
ActiveRecord (https://github.com/rails/rails/tree/master/activerecord) is a gem that is part of Ruby on Rails
(http://rubyonrails.org/). It is the ORM (https://en.wikipedia.org/wiki/Object-relational_mapping), i.e. the library that maps our
objects to tables. In other words, it is the Ruby library that allows us to use Ruby classes in order to access our data stored in an
RDBMS, like MySQL or PostgreSQL.

Ruby on Rails and ActiveRecord dance together very nicely. But, what if we want to develop a Ruby application that is not a
Web Ruby on Rails application. What if it is only a simply Ruby application that needs to access a backend RDBMS. Can we
use ActiveRecord again?

Yes, we can. And this is what we are going to demonstrate in this blog post.

Let's start with initialization of our Ruby project. We are going to create a Ruby application that manages movies. Hence, let's call
the project movies_app .

(1) I am using RVM (http://rvm.io/) to create a new gemset:

ɛ rvm use ɩ.ɫ.ɩɒmovies_app --create
ruby-ɩ.ɫ.ɩ - ɤgemset created /Users/panayotismatsinopoulos/.rvm/gems/ruby-ɩ.ɫ.ɩɒmovies_app
ruby-ɩ.ɫ.ɩ - ɤgenerating movies_app wrappers..........
Using /Users/panayotismatsinopoulos/.rvm/gems/ruby-ɩ.ɫ.ɩ with gemset movies_app
ɛ

(2) I then create the root folder of the project. Let's call it movies_app

ɛ mkdir movies_app
ɛ cd movies_app
movies_app ɛ

(3) Then create the files that freeze the rvm gemset:

movies_app ɛ echo ɐɩ.ɫ.ɩɐ ʴ .ruby-version
movies_app ɛ echo ɐmovies_appɐ ʴ .ruby-gemset
movies_app ɛ

With the above in place, I am sure that whenever I cd to the root folder of this project, I will be using the correct gemset.

<ZL�(J[P]L9LJVYK�PU�`V\Y�9\I`�WYVQLJ[

0UP[PH[L�H�9\I`�7YVQLJ[

This is necessary in order for us to download the necessary gems.

movies_app ɛ gem install bundler --no-ri --no-rdoc
Fetching: bundler-ɨ.ɨɭ.ɥ.gem (ɨɥɥʩ)
Successfully installed bundler-ɨ.ɨɭ.ɥ
ɨ gem installed
movies_app ɛ

We will now create the Gemfile and add the activerecord gem in. Also, we will add the gem standalone_migrations
(https://github.com/thuss/standalone-migrations). This gem is very useful, because it allows us to execute rake tasks related to
migrations, like we do with the Rails standard tasks.

ɤ Gemfile
source ɐhttps://rubygems.orgɐ

gem ɐactiverecordɐ
gem ɐstandalone_migrationsɐ

Having created the Gemfile , now let's proceed to the installation of the necessary gems. Run bundle and you will see the
gems downloaded and installed.

movies_app ɛ bundle
Fetching gem metadata from https://rubygems.org/...............
Resolving dependencies...
Fetching rake ɨɩ.ɪ.ɥ
...
Fetching standalone_migrations ɬ.ɩ.ɪ
Installing standalone_migrations ɬ.ɩ.ɪ
Bundle complete! ɩ Gemfile dependencies, ɩɮ gems now installed.
Use `bundle info [gemname]` to see where a bundled gem is installed.
movies_app ɛ

Now, you will need to choose your database. Is it going to be SQLite3? Is it going to be PostgreSQL or MySQL? Other? I have
PosgreSQL installed locally on my machine and that's why I have decided to go with PostgreSQL. This means that I need one
more gem in my Gemfile. The pg (https://rubygems.org/gems/pg) gem.

This is the new version of my Gemfile :

ɤ Gemfile
source ɐhttps://rubygems.orgɐ

gem ɐactiverecordɐ
gem ɐstandalone_migrationsɐ
gem ɐpgɐ

0UZ[HSS� b��dle�

*YLH[L� Ge�file

0UZ[HSS�.LTZ

+LJPKL�6U�@V\Y�+H[HIHZL

And then I do a bundle again.

movies_app ɛ bundle
...
Fetching pg ɥ.ɩɨ.ɥ
Installing pg ɥ.ɩɨ.ɥ with native extensions
Using thor ɥ.ɩɥ.ɥ
Using railties ɬ.ɨ.ɫ
...
movies_app ɛ

If you were to use SQLite3, then you would have to add the gem sqliteɪ . If you were to use MySQL, then you would have to
add the gem mysqlɩ .

With the gem for the database access in place, now lets create the database configuration file. This is going to be a file inside
the folder db and having the name config.yml . Hence, create the file db/config.yml with the following content:

default: &default
 adapter: postgresql
 encoding: unicode
 pool: ɬ
 host: localhost

development:
 ʳʳ: *default
 database: movies_development

test: &test
 ʳʳ: *default
 database: movies_test

production:

The above db/config.yml file is an indicative file for the PostgreSQL database. You should adapt the content of this file
according to your database server.

Now go ahead and create a Rakefile at the root folder of your project. This file needs to have the following content:

ɤ Rakefile
ɤ
require ɐstandalone_migrationsɐ
StandaloneMigrations::Tasks.load_tasks

It will load all the tasks that will help you create and manage your migrations.

To double check that you have access to the tasks, run the following command:

movies_app ɛ bundle exec rake --tasks
...

You will get a long list of the tasks that you have available.

*YLH[L�+H[HIHZL�*VUÄN\YH[PVU�-PSL

*YLH[L�9HRLÄSL

The next step is that you create your local database:

movies_app ɛ bundle exec rake db:create
Created database ɐmovies_developmentɐ
Created database ɐmovies_testɐ
movies_app ɛ

The above rake task created both a development and a test database. And it is the same rake command like we are used to
from Rails.

Now, let's create the first db migration. This is a little bit diĳerent to the way you generate migrations in Rails. In Rails, we use the
 rails generate migration command. Here, we are going to use a rake task:

movies_app ɛ bundle exec rake db:new_migration[create_movies]
 create db/migrate/ɩɥɨɮɨɩɥɮɥɬɨɨɨɪ_create_movies.rb
movies_app ɛ

But it worked like the Rails case.

Let's edit the file db/migrate/ɩɥɨɮɨɩɥɮɥɬɨɨɨɪ_create_movies.rb

class CreateMovies ʳ ActiveRecord::Migration[ɬ.ɨ]
 def change
 create_table :movies do |t|
 t.string :title, null: false
 t.string :director, null: false

 t.timestamps
 end
 end
end

The above is a very simple db schema migration. It creates the table movies with two main columns and the columns for the
timestamps.

Let's invoke the migration, like we do with Rails migrations:

movies_app ɛ bundle exec rake db:migrate
(in /Users/panayotismatsinopoulos/Documents/movies_app)
ʰʰ ɩɥɨɮɨɩɥɮɥɬɨɨɨɪ CreateMovies: migrating ʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰ
-- create_table(:movies)
 -ʴ ɥ.ɥɥɭɪs
ʰʰ ɩɥɨɮɨɩɥɮɥɬɨɨɨɪ CreateMovies: migrated (ɥ.ɥɥɭɫs) ʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰʰ

movies_app ɛ

Nice! The migration has been executed successfully. And it output similar information like the one we get when we run
migrations with Rails.

*YLH[L�+H[HIHZL

*YLH[L�-PYZ[�4PNYH[PVU

,KP[�4PNYH[PVU�(UK�0U]VRL

You can confirm the table creation, using your SQL command line interface. For PostgreSQL, I can do this:

Excellent!

Let's see now how we can create an ActiveRecord model that would allow us to manage movies. Create the file
 app/models/movie.rb with the following content:

ɤ app/models/movie.rb
ɤ
class Movie ʳ ActiveRecord::Base
 validates :title, presence: true, uniqueness: {case_insensitive: true}
 validates :director, presence: true
end

It is very simple. A class that derives from ActiveRecord::Base .

Finally, let's create a main file that would use the Movie model to create a movie in the database. Create the file app/main.rb
with the following content:

movies_app ɛ psql -d movies_development -c ɑ\dʫ moviesɑ
 Table ɑpublic.moviesɑ
 Column | Type | Modifiers | Storage | Sta
------------ʫ-----------------------------ʫ---ʫ----------ʫ----
 id | bigint | not null default nextval(ɐmovies_id_seqɐ::regclass) | plain |
 title | character varying | not null | extended |
 director | character varying | not null | extended |
 created_at | timestamp without time zone | not null | plain |
 updated_at | timestamp without time zone | not null | plain |
Indexes:
 ɑmovies_pkeyɑ PRIMARY KEY, btree (id)

movies_app ɛ

*VUÄYT�;HISL�*YLH[PVU

*YLH[L�H�4VKLS

6\Y�4HPU�(WWSPJH[PVU

 ɨ. require ɐactive_recordɐ
 ɩ. require_relative ɐ./models/movieɐ
 ɪ.
 ɫ. def db_configuration
 ɬ. db_configuration_file ʰ File.join(File.expand_path(ɐ..ɐ, __FILE__), ɐ..ɐ, ɐdbɐ, ɐconfig.ymlɐ)
 ɭ. YAML.load(File.read(db_configuration_file))
 ɮ. end
 ɯ.
 ɰ. ActiveRecord::Base.establish_connection(db_configuration[ɑdevelopmentɑ])
ɨɥ.
ɨɨ. print ɑGive me the title of the movie: ɑ
ɨɩ. title ʰ gets.chomp
ɨɪ.
ɨɫ. print ɑGive me the director of the movie: ɑ
ɨɬ. director ʰ gets.chomp
ɨɭ.
ɨɮ. title ʰ Movie.new(title: title, director: director)
ɨɯ. title.save!
ɨɰ.
ɩɥ. puts ɑNumber of movies in your database: ɤ{Movie.count}ɑ
ɩɨ. puts ɑBye!ɑ

This is a very simple program that uses ActiveRecord to connect to your database and then create a Movie based on the data
provided by the user. Pay attention to the lines 4 till 9. These are necessary in order for you to establish a database connection.
It loads the database connection configuration data from the db/config.yml file and then picks up the development
environment part and sends it to ActiveRecord::Base.establish_connection method. Needless to say, that this code needs
to be adapted to read the environment part dynamically.

An instance of running this program is given below:

movies_app ɛ bundle exec ruby app/main.rb
Give me the title of the movie: Jurassic Park
Give me the director of the movie: Steven Spielberg
Number of movies in your database: ɨ
Bye!
movies_app ɛ

The above is the bare minimum that would allow you to incorporate ActiveRecord into your Ruby (non-Rails) application. The
help of the gem standalone_migrations is very valuable because it allows us to use the ActiveRecord Migrations API like we
do with the Rails applications.

Please share your thoughts in the comments section below, as I always learn a lot from you.

Finally, I want to mention here that on our Full Stack Web Developer course (/full-stack-web-developer) we teach both Ruby and
Ruby on Rails. This is a Mentor supported course that you pay-as-you-go. Your Mentor is assigned to you and evaluates your
work and your progress, making sure that you improve on every step that you take.

*SVZPUN�5V[L

LTHPS�HKKYLZZ

­
¬

ã

