Uses of Enum
edu.jas.gbufd.GBFactory.Algo
Packages that use GBFactory.Algo
Package
Description
Groebner base application package.
Groebner bases using unique factorization package.
-
Uses of GBFactory.Algo in edu.jas.application
Methods in edu.jas.application with parameters of type GBFactory.AlgoModifier and TypeMethodDescriptionGBAlgorithmBuilder.domainAlgorithm
(GBFactory.Algo a) Request d-, e- or i-GB algorithm. -
Uses of GBFactory.Algo in edu.jas.gbufd
Methods in edu.jas.gbufd that return GBFactory.AlgoModifier and TypeMethodDescriptionstatic GBFactory.Algo
Returns the enum constant of this type with the specified name.static GBFactory.Algo[]
GBFactory.Algo.values()
Returns an array containing the constants of this enum type, in the order they are declared.Methods in edu.jas.gbufd with parameters of type GBFactory.AlgoModifier and TypeMethodDescriptionstatic GroebnerBaseAbstract
<BigInteger> GBFactory.getImplementation
(BigInteger fac, GBFactory.Algo a) Determine suitable implementation of GB algorithms, case BigInteger.static GroebnerBaseAbstract
<BigInteger> GBFactory.getImplementation
(BigInteger fac, GBFactory.Algo a, PairList<BigInteger> pl) Determine suitable implementation of GB algorithms, case BigInteger.static GroebnerBaseAbstract
<BigRational> GBFactory.getImplementation
(BigRational fac, GBFactory.Algo a) Determine suitable implementation of GB algorithms, case BigRational.static GroebnerBaseAbstract
<BigRational> GBFactory.getImplementation
(BigRational fac, GBFactory.Algo a, PairList<BigRational> pl) Determine suitable implementation of GB algorithms, case BigRational.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<GenPolynomial<C>> GBFactory.getImplementation
(GenPolynomialRing<C> fac, GBFactory.Algo a) Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<GenPolynomial<C>> GBFactory.getImplementation
(GenPolynomialRing<C> fac, GBFactory.Algo a, PairList<GenPolynomial<C>> pl) Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<Quotient<C>> GBFactory.getImplementation
(QuotientRing<C> fac, GBFactory.Algo a) Determine suitable implementation of GB algorithms, case Quotient coefficients.static <C extends GcdRingElem<C>>
GroebnerBaseAbstract<Quotient<C>> GBFactory.getImplementation
(QuotientRing<C> fac, GBFactory.Algo a, PairList<Quotient<C>> pl) Determine suitable implementation of GB algorithms, case Quotient coefficients.SGBFactory.getImplementation
(BigInteger fac, GBFactory.Algo a) Determine suitable implementation of GB algorithms, case BigInteger.SGBFactory.getImplementation
(BigInteger fac, GBFactory.Algo a, PairList<BigInteger> pl) Determine suitable implementation of GB algorithms, case BigInteger.SGBFactory.getImplementation
(BigRational fac, GBFactory.Algo a) Determine suitable implementation of GB algorithms, case BigRational.SGBFactory.getImplementation
(BigRational fac, GBFactory.Algo a, PairList<BigRational> pl) Determine suitable implementation of GB algorithms, case BigRational.static <C extends GcdRingElem<C>>
SolvableGroebnerBaseAbstract<GenPolynomial<C>> SGBFactory.getImplementation
(GenPolynomialRing<C> fac, GBFactory.Algo a) Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
SolvableGroebnerBaseAbstract<GenPolynomial<C>> SGBFactory.getImplementation
(GenPolynomialRing<C> fac, GBFactory.Algo a, PairList<GenPolynomial<C>> pl) Determine suitable implementation of GB algorithms, case (recursive) polynomial.static <C extends GcdRingElem<C>>
SolvableGroebnerBaseAbstract<Quotient<C>> SGBFactory.getImplementation
(QuotientRing<C> fac, GBFactory.Algo a) Determine suitable implementation of GB algorithms, case Quotient coefficients.static <C extends GcdRingElem<C>>
SolvableGroebnerBaseAbstract<Quotient<C>> SGBFactory.getImplementation
(QuotientRing<C> fac, GBFactory.Algo a, PairList<Quotient<C>> pl) Determine suitable implementation of GB algorithms, case Quotient coefficients.