Inference Using Simulation


[Up] [Top]

Documentation for package ‘Infusion’ version 2.2.0

Help Pages

A B C D E F G H I L M N P R S misc

Infusion-package Inference using simulation

-- A --

add_reftable Create or augment a list of simulated distributions of summary statistics
add_simulation Create or augment a list of simulated distributions of summary statistics
allCIs Compute confidence intervals by (profile) summary likelihood

-- B --

boundaries-attribute Discrete probability masses and NA/NaN/Inf in distributions of summary statistics.

-- C --

check_raw_stats Check linear dependencies among raw summary statistics
class:dMixmod Internal S4 classes.
class:NULLorChar Internal S4 classes.
class:NULLorNum Internal S4 classes.
config_mafR Control of MAF design and training
confint Compute confidence intervals by (profile) summary likelihood
confint.SLik Compute confidence intervals by (profile) summary likelihood
confint.SLikp Compute confidence intervals by (profile) summary likelihood
confint.SLik_j Compute confidence intervals by (profile) summary likelihood
constraints Specificying arbitrary constraints on parameters
constr_crits Specificying arbitrary constraints on parameters

-- D --

declare_latent Modeling and predicting latent variables
deforest_projectors Learn a projection method for statistics and apply it
densb Saved computations of inferred log-likelihoods
densv Saved computations of inferred log-likelihoods
dMixmod Internal S4 classes.
dMixmod-class Internal S4 classes.

-- E --

example_raw Workflow for primitive method, without projections
example_raw_proj Workflow for primitive method, with projections
example_reftable Workflow for method with reference table
extractors Summary, print and logLik methods for Infusion results.

-- F --

focal_refine Refine summary likelihood profile in focal parameter values

-- G --

get_from Backward-compatible extractor from summary-likelihood objects
get_from.default Backward-compatible extractor from summary-likelihood objects
get_from.SLik Backward-compatible extractor from summary-likelihood objects
get_from.SLik_j Backward-compatible extractor from summary-likelihood objects
get_LRboot Summary likelihood ratio tests
get_nbCluster_range Control of number of components in Gaussian mixture modelling
get_projection Learn a projection method for statistics and apply it
get_projector Learn a projection method for statistics and apply it
get_workflow_design Workflow design
goftest Assessing goodness of fit of inference using simulation

-- H --

handling_NAs Discrete probability masses and NA/NaN/Inf in distributions of summary statistics.

-- I --

infer_logLs Infer log Likelihoods using simulated distributions of summary statistics
infer_logL_by_GLMM Infer log Likelihoods using simulated distributions of summary statistics
infer_logL_by_Hlscv.diag Infer log Likelihoods using simulated distributions of summary statistics
infer_logL_by_mclust Infer log Likelihoods using simulated distributions of summary statistics
infer_logL_by_Rmixmod Infer log Likelihoods using simulated distributions of summary statistics
infer_SLik_joint Infer a (summary) likelihood surface from a simulation table
infer_surface Infer a (summary) likelihood or tail probability surface from inferred likelihoods
infer_surface.logLs Infer a (summary) likelihood or tail probability surface from inferred likelihoods
infer_surface.tailp Infer a (summary) likelihood or tail probability surface from inferred likelihoods
infer_tailp Infer log Likelihoods using simulated distributions of summary statistics
Infusion Inference using simulation
Infusion.getOption Infusion options settings
Infusion.options Infusion options settings
init_grid Define starting points in parameter space.
init_reftable Define starting points in parameter space.

-- L --

latint Modeling and predicting latent variables
load_MAFs Save or load MAF Python objects
logLik Summary, print and logLik methods for Infusion results.
logLik.SLik Summary, print and logLik methods for Infusion results.
logLik.SLik_j Summary, print and logLik methods for Infusion results.

-- M --

MAF.options Control of MAF design and training
MSL Maximum likelihood from an inferred likelihood surface
multi_binning Multivariate histogram

-- N --

NA_handling Discrete probability masses and NA/NaN/Inf in distributions of summary statistics.
neuralNet Learn a projection method for statistics and apply it
NULLorChar Internal S4 classes.
NULLorChar-class Internal S4 classes.
NULLorNum Internal S4 classes.
NULLorNum-class Internal S4 classes.

-- P --

parallel Infusion options settings
plot.dMixmod Internal S4 classes.
plot.SLik Plot SLik or SLikp objects
plot.SLikp Plot SLik or SLikp objects
plot.SLik_j Plot SLik or SLikp objects
plot1Dprof Plot likelihood profiles
plot2Dprof Plot likelihood profiles
plot_importance Diagnostic plots for projections
plot_proj Diagnostic plots for projections
pplatent Modeling and predicting latent variables
predict.SLik_j Evaluate log-likelihood for given parameters
print Summary, print and logLik methods for Infusion results.
print.goftest Assessing goodness of fit of inference using simulation
print.logLs Summary, print and logLik methods for Infusion results.
print.SLik Summary, print and logLik methods for Infusion results.
print.SLikp Summary, print and logLik methods for Infusion results.
print.SLik_j Summary, print and logLik methods for Infusion results.
profile Compute profile summary likelihood
profile.SLik Compute profile summary likelihood
profile.SLik_j Compute profile summary likelihood
project Learn a projection method for statistics and apply it
project.character Learn a projection method for statistics and apply it
project.default Learn a projection method for statistics and apply it

-- R --

recluster Refine estimates iteratively
refine Refine estimates iteratively
refine.default Refine estimates iteratively
refine.SLik Refine estimates iteratively
refine.SLikp Refine estimates iteratively
refine.SLik_j Refine estimates iteratively
refine_nbCluster Control of number of components in Gaussian mixture modelling
reparam_fit Conversion to new parameter spaces
reparam_reftable Conversion to new parameter spaces
reproject Refine estimates iteratively
rparam Sample the parameter space

-- S --

sample_volume Sample the parameter space
saved_seed Saved computations of inferred log-likelihoods
save_MAFs Save or load MAF Python objects
seq_nbCluster Control of number of components in Gaussian mixture modelling
simulate Simulate method for an 'SLik_j' object.
simulate.SLik_j Simulate method for an 'SLik_j' object.
SLRT Summary likelihood ratio tests
summary Summary, print and logLik methods for Infusion results.
summary.goftest Assessing goodness of fit of inference using simulation
summary.logLs Summary, print and logLik methods for Infusion results.
summary.SLik Summary, print and logLik methods for Infusion results.
summary.SLikp Summary, print and logLik methods for Infusion results.
summary.SLik_j Summary, print and logLik methods for Infusion results.
summLik Model density evaluation for given data and parameters
summLik.default Model density evaluation for given data and parameters
summLik.SLik_j Model density evaluation for given data and parameters

-- misc --

.update_obs Updating an 'SLik_j' object for new data