Gaussian Process Panel Modeling


[Up] [Top]

Documentation for package ‘gppm’ version 0.2.0

Help Pages

accuracy Accuracy Estimates for Predictions
coef.GPPM Point Estimates
confint.GPPM Confidence Intervals
covf Covariance Function
createLeavePersonsOutFolds Create Leave-persons-out Folds
crossvalidate Cross-validation.
datas Data Set
demoLGCM Simulated Data From a Latent Growth Curve Model.
fit Generic Method For Fitting a model
fit.GPPM Fit a Gaussian process panel model
fitted.GPPM Person-specific mean vectors and covariance matrices
getIntern Generic Extraction Function
gppm Define a Gaussian process panel model
gppmControl Define settings for a Gaussian process panel model
logLik.GPPM Log-Likelihood
maxnObs Maximum Number of Observations per Person
meanf Mean Function
nObs Number of Observations
nPars Number of Parameters
nPers Number of persons
nPreds Number of Predictors
parEsts Essential Parameter Estimation Results
pars Parameter Names
plot.GPPMPred Plotting predictions
plot.LongData Plot a Long Data Frame
predict.GPPM GPPM predictions
preds Predictors Names
print.summary.GPPM Summarizing GPPM
SE Standard Errors
simulate.GPPM Simulate from a Gaussian process panel model
summary.GPPM Summarizing GPPM
trueParas Parameters used for generating 'demoLGCM'.
vcov.GPPM Variance-Covariance Matrix