Gaussian Processes Tool-Kit


[Up] [Top]

Documentation for package ‘gptk’ version 1.08

Help Pages

B C D E G K L M N O R S T W Z

-- B --

basePlot Plot a contour of the 2D Gaussian distribution with covariance matrix K.
boundedTransform Constrains a parameter.

-- C --

CGoptim Optimise the given function using (scaled) conjugate gradients.
cgpdisimExpandParam Update a model structure with new parameters or update the posterior processes.
cgpdisimExtractParam Extract the parameters of a model.
cgpdisimGradient Model log-likelihood/objective error function and its gradient.
cgpdisimLogLikeGradients Model log-likelihood/objective error function and its gradient.
cgpdisimLogLikelihood Model log-likelihood/objective error function and its gradient.
cgpdisimObjective Model log-likelihood/objective error function and its gradient.
cgpdisimUpdateProcesses Update a model structure with new parameters or update the posterior processes.
cgpsimExpandParam Update a model structure with new parameters or update the posterior processes.
cgpsimExtractParam Extract the parameters of a model.
cgpsimGradient Model log-likelihood/objective error function and its gradient.
cgpsimLogLikeGradients Model log-likelihood/objective error function and its gradient.
cgpsimLogLikelihood Model log-likelihood/objective error function and its gradient.
cgpsimObjective Model log-likelihood/objective error function and its gradient.
cgpsimOptimise Optimise the given function using (scaled) conjugate gradients.
cgpsimUpdateProcesses Update a model structure with new parameters or update the posterior processes.
cmpndKernCompute Compute the kernel given the parameters and X.
cmpndKernDiagCompute Compute the kernel given the parameters and X.
cmpndKernDiagGradX Compute the gradient of the kernel wrt X.
cmpndKernDisplay Display a model.
cmpndKernExpandParam Update a model structure with new parameters or update the posterior processes.
cmpndKernExtractParam Extract the parameters of a model.
cmpndKernGradient Compute the gradient wrt the kernel parameters.
cmpndKernGradX Compute the gradient of the kernel wrt X.
cmpndKernParamInit CMPND kernel parameter initialisation.
cmpndNoiseParamInit CMPND noise parameter initialisation.

-- D --

demAutoOptimiseGp Gaussian Process Optimisation Demo
demGpCov2D Gaussian Process 2D Covariance Demo
demGpSample Gaussian Process Sampling Demo
demInterpolation Gaussian Process Interpolation Demo
demOptimiseGp Gaussian Process Optimisation Demo
demRegression Gaussian Process Regression Demo
disimKernCompute Compute the kernel given the parameters and X.
disimKernDiagCompute Compute the kernel given the parameters and X.
disimKernDisplay Display a model.
disimKernExpandParam Update a model structure with new parameters or update the posterior processes.
disimKernExtractParam Extract the parameters of a model.
disimKernGradient Compute the gradient wrt the kernel parameters.
disimXdisimKernCompute Compute the kernel given the parameters and X.
disimXdisimKernGradient Compute the gradient wrt the kernel parameters.
disimXrbfKernCompute Compute the kernel given the parameters and X.
disimXrbfKernGradient Compute the gradient wrt the kernel parameters.
disimXsimKernCompute Compute the kernel given the parameters and X.
disimXsimKernGradient Compute the gradient wrt the kernel parameters.

-- E --

expTransform Constrains a parameter.

-- G --

gaussianNoiseOut Compute the output of the GAUSSIAN noise given the input mean and variance.
gaussianNoiseParamInit GAUSSIAN noise parameter initialisation.
gaussSamp Sample from a Gaussian with a given covariance.
gpBlockIndices Return indices of given block.
gpComputeAlpha Update the vector 'alpha' for computing posterior mean quickly.
gpComputeM Compute the matrix m given the model.
gpCovGrads Sparse objective function gradients wrt Covariance functions for inducing variables.
gpCovGradsTest Test the gradients of the likelihood wrt the covariance.
gpCreate Create a GP model with inducing variables/pseudo-inputs.
gpDataIndices Return indices of present data.
gpdisimDisplay Display a model.
gpdisimExpandParam Update a model structure with new parameters or update the posterior processes.
gpdisimExtractParam Extract the parameters of a model.
gpdisimGradient Model log-likelihood/objective error function and its gradient.
gpdisimLogLikeGradients Model log-likelihood/objective error function and its gradient.
gpdisimLogLikelihood Model log-likelihood/objective error function and its gradient.
gpdisimObjective Model log-likelihood/objective error function and its gradient.
gpdisimUpdateProcesses Update a model structure with new parameters or update the posterior processes.
gpExpandParam Expand a parameter vector into a GP model.
gpExtractParam Extract a parameter vector from a GP model.
gpGradient Gradient wrapper for a GP model.
gpLogLikeGradients Compute the gradients for the parameters and X.
gpLogLikelihood Compute the log likelihood of a GP.
gpMeanFunctionGradient Compute the log likelihood gradient wrt the scales.
gpObjective Wrapper function for GP objective.
gpOptimise Optimise the inducing variable based kernel.
gpOptions Return default options for GP model.
gpOut Evaluate the output of an Gaussian process model.
gpPlot Gaussian Process Plotter
gpPosteriorMeanVar Mean and variances of the posterior at points given by X.
gpPosteriorSample Plot Samples from a GP Posterior.
gpSample Plot Samples from a GP.
gpScaleBiasGradient Compute the log likelihood gradient wrt the scales.
gpsimDisplay Display a model.
gpsimExpandParam Update a model structure with new parameters or update the posterior processes.
gpsimExtractParam Extract the parameters of a model.
gpsimGradient Model log-likelihood/objective error function and its gradient.
gpsimLogLikeGradients Model log-likelihood/objective error function and its gradient.
gpsimLogLikelihood Model log-likelihood/objective error function and its gradient.
gpsimObjective Model log-likelihood/objective error function and its gradient.
gpsimUpdateProcesses Update a model structure with new parameters or update the posterior processes.
gpTest Test the gradients of the gpCovGrads function and the gp models.
gpUpdateAD Update the representations of A and D associated with the model.
gpUpdateKernels Update the kernels that are needed.

-- K --

kernCompute Compute the kernel given the parameters and X.
kernCreate Initialise a kernel structure.
kernDiagCompute Compute the kernel given the parameters and X.
kernDiagGradient Compute the gradient of the kernel's parameters for the diagonal.
kernDiagGradX Compute the gradient of the kernel wrt X.
kernDisplay Display a model.
kernExpandParam Update a model structure with new parameters or update the posterior processes.
kernExtractParam Extract the parameters of a model.
kernGradient Compute the gradient wrt the kernel parameters.
kernGradX Compute the gradient of the kernel wrt X.
kernParamInit Kernel parameter initialisation.
kernTest Run some tests on the specified kernel.

-- L --

localCovarianceGradients Compute the gradients for the parameters and X.
localSCovarianceGradients Compute the gradients for the parameters and X.

-- M --

mlpKernCompute Compute the kernel given the parameters and X.
mlpKernDiagGradX Compute the gradient of the kernel wrt X.
mlpKernExpandParam Update a model structure with new parameters or update the posterior processes.
mlpKernExtractParam Extract the parameters of a model.
mlpKernGradient Compute the gradient wrt the kernel parameters.
mlpKernGradX Compute the gradient of the kernel wrt X.
mlpOptions Return default options for GP model.
modelDisplay Display a model.
modelExpandParam Update a model structure with new parameters or update the posterior processes.
modelExtractParam Extract the parameters of a model.
modelGradient Model log-likelihood/objective error function and its gradient.
modelGradientCheck Check gradients of given model.
modelLogLikelihood Model log-likelihood/objective error function and its gradient.
modelObjective Model log-likelihood/objective error function and its gradient.
modelOptimise Optimise the given function using (scaled) conjugate gradients.
modelOut Give the output of a model for given X.
modelOutputGrad Compute derivatives with respect to params of model outputs.
modelUpdateProcesses Update a model structure with new parameters or update the posterior processes.
multiKernCompute Compute the kernel given the parameters and X.
multiKernDiagCompute Compute the kernel given the parameters and X.
multiKernDisplay Display a model.
multiKernExpandParam Update a model structure with new parameters or update the posterior processes.
multiKernExtractParam Extract the parameters of a model.
multiKernGradient Compute the gradient wrt the kernel parameters.
multiKernParamInit MULTI kernel parameter initialisation.

-- N --

noiseCreate Initialise a noise structure.
noiseOut Give the output of the noise model given the mean and variance.
noiseParamInit Noise model's parameter initialisation.

-- O --

optimiDefaultConstraint Returns function for parameter constraint.
optimiDefaultOptions Optimise the given function using (scaled) conjugate gradients.

-- R --

rbfKernCompute Compute the kernel given the parameters and X.
rbfKernDiagCompute Compute the kernel given the parameters and X.
rbfKernDiagGradX Gradient of RBF kernel's diagonal with respect to X.
rbfKernDisplay Display a model.
rbfKernExpandParam Update a model structure with new parameters or update the posterior processes.
rbfKernExtractParam Extract the parameters of a model.
rbfKernGradient Compute the gradient wrt the kernel parameters.
rbfKernGradX Gradient of RBF kernel with respect to input locations.
rbfKernGradXpoint Gradient of RBF kernel with respect to input locations.
rbfKernParamInit RBF kernel parameter initialisation.

-- S --

SCGoptim Optimise the given function using (scaled) conjugate gradients.
sigmoidTransform Constrains a parameter.
simKernCompute Compute the kernel given the parameters and X.
simKernDiagCompute Compute the kernel given the parameters and X.
simKernDisplay Display a model.
simKernExpandParam Update a model structure with new parameters or update the posterior processes.
simKernExtractParam Extract the parameters of a model.
simKernGradient Compute the gradient wrt the kernel parameters.
simXrbfKernCompute Compute the kernel given the parameters and X.
simXrbfKernGradient Compute the gradient wrt the kernel parameters.
simXsimKernCompute Compute the kernel given the parameters and X.
simXsimKernGradient Compute the gradient wrt the kernel parameters.

-- T --

translateKernCompute Compute the kernel given the parameters and X.
translateKernDiagCompute Compute the kernel given the parameters and X.
translateKernExpandParam Update a model structure with new parameters or update the posterior processes.
translateKernExtractParam Extract the parameters of a model.
translateKernGradient Compute the gradient wrt the kernel parameters.

-- W --

whiteKernCompute Compute the kernel given the parameters and X.
whiteKernDiagCompute Compute the kernel given the parameters and X.
whiteKernDiagGradX Gradient of WHITE kernel's diagonal with respect to X.
whiteKernDisplay Display a model.
whiteKernExpandParam Update a model structure with new parameters or update the posterior processes.
whiteKernExtractParam Extract the parameters of a model.
whiteKernGradient Compute the gradient wrt the kernel parameters.
whiteKernGradX Gradient of WHITE kernel with respect to input locations.
whiteKernParamInit WHITE kernel parameter initialisation.
whiteXwhiteKernCompute Compute the kernel given the parameters and X.
whiteXwhiteKernGradient Compute the gradient wrt the kernel parameters.

-- Z --

zeroAxes A function to move the axes crossing point to the origin.