Power Analysis for Longitudinal Multilevel Models


[Up] [Top]

Documentation for package ‘powerlmm’ version 0.4.0

Help Pages

powerlmm-package Power Analysis for Longitudinal Multilevel Models
as.data.frame.plcp_multi_sim_summary Convert a multi-sim summary object to a tidy data.frame
cohend Use Cohen's d as the effect size in 'study_parameters'
create_lmer_formula Create an lmer formula based on a 'study_parameters'-object
dropout_manual Manually specify dropout per time point
dropout_weibull Use the Weibull distribution to specify the dropout process
get_correlation_matrix Calculate the subject-level (ICC) correlations among time points
get_correlation_matrix.plcp_multi Calculate the subject-level (ICC) correlations among time points
get_DEFT Calculate the design effect and Type I errors
get_DEFT.plcp_3lvl Calculate the design effect and Type I errors
get_dropout Get the amount of dropout
get_dropout.plcp_multi Get the amount of dropout
get_ICC_pre_clusters Calculate the amount of baseline variance at the cluster level
get_ICC_pre_subjects Calculate the subject-level ICC at pretest
get_ICC_slope Calculate the amount of slope variance at the third level
get_monte_carlo_se Calculate the Monte Carlo standard error of the empirical power estimates
get_monte_carlo_se.plcp_power_2lvl Calculate the Monte Carlo standard error of the empirical power estimates
get_monte_carlo_se.plcp_power_3lvl Calculate the Monte Carlo standard error of the empirical power estimates
get_power Calculate power for two- and three-level models with missing data.
get_power_table Create a power table for a combination of parameter values
get_sds Calculate the model implied standard deviations per time point
get_slope_diff Return the raw difference between the groups at posttest
get_slope_diff.plcp Return the raw difference between the groups at posttest
get_slope_diff.plcp_multi Return the raw difference between the groups at posttest
get_var_ratio Calculates the ratio of the slope variance to the within-subjects error variance
get_VPC Calculate the variance partitioning coefficient
get_VPC.plcp Calculate the variance partitioning coefficient
per_treatment Setup parameters that differ per treatment group
plot.plcp Plot method for 'study_parameters'-objects
plot.plcp_ICC2 Plot method for 'get_correlation_matrix'-objects
plot.plcp_power_table Plot method for 'get_power_table'-objects
plot.plcp_sds Plot method for 'get_sds'-objects
plot.plcp_VPC Plot method for 'get_VPC'-objects
powerlmm Power Analysis for Longitudinal Multilevel Models
print.plcp_2lvl Print method for two-level 'study_parameters'-objects
print.plcp_3lvl Print method for three-level 'study_parameters'-objects
print.plcp_compare_sim_formula Print method for simulation formulas
print.plcp_ICC2 Print method for 'get_correlation_matrix'-objects
print.plcp_mc_se Print method for 'get_monte_carlo_se'-objects
print.plcp_multi Print method for 'study_parameters'-multiobjects
print.plcp_multi_power Print method for 'get_power'-multi
print.plcp_multi_sim Print method for 'simulate.plcp_multi'-objects
print.plcp_multi_sim_summary Print method for 'summary.plcp_multi_sim'-objects
print.plcp_power_2lvl Print method for two-level 'get_power'
print.plcp_power_3lvl Print method for three-level 'get_power'
print.plcp_sds Print method for 'get_sds'-objects
print.plcp_sim Print method for 'simulate.plcp'-objects
print.plcp_sim_formula Print method for simulation formulas
print.plcp_sim_formula_compare Print method for 'simulate.plcp'-objects
print.plcp_sim_summary Print method for 'summary.plcp_sim'-objects
print.plcp_VPC Print method for 'get_vpc'-objects
shiny_powerlmm Launch powerlmm's Shiny web application
simulate.plcp Perform a simulation study using a 'study_parameters'-object
simulate.plcp_multi Perform a simulation study using a 'study_parameters'-object
simulate_data Generate a data set using a 'study_parameters'-object
simulate_data.plcp Generate a data set using a 'study_parameters'-object
simulate_data.plcp_multi Generate a data set using a 'study_parameters'-object
sim_formula Create a simulation formula
sim_formula_compare Compare multiple simulation formulas
study_parameters Setup study parameters
summary.plcp_multi_sim Summarize simulations based on a combination of multiple parameter values
summary.plcp_sim Summarize the results from a simulation of a single study design-object
summary.plcp_sim_formula_compare Summarize the results from a simulation of a single study design-object
transform_to_posttest Helper to transform the simulated longitudinal 'data.frame'
unequal_clusters Setup unbalanced cluster sizes
update.plcp Update a 'study_parameters'-object with new settings
[.plcp_multi_power Subset function for 'plcp_multi_power'-objects