Parser functions
Prev
Next

Chapter 7. Parser functions

The LabPlot parser allows you to use following functions:

standard function

FunctionDescription
acos(x)Arc cosine
acosh(x)Arc hyperbolic cosine
asin(x)Arcsine
asinh(x)Arc hyperbolic sine
atan(x)Arctangent
atan2(y,x)arc tangent function of two variables
atanh(x)Arc hyperbolic tangent
beta(a,b)Beta
cbrt(x)Cube root
ceil(x)Truncate upward to integer
chbevl(x, coef, N)Evaluate Chebyshev series
chdtrc(df,x)Complemented Chi square
chdtr(df,x)Chi square distribution
chdtri(df,y)Inverse Chi square
cos(x)Cosine
cosh(x)Hyperbolic cosine
cosm1(x)cos(x)-1
dawsn(x)Dawson's integral
drand()Random value between 0..1
ellie(phi,m)Incomplete elliptic integral (E)
ellik(phi,m)Incomplete elliptic integral (E)
ellpe(x)Complete elliptic integral (E)
ellpk(x)Complete elliptic integral (K)
exp(x)Exponential, base e
expm1(x)exp(x)-1
expn(n,x)Exponential integral
fabs(x)Absolute value
fac(i)Factorial
fdtrc(ia,ib,x)Complemented F
fdtr(ia,ib,x)F distribution
fdtri(ia,ib,y)Inverse F distribution
gdtr(a,b,x)Gamma distribution
gdtrc(a,b,x)Complemented gamma
hyp2f1(a,b,c,x)Gauss hypergeometric function
hyperg(a,b,x)Confluent hypergeometric 1F1
i0(x)Modified Bessel, order 0
i0e(x)Exponentially scaled i0
i1(x)Modified Bessel, order 1
i1e(x)Exponentially scaled i1
igamc(a,x)Complemented gamma integral
igam(a,x)Incomplete gamma integral
igami(a,y0)Inverse gamma integral
incbet(aa,bb,xx)Incomplete beta integral
incbi(aa,bb,yy0)Inverse beta integral
iv(v,x)Modified Bessel, nonint. order
j0(x)Bessel, order 0
j1(x)Bessel, order 1
jn(n,x)Bessel, order n
jv(n,x)Bessel, noninteger order
k0(x)Mod. Bessel, 3rd kind, order 0
k0e(x)Exponentially scaled k0
k1(x)Mod. Bessel, 3rd kind, order 1
k1e(x)Exponentially scaled k1
kn(nn,x)Mod. Bessel, 3rd kind, order n
lbeta(a,b) Natural log of |beta|
ldexp(x,exp)multiply floating-point number by integral power of 2
log(x)Logarithm, base e
log10(x)Logarithm, base 10
logb(x)radix-independant exponent
log1p(x)log(1+x)
ndtr(x)Normal distribution
ndtri(x)Inverse normal distribution
pdtrc(k,m)Complemented Poisson
pdtr(k,m)Poisson distribution
pdtri(k,y)Inverse Poisson distribution
pow(x,y)power function
psi(x)Psi (digamma) function
rand()Random value between 0..RAND_MAX
random()Random value between 0..RAND_MAX
rgamma(x)Reciprocal Gamma
rint(x)round to nearest integer
sin(x)Sine
sinh(x)Hyperbolic sine
spence(x)Dilogarithm
sqrt(x)Square root
stdtr(k,t)Student's t distribution
stdtri(k,p)Inverse student's t distribution
struve(v,x)Struve function
tan(x)Tangent
tanh(x)Hyperbolic tangent
true_gamma(x)true gamma
y0(x)Bessel, second kind, order 0
y1(x)Bessel, second kind, order 1
yn(n,x)Bessel, second kind, order n
yv(v,x)Bessel, noninteger order
zeta(x,y)Riemann Zeta function
zetac(x)Two argument zeta function
Prev
Next
Home


Would you like to make a comment or contribute an update to this page?
Send feedback to the KDE Docs Team