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Abstract

This vignette presents the R package RandomCoefficients associated to Gaillac and
Gautier (2019). This package implements the adaptive estimation of the joint density
linear model where the coefficients - intercept and slopes - are random and independent
from regressors which support is a proper subset. The estimator proposed in Gaillac and
Gautier (2019) is based on Prolate Spheroidal Wave functions which are computed effi-
ciently in RandomCoefficients based on Osipov, Rokhlin, and Xiao (2013). This package
also provides a parallel implementation of the estimator.
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1. How to get started

The R package RandomCoefficients can be downloaded from https://cran.r-project.org.
To install the RandomCoefficients package from R use

install.packages("RandomCoefficients")

The installation of the package should proceed automatically. Once the RandomCoefficients

package is installed, it can be loaded to the current R session by the command

library(RandomCoefficients)

Online help is available in two ways: either help(package="RandomCoefficients") or ?rc_estim.
The first returns all available commands in the package. The second gives detailed informa-
tion about a specific command. A valuable feature of R help files is that the examples used
to illustrate commands are executable, so they can be pasted into a session or run as a group
with a command like example(rc_estim).

The R package RandomCoefficients can be also downloaded from Github https://github.

com/cgaillac/RationalExp. To install the RandomCoefficients package from Github, the
devtools library is required. Then, use the command

library("devtools")

install_github(’RandomCoefficients’,’cgaillac’)

https://cran.r-project.org
https://github.com/cgaillac/RationalExp
https://github.com/cgaillac/RationalExp
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2. Theory

2.1. Random coefficients density estimation in a linear random coefficients

model

For β ∈ C
d, (fm)m∈N0 functions with values in C, and m ∈ N

d
0, denote by βm =

∏d
k=1 β

mk

k ,
|β|m =

∏d
k=1 |βk|mk , and fm =

∏d
k=1 fmk

. | · |∞ stands for the ℓ∞ norm of a vector. The

Fourier transform of f ∈ L1
(
R

d
)

is F [f ] (x) =
∫
Rd eib⊤xf(b)db and F [f ] is also the Fourier

transform in L2
(
R

d
)
. Denote by F1st [f ] the partial Fourier transform of f with respect to the

first variable. For a random vector X, PX is its law, fX its density and fX|X the truncated
density of X given X ∈ X when they exist, and SX its support. The inverse of a mapping f ,
when it exists, is denoted by f I . Finally denote by W[−R,R] = 1l{[−R, R]} + ∞1l{[−R, R]c},
where R > 0.

We first explain the estimator of the joint density fα,β in the linear random coefficients model

Y = α + β⊤X, (1)

(α, β⊤) and X are independent. (2)

The researcher has at her disposal n i.i.d observations (Yi, X⊤
i )n

i=1 of (Y, X⊤) but does not
observe the realizations (αi, β⊤

i )n
i=1 of (α, β⊤). In this version of the package the number of

regressors is limited to p = 1. Moreover, we assume here that

Assumption 1 (H1.1 ) fX and fα,β exist;

(H1.2 ) The support of β is a subset of [−R, R]p, where R > 0 is known by the researcher;

(H1.3 ) For some x0 ∈ (0, ∞) and X = [−x0, x0]p a subset of the support of X, we have

at our disposal an i.i.d sample (Yi, Xi)
n
i=1 and an estimator f̂X|X of the truncated

density fX|X based on a sample of size n0 independent of (Yi, Xi)
n
i=1;

(H1.4 ) The set X is such
∥∥∥fX|X

∥∥∥
L∞(X )

≤ CX and
∥∥∥1/fX|X

∥∥∥
L∞(X )

≤ cX , where cX , CX ∈

(0, ∞).

Assumption (H1.3) is not restrictive because, for all x in the interior of SX , we can rewrite (1)
as Y = α + β⊤x + β⊤(X − x), take x ∈ R

p and x0 such that X ⊆ SX−x, and there is a one-
to-one mapping between fα+β⊤x,β and fα,β. This mapping is not yet directly implemented in

this version of the package even if there is the option to estimate fα+β⊤x,β (see the parameter

center in Section 3). The constant CX in (H1.4) is not needed in the estimation, whereas the
constant cX will be estimated using the estimator f̂X|X and the cross-entropy method (using
the RCEIM package). There is a trade-off in the choice of X between the sample size used
and the impact of a small cX on the convergence rates (see the parameter trunc in Section 3
for a practical solution). Gaillac and Gautier (2019) relax (H1.2) and treat the more general
case fα,β ∈ L2 (w ⊗ W ⊗p), where W = cosh(·/R) and w ≥ 1.

For c ∈ R, let us introduce the operator h ∈ L2(W ⊗p) → F [h] (c ·) ∈ L2([−1, 1]p), where
W = W[−R,R], which
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1. has SVD
(
σW,c

m , ϕW,c
m , gW,c

m

)
m∈N0

when p = 1;

2. else its SVD is the product
(
σW,c

m , ϕW,c
m , gW,c

m

)
m∈N

p
0

.

The estimator in Gaillac and Gautier (2019) aims at minimizing the Mean Integrated Squared
Error (MISE) conditional on the sample used to estimate fX|X . The estimation of fα,β

is an inverse problem, as detailed below, and the estimation strategy is 1) to estimate
F1st [fα,β (·, ⋆)] (t) for all t 6= 0, then 2) to estimate fα,β taking the Fourier inverse of the
estimator in 1). Assume that the researcher knows a superset [−R, R]p containing the sup-
port of β. Then, consider the following three steps estimator, for 0 < ǫ < 1 < T and
N : R → N0:

(S.1) for all t 6= 0, obtain a preliminary approximation of F1(t, ·) = F1st [fα,β] (t, ·)

F̂ N,T
1 (t, ·) = 1l{|t| ≤ T}

∑

m∈N
p
0,|m|

∞
≤N(t)

ĉm(t)

σW,tx0
m

ϕW,tx0
m (·),

where

ĉm(t) =
1

n

n∑

j=1

eitYj

xp
0f̂ δ

X|X (Xj)
gW,tx0

m

(
Xj

x0

)
1l {Xj ∈ X } , (3)

is an estimator of cm(t) = 〈F
[
fY |X=x0·

]
(t), gW,tx0

m (·)〉L2([−1,1]p), f̂ δ
X|X (Xj) = f̂X|X (Xj)∨

√
δ(n0) and δ(n0) is a trimming factor converging to zero with n0;

(S.2) refine for |t| ≤ ǫ

F̂ N,T,ǫ
1 (t, ·) = F̂ N,T

1 (t, ·)1l{|t| ≥ ǫ} + Ia,ǫ

[
F̂ N,T

1 (⋆, ·)
]

(t)1l{|t| < ǫ},

where, for a, ǫ > 0, f ∈ L2(R), ρW,c
m =

(
σW,c

m

)2
|c| /(2π), Ia,ǫ defined as

Ia,ǫ [f ] (·) =
∑

m∈N0

ρ
W[−1,1],aǫ
m(

1 − ρ
W[−1,1],aǫ
m

)
ǫ

〈
f(⋆), g

W[−1,1],aǫ
m

(
⋆

ǫ

)〉

L2(R\[−ǫ,ǫ])
g

W[−1,1],aǫ
m

(
·

ǫ

)
.

performs interpolation (see Gaillac and Gautier (2019));

(S.3) take f̂N,T,ǫ
α,β (·1, ·r) = max

(
FI

1st

[
F̂ N,T,ǫ

1 (⋆, ·r)
]

(·1), 0
)
.

Let ǫ > 0, Kmax = ⌊log(n)/(6p log(2))⌋, and Tmax = 2Kmax . Then, choose the parameters
(N, T ) in a data-driven way following an adaptation of the Goldenshluger-Lepski method (see
Goldenshluger and Lepski (2014) and the references therein). First, obtain N̂ by solving
univariate minimisation problems

∀t ∈ R \ (−ǫ, ǫ), N̂(t) ∈ argmin
0≤N≤Nmax(W,t)

(B1(t, N) + c1Σ(t, N)) , (4)



4 Adaptive estimation in the linear random coefficients model

where c1 ≥ 31/30 is greater than 1 to handle the estimation of fX|X and

B1 (t, N) = max
Nmax,q(W,t)≥N ′≥N




∑

N≤|m|
∞

≤N ′

|ĉm(t)|2
(
σW,tx0

m

)2 − Σ
(
t, N ′)




+

,

Σ(t, N) =
84(1 + 2((2 log(n)) ∨ 3))cX

n

(
|t|

2π

)p

ν(W, N, tx0).

Second, define T̂ as

T̂ ∈ argmin
T ∈Tn

(
B2

(
T, N̂

)
+

∫

ǫ≤|t|≤T
Σ
(
t, N̂(t)

)
dt

)
, (5)

where

B2

(
T, N̂

)
= max

T ′∈Tn,T ′≥T



∫

T ≤|t|≤T ′

∑

|m|
∞

≤N̂(t)

|ĉm(t)|2
(
σW,tx0

m

)2 − Σ
(
t, N̂(t)

)
dt




+

,

Tn =
{

2k : k = 1, . . . , Kmax

}
.

The functions ν and Nmax are defined, for t 6= 0 by

ν(W, N, t) =

(
2(1 ∨ N)

(R |t|) ∨ 1

)p

exp

(
2Np ln

((
7π(N + 1)

R |t|

)
∨ 1

))
,

Nmax(W, t) =

⌊
ln(n)

2p

(
W

(
7π

R |t|

ln(n)

2p

)
∨ 1

)−1
⌋

. (6)

where W is the inverse of x ∈ [0, ∞) 7→ xex. Finally, this package uses a Gaussian kernel
density estimator to estimate fX|X through kde in the package ks.

2.2. Computation of the SVD

The estimator requires the SVD of Fc for c 6= 0. When W = W[−1,1], by Proposition A.1 in

Gaillac and Gautier (2019), we have g
W (·/R),c
m = gW,Rc

m for all m ∈ N. When W = W[−1,1],
the first coefficients of the decomposition of the eigenfunctions on the Legendre polynomials
can be obtained by solving for the eigenvectors of two tridiagonal symmetric Toeplitz ma-
trices (for even and odd values of m, see Section 2.6 in Osipov et al. (2013)). We use that

F∗
c

(
gW,Rc

m

)
= σW,Rc

m ϕW,Rc
m and that ϕW,Rc

m has norm 1 to obtain the remaining of the SVD.

3. The main function in the RandomCoefficients package

The function rc_estim() implements the adaptive estimation of the joint density of random
coefficients model. The function takes as inputs data (Y,X) then estimates the density and
return its evaluation on a grid b_grid times a_grid. By setting nbCores greater than 1 com-
putations are done in parallel.



Christophe Gaillac, Eric Gautier 5

rc_estim<-function(X,Y,b_grid,a_grid,nbCores,M_T,N_u,epsilon,n_0,trunc,center)

X Vector of size N , N being the number of observation and the number of
regressors limited to 1 in this version of the package.

Y Outcome vector of size N .
b_grid Vector grid on which the estimator of the density of the random slope will we

evaluated. No default.
a_grid Vector grid on which the estimator of the density of the random intercept will

we evaluated. Default is beta_grid.
nbCores Number of cores for the parallel implementation. Default is 1, no parallel

computation.
M_T Number of discretisation points for the estimated partial Fourier transform.

Default is 60.
N_u Maximal number of singular functions used in the estimation. Default is the

maximum of 10 and (6).
epsilon Parameter for the interpolation. Default is (log(N)/ log(log(N)))−σ0 as in

(T5.1) in Gaillac and Gautier (2019) with σ0 = 4.
n_0 Parameter for the sample splitting. If n_0= 0 then no sample splitting is done

and we use the same sample of size N to perform the estimation of fX|X . If
n_0> 0, then this is the size of the sample used to perform the estimation of
fX|X . Default is n0 = 0.

trunc Dummy for the truncation of the density of the regressors to an hypercube X .
If trunc= 1, then truncation is performed and X is defined using the argmin
of the ratio of the estimated constant cX over the percentage of observation
in X . Default is 0, no truncation.

center Dummy to trigger the use of X − x instead of X as regressor. If center= 1,
then use X −x where x is the vector of the medians coordinates by coordinates
for X. Default is center= 0, where regressors are left unchanged.

We refer to the reference manual or help file for additional details.

4. Example

We give the following example of a linear random coefficients model when regressors have
limited variation. We take p = 1 and (α, β)⊤ = ξ11l{θ ≥ 0}+ ξ21l{θ < 0} with P(θ ≥ 0) = 0.5.
The law of X is a truncated normal based on a normal of mean 0 and variance 2.5 and trun-
cated to X with x0 = 1.5. The laws of ξ1 and ξ2 are truncated normals based on normals

with means µ1 = (−2 − 3)⊤ and µ2 = (3 0)⊤, same covariance

(
2 1
1 2

)
, and truncated to

[−6, 6]p+1. We refer to Gaillac and Gautier (2019) for an analysis of the performances of the
estimator using Monte Carlo simulations.

Start by loading useful packages, defining the output grids, and the apriori on the support of
the regressors.

library("orthopolynom")

library("polynom")
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library(tmvtnorm)

library(ks)

library(snowfall)

library(sfsmisc)

library(fourierin)

library(rdetools)

library(statmod)

library(RCEIM)

library(robustbase)

library(VGAM)

library(RandomCoefficients)

# beta (output) Grid

M=100

# Apriori on the support of the random slope.

limit =7.5

b_grid <- seq(-limit ,limit ,length.out=M)

a = limit

# Support apriori limits (taken symmetric)

up =1.5

down = -up

und_beta <- a

x.grid <- as.matrix(expand.grid(b_grid,b_grid))

Then, simulate the data:

# sample size

N <- 1000

#number of regressors

d = 1

Mean_mu1 = c(-2,- 3)

Mean_mu2= c(3, 0)

Sigma= diag(2, 2)

Sigma[1,2] = 1

Sigma[2,1] = 1

vect <- as.matrix(expand.grid(b_grid,b_grid ))

x.grid <- vect

beta_model <- 1/2*matrix(dmvnorm( vect ,Mean_mu1 , Sigma), M ,M)

+ 1/2*matrix(dmvnorm( vect ,Mean_mu2 , Sigma), M ,M)

Sigma= diag(2, 2)

Sigma[1,2] = 1

Sigma[2,1] = 1

# Generate truncated normals, for the regressors and the random coefficients

lim2 = 6

xi1<-rtmvnorm(N,Mean_mu1,Sigma,lower= c(-lim2,-lim2),upper=c(lim2,lim2))

xi2<-rtmvnorm(N,Mean_mu2,Sigma,lower=c(-lim2,-lim2),upper=c(lim2,lim2))

theta = runif(N, -1 , 1)
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(a) True density (b) Estimator

beta <- 1*(theta >=0) * xi1 + 1*(theta <0) * xi2

X <- rtmvnorm(N, mean = c(0), sigma=2.5, lower=c( down), upper=c(up))

X_t <- cbind(matrix(1, N,1),X)

Y <-rowSums(beta*X_t)

Finally, perform estimation using rc_estim and parallel computation. Then, the estimator is
plotted using the code below. Figure 4 is obtained using the plotly package.

out <- rc_estim( X,Y,b_grid,b_grid,nbCores = 4, M_T = 60)

# The output matrix

mat <- out[[1]]

# The evaluation grid, random slope then intercept.

b_grid <- out[[2]]

alpha_grid <- out[[3]]

# To plot the output estimator

x11()

filled.contour(alpha_grid ,b_grid, mat)
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