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Abstract

In this paper, the R package QWDAP, which implements quantum walk as the funda-
mental infrastructure, is developed for spatio-temporal data modeling and prediction. In
the QWDAP package, we mainly focus on the analysis of spatially correlated time series,
and use the variable series generated by quantum walks to model and predict the time
series. With the integration of a series of different mode selection, modeling, prediction
and model evaluation methods, the QWDAP package realizes the coupled analysis of the
significant modes, temporal and spatial correlations and evolution laws in the time series.
The QWDAP package includes three modules: Basis Generation, Data Modeling and
Prediction, and Model Evaluation. Without any priori assumptions such as stationarity,
linearity and independence of the time series, the QWDAP package can extract signifi-
cant modes from different perspectives, develop linear regression, nonlinear regression and
time-based relationships between modes and the original time series, and predict the time
series with or without considering the spatio-temporal correlations. A case study, which
models and predicts the traffic volumes of highway traffic system, is used to demonstrate
the structure and usage of the package.

Keywords: Quantum Walks, Modeling, Prediction, Mode Selection, Model Evaluation, Multi-
time series.

1. Introduction

Graph-associated time series is an expansion of the traditional time series by considering the
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spatial relative relationships of the time series to form a combination of time series containing
graph definitions. While traditional time series analysis methods have difficulties in express-
ing the spatial relationships between time series. Graph-associated analysis methods, such
as graph convolution (Kejani, Dornaika, and Talebi 2020), which can analyze the structural
characteristics of graph, but the graph convolution is based on the calculation of the orig-
inal data, whose operation results will be limited to the original data, and the method for
prediction lacks the stochasticity. In this paper, we propose a feature extraction and time
series prediction method based on quantum walk for spatio-temporal characteristics analysis
of graph-associated time series.
Quantum walk, the quantum mechanical counterpart of classical random walk, has been re-
cently shown great potential to constitute quantum computing models for rapid data operation
and simulation. Quantum walk, which is one of the main algorithms of quantum computer
technology (Childs 2010), constituting the general model of quantum computing (Venegas-
Andraca 2012), has the potential to simulate and explain quantum systems (Schreiber, Gábris,
Rohde, Laiho, Štefaňák, Potoček, Hamilton, Jex, and Silberhorn 2012). With the advantages
of complete mathematical foundations, simple and clear physical mechanism, and efficient
implementation in computation, quantum walk has been widely used in quantum simulation
(Karski, Förster, Choi, Steffen, Alt, Meschede, and Widera 2009; Tang, Lin, Feng, Chen,
Gao, Sun, Wang, Lai, Xu, Wang et al. 2018; Hatifi, Di Molfetta, Debbasch, and Brachet
2019), data prediction (Qiang, Loke, Montanaro, Aungskunsiri, Zhou, O’Brien, Wang, and
Matthews 2016), metrology (Kitagawa, Broome, Fedrizzi, Rudner, Berg, Kassal, Aspuru-
Guzik, Demler, and White 2012), quantum computing (Childs 2009; Qiang et al. 2016) and
other fields. Developing the software which can inherent the advantages of quantum walk
with common computers will provide large advantage on applied quantum computing, big
data analysis, data prediction, metrology and common statistics, and it is also possible to
expand the application of quantum walk.
Typically, quantum walk is developed with a walker moving on graphs by quantizing classical
random walk. Several definitions of quantum walk, in both discrete and continuous time, are
developed. In discrete time, the most popular models are coined quantum walk and Szegedy’s
quantum walk (Portugal 2016). Coined quantum walk is defined by a coin flip followed by a
shift or hop to adjacent vertices. Szegedy’s quantum walk quantizes the Markov chain pro-
cess in classical random walk and realizes the evolution of states. The walker is always in the
combination state of each vertex during the quantum walk, and moves in the way of the quan-
tum walk evolution. Continuous-time quantum walk consists of a walker and an evolution
(Hamiltonian) operator of the system (Farhi and Gutmann 1998). Different from the coin
operator or Markov chain which is used in discrete-time quantum walk and can only change
in discrete time steps, the evolution (Hamiltonian) operator can be applied with no timing
restriction. For example, the walker walks at any time, and the evolution can be expressed
via the Schrödinger equation (Childs 2010). Recently, more advanced quantum walks (e.g.
Quantum stochastic walks) are developed to simulate open quantum systems.
Quantum walk is commonly regarded as a general calculation tool, and all quantum calcula-
tions can be formulated as a quantum walk on a graph (Childs 2009; Lovett, Cooper, Everitt,
Trevers, and Kendon 2010). The graph that carries the quantum walk is composed of ver-
tices and edges and can be expressed in the form of an adjacency matrix. The vertices on
the graph represent the quantum states of the quantum walk, and the edges connecting the
vertices carry the quantum states transitions between the vertices (Berry, Bourke, and Wang
2011).
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During the quantum walk, based on a graph, the probabilities of the quantum walker being
found on the vertices over time reflect the variation characteristics. There is an inherent
spatio-temporal correlation between these probabilities. Therefore, a probability series of
the quantum walker being found on a vertex is called a mode of the spatio-temporal pro-
cess. With numerical algorithms like spectral decomposition of the adjacency matrix of the
graph, it is possible to achieve efficient algorithmic simulation of quantum walk. Although
the mathematical computation of quantum walk is clear and direct with linear algebra, the
implementation of quantum walk as a productive software is still complicated.
There are several softwares that implement quantum walk. The QWalk software package de-
veloped by Marquezino and Portugal (2008) uses C language to realize discrete-time quantum
walk simulation on one-dimensional and two-dimensional lattices. And it also realizes the
visualization of two-dimensional and three-dimensional graphs of quantum walks. The qwViz
software developed by Berry et al. (2011) also uses C language to realize discrete-time quan-
tum walks. And it realizes the interactive visualization of quantum walks simulation. The
pyCTQW software developed by Izaac and Wang (2015) based on Python and Fortran realizes
distributed continuous-time quantum walks and can support continuous-time quantum walk
simulation with high data volume. The QSWalk based on the Mathematica platform developed
by Falloon, Rodriguez, and Wang (2017) realizes the further promotion of continuous-time
random walks, the continuous-time quantum stochastic walks and the time evaluation of
continuous-time quantum stochastic walks based on graphs. The QSWalk.jl software package
developed by Glos, Miszczak, and Ostaszewski (2019) is built on the basis of QSWalk by using
the Julia language, which improves the efficiency of processing large-scale matrices. On the
basis of QSWalk and QSWalk.jl, the QSW_MPI software package, developed by Matwiejew
and Wang (2021) based on Python and Fortran, realizes continuous-time quantum stochastic
walk simulation, which makes it suitable for massively parallel computers and time series sim-
ulation. The algorithm simulation of quantum walks has been developed from discrete time
quantum walks to continuous-time quantum walks. And then the algorithmic simulation of
continuous-time quantum stochastic walks is realized.
Although there are already several applications of quantum walks in different programming
languages, the existing quantum walk-related packages mainly focus on the development of
quantum walk algorithms and the improvement of the data carrying capacity and algorithm
simulation efficiency of quantum walks. Only a few applications of quantum walks are devel-
oped for classical statistical analysis. For example, there is no toolkit for applying time series
simulated by quantum walk to data analysis. Although there are some theoretical models
that try to model time series based on quantum walk (Konno 2019), none is implemented. As
the classical random walks are largely used as the fundamental infrastructure for statistical
analysis such as time series analysis, quantum walks may also have such advances when ap-
plied to classical time series. The bases, which are generated by quantum walks and used for
time series expression, are called as modes. In quantum walk, the probability series (i.e. the
mode) at each vertex are closely related and can reflect the structure of the graph, and the
inherent structural characteristics of the spatio-temporal process can be represented by graph.
Therefore, quantum walk is suitable for the modeling and prediction of spatially correlated
time series. As different modes of quantum walks can be generated with different evolution
parameters, it is possible to model the time series characteristics of different structures by
efficiently using the modes under different parameters and integrating different mode selec-
tion, modeling and model evalution methods. Therefore, the coupled analysis of significant
modes, temporal and spatial correlations and evolutionary laws in time series can be realized.
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By implementing the above processes and integrating the implementation with easy-to-use
software packages like R, the application of quantum walk-based data analysis can be widely
extended.
Based on the above, the QWDAP package was built based on the R language. The QWDAP
package provides a set of tools aiming to fully apply the spatio-temporal characteristics of
quantum walks to data analysis. QWDAP is a software package for multi-time series mod-
eling and prediction based on quantum walks and includes three modules: Basis Generation,
Data Modeling and Prediction, and Model Evaluation. In the Basis Generation module,
QWDAP extracts the modes from the evolution process of continuous-time quantum walk for
time series analysis. In the Data Modeling and Prediction module, the mode selection, linear
and nonlinear regression and temporal-correlated models like Vector Autoregressive (VAR)
are developed to extract the significant modes from different perspectives. Develop linear,
nonlinear and temporal-correlated relationships between modes and the original time series
and predict the time series with or without considering the spatio-temporal correlations. In
the Model Evaluation module, multiple evaluation indexes are developed to evaluate the per-
formance of the model.
This paper is organized as following: In Section 2, we propose the statistical problem that the
QWDAP software mainly solves. In Section 3, we introduce the main functions and classes
in the QWDAP package. In Section 4, we take the traffic volumes of highway traffic sys-
tem as an example and use two different combinations of modes for modeling and prediction
respectively. In Section 5, summarizes and prospects of QWDAP package are presented.

2. Problem Definition and Basic Idea

2.1. Problem Definition

Multivariate time series is the description of time series with systematic correlation. In
addition to the temporal characteristics, multivariate time series also have spatial interrela-
tionships. However, the existing multi-channel network diagrams cannot accurately describe
and express them.

Definition 1. Graph-associated time series is a combination of a graph and a set of
time series corresponding to the vertices of the graph, which can be visualized as the GT in
Figure 1. The graph-associated time series GT is derived from the graph structure G and the
corresponding features TS of the graph’s time series by some operation, and its mathematical
mapping relation is

GT = G+ TS (1)

where "+" is used only for the connection. The graph structure G is composed of vertices and
edges and its mathematical expression is

G = (V,E) (2)

where V = {v1, v2, . . . , vN} is the set of N vertices and E = {e1, e2, . . . } is the set of edges.
And the vertices vi in the graph-associated time series correspond to different time series,
under some rule mapping F , with

F (TS) = {v1, v2, . . . , vN} (3)



5

In the graph correlation time series the edge ei corresponds to the correlation of different
vertices (different time series). And its correlation is often influenced by multiple factors
that act together, such as connectivity, causality, etc. Due to the difficulty of expressing and
describing multi-channel time series, this paper proposes quantum walk for simulation.

Definition 2. Feature decomposition. The original feature decomposition is decomposed
to ensure that the extracted feature components correspond to the elemental graph structure
while keeping the original graph feature structure unchanged when the feature extraction is
simulated with quantum walk. The mathematical expressions are as follows{

G = G1 = G2 = · · · = Gi = · · · = Gm

TS = TS1 + TS2 + · · ·+ TSi + · · ·+ TSm
. (4)

The quantum walk of the time series of each vertex at moment t simulates the probability
of the feature as P (t), so that the mathematical expression of the quantum walk of the time
series containing the feature, driven by the systematic events, is as follows

TS =
N∑

i=1

N∑
j=1

vivj

Lij
P (t) · δ (5)

where Lij denotes the distance between vertices vi and vj , and δ represents the correlation
taking the value {0, 1}.
This completes the modal characteristics of the change in graph structure in a multivariate
time series mixed signal, which is obtained as

TSi(t) = {TS1(t), TS2(t), · · · , TSN (t)} (6)

The time series features of the quantum walk simulation can be expressed in matrix form.
TS1
TS2
TS3
...

TSN

 =


S11 S12 · · · S1m

S21 S22 · · · S2m

S31 S32 · · · S3m
...

... . . . ...
SN1 SN2 · · · SNm

 ·
(
t1 t2 · · · tm

)>
(7)

where
(
Si1 Si2 · · · Sim

)
represents the corresponding variation feature on vertex vi.

Definition 3. Matching. By means of quantum walk, the features of different time series
can be extracted and summed according to certain rules of operation, and finally compared
with the original features. The mathematical expression is as follows

Sum {GT} − {GT}orig ≤ σ (8)

where σ is a statistical indicator, which can indicate the mean extreme value, etc.

Definition 4. Prediction is the operation to get the data unobservated. For each time scale
p according to the time point t, we can get TS(t+p) = TS1(t+p)+TS2(t+p)+· · ·+TSm(t+p),
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Figure 1: Graph-associated time series.

which can be express as


TS′1
TS′2
TS′3
...

TS′N

 =


S11 S12 · · · S1m · · · S1(m+p)
S21 S22 · · · S2m · · · S2(m+p)
S31 S32 · · · S3m · · · S3(m+p)
...

... . . . ... . . . ...
SN1 SN2 · · · SNm · · · SN(m+p)

 ·
(
t1 t2 · · · tm · · · t(m+p)

)>
(9)

where
(
S11 S12 · · · S1m · · · S1(m+p)

)
represents the corresponding variation feature on

vertex vi.

The analysis method of graph-associated time series is different form the method analysis the
traditional time series, which will consider the spatial relationship between the time series.
However, the traditional method like Empirical Modal Decomposition (EMD) and Singular
Spectrum Analysis (SSA), they analysis the time series one by one and neglect the spatial
correlaction of the time series. In reality, the generation of time series is mostly accompanied
by spatial interactions, such as geographic data, especially the rise of geographic spatiotem-
poral big data (Song, Wang, Xiang, and Zomaya 2017) is inseparable from the analysis of the
spatial location of time series.
Traditional time series analysis methods, such as Fourier transform, short-time Fourier trans-
form, wavelet transform and continuous wavelet transform, extract the characteristic com-
ponents of the original series, which reveal certain periodically transformed characteristics
of the time series, but Fourier transform and short-time Fourier transform cannot handle
non-stationary time series (Gao and Shang 2019), wavelet transform and continuous wavelet
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transform are not adaptive (Zedda and Singh 2002). Adaptive time series analysis meth-
ods, such as Empirical Modal Decomposition (EMD) and Singular Spectrum Analysis (SSA),
extract the feature components from the original time series, which can reveal the periodic
fluctuation characteristics of the original data on the one hand, and provide support for mod-
eling and prediction models on the other hand. However, the above two types of time series
decomposition methods depend on the original time series and are easily affected by the initial
experimental data, especially the analysis of individual time series lacks the expression of the
spatial connection of time series. Therefore, there is an urgent need for an analytical method
that can perform a holistic analysis of graph-associated time series.

2.2. Basic idea

In order to solve the above two problems, the paper proposes a "random generation, directional
filtering" feature selection method for graph-associated time series and a time series predic-
tion method based on feature series. To obtain the features of time series, quantum walks
are used for random feature generation, and model-driven or data-driven selection methods
are used to get the part features that are significantly correlated with the original time series.
Quantum walk, as a graph-based random data generation method, generates features that
have randomness in addition to spatially interacting features, so that they are also expressive
for unstable time series.
In order to predict the original time series, we establish the mapping relationship between
the original time series and the features, and predict the original time series with longer time
features generated by quantum walk according to the same mapping relationship. The map-
ping relationship between the original time series and these features is established by using
regression analysis.
For graph-associated time series analysis, we use a graph-based random data generation
method, quantum walk, to generate a large number of basic features, and select out the
features related to specific time series. The feature model based on the quantum walk mecha-
nism of the original time series is established by regression methods such as linear, nonlinear,
and temporal-correlated methods, which can realize the prediction of graph-associated time
series.

3. The Structure of QWDAP Package
From the perspective of data analysis, the QWDAP package can be divided into three mod-
ules: Basis Generation, Data Modeling and Prediction, and Model Evaluation. The algo-
rithms used in each module are shown in Figure 2.
In the Basis Generation module, QWDAP extracts the modes from the evolution process of
continuous-time quantum walk for time series analysis. The continuous-time quantum walk
is performed on a given graph with an initial state, and the probability series of the walker
being found at each vertex is obtained by the discretization sampling of the continuous-time
quantum walk at equal intervals. The continuous-time quantum walk, which is based on the
spectral decomposition of an adjacency matrix and the combination of the eigen-values and
eigen-vectors, is used to simulate the random movement of a quantum walker. Starting from
a certain vertex the walker is always in the combination state of each vertex without being
observed during the quantum walk process. In order to extract the change characteristics
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of quantum walk corresponding to each vertex, the package samples the probabilities of the
walker being found at each vertex with a specific scale. Sampling at multiple scales can yield
a large number of basic features with different characteristics. These probability series con-
tain random variation features are called modes. And the modeling and prediction of the
observed time series use the modes sampled on the corresponding vertices. The Data Model-
ing and Prediction module applies the modes generated by quantum walks to the analysis of
the graph-associated time series.
In the Data Modeling and Prediction module, some regression methods are used to establish
the relationship between the original observed time series and the modes through spatial or
temporal correlation. And then the established relationship can be used for modeling and
prediction of the original time series. Considering that there may be linear and nonlinear,
time-correlated and time-non-correlated multiple relationship structures between the time
series and modes, the QWDAP package includes three types of modeling methods: linear
regression, nonlinear regression and the temporal-correlated regression. The linear regres-
sions in the QWDAP package include Stepwise Regression, Principal Component Regression
(PCR) and Partial Least Squares Regression (PLSR). Nonlinear regression includes Projec-
tion Pursuit Regression (PPR) and temporal-correlated regression like Vector Autoregressive
(VAR). The QWDAP package includes two mode selection methods, Stepwise Regression
(Steyerberg, Eijkemans, and Habbema 1999) and RReliefF (Robnik-Šikonja and Kononenko
2003). Mode selection can extract some highly feature correlated modes with the original time
series from the whole modes. The selected part are used to to model the original time series,
and mode selection greatly reduces the useless modes for modeling and avoids overfitting in
modeling.
The Model Evaluation module is used to evaluate the correlation between the modeling and
prediction results and the original time series. QWDAP package provides the calculation of
the Coefficient of Determination (R2) , Root Mean Squared Error (RMSE) and Mean Abso-
lute Error (MAE) for two time series.
More details of the three modules of the QWDAP package are presented in the following
sections.

3.1. Basis Generation

In order to describe the evolution process of quantum walks, an arbitrary undirected graph is
used to describe the process (Izaac and Wang 2015). Suppose G = (V,E) is a graph without
considering its width, where V is the set of N vertices and E is the set of edges. For any
vertex v, Γv = {u ∈ V, (u, v) ∈ E} represents the vertex adjacent to v (neighbor vertex). The
adjacency matrix A of graph G can be defined as

Auv =
{

1, if (u, v) ∈ E
0, otherwise

. (10)

where Auv = Avu and Avv = 0.
Unlike the classical random walk, the process of quantum walks is not a Markov chain (Tsuji,
Estrada, Movassagh, and Hoffmann 2018). Classically, the evolution of state vector |ϕ (t)〉
with time t can be described as the form of Schrödinger equation (Childs 2010).

i
d

dt
|ϕ (t)〉 = H |ϕ (t)〉 . (11)
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Figure 2: Structure diagram.

Where the time-independent Hamiltonian H is an N × N Hermitian matrix, such as the
adjacency matrix or Laplacian of the graph (Izaac and Wang 2017). For simplicity, the
Hamiltonian H is replaced by the adjacency matrix A of the graph G in this paper. And
|ϕ (t)〉 ∈ CN is a complex-valued state vector.
The evolution equation can be solved from formula 11 with an initial state |ϕ (0)〉. The state
vector |ϕ (t)〉 at time t can be expressed as

|ϕ (t)〉 = e−iHt |ϕ (0)〉 , (12)

where the e−iHt is the time evolution operator (Kempe 2003), which is used to construct the
dynamically evolved quantum walks (Biamonte, Faccin, and De Domenico 2019).
The state vector |ϕ (t)〉 of the quantum walk at time t is a complex linear combination of the
basis states. The basis state corresponding to the walker at vertex v ∈ V is expressed as |v〉
(Sett, Pan, Falloon, and Wang 2019). The complex-valued state vector |ϕ(t)〉 at time t can
be expressed as

|ϕ(t)〉 =
∑
v∈V

av (t) |v〉 , (13)

where av (t) = 〈v|ϕ (t)〉 ∈ C represents the probability amplitude of the walker being found
at vertex |v〉 at time t. The probability of finding the walker at any vertex at time t is given
by the squared modulus of the appropriate element of |ϕ (t)〉 (Tsuji et al. 2018). Therefore,
the probability of the walker being found at vertex v at time t can be expressed as

p (|v〉 , t) =
∣∣av (t)

∣∣2 =
∣∣〈v|ϕ (t)〉

∣∣2. (14)
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Since the probability of a walker appearing at each vertex state is conservative, it satisfies∑
v∈V p (|v〉 , t) = 1 at time t. Formula 14 expresses the probability of the walker being found

at vertex v at time t. To obtain the state vector |ϕ (t)〉, the time evolution operator e−iHt

with matrix and complex coefficients needs to be calculated. However, direct calculation of
the time evolution operator requires a large number of exponential matrix calculations. But
existing matrix calculation libraries such as bigalgebra (Bertrand, Kane, Emerson, and We-
ston 2021) are also difficult to efficiently calculate the matrix exponents. Therefore, replacing
the Hamiltonian with its own eigen-values will greatly reduce the computational difficulty.
The spectral decomposition of the Hamiltonian is expressed as

H = ΦΛΦ>, (15)

where Φ is the N ×N matrix and can be expressed as

Φ = (φ1|φ2| · · · |φn| · · · |φN ) . (16)

The ordered eigen-vectors φns of H are set as columns.

Λ = diag (λ1, λ2, . . . , λn, . . . , λN ) (17)

is the N × N diagonal matrix and the ordered eigen-values λn of H are taken as elements.
λ1, λ2, . . . , λN are the eigen-values of matrix H, and the corresponding eigen-vectors are
φ1, φ2, . . . , φN . Using the spectral decomposition of the Hamiltonian, the time evolution
operator can be expressed as formula 18 (Rossi, Torsello, and Hancock 2015).

e−iHt = Φe−iΛtΦ>. (18)

The formula 12 can be expressed as

|ϕ (t)〉 = Φe−iΛtΦ> |ϕ (0)〉 . (19)

For large matrices, an efficient spectral decomposition method is required. The QR decom-
position is one of the most well-known and useful tools in numerical linear algebra (Duersch
and Gu 2017). Fast adaptations of the QR algorithm are considerably simplified by trans-
forming the matrix into an upper-Hessenberg form, and the QR decomposition is proved to
be backward stable (Eidelman, Gemignani, and Gohberg 2008). The spectral decomposition
with the QR decomposition is used in the QWDAP package to calculate the eigen-values and
eigen-vectors of the Hamiltonian H. Before the QR decomposition, the matrix is converted to
upper-Hessenberg matrix by matrix operations such as Householder transformation (Van Zee,
Van De Geijn, Quintana-Ortí, and Elizondo 2012).
The eigen-values and eigen-vectors are used to solve the time evolution operator as formula 18.
The evolution of state vector is simulated by the calculation of eigen-values, eigen-vectors and
time t, which is realized by formula 19.
So far, the state vector |ϕ (t)〉 evolved from the initial state |ϕ (0)〉 at time t is obtained, the
probability amplitude of each vertex can be extracted, and the probability can be calculated
by the squared modulus of the probability amplitude as formula 14. The probability series
corresponding to all vertices are obtained by performing formula 14 using a set of times with
a same interval. This corresponds to the sampling of a set of continuous probabilities, which
will be described later as the sampling of continuous time quantum walks. In order to obtain
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sets of probabilities for data analysis, time series with different variances are used for multiple
rounds of samplings. For ease of understanding, scaling factors {kj}Jj=1 are defined, where
J indicates the number of sampling rounds. And the time t is replaced by kjt. The t in
kjt is represented by a series of natural numbers, t = 0, 1, 2, . . . , and kj ∈ R+ represents the
sampling interval. Therefore, formula 19 can be expressed as

|ϕ (kjt)〉 = Φe−iΛkjtΦ> |ϕ (0)〉 . (20)

A probability series generated with a scaling factor on a vertex is called a mode which is used
as a basic unit to describe the data used for analysis. A series of scaling factors {kj}Jj=1 are
used to generate the modes for data modeling and prediction. The modes simulated with
different scaling factors possess different temporal evolution characteristics. As the modes
are generated based on a graph, there is an inherent spatial correlation between the modes.
The probabilities generated by quantum walks are presented in the form of a percentage in
the package. In order to reduce the data storage, the program converts the result of floating-
point numbers into integers by default. For users with high data accuracy requirements, the
original floating-point result can be obtained.

3.2. Data Modeling and Prediction

Using different scaling factors, the modes on the vertices can be produced, reflecting the law
of change at different scales of the continuous time quantum walk. The modes can be used
as bases to approximate complex time series. In the Basis Generation module, by adjusting
parameters kj , suffericent modes can be generated. Regression methods can then be applied to
establish the relationship between the original observed time series and the generated modes.
Data modeling and prediction with quantum walks are based on the orderly organization of
the modes. In order to improve the effect of modeling and the accuracy of prediction, the
scaling factors are increased to simulate as many modes as possible. However, the original
time series may not be affected by all the modes. Therefore, to accommodate the evolutionary
features and structural patterns of different time series, it is important to filter out the modes
that can be used to represent the characteristics of the original time series among all the
generated modes.

Mode selection

Mode selection is used to select a combination of modes for modeling among all the modes
generated by quantum walks. There are mainly two types of mode selection methods: model-
driven and data-driven. The representative of model-driven mode selection methods is Step-
wise Regression. Stepwise Regression assumes that there is a linear correlation between the
original time series and the modes. And during the Stepwise Regression process, the mode
combination used for linear regression is gradually modified until getting the optimal mode
combination that can be used to approximate the original time series. The data-driven mode
selection method, such as RReliefF, obtains the optimal mode combination by measuring the
correlation coefficient between the original time series and the modes. RReliefF calculates the
weight of each mode compared with the original time series through the k nearest neighbor
method. Both of the two methods can select a combination of modes that can be used to
simulate the original time series and build compact and interpretable regression models. In
view of the difference in the mechanism of the two selection methods, the result obtained
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by Stepwise regression is the optimal mode combination, while RReliefF can get the ordered
results of all modes sorted by weight compared with the original time series. The selected
modes can model the original time series relatively well while reducing the amount of calcula-
tion. The two mode selection methods are introduced separately below. Stepwise Regression
is also used for modeling and prediction, and we will explain it in detail in Section 3.2.2.
The RReliefF algorithm is proposed by Robnik-Šikonja and Kononenko (1997), which is an
extension of ReliefF in the field of regression applications. In the RReliefF algorithm, the k
proximity weight for each sample of the modes is calculated according to the original time
series to sort all modes and select the modes by the weights. For each mode, all possible k
(representing k nearest instances) are tested and the highest score is returned. The weight of
each mode relative to the corresponding original time series can be obtained, and the amount
of modes required can be selected according to the weight.

Regression and Prediction

Linear Regression
Linear regressions are used to model the original time series based on the linear combina-
tion of multiple modes and find the best parameter of each mode with the original time
series constraints. There are three linear regression methods provided by the QWDAP pack-
age: Stepwise Regression, Principle Component Regression (PCR) and Partial Least Squares
Regression (PLSR). In regression analysis based on modes generated by quantum walks, suit-
able parameters are selected and the linear combination of modes is used to approximate the
original time series to be modeled. Let

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε, (21)

where Y is the fitted time series, X1, X2, . . . , Xp are the modes generated by quantum walks,
β1, β2, . . . , βp are the coefficients of the modes in the model, β0 is the constant term, and ε is
the residual.
The three linear regression methods are essentially expressing original time series through
linear combinations of the modes, but different linear regression methods have different specific
algorithms for determining coefficients. The three regression methods are introduced below.
Stepwise Regression is a process of screening variables in regression analysis, which is widely
used in data fitting (Burkholder and Lieber 1996) and pattern recognition (Steyerberg et al.
1999). The basic idea of Stepwise Regression is to gradually change the combination of
modes to achieve a relatively optimal fitted effect. Whether a mode should be retained or not
depends on the significance degree of the regression through the combination of modes and
the original time series, and finally the selected combination of modes is used to establish a
linear model. Forward selection, Backward elimination and Bidirectional elimination are three
specific algorithms of Stepwise Regression. These three different algorithms constantly change
the combination of the modes and judge whether to accept the change through a judgment
standard. There are many judgment standards that can be used in Stepwise Regression. For
example, the Akaike Information Criterion (AIC) (Yamashita, Yamashita, and Kamimura
2007) is used in QWDAP to judge the fitted effect of the model.
Principle Component Regression (PCR) applies principal component analysis to linear regres-
sion. It uses highly correlated modes to gather independent principal component combina-
tions to establish a regression model, which is widely used in regression analysis and prediction
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(Ieong, Lou, Ung, and Mok 2015). The PCR can overcome the interference of multicollinear-
ity (Liu, Kuang, Gong, and Hou 2003). The principal component is the transformation of a
group of potentially correlated modes into a group of linearly uncorrelated series through or-
thogonal transformation, and the transformed series are the constituent components. Derive
a few principal components from the original time series, so that these series retain as much
information about the original time series as possible. The characteristic of principal com-
ponent analysis is to reveal the internal structure of multiple series through a few principal
components.
The basic principle of Partial Least Squares Regression (PLSR) is to find a linear regression
model by projecting the modes and the original time series into a new space through pro-
jection, which is a commonly used prediction method (Mevik and Wehrens 2007; Helland,
Sæbø, Almøy, and Rimal 2018). PLSR is related to the PCR, but instead of looking for the
hyperplane with the largest variance between the modes and the original time series.
Nonlinear regression
Projection Pursuit Regression (PPR) is a nonlinear regression analyzing method, which aims
at high-dimensional data with multiple samples as well as multivariate, and is widely used in
prediction (Rajeevan, Pai, Kumar, and Lal 2007). The basic idea of PPR is to project the
high-dimensional data to a low-dimensional space (1-3 dimensions), find a projection that can
reflect the structure or characteristics of the high-dimensional data, and perform regression
analysis. The key to PPR is to find the direction of projection.
The Projection Pursuit Regression model can be expressed as

F (x) ∼
M∑

m=1
βmGm(Zm) =

M∑
m=1

βmGm
( P∑

j=1
a>mjX

)
, (22)

where Gm(Zm) is the m-th ridge function. βm is a weight, which represents the contribution
of the m-th ridge function to the output value. Zm =

∑P
j=1 a

>
mjX is the independent variable

of the ridge function, which represents the projection of the P-dimensional vector X in the
am direction. amj is the j-th component of the m-th projection direction. P is the dimension
of the input space, which is required to satisfy the formula

∑P
j=1 a

2
j = 1.

Temporal Correlated
Vector Autoregressive (VAR) is often used to predict time series systems with inherently
correlated factors and analyze the dynamic effects of random disturbances on variable systems.
The VAR method constructs a model by taking each endogenous variable in the system as
a function of the lag value of all endogenous variables in the system (Johansen 2002) and is
often used in series correlation analysis (Goebel, Roebroeck, Kim, and Formisano 2003).
For the multivariate time series Y ∈ RN×T , in the case of any t time interval, the VAR(k)
model can be expressed as

yt =
d∑

k=1
Akyt−k + εt, t = d+ 1, ..., T, (23)

where yt = (y1t, y2t, ..., yNt)> ∈ RN×T , and Ak ∈ RN×N is the coefficient matrix of VAR, εt
is the noise, and k is the lag order.

3.3. Model Evaluation
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Modes generated by quantum walks are used to build a time series model and make predictions 
based on the model. However, the accuracy of the model, the efficiency of the modeling 
and the stability of the program need to have a clear indicator to reflect. T he regression 
methods are used to establish the correlations between the original time series and the modes, 
and generate a fitted series of the original time series using the modes, which will be used for 
model evaluation. In terms of the effects of modeling and prediction, the correlation coefficients 
between the fitted series and the predicted series relative to the original time series are 
analyzed from the perspective of the time domain. And the calculation time and physical 
memory occupation are analyzed to evaluate the efficiency of the entire model. The stability 
index mainly considers the robustness of the program, and the solution for some unreasonable 
or unsupported data input. From the evaluation of the accuracy of modeling, QWDAP can be 
also used to calculate some indexes of data correlation. The package can generate multi-scale, 
structurally heterogeneous modes based on a graph, and the modes can be used to perform 
regression analysis and prediction on time series. By operation of the Model Evaluation 
module, the evaluation indexes, like Coefficient of Determination (R2), Root Mean Squared 
Error (RMSE), Mean Absolute Error (MAE), between series can be calculated.

4. The Use of QWDAP Package, a Sample of Traffic Volumes
In this section, we will discuss the specific functional implementation of the three main mod-
ules in QWDAP and we choose the traffic volumes of highway traffic system as an example to 
illustrate the usage of the package. The highway traffic system can be regarded as a relatively 
closed system that changes over time. The traffic volumes counted at each highway station on 
the same section of highway are interacting with each other. The traffic volumes counted at 
each station are statistical series that changes over time, and the differences in driving habits of 
drivers lead to differences in the characteristics of the time series. The analysis of highway 
multi-station time series is the analysis of the graph-associated time series. Assuming that the 
various driving behaviors of the driver on the expressway behaves as a mode, the QWDAP is 
used to extract the change characteristics of the continuous time quantum walk at different 
scales that may be the same as the local change characteristics of traffic volumes. And the 
modes generated by quantum walks are used to model and predict the traffic volumes.

4.1. Overview
In Table 1, we briefly show the functions included in the three main modules of the QWDAP 
package and the role of each function, and the meaning of each parameter in these functions 
is explained in Table 2. The experimental process is shown in Figure 3.

4.2. Data Modeling and Result Evaluation of Traffic Volumes
In this section, we establish an adjacency matrix according to the spatial characteristics of the 
stations distribution in the highway traffic system. QWDAP is used to extract the features 
of quantum walks and obtain the modes for data analysis. In addition, the traffic volumes 
are modeled based on the modes, and the data predictions are performed according to the 
models. The results are evaluated in the time domain.
In the QWDAP package, the Basis Generation module is used to generate bases for data
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Modules Tools Function Arguments

Basis Generation Quantum walk-based
probability generation

qwdap.qwalk edges, startindex, lens,
scals, getfloat.

Data Modeling
and Prediction

Mode selection qwdap.sws real, ctqw, select_method,
plotting.

qwdap.rrelieff real, ctqw, index, num,
plotting.

Linear regression qwdap.swr in_data, data_range,
plotting.

qwdap.pcr in_data, data_range,
plotting.

qwdap.plsr in_data, data_range,
plotting.

Nonlinear regression qwdap.ppr in_data, data_range,
plotting.

Temporal correlated qwdap.var in_data, data_range,
plotting.

Prediction qwdap.predict in_model, data_range.

Model Evaluation Evaluation index qwdap.eval series1, series2.

Table 1: Modules of the QWDAP package.

Arguments Description

edges An adjacency matrix.
startindex The initial position of the quantum walker.
lens The number of records required in a round of sampling.
scals The scaling factors for sampling.
getfloat Choose whether to return floating point data.
real The original time series.
ctqw A ’CTQW’ object with modes generated by function qwdap.qwalk().
select_method The stepwise regression method.
plotting Choose whether to plot.
num The number of modes to be selected by RReliefF.
in_data A ’QWMS’ object with selected modes.
data_range The index range of modes used for modeling or prediction.
in_model A ’QWMODEL’ object, a built model for prediction.
series1 The first time series.
series2 The second time series.

Table 2: Parameters description.

modeling and prediction, i.e., simulate quantum walks, and the adjacency matrix needs to be
input. The initial position of the quantum walker, scaling factors and other settings related
to the quantum walk can be input as parameters. The Data Modeling and Prediction module
has tools for multi-time series modeling and prediction, as well as mode selection operations.
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Figure 3: Experimental flow chart.

The Model Evaluation module can be used to calculate the time domain correlation indices
of two time series.
The traffic volumes of the highway traffic system we used in this paper are integrated in
the QWDAP package as the trafficflow dataset. This dataset is the traffic statistic of
Nanjing-Changzhou section of Shanghai-Nanjing Expressway in China starting from 0:00AM
Dec-01-2015 with the time interval of 10 minutes. This data set has a total of 720 records
of 7 research stations, namely Tangshan (N1), Jurong (N2), Heyang (N3), Danyang (N4),
Luoshuyan (N5), Xuejia (N6) and ChangzhouBei (N7). The stations are connected end to
end in turn as shown in Figure 4.

Data set analysis

The trafficflow dataset in QWDAP is a collection of multi-time series, respectively rep-
resenting the changes of traffic volumes at 7 stations. The Nanjing Station is the entrance,
and the 7 stations data included in the dataset are all outbound traffic statistics data. The
changes of the traffic volume at each station in the dataset are shown in Figure 5.

Basis Generation

The function qwdap.qwalk() is used to generate modes by quantum walks and the modes
are used for traffic volumes modeling and series prediction. The adjacency matrix needs to
be input for quantum walk simulation as parameter edges. The 7 research stations in the
trafficflow data set are connected end to end, and the adjacency matrix of these 7 stations
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Figure 4: Research area and stations distribution.

is set as edges, as shown in formula 24.

edges =



0, 1, 0, 0, 0, 0, 0
1, 0, 1, 0, 0, 0, 0
0, 1, 0, 1, 0, 0, 0
0, 0, 1, 0, 1, 0, 0
0, 0, 0, 1, 0, 1, 0
0, 0, 0, 0, 1, 0, 1
0, 0, 0, 0, 0, 1, 0


, (24)

For the traffic volumes corresponding to the trafficflow dataset, the N1 station is the first
exit, so N1 is set as the initial position of the quantum walker. The trafficflow dataset
has a total of 720 records, so the record length obtained in a round of sampling is set to 720.
In order to generate cases of the walker distribution as much as possible, we set the initial
scaling factor to 0.01, and set 2000 scaling factors with a 0.01 increment. Then we perform
the following operations to generate the modes and store them in qw.data, which is a CTQW
object.

R> edges <- matrix(c(0,1,0,0,0,0,0,
+ 1,0,1,0,0,0,0,
+ 0,1,0,1,0,0,0,
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Figure 5: Traffic volumes.

+ 0,0,1,0,1,0,0,
+ 0,0,0,1,0,1,0,
+ 0,0,0,0,1,0,1,
+ 0,0,0,0,0,1,0), nrow = 7)
R> qw.data <- qwdap.qwalk(edges=edges, startindex=1, lens=720,
+ scals=seq(from=0.01, by=0.01, length.out=2000))

The above operation will get a object of class ’CTQW’ with an array whose dimension is
720 × 7 × 2000. Every 720 records of qw.data[ , , i] with any i ∈ [1, 2000] are a set of
modes generated in a round of sampling simulated by a scaling factor. The modes generated
by the first four scaling factors are shown in Figure 6. The figure contains a total of 4
groups of graphs with different time scales, where each graph represents a mode. The change
characteristics of the former group are the local change characteristics of the latter group.

Modeling and prediction of the highway traffic volumes
In this part, modes generated by quantum walks are used to model the traffic volumes and
predict based on the established model. Before modeling and prediction, the modes are fil-
tered to obtain a mode combination that is highly significant with the corresponding traffic
volume.
The qwdap.qwalk() function is used to conduct 2000 rounds of sampling with different scaling
factors, so each station corresponds to 2000 modes, some of which have low correlation with
the traffic volumes. In order to avoid overfitting and improve the computational efficiency of
subsequent modeling, two mode selection methods are used to extract modes that are highly
correlated with the original time series for modeling.
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Figure 6: A broken line graph of the modes generated by quantum walks of the first four
rounds of sampling.

The QWDAP package provides Stepwise Regression and RReliefF for mode selection. The
Bidirectional elimination method of Stepwise Regression is chosen below. The parameter
select_method is set to bidirection. Stepwise Regression is performed on the modes ac-
cording to the original time series, and the result is stored in the list res.sws.

R> data("trafficflow")
R> res.sws <- list()
R> for(i in c(1:7)){
+ res.sws[[i]] <- qwdap.sws(real=trafficflow, ctqw=qw.data, index=i,
+ select_method="bidirection", plotting=TRUE)
+ }

The list res.sws is a combination of 7 objects of class ’QWMS’, which stores the selected
modes of the 7 stations.
RReliefF is also used to select the modes of the 7 stations separately. When using RReliefF
to select modes, users can specify the number of modes that needs to be obtained. We choose
50 modes for each station and set the parameter num to 50. When the parameter num is -1, it
means that no filtering is performed, and the feature weight ranking of all modes is obtained.
Proceed as follows:

R> res.rrelieff <- list()
R> for(i in c(1:7)){
+ res.rrelieff[[i]] <- qwdap.rrelieff(real=trafficflow, ctqw=qw.data[,i],
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+ index=i, num=50, plotting=TRUE)
+ }

The modes selected by RReliefF are stored in res.rrelieff as a combination of 7 object of
’QWMS’ class.
Based on the modes selected by Stepwise Regression and the modes selected by RReliefF,
the regression methods are used to establish the mapping relationship between the traffic
volumes and the modes, and make predictions. In addition, we will compare the performance
of different modes combinations in the modeling and prediction of the traffic volumes.
There are three linear regression algorithms in the QWDAP package, namely Stepwise Re-
gression, PCR, and PLSR. The selected modes of Stepwise Regression and RReliefF are used
for modeling and prediction, and 720 records are divided into 570 training samples and 150
test samples.
The function qwdap.swr() in the QWDAP package is used to establish linear relationships be-
tween the modes and traffic volumes by Stepwise Regression and the function qwdap.predict()
are used to make predictions based on the established model. Take the dataset train.data
as an example, the following operations are performed to model and prediction.

R> swr_sws_models <- list()
R> swr_sws_prds <- list()
R> for(i in c(1:7)){
+ swr_sws_models[[i]] <- qwdap.swr(in_data = res.sws[[i]],
+ data_range = c(1, 570), plotting = TRUE)
+ swr_sws_prds[[i]] <- qwdap.predict(in_model = swr_sws_models[[i]],
+ data_range = c(571, 720))
+ }

In the parameters of qwdap.swr(), the first parameter is a object of class ’QWMS’, and the
second parameter is the index range of the modes generated by quantum walks. The function
qwdap.predict() is used for series prediction, and the parameter data_range is used to pass
in the index range of the modes corresponding to the part to be predicted.
The result of regression analysis includes the fitted series and other operating parameters.

R> summary(swr_sws_models[[1]]$model)

...
Residual standard error: 7.884 on 545 degrees of freedom
Multiple R-squared: 0.623, Adjusted R-squared: 0.6064
F-statistic: 37.53 on 24 and 545 DF, p-value: < 2.2e-16

Now use PCR for modeling and series prediction, function qwdap.pcr() for regression anal-
ysis, and function qwdap.predict() for prediction.

R> pcr_sws_models <- list()
R> pcr_sws_prds <- list()
R> for(i in c(1:7)){
+ pcr_sws_models[[i]] <- qwdap.pcr(in_data = res.sws[[i]],
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+ data_range = c(1,570), plotting = TRUE)
+ pcr_sws_prds[[i]] <- qwdap.predict(in_model = pcr_sws_models[[i]],
+ data_range = c(571,720))
+ }

The model built by the function qwdap.pcr() includes the fitted series with different numbers
of principal components.

R> summary(pcr_sws_models[[1]]$model)

Data: X dimension: 570 24
Y dimension: 570 1
Fit method: svdpc
Number of components considered: 24
...

The operation of using PLSR for modeling and prediction is consistent with PCR. The func-
tion qwdap.plsr() provides PLSR regression operation, and the prediction uses the function
qwdap.predict().

R> plsr_sws_models <- list()
R> plsr_sws_prds <- list()
R> for(i in c(1:7)){
+ plsr_sws_models[[i]] <- qwdap.plsr(in_data = res.sws[[i]],
+ data_range = c(1,570), plotting = TRUE)
+ plsr_sws_prds[[i]] <- qwdap.predict(in_model = plsr_sws_models[[i]],
+ data_range = c(571,720))
+ }

The above three kinds of linear regression methods are used to model and predict with
the selected modes of Stepwise Regression, and it is the same operation to use the modes
selected by RReliefF to model and predict. Figure 7 and Figure 8 are the fitted results of
modeling using modes selected by Stepwise Regression and RReliefF, respectively, as well as
the predicted data based on the established models.
It is shown in Figure 7 and Figure 8 that the linear combination of the modes selected by
Stepwise Regression can fit better with the traffic volumes, and the predicted results can also
reflect the trends of traffic volumes. The fitted series of N5 and N7 based on the 50 modes
selected by RReliefF do not fit well with the traffic volumes. The Stepwise Regression itself is
a kind of linear regression, we guess that using the modes selected by Stepwise Regression to
perform linear regression has a better result. The selection principle of RReliefF is different
from that of Stepwise Regression. It is a feasible method to increase the accuracy of linear
regression by increasing the number of selected modes.
The following operation uses PPR to model with the selected modes and make predic-
tions based on the established model. The same samples are used as before. The function
qwdap.predict() can be used to make predictions based on the model established by PPR.

R> ppr_sws_models <- list()
R> ppr_sws_prds <- list()
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Figure 7: Linear regression and prediction results based on the modes selected by Stepwise
Regression.
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Figure 8: Linear regression and prediction results based on the modes selected by RReliefF.

R> for(i in c(1:7)){
+ ppr_sws_models[[i]] <- qwdap.ppr(in_data = res.sws[[i]],
+ data_range = c(1,570), plotting = TRUE)
+ ppr_sws_prds[[i]] <- qwdap.predict(in_model = ppr_sws_models[[i]],
+ data_range = c(571,720))
+ }
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Figure 9: The results of fitting and prediction using PPR.

The results of PPR operation include the parameters of the projection direction and the pa-
rameters of the ridge function. The function summary() is used to get the direction parameter
α of the projection and the parameter β of the ridge function.

R> summary(ppr_sws_models[[1]]$model)

...

Goodness of fit:
24 terms
223.7896

Projection direction vectors ('alpha'):
term 1 term 2 term 3 term 4 term 5

V6 0.6055816697 -0.0596355952 -0.2917822469 0.1153903576 0.0344594461
...

term 6 term 7 term 8 term 9 term 10
V6 -0.1634763049 -0.1087825134 -0.0846642900 -0.0004109335 0.3509088728
...

term 11 term 12 term 13 term 14 term 15
V6 -0.1058751050 0.1829564111 0.1816424119 0.0757329398 0.0629799537
...

term 16 term 17 term 18 term 19 term 20
V6 -0.2484176088 -0.1063379382 0.0754506041 -0.1777403764 -0.0248736187
...

term 21 term 22 term 23 term 24
V6 0.1429607940 0.0300202071 -0.1547550542 0.3111212267
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Figure 10: The results of fitting and prediction using VAR.

...

Coefficients of ridge terms ('beta'):
term 1 term 2 term 3 term 4 term 5 term 6 term 7 term 8

10.622405 2.851330 2.923384 3.323855 3.247721 3.744133 1.976277 2.511969
term 9 term 10 term 11 term 12 term 13 term 14 term 15 term 16

3.342592 2.736404 2.623678 1.768621 3.058460 2.533658 2.517286 1.723760
term 17 term 18 term 19 term 20 term 21 term 22 term 23 term 24

2.160291 2.176958 2.502724 2.209129 1.743579 1.936702 1.328109 1.172130

The modes selected by Stepwise Regression and RReliefF are used for modeling and predic-
tion, respectively, and the results are obtained as shown in Figure 9.
Using the selected modes of Stepwise Regression and RReliefF to model the traffic volumes
and series prediction, PPR can get a better fitting effect than the linear regressions we used.
In terms of series prediction, the overall effect of using Stepwise Regression for mode selection
will be better. In terms of details, the fitted series based on the modes selected by RReliefF
perform better.
The traffic volumes originally have temporal characteristics, which can also be used for regres-
sion and prediction of the series. VAR can model the traffic volumes with the time-domain
characteristics of modes generated by quantum walks. The same experimental data as the
linear and nonlinear regression are used next. The the qwdap.var() function is used to im-
plement VAR operation. The function qwdap.predict() can be used to make predictions
based on the model established by VAR.

R> var_sws_models <- list()
R> var_sws_prds <- list()
R> for(i in c(1:7)){
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+ var_sws_models[[i]] <- qwdap.var(in_data = res.sws[[i]],
+ data_range = c(1,570), plotting = TRUE)
+ var_sws_prds[[i]] <- qwdap.predict(in_model = var_sws_models[[i]],
+ data_range = c(571,720))
+ }

In the VAR operation, a lag order needs to be set, and the lag order actually obtained by the
AIC fitting is used by default. The fitted series is shorter than the original time series.
The modes selected by Stepwise Regression and RReliefF are used for modeling and predic-
tion, respectively. The obtained results are shown in Figure 10.
Using the modes selected by Stepwise Regression and RReliefF to model the traffic volumes
and perform series prediction, VAR can get a better effect than the linear regressions we
used. Among the stations, the prediction results of the N1 station are worse than those of
the other stations, and the prediction results of other stations can obtain a relatively better
fitting performance on the overall trend of the traffic volumes.

Result analysis

The Model Evaluation module can analyze the correlation between series in the time domain,
and obtain some indexes that can reflect the fitted accuracy of the series. In this part, some
evaluation indexes that reflect time-domain characteristics such as the R2 and error indexes
between the two series can be calculated.
Now we compare the results obtained by the two data combinations and the four regres-
sion methods from the quantitative calculation of the data. And then we use the function
qwdap.eval() in the QWDAP package to directly obtain the Coefficient of Determination
(R2), the Root Mean Squared Error (RMSE) and the Mean Absolute Error (MAE).

R> qwdap.eval(series1 = ppr_sws_models[[1]]$real[1:570],
+ series2 = ppr_sws_models[[1]]$model$fitted.values)

Station Method R2 RMSE MAE
1 0.9975098 0.6265887 0.4862167

In general, the larger the R2 is, the smaller the RMSE and the MAE are, which indicates
greater correlation between the two series. However, because RMSE and MAE are affected by
the mean of the series, RMSE and MAE cannot be used to compare results between stations,
but can be used to compare results of different methods at the same station. Figure 11(1)(2)(3)
are the data analyses of the fitted results of modeling using the modes selected by Stepwise
Regression. Figure 11(4)(5)(6) show the accuracy of the fitted results of modeling using the
modes selected by RReliefF. From R2, the results of PPR fitted data in Figure 11(1)(4) are
all 1, followed by VAR, with the highest accuracy of 0.91. There is little difference between
Stepwise Regression and PLSR. Figure 12 shows the results of data analysis on the original
time series and the fitted and predicted series. After adding the predicted series, the overall
accuracy is reduced. As far as R2 is concerned, PPR and VAR are generally more accurate
than linear regression. For these 7 stations, the error indexes of the fitted and predicted
results of the N1 station is relatively larger because the average traffic volume at the N1
station is higher. In terms of RMSE and MAE, when only simulation is considered, PPR has
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Figure 11: Statistical comparison of different regression methods.
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Figure 12: Statistical comparison of different regression and predict methods.

lower errors than other methods. In this paper, the results of mode selection are used for
prediction and analysis. If more modes generated by quantum walks are used for analysis,
higher accuracy may be achieved. However, using too many modes will cause overfitting.
And from the comparison between Figure 11 and Figure 12, the modes selected by Stepwise
Regression can achieve higher accuracy in fitting and prediction than the 50 modes selected
by RReliefF.
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5. Summary and Discussion

In this paper, we propose the QWDAP software package for data modeling and analysis based
on quantum walk implemented by the R language. This package focuses on graph-associated
time series analysis. Based on the traditional time series analysis, quantum walk provides fea-
tures with graph correlation and this analysis method achieves high accuracy in the time series
prediction of traffic volumes. In QWDAP, we implement three modules: Basis Generation,
Data Modeling and Prediction, and Model Evaluation. Among these three modules: Basis
Generation is used to produce multi-timescale modes, which are the probabilities generated
by quantum walks on a graph from an initial state and scale factors, for data analysis. The
Data Modeling and Prediction module can be used to select out the parts with characteristic
correlation for a specific time series from the generated modes, and the regression methods
are used to build models between the original time series and the modes, and predictions can
be made based on these models. Model Evaluation evaluates the modeling effectiveness of
the model in terms of the fitting accuracy of the fitted results of the model and the prediction
results relative to the original time series.
As we use the quantum walk in the basis generation, the advantage of expression of multi-
feature time series can be achieved. Quantum walk can be used as a graph-associated stochas-
tic numerical simulation method that can correlate individual vertices to produce a set of spa-
tially correlated modes. Quantum walks, which produce multi-timescale modes that can be
used in the modeling and prediction of multi-time series. The modes generated by quantum
walks do not require priori assumptions. Besides, the modes have irregular properties such as
randomness, quasi-periodicity, and probability, and there is independence and orthogonality
among the different modes, thus providing more possibilities for the expression and modeling
of time series.
In QWDAP, two methods, model-driven Stepwise Regression and data-driven RReliefF are
provided for mode selection. These two methods are able to extract the mode combinations
with similar features from all the modes for a specific time series. As shown in the traf-
fic volume simulation example, the modes selected by stepwise regression, with less modes
numbers than 50, has better performances than using 50 modes selected by RRelifF. This is
because the model-driven mode selection builds a linear model and adjusts the combination of
modes by judging the evaluation index of the established model, so as to achieve the purpose
of selecting the optimal linear combination of modes. Yet, the data-driven mode selection
calculates the weight value of each mode relative to the original time series by methods such
as nearest neighbor. A specified number of modes can be selected according to the weights.
Compared to model-driven mode selection, data-driven mode selection focuses more on the
correlation of a single mode with the original time series, while model-driven mode selection
focuses on the representation of the mode combinations to the original time series. Model-
driven mode selection is more suitable for modeling-oriented needs, while data-driven mode
selection is more suitable for analyzing the correlation between a single mode and the original
time series. For complex data modeling such as traffic volumes, the use of model-driven mode
selection is preferred over data-driven mode selection.
In QWDAP, the relations between the original time series and the selected modes can be
modeled from multiple perspectives. These perspectives can reveal the linear relationships,
nonlinear relationships, and temporal-correlated relationships between the original time series
and the selected modes. These three types of methods can be used to model the relationship
between the original time series and the modes from different perspectives. In the example of
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traffic volume simulation, linear regressions show large differences in the results of modeling
using the two mode combinations. We supposed that data-driven mode selection methods can
calculate the weights of individual modes relative to the original time series, but the modes
with high weights do not necessarily contain all features of the original time series. In the case
of modeling and prediction using the modes selected by Stepwise Regression, the prediction
results using linear regression models are more stable than PPR or VAR. However, PPR and
VAR can extract more features from the same mode combinations, for example, the fitted
results using PPR or VAR contain more details compared to the linear regression results.
From the results, nonlinear regression methods or methods based on temporal correlation can
extract more features in the mode combinations, but models with more features may show
greater bias in prediction. Since the modes generated by quantum walks are random data
with some irregular properties, quantum walk-based modeling may yield unexpected results
for irregular time series.
For the current QWDAP package, there is still great potential for development. In the al-
gorithm simulation of quantum walks, a variety of mathematical simulation methods can be
considered, and the structure of existing programs can be optimized to improve operating
efficiency. In the application, two mode selection methods are selected from model-driven
and data-driven. And some regression methods are used to apply the modes generated by
quantum walks for data modeling and prediction, and it is found that the fitted results of
PPR and VAR are better than that of linear regression. In the future work, more mode
selection methods can be tried, such as selection based on the amount of information, hier-
archical or segmented selection methods. And we will continue to study nonlinear regression
and other regression ideas, add more regression and prediction methods, and apply quantum
walks to more application fields. In terms of model evaluation, the current analysis mainly
focuses on the correlation between series in the time domain, and the subsequent work can
start from the expansion of the method and consideration of analyzing the correlation of the
data from other aspects. In order to deal with the ever-increasing amount of analysis data,
it is necessary to enhance the processing efficiency and processing stability of big data.

Computational details

The algorithms of the QWDAP package are all implemented by R language code, which can be
obtained from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.
org/package=QWDAP. Some packages are used in the package, all of which can be obtained
from CRAN. The implementation of the quantum walk simulation program refers to the
QuantumWalk repository in github (https://github.com/Evelios/QuantumWalk.git). The
CRAN progress (Csárdi and FitzJohn 2019) library is used in the quantum walk simulation
program. The function qwdap.sws() of Stepwise Regression for mode selection uses the
CRAN StepReg (Li, Lu, Cheng, and Liu 2021) library. The function qwdap.rrelieff() of
RReliefF for mode selection uses the CRAN CORElearn (Robnik-Sikonja and Savicky 2021)
library. The PCR-based function qwdap.pcr() and the PLSR-based function qwdap.plsr()
use the CRAN pls (Mevik, Wehrens, and Liland 2020) library. The VAR-based function
qwdap.var() and function qwdap.predict() for data prediction use the CRAN MTS (Tsay
and Wood 2021) library.
The graphs shown in this article are made based on the result data of the QWDAP package
with plot() function and ggplot2 (Wickham 2016) package. QWDAP does not include the

https://CRAN.R-project.org/package=QWDAP
https://CRAN.R-project.org/package=QWDAP
https://github.com/Evelios/QuantumWalk.git
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code for making pictures in this article, and some operations in QWDAP have the option of 
making simple pictures.
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