options(width = 80)
maxima.options(engine.format = "latex", 
           engine.label = TRUE,
           inline.format = "inline", 
           inline.label = FALSE)
(%i1) L: sqrt(1 - 1/R^2);

\[\mathtt{(\textit{%o}_{1})}\quad \sqrt{1-\frac{1}{R^2}}\]

(%i2) assume(R > 0);

\[\mathtt{(\textit{%o}_{2})}\quad \left[ R>0 \right] \]

(%i3) 'integrate(x, x, 0, L) = integrate(x, x, 0, L);

\[\mathtt{(\textit{%o}_{3})}\quad \int_{0}^{\sqrt{1-\frac{1}{R^2}}}{x\;dx}=\frac{R^2-1}{2\,R^2}\]

(%i4) 'L = L;

\[\mathtt{(\textit{%o}_{4})}\quad L=\sqrt{1-\frac{1}{R^2}}\]

(%i5) 'integrate(x, x, 0, 'L) = integrate(x, x, 0, L);

\[\mathtt{(\textit{%o}_{5})}\quad \int_{0}^{L}{x\;dx}=\frac{R^2-1}{2\,R^2}\]

This is an inline test: \(L=\sqrt{1-\frac{1}{R^2}}\) .

(%i7) sqrt(3/4);

\[\mathtt{(\textit{%o}_{7})}\quad \frac{\sqrt{3}}{2}\]

(%i8) f(x) := e^(x^2)$
(%i9) diff(f(x), x);

\[\mathtt{(\textit{%o}_{9})}\quad 2\,e^{x^2}\,\log e\,x\]

(%i10) %;

\[\mathtt{(\textit{%o}_{10})}\quad 2\,e^{x^2}\,\log e\,x\]

(%i11) log(%o1);

\[\mathtt{(\textit{%o}_{11})}\quad \frac{\log \left(1-\frac{1}{R^2}\right)}{2}\]

moo
## $o11
## ((1L/2L) * log((1L + (-1L * (R^-2L)))))
eval(moo[[1]], list(R = 12))
## [1] -0.003484335
(%i12) /* aa is a variable of interest */  aa : 1234;

\[\mathtt{(\textit{%o}_{12})}\quad 1234\]

(%i13) bb : aa^2; /* Value of bb depends on aa */ 

\[\mathtt{(\textit{%o}_{13})}\quad 1522756\]

(%i14) /* User-defined infix operator */  infix ("Q");

\[\mathtt{(\textit{%o}_{14})}\quad \mbox{ Q }\]

(%i15) /* Parses same as a b c, not abc */  a/* foo */Q/* bar */c;

\[\mathtt{(\textit{%o}_{15})}\quad \textit{aQc}\]

(%i16) /* Comments /* can be nested /* to any depth */ */ */  1 + xyz;

\[\mathtt{(\textit{%o}_{16})}\quad \textit{xyz}+1\]

(%i17) load(fourier_elim)$
(%i18) fourier_elim([x^2-1>0], [x]);

\[\mathtt{(\textit{%o}_{18})}\quad \left[ 1<x \right] \lor \left[ x<-1 \right] \]

# from previous chunk: output.var = "boollist"
boollist
## $o18
## (((1L < x)) | ((x < -1L)))
eval(boollist[["o18"]], list(x = seq(-10, 10, 0.5)))
##  [1]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [13]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
## [25]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [37]  TRUE  TRUE  TRUE  TRUE  TRUE

Plots

(%i19) r: (exp(cos(t))-2*cos(4*t)-sin(t/12)^5)$
(%i20) plot2d([parametric, r*sin(t), r*cos(t), [t,-8*%pi,8*%pi]]);
(%i21) plot3d(log (x^2*y^2), [x, -2, 2], [y, -2, 2],[grid, 29, 29],
       [palette, [gradient, red, orange, yellow, green]],
       color_bar, [xtics, 1], [ytics, 1], [ztics, 4],
       [color_bar_tics, 4]);
(%i22) example1:
  gr3d (title          = "Controlling color range",
        enhanced3d     = true,
        color          = green,
        cbrange        = [-3,10],
        explicit(x^2+y^2, x,-2,2,y,-2,2)) $
(%i23) example2:
  gr3d (title          = "Playing with tics in colorbox",
        enhanced3d     = true,
        color          = green,
        cbtics         = {["High",10],["Medium",05],["Low",0]},
        cbrange = [0, 10],
        explicit(x^2+y^2, x,-2,2,y,-2,2))$
(%i24) example3:
  gr3d (title      = "Logarithmic scale to colors",
        enhanced3d = true,
        color      = green,
        logcb      = true,
        logz       = true,
        palette    = [-15,24,-9],
        explicit(exp(x^2-y^2), x,-2,2,y,-2,2))$
(%i25) draw(
  dimensions = [500,1500],
  example1, example2, example3);
(%i26) draw2d(
  dimensions = [1000, 1000],
  proportional_axes = xy,
  fill_color        = sea_green,
  color             = aquamarine,
  line_width        = 6,
  ellipse(7,6,2,3,0,360));
(%i27) draw3d(
   dimensions = [1000, 1000],
   surface_hide      = true,
   axis_3d           = false,
   proportional_axes = xyz,
   color             = blue,
   cylindrical(z,z,-2,2,a,0,2*%pi), 
   color            = brown,
   cylindrical(3,z,-2,2,az,0,%pi),
   color            = green,
   cylindrical(sqrt(25-z^2),z,-5,5,a,0,%pi));
pft <- list.files(pattern = "(?:plot|draw)(2d|3d)?-[[:print:]]{6}\\.png", full.names = TRUE)

if(length(pft) == 5L)  {
  paste0("OK")
} else {
  paste0("Error: Unexpected number of Maxima plots: ", 
         paste0(pft, collapse = ", "))
}
## [1] "OK"
if(length(pft)) {
  if(all(as.logical(file.size(pft)))) {
    paste0("OK")
  }
  else {
    errfiles <- pft[file.size(pft) == 0]
    paste0("Error: Maxima plot file(s) ", paste0(errfiles, collapse = ", "),
           "are empty.")
  }
}
## [1] "OK"

Normal Distribution

(%i33) normal(x) := 
      (2*%pi*sigma^2)^(-1/2) * 
      exp(-(x-mu)^2/(2*sigma^2));

\[\mathtt{(\textit{%o}_{33})}\quad \textit{normal}\left(x\right):=\left(2\,\pi\,\sigma^2\right)^{\frac{-1}{2}}\,\exp \left(\frac{-\left(x-\mu\right)^2}{2\,\sigma^2}\right)\]

(%i34) assume(sigma > 0)$
(%i35) area(normal(x));

\[\mathtt{(\textit{%o}_{35})}\quad 1\]

(%i36) mean(normal(x));

\[\mathtt{(\textit{%o}_{36})}\quad \mu\]

(%i37) variance(normal(x));

\[\mathtt{(\textit{%o}_{37})}\quad \frac{2^{\frac{3}{2}}\,\sqrt{\pi}\,\sigma^3+2^{\frac{3}{2}}\,\sqrt{\pi}\,\mu^2\,\sigma}{2^{\frac{3}{2}}\,\sqrt{\pi}\,\sigma}-\mu^2\]

(%i38) mgf(normal(x));

\[\mathtt{(\textit{%o}_{38})}\quad e^{\frac{\sigma^2\,t^2+2\,\mu\,t}{2}}\]

Matrices

(%i39) m: matrix([0, 1, a], [1, 0, 1], [1, 1, 0]);

\[\mathtt{(\textit{%o}_{39})}\quad \begin{pmatrix}0 & 1 & a \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{pmatrix}\]

(%i40) transpose(m);

\[\mathtt{(\textit{%o}_{40})}\quad \begin{pmatrix}0 & 1 & 1 \\ 1 & 0 & 1 \\ a & 1 & 0 \\ \end{pmatrix}\]

(%i41) determinant(m);

\[\mathtt{(\textit{%o}_{41})}\quad a+1\]

(%i42) f: invert(m), detout;

\[\mathtt{(\textit{%o}_{42})}\quad \frac{\begin{pmatrix}-1 & a & 1 \\ 1 & -a & a \\ 1 & 1 & -1 \\ \end{pmatrix}}{a+1}\]

(%i43) m . f;

\[\mathtt{(\textit{%o}_{43})}\quad \begin{pmatrix}0 & 1 & a \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{pmatrix}\cdot \left(\frac{\begin{pmatrix}-1 & a & 1 \\ 1 & -a & a \\ 1 & 1 & -1 \\ \end{pmatrix}}{a+1}\right)\]

(%i44) expand(%);

\[\mathtt{(\textit{%o}_{44})}\quad \begin{pmatrix}\frac{a}{a+1}+\frac{1}{a+1} & 0 & 0 \\ 0 & \frac{a}{a+1}+\frac{1}{a+1} & 0 \\ 0 & 0 & \frac{a}{a+1}+\frac{1}{a+1} \\ \end{pmatrix}\]

(%i45) factor(%);

\[\mathtt{(\textit{%o}_{45})}\quad \begin{pmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix}\]

If-then-else

(%i46) x: 1234;

\[\mathtt{(\textit{%o}_{46})}\quad 1234\]

(%i47) y: 2345;

\[\mathtt{(\textit{%o}_{47})}\quad 2345\]

(%i48) if x > y
  then x
  else y;

\[\mathtt{(\textit{%o}_{48})}\quad 2345\]