Uses of Class
edu.jas.application.RealAlgebraicNumber
Packages that use RealAlgebraicNumber
-
Uses of RealAlgebraicNumber in edu.jas.application
Fields in edu.jas.application with type parameters of type RealAlgebraicNumberModifier and TypeFieldDescriptionfinal List
<List<Complex<RealAlgebraicNumber<D>>>> IdealWithComplexAlgebraicRoots.can
The list of complex algebraic roots.protected final ComplexRing
<RealAlgebraicNumber<C>> CoeffToComplexReal.cfac
protected final ComplexRing
<RealAlgebraicNumber<C>> EvaluateToComplexReal.cfac
protected final GenPolynomialRing
<Complex<RealAlgebraicNumber<C>>> EvaluateToComplexReal.pfac
protected final Complex
<RealAlgebraicNumber<C>> EvaluateToComplexReal.root
Methods in edu.jas.application that return RealAlgebraicNumberModifier and TypeMethodDescriptionRealAlgebraicNumber.abs()
RealAlgebraicNumber absolute value.RealAlgebraicNumber.copy()
Clone this.RealAlgebraicRing.copy
(RealAlgebraicNumber<C> c) Copy RealAlgebraicNumber element c.RealAlgebraicNumber.divide
(RealAlgebraicNumber<C> S) RealAlgebraicNumber division.RealAlgebraicNumber.egcd
(RealAlgebraicNumber<C> S) RealAlgebraicNumber extended greatest common divisor.RealFromReAlgCoeff.eval
(RealAlgebraicNumber<C> c) RealAlgebraicRing.fromInteger
(long a) Get a RealAlgebraicNumber element from a long value.RealAlgebraicRing.fromInteger
(BigInteger a) Get a RealAlgebraicNumber element from a BigInteger value.RealAlgebraicNumber.gcd
(RealAlgebraicNumber<C> S) RealAlgebraicNumber greatest common divisor.RealAlgebraicRing.getONE()
Get the one element.RealAlgebraicRing.getZERO()
Get the zero element.RealAlgebraicNumber.inverse()
RealAlgebraicNumber inverse.RealAlgebraicNumber.monic()
RealAlgebraicNumber monic.RealAlgebraicNumber.multiply
(RealAlgebraicNumber<C> S) RealAlgebraicNumber multiplication.RealAlgebraicNumber.multiply
(RealAlgebraicNumber<RealAlgebraicNumber<C>> c) RealAlgebraicNumber multiplication.RealAlgebraicNumber.negate()
RealAlgebraicNumber negate.Parse RealAlgebraicNumber from Reader.Parse RealAlgebraicNumber from String.RealAlgebraicRing.random
(int n) RealAlgebraicNumber random.RealAlgebraicNumber random.RealAlgebraicNumber.remainder
(RealAlgebraicNumber<C> S) RealAlgebraicNumber remainder.RealAlgebraicNumber.subtract
(RealAlgebraicNumber<C> S) RealAlgebraicNumber subtraction.RealAlgebraicNumber.sum
(RealAlgebraicNumber<C> S) RealAlgebraicNumber summation.RealAlgebraicNumber.sum
(RealAlgebraicNumber<RealAlgebraicNumber<C>> c) RealAlgebraicNumber summation.Methods in edu.jas.application that return types with arguments of type RealAlgebraicNumberModifier and TypeMethodDescriptionFactorRealReal.baseFactorsSquarefree
(GenPolynomial<RealAlgebraicNumber<C>> P) GenPolynomial base factorization of a squarefree polynomial.static <C extends GcdRingElem<C> & Rational>
List<Complex<RealAlgebraicNumber<C>>> RootFactoryApp.complexAlgebraicNumbersComplex
(GenPolynomial<Complex<C>> f) Complex algebraic number roots.static <C extends GcdRingElem<C> & Rational>
List<Complex<RealAlgebraicNumber<C>>> RootFactoryApp.complexAlgebraicNumbersSquarefree
(GenPolynomial<Complex<C>> f) Complex algebraic number roots.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<Complex<RealAlgebraicNumber<C>>> PolyUtilApp.convertToComplexRealCoefficients
(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> pfac, GenPolynomial<Complex<C>> A) Convert to Complex<RealAlgebraicNumber> coefficients.EvaluateToComplexReal.eval
(GenPolynomial<Complex<C>> c) static <C extends GcdRingElem<C> & Rational>
GenPolynomial<Complex<RealAlgebraicNumber<C>>> PolyUtilApp.evaluateToComplexRealCoefficients
(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> pfac, GenPolynomial<GenPolynomial<Complex<C>>> A, Complex<RealAlgebraicNumber<C>> r) Evaluate to Complex<RealAlgebraicNumber> coefficients.RealAlgebraicRing.generators()
Get a list of the generating elements.static <C extends GcdRingElem<C> & Rational>
FactorAbstract<RealAlgebraicNumber<C>> FactorFactory.getImplementation
(RealAlgebraicRing<C> fac) Determine suitable implementation of factorization algorithms, case RealAlgebraicNumber<C>.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilApp.realFromRealAlgCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> rfac, GenPolynomial<RealAlgebraicNumber<C>> A) Convert to RealAlgebraicNumber coefficients.Methods in edu.jas.application with parameters of type RealAlgebraicNumberModifier and TypeMethodDescriptionint
RealAlgebraicNumber.compareTo
(RealAlgebraicNumber<C> b) RealAlgebraicNumber comparison.RealAlgebraicRing.copy
(RealAlgebraicNumber<C> c) Copy RealAlgebraicNumber element c.RealAlgebraicNumber.divide
(RealAlgebraicNumber<C> S) RealAlgebraicNumber division.RealAlgebraicNumber.egcd
(RealAlgebraicNumber<C> S) RealAlgebraicNumber extended greatest common divisor.ReAlgFromRealCoeff.eval
(RealAlgebraicNumber<C> c) RealAlgebraicNumber.gcd
(RealAlgebraicNumber<C> S) RealAlgebraicNumber greatest common divisor.RealAlgebraicNumber.multiply
(RealAlgebraicNumber<C> S) RealAlgebraicNumber multiplication.RealAlgebraicNumber.remainder
(RealAlgebraicNumber<C> S) RealAlgebraicNumber remainder.RealAlgebraicNumber.subtract
(RealAlgebraicNumber<C> S) RealAlgebraicNumber subtraction.RealAlgebraicNumber.sum
(RealAlgebraicNumber<C> S) RealAlgebraicNumber summation.Method parameters in edu.jas.application with type arguments of type RealAlgebraicNumberModifier and TypeMethodDescriptionFactorRealReal.baseFactorsSquarefree
(GenPolynomial<RealAlgebraicNumber<C>> P) GenPolynomial base factorization of a squarefree polynomial.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<Complex<RealAlgebraicNumber<C>>> PolyUtilApp.convertToComplexRealCoefficients
(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> pfac, GenPolynomial<Complex<C>> A) Convert to Complex<RealAlgebraicNumber> coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<Complex<RealAlgebraicNumber<C>>> PolyUtilApp.evaluateToComplexRealCoefficients
(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> pfac, GenPolynomial<GenPolynomial<Complex<C>>> A, Complex<RealAlgebraicNumber<C>> r) Evaluate to Complex<RealAlgebraicNumber> coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<Complex<RealAlgebraicNumber<C>>> PolyUtilApp.evaluateToComplexRealCoefficients
(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> pfac, GenPolynomial<GenPolynomial<Complex<C>>> A, Complex<RealAlgebraicNumber<C>> r) Evaluate to Complex<RealAlgebraicNumber> coefficients.static <C extends GcdRingElem<C> & Rational>
booleanRootFactoryApp.isRoot
(GenPolynomial<Complex<C>> f, Complex<RealAlgebraicNumber<C>> r) Is complex algebraic number a root of a polynomial.static <C extends GcdRingElem<C> & Rational>
booleanRootFactoryApp.isRoot
(GenPolynomial<Complex<C>> f, List<Complex<RealAlgebraicNumber<C>>> R) Is complex algebraic number a root of a polynomial.static <C extends GcdRingElem<C> & Rational>
booleanRootFactoryApp.isRootRealCoeff
(GenPolynomial<C> f, Complex<RealAlgebraicNumber<C>> r) Is complex algebraic number a root of a polynomial.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilApp.realAlgFromRealCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> afac, GenPolynomial<RealAlgebraicNumber<C>> A) Convert to RealAlgebraicNumber coefficients.static <C extends GcdRingElem<C> & Rational>
GenPolynomial<RealAlgebraicNumber<C>> PolyUtilApp.realFromRealAlgCoefficients
(GenPolynomialRing<RealAlgebraicNumber<C>> rfac, GenPolynomial<RealAlgebraicNumber<C>> A) Convert to RealAlgebraicNumber coefficients.static <D extends GcdRingElem<D> & Rational>
StringPolyUtilApp.toString
(Complex<RealAlgebraicNumber<D>> c) String representation of a deximal approximation of a complex number.Constructor parameters in edu.jas.application with type arguments of type RealAlgebraicNumberModifierConstructorDescriptionEvaluateToComplexReal
(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> fac, Complex<RealAlgebraicNumber<C>> r) EvaluateToComplexReal
(GenPolynomialRing<Complex<RealAlgebraicNumber<C>>> fac, Complex<RealAlgebraicNumber<C>> r) IdealWithComplexAlgebraicRoots
(IdealWithUniv<D> iu, List<List<Complex<RealAlgebraicNumber<D>>>> cr) Constructor.