Package edu.jas.gb
Interface WordReduction<C extends RingElem<C>>
- Type Parameters:
C
- coefficient type
- All Superinterfaces:
Serializable
- All Known Subinterfaces:
WordPseudoReduction<C>
- All Known Implementing Classes:
WordPseudoReductionSeq
,WordReductionAbstract
,WordReductionSeq
Polynomial WordReduction interface. Defines S-Polynomial, normalform, module
criterion and irreducible set.
-
Method Summary
Modifier and TypeMethodDescriptionirreducibleSet
(List<GenWordPolynomial<C>> Pp) Irreducible set.boolean
isNormalform
(List<GenWordPolynomial<C>> Pp) Is in Normalform.boolean
isNormalform
(List<GenWordPolynomial<C>> P, GenWordPolynomial<C> A) Is in Normalform.boolean
isReducible
(List<GenWordPolynomial<C>> P, GenWordPolynomial<C> A) Is reducible.boolean
isReductionNF
(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap, GenWordPolynomial<C> Np) Is reduction of normal form.boolean
isTopReducible
(List<GenWordPolynomial<C>> P, GenWordPolynomial<C> A) Is top reducible.leftNormalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform with left recording.leftNormalform
(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform with left recording.normalform
(List<GenWordPolynomial<C>> P, GenWordPolynomial<C> A) Normalform.normalform
(List<GenWordPolynomial<C>> Pp, List<GenWordPolynomial<C>> Ap) Normalform Set.normalform
(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform with left and right recording.rightNormalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Right normalform with recording.rightNormalform
(List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Right normalform with recording.SPolynomial
(C a, Word l1, GenWordPolynomial<C> A, Word r1, C b, Word l2, GenWordPolynomial<C> B, Word r2) S-Polynomials of non-commutative polynomials.SPolynomials
(GenWordPolynomial<C> Ap, GenWordPolynomial<C> Bp) S-Polynomials of non-commutative polynomials.
-
Method Details
-
SPolynomials
S-Polynomials of non-commutative polynomials.- Parameters:
Ap
- word polynomial.Bp
- word polynomial.- Returns:
- list of all spol(Ap,Bp) the S-polynomials of Ap and Bp.
-
SPolynomial
GenWordPolynomial<C> SPolynomial(C a, Word l1, GenWordPolynomial<C> A, Word r1, C b, Word l2, GenWordPolynomial<C> B, Word r2) S-Polynomials of non-commutative polynomials.- Parameters:
a
- leading base coefficient of B.l1
- word.A
- word polynomial.r1
- word.b
- leading base coefficient of A.l2
- word.B
- word polynomial.r2
- word.- Returns:
- list of all spol(Ap,Bp) the S-polynomials of Ap and Bp.
-
isTopReducible
Is top reducible. Condition is lt(B) | lt(A) for some B in F.- Parameters:
P
- polynomial list.A
- polynomial.- Returns:
- true if A is top reducible with respect to P.
-
isReducible
Is reducible.- Parameters:
P
- polynomial list.A
- polynomial.- Returns:
- true if A is reducible with respect to P.
-
isNormalform
Is in Normalform.- Parameters:
P
- polynomial list.A
- polynomial.- Returns:
- true if A is in normalform with respect to P.
-
isNormalform
Is in Normalform.- Parameters:
Pp
- polynomial list.- Returns:
- true if each A in Pp is in normalform with respect to Pp\{A}.
-
normalform
Normalform.- Parameters:
P
- polynomial list.A
- polynomial.- Returns:
- nf(A) with respect to P.
-
normalform
Normalform Set.- Parameters:
Pp
- polynomial list.Ap
- polynomial list.- Returns:
- list of nf(a) with respect to Pp for all a in Ap.
-
normalform
GenWordPolynomial<C> normalform(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform with left and right recording.- Parameters:
lrow
- left recording matrix, is modified.rrow
- right recording matrix, is modified.Pp
- a polynomial list for reduction.Ap
- a polynomial.- Returns:
- nf(Pp,Ap), the normal form of Ap wrt. Pp.
-
leftNormalform
Normalform with left recording.- Parameters:
Pp
- a polynomial list for reduction.Ap
- a polynomial.- Returns:
- nf(Pp,Ap), the left normal form of Ap wrt. Pp.
-
leftNormalform
GenWordPolynomial<C> leftNormalform(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform with left recording.- Parameters:
lrow
- left recording matrix, is modified.Pp
- a polynomial list for reduction.Ap
- a polynomial.- Returns:
- nf(Pp,Ap), the left normal form of Ap wrt. Pp.
-
irreducibleSet
Irreducible set.- Parameters:
Pp
- polynomial list.- Returns:
- a list P of polynomials which are in normalform wrt. P and with ideal(Pp) = ideal(P).
-
isReductionNF
boolean isReductionNF(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap, GenWordPolynomial<C> Np) Is reduction of normal form.- Parameters:
lrow
- left recording matrix.rrow
- right recording matrix.Pp
- a polynomial list for reduction.Ap
- a polynomial.Np
- nf(Pp,Ap), a normal form of Ap wrt. Pp.- Returns:
- true, if Np + sum( row[i]*Pp[i] ) == Ap, else false.
-
rightNormalform
Right normalform with recording.- Parameters:
Pp
- a polynomial list for reduction.Ap
- a polynomial.- Returns:
- nf(Pp,Ap), the right normal form of Ap wrt. Pp.
-
rightNormalform
GenWordPolynomial<C> rightNormalform(List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Right normalform with recording.- Parameters:
rrow
- right recording matrix, is modified.Pp
- a polynomial list for reduction.Ap
- a polynomial.- Returns:
- nf(Pp,Ap), the right normal form of Ap wrt. Pp.
-