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1 The original Vuong test

Vuong (1989) proposed a test for non-nested model. He considers two competing models, Fβ =
{f(y|z; β); β ∈ β} and Gγ = {g(y|z; γ); γ ∈ Γ}. Denoting h(y|z) the true conditional density. The distance
of Fβ from the true model is measured by the minimum KLIC:

Df = E0 [ln h(y | z)] − E0 [ln f(y | z; β∗)]

where E0 is the expected value using the true joint distribution of (y, X) and β∗ is the pseudo-true value
of β1. As the true model is unobserved, denoting θ⊤ = (β⊤, γ⊤), we consider the difference of the KLIC
distance to the true model of model Gγ and model Fβ :

Λ(θ) = Dg − Df = E0 [ln f(y | z; β∗)] − E0 [ln g(y | z; γ∗)] = E0



ln
f(y | z; β∗)

g(y | z; γ∗)



The null hypothesis is that the distance of the two models to the true models are equal or, equivalently, that:
Λ = 0. The alternative hypothesis is either Λ > 0, which means that Fβ is better than Gγ or Λ < 0, which

means that Gγ is better than Fβ . Denoting, for a given random sample of size N , β̂ and γ̂ the maximum

likelihood estimators of the two models and ln Lf (β̂) and ln Lg(γ̂) the maximum value of the log-likelihood
functions of respectively Fβ and Gγ, Λ can be consistently estimated by:

Λ̂N =
1

N

N
∑

n=1



ln f(yn | xn, β̂) − ln g(yn | xn, γ̂)


=
1

N



ln Lf (β̂) − ln Lg(γ̂)


which is the likelihood ratio divided by the sample size. Note that the statistic of the standard likelihood

ratio test, suitable for nested models is 2


ln Lf (β̂) − ln Lg(γ̂)


, which is 2N Λ̂N .

The variance of Λ is:

ω2

∗
= Vo



ln
f(y | x; β∗)

g(y | x; γ∗)



which can be consistently estimated by:

ω̂2

N =
1

N

N
∑

n=1



ln f(yn | xn, β̂) − ln g(yn | x,n γ̂)
2

− Λ̂2

N

Three different cases should be considered:

1β∗ is called the pseudo-true value because f may be an uncorrect model.
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• when the two models are nested, ω2
∗

is necessarily 0,
• when the two models are overlapping (which means than the models coincides for some values of the

parameters), ω2
∗

may be equal to 0 or not,
• when the two models are stricly non-nested, ω2

∗
is necessarely strictly positive.

The distribution of the statistic depends on whether ω2
∗

is zero or positive. If ω2
∗

is positive, the statistic is

T̂N =
√

N Λ̂N

ω̂N
and, under the null hypothesis that the two models are equivalent, follows a standard normal

distribution. This is the case for two strictly non-nested models.

On the contrary, if ω2
∗

= 0, the distribution is much more complicated. We need to define two matrices: A
contains the expected values of the second derivates of Λ:

A(θ∗) = E0



∂2Λ

∂θ∂θ⊤



= E0



∂2
ln f

∂β∂β⊤ 0

0 − ∂2
ln g

∂β∂β⊤

]

=



Af (β∗) 0
0 −Ag(γ∗)



and B the variance of its first derivatives:

B(θ∗) = E0



∂Λ

∂θ

∂Λ

∂θ⊤



= E0



∂ ln f

∂β
, −∂ ln g

∂γ

 

∂ ln f

∂β⊤
, −∂ ln g

∂γ⊤



= E0



∂ ln f
∂β

∂ ln f
∂β⊤ − ∂ ln f

∂β
∂ ln g
∂γ⊤

− ∂ ln g
∂γ

∂ ln f
∂β⊤

∂ ln g
∂γ

∂ ln g
∂γ⊤

]

or:

B(θ∗) =



Bf (β∗) −Bfg(β∗, γ∗)
−Bgf (β∗, γ∗) Bg(γ∗)



Then:

W (θ∗) = B(θ∗) [−A(θ∗)]
−1

=

 −Bf (β∗)A−1

f (β∗) −Bfg(β∗, γ∗)A−1
g (γ∗)

Bgf (γ∗, β∗)A−1

f (β∗) Bg(γ∗)A−1
g (γ∗)



Denote λ∗ the eigen values of W . When ω2
∗

= 0 (which is always the case for nested models), the statistic is

the one used in the standard likelihood ratio test: 2(ln Lf − ln Lg) = 2N Λ̂N which, under the null, follows
a weighted χ2 distribution with weights equal to λ∗. The Vuong test can be seen in this context as a more
robust version of the standard likelihood ratio test, because it doesn’t assume, under the null, that the larger
model is correctly specified.

Note that, if the larger model is correctly specified, the information matrix equality implies that Bf (θ∗) −
Af (θ∗). In this case, the two matrices on the diagonal of W reduce to −IKf

and IKg
, the trace of W to

Kg −Kf and the distribution of the statistic under the null reduce to a χ2 with Kg −Kf degrees of freedom.

The W matrice can be consistently estimate by computing the first and the second derivatives of the likelihood
functions of the two models for θ̂. For example,

Âf (β̂) =
1

N

N
∑

n=1

∂2 ln f

∂β∂β⊤
(β̂, xn, yn)

B̂fg(θ̂) =
1

N

N
∑

n=1

∂ ln f

∂β
(β̂, xn, yn)

∂ ln g

∂γ⊤
(γ̂, xn, yn)

For the overlapping case, the test should be performed in two steps:
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• the first step consists on testing whether ω∗

∗
is 0 or not. This hypothesis is based on the statistic Nω̂2

which, under the null (ω2
∗

= 0) follows a weighted χ2 distributions with weights equal to λ2
∗
. If the

null hypothesis is not rejected, the test stops at this step and the conclusion is that the two models
are equivalent,

• if the null hypothesis is reject, the second step consists on applying the test for non-nested models
previously described.

2 The non-degenerate Vuong test

Shi (2015) proposed a non-degenerate version of the Vuong (1989) test. She shows that the Vuong test has

size distortion, leading to subsequent overrejection. The cause of this problem is that the distribution of Λ̂
is discontinuous in the ω2 parameter (namely a normal distribution if ω2 > 0 and a distribution related to
a weight χ2 distribution if ω2 = 0). Especially in small samples, it may be difficult to distinguish a positive
versus a zero value of ω2 because of sampling error. To solve this problem, using local asymptotic theory,
Shi (2015) showed that, rewriting the Vuong statistic as:

T̂ =
N Λ̂N

√

Nω̂2
N

the asymptotic distribution of the numerator and of the square of the denominator of the Vuong statistic is
the same as:



N Λ̂N

Nω̂2
N



→d



JΛ

Jω



=



σzω − z⊤

θ V zθ/2
σ2 − 2σρ⊤

∗
V zθ + z⊤

θ V 2zθ



where:



zω

zθ



∼ N



0,



1 ρ⊤

∗

ρ∗ I



,

ρ∗ is a vector of length Kf +Kg, σ a positive scalar and V is the diagonal matrix containing the eigen values

of B
1

2 A−1B
1

2 .

Based on this result, Shi (2015) showed:

• that the expected value of the numerator is −trace(V )/2, the classical Vuong statistic is therefore
biased and this bias can be severe in small samples and when the degree of parametrization of the two
models are very different2,

• that the denominator, being random, can take values close to zero with a significant probability, which
can generate fat tails in the distribution of the statistic.

Shi (2015) therefore proposed to modify the numerator of the Vuong statistic:

Λ̂mod
N = Λ̂N +

tr(V )

2N

and to add a constant to the denominator, so that:



ω̂mod(c)
2

= ω̂2 + c tr(V )2/N

2As the trace of V is the same as the trace of A−1B, when the information matrix identity holds, it is equal to −Kf + Kg .
The bias of the numerator is therefore caused by the difference in the degree of parametrization of the two models.
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The non-degenarate Vuong test is then:

Tmod
N =

Λ̂mod
N

ω̂mod
=

√
N

Λ̂N + tr(V )/2N
√

ω̂2 + c tr(V )2/N

The distribution of the modified Vuong statistic can be estimated by simulations: drawing in the distribution
of (zω, z⊤

θ ), we compute for every draw JΛ, Jω and JΛ/
√

Jω. As σ and ρ∗ can’t be estimated consistently,
the supremum other these parameters are taken, and Shi (2015) indicates that ρ∗ should be in this case a
vector where all the elements are zero except for the one that coincides with the highest absolute value of V
which is set to 1.

The Shi test is then computed as follow:

1. start with a given size for the test, say α = 0.05,
2. for a given value of c, choose σ which maximize the simulated critical value for c and α,
3. adjust c so that this critical value equals the normal critical value, up to a small disperency (say 0.1);

for example, if the size is 5%, the target is v1−α/2 = 1.96 + 0.1 = 2.06,

4. compute T̂mod
N for the given values of c and σ ; if T̂mod

N > v1−α/2, reject the null hypothesis at the α
level,

5. to get a p-value, if T̂mod
N > v1−α/2 increase α and repeat the previous steps until a new value of α is

obtained so that T̂mod
N = v1−α∗/2, α∗ being the p-value of the test.

3 Simulations

Shi (2015) provides an example of simulations of non-nested linear models that shows that the distribution
of the Vuong statistic can be very different from a standard normal. The data generating process used for
the simulations is:

y = 1 +

Kf
∑

k=1

zf
k +

Kg
∑

k=1

zg
k + ϵ

where zf is the set of Kf covariates that are used in the first model and zg the set of Kg covariates used in

the second model and ϵ ∼ N(0, 1 − a2). zf
k ∼ N(0, a/

√

Kf ) and zg
k ∼ N(0, a/

√

Kg), so that the explained
variance explained by the two competing models is the same (equal to a2) and the null hypothesis of the
Vuong test is true. The sim_lm unables to simulate values of the Vuong test. As in Shi (2015), we use a
very different degree of parametrization for the two models, with Kf = 15 and KG = 1.

Vuong <- ndvtest::sim_lm(N = 100, R = 1000, Kf = 15, Kg = 1, a = 0.5)

head(Vuong)

## [1] 3.6453881 1.9397603 1.2177819 0.6286946 2.0509829 2.5688364

mean(Vuong)

## [1] 1.036417

mean(abs(Vuong) > 1.96)

## [1] 0.176
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We can see that the the mean of the statistic for the 1000 replications is far away from 0, which means that
the numerator of the Vuong statistic is seriously biased. 17.6% of the values of the statistic are greater than
the critical value so that the Vuong test will lead in such context a noticeable overrejection. The empirical
pdf is shown in the following figure, along with the normal pdf.

library("ggplot2")

ggplot(data = data.frame(Vuong = Vuong)) + geom_density(aes(x = Vuong)) +

geom_function(fun = dnorm, linetype = "dotted")
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4 Implementation of the non-degenarate Vuong test

The nonnest2 package provides a vuongtest function that implements the classical Vuong test. It has a
nest argument (that is FALSE by default but can be set to TRUE to get the nested version of the Vuong test).
This package also provide a llcont generic which returns a vector of length N containing the contribution
of every observation to the log-likelihood.

The ndvtest package provides the ndvtest function. As for the vuongtest function, the two main argu-
ments are two fitted models (say model1 and model2). The Λ̂n vector is obtained using llcont(model1)

- llcont(model2). The relevant matrices Ai and Bi are computed from the fitted models using the
estfun and the meat functions from the sandwich package. More precisely, A−1 is bdiag(-bread(model1),

bread(model2)3 and B is crossprod(estfun(model1), - estfun(model2)) / N, where N is the sample
size. Therefore, the ndvtest function can be used with any models for which a llcont, a estfun and a
bread method is available.

3bdiag if a function that construct a block-diagonal matrix from its arguments.
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5 Applications

5.1 Voter turnout

The first application is the example used in Shi (2015) and is used to compare our R program with Shi’s
stata’s program. Coate and Conlin (2004) used several models of electoral participation, using data con-
cerning referenda about alcool sales regulation in Texas. Three models are estimated: the prefered group-
utilitarian model, a “simple, but plausible, alternative: the intensity model” and a reduced form model
estimated by the seemingly unrelated residuals method. They are provided in the ndvtest package as
turnout, a list of three fitted models4. The results of the Shi test are given below. We first compute the Shi
statistic for an error level of 5%. We therefore set the size argument to 0.05 (this is actually the default
value) and the pval argument to FALSE.

library("ndvtest")

test <- ndvtest(turnout$group, turnout$intens, size = 0.05, pval = FALSE)

test

##

## Non-degenerate Vuong test for non-nested models

##

## data: turnout$group-turnout$intens

## z = 1.7441, size = 0.050000, vuong_stat = 2.084529, constant =

## 0.636510, crit-value = 2.059733, sum e.v. = -11.043994, vuong_p.value =

## 0.037112

## alternative hypothesis: different models

The Shi statistic is 1.744, which is smaller that the critical value 2.06. Therefore, based on the Shi test,
we can’t reject the hypothesis that the two competing models are equivalent at the 5% level. The value of
the constant c is also reported, as is the sum of the eigen values of the V matrix (sum e.v.). The classical
Vuong statistic is also reported (2.085) and is greater than the 5% normal critical value (the p-value is 0.037).
Therefore, the classical Vuong test and the non-degenerate version lead to opposite conclusions at the 5%
level.

To get only the classical Vuong test, the nd argument can be set to FALSE:

ndvtest(turnout$group, turnout$intens, nd = FALSE)

##

## Vuong test for non-nested models

##

## data: turnout$group-turnout$intens

## z = 2.0845, p-value = 0.03711

## alternative hypothesis: different models

To get the p-value of the non-degenerate Vuong test, the pval argument should be set to TRUE.

test <- ndvtest(turnout$group, turnout$intens, pval = TRUE)

test

4The estimation is rather complicated because some linear constraints are used to compute the maximum likelihood estimator
in Coate and Conlin (2004)’s stata script. This is the reason why we provide only the results of the estimations, performed
using the maxLik package.
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##

## Non-degenerate Vuong test for non-nested models

##

## data: turnout$group-turnout$intens

## z = 1.7976, vuong_stat = 2.084529, constant = 0.124584, sum e.v. =

## -11.043994, vuong_p.value = 0.037112, p-value = 0.0896

## alternative hypothesis: different models

The results indicate that the p-value is 0.09, which confirms that the Shi test concludes that the two model
are equivalent at the 5% level.

5.2 The demand for medical care (stricly non-nested models)

The second example compares different count models, using data on demand for medical care. These data
were used by Deb and Trivedi (1997) and by Zeileis, Kleiber, and Jackman (2008). They are available as
AER::NMES1988. The response is the number of physician office visits (visits) and the covariates are the
number of hospital stays (hosp), a factor indicating self-perceived health status (health), the number of
chronic conditions (chronic), the gender (gender), the number of years of education (school) and a factor
indicating whether the individual is covered by private insurance (insurance).

The poisson model is often two simple as the poisson distribution hypothesis may be rejected for two reasons:

• the first one is that it imposes the equality of the conditional expectation and variance and that, with
real data, we often observe that the variance is much larger than the expectation,

• the second one is that the probability of 0 for real data are often much larger that the one implied by
the poisson distribution.

We’ll deal here only with the second problem. Two competing models can be used:

• the zero-inflated (or zip) model, as it names suggests, inflates the probability of zero, compared to the
Poisson model,

• the hurdle model is a two-part model, with a binomial model which explains the probability of 0 and
a zero-truncated poisson model that explains the probabilities of positive values.

These two models can be estimated using respectively pscl::zeroinfl and pscl::hurdle.

data("NMES1988", package = "AER")

zi <- pscl::zeroinfl(visits ~ hospital + health + chronic + gender + school + insurance,

data = NMES1988)

hl <- pscl::hurdle(visits ~ hospital + health + chronic + gender + school + insurance,

data = NMES1988)

We first use two previous implementation of the classical Vuong test. The first one is pscl::vuong.

pscl::vuong(zi, hl)

## Vuong Non-Nested Hypothesis Test-Statistic:

## (test-statistic is asymptotically distributed N(0,1) under the

## null that the models are indistinguishible)

## -------------------------------------------------------------

## Vuong z-statistic H_A p-value

## Raw 2.189664 model1 > model2 0.014274

## AIC-corrected 2.189664 model1 > model2 0.014274

## BIC-corrected 2.189664 model1 > model2 0.014274
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The alternative hypothesis is writen as the first model being better than the second one, the p-value is
therefore one-sided. The null hypothesis is therefore rejected at the 5% level (p-value = 0.0143), and it’s
also the case if the alternative were writen as one model being better than the other one (in this case, the
p-value would be 0.0143 × 2 = 0.0286).

An other implementation of the classical Vuong test is nonnest2::vuong.

nonnest2::vuongtest(zi, hl)

##

## Model 1

## Class: zeroinfl

## Call: pscl::zeroinfl(formula = visits ~ hospital + health + chronic + ...

##

## Model 2

## Class: hurdle

## Call: pscl::hurdle(formula = visits ~ hospital + health + chronic + ...

##

## Variance test

## H0: Model 1 and Model 2 are indistinguishable

## H1: Model 1 and Model 2 are distinguishable

## w2 = 0.000, p = 0.0124

##

## Non-nested likelihood ratio test

## H0: Model fits are equal for the focal population

## H1A: Model 1 fits better than Model 2

## z = 2.190, p = 0.0143

## H1B: Model 2 fits better than Model 1

## z = 2.190, p = 0.9857

This implementation of the test proceeds in two steps. The first step is the variance test, which is normaly
only relevant when the two models are overlapping. The hypothesis that ω2 = 0 is rejected at the 5% level
(p-value of 0.0124), so that the second step is performed. Two alternatives hypothesis are used, the first one
being that the first model is better than the second model and the second one being the opposite. Therefore,
one sided p-values are used and we get the same conclusion than previously that the zero-inflated Poisson
model is better that the hurdle model at the 5% level.

We then compute the non-degenerate Vuong test:

ndvtest(zi, hl)

##

## Non-degenerate Vuong test for non-nested models

##

## data: zi-hl

## z = 2.0005, vuong_stat = 2.189912, constant = 0.486841, sum e.v. =

## -0.010899, vuong_p.value = 0.028531, p-value = 0.0573

## alternative hypothesis: different models

The null hypothesis that the two models are equivalent is not rejected using the non-degenerate Vuong test,
as the p-value is now equal to 0.057.

8



5.3 Transport mode choice (nested models)

The third example concerns transport mode choice in Canada. The dataset, provided by the mlogit package
is called ModeCanada and has been used extensively in the transport demand litterature (see in particular
Bhat 1995; Koppelman and Wen 2000; and Wen and Koppelman 2001). The following example is from
Croissant (2020). The raw data set is first transformed to make it suitable for the estimation of discrete
choice models. The sample is restricted to the individuals for which 4 transport modes are available (bus,
air, train and car).

library("mlogit")

## Le chargement a nécessité le package : dfidx

##

## Attachement du package : ’dfidx’

## L’objet suivant est masqué depuis ’package:stats’:

##

## filter

data("ModeCanada")

MC <- mlogit.data(ModeCanada, subset = noalt == 4, chid.var = "case",

alt.var = "alt", drop.index = TRUE)

We first estimate the simplest discrete choice model, which is the multinomial logit model. The bus share
being negligible, the choice set is restricted to the three other modes and the reference mode is set to car.

ml <- mlogit(choice ~ freq + cost + ivt + ovt | urban + income, MC,

reflevel = ’car’, alt.subset = c("car", "train", "air"))

This model relies on the hypothesis that the unobserved component of the utility functions for the different
modes are independent and identical Gumbell variables. Bhat (1995) proposed the heteroscedastic logit
for which the errors follow a general Gumbell distributions with a supplementary scale parameter to be
estimated. As the overall scale of utility is not identified, the scale parameter of the reference alternative
(car) is set to one.

hl <- mlogit(choice ~ freq + cost + ivt + ovt | urban + income, MC,

reflevel = ’car’, alt.subset = c("car", "train", "air"),

heterosc = TRUE)

coef(summary(hl))

## Estimate Std. Error z-value Pr(>|z|)

## (Intercept):train 0.678393435 0.332762598 2.038671 4.148288e-02

## (Intercept):air 0.656754399 0.468163091 1.402832 1.606668e-01

## freq 0.063924677 0.004916769 13.001360 0.000000e+00

## cost -0.026961457 0.004283139 -6.294789 3.078178e-10

## ivt -0.009680773 0.001053874 -9.185892 0.000000e+00

## ovt -0.032165526 0.003593007 -8.952258 0.000000e+00

## urban:train 0.797131578 0.120739176 6.602096 4.053868e-11

## urban:air 0.445472634 0.082160945 5.421951 5.895197e-08

## income:train -0.012597857 0.003994180 -3.154053 1.610196e-03

## income:air 0.018859983 0.003215926 5.864558 4.503294e-09

## sp.train 1.237182865 0.110460959 11.200182 0.000000e+00

## sp.air 0.540323852 0.111835294 4.831425 1.355592e-06

9



The two supplementary coefficients are sp.train and sp.air. The student statistics reported are irrelevant
because they test the hypothesis that these parameters are 0, as the relevant hypothesis of homoscedasticity
is that both of them equal one. The heteroscedastic logit being nested in the multinomial logit model, we can
first use the three classical tests: the Wald test (based on the unconstrained model hl), the score test (based
on the constrained model ml) and the likelihood ratio model (based on the comparison of both models).

To perform the Wald test, we use lmtest::waldtest, for which a special method is provided by the mlogit

package. The arguments are the unconstrained model (hl) and the update that should be used in order
to get the constrained model (heterosc = FALSE). To compute the scoretest, we use mlogit::scoretest,
for which the arguments are the constrained model (ml) and the update that should be used in order
to get the unconstrained model (heterosc = TRUE). Finally, the likelihood ratio test is performed using
lmtest::lrtest.

lmtest::waldtest(hl, heterosc = FALSE)

##

## Wald test

##

## data: homoscedasticity

## chisq = 25.196, df = 2, p-value = 3.38e-06

scoretest(ml, heterosc = TRUE)

##

## score test

##

## data: heterosc = TRUE

## chisq = 9.4883, df = 2, p-value = 0.008703

## alternative hypothesis: heteroscedastic model

lmtest::lrtest(hl, ml)

## Likelihood ratio test

##

## Model 1: choice ~ freq + cost + ivt + ovt | urban + income

## Model 2: choice ~ freq + cost + ivt + ovt | urban + income

## #Df LogLik Df Chisq Pr(>Chisq)

## 1 12 -1838.1

## 2 10 -1841.6 -2 6.8882 0.03193 *

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The three statistics are χ2 with two degrees of freedom under the null hypothesis of homoscedascticity. The
three tests reject the null hypothesis at the 5% level, and even at the 1% level for the Wald and the score
test. These three tests relies on the hypothesis that, under the null, the constrained model is the true model.
We can get rid of this hypothesis using a Vuong test. Note the use of the nested argument that is set to
TRUE:

ndvtest(hl, ml, nested = TRUE)

##

## Non-degenerate Vuong test for nested models
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##

## data: hl-ml

## z = 0.4554, vuong_stat = 6.888241, vuong_p.value = 0.047927, p-value =

## 0.211

## alternative hypothesis: different models

The homoscedasticity hypothesis is still rejected at the 5% level for the classical Vuong test (the p-value is
0.048), but it is not using the non-degenerate Vuong test (p-value of 0.211).

5.4 Transport mode choice (overlapping models)

We consider finally another dataset from mlogit called RiskyTransport, that has been used by Leon and
Miguel (2017) and concerns the choice of one mode (among water-taxi, ferry, hovercraft and helicopter) for
trips from Sierra Leone’s international airport to downtown Freetown.

library("mlogit")

data("RiskyTransport")

RT <- mlogit.data(RiskyTransport, shape = "long", choice = "choice",

chid.var = "chid", alt.var = "mode", id.var = "id")

We estimate models with only one covariate, the generalized cost of the mode. We estimate three models:
the basic multinomial logit model, the heteroscedastic model and a nested model where alternatives are
grouped in two nests according to the fact that they are fast or slow modes.

ml <- mlogit(choice ~ cost, data = RT)

hl <- mlogit(choice ~ cost , data = RT, heterosc = TRUE)

nl <- mlogit(formula = choice ~ cost, data = RT,

nests = list(fast = c("Helicopter", "Hovercraft"),

slow = c("WaterTaxi", "Ferry")),

un.nest.el = TRUE)

modelsummary::msummary(list(multinomial = ml, heteroscedastic = hl, nested = nl))

Compared to ne multinomial model, the heteroscedastic model has 3 supplementary coefficients (the scale
parameters for 3 modes, the one for the reference mode being set to 1) and the nested logit model has
one supplementary parameter which is the nest elasticity (iv in the table). Both models reduce to the
multinomial logit model if:

• sp.WaterTaxi = sp.Ferry = sp.Hovercraft = 1 for the heteroscedastic model,
• iv = 1 for the nested logit model.

Therefore, the two models are over-lapping, as they reduce to the same model (the multinomial logit model)
for some values of the parameters.

The first step of the test is the variance test. It can be performed using ndvtest by setting the argument
vartest to TRUE:

ndvtest(nl, hl, vartest = TRUE)

##

## variance test

##

## data: nl-hl

## w2 = 0.047327, p-value < 2.2e-16

## alternative hypothesis: positive variance
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multinomial heteroscedastic nested

(Intercept) × WaterTaxi 1.754 1.955 1.581
(0.159) (0.224) (0.127)

(Intercept) × Ferry 1.445 0.417 1.359
(0.168) (0.401) (0.118)

(Intercept) × Hovercraft 0.844 −3.666 0.461
(0.167) (2.511) (0.148)

cost −0.009 −0.022 −0.007
(0.001) (0.004) (0.001)

sp.WaterTaxi 0.745
(0.523)

sp.Ferry 2.840
(0.547)

sp.Hovercraft 4.551
(1.761)

iv 0.554
(0.092)

Num.Obs. 1793 1793 1793
AIC 3344.2 3300.7 3330.4
BIC
Log.Lik. −1668.108 −1643.348 −1660.198
rho2 0.151 0.163 0.155
rho20 0.329 0.339 0.332

The null hypothesis that ω2 = 0 is rejected. We can then proceed to the second step, which is the test for
non-nested models.

ndvtest(hl, nl)

##

## Non-degenerate Vuong test for non-nested models

##

## data: hl-nl

## z = 1.7298, vuong_stat = 1.829208, constant = 0.000000, sum e.v. =

## -1.832021, vuong_p.value = 0.067369, p-value = 0.0975

## alternative hypothesis: different models

The classical and the non-degenerate Vuong tests both conclude that the two models are equivalent at the
5% level, but that the heteroscedastic model is better than the nested logit model at the 10% level.
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