Uses of Class
edu.jas.ps.MultiVarPowerSeries
Packages that use MultiVarPowerSeries
-
Uses of MultiVarPowerSeries in edu.jas.ps
Fields in edu.jas.ps declared as MultiVarPowerSeriesModifier and TypeFieldDescriptionfinal MultiVarPowerSeries
<C> MultiVarPowerSeriesRing.ONE
The constant power series 1 for this ring.final MultiVarPowerSeries
<C> Pair.pi
final MultiVarPowerSeries
<C> Pair.pj
final MultiVarPowerSeries
<C> MultiVarPowerSeriesRing.ZERO
The constant power series 0 for this ring.Fields in edu.jas.ps with type parameters of type MultiVarPowerSeriesModifier and TypeFieldDescriptionprotected final ArrayList
<MultiVarPowerSeries<C>> OrderedPairlist.P
Methods in edu.jas.ps that return MultiVarPowerSeriesModifier and TypeMethodDescriptionMultiVarPowerSeries.abs()
Absolute value.MultiVarPowerSeries.copy()
Clone this power series.MultiVarPowerSeriesRing.copy
(MultiVarPowerSeries<C> c) Copy power series.MultiVarPowerSeries.differentiate
(int r) Differentiate with respect to variable r.MultiVarPowerSeries.divide
(MultiVarPowerSeries<C> ps) Divide by another power series.MultiVarPowerSeries.egcd
(MultiVarPowerSeries<C> S) Power series extended greatest common divisor.MultiVarPowerSeriesRing.fixPoint
(MultiVarPowerSeriesMap<C> map) Fixed point construction.MultiVarPowerSeriesRing.fromInteger
(long a) Get a (constant) MultiVarPowerSeries<C> from a long value.MultiVarPowerSeriesRing.fromInteger
(BigInteger a) Get a (constant) MultiVarPowerSeries<C> from a java.math.BigInteger.MultiVarPowerSeriesRing.fromPolynomial
(GenPolynomial<C> a) Get a MultiVarPowerSeries<C> from a GenPolynomial<C>.MultiVarPowerSeriesRing.fromPowerSeries
(UnivPowerSeries<C> ps, int r) Get a MultiVarPowerSeries<C> from a univariate power series.MultiVarPowerSeries.gcd
(MultiVarPowerSeries<C> ps) Power series greatest common divisor.Generate a power series via lambda expression.MultiVarPowerSeriesRing.getCOS
(int r) Get the power series of the cosinus function.MultiVarPowerSeriesRing.getEXP
(int r) Get the power series of the exponential function.MultiVarPowerSeriesRing.getONE()
Get the one element.MultiVarPowerSeriesRing.getSIN
(int r) Get the power series of the sinus function.MultiVarPowerSeriesRing.getTAN
(int r) Get the power series of the tangens function.MultiVarPowerSeriesRing.getZERO()
Get the zero element.Integrate with respect to variable r and with given constant.MultiVarPowerSeries.inverse()
Inverse power series.MultiVarPowerSeries.map
(UnaryFunctor<? super C, C> f) Map a unary function to this power series.MultiVarPowerSeriesMap.map
(MultiVarPowerSeries<C> ps) Map.MultiVarPowerSeries.monic()
Monic.Multiply by coefficient.Multiply by exponent vector and coefficient.MultiVarPowerSeries.multiply
(MultiVarPowerSeries<C> ps) Multiply by another power series.MultiVarPowerSeries.negate()
Negate.ReductionSeq.normalform
(List<MultiVarPowerSeries<C>> Pp, MultiVarPowerSeries<C> Ap) Top normal-form with Mora's algorithm.Parse a power series.Parse a power series.Prepend a new leading coefficient.MultiVarPowerSeries.quotientRemainder
(MultiVarPowerSeries<C> S) Quotient and remainder by division of this by S.MultiVarPowerSeriesRing.random()
Generate a random power series with k = 5, d = 0.7.MultiVarPowerSeriesRing.random
(int k) Generate a random power series with d = 0.7.MultiVarPowerSeriesRing.random
(int k, float d) Generate a random power series.Generate a random power series.Generate a random power series with d = 0.7.MultiVarPowerSeries.reductum()
Reductum.MultiVarPowerSeries.reductum
(int r) Reductum.MultiVarPowerSeries.remainder
(MultiVarPowerSeries<C> ps) Power series remainder.Select coefficients.MultiVarPowerSeriesRing.seriesOfTaylor
(TaylorFunction<C> f, List<C> a) Taylor power series.MultiVarPowerSeries.shift
(int k, int r) Shift coefficients.Shift coefficients.MultiVarPowerSeries.shiftSelect
(Selector<? super C> sel) Shift select coefficients.MultiVarPowerSeriesRing.solvePDE
(MultiVarPowerSeries<C> f, C c, int r) Solve an partial differential equation.ReductionSeq.SPolynomial
(MultiVarPowerSeries<C> A, MultiVarPowerSeries<C> B) S-Power-series, S-polynomial.Subtract exponent vector and coefficient.MultiVarPowerSeries.subtract
(MultiVarPowerSeries<C> ps) Subtract a another power series.MultiVarPowerSeries.subtractZip
(MultiVarPowerSeries<C> ps) Subtraction of two power series, using zip().Sum exponent vector and coefficient.MultiVarPowerSeries.sum
(MultiVarCoefficients<C> mvc) Sum exponent vector and coefficient.MultiVarPowerSeries.sum
(MultiVarPowerSeries<C> ps) Sum a another power series.Sum monomial.MultiVarPowerSeries.sumZip
(MultiVarPowerSeries<C> ps) Sum of two power series, using zip().ReductionSeq.totalNormalform
(List<MultiVarPowerSeries<C>> P, MultiVarPowerSeries<C> A) Total reduced normal-form with Mora's algorithm.MultiVarPowerSeries.zip
(BinaryFunctor<? super C, ? super C, C> f, MultiVarPowerSeries<C> ps) Map a binary function to this and another power series.Methods in edu.jas.ps that return types with arguments of type MultiVarPowerSeriesModifier and TypeMethodDescriptionMultiVarPowerSeriesRing.fromPolynomial
(List<GenPolynomial<C>> A) Get a list of MultiVarPowerSeries<C> from a list of GenPolynomial<C>.MultiVarPowerSeriesRing.generators()
Get a list of the generating elements.OrderedPairlist.getList()
Get the list of power series.StandardBaseSeq.minimalSTD
(List<MultiVarPowerSeries<C>> Gp) Minimal ordered Standard basis.static <C extends RingElem<C>>
List<MultiVarPowerSeries<C>> PSUtil.monic
(List<MultiVarPowerSeries<C>> L) Power series list monic.StandardBaseSeq.normalizeZerosOnes
(List<MultiVarPowerSeries<C>> A) Normalize power series list.StandardBaseSeq.STD
(int modv, List<MultiVarPowerSeries<C>> F) Standard base using pairlist class.StandardBaseSeq.STD
(List<MultiVarPowerSeries<C>> F) Standard base using pairlist class.ReductionSeq.totalNormalform
(List<MultiVarPowerSeries<C>> P) Total reduced normalform with Mora's algorithm.Methods in edu.jas.ps with parameters of type MultiVarPowerSeriesModifier and TypeMethodDescriptionint
MultiVarPowerSeries.compareTo
(MultiVarPowerSeries<C> ps) Compare to.MultiVarPowerSeriesRing.copy
(MultiVarPowerSeries<C> c) Copy power series.boolean
ReductionSeq.criterion4
(MultiVarPowerSeries<C> A, MultiVarPowerSeries<C> B, ExpVector e) GB criterion 4.MultiVarPowerSeries.divide
(MultiVarPowerSeries<C> ps) Divide by another power series.MultiVarPowerSeries.egcd
(MultiVarPowerSeries<C> S) Power series extended greatest common divisor.MultiVarPowerSeries.gcd
(MultiVarPowerSeries<C> ps) Power series greatest common divisor.boolean
ReductionSeq.isTopReducible
(List<MultiVarPowerSeries<C>> P, MultiVarPowerSeries<C> A) Is top reducible.MultiVarPowerSeriesMap.map
(MultiVarPowerSeries<C> ps) Map.boolean
ReductionSeq.moduleCriterion
(int modv, MultiVarPowerSeries<C> A, MultiVarPowerSeries<C> B) Module criterium.MultiVarPowerSeries.multiply
(MultiVarPowerSeries<C> ps) Multiply by another power series.ReductionSeq.normalform
(List<MultiVarPowerSeries<C>> Pp, MultiVarPowerSeries<C> Ap) Top normal-form with Mora's algorithm.int
OrderedPairlist.put
(MultiVarPowerSeries<C> p) Put one power Series to the pairlist and reduction matrix.int
OrderedPairlist.putOne
(MultiVarPowerSeries<C> one) Put to ONE-power-series to the pairlist.MultiVarPowerSeries.quotientRemainder
(MultiVarPowerSeries<C> S) Quotient and remainder by division of this by S.MultiVarPowerSeries.remainder
(MultiVarPowerSeries<C> ps) Power series remainder.MultiVarPowerSeriesRing.solvePDE
(MultiVarPowerSeries<C> f, C c, int r) Solve an partial differential equation.ReductionSeq.SPolynomial
(MultiVarPowerSeries<C> A, MultiVarPowerSeries<C> B) S-Power-series, S-polynomial.MultiVarPowerSeries.subtract
(MultiVarPowerSeries<C> ps) Subtract a another power series.MultiVarPowerSeries.subtractZip
(MultiVarPowerSeries<C> ps) Subtraction of two power series, using zip().MultiVarPowerSeries.sum
(MultiVarPowerSeries<C> ps) Sum a another power series.MultiVarPowerSeries.sumZip
(MultiVarPowerSeries<C> ps) Sum of two power series, using zip().ReductionSeq.totalNormalform
(List<MultiVarPowerSeries<C>> P, MultiVarPowerSeries<C> A) Total reduced normal-form with Mora's algorithm.MultiVarPowerSeries.zip
(BinaryFunctor<? super C, ? super C, C> f, MultiVarPowerSeries<C> ps) Map a binary function to this and another power series.Method parameters in edu.jas.ps with type arguments of type MultiVarPowerSeriesModifier and TypeMethodDescriptionboolean
ReductionSeq.contains
(List<MultiVarPowerSeries<C>> S, List<MultiVarPowerSeries<C>> B) Ideal containment.boolean
StandardBaseSeq.isSTD
(int modv, List<MultiVarPowerSeries<C>> F) Standard base test.boolean
StandardBaseSeq.isSTD
(List<MultiVarPowerSeries<C>> F) Standard base test.boolean
ReductionSeq.isTopReducible
(List<MultiVarPowerSeries<C>> P, MultiVarPowerSeries<C> A) Is top reducible.StandardBaseSeq.minimalSTD
(List<MultiVarPowerSeries<C>> Gp) Minimal ordered Standard basis.static <C extends RingElem<C>>
List<MultiVarPowerSeries<C>> PSUtil.monic
(List<MultiVarPowerSeries<C>> L) Power series list monic.ReductionSeq.normalform
(List<MultiVarPowerSeries<C>> Pp, MultiVarPowerSeries<C> Ap) Top normal-form with Mora's algorithm.StandardBaseSeq.normalizeZerosOnes
(List<MultiVarPowerSeries<C>> A) Normalize power series list.int
OrderedPairlist.put
(List<MultiVarPowerSeries<C>> F) Put all power series in F to the pairlist and reduction matrix.StandardBaseSeq.STD
(int modv, List<MultiVarPowerSeries<C>> F) Standard base using pairlist class.StandardBaseSeq.STD
(List<MultiVarPowerSeries<C>> F) Standard base using pairlist class.ReductionSeq.totalNormalform
(List<MultiVarPowerSeries<C>> P) Total reduced normalform with Mora's algorithm.ReductionSeq.totalNormalform
(List<MultiVarPowerSeries<C>> P, MultiVarPowerSeries<C> A) Total reduced normal-form with Mora's algorithm.Constructors in edu.jas.ps with parameters of type MultiVarPowerSeriesModifierConstructorDescriptionPair
(MultiVarPowerSeries<C> a, MultiVarPowerSeries<C> b, int i, int j) Pair constructor.