Gaussian Processes for Estimating Causal Exposure Response Curves


[Up] [Top]

Documentation for package ‘GPCERF’ version 0.1.0

Help Pages

GPCERF-package The 'GPCERF' package.
compute_deriv_weights_gp Calculate Derivatives of CERF
compute_inverse Compute Matrix Inverse For a Covariate Matrix
compute_m_sigma Compute mean, credible interval, and covariate balance in Full Gaussian Process (GP)
compute_posterior_m_nn Calculate Posterior Means for nnGP Model
compute_posterior_sd_nn Calculate Posterior Standard Deviations for nnGP Model
compute_rl_deriv_gp Change-point Detection in Full GP
compute_rl_deriv_nn Calculate Right Minus Left Derivatives for Change-point Detection in nnGP
compute_weight_gp Calculate Weights for Estimation of a Point on CERF
compute_w_corr Compute Weighted Correlation
estimate_cerf_gp Estimate the Conditional Exposure Response Function using Gaussian Process
estimate_cerf_nngp Estimate the Conditional Exposure Response Function using Nearest Neighbor Gaussian Process
estimate_mean_sd_nn Estimate the CERF with the nnGP Model
estimate_noise_gp Estimate the Standard Deviation of the Nugget Term in Full Gaussian Process
estimate_noise_nn Estimate the Standard Deviation (noise) of the Nugget Term in nnGP
find_optimal_nn Find the Optimal Hyper-parameter for the Nearest Neighbor Gaussian Process
generate_synthetic_data Generate Synthetic Data for GPCERF Package
get_logger Get Logger Settings
GPCERF The 'GPCERF' package.
plot.cerf_gp Extend generic plot functions for cerf_gp class
plot.cerf_nngp Extend generic plot functions for cerf_nngp class
print.cerf_gp Extend print function for cerf_gp object
print.cerf_nngp Extend print function for cerf_nngp object
set_logger Set Logger Settings
summary.cerf_gp print summary of cerf_gp object
summary.cerf_nngp print summary of cerf_nngp object
train_GPS Train A Model for GPS