Uses of Class
edu.jas.arith.BigRational
Packages that use BigRational
Package
Description
Groebner base application package.
Basic arithmetic package.
Factorization domain package for solvable polynomial rings.
Groebner bases using unique factorization package.
Generic coefficients polynomial package.
Real and Complex Root Computation package.
Unique factorization domain package.
-
Uses of BigRational in edu.jas.application
Fields in edu.jas.application declared as BigRationalModifier and TypeFieldDescriptionprotected BigRational
RealAlgebraicRing.eps
Epsilon of the isolating rectangle for a complex root.Methods in edu.jas.application that return BigRationalModifier and TypeMethodDescriptionRealAlgebraicRing.getEps()
Get epsilon.RealAlgebraicNumber.getRational()
Return a BigRational approximation of this Element.RealAlgebraicNumber.magnitude()
RealAlgebraicNumber magnitude.Methods in edu.jas.application that return types with arguments of type BigRationalModifier and TypeMethodDescriptionstatic List
<GenPolynomial<BigRational>> ExamplesGeoTheorems.getExample()
get Pappus Example.Methods in edu.jas.application with parameters of type BigRationalModifier and TypeMethodDescriptionstatic <D extends GcdRingElem<D> & Rational>
List<IdealWithComplexRoots<D>> PolyUtilApp.complexRoots
(Ideal<D> G, BigRational eps) Construct superset of complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<List<Complex<BigDecimal>>> PolyUtilApp.complexRoots
(Ideal<D> I, List<GenPolynomial<D>> univs, BigRational eps) Construct superset of complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<IdealWithComplexRoots<D>> PolyUtilApp.complexRoots
(List<IdealWithUniv<D>> Il, BigRational eps) Construct superset of complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<List<Complex<BigDecimal>>> PolyUtilApp.complexRootTuples
(Ideal<D> I, BigRational eps) Construct superset of complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<List<Complex<BigDecimal>>> PolyUtilApp.complexRootTuples
(List<IdealWithUniv<D>> Il, BigRational eps) Construct superset of complex roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<IdealWithRealRoots<D>> PolyUtilApp.realRoots
(Ideal<D> G, BigRational eps) Construct superset of real roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<List<BigDecimal>> PolyUtilApp.realRoots
(Ideal<D> I, List<GenPolynomial<D>> univs, BigRational eps) Construct superset of real roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<IdealWithRealRoots<D>> PolyUtilApp.realRoots
(List<IdealWithUniv<D>> Il, BigRational eps) Construct superset of real roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<List<BigDecimal>> PolyUtilApp.realRootTuples
(Ideal<D> I, BigRational eps) Construct superset of real roots for zero dimensional ideal(G).static <D extends GcdRingElem<D> & Rational>
List<List<BigDecimal>> PolyUtilApp.realRootTuples
(List<IdealWithUniv<D>> Il, BigRational eps) Construct superset of real roots for zero dimensional ideal(G).void
RealAlgebraicRing.refineRoot
(BigRational e) Refine root.void
RealAlgebraicRing.setEps
(BigRational e) Set a new epsilon. -
Uses of BigRational in edu.jas.arith
Fields in edu.jas.arith declared as BigRationalModifier and TypeFieldDescription(package private) BigRational
BigRationalIterator.curr
data structure.static final BigRational
BigRational.HALF
The Constant 1/2.final BigRational
BigComplex.im
Imaginary part of the data structure.final BigRational
BigQuaternion.im
Imaginary part i of the data structure.final BigRational
BigQuaternion.jm
Imaginary part j of the data structure.final BigRational
BigQuaternion.km
Imaginary part k of the data structure.static final BigRational
BigRational.ONE
The Constant 1.final BigRational
BigComplex.re
Real part of the data structure.final BigRational
BigQuaternion.re
Real part of the data structure.static final BigRational
BigRational.ZERO
The Constant 0.Fields in edu.jas.arith with type parameters of type BigRationalModifier and TypeFieldDescription(package private) final Iterator
<BigRational> BigRationalUniqueIterator.ratit
(package private) final Set
<BigRational> BigRationalUniqueIterator.unique
data structure.Methods in edu.jas.arith that return BigRationalModifier and TypeMethodDescriptionBigRational.abs()
Rational number absolute value.static BigRational
BigComplex.CABS
(BigComplex A) Complex number absolute value.static BigRational
ArithUtil.continuedFractionApprox
(List<BigInteger> A) Continued fraction approximation.BigRational.copy()
Clone this.BigRational.copy
(BigRational c) Copy BigRational element c.BigRational.divide
(BigRational S) Rational number quotient.BigRational.egcd
(BigRational S) BigRational extended greatest common divisor.BigRational.factory()
Get the corresponding element factory.BigRational.fromInteger
(long a) Get a BigRational element from a long.BigRational.fromInteger
(BigInteger a) Get a BigRational element from a arith.BigInteger.BigRational.fromInteger
(BigInteger a) Get a BigRational element from a math.BigInteger.BigRational.gcd
(BigRational S) Rational number greatest common divisor.BigComplex.getIm()
Get the imaginary part.BigQuaternion.getIm()
Get the imaginary part im.BigQuaternion.getJm()
Get the imaginary part jm.BigQuaternion.getKm()
Get the imaginary part km.BigRational.getONE()
Get the one element.BigDecimal.getRational()
Get the rational representation.BigInteger.getRational()
Return a BigRational approximation of this Element.BigRational.getRational()
Return a BigRational approximation of this Element.Rational.getRational()
Return a BigRational approximation of this Element.BigComplex.getRe()
Get the real part.BigQuaternion.getRe()
Get the real part.BigRational.getZERO()
Get the zero element.BigRational.inverse()
Rational number inverse.BigRational.multiply
(BigRational S) Rational number product.BigRational.negate()
Rational number negative.BigRationalIterator.next()
Get next rational.BigRationalUniqueIterator.next()
Get next rational.static BigRational
BigOctonion.OABS
(BigOctonion A) Octonion number absolute value.Parse rational number from Reader.Parse rational number from String.static BigRational
BigQuaternion.QABS
(BigQuaternion A) Quaternion number absolute value.BigRational.quotientRemainder
(BigRational S) Quotient and remainder by division of this by S.BigRational.random
(int n) Rational number, random.Rational number, random.static BigRational
BigRational.reduction
(BigInteger n, BigInteger d) Rational number reduction to lowest terms.BigRational.remainder
(BigRational S) Rational number remainder.static BigRational
BigRational.RNABS
(BigRational R) Rational number absolute value.static BigRational
BigRational.RNDIF
(BigRational R, BigRational S) Rational number difference.static BigRational
BigRational.RNINT
(BigInteger A) Rational number from integer.static BigRational
BigRational.RNINV
(BigRational R) Rational number inverse.static BigRational
BigRational.RNNEG
(BigRational R) Rational number negative.static BigRational
BigRational.RNPROD
(BigRational R, BigRational S) Rational number product.static BigRational
BigRational.RNQ
(BigRational R, BigRational S) Rational number quotient.static BigRational
BigRational.RNRAND
(int NL) Rational number, random.static BigRational
BigRational.RNRED
(BigInteger n, BigInteger d) Rational number reduction to lowest terms.static BigRational
BigRational.RNSUM
(BigRational R, BigRational S) Rational number sum.static BigRational
Roots.sqrt
(BigRational A) Square root.BigRational.subtract
(BigRational S) Rational number difference.BigRational.sum
(BigRational S) Rational number sum.static BigRational
BigRational.valueOf
(long a) Get a BigRational element from a long.static BigRational
BigRational.valueOf
(BigInteger a) Get a BigRational element from a math.BigInteger.Methods in edu.jas.arith that return types with arguments of type BigRationalModifier and TypeMethodDescriptionBigRational.generators()
Get a list of the generating elements.BigRational.iterator()
Get a BigRational iterator.BigRational.uniqueIterator()
Get a BigRational iterator with no duplicates.Methods in edu.jas.arith with parameters of type BigRationalModifier and TypeMethodDescriptionint
BigRational.compareTo
(BigRational S) Rational number comparison.static List
<BigInteger> ArithUtil.continuedFraction
(BigRational A) Continued fraction.BigRational.copy
(BigRational c) Copy BigRational element c.BigOctonion.divide
(BigRational b) BigOctonion divide.BigQuaternion.divide
(BigRational b) BigQuaternion divide.BigQuaternionInteger.divide
(BigRational b) BigQuaternion divide.BigRational.divide
(BigRational S) Rational number quotient.BigRational.egcd
(BigRational S) BigRational extended greatest common divisor.BigRational.gcd
(BigRational S) Rational number greatest common divisor.BigQuaternion.multiply
(BigRational b) BigQuaternion multiply with BigRational.BigRational.multiply
(BigRational S) Rational number product.BigRational.quotientRemainder
(BigRational S) Quotient and remainder by division of this by S.BigRational.remainder
(BigRational S) Rational number remainder.static BigRational
BigRational.RNABS
(BigRational R) Rational number absolute value.static int
BigRational.RNCOMP
(BigRational R, BigRational S) Rational number comparison.static BigInteger
BigRational.RNDEN
(BigRational R) Rational number denominator.static BigRational
BigRational.RNDIF
(BigRational R, BigRational S) Rational number difference.static void
BigRational.RNDWR
(BigRational R, int NL) Rational number decimal write.static BigRational
BigRational.RNINV
(BigRational R) Rational number inverse.static BigRational
BigRational.RNNEG
(BigRational R) Rational number negative.static BigInteger
BigRational.RNNUM
(BigRational R) Rational number numerator.static BigRational
BigRational.RNPROD
(BigRational R, BigRational S) Rational number product.static BigRational
BigRational.RNQ
(BigRational R, BigRational S) Rational number quotient.static int
BigRational.RNSIGN
(BigRational R) Rational number sign.static BigRational
BigRational.RNSUM
(BigRational R, BigRational S) Rational number sum.static BigRational
Roots.sqrt
(BigRational A) Square root.BigRational.subtract
(BigRational S) Rational number difference.BigRational.sum
(BigRational S) Rational number sum.Constructors in edu.jas.arith with parameters of type BigRationalModifierConstructorDescriptionThe constructor creates a BigComplex object from a BigRational object as real part, the imaginary part is set to 0.BigComplex
(BigRational r, BigRational i) The constructor creates a BigComplex object from two BigRational objects real and imaginary part.Constructor for BigDecimal from BigRational.BigDecimal
(BigRational a, MathContext mc) Constructor for BigDecimal from BigRational.BigOctonion
(BigQuaternionRing fac, BigRational r) Constructor for a BigOctonion from BigRational.Constructor for a BigQuaternion from BigRationals.BigQuaternion
(BigQuaternionRing fac, BigRational r, BigRational i) Constructor for a BigQuaternion from BigRationals.BigQuaternion
(BigQuaternionRing fac, BigRational r, BigRational i, BigRational j) Constructor for a BigQuaternion from BigRationals.BigQuaternion
(BigQuaternionRing fac, BigRational r, BigRational i, BigRational j, BigRational k) Constructor for a BigQuaternion from BigRationals.Constructor for a BigQuaternion from BigRationals.Constructor for a BigQuaternion from BigRationals.BigQuaternionInteger
(BigQuaternionRing fac, BigRational r, BigRational i, BigRational j) Constructor for a BigQuaternion from BigRationals.BigQuaternionInteger
(BigQuaternionRing fac, BigRational r, BigRational i, BigRational j, BigRational k) Constructor for a BigQuaternion from BigRationals.Constructor parameters in edu.jas.arith with type arguments of type BigRationalModifierConstructorDescriptionBigRational iterator constructor. -
Uses of BigRational in edu.jas.fd
Methods in edu.jas.fd that return types with arguments of type BigRationalModifier and TypeMethodDescriptionSGCDFactory.getImplementation
(BigRational fac) Determine suitable implementation of gcd algorithms, case BigRational.SGCDFactory.getProxy
(BigRational fac) Determine suitable proxy for gcd algorithms, case BigRational.Methods in edu.jas.fd with parameters of type BigRationalModifier and TypeMethodDescriptionSGCDFactory.getImplementation
(BigRational fac) Determine suitable implementation of gcd algorithms, case BigRational.SGCDFactory.getProxy
(BigRational fac) Determine suitable proxy for gcd algorithms, case BigRational. -
Uses of BigRational in edu.jas.gbufd
Classes in edu.jas.gbufd with type parameters of type BigRationalModifier and TypeClassDescriptionclass
GroebnerBaseRational<C extends BigRational>
Groebner Base sequential algorithm for rational coefficients, fraction free computation.Methods in edu.jas.gbufd that return types with arguments of type BigRationalModifier and TypeMethodDescriptionGroebnerBaseRational.GB
(int modv, List<GenPolynomial<BigRational>> F) Groebner base using fraction free computation.static GroebnerBaseAbstract
<BigRational> GBFactory.getImplementation
(BigRational fac) Determine suitable implementation of GB algorithms, case BigRational.static GroebnerBaseAbstract
<BigRational> GBFactory.getImplementation
(BigRational fac, PairList<BigRational> pl) Determine suitable implementation of GB algorithms, case BigRational.static GroebnerBaseAbstract
<BigRational> GBFactory.getImplementation
(BigRational fac, GBFactory.Algo a) Determine suitable implementation of GB algorithms, case BigRational.static GroebnerBaseAbstract
<BigRational> GBFactory.getImplementation
(BigRational fac, GBFactory.Algo a, PairList<BigRational> pl) Determine suitable implementation of GB algorithms, case BigRational.SGBFactory.getImplementation
(BigRational fac) Determine suitable implementation of GB algorithms, case BigRational.SGBFactory.getImplementation
(BigRational fac, PairList<BigRational> pl) Determine suitable implementation of GB algorithms, case BigRational.SGBFactory.getImplementation
(BigRational fac, GBFactory.Algo a) Determine suitable implementation of GB algorithms, case BigRational.SGBFactory.getImplementation
(BigRational fac, GBFactory.Algo a, PairList<BigRational> pl) Determine suitable implementation of GB algorithms, case BigRational.GroebnerBaseRational.minimalGB
(List<GenPolynomial<BigRational>> Gp) Minimal ordered Groebner basis.Methods in edu.jas.gbufd with parameters of type BigRationalModifier and TypeMethodDescriptionstatic GroebnerBaseAbstract
<BigRational> GBFactory.getImplementation
(BigRational fac) Determine suitable implementation of GB algorithms, case BigRational.static GroebnerBaseAbstract
<BigRational> GBFactory.getImplementation
(BigRational fac, PairList<BigRational> pl) Determine suitable implementation of GB algorithms, case BigRational.static GroebnerBaseAbstract
<BigRational> GBFactory.getImplementation
(BigRational fac, GBFactory.Algo a) Determine suitable implementation of GB algorithms, case BigRational.static GroebnerBaseAbstract
<BigRational> GBFactory.getImplementation
(BigRational fac, GBFactory.Algo a, PairList<BigRational> pl) Determine suitable implementation of GB algorithms, case BigRational.SGBFactory.getImplementation
(BigRational fac) Determine suitable implementation of GB algorithms, case BigRational.SGBFactory.getImplementation
(BigRational fac, PairList<BigRational> pl) Determine suitable implementation of GB algorithms, case BigRational.SGBFactory.getImplementation
(BigRational fac, GBFactory.Algo a) Determine suitable implementation of GB algorithms, case BigRational.SGBFactory.getImplementation
(BigRational fac, GBFactory.Algo a, PairList<BigRational> pl) Determine suitable implementation of GB algorithms, case BigRational.Method parameters in edu.jas.gbufd with type arguments of type BigRationalModifier and TypeMethodDescriptionint
GroebnerBaseFGLMExamples.bitHeight
(List<GenPolynomial<BigRational>> list) Method bitHeight returns the bitlength of the greatest number occurring during the computation of a Groebner base.GroebnerBaseRational.GB
(int modv, List<GenPolynomial<BigRational>> F) Groebner base using fraction free computation.static GroebnerBaseAbstract
<BigRational> GBFactory.getImplementation
(BigRational fac, PairList<BigRational> pl) Determine suitable implementation of GB algorithms, case BigRational.static GroebnerBaseAbstract
<BigRational> GBFactory.getImplementation
(BigRational fac, GBFactory.Algo a, PairList<BigRational> pl) Determine suitable implementation of GB algorithms, case BigRational.SGBFactory.getImplementation
(BigRational fac, PairList<BigRational> pl) Determine suitable implementation of GB algorithms, case BigRational.SGBFactory.getImplementation
(BigRational fac, GBFactory.Algo a, PairList<BigRational> pl) Determine suitable implementation of GB algorithms, case BigRational.GroebnerBaseRational.minimalGB
(List<GenPolynomial<BigRational>> Gp) Minimal ordered Groebner basis. -
Uses of BigRational in edu.jas.poly
Methods in edu.jas.poly that return BigRationalMethods in edu.jas.poly that return types with arguments of type BigRationalModifier and TypeMethodDescriptionstatic GenPolynomial
<BigRational> PolyUtil.imaginaryPart
(GenPolynomialRing<BigRational> fac, GenPolynomial<BigComplex> A) Imaginary part.static GenPolynomial
<BigRational> PolyUtil.realPart
(GenPolynomialRing<BigRational> fac, GenPolynomial<BigComplex> A) Real part.Methods in edu.jas.poly with parameters of type BigRationalModifier and TypeMethodDescriptionRatNumer.eval
(BigRational c) RatToCompl.eval
(BigRational c) RatToInt.eval
(BigRational c) RatToIntFactor.eval
(BigRational c) Method parameters in edu.jas.poly with type arguments of type BigRationalModifier and TypeMethodDescriptionstatic GenPolynomial
<BigComplex> PolyUtil.complexFromRational
(GenPolynomialRing<BigComplex> fac, GenPolynomial<BigRational> A) Complex from rational coefficients.RatToIntPoly.eval
(GenPolynomial<BigRational> c) static GenPolynomial
<BigRational> PolyUtil.imaginaryPart
(GenPolynomialRing<BigRational> fac, GenPolynomial<BigComplex> A) Imaginary part.static GenPolynomial
<BigInteger> PolyUtil.integerFromRationalCoefficients
(GenPolynomialRing<BigInteger> fac, GenPolynomial<BigRational> A) BigInteger from BigRational coefficients.static GenPolynomial
<BigInteger> PolyUtil.integerFromRationalCoefficients
(GenPolynomialRing<BigInteger> fac, BigInteger gcd, BigInteger lcm, GenPolynomial<BigRational> A) BigInteger from BigRational coefficients.static List
<GenPolynomial<BigInteger>> PolyUtil.integerFromRationalCoefficients
(GenPolynomialRing<BigInteger> fac, List<GenPolynomial<BigRational>> L) BigInteger from BigRational coefficients.static Object[]
PolyUtil.integerFromRationalCoefficientsFactor
(GenPolynomialRing<BigInteger> fac, GenPolynomial<BigRational> A) BigInteger from BigRational coefficients.static GenPolynomial
<BigRational> PolyUtil.realPart
(GenPolynomialRing<BigRational> fac, GenPolynomial<BigComplex> A) Real part. -
Uses of BigRational in edu.jas.root
Fields in edu.jas.root declared as BigRationalModifier and TypeFieldDescriptionprotected BigRational
ComplexAlgebraicRing.eps
Epsilon of the isolating rectangle for a complex root.protected BigRational
RealAlgebraicRing.eps
Precision of the isolating interval for a real root.Methods in edu.jas.root that return BigRationalModifier and TypeMethodDescriptionstatic BigRational
RealArithUtil.continuedFractionApprox
(List<BigInteger> A) Continued fraction approximation.ComplexAlgebraicRing.getEps()
Get epsilon.RealAlgebraicRing.getEps()
Get the epsilon.RealAlgebraicNumber.getRational()
Return a BigRational approximation of this Element.RealAlgebraicNumber.magnitude()
RealAlgebraicNumber magnitude.Interval.rationalLength()
BigRational Length.RealRootTuple.rationalLength()
Rational Length.Rectangle.rationalLength()
Rational Length.Interval.rationalMiddle()
Rational middle point.Methods in edu.jas.root that return types with arguments of type BigRationalModifier and TypeMethodDescriptionRealRootTuple.getRational()
Rational approximation of each coordinate.Rectangle.getRationalCenter()
Complex of BigRational approximation of center.ComplexAlgebraicNumber.magnitude()
ComplexAlgebraicNumber magnitude.Methods in edu.jas.root with parameters of type BigRationalModifier and TypeMethodDescriptionComplexRootsAbstract.approximateRoot
(Rectangle<C> rt, GenPolynomial<Complex<C>> f, BigRational eps) Approximate complex root.RealRootsAbstract.approximateRoot
(Interval<C> iv, GenPolynomial<C> f, BigRational eps) Approximate real root.ComplexRootsAbstract.approximateRoots
(GenPolynomial<Complex<C>> a, BigRational eps) List of decimal approximations of complex roots of complex polynomial.RealRootsAbstract.approximateRoots
(GenPolynomial<C> f, BigRational eps) Approximate real roots.static <C extends GcdRingElem<C> & Rational>
List<ComplexAlgebraicNumber<C>> RootFactory.complexAlgebraicNumbers
(GenPolynomial<C> f, BigRational eps) Complex algebraic numbers.static <C extends GcdRingElem<C> & Rational>
List<ComplexAlgebraicNumber<C>> RootFactory.complexAlgebraicNumbersComplex
(GenPolynomial<Complex<C>> f, BigRational eps) Complex algebraic numbers.ComplexRootsAbstract.complexMagnitude
(Rectangle<C> rect, GenPolynomial<Complex<C>> f, GenPolynomial<Complex<C>> g, BigRational eps) Complex algebraic number magnitude.ComplexRoots.complexRootRefinement
(Rectangle<C> rect, GenPolynomial<Complex<C>> a, BigRational len) Complex root refinement of complex polynomial a on rectangle.ComplexRootsAbstract.complexRootRefinement
(Rectangle<C> rect, GenPolynomial<Complex<C>> a, BigRational len) Complex root refinement of complex polynomial a on rectangle.ComplexRootsAbstract.complexRoots
(GenPolynomial<Complex<C>> a, BigRational len) List of complex roots of complex polynomial.static <C extends GcdRingElem<C> & Rational>
DecimalRoots<C> RootFactory.decimalRoots
(GenPolynomial<C> f, BigRational eps) Roots as real and complex decimal numbers.static <C extends GcdRingElem<C> & Rational>
DecimalRoots<C> RootFactory.decimalRoots
(AlgebraicRoots<C> ar, BigRational eps) Roots as real and complex decimal numbers.static <C extends GcdRingElem<C> & Rational>
List<Complex<BigDecimal>> RootFactory.filterOutRealRoots
(GenPolynomial<C> f, List<Complex<BigDecimal>> c, List<BigDecimal> r, BigRational eps) Filter real roots from complex roots.RealAlgebraicRing.fromRational
(BigRational a) Get a RealAlgebraicNumber element from a BigRational value.RealRootsAbstract.invariantMagnitudeInterval
(Interval<C> iv, GenPolynomial<C> f, GenPolynomial<C> g, BigRational eps) Invariant interval for algebraic number magnitude.ComplexRootsAbstract.invariantMagnitudeRectangle
(Rectangle<C> rect, GenPolynomial<Complex<C>> f, GenPolynomial<Complex<C>> g, BigRational eps) Invariant rectangle for algebraic number magnitude.boolean
RealRootsAbstract.isApproximateRoot
(List<BigDecimal> R, GenPolynomial<C> f, BigRational eps) Test if each x in R is an approximate real root.static <C extends GcdRingElem<C> & Rational>
booleanRootFactory.isRealRoot
(GenPolynomial<C> f, Complex<BigDecimal> c, BigDecimal r, BigRational eps) Is complex decimal number a real root of a polynomial.static <C extends GcdRingElem<C> & Rational>
List<RealAlgebraicNumber<C>> RootFactory.realAlgebraicNumbers
(GenPolynomial<C> f, BigRational eps) Real algebraic numbers.static <C extends GcdRingElem<C> & Rational>
List<RealAlgebraicNumber<C>> RootFactory.realAlgebraicNumbersField
(GenPolynomial<C> f, BigRational eps) Real algebraic numbers from a field.static <C extends GcdRingElem<C> & Rational>
List<RealAlgebraicNumber<C>> RootFactory.realAlgebraicNumbersIrred
(GenPolynomial<C> f, BigRational eps) Real algebraic numbers from a irreducible polynomial.RealRoots.realMagnitude
(Interval<C> iv, GenPolynomial<C> f, GenPolynomial<C> g, BigRational eps) Real algebraic number magnitude.RealRootsAbstract.realMagnitude
(Interval<C> iv, GenPolynomial<C> f, GenPolynomial<C> g, BigRational eps) Real algebraic number magnitude.RealRoots.realRoots
(GenPolynomial<C> f, BigRational eps) Isolating intervals for the real roots.RealRootsAbstract.realRoots
(GenPolynomial<C> f, BigRational eps) Isolating intervals for the real roots.RealRoots.refineInterval
(Interval<C> iv, GenPolynomial<C> f, BigRational eps) Refine interval.RealRootsAbstract.refineInterval
(Interval<C> iv, GenPolynomial<C> f, BigRational eps) Refine interval.RealRoots.refineIntervals
(List<Interval<C>> V, GenPolynomial<C> f, BigRational eps) Refine intervals.RealRootsAbstract.refineIntervals
(List<Interval<C>> V, GenPolynomial<C> f, BigRational eps) Refine intervals.void
ComplexAlgebraicRing.refineRoot
(BigRational e) Refine root.void
RealAlgebraicRing.refineRoot
(BigRational e) Refine root.void
RealRootTuple.refineRoot
(BigRational eps) Refine root isolating intervals.static <C extends GcdRingElem<C> & Rational>
voidRootFactory.rootRefine
(AlgebraicRoots<C> a, BigRational eps) Root refinement of real and complex algebraic numbers.void
ComplexAlgebraicRing.setEps
(BigRational e) Set a new epsilon.void
RealAlgebraicRing.setEps
(BigRational e) Set a new epsilon.Method parameters in edu.jas.root with type arguments of type BigRationalModifier and TypeMethodDescriptionstatic List
<BigInteger> RealArithUtil.continuedFraction
(RealAlgebraicNumber<BigRational> A, int M) Continued fraction. -
Uses of BigRational in edu.jas.ufd
Methods in edu.jas.ufd that return types with arguments of type BigRationalModifier and TypeMethodDescriptionFactorRational.baseFactorsSquarefree
(GenPolynomial<BigRational> P) GenPolynomial base factorization of a squarefree polynomial.FactorRational.factors
(GenPolynomial<BigRational> P) GenPolynomial factorization of a polynomial.FactorRational.factorsSquarefree
(GenPolynomial<BigRational> P) GenPolynomial factorization of a squarefree polynomial.static FactorAbstract
<BigRational> FactorFactory.getImplementation
(BigRational fac) Determine suitable implementation of factorization algorithms, case BigRational.GCDFactory.getImplementation
(BigRational fac) Determine suitable implementation of gcd algorithms, case BigRational.static SquarefreeAbstract
<BigRational> SquarefreeFactory.getImplementation
(BigRational fac) Determine suitable implementation of squarefree factorization algorithms, case BigRational.GCDFactory.getProxy
(BigRational fac) Determine suitable proxy for gcd algorithms, case BigRational.Methods in edu.jas.ufd with parameters of type BigRationalModifier and TypeMethodDescriptionstatic FactorAbstract
<BigRational> FactorFactory.getImplementation
(BigRational fac) Determine suitable implementation of factorization algorithms, case BigRational.GCDFactory.getImplementation
(BigRational fac) Determine suitable implementation of gcd algorithms, case BigRational.static SquarefreeAbstract
<BigRational> SquarefreeFactory.getImplementation
(BigRational fac) Determine suitable implementation of squarefree factorization algorithms, case BigRational.GCDFactory.getProxy
(BigRational fac) Determine suitable proxy for gcd algorithms, case BigRational.Method parameters in edu.jas.ufd with type arguments of type BigRationalModifier and TypeMethodDescriptionFactorRational.baseFactorsSquarefree
(GenPolynomial<BigRational> P) GenPolynomial base factorization of a squarefree polynomial.FactorRational.factors
(GenPolynomial<BigRational> P) GenPolynomial factorization of a polynomial.FactorRational.factorsSquarefree
(GenPolynomial<BigRational> P) GenPolynomial factorization of a squarefree polynomial.static GenPolynomial
<GenPolynomial<BigInteger>> PolyUfdUtil.integerFromRationalCoefficients
(GenPolynomialRing<GenPolynomial<BigInteger>> fac, GenPolynomial<GenPolynomial<BigRational>> A) BigInteger from BigRational coefficients.static List
<GenPolynomial<GenPolynomial<BigInteger>>> PolyUfdUtil.integerFromRationalCoefficients
(GenPolynomialRing<GenPolynomial<BigInteger>> fac, List<GenPolynomial<GenPolynomial<BigRational>>> L) BigInteger from BigRational coefficients.