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1 Introduction 
This documents is a tutorial for the R package ACDm, used for fitting the Autoregressive Conditional 

Duration model (Engle and Russell, 1998) and several extensions of it. The tutorial is intended to get 

you started with the package, but does not cover all of the functionality of it. For example the 

simulation function is left out and only the standard ACD(1,1) model with exponential errors is fitted. 

For more detailed information see the reference manual. Although helpful, no prior knowledge of R 

is assumed.  

The tutorial starts off ǁith a ͞raǁ͟ data set and, by using various functions step by step, has us arrive 

at a fitted ACD model to be exposed to a series of tests. Each major step in this process has its own 

dedicated chapter: 

1. loading the data into R (chapter 3) 

2. computing durations and aggregating (chapter 4) 

3. performing diurnal adjustments (chapter 5) 

4. fitting an ACD model (chapter 6) 

5. testing the model (chapter 7) 

Step 1 to 4 will each create a new object in R, and consequently each following step is contingent on 

the previous step. However, the objects created (except for the fitted model in step 4) are already 

saved as objects in the package, making it possible for the reader to start the tutorial at any of the 

steps/sections. 

1.1 Installing R and RStudio 

For instructions on how to install R please go to http://cran.rstudio.com/.  

It is highly recommended to also install the user interface RStudio for a smoother use of R. Get it for 

free at http://www.rstudio.com/products/rstudio/download/.  

1.2 Installing and loading the ACDm package 

 

1. Open the R program (or preferably RStudio if you installed it) and just enter the command 

    install.packages("ACDm") 

to the console and the ACDm package will be downloaded and installed. The package also 

requires a few other R packages, and these will be downloaded and installed automatically. 

 

2. You then need to also load the package for your R session. This is done by the command 

    library("ACDm") 

2 About the data set used in the examples 
The data used in the examples are based a real data set, but has been obfuscated by transforming 

the dates, price and volume, for proprietary reasons.  The real data are transactions of a major 

company traded in the Nordic stock market, traded sometime during the past 10 years (as of this 

writing in 2015). The obfuscated data covers two weeks of intraday transactions recorded at 1 

http://cran.rstudio.com/
http://www.rstudio.com/products/rstudio/download/
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second precision, and together with date and time stamp of the transactions, the price and volume 

(number of stocks traded at each transaction) are available. The total number of transactions is 

nearly 100 000, however as we will soon see, transaction done on the same second will be 

aggregated, shrinking the sample size to 35 000.  

3 Loading the data file into R 
The package requires the data to be in the R class data.frame, with a necessary column named time, 

where each row is the complete date and clock time for one transaction ordered chronologically. 

The time column needs to be in an R time format, preferably in POSIXlt or POSIXct format. It is also 

possible to supply the time data as a character sting in the format  

yyyy-mm-dd hh:mm:ss 

such as 2003-12-14 11:47:05. The columns price and volume can also be given in the data.frame, if 

these data are available. If so, the package can estimate ACD models, not only for trade durations, 

but also price durations (time until an absolute change in price of an arbitrary size) and volume 

durations (time until an arbitrary large cumulative number of traded shares).  

The example file used in the package containing the transactions is in CSV format (Comma-

Separated Values). To load a CSV file into a data.frame object in R use the R function read.csv().  

The .csv file is provided separately with the package, so you first need to locate the directory were 

you saved the file, for example C:\Users\You\Documents\transactionData.csv ;if you doŶ͛t haǀe this 
file the data is already loaded by the package into R by default). To load the data to a data.frame 

named, for example, transData, type in the command 

 transData <- read.csv("C:/Users/You/Desktop/transactionData.csv") 

into the R (or Rstudio) console, where C:/Users/You/Desktop/ should be changed to your 

personal path where you downloaded the file.  

 

The top 11 rows of the data frame can be view by the command  

 head(transData, 11) 

as shown in the figure below: 

R hints: The assignment operator   <- in R is made of two symbols, and assigns 

the value from the right hand expression to left hand variable (or in reverse order 

if instead  -> is used).  
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Other ways of viewing parts of the data are with the command tail(transData), or for example 

transData[35001:35100, ] to view the next 100 rows starting from row 35 001. 

We may also want to plot the data. This can be done with the usual ways of plotting in R (see for 

example the function plot from the base package or the graphics package ggplot2), but there is also 

a function called plotDescTrans() in the ACDm package dedicated to plotting the price, volume, 

and number of transactions from the transactions data. Running the code 

plotDescTrans(transData, windowunit = "hours", window = 1) 

gives the following graphs: 

  

 

One may want to change the window sizes for the last two graphs, for example with 

plotDescTrans(transData, windowunit = "mins", window = 20) to plot 20 minutes intervals 

instead, or by setting windowunit = "day" to easily see the differences between days. 
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3.1 An example of importing a different data set 

Note! This section should probably be skipped. This example presented here is intended to be of 

help if you have any problems getting your own data set to work with the ACDm package. 

The timestamps in a set of data can be in many different formats, and getting the program to 

understand them might need some work.  If the time is in a non-standard format, this can be a bit of 

a hassle. The example here will guide you through one way of doing this in R, using a real high 

frequency data set made available online by Ruey S. Tsay, which he used in examples in his book 

Analysis of Financial Time Series (2010) and are the same data used iŶ EŶgle aŶd ‘ussell͛s ;ϭϵϵϴͿ 
original ACD paper . The data file is available (at the time of writing, 2015) at 

http://faculty.chicagobooth.edu/ruey.tsay/teaching/fts/ibm.txt 

and consists of IBM transaction data covering 3 months between 1990 and 1991. Download this file 

to your hard drive and have a look at it, for example by opening it in Notepad. The file consists of 

uŶŶaŵed ĐoluŵŶs ǁith ǁhitespaĐe ďetǁeeŶ theŵ, aŶd froŵ Tsay͛s webpage at 

http://faculty.chicagobooth.edu/ruey.tsay/teaching/fts he iŶforŵs us that the ͞ĐoluŵŶs are 
date/time, volume, bid quote, ask quote, and traŶsaĐtioŶ priĐe͟. 

Now load it to R, again using the read.csv() function. For example with 

IBMtrans <- read.csv("C:/Users/You/Desktop/ibm.txt", header = FALSE, sep 

= "") 

where C:/Users/You/Documents/ should be changed to your local path. This time we need to 

add the argument  header = FALSE to inform R that the data file is lacking a header (column 

names). By also adding sep = "", the whitespaces around the columns will be removed. To give 

the columns names, run the command 

names(IBMtrans) <- c("time", "volume", "bid quote", "ask quote", 

"price") 

By viewing the first few rows of the data.frame IBMtrans with head(IBMtrans) we see a strange 

time format, with the timestamp ͚90110134228͛ for the first traŶsaĐtioŶ. One might deduce that the 

first 6 digits must refer to the date, and the last 5 to the number of seconds after midnight. We now 

need some way of transforming the timestamps into the format POSIXlt used in R and the ACDm 

package. To do this we will use the R function substr() to ͞Đut͟ the tiŵestaŵps iŶ tǁo parts,  

date and time, and the function strptime() to convert to the POSIXlt format. To first extract the 

date, i.e. the first 6 digits of the string, and save it as a ǀeĐtor Ŷaŵed ͚tiŵe͛, use 

time <- IBMtrans[ , 1] 

time <- substr(time, 1, 6) 

The first line of code uses ‘͛s extraction operator [ , ] that is used to extract individual elements 

from a data.frame (and other data object such as a matrix). The first argument specifies the row 

index and the second argument column index. By leaving one argument blank, all of the elements in 

that dimension are selected. In our case, with IBMtrans[ , 1], this means that the first column 

http://faculty.chicagobooth.edu/ruey.tsay/teaching/fts/ibm.txt
http://faculty.chicagobooth.edu/ruey.tsay/teaching/fts


7 

 

 

vector is returned.  In the next row of code, the substr() function will work on all elements in this 

vector of strings individually. By giving the last two arguments of substr() the values 1 and 6 we 

retrieve the first six characters (digits) of each string, as a new vector.  

The next step is then to convert this new vector of strings to the POSIXlt format, using strptime(). 

For this, run the code  

time <- strptime(time, format = "%y%m%d") 

The function needs to be told the date format of the date strings. The documentation of the 

substr() function (which can be read by ?substr in R) gives details on how to specify the time 

and date format, which for this case should be "%y%m%d". Next we will add the last 5 digits of the 

original time stamps, representing seconds after midnight, to the time vector. It is possible to add 

seconds directly to a POSIXlt object with the + operator, as we will do here. The last 5 digits first 

need to be extracted with substr() and then converted from a string to a number representation 

by using the function as.numeric(). In one line of code we can do all of that, by running  

time <- time + as.numeric(substr(IBMtrans[ ,1], 7, 11)) 

By using the + operator the class of the data object is converted to POSIXct instead of POSIXlt. The 

latter format is good to use as the time is internally represented by the different units of time, days, 

hours etc., separately. Therefor as the final step we will convert it back to POSIXlt and at the same 

time overwrite the old time column in the data.frame with the code  

IBMtrans$time <- as.POSIXlt(time) 

where the $time part is used to speĐify the ĐoluŵŶ ͚tiŵe͛ iŶ IBMtrans. 

The IBMtrans data.frame is now in the correct format to be used by ACDm. Unfortunately though, 

the data set has two days of long periods without trades, due to a halt in the market. This was 

recognized by Engle and Russell (1998) and they dealt with it simply by removing these two days, 

November 23 and December 27. If you would like to do the same, to then have a ready data set to 

use with the ACDm package, this can be done with the following code: 

IBMtrans <- IBMtrans[IBMtrans[ ,1]$yday != strptime("901227", format = 

"%y%m%d")$yday, ] 

IBMtrans <- IBMtrans[IBMtrans[ ,1]$yday != strptime("901123", format = 

"%y%m%d")$yday, ] 

An approximation of what Engle and Russell (1998) then did concerning the diurnal adjustment and 

removal of trades at the ends of the trading day can be done with:  

IBMDurations <- computeDurations(IBMtrans, open = "10:00:00", close = 

"16:00:00") 

IBMAdjDurations <- diurnalAdj(IBMDurations, aggregation = "all", method 

= "cubicSpline", nodes = c(seq(600, 900, 60), 930, 960)) 
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4 Computing durations from transaction data 
As we are interested in modeling the time between trades (or price- or volume durations) we now 

need to compute the durations. When the data have been recorded with one second precision, it is 

common practice to aggregate transactions completed at the same second, making no zero duration 

possible (this can partly be motivated by so called split transactions, where a single large trade is 

executed as several smaller transactions in a short time frame). We will follow this procedure here. 

Durations can be computed with the function computeDurations(). 

This function has the following arguments: 

 transactions – the data frame containing your transactions 

 open – a string with the market opening time in format "hh:mm:ss" 

 close – the closing time, e.g. "18:25:00" 

 rm0dur – remove zero durations? TRUE/FALSE 

 type – "trade" for transaction durations, "price" for price durations, "volume" for cumulated 

volume durations 

 priceDiff – used if the type = "price" is used 

 cumVol – used if the type = "volume" is used 

To get transaction durations in a new data frame called durData just type in  

  durData <- computeDurations(transData) 

The left out arguments will then take the default values. This yields the same result as the command 

durData <- computeDurations(transactions = transData, open = "10:00:00", 

close = "18:25:00", rm0dur = TRUE, type = "trade") 

 

Since the stock exchange, where our example data where traded, is open for continuous trading 

between 10.00 and 18:25 local time, the default values suits our needs.  

Running the above command returns 

 

informing us that after aggregation and removing of trades done outside the opening hours of 

continuous trading, we are left with just short of 35 000 durations. 

Again we may want to have a look at our new data object. The new object is of class data.frame, so 

the same functions used previously to show the transactions can be used here, for example: 

R hints: The name of the arguments (the left hand side of = ) in a function can be left 

out if the arguments are entered in the predefined order. 
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The last column durations are the durations, which we are mainly interested in. The column price is 

the volume weighted price of the aggregated transactions, the column volume is the aggregated 

traded shares, and Ntrans gives us the number of transaction aggregated for each row.  

One way of plotting the durations is to use a rolling mean. The function plotRollMeanAcd()can 

be used for this. Running  

plotRollMeanAcd(durData,  window = 500) 

will yield the following graph: 

Using a smaller window size will give a more jagged curve. Another way of graphing the durations is 

by using the mean duration over a specified interval length in a bar plot. This can be done with the 

function plotHistAcd(), for example  

plotHistAcd(durData,  windowunit = "mins", window = 10) 

 will return: 

5 Diurnal adjustment of the durations 
The ACD models available in in the package all require a stationary duration process. However, trade 

durations have a clear daily pattern, arising from the fact that traders͛ level of activity varies over the 

trading day, notably being higher in the beginning and end of the trading day. This makes the 

unconditional mean durations time varying, a daily seasonal variation that in the ACD literature 
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predominantly has been modeled as a deterministic term. To get a stationary duration process this 

deterministic factor can be estimated and then removed from the durations. This is done by 

calculating the diurnally adjusted durations  ̃  as   ̃      ̂   
where  ̂  is the estimated value of this seasonal component at the time of the transaction done at 

the start of duration     There is however no consensus in the literature on how this diurnal factor 

should be estimated, and numerous methods have been proposed.  The ACDm package currently 

has implemented 4 different methods of calculating ̂ , and each method has several 

parameters/arguments to be predetermined by the practitioner. Things are further complicated by 

the fact that the diurnal pattern seems to differ between weekdays, leading some authors to 

estimate the diurnal factor separately for each day of the week (eg., Bauwens and Giot, 2000). The 

package allows the user to choose between no aggregation (each date has its own diurnal factor), 

daily aggregation (each weekday has its own diurnal factor), and total aggregation (all days have the 

same diurnal factor). 

In the package the function diurnalAdj() is used to create a diurnally adjusted duration series. 

The function arguments are  

dur – the duration data frame 

method – how the deterministic diurnal component is calculated, either cubicSpline, supsmu 

(super smoother), smoothSpline (cubicSpline with a smoothing parameter),  or FFF (Flexible 

Fourier Form). 

For the cubicSpline and smoothSpline methods: 

      nodes – a vector of the nodes (in minutes after midnight) used by the cubicSpline method 

For the smoothSpline method: 

      spar – ͞smoothing parameter, typically (but not necessarily) in (0,1]͟ 

For the supsmu method: 

span – a paramter sent to the supsmu fuŶĐtioŶ, ͞the fraction of the observations in the span      

of the running lines smoother, or "cv" to choose this by leave-one-out cross-validation͟ 

For the FFF method: 

Q – the number of trigonometric function pairs 

aggregation – should the diurnal adjustment be done pooled for all days, done separately  for 

weekdays or done with no (none) aggregation?  

The command  

 diurnalAdj(durData) 
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is equivalent to the command 

diurnalAdj(dur = durData, method = "cubicSpline", nodes = c(seq(600, 

1110, 60), 1100), aggregation = "all") 

as these arguments are the default values. 

 

Let͛s start ďy tryiŶg the diurnalAdj() function by changing the aggregatioŶ froŵ ͞all͟ to ͞ŶoŶe͟, 
while keeping the other default values , with the command   

    diurnalAdj(durData, aggregation = "none") 

The output is shown in the figure underneath.  

A few interesting things can be observed from the output. First, to the right we see the graph of the 

estimated diurnal pattern. It is clear that the durations are larger (longer) in the middle of the day 

and shorter at the end of the trading day when traders are more active. Other than that, the pattern 

seems to differ largely between the dates, even for dates occurring on the same weekday. Therefore 

one may prefer to aggregate all of the dates. This, however, would force the weekdays to have the 

same diurnal pattern. On the other hand, it could be argued that aggregating over weekdays 

separately is using a model with too many parameters and over fits the data. Unfortunately, the ACD 

literature has touched upon this issue too little to give us any clear guidelines.  

Secondly, in the left part of the figure we see an error message. If we take a closer look at the 

beginning of the last day (Feb. 19), we see that a small part of the curve goes below the red line, 

R hints:   

 The function seq(from, to, by) creates a sequence returned as a 

vector. For example seq(5, 10, 2) returns the vector [5  7  9] 

 The function c() combines or concatenates its vector arguments into a 

larger vector (in R any scalar is considered a vector with a single element) 

 To get more information of a function, use the comand ? followed by the 

function name, for example ?seq or ?diurnalAdj 
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indicating negative  ̂  components. It turns out that this method used on this data set produced a 

negative fitted line, probably due to a sharp shift in mean durations the first two hours of that day. If 

any of the  ̂ ͛s are Ŷegatiǀe, this iŶ turŶ ǁould yield  Ŷegative adjusted durations  ̃ , and go against 

the assumptions of the ACD model and preventing further estimation. The program will therefore 

not allow this particular method with the given method parameters for this data set. 

Some further examples of diurnal adjustments of the data set are given in the figure below. With the 

exceptions of the upper left panel, variants of these have all been used in the literature.

 

Without further motivation, we decide to aggregate all days and use a spline function with nodes set 

hourly. The diurnal factor is depicted in the figure above in the lower right corner. This decision can 

certainly be criticized and one might want to investigate how a different choice would have affected 

the estimation in the next section. 

To finally save the diurnally adjusted durations, run the command  

 adjDurData <- diurnalAdj(durData, aggregation = "all") 

This will add a column named adjDur with the adjusted durations to the previous data.frame. You 

may want to take a look at the new data.frame, again 

with the function head(). Another way of exploring 

the data.frame object is with the function str().  

  

R hint:  the function str() displays 

the internal structure of any R object  
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6 Fitting an ACD model 
To estimate various ACD models, use the function acdFit(). The estimation is done by maximum 

likelihood estimation. Currently the package can estimate the following ACD models (see the 

appendix for model specifications): 

 ACD 

 LACD1 or LACD2 

 AMACD 

 ABACD 

 SNIACD or LSNIACD 

The ACD models can be of different orders, such as LACD1(2, 1) for example. The possible 

distributions of the error terms are the following (the text in italic is the respective keyword to be 

passed as the argument value): 

 Exponential distribution:  "exponential" 

 Weibull distribution: "weibull" 

 Burr distribution: "burr" 

 Generalized Gamma distribution: "gengamma" 

 Generelized F: "genf" 

 q-Weibull: "qweibull" 

 Finite mixture of inverse Gaussian Distributions: "mixinvgauss" 

 

The function acdFit() takes the following arguments (among others): 

durations – the durations data.frame, with the ͚adjDur͛ column or ͚DuratioŶs͛ ĐoluŵŶ (can also 

be a vector of durations). 

model – the model for the conditional expected duration. Either "ACD", "LACD1", "LACD2", 

"AMACD", "BACD", "ABACD", "SNIACD" or "LSNIACD" (see appendix for model specifications). 

dist – the assumed distribution of the error term, either "exponential", "weibull", "burr", 

"gengamma ", "genf ", "qweibull", or "mixinvgauss". 

startPara – a vector with parameter values from which the MLE algorithm starts. 

order – a vector with the lag orders of the model, for example order = c(1, 1) for an ACD(1,1) 

model, or for example order = c(1, 1, 2) for an AMACD(1, 1, 2) model. 

dailyRestart – if given the value 1, the conditional expected duration is reset at the start of every 

day (to the mean value of the whole sample). 

optimFnc and method – Specifies which optimization function to use for the estimation. "optim", " 

nlminb", "solnp", and "optimx" are available. method is used to specify the optimization algorithm 

for the optim and optimx functions. 
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6.1 Estimation example 

Now that we have prepared the data by removing the diurnal component we are ready to estimate 

different ACD models.  

We will first start with the simple ACD(1, 1) model with exponentially distributed errors. When 

assuming that the errors are exponentially distributed, we are essentially using QML (Quasi 

Maximum Likelihood), as the parameter estimates of the conditional durations are consistent, 

regardless of the assumed error term distribution possibly being wrong (assuming that the rest of 

the model is correctly specified).  

In all of the examples here, the conditional duration    is set to restart each morning by setting the 

argument  dailyRestart  = ϭ. This ǁay the preǀious eǀeŶiŶg͛s duratioŶs ǁoŶ͛t haǀe aŶy direĐt iŵpaĐt 
on the conditional mean durations at the start of the day.  

In mathematic notation, the durations     are modeled as                                           
To estimate this model, type (or copy-paste) 

in the console: 

 fitModel <- acdFit(durations = 

adjDurData, model = "ACD", 

dist = "exponential", order = 

c(1,1), dailyRestart = 1) 

The output is shown in Figure 1. Note that 

the part fitModel <- could be left out to get 

the output from the estimate (as done in the 

figure), but saving the fitted model is needed 

for some of the later tests, and lets you 

extract the residuals   ̂  or the fitted 

conditional durations  ̂ . It may also be a 

good idea to save the fitted model if you 

later want to compare several different 

models.  

Convergence: 0 from the output tells us that 

the maximum likelihood optimization 

algorithm managed to converge at a local 

maximum. There are, however, no 

guarantees that the found estimate is the 

global maximum.  It can therefore be a good 

idea to perform the estimation across different starting 
Figure 1 ACD(1, 1) with exp. errors 
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parameters. This is especially important when estimating the more advanced models with more 

parameters to estimate. 

The residuals and the fitted conditional durations  ̂  can be retrieved from the estimated model, 

saved as fitModel, with the command fitModel$residuals, and fitModel$muHats respectively. 

7 Plots and tests 
The examples in this section is based on the ACD(1, 1) 

with exponential errors fitted to the data used in the 

previous sections. To save space this object is not 

included in the R package, so unless you performed the examples in the previous section, you will 

need to run the estimation first before continuing. Just run the code 

fitModel <- acdFit(durations = adjDurData, model = "ACD", dist = 

"exponential", order = c(1,1), dailyRestart = 1) 

and you will have the fitted model object used in the following examples saved as fitModel. 

7.1 plotScatterAcd() 

This is a general function to graphically investigating (mainly) the possible need for nonlinear 

specifications of the conditional mean duration, as well as finding potential issues with the diurnal 

adjustment. As the name of the function implies, it does this by a simple scatterplot between two 

variables, but has a possible third variable represented by a color scale. The variables can be lagged 

as well. On top of this is a curve showing the estimated (by ggplot2) conditional mean of the y-

variable given the x-variable. 

The possible variables from a fitted model to be plotted are: 

 muHats 

 residuals 

 durations 

 adjDur 

 daytime 

 time 

 index (the    ) 

In the first example we want to investigate whether the estimated conditional means  ̂  under- or 

over predicts the mean size of the upcoming duration  ̃ , for certain values of  ̂ . This can be done 

by plotting the residuals   ̂   ̃   ̂  against  ̂ . As the error terms, given correct specification, are 

independent of  ̂  we should expect the mean of the residuals to be about the same for all values of  ̂. The plot is created with the following command: 

 plotScatterAcd(fitModel, x = "muHats", y = "residuals", colour = NULL, 

ylag = 0, xlim = NULL, ylim = NULL, alpha = 1/10, smoothMethod = 

"auto") 

͞The three goldeŶ rules of 
ecoŶoŵetrics are test, test aŶd test.͟  

David Hendry  
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There will be a warning when running this function, informing us what smoothing method was used, 

so doŶ͛t ǁorry aďout that. The resulting output is shown in Figure 2. Noticeably we see a smaller 

mean of the residuals at small and large  ̂, indicating that the predicted  ̂ :s are too large at the ends 

of  ̂:s͛ range, something a nonlinear model could perhaps overhaul. Another interesting thing of 

note is that a large amount of the residuals seems to be placed together on curves (hard to see on 

the figure with low resolution, but very clear if one zoom in closer). This is due to the discretization 

(one second precision) of the original duration series. In fact, if the durations were not diurnally 

adjusted beforehand, all of the residuals would lie on exact curves like those (try it out by estimating 

an unadjusted duration series).  

Figure 2 two example uses of the function plotScatterACD() 

The second example, shown in the right panel of Figure 2, was created by running plotScatterAcd() 

with the following arguments: 

 plotScatterAcd(fitModel, x = "time", y = "muHats", colour = "dayTime", 

ylag = 0, xlim = NULL, ylim = NULL, alpha = 1/10, smoothMethod = 

"auto") 

This example shows the use of the colour argument field, here with the value daytime.  

7.2 acf_acd() 

This function plots the autocorrelations of one or several of the durations, the adjusted durations, or 

the residuals. Continuing with our example, we can call this function with  

 acf_acd(fitModel, conf_level = 0.95, max = 50) 

returning the plot in Figure 3 below. The blue bands in the figure are 95 % confidence bands 

(conf_level=0.95). In our example we see that the durations are auto correlated with a slowly 

decreasing correlation for larger lags. After removing the diurnal component the correlations are 

declining somewhat. The large reduction in autocorrelations however comes for the residuals after 

removing the estimated ACD(1, 1) dependency.  
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Figure 3 Autocorrelogram of durations, diurnally adjusted durations, and residuals 

7.3 plotHazard() 

As the name suggests this test graphically asses the hazard function of the error terms. This is done 

by plotting a nonparametric estimate of the hazard function from the residuals, as well as the hazard 

function implied from the model estimate. 

To use the test you need to first estimate a model and save the estimate, for instance with the name 

fitModel, as in the example estimate above. The test is then called by 

 plotHazard(fitModel) 

The output using the example data is shown in Figure 4 below. In the top left corner we see the 

hazard function when the estimated model is the ACD(1, 1) with exponential errors we earlier 

estimated. The black line is the empirical hazard function of the residuals from the non-parametric 

estimator (slightly modified/improved) used by Engle and Russell (1998). The red line instead depicts 

the hazard function as implied by the estimated parameters of the error distribution. For the 

exponential distribution the hazard is flat, in this case at 1 as the distribution is forced to have unit 

expectation. The other two figures have used estimated models assuming Weibull- and Burr 

distributions respectively.  Clearly the closest match seems to be the Burr distribution, as it allows 

for a non-monotonic hazard, while still not being a perfect match. 
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7.4 qqplotAcd() 

Another common graphical method of assessing the closeness between a theoretical distribution 

and an empirical sample is the QQ-plot. Here the quantiles of the sample is plotted against the 

quantiles of the theoretical quantiles. If the sample is in fact a realization from the theoretical 

distribution, those should not deviate from each other too much and the plotted curve should be 

straight.  

To get the QQ-plot simply run the code 

 qqplotAcd(fitModel) 

where fitModel as usual refers to a fitted ACD model. In our example the residual quantiles are 

plotted against the exponential distribution, since this was the assumed error term distribution in 

the estimation, as seen in the figure below. The fact that the sample quantiles lies above the straight 

red line to the right in the figure shows that the empirical distribution has a thicker tail than the 

exponential distribution.  

Figure 4 Hazard functions of ACD(1, 1) estimation with various error distributions 
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7.5 Meitz and Teräsvirta’s ȋ2006Ȍ LM-tests 

Meitz and Teräsvirta (2006) developed a series of LM-tests (Lagrange Multiplier tests) for ACD-

models. A few of those can be run through the ACDm package, as described in the subsequent 

subchapters. The tests are however currently only available for standard ACD(p, q) conditional 

duration specification (as the null hypothesis), estimated with QMLE (i.e. estimated with exponential 

errors). 

testRmACD() – test for no remaining ACD  

If the model is correctly specified, the error terms are independent and accordingly the residuals 

should not show any further ACD structured dependency. This is tested with the function 

testRmACD(), a test that is asymptotically equivalent to the Li and Yu test (Meitz and Teräsvirta, 

2006). We can run this test on our fitted model by calling   

 testRmACD(fitModel, pStar = 2, robust = TRUE)  

Here pStar is the Ŷuŵďer of α-parameters in the possibly remaining ACD structure and letting robust 

= TRUE makes the test robust to possible misspecifications of the error term (see Meitz and 

Teräsvirta, 2006).  

 

testSTACD() – test against smooth transition ACD models 

The linearity imposed by the standard ACD(p, q) model may not be enough to describe the dynamics 

of durations. Engle and Russell (1998) noticed that the residuals    ̂  from their model estimation 

were too small when the previous durations  ̃    were either very small or large (a similar 

conclusion was made earlier with the plotScatterAcd() function on page 16). A nonlinear model 

where the ACD parameters are functions of lagged durations might therefore be valid. Meitz and 
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Teräsvirta (2006) suggested the smooth transition ACD model for this purpose, and derived a LM 

test testing an ACD(p, q) against this STACD model. The test can be called by: 

 testSTACD(fitModel, K = 2, robust = TRUE) 

Here K determines the general shape of the transition function (see Meitz and Teräsvirta, 2006). 

Running the test with our example gives us the output: 

 

testTVACD() – test against time varying ACD models 

While the STACD model uses the smooth transition function with the transition variable being the 

lagged durations, one could instead let the transition variable be the time of the transaction, which 

led Meitz aŶd Teräsǀirta͛s ;ϮϬϬ6Ϳ to propose the time varying ACD model (TVACD). The TVACD model 

lets the ACD parameters vary over time. 

In one specification, the time variable is total time, and a test rejecting the null in favor of this 

alternative specification would indicate that the ACD parameters are changing over time over the 

total sample. 

The other specification lets the parameters be intraday varying, by letting the transition variable be 

the time of the day. Failing this test could indicate that the diurnal adjustment was inadequate at 

removing aŶy diurŶal ĐoŵpoŶeŶt. Let͛s perforŵ these tests ďy Đopy-pasting the following two lines 

to R: 

 testTVACD(fitModel, K = 2, type = "total", robust = TRUE) 

 testTVACD(fitModel, K = 2, type = "intraday", robust = TRUE) 

Once again K indicates the general shape of the transition function. The output is shown below: 

Both tests are rejecting the null, though not as extremely as the previous tests.  
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9 Appendix 

 

9.1 Different ACD conditional duration specifications: 

For all of the following models it is assumed that the duration    is           
where the error term    is I.I.D. and either exponential-,  Weibull- or Burr distributed with a mean        . The conditional duration    depends on the specific ACD-model. 

ACD(p, q) (Engle and Russell,  1998)      ∑   
        ∑   

        

LACD1(p, q)  (logarithmic ACD type 1) (Bauwens and Giot,  2000)        ∑   
          ∑   

          

LACD2(p, q) (logarithmic ACD type 2) (Lunde,  1999)        ∑   
        ∑   

          

AMACD(p, r, q) (Additive and Multiplicative ACD) (Hautsch , 2012)      ∑   
        ∑   

        ∑   
        

ABACD(p, q) (Augmented Box-Cox ACD) (Hautsch,  2012)        ∑   
    |      |    |      |    ∑   

          

SNIACD(p,  q, M) (Spline News Impact ACD) (Hautsch,  2012, with a slight difference)      ∑        
        ∑∑        

   
 

    (       ̅൯(       ̅൯  ∑   
         

where     ,      is an indicator function and {  ̅   ̅     ̅} is a set of breakpoints. 

Starting parameters format is (                               ൯ 

9.2 Error distributions 

Weibull         ,             
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Forcing         gives:   [        ]  

Hazard function:             

Burr (as in Grammig and Maurer, 2000)               ,                           

                            

             ቀ    ቁ   ቀ       ቁ  ቀ    ቁ  ቀ      ቁ  

Forcing         gives: 

  ൮  ቀ    ቁ   ቀ       ቁ  ቀ    ቁ  ቀ      ቁ ) 
 

Generalized Gamma            ,                 

                      {  ቀ  ቁ } 
                     

Forcing         gives: 

       ቀ    ቁ  
Log likelihood for the full ACD model: 
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                                          (    ൯  ቀ   ቁ   
where          and   is defined as above. 

Generalized F (Hautsch, 2012) 

              ,                   

            [        ]                 
where                      . 

                                     

Forcing         gives: 

                                
Log likelihood for the full ACD model: 

                                      (  ቀ   ቁ ൰                     (      ൯  
where          and   is defined as above. 

q-Weibull 

            ,                             

                      [ ቀ  ቁ ]  
where     [ ]  [        ]       . 
Forcing         gives: 

                ቀ     ቁ ቀ  ቁ  ቀ          ቁ  
Log likelihood for the full ACD model: 

                             [       ቀ   ቁ ]    [        ]  
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where          and   is defined above. 

 


