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Rdsm is a library for doing parallel processing in R. It uses the shared-memory paradigm, which has two
advantages:

• It generally involves simpler code, which makes it easier to write and read.

• In some cases it can bring a significant advantage in execution speed.

While it runs best on multicore machines, it can also run on a collection of computers that share a common
file system.

Rdsm’s infrastructure is built on the bigmemory and synchronicity libraries for access to shared memory
(or common files), and uses the snow library (actually part of R’s parallel library) for launching threads.

This document will introduce Rdsm.

1 Clarity and Conciseness of Shared-Memory Programming

On a multicore machine, the standard method for parallel programming is to have a program run in multiple
instantiations called threads, which run in parallel, one per core. The key point is that all the threads
hold the program’s global variables in common, the shared-memory programming paradigm, or threaded
programming. Rdsm brings this paradigm to R.

The shared-memory programming world view is considered by many in the parallel processing community
to be one of the clearest forms of parallel programming.1 Let’s see why.

Suppose for instance we wish to copy x to y. In a message-passing setting such as Rmpi, x and y may reside
in processes 2 and 5, say. The programmer might write code like

mpi . send . Robj ( x , t a g =0 , d e s t =5)

to run on process 2, and write code

y <− mpi . r e c v . Robj ( t a g =0 , s o u r c e =2)

1See Chandra, Rohit (2001), Parallel Programming in OpenMP, Kaufmann, pp.10ff (especially Table 1.1), and Hess, Matthias
et al (2003), Experiences Using OpenMP Based on Compiler Directive Software DSM on a PC Cluster, in OpenMP Shared Memory
Parallel Programming: International Workshop on OpenMP Applications and Tools, Michael Voss (ed.), Springer, p.216.
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to run on process 5. By contrast, in a shared-memory environment, the variables x and y would be shared,
and the programmer would merely write for process 5

y <− x

What a difference! Now that x and y are shared by the processes, we can access them directly, making our
code vastly simpler.

Note carefully that we are talking about human efficiency here, not machine efficiency. Use of shared
memory can greatly simplify our code, with far less clutter, so that we can write and debug our program
much faster than we could in a message-passing environment. But that doesn’t mean our program itself
has faster execution speed. However, as shown later in this document, Rdsm can indeed bring a significant
performance advantage in some applications.

2 Example: Matrix Multiplication

The standard “Hello World” example of the parallel processing community is matrix multiplication. Here is
code from the Rdsm distribution examples/ directory:

2.1 The Code

1 # m a t r i x m u l t i p l i c a t i o n ; t h e p r o d u c t u %∗% v i s computed , and
2 # s t o r e d i n w
3
4 # each t h r e a d e x e c u t e s t h i s
5 mmul <− f u n c t i o n ( u , v ,w) {
6 r e q u i r e ( p a r a l l e l )
7 # d e t e r m i n e which rows of u t h i s t h r e a d w i l l h a n d l e
8 myidxs <− s p l i t I n d i c e s ( nrow ( u ) , myinfo$nwrkrs ) [ [ my in fo$ id ] ]
9 # m u l t i p l y v by t h i s t h r e a d ’ s rows i n u

10 w[ myidxs , ] <− u [ myidxs , ] %∗% v [ , ]
11 # done
12 i n v i s i b l e ( 0 ) # don ’ t do e x p e n s i v e r e t u r n o f r e s u l t
13 }
14
15 t e s t <− f u n c t i o n ( c l s ) {
16 # s e t up
17 r e q u i r e ( p a r a l l e l )
18 # i n i t i a l i z e Rdsm
19 m g r i n i t ( c l s )
20 # c r e a t e t h e s h a r e d v a r i a b l e s , and g i v e n them v a l u e s
21 mgrmakevar ( c l s , ” a ” , 6 , 2 )
22 mgrmakevar ( c l s , ” b ” , 2 , 6 )
23 mgrmakevar ( c l s , ” c ” , 6 , 6 )
24 a [ , ] <− 1 :12
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25 b [ , ] <− r e p ( 1 , 1 2 )
26 # g i v e t h e code t o t h e t h r e a d s
27 c l u s t e r E x p o r t ( c l s , ” mmul ” )
28 # h e r e i s t h e a c t u a l program e x e c u t i o n
29 c l u s t e r E v a l Q ( c l s , mmul ( a , b , c ) )
30 p r i n t ( c [ , ] )
31 }

Here is a test run:

> l i b r a r y ( Rdsm )
> c2 <− shmcls ( 2 )
> s o u r c e ( ” ˜ / R / Rdsm / examples / MMul . R” )
> t e s t ( c2 )

[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ] [ , 5 ] [ , 6 ]
[ 1 , ] 8 8 8 8 8 8
[ 2 , ] 10 10 10 10 10 10
[ 3 , ] 12 12 12 12 12 12
[ 4 , ] 14 14 14 14 14 14
[ 5 , ] 16 16 16 16 16 16
[ 6 , ] 18 18 18 18 18 18

Here we first set up a two-node snow cluster c2, by calling an Rdsm convenience function shmcls(). The
code test() is run on the manager node, meaning the one from which we set up the cluster.

First, Rdsm’s mgrinit() is called to initialize the Rdsm system, after which we set up three matrices in
shared memory, a, b and c. This action will distribute the necessary bigmemory keys to the snow worker
nodes.

Snow’s clusterEvalQ() is used to launch the threads. Suppose here and below that we are on a quadcore
machine running four Rdsm threads. Then mmul() will run on all four threads/cores at once (though it
probably won’t be the case that all threads are running the same line of code simultaneously).

Now, how does mmul() work? The basic idea is break the rows of the argument matrix u into chunks, and
have each thread work on one chunk. Say there are 1000 rows, and we have a quadcore machine (on which
we’ve set up a four-node snow cluster). Thread 1 would handle rows 1-250, thread 2 would work on rows
251-500 and so on. The chunks are assigned in the code

myidxs <− s p l i t I n d i c e s ( nrow ( u ) , myinfo$nwrkrs ) [ [ my in fo$ id ] ]

calling the snow function splitIndices(). For example, the value of myidxs at thread 2 will be 251:500. The
built-in Rdsm variable myinfo is an R list containing nwrkrs, the total number of threads, and id, the ID
number of this thread. On thread 2 in our example here, those numbers will be 4 and 2, respectively.

The reader should note the “me, my” point of view that is key to threads programming. Remember, each
of the threads is (more or less) simultaneously executing mmmul(). So, the code in that function must be
written from the point of view of a particular thread. That’s why we put the “my” in the variable name
myidxs. We’re writing the code from the anthropomorphic view of imagining the code being executed by a
particular thread. That thread is “me,” and so the row indices are “my” indices, hence the name myidxs.
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Each thread multiplies v by the thread’s own chunk of u, placing the result in the corresponding chunk of w:

w[ myidxs , ] <− u [ myidxs , ] %∗% v [ , ]

This last line of code is like our y <− x back in Section 1. Unlike a message-passing approach, we had
no shipping of objects back and forth among threads; the objects are “already there,” and we access them
simply and directly.

In this small example, the simplicity of shared-memory programming occurs only in this one line of code.
But in a complex program, the increase in simplicity, readability and so on would be quite substantial.

Incidentally, the shared-memory nature of our code is also reflected in the fact that our result, the matrix w,
is not returned to the caller. Instead, it is simply available as a shared variable to all parties who hold the
bigmemory key for that variable.

Indeed, we can access that variable (c, the actual argument corresponding to w after our call to mmul())
back at the manager:

> c [ , ]
[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ] [ , 5 ] [ , 6 ]

[ 1 , ] 8 8 8 8 8 8
[ 2 , ] 10 10 10 10 10 10
[ 3 , ] 12 12 12 12 12 12
[ 4 , ] 14 14 14 14 14 14
[ 5 , ] 16 16 16 16 16 16
[ 6 , ] 18 18 18 18 18 18

In fact, Rdsm includes utilities saveshvar() and loadshvar() for saving a key to a file and then loading it
from another invocation of R on the same machine. The latter will then be able to access the shared variable
as well.

2.2 Speedup over Serial Code

We won’t do extensive timing experiments here, but let’s just check that the code is indeed providing a
speedup:

> n <− 5000
> m <− m a t r i x ( r u n i f ( n ˆ 2 ) , n c o l =n ) ; sys tem . t ime (m %∗% m)

u s e r sys tem e l a p s e d
345 .077 0 .220 346 .356
> c l s <− shmcls ( 4 )
> m g r i n i t ( c l s )
> mgrmakevar ( c l s , ” msh ” , n , n )
> mgrmakevar ( c l s , ” msh2 ” , n , n )
> msh [ , ] <− m
> c l u s t e r E x p o r t ( c l s , ” mmul ” )
> sys tem . t ime ( c l u s t e r E v a l Q ( c l s , mmul ( msh , msh , msh2 ) ) )

u s e r sys tem e l a p s e d
0 .004 0 .000 91 .863
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So, a fourfold increase in the number of cores yielded almost a fourfold increase in speed, very good. Of
course, this is a classic embarrassingly parallel application, so we should expect good speedup, but it’s good
to confirm it.

Moreover, we’ll later next that Rdsm is much faster on this particular application than is another R parallel
processing library.

2.3 A Possible Performance Advantage for Rdsm

In Section 1, we had a small example comparing the shared-memory and message-passing paradigms.
Shared-memory was much clearer and more concise, great for “human efficiency.”

But don’t let the fact that our shared-memory code had no send/receive operations deceive you into thinking
the code necessarily also has faster execution. True, send/receive ops can be slow, especially if they involve
voluminous copying (say if x is a large matrix). However, the innocuous-looking operation y <− x may
involve hidden copying too, due to cache coherency actions, and thus is not necessarily a “win.”

In this particular application, though, shared-memory does indeed give us a major performance advantage.
Here is a version of mmul() using the multicore library (also part of the parallel library):

# mc . c o r e s i s t h e number o f c o r e s t o use i n c o m p u t a t i o n
mmul1 <− f u n c t i o n ( u , v , mc . c o r e s ) {

r e q u i r e ( p a r a l l e l )
i d x s <− s p l i t I n d i c e s ( nrow ( u ) , mc . c o r e s )
r e s <− mclapp ly ( idxs , f u n c t i o n ( idxchunk ) u [ idxchunk , ] %∗% v )
Reduce ( r b i n d , r e s )

}

It turns out to be considerably slower than the Rdsm implementation:

> sys tem . t ime ( mmul1 (m,m, 4 ) )
u s e r sys tem e l a p s e d

186 .555 1 .264 188 .886

This is about double the run time achieved by Rdsm.

The culprit is the line

Reduce ( r b i n d , r e s )

in the multicore version, which involves a lot of copying of data, greatly sapping speed. This is in stark
contrast to the Rdsm case, in which the threads directly wrote their chunked-multiplication results to the
desired output matrix.

The shared-memory vs. message-passing debate is a long-running one in the parallel processing community.
It has been traditional to argue that the shared-memory paradigm doesn’t scale well to large systems, but the
advent of modern multicore systems, especially GPUs, has done much to counter that argument.
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3 Barriers and Locks

Two major tools in shared-memory programming are barriers and locks, which in Rdsm involve the func-
tions barr(), lock() and unlock():2

• When a thread calls barr(), the thread will block, i.e. not return to the caller, until all of the threads
have made this call.

• When a thread makes the call lock(l), for some lock variable l, the result will depend on whether l is
currently locked or unlocked:

– If l is locked, the calling thread will be blocked until l becomes unlocked, at which time the call
will return and the thread will proceed,3 and the lock will be relocked.

– If l is unlocked, the calling thread will return immediately, and the lock will be relocked.

Why are these constructs central to shared-memory programming? Again, some code from the examples/
directory will illustrate the ideas.

In the file BSort.R, for instance, we are doing bucket sort with sampling. The details of how this sort works
are not important here (see the comments in the code), but the point is that we must first draw a random
sample from the given array. We have thread 1 do this, placing the sample in the shared variable samp,
while the others wait:

i f ( me == 1) { # sample t o g e t q u a n t i l e s
samp [ 1 , ] <− s o r t ( tmpx [ sample ( 1 : l e n g t h ( tmpx ) , nsamp , r e p l a c e =F ) ] )

}
b a r r ( )

The action described in the phrase “while the others wait” is implemented in the call to barr(). Remember,
the threads are running simultaneously, and we must ensure that no thread attempts to access samp before
it is ready; the barrier achieves that goal for us.

To see why/how locks are used, consider the file KMeans.R. This is a famous clustering method, but again
the details are not important here. What is important is that there is a shared matrix sums, to which all the
threads are adding numbers. Here is the relevant excerpt of the code:

l o c k ( l c k )
# t h e j v a l u e s i n tmp w i l l be s t r i n g s , so c o n v e r t
f o r ( j i n a s . i n t e g e r ( names ( tmp ) ) ) {

sums [ j , ] <− sums [ j , ] + tmp [ [ j ] ]
}
un lo ck ( l c k )

The for loop here is known as a critical section, meaning that we need to ensure that only one thread is
executing in that section of code at a time. Without that restriction, chaos could result. Say for example

2The latter two come from the synchronicity library.
3If several threads had been waiting at the time of the call, only one will unblock, and the rest will continue waiting.
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two threads want to add 3 and 8 to a certain total, respectively, and that the current total is 29. What could
happen is that they both see the 29, and compute 32 and 37, respectively, and then write those numbers back
to the shared total. The result might be that the new total is either 32 or 37, when it actually should be 40.
The locks prevent such a calamity.

A refinement would be to set up k locks, one for each row of sums. Locks sap performance, by temporarily
serializing the execution of the threads. Having k locks instead of one might ameliorate the problem here.
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