Uses of Class
edu.jas.application.SolvableIdeal
Packages that use SolvableIdeal
-
Uses of SolvableIdeal in edu.jas.application
Fields in edu.jas.application declared as SolvableIdealModifier and TypeFieldDescriptionfinal SolvableIdeal
<C> SolvableLocalResidueRing.ideal
Solvable polynomial ideal for the reduction.final SolvableIdeal
<C> SolvableLocalRing.ideal
Solvable polynomial ideal for localization.final SolvableIdeal
<C> SolvableResidueRing.ideal
Solvable polynomial ideal for the reduction.Methods in edu.jas.application that return SolvableIdealModifier and TypeMethodDescriptionSolvableIdeal.annihilator
(SolvableIdeal<C> H) Annihilator for ideal modulo this ideal.SolvableIdeal.annihilator
(GenSolvablePolynomial<C> h) Annihilator for element modulo this ideal.SolvableIdeal.copy()
Clone this.SolvableIdeal.eliminate
(GenSolvablePolynomialRing<C> R) Eliminate.SolvableIdeal.GB()
Groebner Base.SolvableIdeal.getONE()
Get the one ideal.SolvableIdeal.getZERO()
Get the zero ideal.SolvableIdeal.infiniteQuotient
(SolvableIdeal<C> H) Infinite Quotient.SolvableIdeal.infiniteQuotient
(GenSolvablePolynomial<C> h) Infinite quotient.SolvableIdeal.infiniteQuotientRab
(SolvableIdeal<C> H) Infinite Quotient.SolvableIdeal.infiniteQuotientRab
(GenSolvablePolynomial<C> h) Infinite quotient.SolvableIdeal.intersect
(SolvableIdeal<C> B) Intersection.SolvableIdeal.intersect
(GenSolvablePolynomialRing<C> R) Intersection.SolvableIdeal.intersect
(List<SolvableIdeal<C>> Bl) Intersection.SolvableIdeal.leftProduct
(GenSolvablePolynomial<C> b) Left product.SolvableIdeal.power
(int d) Power.SolvableIdeal.product
(SolvableIdeal<C> B) Product.SolvableIdeal.product
(GenSolvablePolynomial<C> b) Product.SolvableIdeal.quotient
(SolvableIdeal<C> H) Quotient.SolvableIdeal.quotient
(GenSolvablePolynomial<C> h) Quotient.SolvableIdeal.rightGB()
Groebner Base.SolvableIdeal.sum
(SolvableIdeal<C> B) Solvable ideal summation.SolvableIdeal.sum
(GenSolvablePolynomial<C> b) Solvable summation.SolvableIdeal.sum
(List<GenSolvablePolynomial<C>> L) Solvable summation.SolvableIdeal.twosidedGB()
Groebner Base.Methods in edu.jas.application with parameters of type SolvableIdealModifier and TypeMethodDescriptionSolvableIdeal.annihilator
(SolvableIdeal<C> H) Annihilator for ideal modulo this ideal.int
SolvableIdeal.compareTo
(SolvableIdeal<C> L) SolvableIdeal comparison.boolean
SolvableIdeal.contains
(SolvableIdeal<C> B) Solvable ideal containment.SolvableIdeal.infiniteQuotient
(SolvableIdeal<C> H) Infinite Quotient.int
SolvableIdeal.infiniteQuotientExponent
(GenSolvablePolynomial<C> h, SolvableIdeal<C> Q) Infinite quotient exponent.SolvableIdeal.infiniteQuotientRab
(SolvableIdeal<C> H) Infinite Quotient.SolvableIdeal.intersect
(SolvableIdeal<C> B) Intersection.boolean
SolvableIdeal.isAnnihilator
(SolvableIdeal<C> H, SolvableIdeal<C> A) Test for annihilator of ideal modulo this ideal.boolean
SolvableIdeal.isAnnihilator
(GenSolvablePolynomial<C> h, SolvableIdeal<C> A) Test for annihilator of element modulo this ideal.SolvableIdeal.product
(SolvableIdeal<C> B) Product.SolvableIdeal.quotient
(SolvableIdeal<C> H) Quotient.SolvableIdeal.sum
(SolvableIdeal<C> B) Solvable ideal summation.Method parameters in edu.jas.application with type arguments of type SolvableIdealModifier and TypeMethodDescriptionSolvableIdeal.intersect
(List<SolvableIdeal<C>> Bl) Intersection.Constructors in edu.jas.application with parameters of type SolvableIdealModifierConstructorDescriptionThe constructor creates a SolvableLocalResidueRing object from a SolvableIdeal.The constructor creates a SolvableLocalRing object from a SolvableIdeal.The constructor creates a SolvableResidueRing object from an Ideal.SolvableResidueRing
(SolvableIdeal<C> i, boolean isMaximal) The constructor creates a SolvableResidueRing object from an SolvableIdeal.