Fast Convolution of Matrices


[Up] [Top]

Documentation for package ‘pfocal’ version 1.0.0

Help Pages

binomial_kernel Compute an Binomial kernel
chebyshev_distance_kernel Compute an Distance kernel
distance_kernel Compute an Distance kernel
euclidean_distance_kernel Compute an Distance kernel
exponential_kernel Compute an Exponential kernel
gaussian_kernel_confidence Compute a Gaussian kernel
gaussian_kernel_radius Compute a Gaussian kernel
hard_uniform_circle_kernel Compute an Circular kernel
horizontal_distance_kernel Compute an Distance kernel
kernel-binomial Compute an Binomial kernel
kernel-circular Compute an Circular kernel
kernel-distance Compute an Distance kernel
kernel-exponential Compute an Exponential kernel
kernel-gaussian Compute a Gaussian kernel
kernel_flip_both Flip a kernel
kernel_flip_horizontal Flip a kernel
kernel_flip_vertical Flip a kernel
manhattan_distance_kernel Compute an Distance kernel
minkowski_distance_kernel Compute an Distance kernel
normalize_kernel Normalize a kernel
pfocal Fast, parallel implementation of grid data convolution
pfocal_fast_abs_rectangle Fast methods for common kernel computations
pfocal_fast_binomial Fast methods for common kernel computations
pfocal_fast_gaussian_confidence Fast methods for common kernel computations
pfocal_fast_gaussian_radius Fast methods for common kernel computations
pfocal_fast_separated Fast methods for common kernel computations
pfocal_info_mean_divisor Retrieve kernel and arguments information
pfocal_info_nan_policy Retrieve kernel and arguments information
pfocal_info_reduce Retrieve kernel and arguments information
pfocal_info_transform Retrieve kernel and arguments information
pfocal_info_variance Retrieve kernel and arguments information
smooth_uniform_circle_kernel Compute an Circular kernel
vertical_distance_kernel Compute an Distance kernel