOnCoefficients
(GenPolynomialRing<GenPolynomial<C>> ring, List<GenPolynomial<GenPolynomial<C>>> L) Optimize variable order on coefficients.static <C extends RingElem<C>>
OptimizedPolynomialList<GenPolynomial<C>> TermOrderOptimization.optimizeTermOrderOnCoefficients
(GenPolynomialRing<GenPolynomial<C>> ring, List<GenPolynomial<GenPolynomial<C>>> L) Optimize variable order on coefficients.static <C extends RingElem<C>>
OptimizedModuleList<GenPolynomial<C>> TermOrderOptimization.optimizeTermOrderOnCoefficients
(ModuleList<GenPolynomial<C>> P) Optimize variable order on coefficients.static <C extends RingElem<C>>
OptimizedPolynomialList<GenPolynomial<C>> TermOrderOptimization.optimizeTermOrderOnCoefficients
(PolynomialList<GenPolynomial<C>> P) Optimize variable order on coefficients.static <C extends RingElem<C>>
List<List<GenPolynomial<C>>> ModuleList.padCols
(GenPolynomialRing<C> ring, List<List<GenPolynomial<C>>> l) Pad columns and remove zero rows.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> TermOrderOptimization.permutationOnCoefficients
(List<Integer> P, GenPolynomialRing<GenPolynomial<C>> R, GenPolynomial<GenPolynomial<C>> A) Permutation of polynomial exponent vectors of coefficient polynomials.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> TermOrderOptimization.permutationOnCoefficients
(List<Integer> P, GenPolynomialRing<GenPolynomial<C>> R, GenPolynomial<GenPolynomial<C>> A) Permutation of polynomial exponent vectors of coefficient polynomials.static <C extends RingElem<C>>
List<GenPolynomial<GenPolynomial<C>>> TermOrderOptimization.permutationOnCoefficients
(List<Integer> P, GenPolynomialRing<GenPolynomial<C>> R, List<GenPolynomial<GenPolynomial<C>>> L) Permutation of polynomial exponent vectors of coefficients.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursive
(GenPolynomialRing<GenPolynomial<C>> rfac, GenPolynomial<C> A) Recursive representation.static <C extends RingElem<C>>
List<GenPolynomial<GenPolynomial<C>>> PolyUtil.recursive
(GenPolynomialRing<GenPolynomial<C>> rfac, List<GenPolynomial<C>> L) Recursive representation.static <C extends RingElem<C>>
List<GenPolynomial<GenPolynomial<C>>> PolyUtil.recursive
(GenPolynomialRing<GenPolynomial<C>> rfac, List<GenPolynomial<C>> L) Recursive representation.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursiveDensePseudoRemainder
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) GenPolynomial dense pseudo remainder.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursiveDerivative
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive polynomial derivative main variable.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursiveDivide
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<C> s) GenPolynomial divide.static <C extends RingElem<C>>
GenWordPolynomial<GenPolynomial<C>> PolyUtil.recursiveDivide
(GenWordPolynomial<GenPolynomial<C>> P, GenPolynomial<C> s) GenPolynomial divide.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursivePseudoDivide
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) GenPolynomial recursive pseudo divide.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursivePseudoRemainder
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Deprecated.(forRemoval=true) UsePolyUtil.recursiveSparsePseudoRemainder(edu.jas.poly.GenPolynomial,edu.jas.poly.GenPolynomial)
insteadstatic <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.recursiveSparsePseudoRemainder
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) GenPolynomial sparse pseudo remainder.static <C extends RingElem<C>>
List<GenPolynomial<C>> PolyUtil.rightMonic
(List<GenPolynomial<C>> L) Solvable polynomial list right monic.static <C extends RingElem<C>>
GenPolynomial<C> PolyUtil.selectWithVariable
(List<GenPolynomial<C>> P, int i) Select polynomial with univariate leading term in variable i.static <C extends RingElem<C>>
List<List<GenPolynomial<C>>> OrderedModuleList.sort
(GenPolynomialRing<C> r, List<List<GenPolynomial<C>>> l) Sort a list of vectors of polynomials with respect to the ascending order of the leading Exponent vectors of the first column.static <C extends RingElem<C>>
List<GenPolynomial<C>> OrderedPolynomialList.sort
(GenPolynomialRing<C> r, List<GenPolynomial<C>> L) Sort a list of polynomials with respect to the ascending order of the leading Exponent vectors.static <C extends RingElem<C>>
List<GenPolynomial<C>> OrderedPolynomialList.sort
(List<GenPolynomial<C>> L) Sort a list of polynomials with respect to the ascending order of the leading Exponent vectors.static <C extends RingElem<C>>
List<GenPolynomial<C>> OrderedPolynomialList.sortDegree
(List<GenPolynomial<C>> L) Sort a list of polynomials with respect to the ascending order of the degree.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.switchVariables
(GenPolynomial<GenPolynomial<C>> P) Recursive GenPolynomial switch variable blocks.static <C extends RingElem<C>>
Product<GenPolynomial<C>> PolyUtil.toProduct
(ProductRing<GenPolynomial<C>> pfac, C c, ExpVector e) Product representation.static <C extends RingElem<C>>
Product<GenPolynomial<C>> PolyUtil.toProduct
(ProductRing<GenPolynomial<C>> pfac, GenPolynomial<C> A) Product representation.static List
<GenPolynomial<Product<ModInteger>>> PolyUtil.toProduct
(GenPolynomialRing<Product<ModInteger>> pfac, List<GenPolynomial<BigInteger>> L) Product representation.static <C extends GcdRingElem<C>>
List<GenPolynomial<Product<C>>> PolyUtil.toProductGen
(GenPolynomialRing<Product<C>> pfac, List<GenPolynomial<C>> L) Product representation.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.toRecursive
(GenPolynomialRing<GenPolynomial<C>> rfac, GenPolynomial<C> A) To recursive representation.static <C extends RingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> PolyUtil.toRecursive
(GenSolvablePolynomialRing<GenPolynomial<C>> rfac, GenSolvablePolynomial<C> A) To recursive representation.static <C extends RingElem<C>>
longPolyUtil.totalDegree
(List<GenPolynomial<C>> P) Total degree of polynomial list.static <C extends RingElem<C>>
longPolyUtil.totalDegreeLeadingTerm
(List<GenPolynomial<C>> P) Maximal degree of leading terms of a polynomial list.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUtil.translationMainRecursive
(GenPolynomial<GenPolynomial<C>> A, C h) Polynomial translation, main variable.GenExteriorPolynomialRing.valueOf
(List<GenPolynomial<C>> A) Get a list of GenExteriorPolynomials from a list of GenPolynomials.GenWordPolynomialRing.valueOf
(List<GenPolynomial<C>> A) Get a list of GenWordPolynomial<C> element from a list of GenPolynomial<C>.static <C extends RingElem<C>>
List<List<GenPolynomial<C>>> ModuleList.vecToList
(List<GenVector<GenPolynomial<C>>> vlist) Get a list of vectors as List of list of GenPolynomials.Constructors in edu.jas.poly with parameters of type GenPolynomialModifierConstructorDescriptionConstructor.Constructor.AlgebraicNotInvertibleException
(String c, Throwable t, GenPolynomial f, GenPolynomial f1, GenPolynomial f2) Constructor.Constructor.The constructor creates a AlgebraicNumber object from AlgebraicNumberRing modul and a GenPolynomial value.The constructor creates a AlgebraicNumber factory object from a GenPolynomial objects module.AlgebraicNumberRing
(GenPolynomial<C> m, boolean isField) The constructor creates a AlgebraicNumber factory object from a GenPolynomial objects module.Constructor for RecSolvablePolynomial.Constructor for RecSolvablePolynomial.Constructor parameters in edu.jas.poly with type arguments of type GenPolynomialModifierConstructorDescriptionDistToRec
(GenPolynomialRing<GenPolynomial<C>> fac) ModuleList
(GenPolynomialRing<C> r, List<List<GenPolynomial<C>>> l) Constructor.ModuleList
(GenVectorModul<GenPolynomial<C>> r, List<GenVector<GenPolynomial<C>>> l) Constructor.ModuleList
(GenVectorModul<GenPolynomial<C>> r, List<GenVector<GenPolynomial<C>>> l) Constructor.OrderedModuleList
(GenPolynomialRing<C> r, List<List<GenPolynomial<C>>> l) Constructor.Constructor.PolynomialList
(GenPolynomialRing<C> r, List<GenPolynomial<C>> l) Constructor.Constructor for RecSolvablePolynomial.protected
Constructor for RecSolvablePolynomial.RecSolvablePolynomialRing
(RingFactory<GenPolynomial<C>> cf, int n) The constructor creates a solvable polynomial factory object with the default term order and commutative relations.RecSolvablePolynomialRing
(RingFactory<GenPolynomial<C>> cf, int n, RelationTable<GenPolynomial<C>> rt) The constructor creates a solvable polynomial factory object with the default term order.RecSolvablePolynomialRing
(RingFactory<GenPolynomial<C>> cf, int n, RelationTable<GenPolynomial<C>> rt) The constructor creates a solvable polynomial factory object with the default term order.RecSolvablePolynomialRing
(RingFactory<GenPolynomial<C>> cf, int n, TermOrder t) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.RecSolvablePolynomialRing
(RingFactory<GenPolynomial<C>> cf, int n, TermOrder t, RelationTable<GenPolynomial<C>> rt) The constructor creates a solvable polynomial factory object with the given term order.RecSolvablePolynomialRing
(RingFactory<GenPolynomial<C>> cf, int n, TermOrder t, RelationTable<GenPolynomial<C>> rt) The constructor creates a solvable polynomial factory object with the given term order.RecSolvablePolynomialRing
(RingFactory<GenPolynomial<C>> cf, int n, TermOrder t, String[] v) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.RecSolvablePolynomialRing
(RingFactory<GenPolynomial<C>> cf, int n, TermOrder t, String[] v, RelationTable<GenPolynomial<C>> rt) The constructor creates a solvable polynomial factory object with the given term order.RecSolvablePolynomialRing
(RingFactory<GenPolynomial<C>> cf, int n, TermOrder t, String[] v, RelationTable<GenPolynomial<C>> rt) The constructor creates a solvable polynomial factory object with the given term order.The constructor creates a solvable polynomial factory object with the the same term order, number of variables and variable names as the given polynomial factory, only the coefficient factories differ and the solvable multiplication relations are empty.RecSolvablePolynomialRing
(RingFactory<GenPolynomial<C>> cf, TermOrder t, String[] v) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.RecSolvablePolynomialRing
(RingFactory<GenPolynomial<C>> cf, String[] v) The constructor creates a solvable polynomial factory object with the default term order. -
Uses of GenPolynomial in edu.jas.ps
Fields in edu.jas.ps declared as GenPolynomialModifier and TypeFieldDescription(package private) final GenPolynomial
<C> PolynomialTaylorFunction.pol
Fields in edu.jas.ps with type parameters of type GenPolynomialModifier and TypeFieldDescriptionfinal HashMap
<Long, GenPolynomial<C>> MultiVarCoefficients.coeffCache
Cache for already computed coefficients.Methods in edu.jas.ps that return GenPolynomialModifier and TypeMethodDescriptionMultiVarPowerSeries.asPolynomial()
Get a GenPolynomial<C> from this.UnivPowerSeries.asPolynomial()
Get a GenPolynomial<C> from this.MultiVarCoefficients.getHomPart
(long tdeg) Homogeneous part.MultiVarPowerSeries.homogeneousPart
(long tdeg) Homogeneous part.Methods in edu.jas.ps with parameters of type GenPolynomialModifier and TypeMethodDescriptionMultiVarPowerSeriesRing.fromPolynomial
(GenPolynomial<C> a) Get a MultiVarPowerSeries<C> from a GenPolynomial<C>.UnivPowerSeriesRing.fromPolynomial
(GenPolynomial<C> a) Get a UnivPowerSeries<C> from a GenPolynomial<C>.Method parameters in edu.jas.ps with type arguments of type GenPolynomialModifier and TypeMethodDescriptionMultiVarPowerSeriesRing.fromPolynomial
(List<GenPolynomial<C>> A) Get a list of MultiVarPowerSeries<C> from a list of GenPolynomial<C>.Constructors in edu.jas.ps with parameters of type GenPolynomialConstructor parameters in edu.jas.ps with type arguments of type GenPolynomialModifierConstructorDescriptionMultiVarCoefficients
(GenPolynomialRing<C> pf, HashMap<Long, GenPolynomial<C>> cache) Public with pre-filled coefficient cache.MultiVarCoefficients
(GenPolynomialRing<C> pf, HashMap<Long, GenPolynomial<C>> cache, BitSet hc) Public constructor with pre-filled caches.MultiVarCoefficients
(GenPolynomialRing<C> pf, HashMap<Long, GenPolynomial<C>> cache, HashSet<ExpVector> zeros) Public constructor with pre-filled caches.MultiVarCoefficients
(GenPolynomialRing<C> pf, HashMap<Long, GenPolynomial<C>> cache, HashSet<ExpVector> zeros, BitSet hc) Public constructor with pre-filled caches. -
Uses of GenPolynomial in edu.jas.root
Fields in edu.jas.root declared as GenPolynomialModifier and TypeFieldDescriptionfinal GenPolynomial
<Complex<C>> Boundary.A
Polynomial.final GenPolynomial
<Complex<C>> AlgebraicRoots.cp
Univariate polynomial with complex coefficients equivalent to p.final GenPolynomial
<Complex<C>> DecimalRoots.cp
univariate polynomial with complex coefficients.final GenPolynomial
<C> AlgebraicRoots.p
Univariate polynomial.final GenPolynomial
<C> DecimalRoots.p
univariate polynomial.final GenPolynomial<Complex<C>>[]
Boundary.polys
Boundary polynomials.protected final GenPolynomial
<C> CoeffToReAlg.zero
Methods in edu.jas.root that return GenPolynomialModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C> & Rational>
GenPolynomial<AlgebraicNumber<C>> PolyUtilRoot.algebraicFromRealCoefficients
(GenPolynomialRing<AlgebraicNumber<C>> afac, GenPolynomial<RealAlgebraicNumber<C>> A) Convert to AlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<Complex<C>> PolyUtilRoot.complexFromAny
(GenPolynomial<C> f) Convert to Complex coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilRoot.convertRecursiveToAlgebraicCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> pfac, GenPolynomial<GenPolynomial<C>> A) Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilRoot.convertToAlgebraicCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<ComplexAlgebraicNumber<C>> PolyUtilRoot.convertToComplexCoefficients
(GenPolynomialRing<ComplexAlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to ComplexAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<ComplexAlgebraicNumber<C>> PolyUtilRoot.convertToComplexCoefficientsFromComplex
(GenPolynomialRing<ComplexAlgebraicNumber<C>> pfac, GenPolynomial<Complex<C>> A) Convert to ComplexAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilRoot.convertToRealCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilRoot.convertToRecAlgebraicCoefficients
(int depth, GenPolynomialRing<RealAlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to recursive RealAlgebraicNumber coefficients.Boundary.getImagPart
(int i) Get imaginary part for polynomial i.Boundary.getRealPart
(int i) Get real part for polynomial i.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilRoot.realFromAlgebraicCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> rfac, GenPolynomial<AlgebraicNumber<C>> A) Convert to RealAlgebraicNumber coefficients.Methods in edu.jas.root that return types with arguments of type GenPolynomialModifier and TypeMethodDescriptionRealRootsAbstract.fourierSequence
(GenPolynomial<C> f) Fourier sequence.ComplexRootsSturm.sturmSequence
(GenPolynomial<C> f, GenPolynomial<C> g) Sturm sequence.RealRootsSturm.sturmSequence
(GenPolynomial<C> f) Sturm sequence.Methods in edu.jas.root with parameters of type GenPolynomialModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C> & Rational>
GenPolynomial<AlgebraicNumber<C>> PolyUtilRoot.algebraicFromRealCoefficients
(GenPolynomialRing<AlgebraicNumber<C>> afac, GenPolynomial<RealAlgebraicNumber<C>> A) Convert to AlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
AlgebraicRoots<C> RootFactory.algebraicRoots
(GenPolynomial<C> f) Roots as real and complex algebraic numbers.ComplexRootsAbstract.approximateRoot
(Rectangle<C> rt, GenPolynomial<Complex<C>> f, BigRational eps) Approximate complex root.RealRootsAbstract.approximateRoot
(Interval<C> iv, GenPolynomial<C> f, BigRational eps) Approximate real root.ComplexRootsAbstract.approximateRoots
(GenPolynomial<Complex<C>> a, BigRational eps) List of decimal approximations of complex roots of complex polynomial.RealRootsAbstract.approximateRoots
(GenPolynomial<C> f, BigRational eps) Approximate real roots.RealRootsAbstract.bisectionPoint
(Interval<C> iv, GenPolynomial<C> f) Bi-section point.static <C extends GcdRingElem<C> & Rational>
List<ComplexAlgebraicNumber<C>> RootFactory.complexAlgebraicNumbers
(GenPolynomial<C> f) Complex algebraic numbers.static <C extends GcdRingElem<C> & Rational>
List<ComplexAlgebraicNumber<C>> RootFactory.complexAlgebraicNumbers
(GenPolynomial<C> f, BigRational eps) Complex algebraic numbers.static <C extends GcdRingElem<C> & Rational>
List<ComplexAlgebraicNumber<C>> RootFactory.complexAlgebraicNumbersComplex
(GenPolynomial<Complex<C>> f) Complex algebraic numbers.static <C extends GcdRingElem<C> & Rational>
List<ComplexAlgebraicNumber<C>> RootFactory.complexAlgebraicNumbersComplex
(GenPolynomial<Complex<C>> f, BigRational eps) Complex algebraic numbers.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<Complex<C>> PolyUtilRoot.complexFromAny
(GenPolynomial<C> f) Convert to Complex coefficients.ComplexRootsAbstract.complexMagnitude
(Rectangle<C> rect, GenPolynomial<Complex<C>> f, GenPolynomial<Complex<C>> g, BigRational eps) Complex algebraic number magnitude.ComplexRootsAbstract.complexRectangleMagnitude
(Rectangle<C> rect, GenPolynomial<Complex<C>> f, GenPolynomial<Complex<C>> g) Complex algebraic number magnitude.long
ComplexRoots.complexRootCount
(Rectangle<C> rect, GenPolynomial<Complex<C>> a) Complex root count of complex polynomial on rectangle.abstract long
ComplexRootsAbstract.complexRootCount
(Rectangle<C> rect, GenPolynomial<Complex<C>> a) Complex root count of complex polynomial on rectangle.long
ComplexRootsSturm.complexRootCount
(Rectangle<C> rect, GenPolynomial<Complex<C>> a) Complex root count of complex polynomial on rectangle.ComplexRoots.complexRootRefinement
(Rectangle<C> rect, GenPolynomial<Complex<C>> a, BigRational len) Complex root refinement of complex polynomial a on rectangle.ComplexRootsAbstract.complexRootRefinement
(Rectangle<C> rect, GenPolynomial<Complex<C>> a, BigRational len) Complex root refinement of complex polynomial a on rectangle.ComplexRoots.complexRoots
(GenPolynomial<Complex<C>> a) List of complex roots of complex polynomial.ComplexRoots.complexRoots
(Rectangle<C> rect, GenPolynomial<Complex<C>> a) List of complex roots of complex polynomial a on rectangle.ComplexRootsAbstract.complexRoots
(GenPolynomial<Complex<C>> a) List of complex roots of complex polynomial.ComplexRootsAbstract.complexRoots
(GenPolynomial<Complex<C>> a, BigRational len) List of complex roots of complex polynomial.ComplexRootsAbstract.complexRoots
(Rectangle<C> rect, GenPolynomial<Complex<C>> a) List of complex roots of complex polynomial a on rectangle.ComplexRootsSturm.complexRoots
(Rectangle<C> rect, GenPolynomial<Complex<C>> a) List of complex roots of complex polynomial a on rectangle.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilRoot.convertRecursiveToAlgebraicCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> pfac, GenPolynomial<GenPolynomial<C>> A) Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilRoot.convertToAlgebraicCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<ComplexAlgebraicNumber<C>> PolyUtilRoot.convertToComplexCoefficients
(GenPolynomialRing<ComplexAlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to ComplexAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<ComplexAlgebraicNumber<C>> PolyUtilRoot.convertToComplexCoefficientsFromComplex
(GenPolynomialRing<ComplexAlgebraicNumber<C>> pfac, GenPolynomial<Complex<C>> A) Convert to ComplexAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilRoot.convertToRealCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilRoot.convertToRecAlgebraicCoefficients
(int depth, GenPolynomialRing<RealAlgebraicNumber<C>> pfac, GenPolynomial<C> A) Convert to recursive RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
DecimalRoots<C> RootFactory.decimalRoots
(GenPolynomial<C> f, BigRational eps) Roots as real and complex decimal numbers.PolyToReAlg.eval
(GenPolynomial<C> c) ComplexRootsSturm.excludeZero
(Rectangle<C> rect, GenPolynomial<Complex<C>> f) Exclude zero.static <C extends GcdRingElem<C> & Rational>
List<Complex<BigDecimal>> RootFactory.filterOutRealRoots
(GenPolynomial<C> f, List<Complex<BigDecimal>> c, List<BigDecimal> r, BigRational eps) Filter real roots from complex roots.static <C extends GcdRingElem<C> & Rational>
List<ComplexAlgebraicNumber<C>> RootFactory.filterOutRealRoots
(GenPolynomial<C> f, List<ComplexAlgebraicNumber<C>> c, List<RealAlgebraicNumber<C>> r) Filter real roots from complex roots.RealRootsAbstract.fourierSequence
(GenPolynomial<C> f) Fourier sequence.RealRootsAbstract.halfInterval
(Interval<C> iv, GenPolynomial<C> f) Half interval.long
ComplexRootsSturm.indexOfCauchy
(C a, C b, GenPolynomial<C> f, GenPolynomial<C> g) Cauchy index of rational function f/g on interval.long[]
ComplexRootsSturm.indexOfRouth
(C a, C b, GenPolynomial<C> f, GenPolynomial<C> g) Routh index of complex function f + i g on interval.RealRootsAbstract.invariantMagnitudeInterval
(Interval<C> iv, GenPolynomial<C> f, GenPolynomial<C> g, BigRational eps) Invariant interval for algebraic number magnitude.ComplexRootsAbstract.invariantMagnitudeRectangle
(Rectangle<C> rect, GenPolynomial<Complex<C>> f, GenPolynomial<Complex<C>> g, BigRational eps) Invariant rectangle for algebraic number magnitude.ComplexRootsAbstract.invariantRectangle
(Rectangle<C> rect, GenPolynomial<Complex<C>> f, GenPolynomial<Complex<C>> g) Invariant rectangle for algebraic number.ComplexRootsSturm.invariantRectangle
(Rectangle<C> rect, GenPolynomial<Complex<C>> f, GenPolynomial<Complex<C>> g) Invariant rectangle for algebraic number.RealRootsAbstract.invariantSignInterval
(Interval<C> iv, GenPolynomial<C> f, GenPolynomial<C> g) Invariant interval for algebraic number sign.RealRootsSturm.invariantSignInterval
(Interval<C> iv, GenPolynomial<C> f, GenPolynomial<C> g) Invariant interval for algebraic number sign.RealRootsSturm.invariantSignInterval
(Interval<C> iv, GenPolynomial<C> f, List<GenPolynomial<C>> Sg) Invariant interval for algebraic number sign.boolean
RealRootsAbstract.isApproximateRoot
(BigDecimal x, GenPolynomial<C> f, C eps) Test if x is an approximate real root.boolean
RealRootsAbstract.isApproximateRoot
(BigDecimal x, GenPolynomial<BigDecimal> f, GenPolynomial<BigDecimal> fp, BigDecimal eps) Test if x is an approximate real root.boolean
RealRootsAbstract.isApproximateRoot
(List<BigDecimal> R, GenPolynomial<C> f, BigRational eps) Test if each x in R is an approximate real root.static <C extends GcdRingElem<C> & Rational>
booleanRootFactory.isRealRoot
(GenPolynomial<C> f, Complex<BigDecimal> c, BigDecimal r, BigRational eps) Is complex decimal number a real root of a polynomial.static <C extends GcdRingElem<C> & Rational>
booleanRootFactory.isRealRoot
(GenPolynomial<C> f, ComplexAlgebraicNumber<C> c, RealAlgebraicNumber<C> r) Is complex algebraic number a real root of a polynomial.static <C extends GcdRingElem<C> & Rational>
booleanRootFactory.isRoot
(GenPolynomial<C> f, ComplexAlgebraicNumber<C> r) Is complex algebraic number a root of a polynomial.static <C extends GcdRingElem<C> & Rational>
booleanRootFactory.isRoot
(GenPolynomial<C> f, RealAlgebraicNumber<C> r) Is real algebraic number a root of a polynomial.static <C extends GcdRingElem<C> & Rational>
booleanRootFactory.isRootComplex
(GenPolynomial<Complex<C>> f, ComplexAlgebraicNumber<C> r) Is complex algebraic number a root of a complex polynomial.ComplexRootsAbstract.magnitudeBound
(Rectangle<C> rect, GenPolynomial<Complex<C>> f) Magnitude bound.RealRootsAbstract.magnitudeBound
(Interval<C> iv, GenPolynomial<C> f) Magnitude bound.ComplexAlgebraicNumber.multiply
(GenPolynomial<Complex<C>> c) ComplexAlgebraicNumber multiplication.RealAlgebraicNumber.multiply
(GenPolynomial<C> c) RealAlgebraicNumber multiplication.static <C extends GcdRingElem<C> & Rational>
List<RealAlgebraicNumber<C>> RootFactory.realAlgebraicNumbers
(GenPolynomial<C> f) Real algebraic numbers.static <C extends GcdRingElem<C> & Rational>
List<RealAlgebraicNumber<C>> RootFactory.realAlgebraicNumbers
(GenPolynomial<C> f, BigRational eps) Real algebraic numbers.static <C extends GcdRingElem<C> & Rational>
List<RealAlgebraicNumber<C>> RootFactory.realAlgebraicNumbersField
(GenPolynomial<C> f) Real algebraic numbers from a field.static <C extends GcdRingElem<C> & Rational>
List<RealAlgebraicNumber<C>> RootFactory.realAlgebraicNumbersField
(GenPolynomial<C> f, BigRational eps) Real algebraic numbers from a field.static <C extends GcdRingElem<C> & Rational>
List<RealAlgebraicNumber<C>> RootFactory.realAlgebraicNumbersIrred
(GenPolynomial<C> f) Real algebraic numbers from a irreducible polynomial.static <C extends GcdRingElem<C> & Rational>
List<RealAlgebraicNumber<C>> RootFactory.realAlgebraicNumbersIrred
(GenPolynomial<C> f, BigRational eps) Real algebraic numbers from a irreducible polynomial.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilRoot.realFromAlgebraicCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> rfac, GenPolynomial<AlgebraicNumber<C>> A) Convert to RealAlgebraicNumber coefficients.RealRootsAbstract.realIntervalMagnitude
(Interval<C> iv, GenPolynomial<C> f, GenPolynomial<C> g) Real algebraic number magnitude.RealRootsAbstract.realIntervalMagnitudeInterval
(Interval<C> iv, GenPolynomial<C> f, GenPolynomial<C> g) Real algebraic number magnitude.int
RealRootsAbstract.realIntervalSign
(Interval<C> iv, GenPolynomial<C> f, GenPolynomial<C> g) Real algebraic number sign.RealRoots.realMagnitude
(Interval<C> iv, GenPolynomial<C> f, GenPolynomial<C> g, BigRational eps) Real algebraic number magnitude.RealRootsAbstract.realMagnitude
(Interval<C> iv, GenPolynomial<C> f, GenPolynomial<C> g, BigRational eps) Real algebraic number magnitude.RealRootsAbstract.realMinimalRootBound
(GenPolynomial<C> f) Real minimal root bound.RealRootsAbstract.realMinimalRootSeparation
(GenPolynomial<C> f) Real minimal root separation.RealRoots.realRootBound
(GenPolynomial<C> f) Real root bound.RealRootsAbstract.realRootBound
(GenPolynomial<C> f) Real root bound.long
RealRoots.realRootCount
(Interval<C> iv, GenPolynomial<C> f) Number of real roots in interval.abstract long
RealRootsAbstract.realRootCount
(Interval<C> iv, GenPolynomial<C> f) Number of real roots in interval.long
RealRootsSturm.realRootCount
(Interval<C> iv, GenPolynomial<C> f) Number of real roots in interval.RealRootsAbstract.realRootNumber
(GenPolynomial<C> f, Interval<C> v) Root number.RealRoots.realRoots
(GenPolynomial<C> f) Isolating intervals for the real roots.RealRoots.realRoots
(GenPolynomial<C> f, C eps) Isolating intervals for the real roots.RealRoots.realRoots
(GenPolynomial<C> f, BigRational eps) Isolating intervals for the real roots.RealRootsAbstract.realRoots
(GenPolynomial<C> f) Isolating intervals for the real roots.RealRootsAbstract.realRoots
(GenPolynomial<C> f, C eps) Isolating intervals for the real roots.RealRootsAbstract.realRoots
(GenPolynomial<C> f, BigRational eps) Isolating intervals for the real roots.RealRootsSturm.realRoots
(GenPolynomial<C> f) Isolating intervals for the real roots.int
RealRoots.realSign
(Interval<C> iv, GenPolynomial<C> f, GenPolynomial<C> g) Real algebraic number sign.int
RealRootsAbstract.realSign
(Interval<C> iv, GenPolynomial<C> f, GenPolynomial<C> g) Real algebraic number sign.RealRoots.refineInterval
(Interval<C> iv, GenPolynomial<C> f, BigRational eps) Refine interval.RealRootsAbstract.refineInterval
(Interval<C> iv, GenPolynomial<C> f, BigRational eps) Refine interval.RealRoots.refineIntervals
(List<Interval<C>> V, GenPolynomial<C> f, BigRational eps) Refine intervals.RealRootsAbstract.refineIntervals
(List<Interval<C>> V, GenPolynomial<C> f, BigRational eps) Refine intervals.ComplexRoots.rootBound
(GenPolynomial<Complex<C>> f) Root bound.ComplexRootsAbstract.rootBound
(GenPolynomial<Complex<C>> f) Root bound.boolean
RealRoots.signChange
(Interval<C> iv, GenPolynomial<C> f) Sign changes on interval bounds.boolean
RealRootsAbstract.signChange
(Interval<C> iv, GenPolynomial<C> f) Sign changes on interval bounds.RealRootsAbstract.signSequence
(GenPolynomial<C> f, Interval<C> v) Thom sign sequence.ComplexRootsSturm.sturmSequence
(GenPolynomial<C> f, GenPolynomial<C> g) Sturm sequence.RealRootsSturm.sturmSequence
(GenPolynomial<C> f) Sturm sequence.ComplexAlgebraicNumber.sum
(GenPolynomial<Complex<C>> c) ComplexAlgebraicNumber summation.RealAlgebraicNumber.sum
(GenPolynomial<C> c) RealAlgebraicNumber summation.long
ComplexRootsSturm.windingNumber
(Rectangle<C> rect, GenPolynomial<Complex<C>> A) Winding number of complex function A on rectangle.Method parameters in edu.jas.root with type arguments of type GenPolynomialModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilRoot.convertRecursiveToAlgebraicCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> pfac, GenPolynomial<GenPolynomial<C>> A) Convert to RealAlgebraicNumber coefficients.RealRootsSturm.excludeZero
(Interval<C> iv, List<GenPolynomial<C>> S) Exclude zero v2.RealRootsSturm.excludeZeroOld
(Interval<C> iv, List<GenPolynomial<C>> S) Exclude zero, old version.RealRootsSturm.invariantSignInterval
(Interval<C> iv, GenPolynomial<C> f, List<GenPolynomial<C>> Sg) Invariant interval for algebraic number sign.long
RealRootsSturm.realRootCount
(Interval<C> iv, List<GenPolynomial<C>> S) Number of real roots in interval.Isolating intervals for the real roots.Constructors in edu.jas.root with parameters of type GenPolynomialModifierConstructorDescriptionAlgebraicRoots
(GenPolynomial<C> p, GenPolynomial<Complex<C>> cp, List<RealAlgebraicNumber<C>> r, List<ComplexAlgebraicNumber<C>> c) Constructor.Constructor.protected
Boundary
(Rectangle<C> r, GenPolynomial<Complex<C>> p, GenPolynomial<Complex<C>>[] b) Constructor.The constructor creates a ComplexAlgebraicNumber object from ComplexAlgebraicRing modul and a GenPolynomial value.ComplexAlgebraicRing
(GenPolynomial<Complex<C>> m, Rectangle<C> root) The constructor creates a ComplexAlgebraicNumber factory object from a GenPolynomial objects module.ComplexAlgebraicRing
(GenPolynomial<Complex<C>> m, Rectangle<C> root, boolean isField) The constructor creates a ComplexAlgebraicNumber factory object from a GenPolynomial objects module.DecimalRoots
(GenPolynomial<C> p, GenPolynomial<Complex<C>> cp, List<BigDecimal> r, List<Complex<BigDecimal>> c) Constructor.The constructor creates a RealAlgebraicNumber object from RealAlgebraicRing modul and a GenPolynomial value.RealAlgebraicRing
(GenPolynomial<C> m, Interval<C> root) The constructor creates a RealAlgebraicNumber factory object from a GenPolynomial objects module.RealAlgebraicRing
(GenPolynomial<C> m, Interval<C> root, boolean isField) The constructor creates a RealAlgebraicNumber factory object from a GenPolynomial objects module. -
Uses of GenPolynomial in edu.jas.ufd
Classes in edu.jas.ufd with type parameters of type GenPolynomialModifier and TypeClassDescriptionclass
FactorFraction<C extends GcdRingElem<C>,
D extends GcdRingElem<D> & QuotPair<GenPolynomial<C>>> Fraction factorization algorithms.Fields in edu.jas.ufd declared as GenPolynomialModifier and TypeFieldDescriptionfinal GenPolynomial
<BigInteger> HenselApprox.A
Approximated polynomial with integer coefficients.final GenPolynomial
<MOD> HenselApprox.Am
Modular approximated polynomial with modular coefficients.final GenPolynomial
<AlgebraicNumber<C>> Factors.apoly
Original polynomial to be factored with coefficients from AlgebraicNumberRing<C>.final GenPolynomial
<BigInteger> HenselApprox.B
Approximated polynomial with integer coefficients.final GenPolynomial
<MOD> HenselApprox.Bm
Modular approximated polynomial with modular coefficients.final GenPolynomial
<C> PartialFraction.den
Original (irreducible) denominator polynomial coefficients from C.final GenPolynomial
<C> Quotient.den
Denominator part of the element data structure.final GenPolynomial
<C> PartialFraction.num
Original numerator polynomial coefficients from C and deg(num) < deg(den).final GenPolynomial
<C> Quotient.num
Numerator part of the element data structure.final GenPolynomial
<C> EvalPoints.poly
Original multivariate polynomial to be evaluated.final GenPolynomial
<C> Factors.poly
Original (irreducible) polynomial to be factored with coefficients from C.final GenPolynomial
<C> FactorsList.poly
Original polynomial to be factored with coefficients from C.final GenPolynomial
<C> FactorsMap.poly
Original polynomial to be factored with coefficients from C.final GenPolynomial
<BigInteger> TrialParts.univPoly
univariate polynomialfinal GenPolynomial
<C> EvalPoints.upoly
Evaluated univariate polynomial as evaluated.Fields in edu.jas.ufd with type parameters of type GenPolynomialModifier and TypeFieldDescriptionfinal List
<GenPolynomial<AlgebraicNumber<C>>> PartialFraction.adenom
List of factors of the denominator with coefficients from an AlgebraicNumberRing<C>.final List
<GenPolynomial<AlgebraicNumber<C>>> Factors.afactors
List of factors with coefficients from AlgebraicNumberRing<C>.final List
<GenPolynomial<C>> PartialFraction.cdenom
List of linear factors of the denominator with coefficients from C.final List
<GenPolynomial<C>> FactorsList.factors
List of factors with coefficients from C.final SortedMap
<GenPolynomial<C>, Long> FactorsMap.factors
List of factors with coefficients from C.final List
<GenPolynomial<BigInteger>> TrialParts.ldcfFactors
irreducible factors of leading coefficientprotected final QuotPairFactory
<GenPolynomial<C>, D> FactorFraction.qfac
Quotient pairs ring factory.final List
<GenPolynomial<BigInteger>> TrialParts.univFactors
irreducible factors of univariate polynomialMethods in edu.jas.ufd that return GenPolynomialModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C>>
GenPolynomial<C>[]PolyUfdUtil.agcd
(GenPolynomial<C> R, GenPolynomial<C> S, int n) GenPolynomial approximate common divisor.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyUfdUtil.backSubstituteKronecker
(GenPolynomialRing<C> fac, GenPolynomial<C> A, long d) Kronecker back substitution.GreatestCommonDivisorSubres.baseDiscriminant
(GenPolynomial<C> P) GenPolynomial base coefficient discriminant.GenPolynomial<C>[]
GreatestCommonDivisorAbstract.baseExtendedGcd
(GenPolynomial<C> P, GenPolynomial<C> S) Univariate GenPolynomial extended greatest common divisor.GCDProxy.baseGcd
(GenPolynomial<C> P, GenPolynomial<C> S) Univariate GenPolynomial greatest common divisor.abstract GenPolynomial
<C> GreatestCommonDivisorAbstract.baseGcd
(GenPolynomial<C> P, GenPolynomial<C> S) Univariate GenPolynomial greatest common divisor.GreatestCommonDivisorFake.baseGcd
(GenPolynomial<C> P, GenPolynomial<C> S) Univariate GenPolynomial greatest common divisor.GreatestCommonDivisorHensel.baseGcd
(GenPolynomial<BigInteger> P, GenPolynomial<BigInteger> S) Univariate GenPolynomial greatest common divisor.GreatestCommonDivisorModEval.baseGcd
(GenPolynomial<MOD> P, GenPolynomial<MOD> S) Univariate GenPolynomial greatest common divisor.GreatestCommonDivisorModular.baseGcd
(GenPolynomial<BigInteger> P, GenPolynomial<BigInteger> S) Univariate GenPolynomial greatest common divisor.GreatestCommonDivisorPrimitive.baseGcd
(GenPolynomial<C> P, GenPolynomial<C> S) Univariate GenPolynomial greatest common divisor.GreatestCommonDivisorSimple.baseGcd
(GenPolynomial<C> P, GenPolynomial<C> S) Univariate GenPolynomial greatest common divisor.GreatestCommonDivisorSubres.baseGcd
(GenPolynomial<C> P, GenPolynomial<C> S) Univariate GenPolynomial greatest common divisor.GenPolynomial<C>[]
GreatestCommonDivisorAbstract.baseGcdDiophant
(GenPolynomial<C> P, GenPolynomial<C> S, GenPolynomial<C> c) Univariate GenPolynomial greatest common divisor diophantine version.GenPolynomial<C>[]
GreatestCommonDivisorAbstract.baseHalfExtendedGcd
(GenPolynomial<C> P, GenPolynomial<C> S) Univariate GenPolynomial half extended greatest common divisor.GenPolynomial<C>[]
GreatestCommonDivisorAbstract.basePartialFraction
(GenPolynomial<C> A, GenPolynomial<C> P, GenPolynomial<C> S) Univariate GenPolynomial partial fraction decomposition.GreatestCommonDivisorAbstract.basePartialFractionValue
(GenPolynomial<C> P, int e, List<GenPolynomial<C>> F) Test for Univariate GenPolynomial partial fraction decomposition.FactorAbstract.basePrimitivePart
(GenPolynomial<C> P) GenPolynomial base primitive part.GreatestCommonDivisorAbstract.basePrimitivePart
(GenPolynomial<C> P) GenPolynomial base coefficient primitive part.GreatestCommonDivisorFake.basePrimitivePart
(GenPolynomial<C> P) GenPolynomial base coefficient primitive part.GreatestCommonDivisorSubres.basePseudoRemainder
(GenPolynomial<C> P, GenPolynomial<C> S) Deprecated.(forRemoval=true) UsePolyUtil.baseDensePseudoRemainder(edu.jas.poly.GenPolynomial,edu.jas.poly.GenPolynomial)
insteadGreatestCommonDivisorAbstract.baseRecursivePrimitivePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial base recursive primitive part.GCDProxy.baseResultant
(GenPolynomial<C> P, GenPolynomial<C> S) Univariate GenPolynomial resultant.GreatestCommonDivisorAbstract.baseResultant
(GenPolynomial<C> P, GenPolynomial<C> S) Univariate GenPolynomial resultant.GreatestCommonDivisorModEval.baseResultant
(GenPolynomial<MOD> P, GenPolynomial<MOD> S) Univariate GenPolynomial resultant.GreatestCommonDivisorModular.baseResultant
(GenPolynomial<BigInteger> P, GenPolynomial<BigInteger> S) Univariate GenPolynomial resultant.GreatestCommonDivisorSimple.baseResultant
(GenPolynomial<C> P, GenPolynomial<C> S) Univariate GenPolynomial resultant.GreatestCommonDivisorSubres.baseResultant
(GenPolynomial<C> P, GenPolynomial<C> S) Univariate GenPolynomial resultant.abstract GenPolynomial
<C> SquarefreeFieldCharP.baseRootCharacteristic
(GenPolynomial<C> P) GenPolynomial char-th root univariate polynomial.SquarefreeFiniteFieldCharP.baseRootCharacteristic
(GenPolynomial<C> P) GenPolynomial char-th root univariate polynomial.SquarefreeInfiniteAlgebraicFieldCharP.baseRootCharacteristic
(GenPolynomial<AlgebraicNumber<C>> P) GenPolynomial char-th root univariate polynomial.SquarefreeInfiniteFieldCharP.baseRootCharacteristic
(GenPolynomial<Quotient<C>> P) GenPolynomial char-th root univariate polynomial.abstract GenPolynomial
<C> SquarefreeAbstract.baseSquarefreePart
(GenPolynomial<C> P) GenPolynomial polynomial greatest squarefree divisor.SquarefreeFieldChar0.baseSquarefreePart
(GenPolynomial<C> P) GenPolynomial polynomial greatest squarefree divisor.SquarefreeFieldCharP.baseSquarefreePart
(GenPolynomial<C> P) GenPolynomial polynomial greatest squarefree divisor.SquarefreeRingChar0.baseSquarefreePart
(GenPolynomial<C> P) GenPolynomial polynomial greatest squarefree divisor.GreatestCommonDivisor.content
(GenPolynomial<C> P) GenPolynomial content.GreatestCommonDivisorAbstract.content
(GenPolynomial<C> P) GenPolynomial content.GenPolynomial<C>[]
GreatestCommonDivisorAbstract.contentPrimitivePart
(GenPolynomial<C> P) GenPolynomial content and primitive part.static GenPolynomial
<BigInteger> CycloUtil.cyclotomicPolynomial
(GenPolynomialRing<BigInteger> ring, long n) Compute n-th cyclotomic polynomial.Quotient.denominator()
Denominator.GreatestCommonDivisorAbstract.divide
(GenPolynomial<C> a, C b) GenPolynomial division.protected GenPolynomial
<C> QuotientRing.divide
(GenPolynomial<C> n, GenPolynomial<C> d) Divide.BackSubstKronecker.eval
(GenPolynomial<C> c) SubstKronecker.eval
(GenPolynomial<C> c) static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUfdUtil.fromIntegerCoefficients
(GenPolynomialRing<GenPolynomial<C>> fac, GenPolynomial<GenPolynomial<BigInteger>> A) From BigInteger coefficients.GCDProxy.gcd
(GenPolynomial<C> P, GenPolynomial<C> S) GenPolynomial greatest common divisor.GreatestCommonDivisor.gcd
(GenPolynomial<C> P, GenPolynomial<C> S) GenPolynomial greatest common divisor.GreatestCommonDivisorAbstract.gcd
(GenPolynomial<C> P, GenPolynomial<C> S) GenPolynomial greatest common divisor.GreatestCommonDivisorAbstract.gcd
(List<GenPolynomial<C>> A) List of GenPolynomials greatest common divisor.GreatestCommonDivisorModEval.gcd
(GenPolynomial<MOD> P, GenPolynomial<MOD> S) GenPolynomial greatest common divisor, modular evaluation algorithm.GreatestCommonDivisorModular.gcd
(GenPolynomial<BigInteger> P, GenPolynomial<BigInteger> S) GenPolynomial greatest common divisor, modular algorithm.protected GenPolynomial
<C> QuotientRing.gcd
(GenPolynomial<C> n, GenPolynomial<C> d) Greatest common divisor.static GenPolynomial
<GenPolynomial<BigInteger>> PolyUfdUtil.integerFromRationalCoefficients
(GenPolynomialRing<GenPolynomial<BigInteger>> fac, GenPolynomial<GenPolynomial<BigRational>> A) BigInteger from BigRational coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUfdUtil.integralFromQuotientCoefficients
(GenPolynomialRing<GenPolynomial<C>> fac, GenPolynomial<Quotient<C>> A) Integral polynomial from rational function coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUfdUtil.introduceLowerVariable
(GenPolynomialRing<GenPolynomial<C>> rfac, GenPolynomial<C> A) Introduce lower variable.GreatestCommonDivisor.lcm
(GenPolynomial<C> P, GenPolynomial<C> S) GenPolynomial least common multiple.GreatestCommonDivisorAbstract.lcm
(GenPolynomial<C> P, GenPolynomial<C> S) GenPolynomial least common multiple.static <MOD extends GcdRingElem<MOD> & Modular>
GenPolynomial<MOD>[]HenselUtil.liftExtendedEuclidean
(GenPolynomial<MOD> A, GenPolynomial<MOD> B, long k) Constructing and lifting algorithm for extended Euclidean relation.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyUfdUtil.norm
(GenPolynomial<AlgebraicNumber<C>> A) Norm of a polynomial with AlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyUfdUtil.norm
(GenPolynomial<AlgebraicNumber<C>> A, long k) Norm of a polynomial with AlgebraicNumber coefficients.Quotient.numerator()
Numerator.FactorAbstract.primitivePart
(GenPolynomial<C> P) GenPolynomial primitive part.GreatestCommonDivisor.primitivePart
(GenPolynomial<C> P) GenPolynomial primitive part.GreatestCommonDivisorAbstract.primitivePart
(GenPolynomial<C> P) GenPolynomial primitive part.static <C extends GcdRingElem<C>>
GenPolynomial<Quotient<C>> PolyUfdUtil.quotientFromIntegralCoefficients
(GenPolynomialRing<Quotient<C>> fac, GenPolynomial<GenPolynomial<C>> A) Rational function from integral polynomial coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyUfdUtil.randomIrreduciblePolynomial
(GenPolynomialRing<C> ring, int degree) Construct a random irreducible univariate polynomial of degree d.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyUfdUtil.randomIrreduciblePolynomial
(RingFactory<C> cfac, int degree) Construct a random irreducible univariate polynomial of degree d.GreatestCommonDivisorAbstract.recursiveContent
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive content.GreatestCommonDivisorFake.recursiveContent
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive content.GreatestCommonDivisorAbstract.recursiveGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) GenPolynomial recursive greatest common divisor.GreatestCommonDivisorAbstract.recursivePrimitivePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive primitive part.GreatestCommonDivisorFake.recursivePrimitivePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive primitive part.GreatestCommonDivisorSubres.recursivePseudoRemainder
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Deprecated.(forRemoval=true) UsePolyUtil.recursiveDensePseudoRemainder(edu.jas.poly.GenPolynomial,edu.jas.poly.GenPolynomial)
insteadGreatestCommonDivisorAbstract.recursiveResultant
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) GenPolynomial recursive resultant.SquarefreeAbstract.recursiveSquarefreePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive polynomial greatest squarefree divisor.GCDProxy.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive greatest common divisor.abstract GenPolynomial
<GenPolynomial<C>> GreatestCommonDivisorAbstract.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive greatest common divisor.GreatestCommonDivisorFake.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive greatest common divisor.GreatestCommonDivisorHensel.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<BigInteger>> P, GenPolynomial<GenPolynomial<BigInteger>> S) Univariate GenPolynomial recursive greatest common divisor.GreatestCommonDivisorModEval.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<MOD>> P, GenPolynomial<GenPolynomial<MOD>> S) Recursive univariate GenPolynomial greatest common divisor.GreatestCommonDivisorModular.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<BigInteger>> P, GenPolynomial<GenPolynomial<BigInteger>> S) Univariate GenPolynomial recursive greatest common divisor.GreatestCommonDivisorPrimitive.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive greatest common divisor.GreatestCommonDivisorSimple.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive greatest common divisor.GreatestCommonDivisorSubres.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive greatest common divisor.GCDProxy.recursiveUnivariateResultant
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial resultant.GreatestCommonDivisorAbstract.recursiveUnivariateResultant
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive resultant.GreatestCommonDivisorModEval.recursiveUnivariateResultant
(GenPolynomial<GenPolynomial<MOD>> P, GenPolynomial<GenPolynomial<MOD>> S) Univariate GenPolynomial recursive resultant.GreatestCommonDivisorModular.recursiveUnivariateResultant
(GenPolynomial<GenPolynomial<BigInteger>> P, GenPolynomial<GenPolynomial<BigInteger>> S) Univariate GenPolynomial recursive resultant.GreatestCommonDivisorSimple.recursiveUnivariateResultant
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive resultant.GreatestCommonDivisorSubres.recursiveUnivariateResultant
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive resultant.abstract GenPolynomial
<GenPolynomial<C>> SquarefreeFieldCharP.recursiveUnivariateRootCharacteristic
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial char-th root univariate polynomial with polynomial coefficients.SquarefreeFiniteFieldCharP.recursiveUnivariateRootCharacteristic
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial char-th root univariate polynomial with polynomial coefficients.SquarefreeInfiniteAlgebraicFieldCharP.recursiveUnivariateRootCharacteristic
(GenPolynomial<GenPolynomial<AlgebraicNumber<C>>> P) GenPolynomial char-th root univariate polynomial with polynomial coefficients.SquarefreeInfiniteFieldCharP.recursiveUnivariateRootCharacteristic
(GenPolynomial<GenPolynomial<Quotient<C>>> P) GenPolynomial char-th root univariate polynomial with polynomial coefficients.abstract GenPolynomial
<GenPolynomial<C>> SquarefreeAbstract.recursiveUnivariateSquarefreePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive polynomial greatest squarefree divisor.SquarefreeFieldChar0.recursiveUnivariateSquarefreePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial greatest squarefree divisor.SquarefreeFieldCharP.recursiveUnivariateSquarefreePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial greatest squarefree divisor.SquarefreeRingChar0.recursiveUnivariateSquarefreePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial greatest squarefree divisor.GCDProxy.resultant
(GenPolynomial<C> P, GenPolynomial<C> S) GenPolynomial resultant.GreatestCommonDivisor.resultant
(GenPolynomial<C> P, GenPolynomial<C> S) GenPolynomial resultant.GreatestCommonDivisorAbstract.resultant
(GenPolynomial<C> P, GenPolynomial<C> S) GenPolynomial resultant.GreatestCommonDivisorModEval.resultant
(GenPolynomial<MOD> P, GenPolynomial<MOD> S) GenPolynomial resultant, modular evaluation algorithm.GreatestCommonDivisorModular.resultant
(GenPolynomial<BigInteger> P, GenPolynomial<BigInteger> S) GenPolynomial resultant, modular algorithm.SquarefreeInfiniteAlgebraicFieldCharP.rootCharacteristic
(GenPolynomial<AlgebraicNumber<C>> P) GenPolynomial char-th root main variable.SquarefreeInfiniteFieldCharP.rootCharacteristic
(GenPolynomial<Quotient<C>> P) GenPolynomial char-th root main variable.FactorAbstract.squarefreePart
(GenPolynomial<C> P) GenPolynomial greatest squarefree divisor.Factorization.squarefreePart
(GenPolynomial<C> P) GenPolynomial greatest squarefree divisor.Squarefree.squarefreePart
(GenPolynomial<C> P) GenPolynomial greatest squarefree divisor.abstract GenPolynomial
<C> SquarefreeAbstract.squarefreePart
(GenPolynomial<C> P) GenPolynomial greatest squarefree divisor.SquarefreeFieldChar0.squarefreePart
(GenPolynomial<C> P) GenPolynomial greatest squarefree divisor.SquarefreeFieldCharP.squarefreePart
(GenPolynomial<C> P) GenPolynomial greatest squarefree divisor.SquarefreeRingChar0.squarefreePart
(GenPolynomial<C> P) GenPolynomial greatest squarefree divisor.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUfdUtil.substituteConvertToAlgebraicCoefficients
(GenPolynomialRing<AlgebraicNumber<C>> pfac, GenPolynomial<C> A, long k) Convert to AlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUfdUtil.substituteFromAlgebraicCoefficients
(GenPolynomialRing<GenPolynomial<C>> rfac, GenPolynomial<AlgebraicNumber<C>> A, long k) From AlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyUfdUtil.substituteKronecker
(GenPolynomial<C> A) Kronecker substitution.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyUfdUtil.substituteKronecker
(GenPolynomial<C> A, long d) Kronecker substitution.Methods in edu.jas.ufd that return types with arguments of type GenPolynomialModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C>>
List<GenPolynomial<C>> PolyUfdUtil.backSubstituteKronecker
(GenPolynomialRing<C> fac, List<GenPolynomial<C>> A, long d) Kronecker back substitution.FactorModular.baseDistinctDegreeFactors
(GenPolynomial<MOD> P) GenPolynomial base distinct degree factorization.FactorModular.baseEqualDegreeFactors
(GenPolynomial<MOD> P, long deg) GenPolynomial base equal degree factorization.FactorAbstract.baseFactors
(GenPolynomial<C> P) Univariate GenPolynomial factorization.FactorAbstract.baseFactorsRadical
(GenPolynomial<C> P) Univariate GenPolynomial factorization ignoring multiplicities.abstract List
<GenPolynomial<C>> FactorAbstract.baseFactorsSquarefree
(GenPolynomial<C> P) Univariate GenPolynomial factorization of a squarefree polynomial.FactorAlgebraic.baseFactorsSquarefree
(GenPolynomial<AlgebraicNumber<C>> P) GenPolynomial base factorization of a squarefree polynomial.FactorComplex.baseFactorsSquarefree
(GenPolynomial<Complex<C>> P) GenPolynomial base factorization of a squarefree polynomial.FactorInteger.baseFactorsSquarefree
(GenPolynomial<BigInteger> P) GenPolynomial base factorization of a squarefree polynomial.FactorModular.baseFactorsSquarefree
(GenPolynomial<MOD> P) GenPolynomial base factorization of a squarefree polynomial.FactorModularBerlekamp.baseFactorsSquarefree
(GenPolynomial<MOD> P) GenPolynomial base factorization of a squarefree polynomial.FactorQuotient.baseFactorsSquarefree
(GenPolynomial<Quotient<C>> P) GenPolynomial base factorization of a squarefree polynomial.FactorRational.baseFactorsSquarefree
(GenPolynomial<BigRational> P) GenPolynomial base factorization of a squarefree polynomial.FactorModularBerlekamp.baseFactorsSquarefreeBigPrime
(GenPolynomial<MOD> P) GenPolynomial base factorization of a squarefree polynomial.FactorModularBerlekamp.baseFactorsSquarefreeSmallPrime
(GenPolynomial<MOD> P) GenPolynomial base factorization of a squarefree polynomial.GreatestCommonDivisorAbstract.basePartialFraction
(GenPolynomial<C> A, GenPolynomial<C> P, int e) Univariate GenPolynomial partial fraction decomposition.GreatestCommonDivisorAbstract.basePartialFraction
(GenPolynomial<C> A, List<GenPolynomial<C>> D) Univariate GenPolynomial partial fraction decomposition.List
<List<GenPolynomial<C>>> SquarefreeAbstract.basePartialFraction
(GenPolynomial<C> A, SortedMap<GenPolynomial<C>, Long> D) Univariate GenPolynomial partial fraction decomposition.GreatestCommonDivisorAbstract.basePrimitivePart
(List<GenPolynomial<C>> F) List of GenPolynomial base coefficient primitive part.GreatestCommonDivisorAbstract.baseRecursivePrimitivePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial base recursive primitive part.abstract SortedMap
<GenPolynomial<C>, Long> SquarefreeAbstract.baseSquarefreeFactors
(GenPolynomial<C> A) GenPolynomial polynomial squarefree factorization.SquarefreeFieldChar0.baseSquarefreeFactors
(GenPolynomial<C> A) GenPolynomial polynomial squarefree factorization.SquarefreeFieldChar0Yun.baseSquarefreeFactors
(GenPolynomial<C> A) GenPolynomial polynomial squarefree factorization.SquarefreeFieldCharP.baseSquarefreeFactors
(GenPolynomial<C> A) GenPolynomial polynomial squarefree factorization.SquarefreeRingChar0.baseSquarefreeFactors
(GenPolynomial<C> A) GenPolynomial polynomial squarefree factorization.GreatestCommonDivisor.coPrime
(List<GenPolynomial<C>> A) GenPolynomial co-prime list.GreatestCommonDivisorAbstract.coPrime
(GenPolynomial<C> a, List<GenPolynomial<C>> P) GenPolynomial co-prime list.GreatestCommonDivisorAbstract.coPrime
(List<GenPolynomial<C>> A) GenPolynomial co-prime list.GreatestCommonDivisorAbstract.coPrimeRec
(List<GenPolynomial<C>> A) GenPolynomial co-prime list.Squarefree.coPrimeSquarefree
(GenPolynomial<C> a, List<GenPolynomial<C>> P) GenPolynomial squarefree and co-prime list.Squarefree.coPrimeSquarefree
(List<GenPolynomial<C>> A) GenPolynomial squarefree and co-prime list.SquarefreeAbstract.coPrimeSquarefree
(GenPolynomial<C> a, List<GenPolynomial<C>> P) GenPolynomial squarefree and co-prime list.SquarefreeAbstract.coPrimeSquarefree
(List<GenPolynomial<C>> A) GenPolynomial squarefree and co-prime list.static List
<GenPolynomial<BigInteger>> CycloUtil.cyclotomicDecompose
(GenPolynomialRing<BigInteger> ring, long n) Compute the factors of the n-th cyclotomic polynomial.static List
<GenPolynomial<BigInteger>> CycloUtil.cyclotomicFactors
(GenPolynomial<BigInteger> p) Compute the factors of the cyclotomic polynomial.FactorAbstract.factors
(GenPolynomial<C> P) GenPolynomial factorization.Factorization.factors
(GenPolynomial<C> P) GenPolynomial factorization.FactorRational.factors
(GenPolynomial<BigRational> P) GenPolynomial factorization of a polynomial.FactorAbstract.factorsRadical
(GenPolynomial<C> P) GenPolynomial factorization ignoring multiplicities.FactorAbstract.factorsRadical
(List<GenPolynomial<C>> L) GenPolynomial list factorization ignoring multiplicities.Factorization.factorsRadical
(GenPolynomial<C> P) GenPolynomial factorization ignoring multiplicities.FactorAbstract.factorsSquarefree
(GenPolynomial<C> P) GenPolynomial factorization of a squarefree polynomial, using Kronecker substitution.FactorAlgebraic.factorsSquarefree
(GenPolynomial<AlgebraicNumber<C>> P) GenPolynomial factorization of a squarefree polynomial.FactorComplex.factorsSquarefree
(GenPolynomial<Complex<C>> P) GenPolynomial factorization of a squarefree polynomial.FactorInteger.factorsSquarefree
(GenPolynomial<BigInteger> P) GenPolynomial factorization of a multivariate squarefree polynomial, using Hensel lifting if possible.Factorization.factorsSquarefree
(GenPolynomial<C> P) GenPolynomial factorization of a squarefree polynomial.FactorQuotient.factorsSquarefree
(GenPolynomial<Quotient<C>> P) GenPolynomial factorization of a squarefree polynomial.FactorRational.factorsSquarefree
(GenPolynomial<BigRational> P) GenPolynomial factorization of a squarefree polynomial.FactorInteger.factorsSquarefreeHensel
(GenPolynomial<BigInteger> P) GenPolynomial factorization of a multivariate squarefree polynomial, using Hensel lifting.FactorAbstract.factorsSquarefreeKronecker
(GenPolynomial<C> P) GenPolynomial factorization of a squarefree polynomial, using Kronecker substitution.FactorAbstract.factorsSquarefreeOptimize
(GenPolynomial<C> P) GenPolynomial factorization of a multivariate squarefree polynomial, using Kronecker substitution and variable order optimization.FactorInteger.factorsSquarefreeOptions
(GenPolynomial<BigInteger> P, boolean opti, boolean tlex) GenPolynomial factorization of a multivariate squarefree polynomial, using Hensel lifting if possible.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUfdUtil.fromIntegerCoefficients
(GenPolynomialRing<GenPolynomial<C>> fac, GenPolynomial<GenPolynomial<BigInteger>> A) From BigInteger coefficients.static <C extends RingElem<C>>
List<GenPolynomial<GenPolynomial<C>>> PolyUfdUtil.fromIntegerCoefficients
(GenPolynomialRing<GenPolynomial<C>> fac, List<GenPolynomial<GenPolynomial<BigInteger>>> L) From BigInteger coefficients.static <C extends RingElem<C>>
List<GenPolynomial<GenPolynomial<C>>> PolyUfdUtil.fromIntegerCoefficients
(GenPolynomialRing<GenPolynomial<C>> fac, List<GenPolynomial<GenPolynomial<BigInteger>>> L) From BigInteger coefficients.Factors.getFactors()
Get the list of factors at one level.static GenPolynomial
<GenPolynomial<BigInteger>> PolyUfdUtil.integerFromRationalCoefficients
(GenPolynomialRing<GenPolynomial<BigInteger>> fac, GenPolynomial<GenPolynomial<BigRational>> A) BigInteger from BigRational coefficients.static List
<GenPolynomial<GenPolynomial<BigInteger>>> PolyUfdUtil.integerFromRationalCoefficients
(GenPolynomialRing<GenPolynomial<BigInteger>> fac, List<GenPolynomial<GenPolynomial<BigRational>>> L) BigInteger from BigRational coefficients.static List
<GenPolynomial<GenPolynomial<BigInteger>>> PolyUfdUtil.integerFromRationalCoefficients
(GenPolynomialRing<GenPolynomial<BigInteger>> fac, List<GenPolynomial<GenPolynomial<BigRational>>> L) BigInteger from BigRational coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUfdUtil.integralFromQuotientCoefficients
(GenPolynomialRing<GenPolynomial<C>> fac, GenPolynomial<Quotient<C>> A) Integral polynomial from rational function coefficients.static <C extends GcdRingElem<C>>
List<GenPolynomial<GenPolynomial<C>>> PolyUfdUtil.integralFromQuotientCoefficients
(GenPolynomialRing<GenPolynomial<C>> fac, Collection<GenPolynomial<Quotient<C>>> L) Integral polynomial from rational function coefficients.static <C extends GcdRingElem<C>>
List<GenPolynomial<GenPolynomial<C>>> PolyUfdUtil.integralFromQuotientCoefficients
(GenPolynomialRing<GenPolynomial<C>> fac, Collection<GenPolynomial<Quotient<C>>> L) Integral polynomial from rational function coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUfdUtil.introduceLowerVariable
(GenPolynomialRing<GenPolynomial<C>> rfac, GenPolynomial<C> A) Introduce lower variable.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselMultUtil.liftDiophant
(GenPolynomial<MOD> A, GenPolynomial<MOD> B, GenPolynomial<MOD> C, List<MOD> V, long d, long k) Modular diophantine equation solution and lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselMultUtil.liftDiophant
(List<GenPolynomial<MOD>> A, GenPolynomial<MOD> C, List<MOD> V, long d, long k) Modular diophantine equation solution and lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselUtil.liftDiophant
(GenPolynomial<MOD> A, GenPolynomial<MOD> B, long e, long k) Modular diophantine equation solution and lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselUtil.liftDiophant
(GenPolynomial<MOD> A, GenPolynomial<MOD> B, GenPolynomial<MOD> C, long k) Modular diophantine equation solution and lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselUtil.liftDiophant
(List<GenPolynomial<MOD>> A, long e, long k) Modular diophantine equation solution and lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselUtil.liftDiophant
(List<GenPolynomial<MOD>> A, GenPolynomial<MOD> C, long k) Modular diophantine equation solution and lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselUtil.liftExtendedEuclidean
(List<GenPolynomial<MOD>> A, long k) Constructing and lifting algorithm for extended Euclidean relation.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselMultUtil.liftHensel
(GenPolynomial<BigInteger> C, GenPolynomial<MOD> Cp, List<GenPolynomial<MOD>> F, List<BigInteger> V, long k, List<GenPolynomial<BigInteger>> G) Modular Hensel lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselUtil.liftHensel
(GenPolynomial<BigInteger> C, List<GenPolynomial<MOD>> F, long k, BigInteger g) Modular Hensel lifting algorithm on coefficients.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselMultUtil.liftHenselFull
(GenPolynomial<BigInteger> C, List<GenPolynomial<MOD>> F, List<BigInteger> V, long k, List<GenPolynomial<BigInteger>> G) Modular Hensel full lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselMultUtil.liftHenselMonic
(GenPolynomial<BigInteger> C, GenPolynomial<MOD> Cp, List<GenPolynomial<MOD>> F, List<BigInteger> V, long k) Modular Hensel lifting algorithm, monic case.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselUtil.liftHenselMonic
(GenPolynomial<BigInteger> C, List<GenPolynomial<MOD>> F, long k) Modular Hensel lifting algorithm on coefficients.FactorAbstract.normalizeFactorization
(List<GenPolynomial<C>> F) Normalize factorization.SquarefreeAbstract.normalizeFactorization
(SortedMap<GenPolynomial<C>, Long> F) Normalize factorization.static <C extends GcdRingElem<C>>
List<GenPolynomial<Quotient<C>>> PolyUfdUtil.quotientFromIntegralCoefficients
(GenPolynomialRing<Quotient<C>> fac, Collection<GenPolynomial<GenPolynomial<C>>> L) Rational function from integral polynomial coefficients.FactorAbstract.recursiveFactors
(GenPolynomial<GenPolynomial<C>> P) Recursive GenPolynomial factorization.FactorAbstract.recursiveFactors
(GenPolynomial<GenPolynomial<C>> P) Recursive GenPolynomial factorization.FactorAbstract.recursiveFactorsSquarefree
(GenPolynomial<GenPolynomial<C>> P) Recursive GenPolynomial factorization of a squarefree polynomial.FactorAbstract.recursiveFactorsSquarefree
(GenPolynomial<GenPolynomial<C>> P) Recursive GenPolynomial factorization of a squarefree polynomial.GreatestCommonDivisorAbstract.recursiveGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) GenPolynomial recursive greatest common divisor.GreatestCommonDivisorAbstract.recursivePrimitivePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive primitive part.GreatestCommonDivisorAbstract.recursivePrimitivePart
(List<GenPolynomial<GenPolynomial<C>>> F) List of recursive GenPolynomial base coefficient primitive part.GreatestCommonDivisorAbstract.recursivePrimitivePart
(List<GenPolynomial<GenPolynomial<C>>> F) List of recursive GenPolynomial base coefficient primitive part.GreatestCommonDivisorFake.recursivePrimitivePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive primitive part.GreatestCommonDivisorSubres.recursivePseudoRemainder
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Deprecated.(forRemoval=true) UsePolyUtil.recursiveDensePseudoRemainder(edu.jas.poly.GenPolynomial,edu.jas.poly.GenPolynomial)
insteadGreatestCommonDivisorAbstract.recursiveResultant
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) GenPolynomial recursive resultant.SquarefreeAbstract.recursiveSquarefreeFactors
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive polynomial squarefree factorization.SquarefreeAbstract.recursiveSquarefreeFactors
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive polynomial squarefree factorization.SquarefreeAbstract.recursiveSquarefreePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive polynomial greatest squarefree divisor.GCDProxy.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive greatest common divisor.abstract GenPolynomial
<GenPolynomial<C>> GreatestCommonDivisorAbstract.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive greatest common divisor.GreatestCommonDivisorFake.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive greatest common divisor.GreatestCommonDivisorHensel.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<BigInteger>> P, GenPolynomial<GenPolynomial<BigInteger>> S) Univariate GenPolynomial recursive greatest common divisor.GreatestCommonDivisorModEval.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<MOD>> P, GenPolynomial<GenPolynomial<MOD>> S) Recursive univariate GenPolynomial greatest common divisor.GreatestCommonDivisorModular.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<BigInteger>> P, GenPolynomial<GenPolynomial<BigInteger>> S) Univariate GenPolynomial recursive greatest common divisor.GreatestCommonDivisorPrimitive.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive greatest common divisor.GreatestCommonDivisorSimple.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive greatest common divisor.GreatestCommonDivisorSubres.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive greatest common divisor.GCDProxy.recursiveUnivariateResultant
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial resultant.GreatestCommonDivisorAbstract.recursiveUnivariateResultant
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive resultant.GreatestCommonDivisorModEval.recursiveUnivariateResultant
(GenPolynomial<GenPolynomial<MOD>> P, GenPolynomial<GenPolynomial<MOD>> S) Univariate GenPolynomial recursive resultant.GreatestCommonDivisorModular.recursiveUnivariateResultant
(GenPolynomial<GenPolynomial<BigInteger>> P, GenPolynomial<GenPolynomial<BigInteger>> S) Univariate GenPolynomial recursive resultant.GreatestCommonDivisorSimple.recursiveUnivariateResultant
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive resultant.GreatestCommonDivisorSubres.recursiveUnivariateResultant
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive resultant.abstract GenPolynomial
<GenPolynomial<C>> SquarefreeFieldCharP.recursiveUnivariateRootCharacteristic
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial char-th root univariate polynomial with polynomial coefficients.SquarefreeFiniteFieldCharP.recursiveUnivariateRootCharacteristic
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial char-th root univariate polynomial with polynomial coefficients.SquarefreeInfiniteAlgebraicFieldCharP.recursiveUnivariateRootCharacteristic
(GenPolynomial<GenPolynomial<AlgebraicNumber<C>>> P) GenPolynomial char-th root univariate polynomial with polynomial coefficients.SquarefreeInfiniteFieldCharP.recursiveUnivariateRootCharacteristic
(GenPolynomial<GenPolynomial<Quotient<C>>> P) GenPolynomial char-th root univariate polynomial with polynomial coefficients.abstract SortedMap
<GenPolynomial<GenPolynomial<C>>, Long> SquarefreeAbstract.recursiveUnivariateSquarefreeFactors
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial squarefree factorization.abstract SortedMap
<GenPolynomial<GenPolynomial<C>>, Long> SquarefreeAbstract.recursiveUnivariateSquarefreeFactors
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial squarefree factorization.SquarefreeFieldChar0.recursiveUnivariateSquarefreeFactors
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial squarefree factorization.SquarefreeFieldChar0.recursiveUnivariateSquarefreeFactors
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial squarefree factorization.SquarefreeFieldChar0Yun.recursiveUnivariateSquarefreeFactors
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial squarefree factorization.SquarefreeFieldChar0Yun.recursiveUnivariateSquarefreeFactors
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial squarefree factorization.SquarefreeFieldCharP.recursiveUnivariateSquarefreeFactors
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial squarefree factorization.SquarefreeFieldCharP.recursiveUnivariateSquarefreeFactors
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial squarefree factorization.SquarefreeRingChar0.recursiveUnivariateSquarefreeFactors
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial squarefree factorization.SquarefreeRingChar0.recursiveUnivariateSquarefreeFactors
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial squarefree factorization.abstract GenPolynomial
<GenPolynomial<C>> SquarefreeAbstract.recursiveUnivariateSquarefreePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive polynomial greatest squarefree divisor.SquarefreeFieldChar0.recursiveUnivariateSquarefreePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial greatest squarefree divisor.SquarefreeFieldCharP.recursiveUnivariateSquarefreePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial greatest squarefree divisor.SquarefreeRingChar0.recursiveUnivariateSquarefreePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial greatest squarefree divisor.GreatestCommonDivisorSubres.recursiveUnivariateSubResultantList
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive Subresultant list.GreatestCommonDivisorSubres.recursiveUnivariateSubResultantList
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive Subresultant list.SquarefreeFiniteFieldCharP.rootCharacteristic
(GenPolynomial<C> P) Characteristics root of a polynomial.(package private) List
<GenPolynomial<BigInteger>> FactorInteger.searchFactorsMonic
(GenPolynomial<BigInteger> C, BigInteger M, List<GenPolynomial<MOD>> F, BitSet D) Factor search with modular Hensel lifting algorithm.(package private) List
<GenPolynomial<BigInteger>> FactorInteger.searchFactorsNonMonic
(GenPolynomial<BigInteger> C, BigInteger M, List<GenPolynomial<MOD>> F, BitSet D) Factor search with modular Hensel lifting algorithm.FactorAbstract.squarefreeFactors
(GenPolynomial<C> P) GenPolynomial squarefree factorization.Factorization.squarefreeFactors
(GenPolynomial<C> P) GenPolynomial squarefree factorization.Squarefree.squarefreeFactors
(GenPolynomial<C> P) GenPolynomial squarefree factorization.abstract SortedMap
<GenPolynomial<C>, Long> SquarefreeAbstract.squarefreeFactors
(GenPolynomial<C> P) GenPolynomial squarefree factorization.SquarefreeFieldChar0.squarefreeFactors
(GenPolynomial<C> P) GenPolynomial squarefree factorization.SquarefreeFieldCharP.squarefreeFactors
(GenPolynomial<C> P) GenPolynomial squarefree factorization.SquarefreeRingChar0.squarefreeFactors
(GenPolynomial<C> P) GenPolynomial squarefree factorization.static <C extends GcdRingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUfdUtil.substituteFromAlgebraicCoefficients
(GenPolynomialRing<GenPolynomial<C>> rfac, GenPolynomial<AlgebraicNumber<C>> A, long k) From AlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
List<GenPolynomial<C>> PolyUfdUtil.substituteKronecker
(List<GenPolynomial<C>> A, int d) Kronecker substitution.Methods in edu.jas.ufd with parameters of type GenPolynomialModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C>>
GenPolynomial<C>[]PolyUfdUtil.agcd
(GenPolynomial<C> R, GenPolynomial<C> S, int n) GenPolynomial approximate common divisor.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyUfdUtil.backSubstituteKronecker
(GenPolynomialRing<C> fac, GenPolynomial<C> A, long d) Kronecker back substitution.FactorAbsolute.baseAlgebraicPartialFraction
(GenPolynomial<C> A, GenPolynomial<C> P) Univariate GenPolynomial algebraic partial fraction decomposition, Absolute factorization for elementary integration algorithm to linear factors.FactorAbsolute.baseAlgebraicPartialFractionIrreducibleAbsolute
(GenPolynomial<C> A, GenPolynomial<C> P) Univariate GenPolynomial algebraic partial fraction decomposition, via absolute factorization to linear factors.GreatestCommonDivisorAbstract.baseContent
(GenPolynomial<C> P) GenPolynomial base coefficient content.GreatestCommonDivisorFake.baseContent
(GenPolynomial<C> P) GenPolynomial base coefficient content.GreatestCommonDivisorSubres.baseDiscriminant
(GenPolynomial<C> P) GenPolynomial base coefficient discriminant.FactorModular.baseDistinctDegreeFactors
(GenPolynomial<MOD> P) GenPolynomial base distinct degree factorization.FactorModular.baseEqualDegreeFactors
(GenPolynomial<MOD> P, long deg) GenPolynomial base equal degree factorization.GenPolynomial<C>[]
GreatestCommonDivisorAbstract.baseExtendedGcd
(GenPolynomial<C> P, GenPolynomial<C> S) Univariate GenPolynomial extended greatest common divisor.FactorAbstract.baseFactors
(GenPolynomial<C> P) Univariate GenPolynomial factorization.FactorAbsolute.baseFactorsAbsolute
(GenPolynomial<C> P) GenPolynomial absolute base factorization of a polynomial.FactorAbsolute.baseFactorsAbsoluteIrreducible
(GenPolynomial<C> P) GenPolynomial base absolute factorization of a irreducible polynomial.FactorAbsolute.baseFactorsAbsoluteSquarefree
(GenPolynomial<C> P) GenPolynomial absolute base factorization of a squarefree polynomial.FactorAbstract.baseFactorsRadical
(GenPolynomial<C> P) Univariate GenPolynomial factorization ignoring multiplicities.abstract List
<GenPolynomial<C>> FactorAbstract.baseFactorsSquarefree
(GenPolynomial<C> P) Univariate GenPolynomial factorization of a squarefree polynomial.FactorAlgebraic.baseFactorsSquarefree
(GenPolynomial<AlgebraicNumber<C>> P) GenPolynomial base factorization of a squarefree polynomial.FactorComplex.baseFactorsSquarefree
(GenPolynomial<Complex<C>> P) GenPolynomial base factorization of a squarefree polynomial.FactorInteger.baseFactorsSquarefree
(GenPolynomial<BigInteger> P) GenPolynomial base factorization of a squarefree polynomial.FactorModular.baseFactorsSquarefree
(GenPolynomial<MOD> P) GenPolynomial base factorization of a squarefree polynomial.FactorModularBerlekamp.baseFactorsSquarefree
(GenPolynomial<MOD> P) GenPolynomial base factorization of a squarefree polynomial.FactorQuotient.baseFactorsSquarefree
(GenPolynomial<Quotient<C>> P) GenPolynomial base factorization of a squarefree polynomial.FactorRational.baseFactorsSquarefree
(GenPolynomial<BigRational> P) GenPolynomial base factorization of a squarefree polynomial.FactorModularBerlekamp.baseFactorsSquarefreeBigPrime
(GenPolynomial<MOD> P) GenPolynomial base factorization of a squarefree polynomial.FactorModularBerlekamp.baseFactorsSquarefreeSmallPrime
(GenPolynomial<MOD> P) GenPolynomial base factorization of a squarefree polynomial.GCDProxy.baseGcd
(GenPolynomial<C> P, GenPolynomial<C> S) Univariate GenPolynomial greatest common divisor.abstract GenPolynomial
<C> GreatestCommonDivisorAbstract.baseGcd
(GenPolynomial<C> P, GenPolynomial<C> S) Univariate GenPolynomial greatest common divisor.GreatestCommonDivisorFake.baseGcd
(GenPolynomial<C> P, GenPolynomial<C> S) Univariate GenPolynomial greatest common divisor.GreatestCommonDivisorHensel.baseGcd
(GenPolynomial<BigInteger> P, GenPolynomial<BigInteger> S) Univariate GenPolynomial greatest common divisor.GreatestCommonDivisorModEval.baseGcd
(GenPolynomial<MOD> P, GenPolynomial<MOD> S) Univariate GenPolynomial greatest common divisor.GreatestCommonDivisorModular.baseGcd
(GenPolynomial<BigInteger> P, GenPolynomial<BigInteger> S) Univariate GenPolynomial greatest common divisor.GreatestCommonDivisorPrimitive.baseGcd
(GenPolynomial<C> P, GenPolynomial<C> S) Univariate GenPolynomial greatest common divisor.GreatestCommonDivisorSimple.baseGcd
(GenPolynomial<C> P, GenPolynomial<C> S) Univariate GenPolynomial greatest common divisor.GreatestCommonDivisorSubres.baseGcd
(GenPolynomial<C> P, GenPolynomial<C> S) Univariate GenPolynomial greatest common divisor.GenPolynomial<C>[]
GreatestCommonDivisorAbstract.baseGcdDiophant
(GenPolynomial<C> P, GenPolynomial<C> S, GenPolynomial<C> c) Univariate GenPolynomial greatest common divisor diophantine version.GenPolynomial<C>[]
GreatestCommonDivisorAbstract.baseHalfExtendedGcd
(GenPolynomial<C> P, GenPolynomial<C> S) Univariate GenPolynomial half extended greatest common divisor.GreatestCommonDivisorAbstract.basePartialFraction
(GenPolynomial<C> A, GenPolynomial<C> P, int e) Univariate GenPolynomial partial fraction decomposition.GenPolynomial<C>[]
GreatestCommonDivisorAbstract.basePartialFraction
(GenPolynomial<C> A, GenPolynomial<C> P, GenPolynomial<C> S) Univariate GenPolynomial partial fraction decomposition.GreatestCommonDivisorAbstract.basePartialFraction
(GenPolynomial<C> A, List<GenPolynomial<C>> D) Univariate GenPolynomial partial fraction decomposition.List
<List<GenPolynomial<C>>> SquarefreeAbstract.basePartialFraction
(GenPolynomial<C> A, SortedMap<GenPolynomial<C>, Long> D) Univariate GenPolynomial partial fraction decomposition.GreatestCommonDivisorAbstract.basePartialFractionValue
(GenPolynomial<C> P, int e, List<GenPolynomial<C>> F) Test for Univariate GenPolynomial partial fraction decomposition.FactorAbstract.basePrimitivePart
(GenPolynomial<C> P) GenPolynomial base primitive part.GreatestCommonDivisorAbstract.basePrimitivePart
(GenPolynomial<C> P) GenPolynomial base coefficient primitive part.GreatestCommonDivisorFake.basePrimitivePart
(GenPolynomial<C> P) GenPolynomial base coefficient primitive part.GreatestCommonDivisorSubres.basePseudoRemainder
(GenPolynomial<C> P, GenPolynomial<C> S) Deprecated.(forRemoval=true) UsePolyUtil.baseDensePseudoRemainder(edu.jas.poly.GenPolynomial,edu.jas.poly.GenPolynomial)
insteadGreatestCommonDivisorAbstract.baseRecursiveContent
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial base recursive content.GreatestCommonDivisorAbstract.baseRecursivePrimitivePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial base recursive primitive part.GCDProxy.baseResultant
(GenPolynomial<C> P, GenPolynomial<C> S) Univariate GenPolynomial resultant.GreatestCommonDivisorAbstract.baseResultant
(GenPolynomial<C> P, GenPolynomial<C> S) Univariate GenPolynomial resultant.GreatestCommonDivisorModEval.baseResultant
(GenPolynomial<MOD> P, GenPolynomial<MOD> S) Univariate GenPolynomial resultant.GreatestCommonDivisorModular.baseResultant
(GenPolynomial<BigInteger> P, GenPolynomial<BigInteger> S) Univariate GenPolynomial resultant.GreatestCommonDivisorSimple.baseResultant
(GenPolynomial<C> P, GenPolynomial<C> S) Univariate GenPolynomial resultant.GreatestCommonDivisorSubres.baseResultant
(GenPolynomial<C> P, GenPolynomial<C> S) Univariate GenPolynomial resultant.abstract GenPolynomial
<C> SquarefreeFieldCharP.baseRootCharacteristic
(GenPolynomial<C> P) GenPolynomial char-th root univariate polynomial.SquarefreeFiniteFieldCharP.baseRootCharacteristic
(GenPolynomial<C> P) GenPolynomial char-th root univariate polynomial.SquarefreeInfiniteAlgebraicFieldCharP.baseRootCharacteristic
(GenPolynomial<AlgebraicNumber<C>> P) GenPolynomial char-th root univariate polynomial.SquarefreeInfiniteFieldCharP.baseRootCharacteristic
(GenPolynomial<Quotient<C>> P) GenPolynomial char-th root univariate polynomial.abstract SortedMap
<GenPolynomial<C>, Long> SquarefreeAbstract.baseSquarefreeFactors
(GenPolynomial<C> A) GenPolynomial polynomial squarefree factorization.SquarefreeFieldChar0.baseSquarefreeFactors
(GenPolynomial<C> A) GenPolynomial polynomial squarefree factorization.SquarefreeFieldChar0Yun.baseSquarefreeFactors
(GenPolynomial<C> A) GenPolynomial polynomial squarefree factorization.SquarefreeFieldCharP.baseSquarefreeFactors
(GenPolynomial<C> A) GenPolynomial polynomial squarefree factorization.SquarefreeRingChar0.baseSquarefreeFactors
(GenPolynomial<C> A) GenPolynomial polynomial squarefree factorization.abstract GenPolynomial
<C> SquarefreeAbstract.baseSquarefreePart
(GenPolynomial<C> P) GenPolynomial polynomial greatest squarefree divisor.SquarefreeFieldChar0.baseSquarefreePart
(GenPolynomial<C> P) GenPolynomial polynomial greatest squarefree divisor.SquarefreeFieldCharP.baseSquarefreePart
(GenPolynomial<C> P) GenPolynomial polynomial greatest squarefree divisor.SquarefreeRingChar0.baseSquarefreePart
(GenPolynomial<C> P) GenPolynomial polynomial greatest squarefree divisor.static <C extends GcdRingElem<C>>
ArrayList<ArrayList<C>> PolyUfdUtil.constructQmatrix
(GenPolynomial<C> A) Construct Berlekamp Q matrix.GreatestCommonDivisor.content
(GenPolynomial<C> P) GenPolynomial content.GreatestCommonDivisorAbstract.content
(GenPolynomial<C> P) GenPolynomial content.GenPolynomial<C>[]
GreatestCommonDivisorAbstract.contentPrimitivePart
(GenPolynomial<C> P) GenPolynomial content and primitive part.GreatestCommonDivisorAbstract.coPrime
(GenPolynomial<C> a, List<GenPolynomial<C>> P) GenPolynomial co-prime list.Squarefree.coPrimeSquarefree
(GenPolynomial<C> a, List<GenPolynomial<C>> P) GenPolynomial squarefree and co-prime list.SquarefreeAbstract.coPrimeSquarefree
(GenPolynomial<C> a, List<GenPolynomial<C>> P) GenPolynomial squarefree and co-prime list.QuotientRing.create
(GenPolynomial<C> n) Create from numerator.QuotientRing.create
(GenPolynomial<C> n, GenPolynomial<C> d) Create from numerator, denominator pair.static List
<GenPolynomial<BigInteger>> CycloUtil.cyclotomicFactors
(GenPolynomial<BigInteger> p) Compute the factors of the cyclotomic polynomial.GreatestCommonDivisorAbstract.divide
(GenPolynomial<C> a, C b) GenPolynomial division.protected GenPolynomial
<C> QuotientRing.divide
(GenPolynomial<C> n, GenPolynomial<C> d) Divide.BackSubstKronecker.eval
(GenPolynomial<C> c) SubstKronecker.eval
(GenPolynomial<C> c) static <C extends GcdRingElem<C>>
EvalPoints<C> PolyUfdUtil.evaluationPoints
(GenPolynomial<C> A) Polynomial suitable evaluation points.FactorAbstract.factors
(GenPolynomial<C> P) GenPolynomial factorization.Factorization.factors
(GenPolynomial<C> P) GenPolynomial factorization.FactorRational.factors
(GenPolynomial<BigRational> P) GenPolynomial factorization of a polynomial.FactorAbsolute.factorsAbsolute
(GenPolynomial<C> P) GenPolynomial absolute factorization of a polynomial.FactorAbsolute.factorsAbsoluteIrreducible
(GenPolynomial<C> P) GenPolynomial absolute factorization of a irreducible polynomial.FactorAbsolute.factorsAbsoluteSquarefree
(GenPolynomial<C> P) GenPolynomial absolute factorization of a squarefree polynomial.FactorAbstract.factorsRadical
(GenPolynomial<C> P) GenPolynomial factorization ignoring multiplicities.Factorization.factorsRadical
(GenPolynomial<C> P) GenPolynomial factorization ignoring multiplicities.FactorAbstract.factorsSquarefree
(GenPolynomial<C> P) GenPolynomial factorization of a squarefree polynomial, using Kronecker substitution.FactorAlgebraic.factorsSquarefree
(GenPolynomial<AlgebraicNumber<C>> P) GenPolynomial factorization of a squarefree polynomial.FactorComplex.factorsSquarefree
(GenPolynomial<Complex<C>> P) GenPolynomial factorization of a squarefree polynomial.FactorInteger.factorsSquarefree
(GenPolynomial<BigInteger> P) GenPolynomial factorization of a multivariate squarefree polynomial, using Hensel lifting if possible.Factorization.factorsSquarefree
(GenPolynomial<C> P) GenPolynomial factorization of a squarefree polynomial.FactorQuotient.factorsSquarefree
(GenPolynomial<Quotient<C>> P) GenPolynomial factorization of a squarefree polynomial.FactorRational.factorsSquarefree
(GenPolynomial<BigRational> P) GenPolynomial factorization of a squarefree polynomial.FactorInteger.factorsSquarefreeHensel
(GenPolynomial<BigInteger> P) GenPolynomial factorization of a multivariate squarefree polynomial, using Hensel lifting.FactorAbstract.factorsSquarefreeKronecker
(GenPolynomial<C> P) GenPolynomial factorization of a squarefree polynomial, using Kronecker substitution.FactorAbstract.factorsSquarefreeOptimize
(GenPolynomial<C> P) GenPolynomial factorization of a multivariate squarefree polynomial, using Kronecker substitution and variable order optimization.FactorInteger.factorsSquarefreeOptions
(GenPolynomial<BigInteger> P, boolean opti, boolean tlex) GenPolynomial factorization of a multivariate squarefree polynomial, using Hensel lifting if possible.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUfdUtil.fromIntegerCoefficients
(GenPolynomialRing<GenPolynomial<C>> fac, GenPolynomial<GenPolynomial<BigInteger>> A) From BigInteger coefficients.GCDProxy.gcd
(GenPolynomial<C> P, GenPolynomial<C> S) GenPolynomial greatest common divisor.GreatestCommonDivisor.gcd
(GenPolynomial<C> P, GenPolynomial<C> S) GenPolynomial greatest common divisor.GreatestCommonDivisorAbstract.gcd
(GenPolynomial<C> P, GenPolynomial<C> S) GenPolynomial greatest common divisor.GreatestCommonDivisorModEval.gcd
(GenPolynomial<MOD> P, GenPolynomial<MOD> S) GenPolynomial greatest common divisor, modular evaluation algorithm.GreatestCommonDivisorModular.gcd
(GenPolynomial<BigInteger> P, GenPolynomial<BigInteger> S) GenPolynomial greatest common divisor, modular algorithm.protected GenPolynomial
<C> QuotientRing.gcd
(GenPolynomial<C> n, GenPolynomial<C> d) Greatest common divisor.Factors.getFactor
(GenPolynomial<AlgebraicNumber<C>> p) Get the factor for polynomial.static GenPolynomial
<GenPolynomial<BigInteger>> PolyUfdUtil.integerFromRationalCoefficients
(GenPolynomialRing<GenPolynomial<BigInteger>> fac, GenPolynomial<GenPolynomial<BigRational>> A) BigInteger from BigRational coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUfdUtil.integralFromQuotientCoefficients
(GenPolynomialRing<GenPolynomial<C>> fac, GenPolynomial<Quotient<C>> A) Integral polynomial from rational function coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUfdUtil.introduceLowerVariable
(GenPolynomialRing<GenPolynomial<C>> rfac, GenPolynomial<C> A) Introduce lower variable.boolean
FactorAbsolute.isAbsoluteIrreducible
(GenPolynomial<C> P) GenPolynomial test if is absolute irreducible.boolean
GreatestCommonDivisorAbstract.isBasePartialFraction
(GenPolynomial<C> A, GenPolynomial<C> P, int e, List<GenPolynomial<C>> F) Test for Univariate GenPolynomial partial fraction decomposition.boolean
GreatestCommonDivisorAbstract.isBasePartialFraction
(GenPolynomial<C> A, List<GenPolynomial<C>> D, List<GenPolynomial<C>> F) Test for Univariate GenPolynomial partial fraction decomposition.boolean
SquarefreeAbstract.isBasePartialFraction
(GenPolynomial<C> A, SortedMap<GenPolynomial<C>, Long> D, List<List<GenPolynomial<C>>> F) Test for Univariate GenPolynomial partial fraction decomposition.boolean
SquarefreeFieldChar0.isBaseSquarefree
(GenPolynomial<C> P) GenPolynomial test if is squarefree.boolean
SquarefreeFieldCharP.isCharRoot
(GenPolynomial<C> P, SortedMap<GenPolynomial<C>, Long> F) Polynomial is char-th root.static boolean
CycloUtil.isCyclotomicPolynomial
(GenPolynomial<BigInteger> p) Test for cyclotomic polynomial.static <MOD extends GcdRingElem<MOD> & Modular>
booleanHenselUtil.isDiophantLift
(GenPolynomial<MOD> A, GenPolynomial<MOD> B, GenPolynomial<MOD> S1, GenPolynomial<MOD> S2, GenPolynomial<MOD> C) Modular Diophant relation lifting test.static <MOD extends GcdRingElem<MOD> & Modular>
booleanHenselUtil.isDiophantLift
(List<GenPolynomial<MOD>> A, List<GenPolynomial<MOD>> S, GenPolynomial<MOD> C) Modular Diophant relation lifting test.boolean
FactorAbstract.isFactorization
(GenPolynomial<C> P, List<GenPolynomial<C>> F) GenPolynomial is factorization.boolean
FactorAbstract.isFactorization
(GenPolynomial<C> P, SortedMap<GenPolynomial<C>, Long> F) GenPolynomial is factorization.boolean
Factorization.isFactorization
(GenPolynomial<C> P, List<GenPolynomial<C>> F) GenPolynomial is factorization.boolean
Factorization.isFactorization
(GenPolynomial<C> P, SortedMap<GenPolynomial<C>, Long> F) GenPolynomial is factorization.boolean
Squarefree.isFactorization
(GenPolynomial<C> P, List<GenPolynomial<C>> F) GenPolynomial is (squarefree) factorization.boolean
Squarefree.isFactorization
(GenPolynomial<C> P, SortedMap<GenPolynomial<C>, Long> F) GenPolynomial is (squarefree) factorization.boolean
SquarefreeAbstract.isFactorization
(GenPolynomial<C> P, List<GenPolynomial<C>> F) GenPolynomial is (squarefree) factorization.boolean
SquarefreeAbstract.isFactorization
(GenPolynomial<C> P, SortedMap<GenPolynomial<C>, Long> F) GenPolynomial is (squarefree) factorization.static <MOD extends GcdRingElem<MOD> & Modular>
booleanHenselMultUtil.isHenselLift
(GenPolynomial<BigInteger> C, GenPolynomial<MOD> Cp, List<GenPolynomial<MOD>> F, List<GenPolynomial<MOD>> L) Modular Hensel lifting algorithm on coefficients test.static boolean
HenselUtil.isHenselLift
(GenPolynomial<BigInteger> C, BigInteger M, BigInteger p, GenPolynomial<BigInteger> A, GenPolynomial<BigInteger> B) Modular Hensel lifting test.static <MOD extends GcdRingElem<MOD> & Modular>
booleanHenselUtil.isHenselLift
(GenPolynomial<BigInteger> C, BigInteger M, BigInteger p, HenselApprox<MOD> Ha) Modular Hensel lifting test.static boolean
HenselUtil.isHenselLift
(GenPolynomial<BigInteger> C, BigInteger M, BigInteger p, List<GenPolynomial<BigInteger>> G) Modular Hensel lifting test.boolean
FactorAbstract.isIrreducible
(GenPolynomial<C> P) GenPolynomial test if is irreducible.boolean
FactorInteger.isIrreducible
(GenPolynomial<BigInteger> P) GenPolynomial test if is irreducible.boolean
Factorization.isIrreducible
(GenPolynomial<C> P) GenPolynomial test if is irreducible.boolean
FactorInteger.isIrreducibleEisenstein
(GenPolynomial<BigInteger> P) GenPolynomial test if is irreducible with Eisenstein criterion.(package private) boolean
FactorInteger.isNearlySquarefree
(GenPolynomial<BigInteger> P) boolean
SquarefreeFieldCharP.isRecursiveCharRoot
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> r) Recursive polynomial is char-th root.boolean
SquarefreeFieldCharP.isRecursiveCharRoot
(GenPolynomial<GenPolynomial<C>> P, SortedMap<GenPolynomial<GenPolynomial<C>>, Long> F) Recursive polynomial is char-th root.boolean
FactorAbstract.isRecursiveFactorization
(GenPolynomial<GenPolynomial<C>> P, SortedMap<GenPolynomial<GenPolynomial<C>>, Long> F) GenPolynomial is factorization.boolean
SquarefreeAbstract.isRecursiveFactorization
(GenPolynomial<GenPolynomial<C>> P, SortedMap<GenPolynomial<GenPolynomial<C>>, Long> F) GenPolynomial is (squarefree) factorization.boolean
SquarefreeAbstract.isRecursiveSquarefree
(GenPolynomial<GenPolynomial<C>> P) Recursive GenPolynomial test if is squarefree.boolean
SquarefreeFieldChar0.isRecursiveUnivariateSquarefree
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial test if is squarefree.boolean
FactorAbstract.isReducible
(GenPolynomial<C> P) GenPolynomial test if a non trivial factorization exists.boolean
Factorization.isReducible
(GenPolynomial<C> P) GenPolynomial test if a non trivial factorization exists.boolean
FactorAbstract.isSquarefree
(GenPolynomial<C> P) GenPolynomial test if is squarefree.boolean
Factorization.isSquarefree
(GenPolynomial<C> P) GenPolynomial test if is squarefree.boolean
Squarefree.isSquarefree
(GenPolynomial<C> P) GenPolynomial test if is squarefree.boolean
SquarefreeAbstract.isSquarefree
(GenPolynomial<C> P) GenPolynomial test if is squarefree.boolean
SquarefreeFieldChar0.isSquarefree
(GenPolynomial<C> P) GenPolynomial test if is squarefree.(package private) boolean
SquarefreeAbstract.isSquarefreeAlternative
(GenPolynomial<C> P) GreatestCommonDivisor.lcm
(GenPolynomial<C> P, GenPolynomial<C> S) GenPolynomial least common multiple.GreatestCommonDivisorAbstract.lcm
(GenPolynomial<C> P, GenPolynomial<C> S) GenPolynomial least common multiple.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselMultUtil.liftDiophant
(GenPolynomial<MOD> A, GenPolynomial<MOD> B, GenPolynomial<MOD> C, List<MOD> V, long d, long k) Modular diophantine equation solution and lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselMultUtil.liftDiophant
(List<GenPolynomial<MOD>> A, GenPolynomial<MOD> C, List<MOD> V, long d, long k) Modular diophantine equation solution and lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselUtil.liftDiophant
(GenPolynomial<MOD> A, GenPolynomial<MOD> B, long e, long k) Modular diophantine equation solution and lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselUtil.liftDiophant
(GenPolynomial<MOD> A, GenPolynomial<MOD> B, GenPolynomial<MOD> C, long k) Modular diophantine equation solution and lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselUtil.liftDiophant
(List<GenPolynomial<MOD>> A, GenPolynomial<MOD> C, long k) Modular diophantine equation solution and lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
GenPolynomial<MOD>[]HenselUtil.liftExtendedEuclidean
(GenPolynomial<MOD> A, GenPolynomial<MOD> B, long k) Constructing and lifting algorithm for extended Euclidean relation.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselMultUtil.liftHensel
(GenPolynomial<BigInteger> C, GenPolynomial<MOD> Cp, List<GenPolynomial<MOD>> F, List<BigInteger> V, long k, List<GenPolynomial<BigInteger>> G) Modular Hensel lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
HenselApprox<MOD> HenselUtil.liftHensel
(GenPolynomial<BigInteger> C, BigInteger M, GenPolynomial<MOD> A, GenPolynomial<MOD> B) Modular Hensel lifting algorithm on coefficients.static <MOD extends GcdRingElem<MOD> & Modular>
HenselApprox<MOD> HenselUtil.liftHensel
(GenPolynomial<BigInteger> C, BigInteger M, GenPolynomial<MOD> A, GenPolynomial<MOD> B, GenPolynomial<MOD> S, GenPolynomial<MOD> T) Modular Hensel lifting algorithm on coefficients.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselUtil.liftHensel
(GenPolynomial<BigInteger> C, List<GenPolynomial<MOD>> F, long k, BigInteger g) Modular Hensel lifting algorithm on coefficients.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselMultUtil.liftHenselFull
(GenPolynomial<BigInteger> C, List<GenPolynomial<MOD>> F, List<BigInteger> V, long k, List<GenPolynomial<BigInteger>> G) Modular Hensel full lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselMultUtil.liftHenselMonic
(GenPolynomial<BigInteger> C, GenPolynomial<MOD> Cp, List<GenPolynomial<MOD>> F, List<BigInteger> V, long k) Modular Hensel lifting algorithm, monic case.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselUtil.liftHenselMonic
(GenPolynomial<BigInteger> C, List<GenPolynomial<MOD>> F, long k) Modular Hensel lifting algorithm on coefficients.static <MOD extends GcdRingElem<MOD> & Modular>
HenselApprox<MOD> HenselUtil.liftHenselQuadratic
(GenPolynomial<BigInteger> C, BigInteger M, GenPolynomial<MOD> A, GenPolynomial<MOD> B) Modular quadratic Hensel lifting algorithm on coefficients.static <MOD extends GcdRingElem<MOD> & Modular>
HenselApprox<MOD> HenselUtil.liftHenselQuadratic
(GenPolynomial<BigInteger> C, BigInteger M, GenPolynomial<MOD> A, GenPolynomial<MOD> B, GenPolynomial<MOD> S, GenPolynomial<MOD> T) Modular quadratic Hensel lifting algorithm on coefficients.static <MOD extends GcdRingElem<MOD> & Modular>
HenselApprox<MOD> HenselUtil.liftHenselQuadraticFac
(GenPolynomial<BigInteger> C, BigInteger M, GenPolynomial<MOD> A, GenPolynomial<MOD> B) Modular Hensel lifting algorithm on coefficients.static <MOD extends GcdRingElem<MOD> & Modular>
HenselApprox<MOD> HenselUtil.liftHenselQuadraticFac
(GenPolynomial<BigInteger> C, BigInteger M, GenPolynomial<MOD> A, GenPolynomial<MOD> B, GenPolynomial<MOD> S, GenPolynomial<MOD> T) Modular Hensel lifting algorithm on coefficients.Quotient.multiply
(GenPolynomial<C> b) Quotient multiplication by GenPolynomial.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyUfdUtil.norm
(GenPolynomial<AlgebraicNumber<C>> A) Norm of a polynomial with AlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyUfdUtil.norm
(GenPolynomial<AlgebraicNumber<C>> A, long k) Norm of a polynomial with AlgebraicNumber coefficients.FactorAbstract.primitivePart
(GenPolynomial<C> P) GenPolynomial primitive part.GreatestCommonDivisor.primitivePart
(GenPolynomial<C> P) GenPolynomial primitive part.GreatestCommonDivisorAbstract.primitivePart
(GenPolynomial<C> P) GenPolynomial primitive part.static <C extends GcdRingElem<C>>
GenPolynomial<Quotient<C>> PolyUfdUtil.quotientFromIntegralCoefficients
(GenPolynomialRing<Quotient<C>> fac, GenPolynomial<GenPolynomial<C>> A) Rational function from integral polynomial coefficients.GreatestCommonDivisorAbstract.recursiveContent
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive content.GreatestCommonDivisorFake.recursiveContent
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive content.FactorAbstract.recursiveFactors
(GenPolynomial<GenPolynomial<C>> P) Recursive GenPolynomial factorization.FactorAbstract.recursiveFactorsSquarefree
(GenPolynomial<GenPolynomial<C>> P) Recursive GenPolynomial factorization of a squarefree polynomial.GreatestCommonDivisorAbstract.recursiveGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) GenPolynomial recursive greatest common divisor.GreatestCommonDivisorAbstract.recursivePrimitivePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive primitive part.GreatestCommonDivisorFake.recursivePrimitivePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive primitive part.GreatestCommonDivisorSubres.recursivePseudoRemainder
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Deprecated.(forRemoval=true) UsePolyUtil.recursiveDensePseudoRemainder(edu.jas.poly.GenPolynomial,edu.jas.poly.GenPolynomial)
insteadGreatestCommonDivisorAbstract.recursiveResultant
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) GenPolynomial recursive resultant.SquarefreeAbstract.recursiveSquarefreeFactors
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive polynomial squarefree factorization.SquarefreeAbstract.recursiveSquarefreePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive polynomial greatest squarefree divisor.GCDProxy.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive greatest common divisor.abstract GenPolynomial
<GenPolynomial<C>> GreatestCommonDivisorAbstract.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive greatest common divisor.GreatestCommonDivisorFake.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive greatest common divisor.GreatestCommonDivisorHensel.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<BigInteger>> P, GenPolynomial<GenPolynomial<BigInteger>> S) Univariate GenPolynomial recursive greatest common divisor.GreatestCommonDivisorModEval.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<MOD>> P, GenPolynomial<GenPolynomial<MOD>> S) Recursive univariate GenPolynomial greatest common divisor.GreatestCommonDivisorModular.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<BigInteger>> P, GenPolynomial<GenPolynomial<BigInteger>> S) Univariate GenPolynomial recursive greatest common divisor.GreatestCommonDivisorPrimitive.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive greatest common divisor.GreatestCommonDivisorSimple.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive greatest common divisor.GreatestCommonDivisorSubres.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive greatest common divisor.GCDProxy.recursiveUnivariateResultant
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial resultant.GreatestCommonDivisorAbstract.recursiveUnivariateResultant
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive resultant.GreatestCommonDivisorModEval.recursiveUnivariateResultant
(GenPolynomial<GenPolynomial<MOD>> P, GenPolynomial<GenPolynomial<MOD>> S) Univariate GenPolynomial recursive resultant.GreatestCommonDivisorModular.recursiveUnivariateResultant
(GenPolynomial<GenPolynomial<BigInteger>> P, GenPolynomial<GenPolynomial<BigInteger>> S) Univariate GenPolynomial recursive resultant.GreatestCommonDivisorSimple.recursiveUnivariateResultant
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive resultant.GreatestCommonDivisorSubres.recursiveUnivariateResultant
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive resultant.abstract GenPolynomial
<GenPolynomial<C>> SquarefreeFieldCharP.recursiveUnivariateRootCharacteristic
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial char-th root univariate polynomial with polynomial coefficients.SquarefreeFiniteFieldCharP.recursiveUnivariateRootCharacteristic
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial char-th root univariate polynomial with polynomial coefficients.SquarefreeInfiniteAlgebraicFieldCharP.recursiveUnivariateRootCharacteristic
(GenPolynomial<GenPolynomial<AlgebraicNumber<C>>> P) GenPolynomial char-th root univariate polynomial with polynomial coefficients.SquarefreeInfiniteFieldCharP.recursiveUnivariateRootCharacteristic
(GenPolynomial<GenPolynomial<Quotient<C>>> P) GenPolynomial char-th root univariate polynomial with polynomial coefficients.abstract SortedMap
<GenPolynomial<GenPolynomial<C>>, Long> SquarefreeAbstract.recursiveUnivariateSquarefreeFactors
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial squarefree factorization.SquarefreeFieldChar0.recursiveUnivariateSquarefreeFactors
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial squarefree factorization.SquarefreeFieldChar0Yun.recursiveUnivariateSquarefreeFactors
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial squarefree factorization.SquarefreeFieldCharP.recursiveUnivariateSquarefreeFactors
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial squarefree factorization.SquarefreeRingChar0.recursiveUnivariateSquarefreeFactors
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial squarefree factorization.abstract GenPolynomial
<GenPolynomial<C>> SquarefreeAbstract.recursiveUnivariateSquarefreePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive polynomial greatest squarefree divisor.SquarefreeFieldChar0.recursiveUnivariateSquarefreePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial greatest squarefree divisor.SquarefreeFieldCharP.recursiveUnivariateSquarefreePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial greatest squarefree divisor.SquarefreeRingChar0.recursiveUnivariateSquarefreePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial greatest squarefree divisor.GreatestCommonDivisorSubres.recursiveUnivariateSubResultantList
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive Subresultant list.GCDProxy.resultant
(GenPolynomial<C> P, GenPolynomial<C> S) GenPolynomial resultant.GreatestCommonDivisor.resultant
(GenPolynomial<C> P, GenPolynomial<C> S) GenPolynomial resultant.GreatestCommonDivisorAbstract.resultant
(GenPolynomial<C> P, GenPolynomial<C> S) GenPolynomial resultant.GreatestCommonDivisorModEval.resultant
(GenPolynomial<MOD> P, GenPolynomial<MOD> S) GenPolynomial resultant, modular evaluation algorithm.GreatestCommonDivisorModular.resultant
(GenPolynomial<BigInteger> P, GenPolynomial<BigInteger> S) GenPolynomial resultant, modular algorithm.SquarefreeFiniteFieldCharP.rootCharacteristic
(GenPolynomial<C> P) Characteristics root of a polynomial.SquarefreeInfiniteAlgebraicFieldCharP.rootCharacteristic
(GenPolynomial<AlgebraicNumber<C>> P) GenPolynomial char-th root main variable.SquarefreeInfiniteFieldCharP.rootCharacteristic
(GenPolynomial<Quotient<C>> P) GenPolynomial char-th root main variable.(package private) List
<GenPolynomial<BigInteger>> FactorInteger.searchFactorsMonic
(GenPolynomial<BigInteger> C, BigInteger M, List<GenPolynomial<MOD>> F, BitSet D) Factor search with modular Hensel lifting algorithm.(package private) List
<GenPolynomial<BigInteger>> FactorInteger.searchFactorsNonMonic
(GenPolynomial<BigInteger> C, BigInteger M, List<GenPolynomial<MOD>> F, BitSet D) Factor search with modular Hensel lifting algorithm.FactorAbstract.squarefreeFactors
(GenPolynomial<C> P) GenPolynomial squarefree factorization.Factorization.squarefreeFactors
(GenPolynomial<C> P) GenPolynomial squarefree factorization.Squarefree.squarefreeFactors
(GenPolynomial<C> P) GenPolynomial squarefree factorization.abstract SortedMap
<GenPolynomial<C>, Long> SquarefreeAbstract.squarefreeFactors
(GenPolynomial<C> P) GenPolynomial squarefree factorization.SquarefreeFieldChar0.squarefreeFactors
(GenPolynomial<C> P) GenPolynomial squarefree factorization.SquarefreeFieldCharP.squarefreeFactors
(GenPolynomial<C> P) GenPolynomial squarefree factorization.SquarefreeRingChar0.squarefreeFactors
(GenPolynomial<C> P) GenPolynomial squarefree factorization.FactorAbstract.squarefreePart
(GenPolynomial<C> P) GenPolynomial greatest squarefree divisor.Factorization.squarefreePart
(GenPolynomial<C> P) GenPolynomial greatest squarefree divisor.Squarefree.squarefreePart
(GenPolynomial<C> P) GenPolynomial greatest squarefree divisor.abstract GenPolynomial
<C> SquarefreeAbstract.squarefreePart
(GenPolynomial<C> P) GenPolynomial greatest squarefree divisor.SquarefreeFieldChar0.squarefreePart
(GenPolynomial<C> P) GenPolynomial greatest squarefree divisor.SquarefreeFieldCharP.squarefreePart
(GenPolynomial<C> P) GenPolynomial greatest squarefree divisor.SquarefreeRingChar0.squarefreePart
(GenPolynomial<C> P) GenPolynomial greatest squarefree divisor.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUfdUtil.substituteConvertToAlgebraicCoefficients
(GenPolynomialRing<AlgebraicNumber<C>> pfac, GenPolynomial<C> A, long k) Convert to AlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUfdUtil.substituteFromAlgebraicCoefficients
(GenPolynomialRing<GenPolynomial<C>> rfac, GenPolynomial<AlgebraicNumber<C>> A, long k) From AlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyUfdUtil.substituteKronecker
(GenPolynomial<C> A) Kronecker substitution.static <C extends GcdRingElem<C>>
GenPolynomial<C> PolyUfdUtil.substituteKronecker
(GenPolynomial<C> A, long d) Kronecker substitution.Method parameters in edu.jas.ufd with type arguments of type GenPolynomialModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C>>
List<GenPolynomial<C>> PolyUfdUtil.backSubstituteKronecker
(GenPolynomialRing<C> fac, List<GenPolynomial<C>> A, long d) Kronecker back substitution.GreatestCommonDivisorAbstract.basePartialFraction
(GenPolynomial<C> A, List<GenPolynomial<C>> D) Univariate GenPolynomial partial fraction decomposition.List
<List<GenPolynomial<C>>> SquarefreeAbstract.basePartialFraction
(GenPolynomial<C> A, SortedMap<GenPolynomial<C>, Long> D) Univariate GenPolynomial partial fraction decomposition.GreatestCommonDivisorAbstract.basePartialFractionValue
(GenPolynomial<C> P, int e, List<GenPolynomial<C>> F) Test for Univariate GenPolynomial partial fraction decomposition.GreatestCommonDivisorAbstract.basePrimitivePart
(List<GenPolynomial<C>> F) List of GenPolynomial base coefficient primitive part.GreatestCommonDivisorAbstract.baseRecursiveContent
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial base recursive content.GreatestCommonDivisorAbstract.baseRecursivePrimitivePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial base recursive primitive part.GreatestCommonDivisor.coPrime
(List<GenPolynomial<C>> A) GenPolynomial co-prime list.GreatestCommonDivisorAbstract.coPrime
(GenPolynomial<C> a, List<GenPolynomial<C>> P) GenPolynomial co-prime list.GreatestCommonDivisorAbstract.coPrime
(List<GenPolynomial<C>> A) GenPolynomial co-prime list.GreatestCommonDivisorAbstract.coPrimeRec
(List<GenPolynomial<C>> A) GenPolynomial co-prime list.Squarefree.coPrimeSquarefree
(GenPolynomial<C> a, List<GenPolynomial<C>> P) GenPolynomial squarefree and co-prime list.Squarefree.coPrimeSquarefree
(List<GenPolynomial<C>> A) GenPolynomial squarefree and co-prime list.SquarefreeAbstract.coPrimeSquarefree
(GenPolynomial<C> a, List<GenPolynomial<C>> P) GenPolynomial squarefree and co-prime list.SquarefreeAbstract.coPrimeSquarefree
(List<GenPolynomial<C>> A) GenPolynomial squarefree and co-prime list.static <C extends RingElem<C>>
longFactorInteger.degreeSum
(List<GenPolynomial<C>> L) Sum of all degrees.long
SquarefreeAbstract.factorCount
(SortedMap<GenPolynomial<C>, Long> F) Count number of factors in a (squarefree) factorization.long
FactorAbstract.factorsDegree
(SortedMap<GenPolynomial<C>, Long> F) Degree of a factorization.FactorAbstract.factorsRadical
(List<GenPolynomial<C>> L) GenPolynomial list factorization ignoring multiplicities.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUfdUtil.fromIntegerCoefficients
(GenPolynomialRing<GenPolynomial<C>> fac, GenPolynomial<GenPolynomial<BigInteger>> A) From BigInteger coefficients.static <C extends RingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUfdUtil.fromIntegerCoefficients
(GenPolynomialRing<GenPolynomial<C>> fac, GenPolynomial<GenPolynomial<BigInteger>> A) From BigInteger coefficients.static <C extends RingElem<C>>
List<GenPolynomial<GenPolynomial<C>>> PolyUfdUtil.fromIntegerCoefficients
(GenPolynomialRing<GenPolynomial<C>> fac, List<GenPolynomial<GenPolynomial<BigInteger>>> L) From BigInteger coefficients.static <C extends RingElem<C>>
List<GenPolynomial<GenPolynomial<C>>> PolyUfdUtil.fromIntegerCoefficients
(GenPolynomialRing<GenPolynomial<C>> fac, List<GenPolynomial<GenPolynomial<BigInteger>>> L) From BigInteger coefficients.static <C extends RingElem<C>>
List<GenPolynomial<GenPolynomial<C>>> PolyUfdUtil.fromIntegerCoefficients
(GenPolynomialRing<GenPolynomial<C>> fac, List<GenPolynomial<GenPolynomial<BigInteger>>> L) From BigInteger coefficients.GreatestCommonDivisorAbstract.gcd
(List<GenPolynomial<C>> A) List of GenPolynomials greatest common divisor.static GenPolynomial
<GenPolynomial<BigInteger>> PolyUfdUtil.integerFromRationalCoefficients
(GenPolynomialRing<GenPolynomial<BigInteger>> fac, GenPolynomial<GenPolynomial<BigRational>> A) BigInteger from BigRational coefficients.static GenPolynomial
<GenPolynomial<BigInteger>> PolyUfdUtil.integerFromRationalCoefficients
(GenPolynomialRing<GenPolynomial<BigInteger>> fac, GenPolynomial<GenPolynomial<BigRational>> A) BigInteger from BigRational coefficients.static List
<GenPolynomial<GenPolynomial<BigInteger>>> PolyUfdUtil.integerFromRationalCoefficients
(GenPolynomialRing<GenPolynomial<BigInteger>> fac, List<GenPolynomial<GenPolynomial<BigRational>>> L) BigInteger from BigRational coefficients.static List
<GenPolynomial<GenPolynomial<BigInteger>>> PolyUfdUtil.integerFromRationalCoefficients
(GenPolynomialRing<GenPolynomial<BigInteger>> fac, List<GenPolynomial<GenPolynomial<BigRational>>> L) BigInteger from BigRational coefficients.static List
<GenPolynomial<GenPolynomial<BigInteger>>> PolyUfdUtil.integerFromRationalCoefficients
(GenPolynomialRing<GenPolynomial<BigInteger>> fac, List<GenPolynomial<GenPolynomial<BigRational>>> L) BigInteger from BigRational coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUfdUtil.integralFromQuotientCoefficients
(GenPolynomialRing<GenPolynomial<C>> fac, GenPolynomial<Quotient<C>> A) Integral polynomial from rational function coefficients.static <C extends GcdRingElem<C>>
List<GenPolynomial<GenPolynomial<C>>> PolyUfdUtil.integralFromQuotientCoefficients
(GenPolynomialRing<GenPolynomial<C>> fac, Collection<GenPolynomial<Quotient<C>>> L) Integral polynomial from rational function coefficients.static <C extends GcdRingElem<C>>
List<GenPolynomial<GenPolynomial<C>>> PolyUfdUtil.integralFromQuotientCoefficients
(GenPolynomialRing<GenPolynomial<C>> fac, Collection<GenPolynomial<Quotient<C>>> L) Integral polynomial from rational function coefficients.static <C extends GcdRingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUfdUtil.introduceLowerVariable
(GenPolynomialRing<GenPolynomial<C>> rfac, GenPolynomial<C> A) Introduce lower variable.boolean
GreatestCommonDivisorAbstract.isBasePartialFraction
(GenPolynomial<C> A, GenPolynomial<C> P, int e, List<GenPolynomial<C>> F) Test for Univariate GenPolynomial partial fraction decomposition.boolean
GreatestCommonDivisorAbstract.isBasePartialFraction
(GenPolynomial<C> A, List<GenPolynomial<C>> D, List<GenPolynomial<C>> F) Test for Univariate GenPolynomial partial fraction decomposition.boolean
SquarefreeAbstract.isBasePartialFraction
(GenPolynomial<C> A, SortedMap<GenPolynomial<C>, Long> D, List<List<GenPolynomial<C>>> F) Test for Univariate GenPolynomial partial fraction decomposition.boolean
SquarefreeAbstract.isBasePartialFraction
(GenPolynomial<C> A, SortedMap<GenPolynomial<C>, Long> D, List<List<GenPolynomial<C>>> F) Test for Univariate GenPolynomial partial fraction decomposition.boolean
SquarefreeFieldCharP.isCharRoot
(GenPolynomial<C> P, SortedMap<GenPolynomial<C>, Long> F) Polynomial is char-th root.boolean
GreatestCommonDivisor.isCoPrime
(List<GenPolynomial<C>> A) GenPolynomial test for co-prime list.boolean
GreatestCommonDivisorAbstract.isCoPrime
(List<GenPolynomial<C>> A) GenPolynomial test for co-prime list.boolean
GreatestCommonDivisorAbstract.isCoPrime
(List<GenPolynomial<C>> P, List<GenPolynomial<C>> A) GenPolynomial test for co-prime list of given list.boolean
Squarefree.isCoPrimeSquarefree
(List<GenPolynomial<C>> B) Test if list of GenPolynomials is squarefree and co-prime.boolean
SquarefreeAbstract.isCoPrimeSquarefree
(List<GenPolynomial<C>> B) Test if list of GenPolynomials is squarefree and co-prime.static <MOD extends GcdRingElem<MOD> & Modular>
booleanHenselUtil.isDiophantLift
(List<GenPolynomial<MOD>> A, List<GenPolynomial<MOD>> S, GenPolynomial<MOD> C) Modular Diophant relation lifting test.static <MOD extends GcdRingElem<MOD> & Modular>
booleanHenselUtil.isExtendedEuclideanLift
(List<GenPolynomial<MOD>> A, List<GenPolynomial<MOD>> S) Modular extended Euclidean relation lifting test.boolean
FactorAbstract.isFactorization
(GenPolynomial<C> P, List<GenPolynomial<C>> F) GenPolynomial is factorization.boolean
FactorAbstract.isFactorization
(GenPolynomial<C> P, SortedMap<GenPolynomial<C>, Long> F) GenPolynomial is factorization.boolean
Factorization.isFactorization
(GenPolynomial<C> P, List<GenPolynomial<C>> F) GenPolynomial is factorization.boolean
Factorization.isFactorization
(GenPolynomial<C> P, SortedMap<GenPolynomial<C>, Long> F) GenPolynomial is factorization.boolean
Squarefree.isFactorization
(GenPolynomial<C> P, List<GenPolynomial<C>> F) GenPolynomial is (squarefree) factorization.boolean
Squarefree.isFactorization
(GenPolynomial<C> P, SortedMap<GenPolynomial<C>, Long> F) GenPolynomial is (squarefree) factorization.boolean
SquarefreeAbstract.isFactorization
(GenPolynomial<C> P, List<GenPolynomial<C>> F) GenPolynomial is (squarefree) factorization.boolean
SquarefreeAbstract.isFactorization
(GenPolynomial<C> P, SortedMap<GenPolynomial<C>, Long> F) GenPolynomial is (squarefree) factorization.static <MOD extends GcdRingElem<MOD> & Modular>
booleanHenselMultUtil.isHenselLift
(GenPolynomial<BigInteger> C, GenPolynomial<MOD> Cp, List<GenPolynomial<MOD>> F, List<GenPolynomial<MOD>> L) Modular Hensel lifting algorithm on coefficients test.static boolean
HenselUtil.isHenselLift
(GenPolynomial<BigInteger> C, BigInteger M, BigInteger p, List<GenPolynomial<BigInteger>> G) Modular Hensel lifting test.boolean
SquarefreeFieldCharP.isRecursiveCharRoot
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> r) Recursive polynomial is char-th root.boolean
SquarefreeFieldCharP.isRecursiveCharRoot
(GenPolynomial<GenPolynomial<C>> P, SortedMap<GenPolynomial<GenPolynomial<C>>, Long> F) Recursive polynomial is char-th root.boolean
SquarefreeFieldCharP.isRecursiveCharRoot
(GenPolynomial<GenPolynomial<C>> P, SortedMap<GenPolynomial<GenPolynomial<C>>, Long> F) Recursive polynomial is char-th root.boolean
SquarefreeFieldCharP.isRecursiveCharRoot
(GenPolynomial<GenPolynomial<C>> P, SortedMap<GenPolynomial<GenPolynomial<C>>, Long> F) Recursive polynomial is char-th root.boolean
FactorAbstract.isRecursiveFactorization
(GenPolynomial<GenPolynomial<C>> P, SortedMap<GenPolynomial<GenPolynomial<C>>, Long> F) GenPolynomial is factorization.boolean
FactorAbstract.isRecursiveFactorization
(GenPolynomial<GenPolynomial<C>> P, SortedMap<GenPolynomial<GenPolynomial<C>>, Long> F) GenPolynomial is factorization.boolean
FactorAbstract.isRecursiveFactorization
(GenPolynomial<GenPolynomial<C>> P, SortedMap<GenPolynomial<GenPolynomial<C>>, Long> F) GenPolynomial is factorization.boolean
SquarefreeAbstract.isRecursiveFactorization
(GenPolynomial<GenPolynomial<C>> P, SortedMap<GenPolynomial<GenPolynomial<C>>, Long> F) GenPolynomial is (squarefree) factorization.boolean
SquarefreeAbstract.isRecursiveFactorization
(GenPolynomial<GenPolynomial<C>> P, SortedMap<GenPolynomial<GenPolynomial<C>>, Long> F) GenPolynomial is (squarefree) factorization.boolean
SquarefreeAbstract.isRecursiveFactorization
(GenPolynomial<GenPolynomial<C>> P, SortedMap<GenPolynomial<GenPolynomial<C>>, Long> F) GenPolynomial is (squarefree) factorization.boolean
SquarefreeAbstract.isRecursiveSquarefree
(GenPolynomial<GenPolynomial<C>> P) Recursive GenPolynomial test if is squarefree.boolean
SquarefreeFieldChar0.isRecursiveUnivariateSquarefree
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial test if is squarefree.boolean
Squarefree.isSquarefree
(List<GenPolynomial<C>> L) GenPolynomial list test if squarefree.boolean
SquarefreeAbstract.isSquarefree
(List<GenPolynomial<C>> L) GenPolynomial list test if squarefree.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselMultUtil.liftDiophant
(List<GenPolynomial<MOD>> A, GenPolynomial<MOD> C, List<MOD> V, long d, long k) Modular diophantine equation solution and lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselUtil.liftDiophant
(List<GenPolynomial<MOD>> A, long e, long k) Modular diophantine equation solution and lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselUtil.liftDiophant
(List<GenPolynomial<MOD>> A, GenPolynomial<MOD> C, long k) Modular diophantine equation solution and lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselUtil.liftExtendedEuclidean
(List<GenPolynomial<MOD>> A, long k) Constructing and lifting algorithm for extended Euclidean relation.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselMultUtil.liftHensel
(GenPolynomial<BigInteger> C, GenPolynomial<MOD> Cp, List<GenPolynomial<MOD>> F, List<BigInteger> V, long k, List<GenPolynomial<BigInteger>> G) Modular Hensel lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselUtil.liftHensel
(GenPolynomial<BigInteger> C, List<GenPolynomial<MOD>> F, long k, BigInteger g) Modular Hensel lifting algorithm on coefficients.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselMultUtil.liftHenselFull
(GenPolynomial<BigInteger> C, List<GenPolynomial<MOD>> F, List<BigInteger> V, long k, List<GenPolynomial<BigInteger>> G) Modular Hensel full lifting algorithm.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselMultUtil.liftHenselMonic
(GenPolynomial<BigInteger> C, GenPolynomial<MOD> Cp, List<GenPolynomial<MOD>> F, List<BigInteger> V, long k) Modular Hensel lifting algorithm, monic case.static <MOD extends GcdRingElem<MOD> & Modular>
List<GenPolynomial<MOD>> HenselUtil.liftHenselMonic
(GenPolynomial<BigInteger> C, List<GenPolynomial<MOD>> F, long k) Modular Hensel lifting algorithm on coefficients.FactorAbstract.normalizeFactorization
(List<GenPolynomial<C>> F) Normalize factorization.SquarefreeAbstract.normalizeFactorization
(SortedMap<GenPolynomial<C>, Long> F) Normalize factorization.static <C extends GcdRingElem<C>>
GenPolynomial<Quotient<C>> PolyUfdUtil.quotientFromIntegralCoefficients
(GenPolynomialRing<Quotient<C>> fac, GenPolynomial<GenPolynomial<C>> A) Rational function from integral polynomial coefficients.static <C extends GcdRingElem<C>>
List<GenPolynomial<Quotient<C>>> PolyUfdUtil.quotientFromIntegralCoefficients
(GenPolynomialRing<Quotient<C>> fac, Collection<GenPolynomial<GenPolynomial<C>>> L) Rational function from integral polynomial coefficients.static <C extends GcdRingElem<C>>
List<GenPolynomial<Quotient<C>>> PolyUfdUtil.quotientFromIntegralCoefficients
(GenPolynomialRing<Quotient<C>> fac, Collection<GenPolynomial<GenPolynomial<C>>> L) Rational function from integral polynomial coefficients.GreatestCommonDivisorAbstract.recursiveContent
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive content.GreatestCommonDivisorFake.recursiveContent
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive content.FactorAbstract.recursiveFactors
(GenPolynomial<GenPolynomial<C>> P) Recursive GenPolynomial factorization.FactorAbstract.recursiveFactorsSquarefree
(GenPolynomial<GenPolynomial<C>> P) Recursive GenPolynomial factorization of a squarefree polynomial.GreatestCommonDivisorAbstract.recursiveGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) GenPolynomial recursive greatest common divisor.GreatestCommonDivisorAbstract.recursivePrimitivePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive primitive part.GreatestCommonDivisorAbstract.recursivePrimitivePart
(List<GenPolynomial<GenPolynomial<C>>> F) List of recursive GenPolynomial base coefficient primitive part.GreatestCommonDivisorAbstract.recursivePrimitivePart
(List<GenPolynomial<GenPolynomial<C>>> F) List of recursive GenPolynomial base coefficient primitive part.GreatestCommonDivisorFake.recursivePrimitivePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive primitive part.GreatestCommonDivisorSubres.recursivePseudoRemainder
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Deprecated.(forRemoval=true) UsePolyUtil.recursiveDensePseudoRemainder(edu.jas.poly.GenPolynomial,edu.jas.poly.GenPolynomial)
insteadGreatestCommonDivisorAbstract.recursiveResultant
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) GenPolynomial recursive resultant.SquarefreeAbstract.recursiveSquarefreeFactors
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive polynomial squarefree factorization.SquarefreeAbstract.recursiveSquarefreePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive polynomial greatest squarefree divisor.GCDProxy.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive greatest common divisor.abstract GenPolynomial
<GenPolynomial<C>> GreatestCommonDivisorAbstract.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive greatest common divisor.GreatestCommonDivisorFake.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive greatest common divisor.GreatestCommonDivisorHensel.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<BigInteger>> P, GenPolynomial<GenPolynomial<BigInteger>> S) Univariate GenPolynomial recursive greatest common divisor.GreatestCommonDivisorModEval.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<MOD>> P, GenPolynomial<GenPolynomial<MOD>> S) Recursive univariate GenPolynomial greatest common divisor.GreatestCommonDivisorModular.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<BigInteger>> P, GenPolynomial<GenPolynomial<BigInteger>> S) Univariate GenPolynomial recursive greatest common divisor.GreatestCommonDivisorPrimitive.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive greatest common divisor.GreatestCommonDivisorSimple.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive greatest common divisor.GreatestCommonDivisorSubres.recursiveUnivariateGcd
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive greatest common divisor.GCDProxy.recursiveUnivariateResultant
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial resultant.GreatestCommonDivisorAbstract.recursiveUnivariateResultant
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive resultant.GreatestCommonDivisorModEval.recursiveUnivariateResultant
(GenPolynomial<GenPolynomial<MOD>> P, GenPolynomial<GenPolynomial<MOD>> S) Univariate GenPolynomial recursive resultant.GreatestCommonDivisorModular.recursiveUnivariateResultant
(GenPolynomial<GenPolynomial<BigInteger>> P, GenPolynomial<GenPolynomial<BigInteger>> S) Univariate GenPolynomial recursive resultant.GreatestCommonDivisorSimple.recursiveUnivariateResultant
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive resultant.GreatestCommonDivisorSubres.recursiveUnivariateResultant
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive resultant.abstract GenPolynomial
<GenPolynomial<C>> SquarefreeFieldCharP.recursiveUnivariateRootCharacteristic
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial char-th root univariate polynomial with polynomial coefficients.SquarefreeFiniteFieldCharP.recursiveUnivariateRootCharacteristic
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial char-th root univariate polynomial with polynomial coefficients.SquarefreeInfiniteAlgebraicFieldCharP.recursiveUnivariateRootCharacteristic
(GenPolynomial<GenPolynomial<AlgebraicNumber<C>>> P) GenPolynomial char-th root univariate polynomial with polynomial coefficients.SquarefreeInfiniteFieldCharP.recursiveUnivariateRootCharacteristic
(GenPolynomial<GenPolynomial<Quotient<C>>> P) GenPolynomial char-th root univariate polynomial with polynomial coefficients.abstract SortedMap
<GenPolynomial<GenPolynomial<C>>, Long> SquarefreeAbstract.recursiveUnivariateSquarefreeFactors
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial squarefree factorization.SquarefreeFieldChar0.recursiveUnivariateSquarefreeFactors
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial squarefree factorization.SquarefreeFieldChar0Yun.recursiveUnivariateSquarefreeFactors
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial squarefree factorization.SquarefreeFieldCharP.recursiveUnivariateSquarefreeFactors
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial squarefree factorization.SquarefreeRingChar0.recursiveUnivariateSquarefreeFactors
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial squarefree factorization.abstract GenPolynomial
<GenPolynomial<C>> SquarefreeAbstract.recursiveUnivariateSquarefreePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive polynomial greatest squarefree divisor.SquarefreeFieldChar0.recursiveUnivariateSquarefreePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial greatest squarefree divisor.SquarefreeFieldCharP.recursiveUnivariateSquarefreePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial greatest squarefree divisor.SquarefreeRingChar0.recursiveUnivariateSquarefreePart
(GenPolynomial<GenPolynomial<C>> P) GenPolynomial recursive univariate polynomial greatest squarefree divisor.GreatestCommonDivisorSubres.recursiveUnivariateSubResultantList
(GenPolynomial<GenPolynomial<C>> P, GenPolynomial<GenPolynomial<C>> S) Univariate GenPolynomial recursive Subresultant list.(package private) List
<GenPolynomial<BigInteger>> FactorInteger.searchFactorsMonic
(GenPolynomial<BigInteger> C, BigInteger M, List<GenPolynomial<MOD>> F, BitSet D) Factor search with modular Hensel lifting algorithm.(package private) List
<GenPolynomial<BigInteger>> FactorInteger.searchFactorsNonMonic
(GenPolynomial<BigInteger> C, BigInteger M, List<GenPolynomial<MOD>> F, BitSet D) Factor search with modular Hensel lifting algorithm.static <C extends GcdRingElem<C>>
GenPolynomial<GenPolynomial<C>> PolyUfdUtil.substituteFromAlgebraicCoefficients
(GenPolynomialRing<GenPolynomial<C>> rfac, GenPolynomial<AlgebraicNumber<C>> A, long k) From AlgebraicNumber coefficients.static <C extends GcdRingElem<C>>
List<GenPolynomial<C>> PolyUfdUtil.substituteKronecker
(List<GenPolynomial<C>> A, int d) Kronecker substitution.Constructors in edu.jas.ufd with parameters of type GenPolynomialModifierConstructorDescriptionEvalPoints
(GenPolynomial<C> p, GenPolynomial<C> u, List<C> ep) Constructor.Factors
(GenPolynomial<C> p) Constructor.Factors
(GenPolynomial<C> p, AlgebraicNumberRing<C> af, GenPolynomial<AlgebraicNumber<C>> ap, List<GenPolynomial<AlgebraicNumber<C>>> afact) Constructor.Factors
(GenPolynomial<C> p, AlgebraicNumberRing<C> af, GenPolynomial<AlgebraicNumber<C>> ap, List<GenPolynomial<AlgebraicNumber<C>>> afact, List<Factors<AlgebraicNumber<C>>> arfact) Constructor.FactorsList
(GenPolynomial<C> p, List<GenPolynomial<C>> list) Constructor.FactorsList
(GenPolynomial<C> p, List<GenPolynomial<C>> list, List<Factors<C>> alist) Constructor.FactorsMap
(GenPolynomial<C> p, SortedMap<GenPolynomial<C>, Long> map) Constructor.FactorsMap
(GenPolynomial<C> p, SortedMap<GenPolynomial<C>, Long> map, SortedMap<Factors<C>, Long> amap) Constructor.HenselApprox
(GenPolynomial<BigInteger> A, GenPolynomial<BigInteger> B, GenPolynomial<MOD> Am, GenPolynomial<MOD> Bm) Constructor.PartialFraction
(GenPolynomial<C> n, GenPolynomial<C> d, List<C> cf, List<GenPolynomial<C>> cd, List<AlgebraicNumber<C>> af, List<GenPolynomial<AlgebraicNumber<C>>> ad) Constructor.Quotient
(QuotientRing<C> r, GenPolynomial<C> n) The constructor creates a Quotient object from a ring factory and a numerator polynomial.Quotient
(QuotientRing<C> r, GenPolynomial<C> n, GenPolynomial<C> d) The constructor creates a Quotient object from a ring factory and a numerator and denominator polynomial.protected
Quotient
(QuotientRing<C> r, GenPolynomial<C> n, GenPolynomial<C> d, boolean isred) The constructor creates a Quotient object from a ring factory and a numerator and denominator polynomial.TrialParts
(List<BigInteger> ev, GenPolynomial<BigInteger> up, List<GenPolynomial<BigInteger>> uf, List<BigInteger> le, List<GenPolynomial<BigInteger>> lf) Constructor.Constructor parameters in edu.jas.ufd with type arguments of type GenPolynomialModifierConstructorDescriptionFactorFraction
(QuotPairFactory<GenPolynomial<C>, D> fac) Constructor.FactorFraction
(QuotPairFactory<GenPolynomial<C>, D> fac, FactorAbstract<C> nengine) Constructor.Factors
(GenPolynomial<C> p, AlgebraicNumberRing<C> af, GenPolynomial<AlgebraicNumber<C>> ap, List<GenPolynomial<AlgebraicNumber<C>>> afact) Constructor.Factors
(GenPolynomial<C> p, AlgebraicNumberRing<C> af, GenPolynomial<AlgebraicNumber<C>> ap, List<GenPolynomial<AlgebraicNumber<C>>> afact, List<Factors<AlgebraicNumber<C>>> arfact) Constructor.FactorsList
(GenPolynomial<C> p, List<GenPolynomial<C>> list) Constructor.FactorsList
(GenPolynomial<C> p, List<GenPolynomial<C>> list, List<Factors<C>> alist) Constructor.FactorsMap
(GenPolynomial<C> p, SortedMap<GenPolynomial<C>, Long> map) Constructor.FactorsMap
(GenPolynomial<C> p, SortedMap<GenPolynomial<C>, Long> map, SortedMap<Factors<C>, Long> amap) Constructor. -
Uses of GenPolynomial in edu.jas.ufdroot
Methods in edu.jas.ufdroot that return types with arguments of type GenPolynomialModifier and TypeMethodDescriptionFactorRealAlgebraic.baseFactorsSquarefree
(GenPolynomial<RealAlgebraicNumber<C>> P) GenPolynomial base factorization of a squarefree polynomial.Methods in edu.jas.ufdroot with parameters of type GenPolynomialModifier and TypeMethodDescriptionFactorRealAlgebraic.baseFactorsSquarefree
(GenPolynomial<RealAlgebraicNumber<C>> P) GenPolynomial base factorization of a squarefree polynomial.
PolyUtil.baseSparsePseudoRemainder(edu.jas.poly.GenPolynomial,edu.jas.poly.GenPolynomial)
instead