
Linux Kernel Crypto API

Stephan Mueller <smueller@chronox.de>
Marek Vasut <marek@denx.de>

Linux Kernel Crypto API
by Stephan Mueller and Marek Vasut
Copyright © 2014 Stephan Mueller

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

iii

Table of Contents
1. Kernel Crypto API Interface Specification ... 1

Introduction .. 1
Terminology ... 1

2. Kernel Crypto API Architecture ... 3
Cipher algorithm types ... 3
Ciphers And Templates .. 3
Synchronous And Asynchronous Operation ... 3
Crypto API Cipher References And Priority .. 4
Key Sizes .. 5
Cipher Allocation Type And Masks ... 5

3. Developing Cipher Algorithms ... 7
Registering And Unregistering Transformation ... 7
Single-Block Symmetric Ciphers [CIPHER] .. 7

Registration specifics ... 7
Cipher Definition With struct cipher_alg ... 8

Multi-Block Ciphers [BLKCIPHER] [ABLKCIPHER] .. 8
Registration Specifics .. 8
Cipher Definition With struct blkcipher_alg and ablkcipher_alg 8
Specifics Of Asynchronous Multi-Block Cipher .. 9

Hashing [HASH] ... 9
Registering And Unregistering The Transformation ... 9
Cipher Definition With struct shash_alg and ahash_alg .. 9
Specifics Of Asynchronous HASH Transformation .. 10

4. Programming Interface .. 11
Block Cipher Context Data Structures ... 11
Block Cipher Algorithm Definitions ... 12
Asynchronous Block Cipher API .. 21
Asynchronous Cipher Request Handle ... 30
Authenticated Encryption With Associated Data (AEAD) Cipher API 36
Asynchronous AEAD Request Handle .. 45
Synchronous Block Cipher API ... 52
Single Block Cipher API .. 65
Synchronous Message Digest API .. 72
Message Digest Algorithm Definitions .. 82
Asynchronous Message Digest API .. 86
Asynchronous Hash Request Handle ... 98
Synchronous Message Digest API .. 103
Crypto API Random Number API .. 116

5. Code Examples .. 123
Code Example For Asynchronous Block Cipher Operation .. 123
Code Example For Synchronous Block Cipher Operation .. 125
Code Example For Use of Operational State Memory With SHASH 127
Code Example For Random Number Generator Usage ... 127

1

Chapter 1. Kernel Crypto API Interface
Specification
Introduction

The kernel crypto API offers a rich set of cryptographic ciphers as well as other data transformation
mechanisms and methods to invoke these. This document contains a description of the API and provides
example code.

To understand and properly use the kernel crypto API a brief explanation of its structure is given.
Based on the architecture, the API can be separated into different components. Following the architecture
specification, hints to developers of ciphers are provided. Pointers to the API function call documentation
are given at the end.

The kernel crypto API refers to all algorithms as "transformations". Therefore, a cipher handle variable
usually has the name "tfm". Besides cryptographic operations, the kernel crypto API also knows
compression transformations and handles them the same way as ciphers.

The kernel crypto API serves the following entity types:

• consumers requesting cryptographic services

• data transformation implementations (typically ciphers) that can be called by consumers using the kernel
crypto API

This specification is intended for consumers of the kernel crypto API as well as for developers
implementing ciphers. This API specification, however, does not discuss all API calls available to data
transformation implementations (i.e. implementations of ciphers and other transformations (such as CRC
or even compression algorithms) that can register with the kernel crypto API).

Note: The terms "transformation" and cipher algorithm are used interchangably.

Terminology
The transformation implementation is an actual code or interface to hardware which implements a certain
transformation with precisely defined behavior.

The transformation object (TFM) is an instance of a transformation implementation. There can be
multiple transformation objects associated with a single transformation implementation. Each of those
transformation objects is held by a crypto API consumer or another transformation. Transformation object
is allocated when a crypto API consumer requests a transformation implementation. The consumer is then
provided with a structure, which contains a transformation object (TFM).

The structure that contains transformation objects may also be referred to as a "cipher handle". Such a
cipher handle is always subject to the following phases that are reflected in the API calls applicable to
such a cipher handle:

1. Initialization of a cipher handle.

2. Execution of all intended cipher operations applicable for the handle where the cipher handle must be
furnished to every API call.

Kernel Crypto API
Interface Specification

2

3. Destruction of a cipher handle.

When using the initialization API calls, a cipher handle is created and returned to the consumer. Therefore,
please refer to all initialization API calls that refer to the data structure type a consumer is expected to
receive and subsequently to use. The initialization API calls have all the same naming conventions of
crypto_alloc_*.

The transformation context is private data associated with the transformation object.

3

Chapter 2. Kernel Crypto API
Architecture
Cipher algorithm types

The kernel crypto API provides different API calls for the following cipher types:

• Symmetric ciphers

• AEAD ciphers

• Message digest, including keyed message digest

• Random number generation

• User space interface

Ciphers And Templates
The kernel crypto API provides implementations of single block ciphers and message digests. In addition,
the kernel crypto API provides numerous "templates" that can be used in conjunction with the single block
ciphers and message digests. Templates include all types of block chaining mode, the HMAC mechanism,
etc.

Single block ciphers and message digests can either be directly used by a caller or invoked together with
a template to form multi-block ciphers or keyed message digests.

A single block cipher may even be called with multiple templates. However, templates cannot be used
without a single cipher.

See /proc/crypto and search for "name". For example:

• aes

• ecb(aes)

• cmac(aes)

• ccm(aes)

• rfc4106(gcm(aes))

• sha1

• hmac(sha1)

• authenc(hmac(sha1),cbc(aes))

In these examples, "aes" and "sha1" are the ciphers and all others are the templates.

Synchronous And Asynchronous Operation
The kernel crypto API provides synchronous and asynchronous API operations.

Kernel Crypto API Architecture

4

When using the synchronous API operation, the caller invokes a cipher operation which is performed
synchronously by the kernel crypto API. That means, the caller waits until the cipher operation completes.
Therefore, the kernel crypto API calls work like regular function calls. For synchronous operation, the set
of API calls is small and conceptually similar to any other crypto library.

Asynchronous operation is provided by the kernel crypto API which implies that the invocation of a cipher
operation will complete almost instantly. That invocation triggers the cipher operation but it does not signal
its completion. Before invoking a cipher operation, the caller must provide a callback function the kernel
crypto API can invoke to signal the completion of the cipher operation. Furthermore, the caller must ensure
it can handle such asynchronous events by applying appropriate locking around its data. The kernel crypto
API does not perform any special serialization operation to protect the caller's data integrity.

Crypto API Cipher References And Priority
A cipher is referenced by the caller with a string. That string has the following semantics:

 template(single block cipher)

where "template" and "single block cipher" is the aforementioned template and single block cipher,
respectively. If applicable, additional templates may enclose other templates, such as

 template1(template2(single block cipher)))

The kernel crypto API may provide multiple implementations of a template or a single block cipher.
For example, AES on newer Intel hardware has the following implementations: AES-NI, assembler
implementation, or straight C. Now, when using the string "aes" with the kernel crypto API, which
cipher implementation is used? The answer to that question is the priority number assigned to each
cipher implementation by the kernel crypto API. When a caller uses the string to refer to a cipher
during initialization of a cipher handle, the kernel crypto API looks up all implementations providing an
implementation with that name and selects the implementation with the highest priority.

Now, a caller may have the need to refer to a specific cipher implementation and thus does not want to rely
on the priority-based selection. To accommodate this scenario, the kernel crypto API allows the cipher
implementation to register a unique name in addition to common names. When using that unique name, a
caller is therefore always sure to refer to the intended cipher implementation.

The list of available ciphers is given in /proc/crypto. However, that list does not specify all possible
permutations of templates and ciphers. Each block listed in /proc/crypto may contain the following
information -- if one of the components listed as follows are not applicable to a cipher, it is not displayed:

• name: the generic name of the cipher that is subject to the priority-based selection -- this name can be
used by the cipher allocation API calls (all names listed above are examples for such generic names)

• driver: the unique name of the cipher -- this name can be used by the cipher allocation API calls

• module: the kernel module providing the cipher implementation (or "kernel" for statically linked
ciphers)

• priority: the priority value of the cipher implementation

• refcnt: the reference count of the respective cipher (i.e. the number of current consumers of this cipher)

Kernel Crypto API Architecture

5

• selftest: specification whether the self test for the cipher passed

• type:

• blkcipher for synchronous block ciphers

• ablkcipher for asynchronous block ciphers

• cipher for single block ciphers that may be used with an additional template

• shash for synchronous message digest

• ahash for asynchronous message digest

• aead for AEAD cipher type

• compression for compression type transformations

• rng for random number generator

• givcipher for cipher with associated IV generator (see the geniv entry below for the specification of
the IV generator type used by the cipher implementation)

• blocksize: blocksize of cipher in bytes

• keysize: key size in bytes

• ivsize: IV size in bytes

• seedsize: required size of seed data for random number generator

• digestsize: output size of the message digest

• geniv: IV generation type:

• eseqiv for encrypted sequence number based IV generation

• seqiv for sequence number based IV generation

• chainiv for chain iv generation

• <builtin> is a marker that the cipher implements IV generation and handling as it is specific to the
given cipher

Key Sizes
When allocating a cipher handle, the caller only specifies the cipher type. Symmetric ciphers, however,
typically support multiple key sizes (e.g. AES-128 vs. AES-192 vs. AES-256). These key sizes are
determined with the length of the provided key. Thus, the kernel crypto API does not provide a separate
way to select the particular symmetric cipher key size.

Cipher Allocation Type And Masks
The different cipher handle allocation functions allow the specification of a type and mask flag. Both
parameters have the following meaning (and are therefore not covered in the subsequent sections).

Kernel Crypto API Architecture

6

The type flag specifies the type of the cipher algorithm. The caller usually provides a 0 when the caller
wants the default handling. Otherwise, the caller may provide the following selections which match the
the aforementioned cipher types:

• CRYPTO_ALG_TYPE_CIPHER Single block cipher

• CRYPTO_ALG_TYPE_COMPRESS Compression

• CRYPTO_ALG_TYPE_AEAD Authenticated Encryption with Associated Data (MAC)

• CRYPTO_ALG_TYPE_BLKCIPHER Synchronous multi-block cipher

• CRYPTO_ALG_TYPE_ABLKCIPHER Asynchronous multi-block cipher

• CRYPTO_ALG_TYPE_GIVCIPHER Asynchronous multi-block cipher packed together with an IV
generator (see geniv field in the /proc/crypto listing for the known IV generators)

• CRYPTO_ALG_TYPE_DIGEST Raw message digest

• CRYPTO_ALG_TYPE_HASH Alias for CRYPTO_ALG_TYPE_DIGEST

• CRYPTO_ALG_TYPE_SHASH Synchronous multi-block hash

• CRYPTO_ALG_TYPE_AHASH Asynchronous multi-block hash

• CRYPTO_ALG_TYPE_RNG Random Number Generation

• CRYPTO_ALG_TYPE_PCOMPRESS Enhanced version of CRYPTO_ALG_TYPE_COMPRESS
allowing for segmented compression / decompression instead of performing the operation
on one segment only. CRYPTO_ALG_TYPE_PCOMPRESS is intended to replace
CRYPTO_ALG_TYPE_COMPRESS once existing consumers are converted.

The mask flag restricts the type of cipher. The only allowed flag is CRYPTO_ALG_ASYNC to restrict
the cipher lookup function to asynchronous ciphers. Usually, a caller provides a 0 for the mask flag.

When the caller provides a mask and type specification, the caller limits the search the kernel crypto API
can perform for a suitable cipher implementation for the given cipher name. That means, even when a
caller uses a cipher name that exists during its initialization call, the kernel crypto API may not select it
due to the used type and mask field.

7

Chapter 3. Developing Cipher
Algorithms
Registering And Unregistering Transformation

There are three distinct types of registration functions in the Crypto API. One is used to register a
generic cryptographic transformation, while the other two are specific to HASH transformations and
COMPRESSion. We will discuss the latter two in a separate chapter, here we will only look at the generic
ones.

Before discussing the register functions, the data structure to be filled with each, struct crypto_alg, must
be considered -- see below for a description of this data structure.

The generic registration functions can be found in include/linux/crypto.h and their definition can be
seen below. The former function registers a single transformation, while the latter works on an array of
transformation descriptions. The latter is useful when registering transformations in bulk.

 int crypto_register_alg(struct crypto_alg *alg);
 int crypto_register_algs(struct crypto_alg *algs, int count);

The counterparts to those functions are listed below.

 int crypto_unregister_alg(struct crypto_alg *alg);
 int crypto_unregister_algs(struct crypto_alg *algs, int count);

Notice that both registration and unregistration functions do return a value, so make sure to handle errors.
A return code of zero implies success. Any return code < 0 implies an error.

The bulk registration / unregistration functions require that struct crypto_alg is an array of count size.
These functions simply loop over that array and register / unregister each individual algorithm. If an error
occurs, the loop is terminated at the offending algorithm definition. That means, the algorithms prior to
the offending algorithm are successfully registered. Note, the caller has no way of knowing which cipher
implementations have successfully registered. If this is important to know, the caller should loop through
the different implementations using the single instance *_alg functions for each individual implementation.

Single-Block Symmetric Ciphers [CIPHER]
Example of transformations: aes, arc4, ...

This section describes the simplest of all transformation implementations, that being the CIPHER type
used for symmetric ciphers. The CIPHER type is used for transformations which operate on exactly one
block at a time and there are no dependencies between blocks at all.

Registration specifics
The registration of [CIPHER] algorithm is specific in that struct crypto_alg field .cra_type is empty.
The .cra_u.cipher has to be filled in with proper callbacks to implement this transformation.

See struct cipher_alg below.

Developing Cipher Algorithms

8

Cipher Definition With struct cipher_alg
Struct cipher_alg defines a single block cipher.

Here are schematics of how these functions are called when operated from other part of the kernel. Note
that the .cia_setkey() call might happen before or after any of these schematics happen, but must not happen
during any of these are in-flight.

 KEY ---. PLAINTEXT ---.
 v v
 .cia_setkey() -> .cia_encrypt()
 |
 '-----> CIPHERTEXT

Please note that a pattern where .cia_setkey() is called multiple times is also valid:

 KEY1 --. PLAINTEXT1 --. KEY2 --. PLAINTEXT2 --.
 v v v v
 .cia_setkey() -> .cia_encrypt() -> .cia_setkey() -> .cia_encrypt()
 | |
 '---> CIPHERTEXT1 '---> CIPHERTEXT2

Multi-Block Ciphers [BLKCIPHER]
[ABLKCIPHER]

Example of transformations: cbc(aes), ecb(arc4), ...

This section describes the multi-block cipher transformation implementations for both synchronous
[BLKCIPHER] and asynchronous [ABLKCIPHER] case. The multi-block ciphers are used for
transformations which operate on scatterlists of data supplied to the transformation functions. They output
the result into a scatterlist of data as well.

Registration Specifics
The registration of [BLKCIPHER] or [ABLKCIPHER] algorithms is one of the most standard procedures
throughout the crypto API.

Note, if a cipher implementation requires a proper alignment of data, the caller should use the functions
of crypto_blkcipher_alignmask() or crypto_ablkcipher_alignmask() respectively to identify a memory
alignment mask. The kernel crypto API is able to process requests that are unaligned. This implies,
however, additional overhead as the kernel crypto API needs to perform the realignment of the data which
may imply moving of data.

Cipher Definition With struct blkcipher_alg and
ablkcipher_alg

Struct blkcipher_alg defines a synchronous block cipher whereas struct ablkcipher_alg defines an
asynchronous block cipher.

Developing Cipher Algorithms

9

Please refer to the single block cipher description for schematics of the block cipher usage. The usage
patterns are exactly the same for [ABLKCIPHER] and [BLKCIPHER] as they are for plain [CIPHER].

Specifics Of Asynchronous Multi-Block Cipher
There are a couple of specifics to the [ABLKCIPHER] interface.

First of all, some of the drivers will want to use the Generic ScatterWalk in case the hardware needs to be
fed separate chunks of the scatterlist which contains the plaintext and will contain the ciphertext. Please
refer to the ScatterWalk interface offered by the Linux kernel scatter / gather list implementation.

Hashing [HASH]
Example of transformations: crc32, md5, sha1, sha256,...

Registering And Unregistering The Transformation
There are multiple ways to register a HASH transformation, depending on whether the transformation
is synchronous [SHASH] or asynchronous [AHASH] and the amount of HASH transformations we are
registering. You can find the prototypes defined in include/crypto/internal/hash.h:

 int crypto_register_ahash(struct ahash_alg *alg);

 int crypto_register_shash(struct shash_alg *alg);
 int crypto_register_shashes(struct shash_alg *algs, int count);

The respective counterparts for unregistering the HASH transformation are as follows:

 int crypto_unregister_ahash(struct ahash_alg *alg);

 int crypto_unregister_shash(struct shash_alg *alg);
 int crypto_unregister_shashes(struct shash_alg *algs, int count);

Cipher Definition With struct shash_alg and ahash_alg
Here are schematics of how these functions are called when operated from other part of the kernel. Note
that the .setkey() call might happen before or after any of these schematics happen, but must not happen
during any of these are in-flight. Please note that calling .init() followed immediately by .finish() is also
a perfectly valid transformation.

 I) DATA -----------.
 v
 .init() -> .update() -> .final() ! .update() might not be called
 ^ | | at all in this scenario.
 '----' '---> HASH

 II) DATA -----------.-----------.
 v v

Developing Cipher Algorithms

10

 .init() -> .update() -> .finup() ! .update() may not be called
 ^ | | at all in this scenario.
 '----' '---> HASH

 III) DATA -----------.
 v
 .digest() ! The entire process is handled
 | by the .digest() call.
 '---------------> HASH

Here is a schematic of how the .export()/.import() functions are called when used from another part of
the kernel.

 KEY--. DATA--.
 v v ! .update() may not be called
 .setkey() -> .init() -> .update() -> .export() at all in this scenario.
 ^ | |
 '-----' '--> PARTIAL_HASH

 ----------- other transformations happen here -----------

 PARTIAL_HASH--. DATA1--.
 v v
 .import -> .update() -> .final() ! .update() may not be called
 ^ | | at all in this scenario.
 '----' '--> HASH1

 PARTIAL_HASH--. DATA2-.
 v v
 .import -> .finup()
 |
 '---------------> HASH2

Specifics Of Asynchronous HASH Transformation
Some of the drivers will want to use the Generic ScatterWalk in case the implementation needs to be fed
separate chunks of the scatterlist which contains the input data. The buffer containing the resulting hash
will always be properly aligned to .cra_alignmask so there is no need to worry about this.

11

Chapter 4. Programming Interface
Block Cipher Context Data Structures

These data structures define the operating context for each block cipher type.

Programming Interface

12

Name
struct aead_request — AEAD request

Synopsis

struct aead_request {
 struct crypto_async_request base;
 unsigned int assoclen;
 unsigned int cryptlen;
 u8 * iv;
 struct scatterlist * assoc;
 struct scatterlist * src;
 struct scatterlist * dst;
 void * __ctx[] CRYPTO_MINALIGN_ATTR;
};

Members

base Common attributes for async crypto requests

assoclen Length in bytes of associated data for authentication

cryptlen Length of data to be encrypted or decrypted

iv Initialisation vector

assoc Associated data

src Source data

dst Destination data

__ctx[]
CRYPTO_MINALIGN_ATTR

Start of private context data

Block Cipher Algorithm Definitions

These data structures define modular crypto algorithm implementations, managed via
crypto_register_alg and crypto_unregister_alg.

Programming Interface

13

Name
struct crypto_alg — definition of a cryptograpic cipher algorithm

Synopsis

struct crypto_alg {
 struct list_head cra_list;
 struct list_head cra_users;
 u32 cra_flags;
 unsigned int cra_blocksize;
 unsigned int cra_ctxsize;
 unsigned int cra_alignmask;
 int cra_priority;
 atomic_t cra_refcnt;
 char cra_name[CRYPTO_MAX_ALG_NAME];
 char cra_driver_name[CRYPTO_MAX_ALG_NAME];
 const struct crypto_type * cra_type;
 union cra_u;
 int (* cra_init) (struct crypto_tfm *tfm);
 void (* cra_exit) (struct crypto_tfm *tfm);
 void (* cra_destroy) (struct crypto_alg *alg);
 struct module * cra_module;
};

Members

cra_list internally used

cra_users internally used

cra_flags Flags describing this transformation. See include/linux/crypto.h
CRYPTO_ALG_* flags for the flags which go in here. Those are
used for fine-tuning the description of the transformation algorithm.

cra_blocksize Minimum block size of this transformation. The size in bytes of the
smallest possible unit which can be transformed with this algorithm.
The users must respect this value. In case of HASH transformation,
it is possible for a smaller block than cra_blocksize to be
passed to the crypto API for transformation, in case of any other
transformation type, an error will be returned upon any attempt to
transform smaller than cra_blocksize chunks.

cra_ctxsize Size of the operational context of the transformation. This value
informs the kernel crypto API about the memory size needed to be
allocated for the transformation context.

cra_alignmask Alignment mask for the input and output data buffer. The data
buffer containing the input data for the algorithm must be aligned
to this alignment mask. The data buffer for the output data must
be aligned to this alignment mask. Note that the Crypto API will
do the re-alignment in software, but only under special conditions
and there is a performance hit. The re-alignment happens at these
occasions for different

Programming Interface

14

cra_priority Priority of this transformation implementation. In case multiple
transformations with same cra_name are available to the Crypto
API, the kernel will use the one with highest cra_priority.

cra_refcnt internally used

cra_name[CRYPTO_MAX_ALG_NAME]Generic name (usable by multiple implementations) of the
transformation algorithm. This is the name of the transformation
itself. This field is used by the kernel when looking up the providers
of particular transformation.

cra_driver_name[CRYPTO_MAX_ALG_NAME]Unique name of the transformation provider. This is the name of
the provider of the transformation. This can be any arbitrary value,
but in the usual case, this contains the name of the chip or provider
and the name of the transformation algorithm.

cra_type Type of the cryptographic transformation. This is
a pointer to struct crypto_type, which implements
callbacks common for all trasnformation types. There are
multiple options: crypto_blkcipher_type, crypto_ablkcipher_type,
crypto_ahash_type, crypto_aead_type, crypto_rng_type. This field
might be empty. In that case, there are no common callbacks. This
is the case for: cipher, compress, shash.

cra_u Callbacks implementing the transformation. This is a union of
multiple structures. Depending on the type of transformation
selected by cra_type and cra_flags above, the associated
structure must be filled with callbacks. This field might be empty.
This is the case for ahash, shash.

cra_init Initialize the cryptographic transformation object. This function
is used to initialize the cryptographic transformation object. This
function is called only once at the instantiation time, right after
the transformation context was allocated. In case the cryptographic
hardware has some special requirements which need to be handled
by software, this function shall check for the precise requirement
of the transformation and put any software fallbacks in place.

cra_exit Deinitialize the cryptographic transformation object. This is a
counterpart to cra_init, used to remove various changes set in
cra_init.

cra_destroy internally used

cra_module Owner of this transformation implementation. Set to
THIS_MODULE

Description

The struct crypto_alg describes a generic Crypto API algorithm and is common for all of the
transformations. Any variable not documented here shall not be used by a cipher implementation as it is
internal to the Crypto API.

Programming Interface

15

Name
struct ablkcipher_alg — asynchronous block cipher definition

Synopsis

struct ablkcipher_alg {
 int (* setkey) (struct crypto_ablkcipher *tfm, const u8 *key,unsigned int keylen);
 int (* encrypt) (struct ablkcipher_request *req);
 int (* decrypt) (struct ablkcipher_request *req);
 int (* givencrypt) (struct skcipher_givcrypt_request *req);
 int (* givdecrypt) (struct skcipher_givcrypt_request *req);
 const char * geniv;
 unsigned int min_keysize;
 unsigned int max_keysize;
 unsigned int ivsize;
};

Members

setkey Set key for the transformation. This function is used to either program a supplied key
into the hardware or store the key in the transformation context for programming it
later. Note that this function does modify the transformation context. This function can
be called multiple times during the existence of the transformation object, so one must
make sure the key is properly reprogrammed into the hardware. This function is also
responsible for checking the key length for validity. In case a software fallback was
put in place in the cra_init call, this function might need to use the fallback if the
algorithm doesn't support all of the key sizes.

encrypt Encrypt a scatterlist of blocks. This function is used to encrypt the supplied scatterlist
containing the blocks of data. The crypto API consumer is responsible for aligning the
entries of the scatterlist properly and making sure the chunks are correctly sized. In case
a software fallback was put in place in the cra_init call, this function might need
to use the fallback if the algorithm doesn't support all of the key sizes. In case the key
was stored in transformation context, the key might need to be re-programmed into the
hardware in this function. This function shall not modify the transformation context, as
this function may be called in parallel with the same transformation object.

decrypt Decrypt a single block. This is a reverse counterpart to encrypt and the conditions
are exactly the same.

givencrypt Update the IV for encryption. With this function, a cipher implementation may provide
the function on how to update the IV for encryption.

givdecrypt Update the IV for decryption. This is the reverse of givencrypt .

geniv The transformation implementation may use an “IV generator” provided by the kernel
crypto API. Several use cases have a predefined approach how IVs are to be updated.
For such use cases, the kernel crypto API provides ready-to-use implementations that
can be referenced with this variable.

min_keysize Minimum key size supported by the transformation. This is the smallest key length
supported by this transformation algorithm. This must be set to one of the pre-defined
values as this is not hardware specific. Possible values for this field can be found via
git grep “_MIN_KEY_SIZE” include/crypto/

Programming Interface

16

max_keysize Maximum key size supported by the transformation. This is the largest key length
supported by this transformation algorithm. This must be set to one of the pre-defined
values as this is not hardware specific. Possible values for this field can be found via
git grep “_MAX_KEY_SIZE” include/crypto/

ivsize IV size applicable for transformation. The consumer must provide an IV of exactly that
size to perform the encrypt or decrypt operation.

Description

All fields except givencrypt , givdecrypt , geniv and ivsize are mandatory and must be filled.

Programming Interface

17

Name
struct aead_alg — AEAD cipher definition

Synopsis

struct aead_alg {
 int (* setkey) (struct crypto_aead *tfm, const u8 *key,unsigned int keylen);
 int (* setauthsize) (struct crypto_aead *tfm, unsigned int authsize);
 int (* encrypt) (struct aead_request *req);
 int (* decrypt) (struct aead_request *req);
 int (* givencrypt) (struct aead_givcrypt_request *req);
 int (* givdecrypt) (struct aead_givcrypt_request *req);
 const char * geniv;
 unsigned int ivsize;
 unsigned int maxauthsize;
};

Members

setkey see struct ablkcipher_alg

setauthsize Set authentication size for the AEAD transformation. This function is used to specify
the consumer requested size of the authentication tag to be either generated by the
transformation during encryption or the size of the authentication tag to be supplied
during the decryption operation. This function is also responsible for checking the
authentication tag size for validity.

encrypt see struct ablkcipher_alg

decrypt see struct ablkcipher_alg

givencrypt see struct ablkcipher_alg

givdecrypt see struct ablkcipher_alg

geniv see struct ablkcipher_alg

ivsize see struct ablkcipher_alg

maxauthsize Set the maximum authentication tag size supported by the transformation. A
transformation may support smaller tag sizes. As the authentication tag is a message
digest to ensure the integrity of the encrypted data, a consumer typically wants the
largest authentication tag possible as defined by this variable.

Description

All fields except givencrypt , givdecrypt , geniv and ivsize are mandatory and must be filled.

Programming Interface

18

Name
struct blkcipher_alg — synchronous block cipher definition

Synopsis

struct blkcipher_alg {
 int (* setkey) (struct crypto_tfm *tfm, const u8 *key,unsigned int keylen);
 int (* encrypt) (struct blkcipher_desc *desc,struct scatterlist *dst, struct scatterlist *src,unsigned int nbytes);
 int (* decrypt) (struct blkcipher_desc *desc,struct scatterlist *dst, struct scatterlist *src,unsigned int nbytes);
 const char * geniv;
 unsigned int min_keysize;
 unsigned int max_keysize;
 unsigned int ivsize;
};

Members

setkey see struct ablkcipher_alg

encrypt see struct ablkcipher_alg

decrypt see struct ablkcipher_alg

geniv see struct ablkcipher_alg

min_keysize see struct ablkcipher_alg

max_keysize see struct ablkcipher_alg

ivsize see struct ablkcipher_alg

Description

All fields except geniv and ivsize are mandatory and must be filled.

Programming Interface

19

Name
struct cipher_alg — single-block symmetric ciphers definition

Synopsis

struct cipher_alg {
 unsigned int cia_min_keysize;
 unsigned int cia_max_keysize;
 int (* cia_setkey) (struct crypto_tfm *tfm, const u8 *key,unsigned int keylen);
 void (* cia_encrypt) (struct crypto_tfm *tfm, u8 *dst, const u8 *src);
 void (* cia_decrypt) (struct crypto_tfm *tfm, u8 *dst, const u8 *src);
};

Members

cia_min_keysize Minimum key size supported by the transformation. This is the smallest key
length supported by this transformation algorithm. This must be set to one of the
pre-defined values as this is not hardware specific. Possible values for this field
can be found via git grep “_MIN_KEY_SIZE” include/crypto/

cia_max_keysize Maximum key size supported by the transformation. This is the largest key length
supported by this transformation algorithm. This must be set to one of the pre-
defined values as this is not hardware specific. Possible values for this field can
be found via git grep “_MAX_KEY_SIZE” include/crypto/

cia_setkey Set key for the transformation. This function is used to either program a
supplied key into the hardware or store the key in the transformation context
for programming it later. Note that this function does modify the transformation
context. This function can be called multiple times during the existence of the
transformation object, so one must make sure the key is properly reprogrammed
into the hardware. This function is also responsible for checking the key length
for validity.

cia_encrypt Encrypt a single block. This function is used to encrypt a single block of
data, which must be cra_blocksize big. This always operates on a full
cra_blocksize and it is not possible to encrypt a block of smaller size. The
supplied buffers must therefore also be at least of cra_blocksize size. Both
the input and output buffers are always aligned to cra_alignmask. In case
either of the input or output buffer supplied by user of the crypto API is not
aligned to cra_alignmask, the crypto API will re-align the buffers. The re-
alignment means that a new buffer will be allocated, the data will be copied into
the new buffer, then the processing will happen on the new buffer, then the data
will be copied back into the original buffer and finally the new buffer will be
freed. In case a software fallback was put in place in the cra_init call, this
function might need to use the fallback if the algorithm doesn't support all of the
key sizes. In case the key was stored in transformation context, the key might
need to be re-programmed into the hardware in this function. This function shall
not modify the transformation context, as this function may be called in parallel
with the same transformation object.

cia_decrypt Decrypt a single block. This is a reverse counterpart to cia_encrypt, and the
conditions are exactly the same.

Programming Interface

20

Description

All fields are mandatory and must be filled.

Programming Interface

21

Name
struct rng_alg — random number generator definition

Synopsis

struct rng_alg {
 int (* rng_make_random) (struct crypto_rng *tfm, u8 *rdata,unsigned int dlen);
 int (* rng_reset) (struct crypto_rng *tfm, u8 *seed, unsigned int slen);
 unsigned int seedsize;
};

Members

rng_make_random The function defined by this variable obtains a random number. The random
number generator transform must generate the random number out of the context
provided with this call.

rng_reset Reset of the random number generator by clearing the entire state. With the
invocation of this function call, the random number generator shall completely
reinitialize its state. If the random number generator requires a seed for setting
up a new state, the seed must be provided by the consumer while invoking this
function. The required size of the seed is defined with seedsize .

seedsize The seed size required for a random number generator initialization defined with
this variable. Some random number generators like the SP800-90A DRBG does
not require a seed as the seeding is implemented internally without the need of
support by the consumer. In this case, the seed size is set to zero.

Asynchronous Block Cipher API

Asynchronous block cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_ABLKCIPHER
(listed as type “ablkcipher” in /proc/crypto).

Asynchronous cipher operations imply that the function invocation for a cipher request returns immediately
before the completion of the operation. The cipher request is scheduled as a separate kernel thread and
therefore load-balanced on the different CPUs via the process scheduler. To allow the kernel crypto API
to inform the caller about the completion of a cipher request, the caller must provide a callback function.
That function is invoked with the cipher handle when the request completes.

To support the asynchronous operation, additional information than just the cipher handle must be supplied
to the kernel crypto API. That additional information is given by filling in the ablkcipher_request data
structure.

For the asynchronous block cipher API, the state is maintained with the tfm cipher handle. A single tfm can
be used across multiple calls and in parallel. For asynchronous block cipher calls, context data supplied and
only used by the caller can be referenced the request data structure in addition to the IV used for the cipher
request. The maintenance of such state information would be important for a crypto driver implementer to
have, because when calling the callback function upon completion of the cipher operation, that callback
function may need some information about which operation just finished if it invoked multiple in parallel.
This state information is unused by the kernel crypto API.

Programming Interface

22

Name
crypto_alloc_ablkcipher — allocate asynchronous block cipher handle

Synopsis

struct crypto_ablkcipher * crypto_alloc_ablkcipher (const char *
alg_name, u32 type, u32 mask);

Arguments

alg_name is the cra_name / name or cra_driver_name / driver name of the ablkcipher cipher

type specifies the type of the cipher

mask specifies the mask for the cipher

Description

Allocate a cipher handle for an ablkcipher. The returned struct crypto_ablkcipher is the cipher handle that
is required for any subsequent API invocation for that ablkcipher.

Return

allocated cipher handle in case of success; IS_ERR is true in case of an error, PTR_ERR returns the error
code.

Programming Interface

23

Name
crypto_free_ablkcipher — zeroize and free cipher handle

Synopsis

void crypto_free_ablkcipher (struct crypto_ablkcipher * tfm);

Arguments

tfm cipher handle to be freed

Programming Interface

24

Name
crypto_has_ablkcipher — Search for the availability of an ablkcipher.

Synopsis

int crypto_has_ablkcipher (const char * alg_name, u32 type, u32 mask);

Arguments

alg_name is the cra_name / name or cra_driver_name / driver name of the ablkcipher

type specifies the type of the cipher

mask specifies the mask for the cipher

Return

true when the ablkcipher is known to the kernel crypto API; false otherwise

Programming Interface

25

Name
crypto_ablkcipher_ivsize — obtain IV size

Synopsis

unsigned int crypto_ablkcipher_ivsize (struct crypto_ablkcipher * tfm);

Arguments

tfm cipher handle

Description

The size of the IV for the ablkcipher referenced by the cipher handle is returned. This IV size may be zero
if the cipher does not need an IV.

Return

IV size in bytes

Programming Interface

26

Name
crypto_ablkcipher_blocksize — obtain block size of cipher

Synopsis

unsigned int crypto_ablkcipher_blocksize (struct crypto_ablkcipher *
tfm);

Arguments

tfm cipher handle

Description

The block size for the ablkcipher referenced with the cipher handle is returned. The caller may use that
information to allocate appropriate memory for the data returned by the encryption or decryption operation

Return

block size of cipher

Programming Interface

27

Name
crypto_ablkcipher_setkey — set key for cipher

Synopsis

int crypto_ablkcipher_setkey (struct crypto_ablkcipher * tfm, const u8
* key, unsigned int keylen);

Arguments

tfm cipher handle

key buffer holding the key

keylen length of the key in bytes

Description

The caller provided key is set for the ablkcipher referenced by the cipher handle.

Note, the key length determines the cipher type. Many block ciphers implement different cipher modes
depending on the key size, such as AES-128 vs AES-192 vs. AES-256. When providing a 16 byte key for
an AES cipher handle, AES-128 is performed.

Return

0 if the setting of the key was successful; < 0 if an error occurred

Programming Interface

28

Name
crypto_ablkcipher_reqtfm — obtain cipher handle from request

Synopsis

struct crypto_ablkcipher * crypto_ablkcipher_reqtfm (struct
ablkcipher_request * req);

Arguments

req ablkcipher_request out of which the cipher handle is to be obtained

Description

Return the crypto_ablkcipher handle when furnishing an ablkcipher_request data structure.

Return

crypto_ablkcipher handle

Programming Interface

29

Name
crypto_ablkcipher_encrypt — encrypt plaintext

Synopsis

int crypto_ablkcipher_encrypt (struct ablkcipher_request * req);

Arguments

req reference to the ablkcipher_request handle that holds all information needed to perform the cipher
operation

Description

Encrypt plaintext data using the ablkcipher_request handle. That data structure and how it is filled with
data is discussed with the ablkcipher_request_* functions.

Return

0 if the cipher operation was successful; < 0 if an error occurred

Programming Interface

30

Name
crypto_ablkcipher_decrypt — decrypt ciphertext

Synopsis

int crypto_ablkcipher_decrypt (struct ablkcipher_request * req);

Arguments

req reference to the ablkcipher_request handle that holds all information needed to perform the cipher
operation

Description

Decrypt ciphertext data using the ablkcipher_request handle. That data structure and how it is filled with
data is discussed with the ablkcipher_request_* functions.

Return

0 if the cipher operation was successful; < 0 if an error occurred

Asynchronous Cipher Request Handle

The ablkcipher_request data structure contains all pointers to data required for the asynchronous cipher
operation. This includes the cipher handle (which can be used by multiple ablkcipher_request instances),
pointer to plaintext and ciphertext, asynchronous callback function, etc. It acts as a handle to the
ablkcipher_request_* API calls in a similar way as ablkcipher handle to the crypto_ablkcipher_* API calls.

Programming Interface

31

Name
crypto_ablkcipher_reqsize — obtain size of the request data structure

Synopsis

unsigned int crypto_ablkcipher_reqsize (struct crypto_ablkcipher * tfm);

Arguments

tfm cipher handle

Return

number of bytes

Programming Interface

32

Name
ablkcipher_request_set_tfm — update cipher handle reference in request

Synopsis

void ablkcipher_request_set_tfm (struct ablkcipher_request * req, struct
crypto_ablkcipher * tfm);

Arguments

req request handle to be modified

tfm cipher handle that shall be added to the request handle

Description

Allow the caller to replace the existing ablkcipher handle in the request data structure with a different one.

Programming Interface

33

Name
ablkcipher_request_alloc — allocate request data structure

Synopsis

struct ablkcipher_request * ablkcipher_request_alloc (struct
crypto_ablkcipher * tfm, gfp_t gfp);

Arguments

tfm cipher handle to be registered with the request

gfp memory allocation flag that is handed to kmalloc by the API call.

Description

Allocate the request data structure that must be used with the ablkcipher encrypt and decrypt API calls.
During the allocation, the provided ablkcipher handle is registered in the request data structure.

Return

allocated request handle in case of success; IS_ERR is true in case of an error, PTR_ERR returns the
error code.

Programming Interface

34

Name
ablkcipher_request_free — zeroize and free request data structure

Synopsis

void ablkcipher_request_free (struct ablkcipher_request * req);

Arguments

req request data structure cipher handle to be freed

Programming Interface

35

Name
ablkcipher_request_set_callback — set asynchronous callback function

Synopsis

void ablkcipher_request_set_callback (struct ablkcipher_request * req,
u32 flags, crypto_completion_t compl, void * data);

Arguments

req request handle

flags specify zero or an ORing of the flags CRYPTO_TFM_REQ_MAY_BACKLOG the request
queue may back log and increase the wait queue beyond the initial maximum size;
CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep

compl callback function pointer to be registered with the request handle

data The data pointer refers to memory that is not used by the kernel crypto API, but provided
to the callback function for it to use. Here, the caller can provide a reference to memory the
callback function can operate on. As the callback function is invoked asynchronously to the
related functionality, it may need to access data structures of the related functionality which can
be referenced using this pointer. The callback function can access the memory via the “data”
field in the crypto_async_request data structure provided to the callback function.

Description

This function allows setting the callback function that is triggered once the cipher operation completes.

The callback function is registered with the ablkcipher_request handle and must comply with the following
template

void callback_function(struct crypto_async_request *req, int error)

Programming Interface

36

Name
ablkcipher_request_set_crypt — set data buffers

Synopsis

void ablkcipher_request_set_crypt (struct ablkcipher_request * req,
struct scatterlist * src, struct scatterlist * dst, unsigned int nbytes,
void * iv);

Arguments

req request handle

src source scatter / gather list

dst destination scatter / gather list

nbytes number of bytes to process from src

iv IV for the cipher operation which must comply with the IV size defined by
crypto_ablkcipher_ivsize

Description

This function allows setting of the source data and destination data scatter / gather lists.

For encryption, the source is treated as the plaintext and the destination is the ciphertext. For a decryption
operation, the use is reversed - the source is the ciphertext and the destination is the plaintext.

Authenticated Encryption With Associated
Data (AEAD) Cipher API

The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD (listed as type
“aead” in /proc/crypto)

The most prominent examples for this type of encryption is GCM and CCM. However, the kernel supports
other types of AEAD ciphers which are defined with the following cipher string:

authenc(keyed message digest, block cipher)

For example: authenc(hmac(sha256), cbc(aes))

The example code provided for the asynchronous block cipher operation applies here as well. Naturally all
ablkcipher symbols must be exchanged the *aead* pendants discussed in the following. In addtion, for
the AEAD operation, the aead_request_set_assoc function must be used to set the pointer to the associated
data memory location before performing the encryption or decryption operation. In case of an encryption,
the associated data memory is filled during the encryption operation. For decryption, the associated data
memory must contain data that is used to verify the integrity of the decrypted data. Another deviation
from the asynchronous block cipher operation is that the caller should explicitly check for -EBADMSG of
the crypto_aead_decrypt. That error indicates an authentication error, i.e. a breach in the integrity of the
message. In essence, that -EBADMSG error code is the key bonus an AEAD cipher has over “standard”
block chaining modes.

Programming Interface

37

Name
crypto_alloc_aead — allocate AEAD cipher handle

Synopsis

struct crypto_aead * crypto_alloc_aead (const char * alg_name, u32 type,
u32 mask);

Arguments

alg_name is the cra_name / name or cra_driver_name / driver name of the AEAD cipher

type specifies the type of the cipher

mask specifies the mask for the cipher

Description

Allocate a cipher handle for an AEAD. The returned struct crypto_aead is the cipher handle that is required
for any subsequent API invocation for that AEAD.

Return

allocated cipher handle in case of success; IS_ERR is true in case of an error, PTR_ERR returns the error
code.

Programming Interface

38

Name
crypto_free_aead — zeroize and free aead handle

Synopsis

void crypto_free_aead (struct crypto_aead * tfm);

Arguments

tfm cipher handle to be freed

Programming Interface

39

Name
crypto_aead_ivsize — obtain IV size

Synopsis

unsigned int crypto_aead_ivsize (struct crypto_aead * tfm);

Arguments

tfm cipher handle

Description

The size of the IV for the aead referenced by the cipher handle is returned. This IV size may be zero if
the cipher does not need an IV.

Return

IV size in bytes

Programming Interface

40

Name
crypto_aead_authsize — obtain maximum authentication data size

Synopsis

unsigned int crypto_aead_authsize (struct crypto_aead * tfm);

Arguments

tfm cipher handle

Description

The maximum size of the authentication data for the AEAD cipher referenced by the AEAD cipher handle
is returned. The authentication data size may be zero if the cipher implements a hard-coded maximum.

The authentication data may also be known as “tag value”.

Return

authentication data size / tag size in bytes

Programming Interface

41

Name
crypto_aead_blocksize — obtain block size of cipher

Synopsis

unsigned int crypto_aead_blocksize (struct crypto_aead * tfm);

Arguments

tfm cipher handle

Description

The block size for the AEAD referenced with the cipher handle is returned. The caller may use that
information to allocate appropriate memory for the data returned by the encryption or decryption operation

Return

block size of cipher

Programming Interface

42

Name
crypto_aead_setkey — set key for cipher

Synopsis

int crypto_aead_setkey (struct crypto_aead * tfm, const u8 * key,
unsigned int keylen);

Arguments

tfm cipher handle

key buffer holding the key

keylen length of the key in bytes

Description

The caller provided key is set for the AEAD referenced by the cipher handle.

Note, the key length determines the cipher type. Many block ciphers implement different cipher modes
depending on the key size, such as AES-128 vs AES-192 vs. AES-256. When providing a 16 byte key for
an AES cipher handle, AES-128 is performed.

Return

0 if the setting of the key was successful; < 0 if an error occurred

Programming Interface

43

Name
crypto_aead_setauthsize — set authentication data size

Synopsis

int crypto_aead_setauthsize (struct crypto_aead * tfm, unsigned int
authsize);

Arguments

tfm cipher handle

authsize size of the authentication data / tag in bytes

Description

Set the authentication data size / tag size. AEAD requires an authentication tag (or MAC) in addition to
the associated data.

Return

0 if the setting of the key was successful; < 0 if an error occurred

Programming Interface

44

Name
crypto_aead_encrypt — encrypt plaintext

Synopsis

int crypto_aead_encrypt (struct aead_request * req);

Arguments

req reference to the aead_request handle that holds all information needed to perform the cipher
operation

Description

Encrypt plaintext data using the aead_request handle. That data structure and how it is filled with data is
discussed with the aead_request_* functions.

IMPORTANT NOTE The encryption operation creates the authentication data / tag. That data is
concatenated with the created ciphertext. The ciphertext memory size is therefore the given number of
block cipher blocks + the size defined by the crypto_aead_setauthsize invocation. The caller must ensure
that sufficient memory is available for the ciphertext and the authentication tag.

Return

0 if the cipher operation was successful; < 0 if an error occurred

Programming Interface

45

Name
crypto_aead_decrypt — decrypt ciphertext

Synopsis

int crypto_aead_decrypt (struct aead_request * req);

Arguments

req reference to the ablkcipher_request handle that holds all information needed to perform the cipher
operation

Description

Decrypt ciphertext data using the aead_request handle. That data structure and how it is filled with data
is discussed with the aead_request_* functions.

IMPORTANT NOTE The caller must concatenate the ciphertext followed by the authentication data / tag.
That authentication data / tag must have the size defined by the crypto_aead_setauthsize invocation.

Return

0 if the cipher operation was successful; -EBADMSG: The AEAD cipher operation performs the
authentication of the data during the decryption operation. Therefore, the function returns this error if the
authentication of the ciphertext was unsuccessful (i.e. the integrity of the ciphertext or the associated data
was violated); < 0 if an error occurred.

Asynchronous AEAD Request Handle

The aead_request data structure contains all pointers to data required for the AEAD cipher operation. This
includes the cipher handle (which can be used by multiple aead_request instances), pointer to plaintext
and ciphertext, asynchronous callback function, etc. It acts as a handle to the aead_request_* API calls in
a similar way as AEAD handle to the crypto_aead_* API calls.

Programming Interface

46

Name
crypto_aead_reqsize — obtain size of the request data structure

Synopsis

unsigned int crypto_aead_reqsize (struct crypto_aead * tfm);

Arguments

tfm cipher handle

Return

number of bytes

Programming Interface

47

Name
aead_request_set_tfm — update cipher handle reference in request

Synopsis

void aead_request_set_tfm (struct aead_request * req, struct crypto_aead
* tfm);

Arguments

req request handle to be modified

tfm cipher handle that shall be added to the request handle

Description

Allow the caller to replace the existing aead handle in the request data structure with a different one.

Programming Interface

48

Name
aead_request_alloc — allocate request data structure

Synopsis

struct aead_request * aead_request_alloc (struct crypto_aead * tfm,
gfp_t gfp);

Arguments

tfm cipher handle to be registered with the request

gfp memory allocation flag that is handed to kmalloc by the API call.

Description

Allocate the request data structure that must be used with the AEAD encrypt and decrypt API calls. During
the allocation, the provided aead handle is registered in the request data structure.

Return

allocated request handle in case of success; IS_ERR is true in case of an error, PTR_ERR returns the
error code.

Programming Interface

49

Name
aead_request_free — zeroize and free request data structure

Synopsis

void aead_request_free (struct aead_request * req);

Arguments

req request data structure cipher handle to be freed

Programming Interface

50

Name
aead_request_set_callback — set asynchronous callback function

Synopsis

void aead_request_set_callback (struct aead_request * req, u32 flags,
crypto_completion_t compl, void * data);

Arguments

req request handle

flags specify zero or an ORing of the flags CRYPTO_TFM_REQ_MAY_BACKLOG the request
queue may back log and increase the wait queue beyond the initial maximum size;
CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep

compl callback function pointer to be registered with the request handle

data The data pointer refers to memory that is not used by the kernel crypto API, but provided
to the callback function for it to use. Here, the caller can provide a reference to memory the
callback function can operate on. As the callback function is invoked asynchronously to the
related functionality, it may need to access data structures of the related functionality which can
be referenced using this pointer. The callback function can access the memory via the “data”
field in the crypto_async_request data structure provided to the callback function.

Description

Setting the callback function that is triggered once the cipher operation completes

The callback function is registered with the aead_request handle and must comply with the following
template

void callback_function(struct crypto_async_request *req, int error)

Programming Interface

51

Name
aead_request_set_crypt — set data buffers

Synopsis

void aead_request_set_crypt (struct aead_request * req, struct
scatterlist * src, struct scatterlist * dst, unsigned int cryptlen,
u8 * iv);

Arguments

req request handle

src source scatter / gather list

dst destination scatter / gather list

cryptlen number of bytes to process from src

iv IV for the cipher operation which must comply with the IV size defined by
crypto_aead_ivsize

Description

Setting the source data and destination data scatter / gather lists.

For encryption, the source is treated as the plaintext and the destination is the ciphertext. For a decryption
operation, the use is reversed - the source is the ciphertext and the destination is the plaintext.

IMPORTANT NOTE AEAD requires an authentication tag (MAC). For decryption, the caller must
concatenate the ciphertext followed by the authentication tag and provide the entire data stream to the
decryption operation (i.e. the data length used for the initialization of the scatterlist and the data length
for the decryption operation is identical). For encryption, however, the authentication tag is created
while encrypting the data. The destination buffer must hold sufficient space for the ciphertext and the
authentication tag while the encryption invocation must only point to the plaintext data size. The following
code snippet illustrates the memory usage buffer = kmalloc(ptbuflen + (enc ? authsize : 0)); sg_init_one(sg,
buffer, ptbuflen + (enc ? authsize : 0)); aead_request_set_crypt(req, sg, sg, ptbuflen, iv);

Programming Interface

52

Name
aead_request_set_assoc — set the associated data scatter / gather list

Synopsis

void aead_request_set_assoc (struct aead_request * req, struct
scatterlist * assoc, unsigned int assoclen);

Arguments

req request handle

assoc associated data scatter / gather list

assoclen number of bytes to process from assoc

Description

For encryption, the memory is filled with the associated data. For decryption, the memory must point to
the associated data.

Synchronous Block Cipher API

The synchronous block cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_BLKCIPHER
(listed as type “blkcipher” in /proc/crypto)

Synchronous calls, have a context in the tfm. But since a single tfm can be used in multiple calls and
in parallel, this info should not be changeable (unless a lock is used). This applies, for example, to the
symmetric key. However, the IV is changeable, so there is an iv field in blkcipher_tfm structure for
synchronous blkcipher api. So, its the only state info that can be kept for synchronous calls without using
a big lock across a tfm.

The block cipher API allows the use of a complete cipher, i.e. a cipher consisting of a template (a block
chaining mode) and a single block cipher primitive (e.g. AES).

The plaintext data buffer and the ciphertext data buffer are pointed to by using scatter/gather lists. The
cipher operation is performed on all segments of the provided scatter/gather lists.

The kernel crypto API supports a cipher operation “in-place” which means that the caller may provide the
same scatter/gather list for the plaintext and cipher text. After the completion of the cipher operation, the
plaintext data is replaced with the ciphertext data in case of an encryption and vice versa for a decryption.
The caller must ensure that the scatter/gather lists for the output data point to sufficiently large buffers,
i.e. multiples of the block size of the cipher.

Programming Interface

53

Name
crypto_alloc_blkcipher — allocate synchronous block cipher handle

Synopsis

struct crypto_blkcipher * crypto_alloc_blkcipher (const char * alg_name,
u32 type, u32 mask);

Arguments

alg_name is the cra_name / name or cra_driver_name / driver name of the blkcipher cipher

type specifies the type of the cipher

mask specifies the mask for the cipher

Description

Allocate a cipher handle for a block cipher. The returned struct crypto_blkcipher is the cipher handle that
is required for any subsequent API invocation for that block cipher.

Return

allocated cipher handle in case of success; IS_ERR is true in case of an error, PTR_ERR returns the error
code.

Programming Interface

54

Name
crypto_free_blkcipher — zeroize and free the block cipher handle

Synopsis

void crypto_free_blkcipher (struct crypto_blkcipher * tfm);

Arguments

tfm cipher handle to be freed

Programming Interface

55

Name
crypto_has_blkcipher — Search for the availability of a block cipher

Synopsis

int crypto_has_blkcipher (const char * alg_name, u32 type, u32 mask);

Arguments

alg_name is the cra_name / name or cra_driver_name / driver name of the block cipher

type specifies the type of the cipher

mask specifies the mask for the cipher

Return

true when the block cipher is known to the kernel crypto API; false otherwise

Programming Interface

56

Name
crypto_blkcipher_name — return the name / cra_name from the cipher handle

Synopsis

const char * crypto_blkcipher_name (struct crypto_blkcipher * tfm);

Arguments

tfm cipher handle

Return

The character string holding the name of the cipher

Programming Interface

57

Name
crypto_blkcipher_ivsize — obtain IV size

Synopsis

unsigned int crypto_blkcipher_ivsize (struct crypto_blkcipher * tfm);

Arguments

tfm cipher handle

Description

The size of the IV for the block cipher referenced by the cipher handle is returned. This IV size may be
zero if the cipher does not need an IV.

Return

IV size in bytes

Programming Interface

58

Name
crypto_blkcipher_blocksize — obtain block size of cipher

Synopsis

unsigned int crypto_blkcipher_blocksize (struct crypto_blkcipher * tfm);

Arguments

tfm cipher handle

Description

The block size for the block cipher referenced with the cipher handle is returned. The caller may use that
information to allocate appropriate memory for the data returned by the encryption or decryption operation.

Return

block size of cipher

Programming Interface

59

Name
crypto_blkcipher_setkey — set key for cipher

Synopsis

int crypto_blkcipher_setkey (struct crypto_blkcipher * tfm, const u8 *
key, unsigned int keylen);

Arguments

tfm cipher handle

key buffer holding the key

keylen length of the key in bytes

Description

The caller provided key is set for the block cipher referenced by the cipher handle.

Note, the key length determines the cipher type. Many block ciphers implement different cipher modes
depending on the key size, such as AES-128 vs AES-192 vs. AES-256. When providing a 16 byte key for
an AES cipher handle, AES-128 is performed.

Return

0 if the setting of the key was successful; < 0 if an error occurred

Programming Interface

60

Name
crypto_blkcipher_encrypt — encrypt plaintext

Synopsis

int crypto_blkcipher_encrypt (struct blkcipher_desc * desc, struct
scatterlist * dst, struct scatterlist * src, unsigned int nbytes);

Arguments

desc reference to the block cipher handle with meta data

dst scatter/gather list that is filled by the cipher operation with the ciphertext

src scatter/gather list that holds the plaintext

nbytes number of bytes of the plaintext to encrypt.

Description

Encrypt plaintext data using the IV set by the caller with a preceding call of crypto_blkcipher_set_iv.

The blkcipher_desc data structure must be filled by the caller and can reside on the stack. The caller
must fill desc as follows: desc.tfm is filled with the block cipher handle; desc.flags is filled with either
CRYPTO_TFM_REQ_MAY_SLEEP or 0.

Return

0 if the cipher operation was successful; < 0 if an error occurred

Programming Interface

61

Name
crypto_blkcipher_encrypt_iv — encrypt plaintext with dedicated IV

Synopsis

int crypto_blkcipher_encrypt_iv (struct blkcipher_desc * desc, struct
scatterlist * dst, struct scatterlist * src, unsigned int nbytes);

Arguments

desc reference to the block cipher handle with meta data

dst scatter/gather list that is filled by the cipher operation with the ciphertext

src scatter/gather list that holds the plaintext

nbytes number of bytes of the plaintext to encrypt.

Description

Encrypt plaintext data with the use of an IV that is solely used for this cipher operation. Any previously
set IV is not used.

The blkcipher_desc data structure must be filled by the caller and can reside on the stack. The caller must
fill desc as follows: desc.tfm is filled with the block cipher handle; desc.info is filled with the IV to be
used for the current operation; desc.flags is filled with either CRYPTO_TFM_REQ_MAY_SLEEP or 0.

Return

0 if the cipher operation was successful; < 0 if an error occurred

Programming Interface

62

Name
crypto_blkcipher_decrypt — decrypt ciphertext

Synopsis

int crypto_blkcipher_decrypt (struct blkcipher_desc * desc, struct
scatterlist * dst, struct scatterlist * src, unsigned int nbytes);

Arguments

desc reference to the block cipher handle with meta data

dst scatter/gather list that is filled by the cipher operation with the plaintext

src scatter/gather list that holds the ciphertext

nbytes number of bytes of the ciphertext to decrypt.

Description

Decrypt ciphertext data using the IV set by the caller with a preceding call of crypto_blkcipher_set_iv.

The blkcipher_desc data structure must be filled by the caller as documented for the
crypto_blkcipher_encrypt call above.

Return

0 if the cipher operation was successful; < 0 if an error occurred

Programming Interface

63

Name
crypto_blkcipher_decrypt_iv — decrypt ciphertext with dedicated IV

Synopsis

int crypto_blkcipher_decrypt_iv (struct blkcipher_desc * desc, struct
scatterlist * dst, struct scatterlist * src, unsigned int nbytes);

Arguments

desc reference to the block cipher handle with meta data

dst scatter/gather list that is filled by the cipher operation with the plaintext

src scatter/gather list that holds the ciphertext

nbytes number of bytes of the ciphertext to decrypt.

Description

Decrypt ciphertext data with the use of an IV that is solely used for this cipher operation. Any previously
set IV is not used.

The blkcipher_desc data structure must be filled by the caller as documented for the
crypto_blkcipher_encrypt_iv call above.

Return

0 if the cipher operation was successful; < 0 if an error occurred

Programming Interface

64

Name
crypto_blkcipher_set_iv — set IV for cipher

Synopsis

void crypto_blkcipher_set_iv (struct crypto_blkcipher * tfm, const u8
* src, unsigned int len);

Arguments

tfm cipher handle

src buffer holding the IV

len length of the IV in bytes

Description

The caller provided IV is set for the block cipher referenced by the cipher handle.

Programming Interface

65

Name
crypto_blkcipher_get_iv — obtain IV from cipher

Synopsis

void crypto_blkcipher_get_iv (struct crypto_blkcipher * tfm, u8 * dst,
unsigned int len);

Arguments

tfm cipher handle

dst buffer filled with the IV

len length of the buffer dst

Description

The caller can obtain the IV set for the block cipher referenced by the cipher handle and store it into the
user-provided buffer. If the buffer has an insufficient space, the IV is truncated to fit the buffer.

Single Block Cipher API

The single block cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_CIPHER (listed as
type “cipher” in /proc/crypto).

Using the single block cipher API calls, operations with the basic cipher primitive can be implemented.
These cipher primitives exclude any block chaining operations including IV handling.

The purpose of this single block cipher API is to support the implementation of templates or other concepts
that only need to perform the cipher operation on one block at a time. Templates invoke the underlying
cipher primitive block-wise and process either the input or the output data of these cipher operations.

Programming Interface

66

Name
crypto_alloc_cipher — allocate single block cipher handle

Synopsis

struct crypto_cipher * crypto_alloc_cipher (const char * alg_name, u32
type, u32 mask);

Arguments

alg_name is the cra_name / name or cra_driver_name / driver name of the single block cipher

type specifies the type of the cipher

mask specifies the mask for the cipher

Description

Allocate a cipher handle for a single block cipher. The returned struct crypto_cipher is the cipher handle
that is required for any subsequent API invocation for that single block cipher.

Return

allocated cipher handle in case of success; IS_ERR is true in case of an error, PTR_ERR returns the error
code.

Programming Interface

67

Name
crypto_free_cipher — zeroize and free the single block cipher handle

Synopsis

void crypto_free_cipher (struct crypto_cipher * tfm);

Arguments

tfm cipher handle to be freed

Programming Interface

68

Name
crypto_has_cipher — Search for the availability of a single block cipher

Synopsis

int crypto_has_cipher (const char * alg_name, u32 type, u32 mask);

Arguments

alg_name is the cra_name / name or cra_driver_name / driver name of the single block cipher

type specifies the type of the cipher

mask specifies the mask for the cipher

Return

true when the single block cipher is known to the kernel crypto API; false otherwise

Programming Interface

69

Name
crypto_cipher_blocksize — obtain block size for cipher

Synopsis

unsigned int crypto_cipher_blocksize (struct crypto_cipher * tfm);

Arguments

tfm cipher handle

Description

The block size for the single block cipher referenced with the cipher handle tfm is returned. The caller may
use that information to allocate appropriate memory for the data returned by the encryption or decryption
operation

Return

block size of cipher

Programming Interface

70

Name
crypto_cipher_setkey — set key for cipher

Synopsis

int crypto_cipher_setkey (struct crypto_cipher * tfm, const u8 * key,
unsigned int keylen);

Arguments

tfm cipher handle

key buffer holding the key

keylen length of the key in bytes

Description

The caller provided key is set for the single block cipher referenced by the cipher handle.

Note, the key length determines the cipher type. Many block ciphers implement different cipher modes
depending on the key size, such as AES-128 vs AES-192 vs. AES-256. When providing a 16 byte key for
an AES cipher handle, AES-128 is performed.

Return

0 if the setting of the key was successful; < 0 if an error occurred

Programming Interface

71

Name
crypto_cipher_encrypt_one — encrypt one block of plaintext

Synopsis

void crypto_cipher_encrypt_one (struct crypto_cipher * tfm, u8 * dst,
const u8 * src);

Arguments

tfm cipher handle

dst points to the buffer that will be filled with the ciphertext

src buffer holding the plaintext to be encrypted

Description

Invoke the encryption operation of one block. The caller must ensure that the plaintext and ciphertext
buffers are at least one block in size.

Programming Interface

72

Name
crypto_cipher_decrypt_one — decrypt one block of ciphertext

Synopsis

void crypto_cipher_decrypt_one (struct crypto_cipher * tfm, u8 * dst,
const u8 * src);

Arguments

tfm cipher handle

dst points to the buffer that will be filled with the plaintext

src buffer holding the ciphertext to be decrypted

Description

Invoke the decryption operation of one block. The caller must ensure that the plaintext and ciphertext
buffers are at least one block in size.

Synchronous Message Digest API

The synchronous message digest API is used with the ciphers of type CRYPTO_ALG_TYPE_HASH
(listed as type “hash” in /proc/crypto)

Programming Interface

73

Name
crypto_alloc_hash — allocate synchronous message digest handle

Synopsis

struct crypto_hash * crypto_alloc_hash (const char * alg_name, u32 type,
u32 mask);

Arguments

alg_name is the cra_name / name or cra_driver_name / driver name of the message digest cipher

type specifies the type of the cipher

mask specifies the mask for the cipher

Description

Allocate a cipher handle for a message digest. The returned struct crypto_hash is the cipher handle that is
required for any subsequent API invocation for that message digest.

Return

allocated cipher handle in case of success; IS_ERR is true in case of an error, PTR_ERR returns the error
code.

Programming Interface

74

Name
crypto_free_hash — zeroize and free message digest handle

Synopsis

void crypto_free_hash (struct crypto_hash * tfm);

Arguments

tfm cipher handle to be freed

Programming Interface

75

Name
crypto_has_hash — Search for the availability of a message digest

Synopsis

int crypto_has_hash (const char * alg_name, u32 type, u32 mask);

Arguments

alg_name is the cra_name / name or cra_driver_name / driver name of the message digest cipher

type specifies the type of the cipher

mask specifies the mask for the cipher

Return

true when the message digest cipher is known to the kernel crypto API; false otherwise

Programming Interface

76

Name
crypto_hash_blocksize — obtain block size for message digest

Synopsis

unsigned int crypto_hash_blocksize (struct crypto_hash * tfm);

Arguments

tfm cipher handle

Description

The block size for the message digest cipher referenced with the cipher handle is returned.

Return

block size of cipher

Programming Interface

77

Name
crypto_hash_digestsize — obtain message digest size

Synopsis

unsigned int crypto_hash_digestsize (struct crypto_hash * tfm);

Arguments

tfm cipher handle

Description

The size for the message digest created by the message digest cipher referenced with the cipher handle
is returned.

Return

message digest size

Programming Interface

78

Name
crypto_hash_init — (re)initialize message digest handle

Synopsis

int crypto_hash_init (struct hash_desc * desc);

Arguments

desc cipher request handle that to be filled by caller -- desc.tfm is filled with the hash cipher handle;
desc.flags is filled with either CRYPTO_TFM_REQ_MAY_SLEEP or 0.

Description

The call (re-)initializes the message digest referenced by the hash cipher request handle. Any potentially
existing state created by previous operations is discarded.

Return

0 if the message digest initialization was successful; < 0 if an error occurred

Programming Interface

79

Name
crypto_hash_update — add data to message digest for processing

Synopsis

int crypto_hash_update (struct hash_desc * desc, struct scatterlist *
sg, unsigned int nbytes);

Arguments

desc cipher request handle

sg scatter / gather list pointing to the data to be added to the message digest

nbytes number of bytes to be processed from sg

Description

Updates the message digest state of the cipher handle pointed to by the hash cipher request handle with
the input data pointed to by the scatter/gather list.

Return

0 if the message digest update was successful; < 0 if an error occurred

Programming Interface

80

Name
crypto_hash_final — calculate message digest

Synopsis

int crypto_hash_final (struct hash_desc * desc, u8 * out);

Arguments

desc cipher request handle

out message digest output buffer -- The caller must ensure that the out buffer has a sufficient size (e.g.
by using the crypto_hash_digestsize function).

Description

Finalize the message digest operation and create the message digest based on all data added to the cipher
handle. The message digest is placed into the output buffer.

Return

0 if the message digest creation was successful; < 0 if an error occurred

Programming Interface

81

Name
crypto_hash_digest — calculate message digest for a buffer

Synopsis

int crypto_hash_digest (struct hash_desc * desc, struct scatterlist *
sg, unsigned int nbytes, u8 * out);

Arguments

desc see crypto_hash_final

sg see crypto_hash_update

nbytes see crypto_hash_update

out see crypto_hash_final

Description

This function is a “short-hand” for the function calls of crypto_hash_init, crypto_hash_update and
crypto_hash_final. The parameters have the same meaning as discussed for those separate three functions.

Return

0 if the message digest creation was successful; < 0 if an error occurred

Programming Interface

82

Name
crypto_hash_setkey — set key for message digest

Synopsis

int crypto_hash_setkey (struct crypto_hash * hash, const u8 * key,
unsigned int keylen);

Arguments

hash cipher handle

key buffer holding the key

keylen length of the key in bytes

Description

The caller provided key is set for the message digest cipher. The cipher handle must point to a keyed hash
in order for this function to succeed.

Return

0 if the setting of the key was successful; < 0 if an error occurred

Message Digest Algorithm Definitions

These data structures define modular message digest algorithm implementations, managed via
crypto_register_ahash, crypto_register_shash, crypto_unregister_ahash and
crypto_unregister_shash.

Programming Interface

83

Name
struct hash_alg_common — define properties of message digest

Synopsis

struct hash_alg_common {
 unsigned int digestsize;
 unsigned int statesize;
 struct crypto_alg base;
};

Members

digestsize Size of the result of the transformation. A buffer of this size must be available to
the final and finup calls, so they can store the resulting hash into it. For various
predefined sizes, search include/crypto/ using git grep _DIGEST_SIZE include/crypto.

statesize Size of the block for partial state of the transformation. A buffer of this size must be
passed to the export function as it will save the partial state of the transformation into
it. On the other side, the import function will load the state from a buffer of this size
as well.

base Start of data structure of cipher algorithm. The common data structure of crypto_alg
contains information common to all ciphers. The hash_alg_common data structure now
adds the hash-specific information.

Programming Interface

84

Name
struct ahash_alg — asynchronous message digest definition

Synopsis

struct ahash_alg {
 int (* init) (struct ahash_request *req);
 int (* update) (struct ahash_request *req);
 int (* final) (struct ahash_request *req);
 int (* finup) (struct ahash_request *req);
 int (* digest) (struct ahash_request *req);
 int (* export) (struct ahash_request *req, void *out);
 int (* import) (struct ahash_request *req, const void *in);
 int (* setkey) (struct crypto_ahash *tfm, const u8 *key,unsigned int keylen);
 struct hash_alg_common halg;
};

Members

init Initialize the transformation context. Intended only to initialize the state of the HASH
transformation at the begining. This shall fill in the internal structures used during the entire
duration of the whole transformation. No data processing happens at this point.

update Push a chunk of data into the driver for transformation. This function actually pushes blocks
of data from upper layers into the driver, which then passes those to the hardware as seen
fit. This function must not finalize the HASH transformation by calculating the final message
digest as this only adds more data into the transformation. This function shall not modify the
transformation context, as this function may be called in parallel with the same transformation
object. Data processing can happen synchronously [SHASH] or asynchronously [AHASH] at
this point.

final Retrieve result from the driver. This function finalizes the transformation and retrieves the
resulting hash from the driver and pushes it back to upper layers. No data processing happens
at this point.

finup Combination of update and final. This function is effectively a combination of update
and final calls issued in sequence. As some hardware cannot do update and final
separately, this callback was added to allow such hardware to be used at least by IPsec. Data
processing can happen synchronously [SHASH] or asynchronously [AHASH] at this point.

digest Combination of init and update and final. This function effectively behaves as the entire
chain of operations, init, update and final issued in sequence. Just like finup, this was
added for hardware which cannot do even the finup, but can only do the whole transformation
in one run. Data processing can happen synchronously [SHASH] or asynchronously [AHASH]
at this point.

export Export partial state of the transformation. This function dumps the entire state of the ongoing
transformation into a provided block of data so it can be import 'ed back later on. This is
useful in case you want to save partial result of the transformation after processing certain
amount of data and reload this partial result multiple times later on for multiple re-use. No data
processing happens at this point.

Programming Interface

85

import Import partial state of the transformation. This function loads the entire state of the ongoing
transformation from a provided block of data so the transformation can continue from this point
onward. No data processing happens at this point.

setkey Set optional key used by the hashing algorithm. Intended to push optional key used by the
hashing algorithm from upper layers into the driver. This function can store the key in the
transformation context or can outright program it into the hardware. In the former case, one
must be careful to program the key into the hardware at appropriate time and one must be
careful that .setkey can be called multiple times during the existence of the transformation
object. Not all hashing algorithms do implement this function as it is only needed for
keyed message digests. SHAx/MDx/CRCx do NOT implement this function. HMAC(MDx)/
HMAC(SHAx)/CMAC(AES) do implement this function. This function must be called before
any other of the init, update, final, finup, digest is called. No data processing
happens at this point.

halg see struct hash_alg_common

Programming Interface

86

Name
struct shash_alg — synchronous message digest definition

Synopsis

struct shash_alg {
 int (* init) (struct shash_desc *desc);
 int (* update) (struct shash_desc *desc, const u8 *data,unsigned int len);
 int (* final) (struct shash_desc *desc, u8 *out);
 int (* finup) (struct shash_desc *desc, const u8 *data,unsigned int len, u8 *out);
 int (* digest) (struct shash_desc *desc, const u8 *data,unsigned int len, u8 *out);
 int (* export) (struct shash_desc *desc, void *out);
 int (* import) (struct shash_desc *desc, const void *in);
 int (* setkey) (struct crypto_shash *tfm, const u8 *key,unsigned int keylen);
 unsigned int descsize;
 unsigned int statesize;
 struct crypto_alg base;
};

Members

init see struct ahash_alg

update see struct ahash_alg

final see struct ahash_alg

finup see struct ahash_alg

digest see struct ahash_alg

export see struct ahash_alg

import see struct ahash_alg

setkey see struct ahash_alg

descsize Size of the operational state for the message digest. This state size is the memory size that
needs to be allocated for shash_desc.__ctx

statesize see struct ahash_alg

base internally used

Asynchronous Message Digest API

The asynchronous message digest API is used with the ciphers of type CRYPTO_ALG_TYPE_AHASH
(listed as type “ahash” in /proc/crypto)

The asynchronous cipher operation discussion provided for the CRYPTO_ALG_TYPE_ABLKCIPHER
API applies here as well.

Programming Interface

87

Name
crypto_alloc_ahash — allocate ahash cipher handle

Synopsis

struct crypto_ahash * crypto_alloc_ahash (const char * alg_name, u32
type, u32 mask);

Arguments

alg_name is the cra_name / name or cra_driver_name / driver name of the ahash cipher

type specifies the type of the cipher

mask specifies the mask for the cipher

Description

Allocate a cipher handle for an ahash. The returned struct crypto_ahash is the cipher handle that is required
for any subsequent API invocation for that ahash.

Return

allocated cipher handle in case of success; IS_ERR is true in case of an error, PTR_ERR returns the error
code.

Programming Interface

88

Name
crypto_free_ahash — zeroize and free the ahash handle

Synopsis

void crypto_free_ahash (struct crypto_ahash * tfm);

Arguments

tfm cipher handle to be freed

Programming Interface

89

Name
crypto_ahash_init — (re)initialize message digest handle

Synopsis

int crypto_ahash_init (struct ahash_request * req);

Arguments

req ahash_request handle that already is initialized with all necessary data using the ahash_request_*
API functions

Description

The call (re-)initializes the message digest referenced by the ahash_request handle. Any potentially
existing state created by previous operations is discarded.

Return

0 if the message digest initialization was successful; < 0 if an error occurred

Programming Interface

90

Name
crypto_ahash_digestsize — obtain message digest size

Synopsis

unsigned int crypto_ahash_digestsize (struct crypto_ahash * tfm);

Arguments

tfm cipher handle

Description

The size for the message digest created by the message digest cipher referenced with the cipher handle
is returned.

Return

message digest size of cipher

Programming Interface

91

Name
crypto_ahash_reqtfm — obtain cipher handle from request

Synopsis

struct crypto_ahash * crypto_ahash_reqtfm (struct ahash_request * req);

Arguments

req asynchronous request handle that contains the reference to the ahash cipher handle

Description

Return the ahash cipher handle that is registered with the asynchronous request handle ahash_request.

Return

ahash cipher handle

Programming Interface

92

Name
crypto_ahash_reqsize — obtain size of the request data structure

Synopsis

unsigned int crypto_ahash_reqsize (struct crypto_ahash * tfm);

Arguments

tfm cipher handle

Description

Return the size of the ahash state size. With the crypto_ahash_export function, the caller can export the
state into a buffer whose size is defined with this function.

Return

size of the ahash state

Programming Interface

93

Name
crypto_ahash_setkey — set key for cipher handle

Synopsis

int crypto_ahash_setkey (struct crypto_ahash * tfm, const u8 * key,
unsigned int keylen);

Arguments

tfm cipher handle

key buffer holding the key

keylen length of the key in bytes

Description

The caller provided key is set for the ahash cipher. The cipher handle must point to a keyed hash in order
for this function to succeed.

Return

0 if the setting of the key was successful; < 0 if an error occurred

Programming Interface

94

Name
crypto_ahash_finup — update and finalize message digest

Synopsis

int crypto_ahash_finup (struct ahash_request * req);

Arguments

req reference to the ahash_request handle that holds all information needed to perform the cipher
operation

Description

This function is a “short-hand” for the function calls of crypto_ahash_update and crypto_shash_final. The
parameters have the same meaning as discussed for those separate functions.

Return

0 if the message digest creation was successful; < 0 if an error occurred

Programming Interface

95

Name
crypto_ahash_final — calculate message digest

Synopsis

int crypto_ahash_final (struct ahash_request * req);

Arguments

req reference to the ahash_request handle that holds all information needed to perform the cipher
operation

Description

Finalize the message digest operation and create the message digest based on all data added to the cipher
handle. The message digest is placed into the output buffer registered with the ahash_request handle.

Return

0 if the message digest creation was successful; < 0 if an error occurred

Programming Interface

96

Name
crypto_ahash_digest — calculate message digest for a buffer

Synopsis

int crypto_ahash_digest (struct ahash_request * req);

Arguments

req reference to the ahash_request handle that holds all information needed to perform the cipher
operation

Description

This function is a “short-hand” for the function calls of crypto_ahash_init, crypto_ahash_update and
crypto_ahash_final. The parameters have the same meaning as discussed for those separate three functions.

Return

0 if the message digest creation was successful; < 0 if an error occurred

Programming Interface

97

Name
crypto_ahash_export — extract current message digest state

Synopsis

int crypto_ahash_export (struct ahash_request * req, void * out);

Arguments

req reference to the ahash_request handle whose state is exported

out output buffer of sufficient size that can hold the hash state

Description

This function exports the hash state of the ahash_request handle into the caller-allocated output buffer out
which must have sufficient size (e.g. by calling crypto_ahash_reqsize).

Return

0 if the export was successful; < 0 if an error occurred

Programming Interface

98

Name
crypto_ahash_import — import message digest state

Synopsis

int crypto_ahash_import (struct ahash_request * req, const void * in);

Arguments

req reference to ahash_request handle the state is imported into

in buffer holding the state

Description

This function imports the hash state into the ahash_request handle from the input buffer. That buffer should
have been generated with the crypto_ahash_export function.

Return

0 if the import was successful; < 0 if an error occurred

Asynchronous Hash Request Handle

The ahash_request data structure contains all pointers to data required for the asynchronous cipher
operation. This includes the cipher handle (which can be used by multiple ahash_request instances), pointer
to plaintext and the message digest output buffer, asynchronous callback function, etc. It acts as a handle
to the ahash_request_* API calls in a similar way as ahash handle to the crypto_ahash_* API calls.

Programming Interface

99

Name
ahash_request_set_tfm — update cipher handle reference in request

Synopsis

void ahash_request_set_tfm (struct ahash_request * req, struct
crypto_ahash * tfm);

Arguments

req request handle to be modified

tfm cipher handle that shall be added to the request handle

Description

Allow the caller to replace the existing ahash handle in the request data structure with a different one.

Programming Interface

100

Name
ahash_request_alloc — allocate request data structure

Synopsis

struct ahash_request * ahash_request_alloc (struct crypto_ahash * tfm,
gfp_t gfp);

Arguments

tfm cipher handle to be registered with the request

gfp memory allocation flag that is handed to kmalloc by the API call.

Description

Allocate the request data structure that must be used with the ahash message digest API calls. During the
allocation, the provided ahash handle is registered in the request data structure.

Return

allocated request handle in case of success; IS_ERR is true in case of an error, PTR_ERR returns the
error code.

Programming Interface

101

Name
ahash_request_free — zeroize and free the request data structure

Synopsis

void ahash_request_free (struct ahash_request * req);

Arguments

req request data structure cipher handle to be freed

Programming Interface

102

Name
ahash_request_set_callback — set asynchronous callback function

Synopsis

void ahash_request_set_callback (struct ahash_request * req, u32 flags,
crypto_completion_t compl, void * data);

Arguments

req request handle

flags specify zero or an ORing of the flags CRYPTO_TFM_REQ_MAY_BACKLOG the request
queue may back log and increase the wait queue beyond the initial maximum size;
CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep

compl callback function pointer to be registered with the request handle

data The data pointer refers to memory that is not used by the kernel crypto API, but provided
to the callback function for it to use. Here, the caller can provide a reference to memory the
callback function can operate on. As the callback function is invoked asynchronously to the
related functionality, it may need to access data structures of the related functionality which can
be referenced using this pointer. The callback function can access the memory via the “data”
field in the crypto_async_request data structure provided to the callback function.

Description

This function allows setting the callback function that is triggered once the cipher operation completes.

The callback function is registered with the ahash_request handle and must comply with the following
template

void callback_function(struct crypto_async_request *req, int error)

Programming Interface

103

Name
ahash_request_set_crypt — set data buffers

Synopsis

void ahash_request_set_crypt (struct ahash_request * req, struct
scatterlist * src, u8 * result, unsigned int nbytes);

Arguments

req ahash_request handle to be updated

src source scatter/gather list

result buffer that is filled with the message digest -- the caller must ensure that the buffer has sufficient
space by, for example, calling crypto_ahash_digestsize

nbytes number of bytes to process from the source scatter/gather list

Description

By using this call, the caller references the source scatter/gather list. The source scatter/gather list points
to the data the message digest is to be calculated for.

Synchronous Message Digest API

The synchronous message digest API is used with the ciphers of type CRYPTO_ALG_TYPE_SHASH
(listed as type “shash” in /proc/crypto)

The message digest API is able to maintain state information for the caller.

The synchronous message digest API can store user-related context in in its shash_desc request data
structure.

Programming Interface

104

Name
crypto_alloc_shash — allocate message digest handle

Synopsis

struct crypto_shash * crypto_alloc_shash (const char * alg_name, u32
type, u32 mask);

Arguments

alg_name is the cra_name / name or cra_driver_name / driver name of the message digest cipher

type specifies the type of the cipher

mask specifies the mask for the cipher

Description

Allocate a cipher handle for a message digest. The returned struct crypto_shash is the cipher handle that
is required for any subsequent API invocation for that message digest.

Return

allocated cipher handle in case of success; IS_ERR is true in case of an error, PTR_ERR returns the error
code.

Programming Interface

105

Name
crypto_free_shash — zeroize and free the message digest handle

Synopsis

void crypto_free_shash (struct crypto_shash * tfm);

Arguments

tfm cipher handle to be freed

Programming Interface

106

Name
crypto_shash_blocksize — obtain block size for cipher

Synopsis

unsigned int crypto_shash_blocksize (struct crypto_shash * tfm);

Arguments

tfm cipher handle

Description

The block size for the message digest cipher referenced with the cipher handle is returned.

Return

block size of cipher

Programming Interface

107

Name
crypto_shash_digestsize — obtain message digest size

Synopsis

unsigned int crypto_shash_digestsize (struct crypto_shash * tfm);

Arguments

tfm cipher handle

Description

The size for the message digest created by the message digest cipher referenced with the cipher handle
is returned.

Return

digest size of cipher

Programming Interface

108

Name
crypto_shash_descsize — obtain the operational state size

Synopsis

unsigned int crypto_shash_descsize (struct crypto_shash * tfm);

Arguments

tfm cipher handle

Description

The size of the operational state the cipher needs during operation is returned for the hash referenced with
the cipher handle. This size is required to calculate the memory requirements to allow the caller allocating
sufficient memory for operational state.

The operational state is defined with struct shash_desc where the size of that data structure is to be
calculated as sizeof(struct shash_desc) + crypto_shash_descsize(alg)

Return

size of the operational state

Programming Interface

109

Name
crypto_shash_setkey — set key for message digest

Synopsis

int crypto_shash_setkey (struct crypto_shash * tfm, const u8 * key,
unsigned int keylen);

Arguments

tfm cipher handle

key buffer holding the key

keylen length of the key in bytes

Description

The caller provided key is set for the keyed message digest cipher. The cipher handle must point to a keyed
message digest cipher in order for this function to succeed.

Return

0 if the setting of the key was successful; < 0 if an error occurred

Programming Interface

110

Name
crypto_shash_digest — calculate message digest for buffer

Synopsis

int crypto_shash_digest (struct shash_desc * desc, const u8 * data,
unsigned int len, u8 * out);

Arguments

desc see crypto_shash_final

data see crypto_shash_update

len see crypto_shash_update

out see crypto_shash_final

Description

This function is a “short-hand” for the function calls of crypto_shash_init, crypto_shash_update and
crypto_shash_final. The parameters have the same meaning as discussed for those separate three functions.

Return

0 if the message digest creation was successful; < 0 if an error occurred

Programming Interface

111

Name
crypto_shash_export — extract operational state for message digest

Synopsis

int crypto_shash_export (struct shash_desc * desc, void * out);

Arguments

desc reference to the operational state handle whose state is exported

out output buffer of sufficient size that can hold the hash state

Description

This function exports the hash state of the operational state handle into the caller-allocated output buffer
out which must have sufficient size (e.g. by calling crypto_shash_descsize).

Return

0 if the export creation was successful; < 0 if an error occurred

Programming Interface

112

Name
crypto_shash_import — import operational state

Synopsis

int crypto_shash_import (struct shash_desc * desc, const void * in);

Arguments

desc reference to the operational state handle the state imported into

in buffer holding the state

Description

This function imports the hash state into the operational state handle from the input buffer. That buffer
should have been generated with the crypto_ahash_export function.

Return

0 if the import was successful; < 0 if an error occurred

Programming Interface

113

Name
crypto_shash_init — (re)initialize message digest

Synopsis

int crypto_shash_init (struct shash_desc * desc);

Arguments

desc operational state handle that is already filled

Description

The call (re-)initializes the message digest referenced by the operational state handle. Any potentially
existing state created by previous operations is discarded.

Return

0 if the message digest initialization was successful; < 0 if an error occurred

Programming Interface

114

Name
crypto_shash_update — add data to message digest for processing

Synopsis

int crypto_shash_update (struct shash_desc * desc, const u8 * data,
unsigned int len);

Arguments

desc operational state handle that is already initialized

data input data to be added to the message digest

len length of the input data

Description

Updates the message digest state of the operational state handle.

Return

0 if the message digest update was successful; < 0 if an error occurred

Programming Interface

115

Name
crypto_shash_final — calculate message digest

Synopsis

int crypto_shash_final (struct shash_desc * desc, u8 * out);

Arguments

desc operational state handle that is already filled with data

out output buffer filled with the message digest

Description

Finalize the message digest operation and create the message digest based on all data added to the cipher
handle. The message digest is placed into the output buffer. The caller must ensure that the output buffer
is large enough by using crypto_shash_digestsize.

Return

0 if the message digest creation was successful; < 0 if an error occurred

Programming Interface

116

Name
crypto_shash_finup — calculate message digest of buffer

Synopsis

int crypto_shash_finup (struct shash_desc * desc, const u8 * data,
unsigned int len, u8 * out);

Arguments

desc see crypto_shash_final

data see crypto_shash_update

len see crypto_shash_update

out see crypto_shash_final

Description

This function is a “short-hand” for the function calls of crypto_shash_update and crypto_shash_final. The
parameters have the same meaning as discussed for those separate functions.

Return

0 if the message digest creation was successful; < 0 if an error occurred

Crypto API Random Number API

The random number generator API is used with the ciphers of type CRYPTO_ALG_TYPE_RNG (listed
as type “rng” in /proc/crypto)

Programming Interface

117

Name
crypto_alloc_rng — - allocate RNG handle

Synopsis

struct crypto_rng * crypto_alloc_rng (const char * alg_name, u32 type,
u32 mask);

Arguments

alg_name is the cra_name / name or cra_driver_name / driver name of the message digest cipher

type specifies the type of the cipher

mask specifies the mask for the cipher

Description

Allocate a cipher handle for a random number generator. The returned struct crypto_rng is the cipher
handle that is required for any subsequent API invocation for that random number generator.

For all random number generators, this call creates a new private copy of the random number generator
that does not share a state with other instances. The only exception is the “krng” random number generator
which is a kernel crypto API use case for the get_random_bytes function of the /dev/random driver.

Return

allocated cipher handle in case of success; IS_ERR is true in case of an error, PTR_ERR returns the error
code.

Programming Interface

118

Name
crypto_rng_alg — obtain name of RNG

Synopsis

struct rng_alg * crypto_rng_alg (struct crypto_rng * tfm);

Arguments

tfm cipher handle

Description

Return the generic name (cra_name) of the initialized random number generator

Return

generic name string

Programming Interface

119

Name
crypto_free_rng — zeroize and free RNG handle

Synopsis

void crypto_free_rng (struct crypto_rng * tfm);

Arguments

tfm cipher handle to be freed

Programming Interface

120

Name
crypto_rng_get_bytes — get random number

Synopsis

int crypto_rng_get_bytes (struct crypto_rng * tfm, u8 * rdata, unsigned
int dlen);

Arguments

tfm cipher handle

rdata output buffer holding the random numbers

dlen length of the output buffer

Description

This function fills the caller-allocated buffer with random numbers using the random number generator
referenced by the cipher handle.

Return

> 0 function was successful and returns the number of generated bytes; < 0 if an error occurred

Programming Interface

121

Name
crypto_rng_reset — re-initialize the RNG

Synopsis

int crypto_rng_reset (struct crypto_rng * tfm, u8 * seed, unsigned int
slen);

Arguments

tfm cipher handle

seed seed input data

slen length of the seed input data

Description

The reset function completely re-initializes the random number generator referenced by the cipher handle
by clearing the current state. The new state is initialized with the caller provided seed or automatically,
depending on the random number generator type (the ANSI X9.31 RNG requires caller-provided seed, the
SP800-90A DRBGs perform an automatic seeding). The seed is provided as a parameter to this function
call. The provided seed should have the length of the seed size defined for the random number generator
as defined by crypto_rng_seedsize.

Return

0 if the setting of the key was successful; < 0 if an error occurred

Programming Interface

122

Name
crypto_rng_seedsize — obtain seed size of RNG

Synopsis

int crypto_rng_seedsize (struct crypto_rng * tfm);

Arguments

tfm cipher handle

Description

The function returns the seed size for the random number generator referenced by the cipher handle. This
value may be zero if the random number generator does not implement or require a reseeding. For example,
the SP800-90A DRBGs implement an automated reseeding after reaching a pre-defined threshold.

Return

seed size for the random number generator

123

Chapter 5. Code Examples
Code Example For Asynchronous Block Cipher
Operation

struct tcrypt_result {
 struct completion completion;
 int err;
};

/* tie all data structures together */
struct ablkcipher_def {
 struct scatterlist sg;
 struct crypto_ablkcipher *tfm;
 struct ablkcipher_request *req;
 struct tcrypt_result result;
};

/* Callback function */
static void test_ablkcipher_cb(struct crypto_async_request *req, int error)
{
 struct tcrypt_result *result = req->data;

 if (error == -EINPROGRESS)
 return;
 result->err = error;
 complete(&result->completion);
 pr_info("Encryption finished successfully\n");
}

/* Perform cipher operation */
static unsigned int test_ablkcipher_encdec(struct ablkcipher_def *ablk,
 int enc)
{
 int rc = 0;

 if (enc)
 rc = crypto_ablkcipher_encrypt(ablk->req);
 else
 rc = crypto_ablkcipher_decrypt(ablk->req);

 switch (rc) {
 case 0:
 break;
 case -EINPROGRESS:
 case -EBUSY:
 rc = wait_for_completion_interruptible(
 &ablk->result.completion);
 if (!rc && !ablk->result.err) {

Code Examples

124

 reinit_completion(&ablk->result.completion);
 break;
 }
 default:
 pr_info("ablkcipher encrypt returned with %d result %d\n",
 rc, ablk->result.err);
 break;
 }
 init_completion(&ablk->result.completion);

 return rc;
}

/* Initialize and trigger cipher operation */
static int test_ablkcipher(void)
{
 struct ablkcipher_def ablk;
 struct crypto_ablkcipher *ablkcipher = NULL;
 struct ablkcipher_request *req = NULL;
 char *scratchpad = NULL;
 char *ivdata = NULL;
 unsigned char key[32];
 int ret = -EFAULT;

 ablkcipher = crypto_alloc_ablkcipher("cbc-aes-aesni", 0, 0);
 if (IS_ERR(ablkcipher)) {
 pr_info("could not allocate ablkcipher handle\n");
 return PTR_ERR(ablkcipher);
 }

 req = ablkcipher_request_alloc(ablkcipher, GFP_KERNEL);
 if (IS_ERR(req)) {
 pr_info("could not allocate request queue\n");
 ret = PTR_ERR(req);
 goto out;
 }

 ablkcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 test_ablkcipher_cb,
 &ablk.result);

 /* AES 256 with random key */
 get_random_bytes(&key, 32);
 if (crypto_ablkcipher_setkey(ablkcipher, key, 32)) {
 pr_info("key could not be set\n");
 ret = -EAGAIN;
 goto out;
 }

 /* IV will be random */
 ivdata = kmalloc(16, GFP_KERNEL);
 if (!ivdata) {
 pr_info("could not allocate ivdata\n");
 goto out;

Code Examples

125

 }
 get_random_bytes(ivdata, 16);

 /* Input data will be random */
 scratchpad = kmalloc(16, GFP_KERNEL);
 if (!scratchpad) {
 pr_info("could not allocate scratchpad\n");
 goto out;
 }
 get_random_bytes(scratchpad, 16);

 ablk.tfm = ablkcipher;
 ablk.req = req;

 /* We encrypt one block */
 sg_init_one(&ablk.sg, scratchpad, 16);
 ablkcipher_request_set_crypt(req, &ablk.sg, &ablk.sg, 16, ivdata);
 init_completion(&ablk.result.completion);

 /* encrypt data */
 ret = test_ablkcipher_encdec(&ablk, 1);
 if (ret)
 goto out;

 pr_info("Encryption triggered successfully\n");

out:
 if (ablkcipher)
 crypto_free_ablkcipher(ablkcipher);
 if (req)
 ablkcipher_request_free(req);
 if (ivdata)
 kfree(ivdata);
 if (scratchpad)
 kfree(scratchpad);
 return ret;
}

Code Example For Synchronous Block Cipher
Operation

static int test_blkcipher(void)
{
 struct crypto_blkcipher *blkcipher = NULL;
 char *cipher = "cbc(aes)";
 // AES 128
 charkey =
"\x12\x34\x56\x78\x90\xab\xcd\xef\x12\x34\x56\x78\x90\xab\xcd\xef";
 chariv =

Code Examples

126

"\x12\x34\x56\x78\x90\xab\xcd\xef\x12\x34\x56\x78\x90\xab\xcd\xef";
 unsigned int ivsize = 0;
 char *scratchpad = NULL; // holds plaintext and ciphertext
 struct scatterlist sg;
 struct blkcipher_desc desc;
 int ret = -EFAULT;

 blkcipher = crypto_alloc_blkcipher(cipher, 0, 0);
 if (IS_ERR(blkcipher)) {
 printk("could not allocate blkcipher handle for %s\n", cipher);
 return -PTR_ERR(blkcipher);
 }

 if (crypto_blkcipher_setkey(blkcipher, key, strlen(key))) {
 printk("key could not be set\n");
 ret = -EAGAIN;
 goto out;
 }

 ivsize = crypto_blkcipher_ivsize(blkcipher);
 if (ivsize) {
 if (ivsize != strlen(iv))
 printk("IV length differs from expected length\n");
 crypto_blkcipher_set_iv(blkcipher, iv, ivsize);
 }

 scratchpad = kmalloc(crypto_blkcipher_blocksize(blkcipher), GFP_KERNEL);
 if (!scratchpad) {
 printk("could not allocate scratchpad for %s\n", cipher);
 goto out;
 }
 /* get some random data that we want to encrypt */
 get_random_bytes(scratchpad, crypto_blkcipher_blocksize(blkcipher));

 desc.flags = 0;
 desc.tfm = blkcipher;
 sg_init_one(&sg, scratchpad, crypto_blkcipher_blocksize(blkcipher));

 /* encrypt data in place */
 crypto_blkcipher_encrypt(&desc, &sg, &sg,
 crypto_blkcipher_blocksize(blkcipher));

 /* decrypt data in place
 * crypto_blkcipher_decrypt(&desc, &sg, &sg,
 */ crypto_blkcipher_blocksize(blkcipher));

 printk("Cipher operation completed\n");
 return 0;

out:
 if (blkcipher)
 crypto_free_blkcipher(blkcipher);
 if (scratchpad)

Code Examples

127

 kzfree(scratchpad);
 return ret;
}

Code Example For Use of Operational State
Memory With SHASH

struct sdesc {
 struct shash_desc shash;
 char ctx[];
};

static struct sdescinit_sdesc(struct crypto_shash *alg)
{
 struct sdescsdesc;
 int size;

 size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
 sdesc = kmalloc(size, GFP_KERNEL);
 if (!sdesc)
 return ERR_PTR(-ENOMEM);
 sdesc->shash.tfm = alg;
 sdesc->shash.flags = 0x0;
 return sdesc;
}

static int calc_hash(struct crypto_shashalg,
 const unsigned chardata, unsigned int datalen,
 unsigned chardigest) {
 struct sdescsdesc;
 int ret;

 sdesc = init_sdesc(alg);
 if (IS_ERR(sdesc)) {
 pr_info("trusted_key: can't alloc %s\n", hash_alg);
 return PTR_ERR(sdesc);
 }

 ret = crypto_shash_digest(&sdesc->shash, data, datalen, digest);
 kfree(sdesc);
 return ret;
}

Code Example For Random Number Generator
Usage

Code Examples

128

static int get_random_numbers(u8 *buf, unsigned int len)
{
 struct crypto_rngrng = NULL;
 chardrbg = "drbg_nopr_sha256"; /* Hash DRBG with SHA-256, no PR */
 int ret;

 if (!buf || !len) {
 pr_debug("No output buffer provided\n");
 return -EINVAL;
 }

 rng = crypto_alloc_rng(drbg, 0, 0);
 if (IS_ERR(rng)) {
 pr_debug("could not allocate RNG handle for %s\n", drbg);
 return -PTR_ERR(rng);
 }

 ret = crypto_rng_get_bytes(rng, buf, len);
 if (ret < 0)
 pr_debug("generation of random numbers failed\n");
 else if (ret == 0)
 pr_debug("RNG returned no data");
 else
 pr_debug("RNG returned %d bytes of data\n", ret);

out:
 crypto_free_rng(rng);
 return ret;
}

	Linux Kernel Crypto API
	Table of Contents
	Chapter 1. Kernel Crypto API Interface Specification
	Introduction
	Terminology

	Chapter 2. Kernel Crypto API Architecture
	Cipher algorithm types
	Ciphers And Templates
	Synchronous And Asynchronous Operation
	Crypto API Cipher References And Priority
	Key Sizes
	Cipher Allocation Type And Masks

	Chapter 3. Developing Cipher Algorithms
	Registering And Unregistering Transformation
	Single-Block Symmetric Ciphers [CIPHER]
	Registration specifics
	Cipher Definition With struct cipher_alg

	Multi-Block Ciphers [BLKCIPHER] [ABLKCIPHER]
	Registration Specifics
	Cipher Definition With struct blkcipher_alg and ablkcipher_alg
	Specifics Of Asynchronous Multi-Block Cipher

	Hashing [HASH]
	Registering And Unregistering The Transformation
	Cipher Definition With struct shash_alg and ahash_alg
	Specifics Of Asynchronous HASH Transformation

	Chapter 4. Programming Interface
	Block Cipher Context Data Structures
	struct aead_request

	Block Cipher Algorithm Definitions
	struct crypto_alg
	struct ablkcipher_alg
	struct aead_alg
	struct blkcipher_alg
	struct cipher_alg
	struct rng_alg

	Asynchronous Block Cipher API
	crypto_alloc_ablkcipher
	crypto_free_ablkcipher
	crypto_has_ablkcipher
	crypto_ablkcipher_ivsize
	crypto_ablkcipher_blocksize
	crypto_ablkcipher_setkey
	crypto_ablkcipher_reqtfm
	crypto_ablkcipher_encrypt
	crypto_ablkcipher_decrypt

	Asynchronous Cipher Request Handle
	crypto_ablkcipher_reqsize
	ablkcipher_request_set_tfm
	ablkcipher_request_alloc
	ablkcipher_request_free
	ablkcipher_request_set_callback
	ablkcipher_request_set_crypt

	Authenticated Encryption With Associated Data (AEAD) Cipher API
	crypto_alloc_aead
	crypto_free_aead
	crypto_aead_ivsize
	crypto_aead_authsize
	crypto_aead_blocksize
	crypto_aead_setkey
	crypto_aead_setauthsize
	crypto_aead_encrypt
	crypto_aead_decrypt

	Asynchronous AEAD Request Handle
	crypto_aead_reqsize
	aead_request_set_tfm
	aead_request_alloc
	aead_request_free
	aead_request_set_callback
	aead_request_set_crypt
	aead_request_set_assoc

	Synchronous Block Cipher API
	crypto_alloc_blkcipher
	crypto_free_blkcipher
	crypto_has_blkcipher
	crypto_blkcipher_name
	crypto_blkcipher_ivsize
	crypto_blkcipher_blocksize
	crypto_blkcipher_setkey
	crypto_blkcipher_encrypt
	crypto_blkcipher_encrypt_iv
	crypto_blkcipher_decrypt
	crypto_blkcipher_decrypt_iv
	crypto_blkcipher_set_iv
	crypto_blkcipher_get_iv

	Single Block Cipher API
	crypto_alloc_cipher
	crypto_free_cipher
	crypto_has_cipher
	crypto_cipher_blocksize
	crypto_cipher_setkey
	crypto_cipher_encrypt_one
	crypto_cipher_decrypt_one

	Synchronous Message Digest API
	crypto_alloc_hash
	crypto_free_hash
	crypto_has_hash
	crypto_hash_blocksize
	crypto_hash_digestsize
	crypto_hash_init
	crypto_hash_update
	crypto_hash_final
	crypto_hash_digest
	crypto_hash_setkey

	Message Digest Algorithm Definitions
	struct hash_alg_common
	struct ahash_alg
	struct shash_alg

	Asynchronous Message Digest API
	crypto_alloc_ahash
	crypto_free_ahash
	crypto_ahash_init
	crypto_ahash_digestsize
	crypto_ahash_reqtfm
	crypto_ahash_reqsize
	crypto_ahash_setkey
	crypto_ahash_finup
	crypto_ahash_final
	crypto_ahash_digest
	crypto_ahash_export
	crypto_ahash_import

	Asynchronous Hash Request Handle
	ahash_request_set_tfm
	ahash_request_alloc
	ahash_request_free
	ahash_request_set_callback
	ahash_request_set_crypt

	Synchronous Message Digest API
	crypto_alloc_shash
	crypto_free_shash
	crypto_shash_blocksize
	crypto_shash_digestsize
	crypto_shash_descsize
	crypto_shash_setkey
	crypto_shash_digest
	crypto_shash_export
	crypto_shash_import
	crypto_shash_init
	crypto_shash_update
	crypto_shash_final
	crypto_shash_finup

	Crypto API Random Number API
	crypto_alloc_rng
	crypto_rng_alg
	crypto_free_rng
	crypto_rng_get_bytes
	crypto_rng_reset
	crypto_rng_seedsize

	Chapter 5. Code Examples
	Code Example For Asynchronous Block Cipher Operation
	Code Example For Synchronous Block Cipher Operation
	Code Example For Use of Operational State Memory With SHASH
	Code Example For Random Number Generator Usage

