Uses of Class
edu.jas.poly.AlgebraicNumberRing
Packages that use AlgebraicNumberRing
Package
Description
Groebner base application package.
Generic coefficients polynomial package.
Real and Complex Root Computation package.
Unique factorization domain package.
-
Uses of AlgebraicNumberRing in edu.jas.application
Fields in edu.jas.application declared as AlgebraicNumberRingModifier and TypeFieldDescriptionprotected final AlgebraicNumberRing
<C> CoeffConvertAlg.afac
protected final AlgebraicNumberRing
<C> CoeffRecConvertAlg.afac
final AlgebraicNumberRing
<C> PrimitiveElement.Aring
The first original algebraic ring.final AlgebraicNumberRing
<C> PrimitiveElement.Bring
The second original algebraic ring.final AlgebraicNumberRing
<C> PrimitiveElement.primitiveElem
The primitive element.Methods in edu.jas.application with parameters of type AlgebraicNumberRingModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C>>
AlgebraicNumber<C> PolyUtilApp.convertToPrimitiveElem
(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, AlgebraicNumber<C> a) Convert to primitive element ring.static <C extends GcdRingElem<C>>
AlgebraicNumber<C> PolyUtilApp.convertToPrimitiveElem
(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, AlgebraicNumber<C> B, AlgebraicNumber<AlgebraicNumber<C>> a) Convert to primitive element ring.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtilApp.convertToPrimitiveElem
(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, AlgebraicNumber<C> B, GenPolynomial<AlgebraicNumber<AlgebraicNumber<C>>> a) Convert to primitive element ring.static <C extends GcdRingElem<C>>
GenPolynomial<AlgebraicNumber<C>> PolyUtilApp.convertToPrimitiveElem
(AlgebraicNumberRing<C> cfac, AlgebraicNumber<C> A, GenPolynomial<AlgebraicNumber<C>> a) Convert coefficients to primitive element ring.static <C extends GcdRingElem<C>>
FactorAbstract<AlgebraicNumber<C>> FactorFactory.getImplementation
(AlgebraicNumberRing<C> fac) Determine suitable implementation of factorization algorithms, case AlgebraicNumber<C>.static <C extends GcdRingElem<C>>
PrimitiveElement<C> PolyUtilApp.primitiveElement
(AlgebraicNumberRing<C> a, AlgebraicNumberRing<C> b) Construct primitive element for double field extension.static <C extends GcdRingElem<C>>
PrimitiveElement<C> PolyUtilApp.primitiveElement
(AlgebraicNumberRing<AlgebraicNumber<C>> b) Construct primitive element for double field extension.static <C extends GcdRingElem<C> & Rational>
AlgebraicRootsPrimElem<C> RootFactoryApp.rootReduce
(AlgebraicNumberRing<C> a, AlgebraicNumberRing<C> b) Root reduce of real and complex algebraic numbers.Constructors in edu.jas.application with parameters of type AlgebraicNumberRingModifierConstructorDescriptionCoeffConvertAlg
(AlgebraicNumberRing<C> fac, AlgebraicNumber<C> a) CoeffRecConvertAlg
(AlgebraicNumberRing<C> fac, AlgebraicNumber<C> a, AlgebraicNumber<C> b) Constructor.FactorAlgebraicPrim
(AlgebraicNumberRing<C> fac, FactorAbstract<C> factorCoeff) Constructor.protected
PrimitiveElement
(AlgebraicNumberRing<C> pe, AlgebraicNumber<C> A, AlgebraicNumber<C> B) Constructor.protected
PrimitiveElement
(AlgebraicNumberRing<C> pe, AlgebraicNumber<C> A, AlgebraicNumber<C> B, AlgebraicNumberRing<C> ar, AlgebraicNumberRing<C> br) Constructor. -
Uses of AlgebraicNumberRing in edu.jas.poly
Fields in edu.jas.poly declared as AlgebraicNumberRingModifier and TypeFieldDescriptionprotected final AlgebraicNumberRing
<C> CoeffToAlg.afac
protected final AlgebraicNumberRing
<C> ComplToAlgeb.afac
protected final AlgebraicNumberRing
<C> PolyToAlg.afac
(package private) final AlgebraicNumberRing
<C> AlgebraicNumberIterator.aring
final AlgebraicNumberRing
<C> AlgebraicNumber.ring
Ring part of the data structure.Fields in edu.jas.poly with type parameters of type AlgebraicNumberRingMethods in edu.jas.poly that return AlgebraicNumberRingModifier and TypeMethodDescriptionComplexRing.algebraicRing()
Corresponding algebraic number ring.AlgebraicNumber.factory()
Get the corresponding element factory.Constructors in edu.jas.poly with parameters of type AlgebraicNumberRingModifierConstructorDescriptionThe constructor creates a AlgebraicNumber object from a GenPolynomial object module.The constructor creates a AlgebraicNumber object from AlgebraicNumberRing modul and a GenPolynomial value.CartesianProduct iterator constructor.CoeffToAlg
(AlgebraicNumberRing<C> fac) CoeffToRecAlg
(int depth, AlgebraicNumberRing<C> fac) ComplToAlgeb
(AlgebraicNumberRing<C> fac) PolyToAlg
(AlgebraicNumberRing<C> fac) -
Uses of AlgebraicNumberRing in edu.jas.root
Fields in edu.jas.root declared as AlgebraicNumberRingModifier and TypeFieldDescriptionprotected final AlgebraicNumberRing
<C> AlgFromRealCoeff.afac
final AlgebraicNumberRing
<Complex<C>> ComplexAlgebraicRing.algebraic
Representing AlgebraicNumberRing.final AlgebraicNumberRing
<C> RealAlgebraicRing.algebraic
Representing AlgebraicNumberRing.Methods in edu.jas.root that return AlgebraicNumberRingConstructors in edu.jas.root with parameters of type AlgebraicNumberRing -
Uses of AlgebraicNumberRing in edu.jas.ufd
Fields in edu.jas.ufd declared as AlgebraicNumberRingModifier and TypeFieldDescriptionprotected final AlgebraicNumberRing
<C> SquarefreeFieldCharP.aCoFac
Factory for a algebraic extension of a finite field of characteristic p coefficients.final AlgebraicNumberRing
<C> FactorComplex.afac
Complex algebraic factory.final AlgebraicNumberRing
<C> Factors.afac
Algebraic field extension over C.Methods in edu.jas.ufd that return AlgebraicNumberRingModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C>>
AlgebraicNumberRing<C> PolyUfdUtil.algebraicNumberField
(GenPolynomialRing<C> ring, int degree) Construct an algebraic number field of degree d.static <C extends GcdRingElem<C>>
AlgebraicNumberRing<C> PolyUfdUtil.algebraicNumberField
(RingFactory<C> cfac, int degree) Construct an algebraic number field of degree d.Factors.findExtensionField()
Find largest extension field.FactorsList.findExtensionField()
Find largest extension field.FactorsMap.findExtensionField()
Find largest extension field.Methods in edu.jas.ufd with parameters of type AlgebraicNumberRingModifier and TypeMethodDescriptionstatic <C extends GcdRingElem<C>>
voidPolyUfdUtil.ensureFieldProperty
(AlgebraicNumberRing<C> afac) Ensure that the field property is determined.static <C extends GcdRingElem<C>>
FactorAbstract<AlgebraicNumber<C>> FactorFactory.getImplementation
(AlgebraicNumberRing<C> fac) Determine suitable implementation of factorization algorithms, case AlgebraicNumber<C>.static <C extends GcdRingElem<C>>
SquarefreeAbstract<AlgebraicNumber<C>> SquarefreeFactory.getImplementation
(AlgebraicNumberRing<C> fac) Determine suitable implementation of squarefree factorization algorithms, case AlgebraicNumber<C>.Constructors in edu.jas.ufd with parameters of type AlgebraicNumberRingModifierConstructorDescriptionConstructor.FactorAlgebraic
(AlgebraicNumberRing<C> fac, FactorAbstract<C> factorCoeff) Constructor.Factors
(GenPolynomial<C> p, AlgebraicNumberRing<C> af, GenPolynomial<AlgebraicNumber<C>> ap, List<GenPolynomial<AlgebraicNumber<C>>> afact) Constructor.Factors
(GenPolynomial<C> p, AlgebraicNumberRing<C> af, GenPolynomial<AlgebraicNumber<C>> ap, List<GenPolynomial<AlgebraicNumber<C>>> afact, List<Factors<AlgebraicNumber<C>>> arfact) Constructor.