GPCERF-package | The 'GPCERF' package. |
compute_deriv_weights_gp | Calculate Derivatives of CERF |
compute_inverse | Compute Matrix Inverse For a Covariate Matrix |
compute_m_sigma | Compute mean, credible interval, and covariate balance in Full Gaussian Process (GP) |
compute_posterior_m_nn | Calculate Posterior Means for nnGP Model |
compute_posterior_sd_nn | Calculate Posterior Standard Deviations for nnGP Model |
compute_rl_deriv_gp | Change-point Detection in Full GP |
compute_rl_deriv_nn | Calculate Right Minus Left Derivatives for Change-point Detection in nnGP |
compute_weight_gp | Calculate Weights for Estimation of a Point on CERF |
compute_w_corr | Compute Weighted Correlation |
estimate_cerf_gp | Estimate the Conditional Exposure Response Function using Gaussian Process |
estimate_cerf_nngp | Estimate the Conditional Exposure Response Function using Nearest Neighbor Gaussian Process |
estimate_mean_sd_nn | Estimate the CERF with the nnGP Model |
estimate_noise_gp | Estimate the Standard Deviation of the Nugget Term in Full Gaussian Process |
estimate_noise_nn | Estimate the Standard Deviation (noise) of the Nugget Term in nnGP |
find_optimal_nn | Find the Optimal Hyper-parameter for the Nearest Neighbor Gaussian Process |
generate_synthetic_data | Generate Synthetic Data for GPCERF Package |
get_logger | Get Logger Settings |
GPCERF | The 'GPCERF' package. |
plot.cerf_gp | Extend generic plot functions for cerf_gp class |
plot.cerf_nngp | Extend generic plot functions for cerf_nngp class |
print.cerf_gp | Extend print function for cerf_gp object |
print.cerf_nngp | Extend print function for cerf_nngp object |
set_logger | Set Logger Settings |
summary.cerf_gp | print summary of cerf_gp object |
summary.cerf_nngp | print summary of cerf_nngp object |
train_GPS | Train A Model for GPS |