Uses of Class
edu.jas.fd.SolvableQuotient
Packages that use SolvableQuotient
-
Uses of SolvableQuotient in edu.jas.fd
Methods in edu.jas.fd that return SolvableQuotientModifier and TypeMethodDescriptionSolvableQuotient.abs()
SolvableQuotient absolute value.SolvableQuotient.copy()
Clone this.SolvableQuotientRing.copy
(SolvableQuotient<C> c) Copy SolvableQuotient element c.SolvableQuotientRing.create
(GenPolynomial<C> n) Create from numerator.SolvableQuotientRing.create
(GenPolynomial<C> n, GenPolynomial<C> d) Create from numerator, denominator pair.SolvableQuotient.divide
(SolvableQuotient<C> S) SolvableQuotient division.SolvableQuotient.egcd
(SolvableQuotient<C> b) Extended greatest common divisor.SolvableQuotientRing.fromInteger
(long a) Get a SolvableQuotient element from a long value.SolvableQuotientRing.fromInteger
(BigInteger a) Get a SolvableQuotient element from a BigInteger value.SolvableQuotient.gcd
(SolvableQuotient<C> b) Greatest common divisor.SolvableQuotientRing.getONE()
Get the one element.SolvableQuotientRing.getZERO()
Get the zero element.SolvableQuotient.inverse()
SolvableQuotient inverse.SolvableQuotient.monic()
SolvableQuotient monic.SolvableQuotient multiplication by coefficient.SolvableQuotient.multiply
(SolvableQuotient<C> S) SolvableQuotient multiplication.SolvableQuotient multiplication by exponent.SolvableQuotient.multiply
(GenSolvablePolynomial<C> b) SolvableQuotient multiplication by GenSolvablePolynomial.SolvableQuotient.negate()
SolvableQuotient negate.Parse SolvableQuotient from Reader.Parse SolvableQuotient from String.SolvableQuotient.quotientRemainder
(SolvableQuotient<C> S) Quotient and remainder by division of this by S.SolvableQuotientRing.random
(int n) SolvableQuotient random.SolvableQuotientRing.random
(int k, int l, int d, float q) Generate a random quotient.SolvableQuotient random.SolvableQuotient.remainder
(SolvableQuotient<C> S) SolvableQuotient remainder.SolvableQuotient.rightFraction()
SolvableQuotient right fraction.SolvableQuotient.subtract
(SolvableQuotient<C> S) SolvableQuotient subtraction.SolvableQuotient.sum
(SolvableQuotient<C> S) SolvableQuotient summation.Methods in edu.jas.fd that return types with arguments of type SolvableQuotientModifier and TypeMethodDescriptionSolvableQuotientRing.generators()
Get a list of the generating elements.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<SolvableQuotient<C>> FDUtil.quotientFromIntegralCoefficients
(GenSolvablePolynomialRing<SolvableQuotient<C>> fac, GenSolvablePolynomial<GenPolynomial<C>> A) Solvable rational function from integral solvable polynomial coefficients.static <C extends GcdRingElem<C>>
List<GenSolvablePolynomial<SolvableQuotient<C>>> FDUtil.quotientFromIntegralCoefficients
(GenSolvablePolynomialRing<SolvableQuotient<C>> fac, Collection<GenSolvablePolynomial<GenPolynomial<C>>> L) Solvable rational function from integral solvable polynomial coefficients.Methods in edu.jas.fd with parameters of type SolvableQuotientModifier and TypeMethodDescriptionint
SolvableQuotient.compareTo
(SolvableQuotient<C> b) SolvableQuotient comparison.SolvableQuotientRing.copy
(SolvableQuotient<C> c) Copy SolvableQuotient element c.SolvableQuotient.divide
(SolvableQuotient<C> S) SolvableQuotient division.SolvableQuotient.egcd
(SolvableQuotient<C> b) Extended greatest common divisor.SolvableQuotient.gcd
(SolvableQuotient<C> b) Greatest common divisor.boolean
SolvableQuotient.isRightFraction
(SolvableQuotient<C> s) Test if SolvableQuotient right fraction.QuotSolvablePolynomial.multiply
(SolvableQuotient<C> b) QuotSolvablePolynomial multiplication.QuotSolvablePolynomial.multiply
(SolvableQuotient<C> b, SolvableQuotient<C> c) QuotSolvablePolynomial left and right multiplication.QuotSolvablePolynomial.multiply
(SolvableQuotient<C> b, ExpVector e) QuotSolvablePolynomial multiplication.QuotSolvablePolynomial.multiply
(SolvableQuotient<C> b, ExpVector e, SolvableQuotient<C> c, ExpVector f) QuotSolvablePolynomial left and right multiplication.SolvableQuotient.multiply
(SolvableQuotient<C> S) SolvableQuotient multiplication.QuotSolvablePolynomial.multiplyLeft
(SolvableQuotient<C> b) QuotSolvablePolynomial multiplication.QuotSolvablePolynomial.multiplyLeft
(SolvableQuotient<C> b, ExpVector e) QuotSolvablePolynomial multiplication.SolvableQuotient.quotientRemainder
(SolvableQuotient<C> S) Quotient and remainder by division of this by S.SolvableQuotient.remainder
(SolvableQuotient<C> S) SolvableQuotient remainder.SolvableQuotient.subtract
(SolvableQuotient<C> S) SolvableQuotient subtraction.SolvableQuotient.sum
(SolvableQuotient<C> S) SolvableQuotient summation.Method parameters in edu.jas.fd with type arguments of type SolvableQuotientModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C>>
GenSolvablePolynomial<GenPolynomial<C>> FDUtil.integralFromQuotientCoefficients
(GenSolvablePolynomialRing<GenPolynomial<C>> fac, GenSolvablePolynomial<SolvableQuotient<C>> A) Integral solvable polynomial from solvable rational function coefficients.static <C extends GcdRingElem<C>>
List<GenSolvablePolynomial<GenPolynomial<C>>> FDUtil.integralFromQuotientCoefficients
(GenSolvablePolynomialRing<GenPolynomial<C>> fac, Collection<GenSolvablePolynomial<SolvableQuotient<C>>> L) Integral solvable polynomial from solvable rational function coefficients.QuotSolvablePolynomial.multiply
(Map.Entry<ExpVector, SolvableQuotient<C>> m) QuotSolvablePolynomial multiplication.QuotSolvablePolynomial.multiplyLeft
(Map.Entry<ExpVector, SolvableQuotient<C>> m) QuotSolvablePolynomial multiplication.static <C extends GcdRingElem<C>>
GenSolvablePolynomial<SolvableQuotient<C>> FDUtil.quotientFromIntegralCoefficients
(GenSolvablePolynomialRing<SolvableQuotient<C>> fac, GenSolvablePolynomial<GenPolynomial<C>> A) Solvable rational function from integral solvable polynomial coefficients.static <C extends GcdRingElem<C>>
List<GenSolvablePolynomial<SolvableQuotient<C>>> FDUtil.quotientFromIntegralCoefficients
(GenSolvablePolynomialRing<SolvableQuotient<C>> fac, Collection<GenSolvablePolynomial<GenPolynomial<C>>> L) Solvable rational function from integral solvable polynomial coefficients.QuotSolvablePolynomialRing.toPolyCoefficients
(GenPolynomial<SolvableQuotient<C>> A) Integral function from rational polynomial coefficients.Constructors in edu.jas.fd with parameters of type SolvableQuotientModifierConstructorDescriptionConstructor for QuotSolvablePolynomial.Constructor for QuotSolvablePolynomial.Constructor parameters in edu.jas.fd with type arguments of type SolvableQuotientModifierConstructorDescriptionQuotSolvablePolynomial
(QuotSolvablePolynomialRing<C> r, GenSolvablePolynomial<SolvableQuotient<C>> S) Constructor for QuotSolvablePolynomial.protected
Constructor for QuotSolvablePolynomial.QuotSolvablePolynomialRing
(RingFactory<SolvableQuotient<C>> cf, int n) The constructor creates a solvable polynomial factory object with the default term order and commutative relations.QuotSolvablePolynomialRing
(RingFactory<SolvableQuotient<C>> cf, int n, RelationTable<SolvableQuotient<C>> rt) The constructor creates a solvable polynomial factory object with the default term order.QuotSolvablePolynomialRing
(RingFactory<SolvableQuotient<C>> cf, int n, RelationTable<SolvableQuotient<C>> rt) The constructor creates a solvable polynomial factory object with the default term order.QuotSolvablePolynomialRing
(RingFactory<SolvableQuotient<C>> cf, int n, TermOrder t) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.QuotSolvablePolynomialRing
(RingFactory<SolvableQuotient<C>> cf, int n, TermOrder t, RelationTable<SolvableQuotient<C>> rt) The constructor creates a solvable polynomial factory object with the given term order.QuotSolvablePolynomialRing
(RingFactory<SolvableQuotient<C>> cf, int n, TermOrder t, RelationTable<SolvableQuotient<C>> rt) The constructor creates a solvable polynomial factory object with the given term order.QuotSolvablePolynomialRing
(RingFactory<SolvableQuotient<C>> cf, int n, TermOrder t, String[] v) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.QuotSolvablePolynomialRing
(RingFactory<SolvableQuotient<C>> cf, int n, TermOrder t, String[] v, RelationTable<SolvableQuotient<C>> rt) The constructor creates a solvable polynomial factory object with the given term order.QuotSolvablePolynomialRing
(RingFactory<SolvableQuotient<C>> cf, int n, TermOrder t, String[] v, RelationTable<SolvableQuotient<C>> rt) The constructor creates a solvable polynomial factory object with the given term order.The constructor creates a solvable polynomial factory object with the the same term order, number of variables and variable names as the given polynomial factory, only the coefficient factories differ and the solvable multiplication relations are empty.The constructor creates a solvable polynomial factory object with the the same term order, number of variables and variable names as the given polynomial factory, only the coefficient factories differ and the solvable multiplication relations are empty.QuotSolvablePolynomialRing
(RingFactory<SolvableQuotient<C>> cf, TermOrder t, String[] v) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.QuotSolvablePolynomialRing
(RingFactory<SolvableQuotient<C>> cf, String[] v) The constructor creates a solvable polynomial factory object with the default term order.