Uses of Class
edu.jas.poly.GenWordPolynomial
Packages that use GenWordPolynomial
Package
Description
Groebner base application package.
Groebner bases package.
Groebner bases using unique factorization package.
Generic coefficients polynomial package.
-
Uses of GenWordPolynomial in edu.jas.application
Fields in edu.jas.application declared as GenWordPolynomialModifier and TypeFieldDescriptionfinal GenWordPolynomial
<C> WordResidue.val
Value part of the element data structure.Fields in edu.jas.application with type parameters of type GenWordPolynomialModifier and TypeFieldDescriptionprotected List
<GenWordPolynomial<C>> WordIdeal.list
The data structure is a list of word polynomials.Methods in edu.jas.application that return GenWordPolynomialModifier and TypeMethodDescriptionWordResidue.denominator()
Denominator.WordIdeal.inverse
(GenWordPolynomial<C> h) Inverse for element modulo this ideal.WordIdeal.normalform
(GenWordPolynomial<C> h) Normalform for element.WordResidue.numerator()
Numerator.WordResidue.value()
Value.Methods in edu.jas.application that return types with arguments of type GenWordPolynomialModifier and TypeMethodDescriptionWordIdeal.getList()
Get the List of GenWordPolynomials.WordIdeal.normalform
(List<GenWordPolynomial<C>> L) Normalform for list of word elements.Methods in edu.jas.application with parameters of type GenWordPolynomialModifier and TypeMethodDescriptionboolean
WordIdeal.contains
(GenWordPolynomial<C> b) Word ideal containment.WordResidueRing.create
(GenWordPolynomial<C> n) Create from numerator.WordResidueRing.create
(GenWordPolynomial<C> n, GenWordPolynomial<C> d) Create from numerator, denominator pair.WordIdeal.inverse
(GenWordPolynomial<C> h) Inverse for element modulo this ideal.boolean
WordIdeal.isUnit
(GenWordPolynomial<C> h) Test if element is a unit modulo this ideal.WordResidue.multiply
(GenWordPolynomial<C> S) WordResidue multiplication.WordIdeal.normalform
(GenWordPolynomial<C> h) Normalform for element.WordIdeal.product
(GenWordPolynomial<C> b) Left product.WordIdeal.sum
(GenWordPolynomial<C> b) Word summation.Method parameters in edu.jas.application with type arguments of type GenWordPolynomialModifier and TypeMethodDescriptionboolean
WordIdeal.contains
(List<GenWordPolynomial<C>> B) Word ideal containment.ResidueSolvableWordPolynomialRing.fromPolyCoefficients
(GenSolvablePolynomial<GenWordPolynomial<C>> A) Word residue coefficients from integral word polynomial coefficients.WordIdeal.normalform
(List<GenWordPolynomial<C>> L) Normalform for list of word elements.WordIdeal.sum
(List<GenWordPolynomial<C>> L) Word summation.Constructors in edu.jas.application with parameters of type GenWordPolynomialModifierConstructorDescriptionWordResidue
(WordResidueRing<C> r, GenWordPolynomial<C> a) The constructor creates a WordResidue object from a ring factory and a polynomial.WordResidue
(WordResidueRing<C> r, GenWordPolynomial<C> a, int u) The constructor creates a WordResidue object from a ring factory, a polynomial and an indicator if a is a unit.Constructor parameters in edu.jas.application with type arguments of type GenWordPolynomialModifierConstructorDescriptionWordIdeal
(GenWordPolynomialRing<C> ring, List<GenWordPolynomial<C>> list) Constructor.WordIdeal
(GenWordPolynomialRing<C> ring, List<GenWordPolynomial<C>> list, boolean gb) Constructor.WordIdeal
(GenWordPolynomialRing<C> ring, List<GenWordPolynomial<C>> list, boolean gb, WordGroebnerBaseAbstract<C> bb) Constructor.WordIdeal
(GenWordPolynomialRing<C> ring, List<GenWordPolynomial<C>> list, boolean gb, WordGroebnerBaseAbstract<C> bb, WordReduction<C> red) Constructor.WordIdeal
(GenWordPolynomialRing<C> ring, List<GenWordPolynomial<C>> list, WordGroebnerBaseAbstract<C> bb, WordReduction<C> red) Constructor. -
Uses of GenWordPolynomial in edu.jas.gb
Fields in edu.jas.gb declared as GenWordPolynomialModifier and TypeFieldDescriptionfinal GenWordPolynomial
<C> WordPair.pi
final GenWordPolynomial
<C> WordPair.pj
Fields in edu.jas.gb with type parameters of type GenWordPolynomialModifier and TypeFieldDescriptionprotected final List
<GenWordPolynomial<C>> OrderedWordPairlist.P
Methods in edu.jas.gb that return GenWordPolynomialModifier and TypeMethodDescriptionWordReduction.leftNormalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform with left recording.WordReduction.leftNormalform
(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform with left recording.WordReductionSeq.leftNormalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Left normalform with recording.WordReductionSeq.leftNormalform
(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Left normalform with recording.WordReduction.normalform
(List<GenWordPolynomial<C>> P, GenWordPolynomial<C> A) Normalform.WordReduction.normalform
(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform with left and right recording.WordReductionSeq.normalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform.WordReductionSeq.normalform
(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform with left and right recording.WordReduction.rightNormalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Right normalform with recording.WordReduction.rightNormalform
(List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Right normalform with recording.WordReductionSeq.rightNormalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Right normalform with recording.WordReductionSeq.rightNormalform
(List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Right normalform with recording.WordReduction.SPolynomial
(C a, Word l1, GenWordPolynomial<C> A, Word r1, C b, Word l2, GenWordPolynomial<C> B, Word r2) S-Polynomials of non-commutative polynomials.WordReductionAbstract.SPolynomial
(C a, Word l1, GenWordPolynomial<C> A, Word r1, C b, Word l2, GenWordPolynomial<C> B, Word r2) S-Polynomials of non-commutative polynomials.WordReductionAbstract.SPolynomial
(Overlap ol, C a, GenWordPolynomial<C> A, C b, GenWordPolynomial<C> B) S-Polynomials of non-commutative polynomials.Methods in edu.jas.gb that return types with arguments of type GenWordPolynomialModifier and TypeMethodDescriptionWordGroebnerBase.GB
(List<GenWordPolynomial<C>> F) Groebner base using pairlist class.abstract List
<GenWordPolynomial<C>> WordGroebnerBaseAbstract.GB
(List<GenWordPolynomial<C>> F) Groebner base using pairlist class.WordGroebnerBaseSeq.GB
(List<GenWordPolynomial<C>> F) Word Groebner base using word pairlist class.OrderedWordPairlist.getList()
Get the list of polynomials.WordPairList.getList()
Get the list of word polynomials.WordReduction.irreducibleSet
(List<GenWordPolynomial<C>> Pp) Irreducible set.WordReductionAbstract.irreducibleSet
(List<GenWordPolynomial<C>> Pp) Irreducible set.WordGroebnerBase.minimalGB
(List<GenWordPolynomial<C>> Gp) Minimal ordered groebner basis.WordGroebnerBaseAbstract.minimalGB
(List<GenWordPolynomial<C>> Gp) Minimal ordered Groebner basis.WordReduction.normalform
(List<GenWordPolynomial<C>> Pp, List<GenWordPolynomial<C>> Ap) Normalform Set.WordReductionAbstract.normalform
(List<GenWordPolynomial<C>> Pp, List<GenWordPolynomial<C>> Ap) Normalform Set.WordGroebnerBaseAbstract.normalizeZerosOnes
(List<GenWordPolynomial<C>> A) Normalize polynomial list.WordReduction.SPolynomials
(GenWordPolynomial<C> Ap, GenWordPolynomial<C> Bp) S-Polynomials of non-commutative polynomials.WordReductionAbstract.SPolynomials
(GenWordPolynomial<C> Ap, GenWordPolynomial<C> Bp) S-Polynomials of non-commutative polynomials.Methods in edu.jas.gb with parameters of type GenWordPolynomialModifier and TypeMethodDescriptionboolean
WordReduction.isNormalform
(List<GenWordPolynomial<C>> P, GenWordPolynomial<C> A) Is in Normalform.boolean
WordReductionAbstract.isNormalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Is in Normalform.boolean
WordReduction.isReducible
(List<GenWordPolynomial<C>> P, GenWordPolynomial<C> A) Is reducible.boolean
WordReductionAbstract.isReducible
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Is reducible.boolean
WordReduction.isReductionNF
(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap, GenWordPolynomial<C> Np) Is reduction of normal form.boolean
WordReductionAbstract.isReductionNF
(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap, GenWordPolynomial<C> Np) Is reduction of normal form.boolean
WordReduction.isTopReducible
(List<GenWordPolynomial<C>> P, GenWordPolynomial<C> A) Is top reducible.boolean
WordReductionAbstract.isTopReducible
(List<GenWordPolynomial<C>> P, GenWordPolynomial<C> A) Is top reducible.WordReduction.leftNormalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform with left recording.WordReduction.leftNormalform
(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform with left recording.WordReductionSeq.leftNormalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Left normalform with recording.WordReductionSeq.leftNormalform
(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Left normalform with recording.WordReduction.normalform
(List<GenWordPolynomial<C>> P, GenWordPolynomial<C> A) Normalform.WordReduction.normalform
(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform with left and right recording.WordReductionSeq.normalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform.WordReductionSeq.normalform
(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform with left and right recording.int
OrderedWordPairlist.put
(GenWordPolynomial<C> p) Put one Polynomial to the pairlist and reduction matrix.int
WordPairList.put
(GenWordPolynomial<C> p) Put one Word Polynomial to the pairlist and reduction matrix.int
OrderedWordPairlist.putOne
(GenWordPolynomial<C> one) Put the ONE-Polynomial to the pairlist.WordReduction.rightNormalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Right normalform with recording.WordReduction.rightNormalform
(List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Right normalform with recording.WordReductionSeq.rightNormalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Right normalform with recording.WordReductionSeq.rightNormalform
(List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Right normalform with recording.WordReduction.SPolynomial
(C a, Word l1, GenWordPolynomial<C> A, Word r1, C b, Word l2, GenWordPolynomial<C> B, Word r2) S-Polynomials of non-commutative polynomials.WordReductionAbstract.SPolynomial
(C a, Word l1, GenWordPolynomial<C> A, Word r1, C b, Word l2, GenWordPolynomial<C> B, Word r2) S-Polynomials of non-commutative polynomials.WordReductionAbstract.SPolynomial
(Overlap ol, C a, GenWordPolynomial<C> A, C b, GenWordPolynomial<C> B) S-Polynomials of non-commutative polynomials.WordReduction.SPolynomials
(GenWordPolynomial<C> Ap, GenWordPolynomial<C> Bp) S-Polynomials of non-commutative polynomials.WordReductionAbstract.SPolynomials
(GenWordPolynomial<C> Ap, GenWordPolynomial<C> Bp) S-Polynomials of non-commutative polynomials.Method parameters in edu.jas.gb with type arguments of type GenWordPolynomialModifier and TypeMethodDescriptionint
WordGroebnerBaseAbstract.commonZeroTest
(List<GenWordPolynomial<C>> F) Common zero test, test if univariate leading words exist for all variables.WordGroebnerBase.GB
(List<GenWordPolynomial<C>> F) Groebner base using pairlist class.abstract List
<GenWordPolynomial<C>> WordGroebnerBaseAbstract.GB
(List<GenWordPolynomial<C>> F) Groebner base using pairlist class.WordGroebnerBaseSeq.GB
(List<GenWordPolynomial<C>> F) Word Groebner base using word pairlist class.WordReduction.irreducibleSet
(List<GenWordPolynomial<C>> Pp) Irreducible set.WordReductionAbstract.irreducibleSet
(List<GenWordPolynomial<C>> Pp) Irreducible set.boolean
WordGroebnerBase.isGB
(List<GenWordPolynomial<C>> F) Groebner base test.boolean
WordGroebnerBaseAbstract.isGB
(List<GenWordPolynomial<C>> F) Word Groebner base test.boolean
WordGroebnerBaseAbstract.isMinimalGB
(List<GenWordPolynomial<C>> Gp) Test for minimal ordered Groebner basis.boolean
WordReduction.isNormalform
(List<GenWordPolynomial<C>> Pp) Is in Normalform.boolean
WordReduction.isNormalform
(List<GenWordPolynomial<C>> P, GenWordPolynomial<C> A) Is in Normalform.boolean
WordReductionAbstract.isNormalform
(List<GenWordPolynomial<C>> Pp) Is in Normalform.boolean
WordReductionAbstract.isNormalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Is in Normalform.boolean
WordReduction.isReducible
(List<GenWordPolynomial<C>> P, GenWordPolynomial<C> A) Is reducible.boolean
WordReductionAbstract.isReducible
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Is reducible.boolean
WordReduction.isReductionNF
(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap, GenWordPolynomial<C> Np) Is reduction of normal form.boolean
WordReductionAbstract.isReductionNF
(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap, GenWordPolynomial<C> Np) Is reduction of normal form.boolean
WordReduction.isTopReducible
(List<GenWordPolynomial<C>> P, GenWordPolynomial<C> A) Is top reducible.boolean
WordReductionAbstract.isTopReducible
(List<GenWordPolynomial<C>> P, GenWordPolynomial<C> A) Is top reducible.WordReduction.leftNormalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform with left recording.WordReduction.leftNormalform
(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform with left recording.WordReductionSeq.leftNormalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Left normalform with recording.WordReductionSeq.leftNormalform
(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Left normalform with recording.WordGroebnerBase.minimalGB
(List<GenWordPolynomial<C>> Gp) Minimal ordered groebner basis.WordGroebnerBaseAbstract.minimalGB
(List<GenWordPolynomial<C>> Gp) Minimal ordered Groebner basis.WordReduction.normalform
(List<GenWordPolynomial<C>> P, GenWordPolynomial<C> A) Normalform.WordReduction.normalform
(List<GenWordPolynomial<C>> Pp, List<GenWordPolynomial<C>> Ap) Normalform Set.WordReduction.normalform
(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform with left and right recording.WordReductionAbstract.normalform
(List<GenWordPolynomial<C>> Pp, List<GenWordPolynomial<C>> Ap) Normalform Set.WordReductionSeq.normalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform.WordReductionSeq.normalform
(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform with left and right recording.WordGroebnerBaseAbstract.normalizeZerosOnes
(List<GenWordPolynomial<C>> A) Normalize polynomial list.int
OrderedWordPairlist.put
(List<GenWordPolynomial<C>> F) Put all word polynomials in F to the pairlist and reduction matrix.int
WordPairList.put
(List<GenWordPolynomial<C>> F) Put all word polynomials in F to the pairlist and reduction matrix.WordReduction.rightNormalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Right normalform with recording.WordReduction.rightNormalform
(List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Right normalform with recording.WordReductionSeq.rightNormalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Right normalform with recording.WordReductionSeq.rightNormalform
(List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Right normalform with recording.WordGroebnerBaseAbstract.univariateDegrees
(List<GenWordPolynomial<C>> A) Univariate head term degrees.Constructors in edu.jas.gb with parameters of type GenWordPolynomialModifierConstructorDescriptionWordPair
(GenWordPolynomial<C> a, GenWordPolynomial<C> b, int i, int j) WordPair constructor. -
Uses of GenWordPolynomial in edu.jas.gbufd
Fields in edu.jas.gbufd declared as GenWordPolynomialMethods in edu.jas.gbufd that return GenWordPolynomialModifier and TypeMethodDescriptionWordGroebnerBasePseudoSeq.basePrimitivePart
(GenWordPolynomial<C> P) GenWordPolynomial base coefficient primitive part.WordPseudoReductionSeq.leftNormalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) WordPseudoReductionSeq.leftNormalform
(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) WordPseudoReductionSeq.normalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform.WordPseudoReductionSeq.normalform
(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform with left and right recording.WordPseudoReduction.normalformRecursive
(List<GenWordPolynomial<GenPolynomial<C>>> Pp, GenWordPolynomial<GenPolynomial<C>> Ap) Left normalform recursive.WordPseudoReductionSeq.normalformRecursive
(List<GenWordPolynomial<GenPolynomial<C>>> Pp, GenWordPolynomial<GenPolynomial<C>> Ap) Normalform with polynomial coefficients.WordGroebnerBasePseudoRecSeq.recursivePrimitivePart
(GenWordPolynomial<GenPolynomial<C>> P) GenWordPolynomial recursive coefficient primitive part.WordPseudoReductionSeq.rightNormalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) WordPseudoReductionSeq.rightNormalform
(List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Methods in edu.jas.gbufd that return types with arguments of type GenWordPolynomialModifier and TypeMethodDescriptionWordGroebnerBasePseudoSeq.basePrimitivePart
(List<GenWordPolynomial<C>> F) List of GenWordPolynomial base coefficient primitive part.WordGroebnerBasePseudoRecSeq.GB
(List<GenWordPolynomial<GenPolynomial<C>>> F) Word Groebner base using word pairlist class.WordGroebnerBasePseudoSeq.GB
(List<GenWordPolynomial<C>> F) Word Groebner base using word pairlist class.static <C extends GcdRingElem<C>>
List<GenWordPolynomial<C>> PolyGBUtil.intersect
(GenWordPolynomialRing<C> pfac, List<GenWordPolynomial<C>> A, List<GenWordPolynomial<C>> B) Intersection.static <C extends GcdRingElem<C>>
List<GenWordPolynomial<C>> PolyGBUtil.intersect
(GenWordPolynomialRing<C> pfac, List<GenWordPolynomial<C>> A, List<GenWordPolynomial<C>> B, WordGroebnerBaseAbstract<C> bb) Intersection.WordGroebnerBasePseudoRecSeq.minimalGB
(List<GenWordPolynomial<GenPolynomial<C>>> Gp) Minimal ordered Groebner basis.WordGroebnerBasePseudoRecSeq.recursivePrimitivePart
(List<GenWordPolynomial<GenPolynomial<C>>> F) List of GenWordPolynomial recursive coefficient primitive part.Methods in edu.jas.gbufd with parameters of type GenWordPolynomialModifier and TypeMethodDescriptionWordGroebnerBasePseudoSeq.baseContent
(GenWordPolynomial<C> P) GenWordPolynomial base coefficient content.WordGroebnerBasePseudoSeq.basePrimitivePart
(GenWordPolynomial<C> P) GenWordPolynomial base coefficient primitive part.WordPseudoReductionSeq.leftNormalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) WordPseudoReductionSeq.leftNormalform
(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) WordPseudoReductionSeq.normalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform.WordPseudoReductionSeq.normalform
(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform with left and right recording.WordPseudoReduction.normalformFactor
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Left normalform with multiplication factor.WordPseudoReductionSeq.normalformFactor
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform with multiplication factor.WordPseudoReduction.normalformRecursive
(List<GenWordPolynomial<GenPolynomial<C>>> Pp, GenWordPolynomial<GenPolynomial<C>> Ap) Left normalform recursive.WordPseudoReductionSeq.normalformRecursive
(List<GenWordPolynomial<GenPolynomial<C>>> Pp, GenWordPolynomial<GenPolynomial<C>> Ap) Normalform with polynomial coefficients.WordGroebnerBasePseudoRecSeq.recursiveContent
(GenWordPolynomial<GenPolynomial<C>> P) GenWordPolynomial recursive coefficient content.WordGroebnerBasePseudoRecSeq.recursivePrimitivePart
(GenWordPolynomial<GenPolynomial<C>> P) GenWordPolynomial recursive coefficient primitive part.WordPseudoReductionSeq.rightNormalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) WordPseudoReductionSeq.rightNormalform
(List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Method parameters in edu.jas.gbufd with type arguments of type GenWordPolynomialModifier and TypeMethodDescriptionWordGroebnerBasePseudoSeq.basePrimitivePart
(List<GenWordPolynomial<C>> F) List of GenWordPolynomial base coefficient primitive part.WordGroebnerBasePseudoRecSeq.GB
(List<GenWordPolynomial<GenPolynomial<C>>> F) Word Groebner base using word pairlist class.WordGroebnerBasePseudoSeq.GB
(List<GenWordPolynomial<C>> F) Word Groebner base using word pairlist class.static <C extends GcdRingElem<C>>
List<GenWordPolynomial<C>> PolyGBUtil.intersect
(GenWordPolynomialRing<C> pfac, List<GenWordPolynomial<C>> A, List<GenWordPolynomial<C>> B) Intersection.static <C extends GcdRingElem<C>>
List<GenWordPolynomial<C>> PolyGBUtil.intersect
(GenWordPolynomialRing<C> pfac, List<GenWordPolynomial<C>> A, List<GenWordPolynomial<C>> B, WordGroebnerBaseAbstract<C> bb) Intersection.boolean
WordGroebnerBasePseudoRecSeq.isGB
(List<GenWordPolynomial<GenPolynomial<C>>> F) Wird Groebner base simple test.WordPseudoReductionSeq.leftNormalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) WordPseudoReductionSeq.leftNormalform
(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) WordGroebnerBasePseudoRecSeq.minimalGB
(List<GenWordPolynomial<GenPolynomial<C>>> Gp) Minimal ordered Groebner basis.WordPseudoReductionSeq.normalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform.WordPseudoReductionSeq.normalform
(List<GenWordPolynomial<C>> lrow, List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform with left and right recording.WordPseudoReduction.normalformFactor
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Left normalform with multiplication factor.WordPseudoReductionSeq.normalformFactor
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Normalform with multiplication factor.WordPseudoReduction.normalformRecursive
(List<GenWordPolynomial<GenPolynomial<C>>> Pp, GenWordPolynomial<GenPolynomial<C>> Ap) Left normalform recursive.WordPseudoReductionSeq.normalformRecursive
(List<GenWordPolynomial<GenPolynomial<C>>> Pp, GenWordPolynomial<GenPolynomial<C>> Ap) Normalform with polynomial coefficients.WordGroebnerBasePseudoRecSeq.recursivePrimitivePart
(List<GenWordPolynomial<GenPolynomial<C>>> F) List of GenWordPolynomial recursive coefficient primitive part.WordPseudoReductionSeq.rightNormalform
(List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) WordPseudoReductionSeq.rightNormalform
(List<GenWordPolynomial<C>> rrow, List<GenWordPolynomial<C>> Pp, GenWordPolynomial<C> Ap) Constructors in edu.jas.gbufd with parameters of type GenWordPolynomialModifierConstructorDescriptionWordPseudoReductionEntry
(GenWordPolynomial<C> pol, C multiplicator) -
Uses of GenWordPolynomial in edu.jas.poly
Fields in edu.jas.poly declared as GenWordPolynomialModifier and TypeFieldDescriptionfinal GenWordPolynomial
<C> GenWordPolynomialRing.ONE
The constant polynomial 1 for this ring.final GenWordPolynomial
<C> GenWordPolynomialRing.ZERO
The constant polynomial 0 for this ring.Fields in edu.jas.poly with type parameters of type GenWordPolynomialModifier and TypeFieldDescriptionfinal RelationTable
<GenWordPolynomial<C>> RecSolvableWordPolynomialRing.coeffTable
The solvable multiplication relations between variables and coefficients.Methods in edu.jas.poly that return GenWordPolynomialModifier and TypeMethodDescriptionGenWordPolynomial.abs()
GenWordPolynomial absolute value, i.e.GenWordPolynomialRing.commute
(int i, int j) Generate commute polynomial in two variables.GenWordPolynomial.contract
(GenWordPolynomialRing<C> fac) GenWordPolynomial contraction.GenWordPolynomial.copy()
Copy this GenWordPolynomial.GenWordPolynomialRing.copy
(GenWordPolynomial<C> c) Copy polynomial c.GenWordPolynomial division.GenWordPolynomial.divide
(GenWordPolynomial<C> S) GenWordPolynomial division.GenWordPolynomial.egcd
(GenWordPolynomial<C> S) GenWordPolynomial extended greatest common divisor.GenWordPolynomialRing.fromInteger
(long a) Get a (constant) GenWordPolynomial<C> element from a long value.GenWordPolynomialRing.fromInteger
(BigInteger a) Get a (constant) GenWordPolynomial<C> element from a BigInteger value.GenWordPolynomial.gcd
(GenWordPolynomial<C> S) GenWordPolynomial greatest common divisor.GenWordPolynomialRing.getONE()
Get the one element.GenWordPolynomialRing.getZERO()
Get the zero element.GenWordPolynomial.hegcd
(GenWordPolynomial<C> S) GenWordPolynomial half extended greatest common divisor.GenWordPolynomial.inverse()
GenWordPolynomial inverse.GenWordPolynomial.map
(UnaryFunctor<? super C, C> f) Map a unary function to the coefficients.GenWordPolynomial.modInverse
(GenWordPolynomial<C> m) GenWordPolynomial modular inverse.GenWordPolynomial.monic()
GenWordPolynomial monic, i.e.GenWordPolynomial multiplication.GenWordPolynomial multiplication.GenWordPolynomial multiplication.GenWordPolynomial left and right multiplication.GenWordPolynomial left and right multiplication.GenWordPolynomial.multiply
(GenWordPolynomial<C> S) GenWordPolynomial multiplication.GenWordPolynomial.multiply
(GenWordPolynomial<C> S, GenWordPolynomial<C> T) GenWordPolynomial left and right multiplication.GenWordPolynomial multiplication.GenWordPolynomial left and right multiplication.GenWordPolynomial multiplication.GenWordPolynomial.negate()
GenWordPolynomial negation.GenPolynomialTokenizer.nextWordPolynomial()
Parsing method for word polynomial.GenPolynomialTokenizer.nextWordPolynomial
(GenWordPolynomialRing wfac) Parsing method for word polynomial.Parse a polynomial with the use of GenWordPolynomialTokenizer.Parse a polynomial with the use of GenWordPolynomialTokenizer.GenWordPolynomial.quotientRemainder
(GenWordPolynomial<C> S) GenWordPolynomial division with remainder.GenWordPolynomialRing.random
(int n) Random polynomial.GenWordPolynomialRing.random
(int k, int l, int d) Generate a random polynomial.Generate a random polynomial.Random polynomial.static <C extends RingElem<C>>
GenWordPolynomial<GenPolynomial<C>> PolyUtil.recursiveDivide
(GenWordPolynomial<GenPolynomial<C>> P, GenPolynomial<C> s) GenPolynomial divide.GenWordPolynomial.reductum()
Reductum.GenWordPolynomial.remainder
(GenWordPolynomial<C> S) GenWordPolynomial remainder.GenWordPolynomial subtract.GenWordPolynomial subtraction.GenWordPolynomial.subtract
(GenWordPolynomial<C> S) GenWordPolynomial subtraction.GenWordPolynomial addition.GenWordPolynomial addition.GenWordPolynomial.sum
(GenWordPolynomial<C> S) GenWordPolynomial summation.GenWordPolynomialRing.univariate
(int i) Generate univariate polynomial in a given variable.Get a (constant) GenWordPolynomial<C> element from a coefficient value.Get a GenWordPolynomial<C> element from a coefficient and an ExpVector.Get a GenWordPolynomial<C> element from a coefficient and a word.Get a GenWordPolynomial<C> element from an ExpVector.GenWordPolynomialRing.valueOf
(GenPolynomial<C> a) Get a GenWordPolynomial<C> element from a GenPolynomial<C>.GenWordPolynomialRing.valueOf
(GenWordPolynomial<C> a) Get a GenWordPolynomial<C> element from a GenWordPolynomial<C>.Get a GenWordPolynomial<C> element from a word.Methods in edu.jas.poly that return types with arguments of type GenWordPolynomialModifier and TypeMethodDescriptionGenWordPolynomialRing.commute()
Generate commute polynomials for all variables.GenWordPolynomialRing.commute
(int i) Generate commute polynomials for given variable.GenWordPolynomialRing.generators()
Get a list of all generating elements.GenWordPolynomialRing.getGenerators()
Get the generating elements excluding the generators for the coefficient ring.static <C extends RingElem<C>>
List<GenWordPolynomial<C>> PolyUtil.intersect
(GenWordPolynomialRing<C> R, List<GenWordPolynomial<C>> F) Intersection.GenPolynomialTokenizer.nextWordPolynomialList()
Parsing method for word polynomial list.GenPolynomialTokenizer.nextWordPolynomialList
(GenWordPolynomialRing wfac) Parsing method for word polynomial list.RecSolvableWordPolynomialRing.permutation
(List<Integer> P) Permutation of polynomial ring variables.GenWordPolynomialRing.univariateList()
Generate list of univariate polynomials in all variables.GenWordPolynomialRing.valueOf
(List<GenPolynomial<C>> A) Get a list of GenWordPolynomial<C> element from a list of GenPolynomial<C>.static <C extends RingElem<C>>
List<GenWordPolynomial<C>> PolyUtil.wordMonic
(List<GenWordPolynomial<C>> L) Word polynomial list monic.Methods in edu.jas.poly with parameters of type GenWordPolynomialModifier and TypeMethodDescriptionint
GenWordPolynomial.compareTo
(GenWordPolynomial<C> b) GenWordPolynomial comparison.GenWordPolynomialRing.copy
(GenWordPolynomial<C> c) Copy polynomial c.GenWordPolynomial.divide
(GenWordPolynomial<C> S) GenWordPolynomial division.GenWordPolynomial.egcd
(GenWordPolynomial<C> S) GenWordPolynomial extended greatest common divisor.GenWordPolynomial.gcd
(GenWordPolynomial<C> S) GenWordPolynomial greatest common divisor.GenWordPolynomial.hegcd
(GenWordPolynomial<C> S) GenWordPolynomial half extended greatest common divisor.GenWordPolynomial.modInverse
(GenWordPolynomial<C> m) GenWordPolynomial modular inverse.GenWordPolynomial.multiply
(GenWordPolynomial<C> S) GenWordPolynomial multiplication.GenWordPolynomial.multiply
(GenWordPolynomial<C> S, GenWordPolynomial<C> T) GenWordPolynomial left and right multiplication.RecSolvableWordPolynomial.multiply
(GenWordPolynomial<C> b, ExpVector e) RecSolvableWordPolynomial multiplication.RecSolvableWordPolynomial.multiply
(GenWordPolynomial<C> b, ExpVector e, GenWordPolynomial<C> c, ExpVector f) RecSolvableWordPolynomial left and right multiplication.RecSolvableWordPolynomial.multiply
(GenWordPolynomial<C> b, GenWordPolynomial<C> c) RecSolvableWordPolynomial left and right multiplication.RecSolvableWordPolynomial.multiplyLeft
(GenWordPolynomial<C> b) RecSolvableWordPolynomial multiplication.RecSolvableWordPolynomial.multiplyLeft
(GenWordPolynomial<C> b, ExpVector e) RecSolvableWordPolynomial multiplication.GenWordPolynomial.quotientRemainder
(GenWordPolynomial<C> S) GenWordPolynomial division with remainder.RecSolvableWordPolynomial.recMultiply
(GenWordPolynomial<C> b) RecSolvableWordPolynomial multiplication.static <C extends RingElem<C>>
GenWordPolynomial<GenPolynomial<C>> PolyUtil.recursiveDivide
(GenWordPolynomial<GenPolynomial<C>> P, GenPolynomial<C> s) GenPolynomial divide.GenWordPolynomial.remainder
(GenWordPolynomial<C> S) GenWordPolynomial remainder.GenWordPolynomial.subtract
(GenWordPolynomial<C> S) GenWordPolynomial subtraction.GenWordPolynomial.sum
(GenWordPolynomial<C> S) GenWordPolynomial summation.GenWordPolynomialRing.valueOf
(GenWordPolynomial<C> a) Get a GenWordPolynomial<C> element from a GenWordPolynomial<C>.RecSolvableWordPolynomialRing.valueOf
(GenWordPolynomial<C> a) Get a (constant) RecSolvableWordPolynomial<C> element from a coefficient value.RecSolvableWordPolynomialRing.valueOf
(GenWordPolynomial<C> a, ExpVector e) Get a RecSolvableWordPolynomial<C> element from a coefficient and an ExpVector.Method parameters in edu.jas.poly with type arguments of type GenWordPolynomialModifier and TypeMethodDescriptionstatic <C extends RingElem<C>>
List<GenWordPolynomial<C>> PolyUtil.intersect
(GenWordPolynomialRing<C> R, List<GenWordPolynomial<C>> F) Intersection.RecSolvableWordPolynomial.multiply
(Map.Entry<ExpVector, GenWordPolynomial<C>> m) RecSolvableWordPolynomial multiplication.RecSolvableWordPolynomial.multiplyLeft
(Map.Entry<ExpVector, GenWordPolynomial<C>> m) RecSolvableWordPolynomial multiplication.static <C extends RingElem<C>>
List<GenWordPolynomial<C>> PolyUtil.wordMonic
(List<GenWordPolynomial<C>> L) Word polynomial list monic.Constructors in edu.jas.poly with parameters of type GenWordPolynomialModifierConstructorDescriptionConstructor for RecSolvableWordPolynomial.Constructor for RecSolvableWordPolynomial.Constructor parameters in edu.jas.poly with type arguments of type GenWordPolynomialModifierConstructorDescriptionRecSolvableWordPolynomial
(RecSolvableWordPolynomialRing<C> r, GenSolvablePolynomial<GenWordPolynomial<C>> S) Constructor for RecSolvableWordPolynomial.protected
RecSolvableWordPolynomial
(RecSolvableWordPolynomialRing<C> r, SortedMap<ExpVector, GenWordPolynomial<C>> v) Constructor for RecSolvableWordPolynomial.RecSolvableWordPolynomialRing
(RingFactory<GenWordPolynomial<C>> cf, int n) The constructor creates a solvable polynomial factory object with the default term order and commutative relations.RecSolvableWordPolynomialRing
(RingFactory<GenWordPolynomial<C>> cf, int n, RelationTable<GenWordPolynomial<C>> rt) The constructor creates a solvable polynomial factory object with the default term order.RecSolvableWordPolynomialRing
(RingFactory<GenWordPolynomial<C>> cf, int n, RelationTable<GenWordPolynomial<C>> rt) The constructor creates a solvable polynomial factory object with the default term order.RecSolvableWordPolynomialRing
(RingFactory<GenWordPolynomial<C>> cf, int n, TermOrder t) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.RecSolvableWordPolynomialRing
(RingFactory<GenWordPolynomial<C>> cf, int n, TermOrder t, RelationTable<GenWordPolynomial<C>> rt) The constructor creates a solvable polynomial factory object with the given term order.RecSolvableWordPolynomialRing
(RingFactory<GenWordPolynomial<C>> cf, int n, TermOrder t, RelationTable<GenWordPolynomial<C>> rt) The constructor creates a solvable polynomial factory object with the given term order.RecSolvableWordPolynomialRing
(RingFactory<GenWordPolynomial<C>> cf, int n, TermOrder t, String[] v) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.RecSolvableWordPolynomialRing
(RingFactory<GenWordPolynomial<C>> cf, int n, TermOrder t, String[] v, RelationTable<GenWordPolynomial<C>> rt) The constructor creates a solvable polynomial factory object with the given term order.RecSolvableWordPolynomialRing
(RingFactory<GenWordPolynomial<C>> cf, int n, TermOrder t, String[] v, RelationTable<GenWordPolynomial<C>> rt) The constructor creates a solvable polynomial factory object with the given term order.RecSolvableWordPolynomialRing
(RingFactory<GenWordPolynomial<C>> cf, RecSolvableWordPolynomialRing o) The constructor creates a solvable polynomial factory object with the the same term order, number of variables and variable names as the given polynomial factory, only the coefficient factories differ and the solvable multiplication relations are empty.RecSolvableWordPolynomialRing
(RingFactory<GenWordPolynomial<C>> cf, TermOrder t, String[] v) The constructor creates a solvable polynomial factory object with the given term order and commutative relations.The constructor creates a solvable polynomial factory object with the default term order.