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License agreement

Rfmtool is distributed under GNU LESSER GENERAL PUBLIC LICENSE.
The terms of the license are provided in the file "copying" in the root direc-
tory of this distribution.

You can also obtain the GNU License Agreement from
http://www.gnu.org/licenses/licenses.html

Rfmtool partly depends on another package, lpsolve, which is also dis-
tributed under Lesser GPL.
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Chapter 1

Introduction

This manual describes the programming library Rfmtool , which provides
various tools for handling fuzzy measures, calculating various indices, Cho-
quet and Sugeno integrals, as well as fitting fuzzy measures to empirical
data. This package is designed for R , but it also includes the C++ source
files and this user manual.

Chapter 2 provides some background on fuzzy measures. A more detailed
overview can be found in [4, 5, 12, 16] and references therein. Chapter 3
outlines computational methods used to fit fuzzy measures to empirical data.
The description of the programming library Rfmtool is given in Chapter 4.
Examples of its usage are provided in Section 4.6.

To cite Rfmtool package, use references [2–6,22–25].

New in version 5

Random generation of fuzzy measures of different types using random walks
and quicker sorting-based verification of monotonicity and convexity. Spe-
cial faster methods to generate and also fit to the data of 2-additive fuzzy
measures. Using compact Co-Möbius representation of k-interactive fuzzy
measures. Generation of balanced and anti-buoyant fuzzy measures.

New in version 4

Random generation of fuzzy measures of different types, including k-additive,
k-interactive, supermodular and submodular, sparse representation of k-
additive fuzzy measures.
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6 CHAPTER 1. INTRODUCTION

New in version 3

We added the concept of K-interactive fuzzy measures, and 4 methods of fit-
ting K-interactive fuzzy measures from data based on linear programming.
K-interactive fuzzy measures significantly reduce the computational com-
plexity. We also added fitting fuzzy measures in marginal contribution rep-
resentation and using maximal chains method, which fits only the values
directly identifiable from the data. This method is useful for small data sets.

Fitting fuzzy measures in marginal contribution representation allows
simple sub and supermodularity constraints, which can now be enforced.

See functions fittingKinteractive, fittingKinteractiveAuto, fittingKinter-
activeMC, fittingKinteractiveMarginal, fittingKinteractiveMarginalMC.

We added calculation of new non-additivity and bipartition interaction
indices. See functions Bipartition, BipartitionBanzhaf, NonadditivityIndex,
NonadditivityIndexMob.

New in version 2

We added fitting K-maxitive and K-tolerant fuzzy measures, based on linear
and mixed integer programming. See functions fittingktolerant and fittingK-
maxitive.

We added a method for fitting sub-modular fuzzy measures reported in
[3]. Supermodular fuzzy measure can also be fit by using duality: construct
dual data set, fit a sub-modular fuzzy measure and then compute its dual.
See function FuzzyMeasureFitLP.

We added an extra requirement of preservation of output ordering. See
function FuzzyMeasureFitLP.

Fixed many warnings in the lpsolve code.



Chapter 2

Background on fuzzy measures

2.1 Preliminaries

Definition 1 (Aggregation function). An aggregation function is a function
of n > 1 arguments that maps the (n-dimensional) unit cube onto the unit
interval f : [0, 1]n → [0, 1], with the properties

(i) f(0, 0, . . . , 0︸ ︷︷ ︸
n−times

) = 0 and f(1, 1, . . . , 1︸ ︷︷ ︸
n−times

) = 1.

(ii) x ≤ y implies f(x) ≤ f(y) for all x,y ∈ [0, 1]n.

A large family of aggregation functions is based on Choquet and Sugeno
integrals. The Choquet integral generalizes the Lebesgue integral, and like it,
is defined with respect to a measure. We note that measures can be additive
(the measure of a set is the sum of the measures of its non-intersecting sub-
sets) or non-additive. Lengths, areas and volumes are examples of additive
measures. Lebesgue integration is defined with respect to additive measures.
If a measure is non-additive, then the measure of the total can be larger or
smaller than the sum of the measures of its components.

Choquet and Sugeno integration are defined with respect to not neces-
sarily additive monotone measures, called fuzzy measures (see Definition 2
below), or capacities. In this manual we are interested only in discrete fuzzy
measures, which are defined on finite discrete subsets. This is because our
construction of aggregation functions involves a finite set of inputs.

The main purpose of Choquet integral-based aggregation is to combine
the inputs in such a way that not only the importance of individual inputs
(as in weighted means), or of their magnitude (as in OWA), are taken into
account, but also of their groups (or coalitions). For example, a particular
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8 CHAPTER 2. BACKGROUND ON FUZZY MEASURES

input may not be important by itself, but become very important in the
presence of some other inputs. In medical diagnosis, for instance, some
symptoms by themselves may not be really important, but may become key
factors in the presence of other signs.

A discrete fuzzy measure allows one to assign importances to all possible
groups of criteria, and thus offers a much greater flexibility for modeling
aggregation. It also turns out that weighted arithmetic means and OWA
are special cases of Choquet integrals with respect to additive and symmet-
ric fuzzy measures respectively. Thus we deal with a much broader class of
aggregation functions. The uses of Choquet and Sugeno integrals as aggre-
gation functions are documented in [11,14,15,17,18].

2.2 Basic definitions

Definition 2 (Fuzzy measure). Let N = {1, 2, . . . , n}. A discrete fuzzy
measure is a set function1 v : 2N → [0, 1] which is monotonic (i.e. v(A) ≤
v(B) whenever A ⊂ B) and satisfies v(∅) = 0 and v(N ) = 1.

In the context of aggregation functions, we are interested in the interpre-
tation of the values of a fuzzy measure as the importance of a coalition. In
the Definition 2, a subset A ⊆ N can be considered as a coalition, so that
v(A) gives us an idea about the importance or the weight of this coalition.
The monotonicity condition implies that adding new elements to a coalition
does not decrease its weight.

Definition 3 (Möbius transformation). Let v be a fuzzy measure. The
Möbius transformation of v is a set function defined for every A ⊆ N as

M(A) =
∑
B⊆A

(−1)|A\B|v(B).

Möbius transformation is invertible, and one recovers v by using its in-
verse, called Zeta transform ,

v(A) =
∑
B⊆A

M(B) ∀A ⊆ N .

Möbius transformation is helpful in expressing various quantities, like
the interaction indices discussed later, in a more compact form. It also

1A set function is a function whose domain consists of all possible subsets of N . For
example, for n = 3, a set function is specified by 23 = 8 values at v(∅), v({1}), v({2}),
v({3}), v({1, 2}), v({1, 3}), v({2, 3}), v({1, 2, 3}).
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serves as an alternative representation of a fuzzy measure, called Möbius
representation. That is, one can either use v or M to perform calculations,
whichever is more convenient. The conditions of monotonicity of a fuzzy
measure, and the boundary conditions v(∅) = 0, v(N ) = 1 are expressed,
respectively, as ∑

B⊆A|i∈B

M(B) ≥ 0, for all A ⊆ N and all i ∈ A, (2.1)

M(∅) = 0 and
∑
A⊆N

M(A) = 1.

There are various special classes of fuzzy measures, which we discuss
below. We now proceed with the definition of the Choquet integral–based
aggregation functions.

Definition 4 (Discrete Choquet integral). The discrete Choquet integral
with respect to a fuzzy measure v is given by

Cv(x) =
n∑

i=1

x(i)[v({j|xj ≥ x(i)})− v({j|xj ≥ x(i+1)})], (2.2)

where x↗ = (x(1), x(2), . . . , x(n)) is a non-decreasing permutation of the input
x, and x(n+1) = ∞ by convention.

Alternative expressions

• By rearranging the terms of the sum, (2.2) can also be written as

Cv(x) =
n∑

i=1

[
x(i) − x(i−1)

]
v(Hi). (2.3)

where x(0) = 0 by convention, and Hi = {(i), . . . , (n)} is the subset of
indices of the n− i+ 1 largest components of x.

• The Choquet integral can be expressed as

Cv(x) =
∑
A⊆N

v(A)gA(x), (2.4)

where the basis functions are

gA(x) = max(0,min
i∈A

xi − max
i∈N\A

xi). (2.5)
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• The Choquet integral can be expressed with the help of the Möbius
transformation as

Cv(x) =
∑
A⊆N

M(A)min
i∈A

xi =
∑
A⊆N

M(A)hA(x), (2.6)

with hA(x) = min
i∈A

xi.

Main properties

• The Choquet integral is a continuous piecewise linear idempotent ag-
gregation function;

• An aggregation function is a Choquet integral if and only if it is ho-
mogeneous, shift-invariant and comonotone additive, i.e., Cv(x+ y) =
Cv(x) + Cv(y) for all comonotone 2 x,y;

• The Choquet integral is uniquely defined by its values at the vertices of
the unit cube [0, 1]n, i.e., at the points x, whose coordinates xi ∈ {0, 1}.
Note that there are 2n such points, the same as the number of values
that determine the fuzzy measure v;

• The discrete Choquet integral is a linear function of the values of the
fuzzy measure v.

• The class of Choquet integrals includes weighted means and OWA
functions, as well as minimum, maximum and order statistics as special
cases;

• A linear convex combination of Choquet integrals with respect to fuzzy
measures v1 and v2, αCv1 + (1 − α)Cv2 , α ∈ [0, 1], is also a Choquet
integral with respect to v = αv1 + (1− α)v2.

Calculation

Calculation of the discrete Choquet integral is performed using Equation
(2.3) using the following procedure. Consider the vector of pairs
((x1, 1), (x2, 2), . . . , (xn, n)), where the second component of each pair is just

2Two vectors x,y ∈ ℜn are called comonotone if there exists a common permutation
P of {1, 2, . . . , n}, such that xP (1) ≤ xP (2) ≤ · · · ≤ xP (n) and yP (1) ≤ yP (2) ≤ · · · ≤ yP (n).
Equivalently, this condition is frequently expressed as (xi − xj)(yi − yj) ≥ 0 for all i, j ∈
{1, . . . , n}.
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the index i of xi. The second component will help keeping track of all per-
mutations.

Calculation of Cv(x).

1. Sort the components of ((x1, 1), (x2, 2), . . . , (xn, n)) with respect to
the first component of each pair in non-decreasing order. We obtain
((x(1), i1), (x(2), i2), . . . , (x(n), in)), so that x(j) = xij and x(j) ≤ x(j+1)

for all i. Let also x(0) = 0.

2. Let T = {1, . . . , n}, and S = 0.

3. For j = 1, . . . , n do

(a) S := S + [x(j) − x(j−1)]v(T );
(b) T := T \ {ij}

4. Return S.

For computational purposes it is convenient to store the values of a fuzzy
measure v in an array v of size 2n, and to use the following indexing system,
which provides a one-to-one mapping between the subsets J ⊆ N and the
set of integers I = {0, . . . , 2n − 1}, which index the elements of v. Take the
binary representation of each index in I, e.g. j = 5 = 101 (binary). Now for a
given subset J ⊆ N = {1, . . . , n} define its characteristic vector c ∈ {0, 1}n :
cn−i+1 = 1 if i ∈ J and 0 otherwise. For example, if n = 5, J = {1, 3}, then
c = (0, 0, 1, 0, 1). Put the value v(J ) into correspondence with vj , so that
the binary representation of j corresponds to the characteristic vector of J .
In our example v({1, 3}) = v5.

Such an ordering of the subsets of N is called binary ordering:

∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}, {4}, . . . , {1, 2, . . . , n}.

The values of v are mapped to the elements of vector v as follows

v0 v1 v2 v3 v4 v5 . . .
= v(0000) = v(0001) = v(0010) = v(0011) = v(0100) = v(0101)
v(∅) v({1}) v({2}) v({1, 2}) v({3}) v({1, 3}) . . .

An alternative ordering of the values of v is based on set cardinality:

∅, {1}, {2}, . . . , {n}︸ ︷︷ ︸
n singletons

, {1, 2}, {1, 3}, . . . , {1, n}, {2, 3}, . . . , {n− 1, n}︸ ︷︷ ︸
(n2) pairs

, {1, 2, 3}, . . . .
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Such an ordering is useful when dealing with k-additive fuzzy measures
(see Definition 16 and Proposition 1 below), as it allows one to group non-
zero values M(A) (in Möbius representation) at the beginning of the array.

2.3 Types of fuzzy measures

In this section we present the most important definitions and classes of fuzzy
measures.

Definition 5 (Dual fuzzy measure). Given a fuzzy measure v, its dual fuzzy
measure v∗ is defined by

v∗(A) = 1− v(Ac), for all A ⊆ N ,

where Ac = N \ A is the complement of A in N .

Definition 6 (Self–dual fuzzy measure). A fuzzy measure v is self-dual if it
is equal to its dual v∗, i.e.,

v(A) + v(Ac) = 1, holds for all A ⊆ N .

Definition 7 (Submodular and supermodular fuzzy measure). A fuzzy mea-
sure v is called submodular if for any A,B ⊆ N

v(A ∪ B) + v(A ∩ B) ≤ v(A) + v(B). (2.7)

It is called supermodular if

v(A ∪ B) + v(A ∩ B) ≥ v(A) + v(B). (2.8)

Two weaker conditions which are frequently used are called sub- and
super-additivity. These are special cases of sub- and supermodularity for
disjoint subsets

Definition 8 (Subadditive and superadditive fuzzy measure). A fuzzy mea-
sure v is called subadditive if for any two nonintersecting subsets A,B ⊂ N ,
A ∩ B = ∅:

v(A ∪ B) ≤ v(A) + v(B). (2.9)

It is called superadditive if

v(A ∪ B) ≥ v(A) + v(B). (2.10)
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Note 1. A general fuzzy measure may be submodular only with respect to
specific pairs of subsets A,B, and supermodular with respect to other pairs.

Definition 9 (Additive (probability) measure). A fuzzy measure v is called
additive if for any A,B ⊂ N , A ∩ B = ∅:

v(A ∪ B) = v(A) + v(B). (2.11)

An additive fuzzy measure is called a probability measure.

Note 2. For an additive fuzzy measure clearly v(A) =
∑

i∈A v({i}).

Note 3. Additivity implies that for any subset A ⊆ N \ {i, j}

v(A ∪ {i, j}) = v(A ∪ {i}) + v(A ∪ {j})− v(A).

Definition 10 (Balanced measure). A fuzzy measure v is called balanced if
it holds:

| A |<| B |=⇒ v(A) ≤ v(B), for all A,B ⊆ N .

Definition 11 (Symmetric fuzzy measure). A fuzzy measure v is called sym-
metric if the value v(A) depends only on the cardinality of the set A, i.e.,
for any A,B ⊆ N ,

if |A| = |B| then v(A) = v(B).

Alternatively, one can say that a fuzzy measure v is symmetric if for any
A ⊆ N it is

v(A) = Q

(
|A|
n

)
, (2.12)

for some monotone non-decreasing function Q : [0, 1] → [0, 1], Q(0) = 0 and
Q(1) = 1.

Definition 12 (Possibility and necessity measures). A fuzzy measure is
called a possibility, Pos, if for all A,B ⊆ N it satisfies

Pos(A ∪ B) = max{Pos(A), Pos(B)}.

A fuzzy measure is called a necessity, Nec, if for all A,B ⊆ N it satisfies

Nec(A ∩ B) = min{Nec(A), Nec(B)}.
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Note 4. Possibility and necessity measures are dual to each other in the
sense of Definition 5, that is, for all A ⊆ N

Nec(A) = 1− Pos(Ac).

A possibility measure is subadditive. A necessity measure is superadditive.

Definition 13 (Belief Measure). A belief measure Bel : 2N → [0, 1] is a
fuzzy measure that satisfies the following condition: for all m > 1

Bel(
m⋃
i=1

Ai) ≥
∑

∅̸=I⊂{1,...,m}

(−1)|I|+1Bel(
⋂
i∈I

Ai),

where {Ai}i∈{1,...,m}, is any finite family of subsets of N . 3

Definition 14 (Plausibility measure). A plausibility measure Pl : 2N →
[0, 1] is a fuzzy measure that satisfies the following condition: for all m > 1

Pl(
m⋂
i=1

Ai) ≤
∑

∅̸=I⊂{1,...,m}

(−1)|I|+1Pl(
⋃
i∈I

Ai),

where {Ai}i∈{1,...,m} is any finite family of subsets of N .

Note 5. A set function Pl : 2N → [0, 1] is a plausibility measure if its dual
set function is a belief measure, i.e., for all A ⊆ N

Pl(A) = 1−Bel(Ac).

Any belief measure is superadditive. Any plausibility measure is subadditive.

λ-fuzzy measures

Additive and symmetric fuzzy measures are two examples of very simple
fuzzy measures, whereas general fuzzy measures are sometimes too com-
plicated for applications. As a way of reducing the complexity of a fuzzy
measure Sugeno [21] introduced λ-fuzzy measures (also called Sugeno mea-
sures).

3For a fixed m ≥ 1 this condition is called m-monotonicity (simple monotonicity for
m = 1), and if it holds for all m ≥ 1, it is called total monotonicity. For a fixed m,
condition in Definition 14 is called m-alternating monotonicity. 2-monotone fuzzy mea-
sures are called supermodular (see Definition 7), also called convex, whereas 2-alternating
fuzzy measures are called submodular. If a fuzzy measure is m-monotone, its dual is
m-alternating and vice versa.
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Definition 15 (λ-fuzzy measure). Given a parameter λ ∈]−1,∞[, a λ-fuzzy
measure is a fuzzy measure v that for all A,B ⊆ N ,A ∩ B = ∅ satisfies

v(A ∪ B) = v(A) + v(B) + λv(A)v(B). (2.13)

Under these conditions, all the values v(A) are immediately computed
from n independent values v({i}), i = 1, . . . , n, by using the explicit formula

v(
m⋃
i=1

{i}) = 1

λ

(
m∏
i=1

(1 + λv({i}))− 1

)
, λ ̸= 0.

If λ = 0, λ-fuzzy measure becomes a probability measure. The coefficient λ
is determined from the boundary condition v(N ) = 1, which gives

λ+ 1 =

n∏
i=1

(1 + λv({i})), (2.14)

which can be solved on (−1, 0) or (0,∞) numerically (note that λ = 0 is
always a solution). Thus a λ-fuzzy measure is characterized by n independent
values v({i}), i = 1, . . . , n.

Note 6. A λ-fuzzy measure is either sub- or supermodular, when −1 < λ ≤ 0
or λ ≥ 0 respectively.

Note 7. When −1 < λ ≤ 0, a λ-fuzzy measure is a plausibility measure,
and when λ ≥ 0 it is a belief measure.

k - order fuzzy measures

Another way to reduce complexity of aggregation functions based on fuzzy
measures is to impose various linear constraints on their values. Such con-
straints acquire an interesting interpretation in terms of interaction indices
discussed in the next section. One type of constraints leads to k-additive
fuzzy measures.

Definition 16 (k-additive fuzzy measure). A fuzzy measure v is called k-
additive (1 ≤ k ≤ n) if its Möbius transformation verifies

M(A) = 0

for any subset A with more than k elements, |A| > k, and there exists a
subset B with k elements such that M(B) ̸= 0.
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Definition 17 (Possibilistic Möbius transform). The possibilistic Möbius
transform of a fuzzy measure v on N is a mapping mp : P(N ) → [0, 1]
defined by

mp(A) =

v(A) if v(A) > max
B⊂A

v(B),

0 otherwise.
(2.15)

The possibilistic Zeta transform of mp is the mapping Zmp : P(N ) →
[0, 1] defined by:

Zmp(A) = max
B⊆A

mp(B). (2.16)

Definition 18 (k-maxitive fuzzy measure). A fuzzy measure v is called k-
maxitive if its possibilistic Möbius transform satisfies mp(A) = 0 for any A
such that |A| > k and there exists at least one subset A of N of exactly k
elements such that mp(A) ̸= 0.

Definition 19 (k-tolerant fuzzy measure). Let k ∈ {1, 2, ..., n} = N . A
fuzzy measure on N is k-tolerant if v(A) = 1 for all A ⊆ N such that
|A| ≥ k and there exists a subset B ⊆ N , with |B| = k − 1, such that
v(B) ̸= 1. A fuzzy measure v on N is k-intolerant if v(A) = 0 for all A ⊆ N
such that |A| ≤ n− k and there exists a subset B ⊆ N , with |B| = n− k+1,
such that v(B) ̸= 0.

k-intolerant fuzzy measures can be obtained from k-tolerant measures by
using duality. The Choquet integral with respect to a k-tolerant capacity is
independent of the first n− k smallest inputs.

k - interactive fuzzy measures

A recent approach to reduce both the number of variables and constraints
by fixing the values of the fuzzy measure for all subsets of cardinality greater
than k in some appropriate way was presented in [6]. The values of fuzzy
measure v(A) are fixed (in some way) for all |A| > k. We need to ensure
that these values are: a) consistent with the semantics of the problem, and
b) consistent with the values at smaller subsets, which will be fitted to the
data.

Let is fix the maximal value KC of a fuzzy measure at any subset of
cardinality k, that is v(A) ≤ KC for all A, |A| = k. Our first step is to
define the values of v(B), |B| > k in a suitable way. To do this, we fix the
values v(B) = KC for all B, |B| = k + 1, and then define the values at the
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larger sets by maximising the entropy. This results in

v(A) = KC +
a− k − 1

n− k − 1
(1−KC), for all A : |A| > k. (2.17)

The Choquet integral with respect to a fuzzy measure with coefficients
given by (2.17) for |A| > k can be written as

Cv(x) =
1−K

n− k − 1

n−k−1∑
i=1

x(i) +Kx(n−k) +
∑

A⊆N ,|A|≤k

v(A)gA(x). (2.18)

We see that the contribution of the n − k − 1 smallest inputs is aver-
aged with the arithmetic mean while the interactions are accounted for the
remaining inputs.

This type of fuzzy measures is called k-interactive in [6]. The k largest
inputs exhibit unrestricted interaction (in terms of redundancy or comple-
mentarity) whereas the rest of the inputs are averaged in a symmetric way
(as in OWA functions), and with our choice in (2.17), as OWA with equal
weights, making it the arithmetic mean. There is still some interaction of
the inputs in the larger subsets in terms of non-zero interaction indices, but
these interactions are determined fully by interactions in the smaller subsets
and the values KC and k.

Numerical experiments in [6] show that k-interactive fuzzy measures are
much easier to fit to the data even for n > 10 because both the number of
variables and monotonicity constraints are reduced, but also the number of
non-zero coefficients in the matrix of constraints is reduced drastically. This
means that the actual monotonicity constraints are much simpler than in
the case of k-additive fuzzy measures.

2.4 Interaction, importance and other indices

When dealing with multiple criteria, it is often the case that these are not
independent, and there is some interaction (positive or negative) among the
criteria. For instance, two or more criteria may point essentially to the same
concept, for example criteria such as “learnability" and “memorability" that
are used to evaluate software user interface. If the criteria are combined by
using, e.g., weighted means, their scores will be double counted. In other
instances, contribution of one criterion to the total score by itself may be
small, but sharply rise when taken in conjunction with other criteria (i.e., in
a “coalition").
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Thus to measure such concepts as the importance of a criterion and
interaction among the criteria, we need to account for contribution of these
criteria in various coalitions. To do this we will use the concepts of Shapley
value, which measures the importance of a criterion i in all possible coalitions,
and the interaction index, which measures the interaction of a pair of criteria
i, j in all possible coalitions [12,13].

Definition 20 (Shapley value). Let v be a fuzzy measure. The Shapley index
for every i ∈ N is

ϕ(i) =
∑

A⊆N\{i}

(n− |A| − 1)!|A|!
n!

[v(A ∪ {i})− v(A)].

The Shapley value is the vector ϕ(v) = (ϕ(1), . . . , ϕ(n)).

The Shapley value is interpreted as a kind of average value of the contri-
bution of each criterion alone in all coalitions.

Definition 21 (Interaction index). Let v be a fuzzy measure. The interaction
index for every pair i, j ∈ N is

Iij =
∑

A⊆N\{i,j}

(n− |A| − 2)!|A|!
(n− 1)!

[v(A∪{i, j})−v(A∪{i})−v(A∪{j})+v(A)].

The interaction indices verify Iij < 0 as soon as i, j are positively cor-
related (negative synergy, redundancy). Similarly Iij > 0 for negatively
correlated criteria (positive synergy, complementarity). Iij ∈ [−1, 1] for any
pair i, j.

Note 8. For a submodular fuzzy measure v, all interaction indices verify
Iij ≤ 0. For a supermodular fuzzy measure, all interaction indices verify
Iij ≥ 0.

Definition 22 (Interaction index for coalitions). Let v be a fuzzy measure.
The interaction index for every set A ⊆ N is

I(A) =
∑

B⊆N\A

(n− |B| − |A|)!|B|!
(n− |A|+ 1)!

∑
C⊆A

(−1)|A\C|v(B ∪ C).

Note 9. Clearly I(A) coincides with Iij if A = {i, j}, and coincides with
ϕ(i) if A = {i}.
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An alternative to the Shapley value is the Banzhaf index [1]. It measures
the same concept as the Shapley index, but weights the terms [v(A∪ {i})−
v(A)] in the sum equally.

Definition 23 (Banzhaf Index). Let v be a fuzzy measure. The Banzhaf
index bi for every i ∈ N is

bi =
1

2n−1

∑
A⊆N\{i}

[v(A ∪ {i})− v(A)].

Definition 24 (Banzhaf interaction index for coalitions). Let v be a fuzzy
measure. The Banzhaf interaction index between the elements of A ⊆ N is
given by

J(A) =
1

2n−|A|

∑
B⊆N\A

∑
C⊆A

(−1)|A\C|v(B ∪ C).

Note 10. Möbius transformation help one to express the indices mentioned
above in a more compact form [12,13,16,18], namely

ϕ(i) =
∑

B| i∈B

1

|B|
M(B),

I(A) =
∑

B|A⊆B

1

|B| − |A|+ 1
M(B),

J(A) =
∑

B|A⊆B

1

2|B|−|A|M(B).

The next result due to Grabisch [12,13] establishes a fundamental prop-
erty of k-additive fuzzy measures, which justifies their use in simplifying
interactions between the criteria in multiple criteria decision making.

Proposition 1. Let v be a k-additive fuzzy measure, 1 ≤ k ≤ n. Then

• I(A) = 0 for every A ⊆ N such that |A| > k;

• I(A) = J(A) = M(A) for every A ⊆ N such that |A| = k.

Thus k-additive measures acquire an interesting interpretation. These
are fuzzy measures that limit interaction among the criteria to groups of size
at most k. For instance, for 2-additive fuzzy measures, there are pairwise
interactions among the criteria but no interactions in groups of 3 or more. By
limiting the class of fuzzy measures to k-additive measures, one reduces their
complexity (the number of values) by imposing linear equality constraints.
The total number of linearly independent values is reduced from 2n − 1 to∑k

i=1

(
n
i

)
− 1.
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Orness value

The measure of orness, also called the degree of orness, orness value or
attitudinal character, is an important numerical characteristic of averaging
aggregation functions. Basically, the measure of orness measures how far
a given averaging function is from the max function, which is the weakest
disjunctive function. The measure of orness is computed for any averaging
function [9, 10] using

Definition 25 (Measure of orness). Let f be an averaging aggregation func-
tion. Then its measure of orness is

orness(f) =

∫
[0,1]n f(x)dx−

∫
[0,1]n min(x)dx∫

[0,1]n max(x)dx−
∫
[0,1]n min(x)dx

. (2.19)

Clearly, orness(max) = 1 and orness(min) = 0, and for any f , orness(f) ∈
[0, 1]. The calculation of the integrals of max and min functions results in
simple equations∫

[0,1]n
max(x)dx =

n

n+ 1
and

∫
[0,1]n

min(x)dx =
1

n+ 1
. (2.20)

By using the Möbius transform one can calculate the orness of a Choquet
integral Cv with respect to a fuzzy measure v as follows.

Proposition 2 (Orness of Choquet integral). [19] For any fuzzy measure
v the orness of the Choquet integral with respect to v is

orness(Cv) =
1

n− 1

∑
A⊆N

n− |A|
|A|+ 1

M(A),

where M(A) is the Möbius representation of A. In terms of v the orness
value is

orness(Cv) =
1

n− 1

∑
A⊆N

(n− |A|)!|A|!
n!

v(A).

Nonadditivity and bipartition indices

The following index was proposed in [22]. It measures the degree of non-
additivity in every subset.
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Definition 26 (Nonadditivity index). Let v be a capacity on N . The non-
additivity index of subset A ⊆ N , |A| ≥ 2, with respect to v is defined as

nv(A) =
1

2|A|−1 − 1

∑
(B,A\B)
∅̸=B⊂A

[v(A)− v(B)− v(A\B)].

Here ⋆-additive means “additive, subadditive, superadditive". ⋆
= 0 means

=, ≤,≥.

Theorem 1. Let v be a capacity on N . If v is ⋆-additive, then nv(A)
⋆
= 0,

∀A ⊆ N and |A| ≥ 2.

The nonadditivity index can be computed by an alternative formula

nv(A) = v(A)− 1

2|A|−1 − 1

∑
∅̸=B⊂A

v(B),∀A ⊆ N , |A| ≥ 2 (2.21)

It can be expressed in the Möbius representation as

nv(A) =
∑
C⊆A

2|A|−1 − 2|A|−|C|

2|A|−1 − 1
M(C),∀A ⊆ N .

The following index was proposed in [25]. The sign of this index is
consistent with the sub- and super-additivity of the fuzzy measure, and it
ranges in [-1,1] for all subsets.

Definition 27 (Bipartition Shapley and Banzhaf indices). The Shapley bi-
partition interaction index of a subset A ⊆ N is defined as

ÎvSh(A) =
∑

B⊆N\A

1

|N | − |A|+ 1

(
|N | − |A|

|B|

)−1

∆̂Av(B).

The Banzhaf bipartition interaction index of a subset A ⊆ N is defined as

ÎvBa(A) =
∑

B⊆N\A

1

2(|N |−|A|) ∆̂Av(B).

Here
∆̂Av(B) = v(B ∪ A)− v(B), |A| < 2.

Both indices are extensions of the Shapley and Banzhaf indices.
As with non-additivity indices we have that
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Theorem 2. Let v be a capacity on N . If v is ⋆-additive, then ÎvSh(A)
⋆
= 0,

and ÎvBa(A)
⋆
= 0 ∀A ⊆ N and |A| ≥ 2.

Hence the sign of the bipartition indices reflects the kind of non-additivity
of the fuzzy measure.

The nonmodularity index is based on the sum of probabilistic expecta-
tions of the second derivatives ∆ijµ(B) when B ⊂ A [24] .

Definition 28 (Nonmodularity index). Let µ be a fuzzy measure on N . For
any A ⊆ N , |A| ≥ 2, the nonmodularity index is defined as

dµ(A) =
∑

B⊂A,|A\B|≥2
i,j∈A
i,j ̸∈B

w(|A|, |B|)(µ(B ∪ {i, j})− µ(B ∪ {i})− µ(B ∪ {j}) + µ(B))

=
∑

B∪{i,j}⊆A
i,j ̸∈B

w(|A|, |B|)∆ijµ(B),

(2.22)

where w(|A|, |B|) > 0 is the weight given by w(|A|, |B|) =
((|A|

2

)(|A|−2
|B|
))−1

.

The nonmodularity index reflects the expected interaction within a re-
spective subset, or a measure convexity of the fuzzy measure within that sub-
set. We list some properties of the nonmodularity index established in [24].

1. If a capacity µ on N is ⋆-modular, then dµ(A)
⋆
= 0, ∀A ⊆ N , |A| ≥ 2.

If a capacity µ on N is ⋆-modular within S ⊆ N , then dµ(A)
⋆
= 0,

∀A ⊆ S, |A| ≥ 2.

2. If the fuzzy measures µ, ν are dual on N , then dµ(N) = −dν(N).
For a self-dual fuzzy measure dµ(N) = 0. This holds for additive (or
modular) fuzzy measures as special cases.

3. The range of dµ(A) is [−1, 1] for all A ⊆ N , |A| ≥ 2.

4. For a self-dual fuzzy measure dµ(N) = 0. This holds for additive (or
modular) fuzzy measures as special cases. However dµ(N) = 0 does
not imply modularity, because the nonmodularity index is defined as
a sum of expectations.
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5. The nonmodularity index can be expressed in terms of the values of
the fuzzy measure, for any A ⊆ N , |A| ≥ 2,

dµ(A) = µ(A) + µ(∅)− 1

|A|
∑

{i}⊂A

[µ({i}) + µ(A\{i})]. (2.23)

6. For any A ⊆ N , |A| ≥ 2,

dµ(A) =
∑

B⊆A,|B|≥2

|B|
|A|

mµ(B). (2.24)

2.5 Sugeno Integral

Similarly to the Choquet integral, Sugeno integral is also frequently used to
aggregate inputs, such as preferences in multicriteria decision making. Var-
ious important classes of aggregation functions, such as medians, weighted
minimum and weighted maximum are special cases of Sugeno integral.

Definition 29 (Discrete Sugeno integral). The Sugeno integral with respect
to a fuzzy measure v is given by

Sv(x) = max
i=1,...,n

min{x(i), v(Hi)}, (2.25)

where x↗ = (x(1), x(2), . . . , x(n)) is a non-decreasing permutation of the input
x, and Hi = {(i), . . . , (n)}.

Sugeno integrals can be expressed, for arbitrary fuzzy measures, by means
of the Median function in the following way:

Sv(x) = Med(x1, . . . , xn, v(H2), v(H3), . . . , v(Hn)).

Let us denote max by ∨ and min by ∧ for compactness. We denote by
x ∨ y = z the componentwise maximum of x,y (i.e., zi = max(xi, yi)), and
by x ∧ y their componentwise minimum.

Main properties

• Sugeno integral is a continuous idempotent aggregation function;

• An aggregation function is a Sugeno integral if and only if it is min-
homogeneous, i.e., Sv(x1 ∧ r, . . . , xn ∧ r) = Sv(x1, . . . , xn)∧ r and max-
homogeneous, i.e., Sv(x1 ∨ r, . . . , xn ∨ r) = Sv(x1, . . . , xn) ∨ r for all
x ∈ [0, 1]n, r ∈ [0, 1] (See [17], Th. 4.3. There are also alternative
characterizations);
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• Sugeno integral is comonotone maxitive and comonotone minimitive,
i.e., Sv(x ∨ y) = Sv(x) ∨ Sv(y) and Sv(x ∧ y) = Sv(x) ∧ Sv(y) for all
comonotone4 x,y ∈ [0, 1]n.

Calculation

Calculation of the discrete Sugeno integral is performed using Equation
(2.25) similarly to calculating the Choquet integral on p. 11. We take the
vector of pairs ((x1, 1), (x2, 2), . . . , (xn, n)), where the second component of
each pair is just the index i of xi. The second component will help keeping
track of all permutations.

Calculation of Sv(x).

1. Sort the components of ((x1, 1), (x2, 2), . . . , (xn, n)) with respect to
the first component of each pair in non-decreasing order. We obtain
((x(1), i1), (x(2), i2), . . . , (x(n), in)), so that x(j) = xij and x(j) ≤ x(j+1)

for all i.

2. Let T = {1, . . . , n}, and S = 0.

3. For j = 1, . . . , n do

(a) S := max(S,min(x(j), v(T )));

(b) T := T \ {ij}

4. Return S.

2.6 Constructing fuzzy measures

This section outlines the problem of fitting fuzzy measures to some sort of
empirical data, the observed (or sometimes desired) pairs of input-output
values. In the most typical case, the data comes in pairs (x, y), where x ∈
[0, 1]n is the input vector and y ∈ [0, 1] is the desired output. There are
several pairs, which will be denoted by a subscript k: (xk, yk), k = 1, . . . ,K.

When the data comes from an experiment, it will normally contain some
errors, and therefore it is pointless to interpolate the inaccurate values yk.
In this case our aim is to stay close to the desired outputs without actually
matching them.

4See footnote 2 on p. 10.
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The goal is to find a fuzzy measure v, such that the function f = Cv

approximates yk, f(xk) ≈ yk. The satisfaction of approximate equalities
f(xk) ≈ yk is usually translated into the following minimization problem.

minimize ||r|| (2.26)
subject to f satisfies properties P1,P2, . . . ,

where ||r|| is the norm of the residuals, i.e., r ∈ RK is the vector of the
differences between the predicted and observed values rk = f(xk)−yk. There
are many ways to choose the norm, and the most popular are the least squares
norm

||r||2 =

(
K∑
k=1

r2k

)1/2

,

the least absolute deviation norm

||r||1 =
K∑
k=1

|rk|,

and the Chebyshev norm

||r||∞ = max
k=1,...,K

|rk|.

It was also suggested that for decision making problems, the actual nu-
merical value of the output f(xk) was not as important as the ranking of the
outputs. For instance, if yk ≤ yl, then it should be f(xk) ≤ f(xl). Indeed,
people are not really good at assigning consistent numerical scores to their
preferences, but they are good at ranking the alternatives. Thus a suitable
choice of aggregation function should be consistent with the ranking of the
outputs yk rather than their numerical values. The use of the mentioned
fitting criteria does not preserve the ranking of outputs, unless they are in-
terpolated. Preservation of ranking of outputs can be done by imposing the
constraints f(xk) ≤ f(xl) if yk ≤ yl for all pairs k, l.

In the case when f is the Choquet integral with respect to a fuzzy measure
v, Cv, our goal is to identify the values of v from the data set (xk, yk), k =
1, . . . ,K. Identification of the 2n − 2 values from the data (two are given
explicitly as v(∅) = 0, v(N) = 1) involves the least squares or least absolute
deviation problems

minimize
K∑
k=1

(Cv(x1k, . . . , xnk)− yk)
2 , or
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minimize
K∑
k=1

|Cv(x1k, . . . , xnk)− yk| ,

subject to the conditions of monotonicity of the fuzzy measure (they translate
into a number of linear constraints, see below).

We concentrate on the least absolute deviation problem, because a) it
is less sensitive to outliers, and b) it can be translated into a linear pro-
gramming problem, which can be solved quickly and reliably even in the
case of a very large number of parameters and constraints. Note that the
main difficulty in fitting fuzzy measures is the large number of unknowns,
and typically a much smaller number of data [14], for instance when n = 15,
2n − 2 = 32766.

Importance and interaction indices

The interaction indices defined in Section 2.4 are all linear functions of the
values of the fuzzy measure. Conditions involving these functions can be
expressed as linear equations and inequalities.

One can specify given values of importance (Shapley value) and interac-
tion indices ϕ(i), Iij (see p. 18) by adding linear equality constraints. Of
course, these values may not be specified exactly, but as intervals, say, for
Shapley value we may have ai ≤ ϕ(i) ≤ bi. In this case we obtain a pair of
linear inequalities.

k-additivity

Recall that Definition 16 specifies k-additive fuzzy measures through their
Möbius transform

M(A) = 0

for any subset A with more than k elements. Since Möbius transform is a
linear combination of values of v, we obtain a set of linear equalities. By
using interaction indices, we can express k-additivity as (see Proposition 1)
I(A) = 0 for every A ⊆ N , |A| > k, which is again a set of linear equalities.

However, these conditions on the fuzzy measures do not reduce the com-
plexity of the least squares or least absolute deviation problems. They only
add a number of equality and inequality constraints to these problems. How-
ever, it is possible to reduce the complexity of the problem when working in
Möbius representation.

As the variables we will use mj = mA = M(A) such that |A| ≤ k in some
appropriate indexing system, such as the one based on cardinality ordering
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on p. 11. This is a much reduced set of variables (
∑k

i=1

(
n
i

)
− 1 compared

to 2n − 2). Now, monotonicity of a fuzzy measure, expressed as

v(A ∪ {i})− v(A) ≥ 0, ∀A|i ̸∈ A, i = 1, . . . , n,

converts into (2.1), and using k-additivity, into∑
B⊆A|i∈B,|B|≤k

mB ≥ 0, for all A ⊆ N and all i ∈ A.

The (non-redundant) set of non-negativity constraints v({i}) ≥ 0, i = 1, . . . , n,
is a special case of the previous formula when A is a singleton, which simply
become ∑

B={i}

mB = m{i} ≥ 0, i = 1, . . . , n.

Finally, condition v(N ) = 1 becomes
∑

B⊆N||B|≤k

mB = 1.

Then the least absolute deviation problem is translated into a simplified
optimization problem

minimize
K∑
j=1

∣∣∣∣∣∣
∑

A| |A|≤k

hA(xj)mA − yj

∣∣∣∣∣∣ , (2.27)

s.t.
∑

B⊆A|i∈B,|B|≤k

mB ≥ 0,

for all A ⊆ N , |A| > 1, and all i ∈ A,

m{i} ≥ 0, i = 1, . . . , n,∑
B⊆N||B|≤k

mB = 1,

where hA(x) = min
i∈A

xi. Note that only the specified mB are non-negative,

others are unrestricted. The number of monotonicity constraints is the same
for all k-additive fuzzy measures for k = 2, . . . , n.

The problem (2.27) will be subsequently converted to a linear program-
ming problem (LP) using the following technique. Let rj = f(xj) − yj be
the j− th residual. We represent it as a difference of a positive and negative
parts rj = r+j − r−j , r+j , r

−
j ≥ 0. The absolute value is |rj | = r+j + r−j . Now
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the problem (2.27) is converted into an LP problem with respect to m, r+, r−

minimize
K∑
j=1

(r+j + r−j ), (2.28)

s.t.
∑

A| |A|≤k

hA(xj)mA −(r+j − r−j ) = yj , j = 1, . . . ,K

other constraints from (2.27),
r+j , r

−
j ≥ 0.

Similar problems are set for fitting k-maxitive and k-tolerant fuzzy mea-
sures, however fitting k-maxitive fuzzy measures requires solving a mixed
integer programming problem MIP, which could be expensive computation-
ally, hence relaxation techniques can be used here for larger n.

k-interactivity

K-interactivity simplifies significantly the fitting process, because both the
number of variables and monotonicity constraints are reduces, plus the con-
straints become much simpler. When we fix the values of k and the values of
v(A) for subsets of cardinality k+1 to KC we obtain the linear programming
problem

minimize
K∑
j=1

r+j + r−j , (2.29)

s.t. r+j − r−j −
∑

A⊂N ,|A|≤k

v(A)gA(x
j) = 1−KC

n−k−1

n−k−1∑
i=1

xj(i) +KCx(n−k) − yj

v(A) ≥ v(A \ {i}),∀i ∈ A for all A ⊂ N , 0 < |A| ≤ k,

v(A) ≤ KC, |A| = k.

While the value KC is a user parameter in this model, it can also be
found automatically from the data by solving a bi-level optimisation problem,
where at the inner level we optimise v for a fixed KC ∈ [0, 1], and at the
outer level we optimise KC:

min
KC

min
µ

K∑
j=1

r+j + r−j ,

where the inner problem is the same as (2.29). Both methods are imple-
mented in this package.
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In the next Chapter we spell out the exact formulation of the LP prob-
lem, in which we also take into account the optional constraints on Shapley
values, interaction indices, orness value and preservation of output ordering
condition.

2.7 Random sampling in the set of fuzzy measures

Sometimes it is required to randomly generate fuzzy measures with some
desired properties. They can be used for simulation studies, or as steps in
probabilistic optimisation algorithms (such as evolutionary algorithms), or
for sensitivity analysis. The set of fuzzy measures is a complicated polytope,
called the order polytope, with an extremely large number of vertices. Spe-
cial methods have been designed to sample points from such polytopes [8].
Particular types of fuzzy measures may lead to more or less complicated
polytopes. For example, the set of totally monotone measures (called belief
measures), which is a subset of supermodular fuzzy measures, is a simplex,
and generation of such fuzzy measures is very simple. On the other hand,
sampling from the whole set of supermodular or submodular fuzzy measures
involves many additional linear constraints and hence far more complicated
polytope.

This package uses the versions of MinimalsPlus and topological sort for
order polytopes, followed by a Markov chain.

In version 5 we added random sampling of some special types of fuzzy
measures, such as belief, balances, anti-buoyant, as well as faster methods
based on random walks and verification of convexity and monotonicity by
sorting.

k-interactive fuzzy measures can be represented in compact Co-Mobius
representation, and their convexity and concavity is verified efficiently. We
added routines to convert co-Mobius representation to standard and also
a direct way to compute the Choquet integral directly through co-Mobius
representation.

2.8 Random generation of linear extensions

In this section we present a surprisingly simple and computationally efficient
method of random generation of linear extensions of (P(N),⊆), call them
LE, which then leads to highly efficient uniform generation of fuzzy mea-
sures. It is based on the following observation. Assume we have some fuzzy
measure. It corresponds to an LE automatically. Then we take the simplex
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S(LE) that corresponds to such an LE and generate another random fuzzy
measure on that simplex. If we ensure that the LEs are well sampled by the
originally chosen fuzzy measures, the resulting fuzzy measures will sample
P uniformly.

Let us randomly generate an additive (probability) measure. This is
easily done by picking n non-negative numbers that add to one (values at
the singletons), and is done by sorting. Then generate the rest of the values
of the additive measure by µ(A) =

∑
i∈A µ({i}). Sort those values and get

the corresponding LE. Next randomly generate 2n − 2 values from the unit
interval, sort them and assign to subsets according to the LE we obtained
previously. The resulting fuzzy measure is no longer additive but it shares its
LE with our probability measure. The overall cost of this exercise is O(n2n)
by applying a sorting method twice.

Of course, such a scheme will miss out on many linear extensions, and
hence is not too valuable by itself. However its very principle leads to a
powerful and efficient random sampling approach if we replace additive mea-
sures with another sufficiently simple but general subset of fuzzy measures
which can generate all possible LEs. For this purpose we use random linear
combinations of 0-1 fuzzy measures as developed in the following sections.

Definition 30. A fuzzy measure UG is called a unanimity game focused on
A ⊆ N if UG(B) = 1 iff B ⊇ A, B ⊆ N , and UG(B) = 0 otherwise.

The set of fuzzy measures is an order polytope P in the 2n−2 dimensional
linear vector space (two values are fixed by the normalisation conditions).
One basis for that space is given by the unanimity games. The vertices
of the polytope P are all the 0-1 fuzzy measures, but their number grows
extremely quickly with n as M(n) − 2. A simplicial partition of P can be
identified by taking linear extensions of (P,⊆), but the number of such LEs
that correspond to antichains in a Boolean lattice grows even faster (see
Introduction).

The generation algorithm consists of two steps:
Step 1. Randomly generate a linear extension LE (see Algorithm 1).
Step 2. Randomly generate a point within the simplex that corresponds

to that LE.
In this method we sample the set of LEs by deriving them from simple

fuzzy measures that we can generate randomly at little cost. We use random
linear combinations of 0-1 fuzzy measures. Since 0-1 fuzzy measures are
the (only) vertices of the polytope P , any fuzzy measure can be written
as a convex linear combination of these 0-1 measures. One might think of
generating random fuzzy measures in that way directly, but their distribution
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will not be uniform, and such a method of generating random points in
polytopes is not recommended. However in our case we merely identify a
linear extension from a random fuzzy measure, so the non-uniformity of
the distribution of linear combinations of vertices of the polytope does not
translate into non-uniformity of the LEs.

Random combinations of 0-1 measures instead of probabilities guarantees
that all possible LEs can be obtained in that way, although some may appear
more frequent than the others.

For obvious practical reasons we cannot take convex combinations of
all vertices of P for n > 7. For this reason we limit ourselves to taking
randomly an up to a fixed number V vertices to construct their convex
combinations. This way we cover all LEs that are compatible with those
vertices. Each vertex of P can be written as the maximum of one or more
unanimity games UGi : µ(A) = maxi UGi(A), and UGi is determined by
picking an arbitrary set A ⊂ N , setting µ(A) = 1 and computing the rest of
the values following its definition. Therefore selecting random combinations
of 0-1 fuzzy measures is computationally a very efficient process that can be
formalised in Algorithm 1.

ALGORITHM 1: Random generation of linear extensions
Input: n (dimensionality of the MCDM problem)
Output: µ (generated fuzzy measure (2n parameters))

1 Randomly select the number of vertices V (0-1 games) for a convex
combination.

2 Randomly select the number of unanimity games defining each vertex.

3 Randomly select the composition of each vertex (by picking up subsets
forming an antichain).

4 Randomly generate the weights that add to one.

5 For each subset A take the weighted combination of the respective values of
the vertices (0s or 1s).

6 Sort the values µ(A) in increasing order keeping track of the labels A.

7 Output the array of ordered labels as the LE.

The computational complexity of this method is O(n2n) (sorting step 6)
plus O(MaxV ∗ MaxAntichain ∗ 2n) (steps 1-5), computing the m values
of the linear compositions of MaxV vertices, which we took as n + 5 as it
turns out to be sufficient. Therefore in total we have O(n22n) operations and
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O(2n) storage. Compared to our rather naive baseline (additive measure) it
is an increase by the factor n as the price for more evenly distributed LEs.
In practice this extra cost is not noticeable.

In order to enhance the randomness further we apply two small improve-
ments. The first improvement is to use a few steps of Markov chain random
walk. If two consecutive elements of a linear extension can be swapped,
then this exchange does not violate the partial order of the other elements.
Previously the Markov chains have to be quite long to find some less likely
LEs, but in our case, because we already start with well randomised choices
of LEs after the sorting procedure, we can use short random walks. In our
experiments 30 steps were sufficient.

The second improvement is symmeterisation. It consists in randomly
relabelling the inputs by swapping the respective bits in their binary cod-
ing. Even though the singletons (coded as 1, 2, 4, 8, . . .) have no particular
ordering, using their positions in an array as labels implicitly induces the
ordering. Therefore the sorting procedure will keep elements 1 and 2 in that
initially given position if the respective µ({1}) = µ({2}), even though ex-
changing these two singletons would give rise to an equally valid LE. Of
course at the end it reduces the set of obtainable LEs. Our approach is to
introduce a random permutation of the singletons (array perm), and their
respective supersets, by swapping the bits in the binary representation of the
sets, which is equivalent to random relabelling the singletons. That requires
another O(n2n) operations (function swapbits), and does not change the
overall complexity of the algorithm.

2.9 Random walks and monotonicity/convexity test-
ing

Several new methods to randomly generate fuzzy measures of several partic-
ular types using random walks were recently presented and implemented in
this package. Random walks are based on selecting an initial fuzzy measure,
and then performing multiple steps (of small size) and checking whether the
perturbed set function remains monotone (or convex). That way, by per-
forming a large number of steps one can generate random fuzzy measures
with uniform distribution.
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2.10 2-additive fuzzy measures

2.10.1 The set P of 2-additive fuzzy measures

2-additive fuzzy measures are a special class for which many calculations
simplify. Therefore we provided fast methods for random generation of 2-
additive measures, and checking monotonicity of such 2-additive functions.
Random walk generation of 2-additive fuzzy measures is also added. Fitting
2-additive fuzzy measures based on the data was also separated into one
special procedure which dramatically redices the number of constraints to
check and is applicable to larger 10 < n < 30.

The set of 2-additive fuzzy measures is a polytope in d = n(n−1)
2 + n

variables (which add to 1). Its vertices are precisely 2-additive 0-1 fuzzy
measures. There are exactly n2 such 0-1 measures of three types:

1. 0-1 probability measures mi = 1 for some i ∈ N and the rest are 0,

2. unanimity games mij = 1 for some pair i, j and 0 otherwise,

3. dual unanimity games with mij = −1, mi = mj = 1 for one pair i, j,
and the rest 0.

To simplify the notation we use subindices: mij = m({i, j}), mi =
m({i}). Also we denote the three mentioned types of 0-1 measures as pi
(probability measure), bij (belief measure focused on {i, j}) and plij (plau-
sibility measure focused on {i, j}).

Thus the polytope of 2-additive fuzzy measures has a more compact V-
representation as opposed to H-representation with n2n−1 inequalities.

Another feature of that polytope P is its composition as the convex hull
of 2-additive belief measures B = {bij , i, j ∈ N, i > j}, its dual plausibility
measures Pl = {plij , i, j ∈ N, i > j} and probabilities Pr = {pi, i ∈ N}.

Since the set of belief measures is a simplex (all Möbius values are non-
negative and add to 1), its dual is also a simplex. Thus P is the convex hull
of three relatively simple subsets.

2.10.2 Exploiting the special structure of P

The special structure of the polytope of 2-additive fuzzy measures was es-
tablished in [20], from where we quote the relevant facts.

1. Any fuzzy measure µ can be written as a unique convex linear com-
bination of d vertices, such that whenever bij has non-zero coefficient,
the respective coefficient of plij is null and vice versa.
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2. For any collection C of vertices of P , the convex hull of C is a face of
P if and only if pi, pj ∈ C ⇐⇒ bij , plij ∈ C .

3. Two vertices µ1, µ2 of P are adjacent unless µ1 = pi, µ2 = pj or
µ1 = bij , µ2 = plij .

4. The collection of all polytopes with d vertices specified in point 1 above
forms simplicial partition of P .

The first fact above gives a particularly simple way to check whether a
set function is a fuzzy measure. Note that the converse of that implication
is also true (by item 4 above): if a set function cannot be written as the
mentioned convex combination, then it is not in P and hence not monotone.

Theorem 3. A 2-additive set function is a fuzzy measure if and only if for
all i, j ∈ N :

0 ≤ ai = mi +
∑

j ̸=i|mij<0

mij ≤ 1, (2.30)

0 ≤ mi ≤ 1, −1 ≤ mij ≤ 1. (2.31)

and ∑
i

mi +
∑
j ̸=i

mij = 1. (2.32)

Note that conditions (2.30)-(2.31) have O(n2) terms and can be verified
in O(n2) steps by the following Algorithm 2, which is significantly more
efficient than the baseline. There are only n inequalities in (2.30) (the second
inequality ≤ 1 follows automatically) and n2/2 trivial inequalities in (2.31).
In fact (2.31) can be omitted for pairs altogether as they follow from (2.30)
and (2.32).

2.10.3 Random generation of 2-additive fuzzy measures

In this section we refer to the simplicial partition of P and an algorithm for
randomly generating 2-additive fuzzy measures with uniform distribution
proposed in [20]. The algorithm relies on the fact that all simplices in that
partition have the same volume, and therefore one can randomly pick up
a simplex, and then generate a random point in that simplex using sorting
procedure.

The computational complexity is O(n2 log n). To see this note that ran-
dom points on the standard unit simplex S = {v ∈ ℜd|vi ≥ 0,

∑
vi = 1}

with uniform distribution are generated by: first, randomly generating d− 1
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ALGORITHM 2: Verification of monotonicity of a 2-additive set
function

Input: m ∈ ℜd (given 2-additive set function in Möbius representation),
represented by arrays of singletons mi and pairs mij

Output: True or False
1 Verify all mi ≤ 1. If it fails return False

2 Main loop. For i, j ∈ N, j > i:

2.1 Verify (2.31) for pairs, if fails return False.

2.2 If mij < 0:

2.2.1 Set mi = mi +mij

2.2.2 Set mj = mj +mij

3 Verify all mi ≥ 0. If not, return False

4 Return True.

values in [0, 1], second, sorting them in increasing order, and third, taking
pairwise differences (including with 0 and 1) to get a random point in S.
Clearly the complexity of that step is O(d log d) = O(n2 log n).

Next, following [20] we randomly determine a simplex of the partition
of P (randomly deciding whether we take mij as bij or plij). Then we
set either mij = vk or mij = −vk, k corresponds to the position of the
pair ij in the array of singletons and pairs of length d. We then also set
mi = vi+

∑
i̸=j|mij<0 |mij |. The latter step is done whenever mij is assigned,

similar to steps 2.2 of Algorithm 2, so it requires almost no extra effort.
Since the assignment of values vk step takes O(n2) operations, the overall
complexity of the random generation algorithm is O(n2 log n), and the matrix
multiplication is done in-place.

2.10.4 Learning 2-additive fuzzy measures from data

We recall that given the target values of the Choquet integral, one can deter-
mine the best fuzzy measure µ (in the standard or Möbius representation) by
solving a quadratic (least squares sense) or linear (least absolute deviation
sense) programming problem, which include monotonicity constraints and
boundary constraints.

Now, with the new equivalent but smaller set of constraints (2.30)-(2.32)
we significantly simplify the learning problem, so that with rather simple
new constraints the problem becomes polynomially solvable (by the respec-
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tive results on the complexity of convex quadratic and linear programming).
In order to convert (2.30) (which is a conditional constraint) into a linear
unconditional constraint we use auxiliary non-negative variables m+

ij ,m
−
ij to

denote the positive and negative parts of mij = m+
ij−m−

ij , and modify (2.30)
to

0 ≤ mi −
∑
j ̸=i

m−
ij .

We also add the term
∑

i̸=j m
+
ij + m−

ij to the objective to minimise, which
ensures only one of m+

ij ,m
−
ij is non-zero at the optimum.

Another way to formulate the constrains is using a convex combination
of pi, bij , plij but without requiring that only one of bij , plij is nonzero. Then
we end up with constraints (2.30)-(2.32) and mij = m+

ij −m−
ij but with no

need of the mentioned extra term in the objective.
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Computational methods

3.1 Representations of set functions

When dealing with discrete set functions, like discrete fuzzy measures, on a
computer, it is important to encode the 2n values of such functions vA in
some array. Typically one uses either binary or cardinality orderings on p.11,
and both orderings are best suited for different purposes. It is convenient to
use both orderings at the same time, and have a conversion mechanism, for
example a lookup table.

A discrete set is conveniently encoded as a binary string, which can be
represented by an unsigned integer on a computer (e.g., in C language). The
i-th bit of such integer indicates the presence or absence of the i-th element
in a set. Sets of up to 32 elements can be efficiently encoded on 32-bit
computers into a single integer, and of course arrays of integers can be used
for sets with more elements.

Bitwise operations on integers allow one to calculate easily set union,
intersection, complement, determine whether a set is a subset of another one
and so on. In Rfmtool library there are a number of routines that perform
these operations.

We have also seen in the previous Chapter that the standard and Möbius
representations of set functions can be used for various calculation, and some-
times one is preferred to another because of computational efficiency. Thus
conversion routines (the Möbius and Zeta transforms) are essential.

37
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3.2 Basic manipulations and tests

Fuzzy measures can be characterized by various indices, such as interaction
indices, and can belong to specific classes, such as sub or super-additive.
Rfmtool implements a number of calculation routines and tests, in particular:

1. Calculation of Shapley values;

2. Calculation of Banzhaf indices;

3. Calculation of all interaction indices;

4. Calculation of all Banzhaf interaction indices;

5. Calculation of the dual fuzzy measure;

6. Calculation of the orness value of the Choquet integral;

7. Calculation of the entropy of the Choquet integral;

8. Tests whether a fuzzy measure is:

• Balanced;

• Self-dual;

• Subadditive;

• Superadditive;

• Additive;

• Submodlar;

• Supermodular;

• Symmetric;

• k-maxitive.

Tests are performed with a given tolerance. For numerical efficiency rea-
sons, certain quantities (like ordering conversion tables, tables of sets cardi-
nalities and factorials) are pre-computed for a given n, at the initialization
stage. Rfmtool uses the formulas presented in Sections 2.3 and 2.4 using the
standard and the Möbius representations interchangeably. For Sugeno fuzzy
measures it also computes the value of λ (given the values of v at singletons).

Rfmtool also implements an efficient calculation of the Choquet and
Sugeno integrals as described on p. 10 and p. 24.
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3.3 Fitting fuzzy measures to data

Throughout this section n will denote the dimensionality of the space, and
K will denote the size of the data set. We are given a data set representing
the values of an unknown function f For example, when n = 4 we have

x1 x2 x3 x4 y
x11 x12 x13 x14 y1
x21 x22 x23 x24 y2
x31 x32 x33 x34 y3

...
xK1 xK2 xK3 xK4 yK

The goal is to identify a fuzzy measure v, such that the corresponding
Choquet integral f = Cv predicts the outputs yk as close as possible in the
least absolute deviation sense. This is done by solving a linear programming
problem (2.28). In addition, optional conditions on the bounds of interac-
tion indices, Shapley values or orness value are also incorporated as linear
constraints.

The problem is set in Möbius representation. To obtain a standard LP
formulation, equality constraints are represented by pairs of inequality con-
straints, and unconstrained variables (in Möbius representation only the val-
ues corresponding to singletons are non-negative) are replaced with pairs of
non-negative variables (the positive and negative parts of the unconstrained
variable). The decision variables are:

r+1 , . . . , r
+
K , r−1 , . . . , r

−
K︸ ︷︷ ︸

residuals

,m1,m2, . . . ,mn︸ ︷︷ ︸
singletons

,m+
12, . . . ,m

+
12...n,m

−
12, . . . ,m

−
12...n︸ ︷︷ ︸

positive and negative parts of
other values

.

If the fuzzy measure is assumed to be k-additive, then in Möbius repre-
sentation values corresponding to subsets of cardinality greater than k are 0.
These decision variables (from the third group) are explicitly excluded from
the problem formulation, which is the key to reducing its complexity. For
instance, for 2-additive fuzzy measures we will have the decision variables

r+1 , . . . , r
+
K , r−1 , . . . , r

−
K︸ ︷︷ ︸

residuals

,m1,m2, . . . ,mn︸ ︷︷ ︸
singletons

,m+
12, . . . ,m

+
n−1,n,m

−
12, . . . ,m

−
n−1,n︸ ︷︷ ︸

positive and negative parts of
other values, up to {n− 1, n}

.

An instance of a complete problem formulation is presented in Table.3.1.
For numerical efficiency purposes, a dual of this LP problem is actually solved
in Rfmtool , because when the fuzzy measure is k-additive, the number of
variables is much less than that of constraints.
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Fitting k-tolerant fuzzy measures can be done by solving the following
LP in the standard representation v (not Möbius).

minimize
K∑
j=1

r+j + r−j , (3.1)

s.t. r+j − r−j =
∑
A

v(A)gA(xj)− yj data fitting

v(A) ≥ v(A \ {i}),∀i ∈ A for all A ⊆ N, |A| ≤ k, monotonicity
v(A) = 1, for all A, |A| ≥ k. k-tolerance,

where the functions gA are

gA(x) = max(0,min
i∈A

xi − max
i∈N\A

xi). (3.2)

Fitting k-maxitive fuzzy measure is performed by solving MIP

minimize
K∑
j=1

r+j + r−j , (3.3)

s.t. r+j − r−j −
∑
A

v(A)gA(xj) = −yj data fitting

v(A)− v(A \ {i}) ≥ 0,∀i ∈ A for all A ⊆ N, monotonicity
v(A)− v(A \ {i})− c(A, i) ≤ 0, ∀i ∈ A and |A| > k, k-maxitivity∑

i∈A c(A, i) ≤ |A| − 1, for all A ⊆ N, |A| > k, at least one active
v(N) = 1, c(A, i) ∈ {0, 1}. constraint.

The binary variables c(A, i) indicate for which i we have equality v(A) =
v(A \ {i}).

We also implemented an alternative MIP relaxation heuristic for n > 6
or n − k > 3 as follows. We solve the problem in two steps. At Step 1 we
solve a relaxation to (3.3) in which c(A, i) were not required to be binary
(the restriction was c(A, i) ∈ [0, 1]). We then used the optimal solution for
c(A, i) to fix the k-maxitivity constraints for every A, |A| > k. Namely, for
every fixed A we selected i ∈ A which corresponded to the smallest value
c(A, i) in the optimal solution to the relaxed problem. We then fixed that
variable c(A, i) = 0, meaning active constraint v(A) = v(A \ {i}). At Step 2
we solved LP (3.3) without requiring c(A, i) to be binary, but fixing some of
its values at 0 according to our selection above.
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Fitting k-interactive fuzzy measures

This method is computationally more efficient for larger n than fitting
k-additive fuzzy measures. It is based on the equation (2.18), and the re-
spective reduction of the number and complexity of monotonicity constraints.
For fixed values of k < n and KC ∈ [0, 1], the fitting problem translates into
the following LP program.

minimize
K∑
j=1

r+j + r−j , (3.4)

s.t. r+j − r−j −
∑

A⊂N,|A|≤k

v(A)gA(x
j) = 1−KC

n−k−1

n−k−1∑
i=1

xj(i) +KCx(n−k) − yj

v(A) ≥ v(A \ {i}), ∀i ∈ A for all A ⊂ N, 0 < |A| ≤ k,

v(A) ≤ KC, |A| = k.

One parameter in this approach is the value of KC. There are two ways
we can determine it from the data as well. The first way is to assign a specific
value like KC = k/n. This will not guarantee the optimality with respect to
the data fitting criterion but is a reasonable choice. Another way is to solve
a bi-level optimisation problem, where at the inner level we optimise v for a
fixed KC ∈ [0, 1], and at the outer level we optimise KC:

min
KC

min
µ

K∑
j=1

r+j + r−j ,

where the inner problem is the same as (3.4). Both methods are implemented
in this package.

Maximal chains approach

The next approach to reduce the complexity of the fitting problem is
based on the observation that not all the values of v can be determined
from the data [6]. Notice that the Choquet integral is a piecewise lin-
ear monotone continuous function on [0, 1]n with the idempotency property
C(x, x, . . . , x) = x for all x ∈ [0, 1]. There are exactly n! linear segments
in that function, the same as the number of permutations of the compo-
nents of the vector x. Thus at least n! data points are needed in order for
each linear segment to have one datum. Of course, the linear segments are
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not independent, and ultimately only 2n − 2 fuzzy measure values are to
be determined. Each datum affects n − 1 values, which further relaxed the
requirements on K. It was shown that at least n!/[(n/2)!]2 (for and even n)
and n!/[((n−1)/2)!((n+1)/2)!] (for an odd n) data are needed. However for
sufficiently large n, K could be substantially smaller than those quantities.

The maximal chains approach is based on using only those values v(A)
that can be determined from the data as the variables of the fitting problem,
and the rest to be calculated after the fitting process, but ensuring satisfac-
tion of the monotonicity constraints. This way we can reduce the number of
variables of the fitting problem.

Consider the inclusion relation ⊆ over the set P (N ). It is a finite bounded
lattice with the least element ∅ and the greatest element N . There are n!
maximal chains in that lattice, the same as the number of sorting orders
of the input vectors, as there is a one-to-one correspondence between the
maximal chains and permutations of the inputs.

Now, each datum from the data set D corresponds to one or more (in
case of equal components of x) maximal chains. Let us construct the set
C ⊆ P (N ) of those values of v that belong to any of the maximal chains
that correspond to the data set D. Then |C| ≤ |P (N )| = 2n. Then only the
values v(A), A ∈ C can be directly identified from the data set.

The rest of the values of v still need to be consistent with those con-
structed from the data because of monotonicity constraints, but that problem
will be solved separately. The rationale is that C is much smaller than P (N )
(for a large enough n), and also the number of monotonicity constraints on
C is much smaller that those on P (N ).

Fitting in marginal contributions representation

The following values

∆iv(B) = v(B ∪ {i})− v(B) ≥ 0, ∀i ∈ N,B ⊆ N \ {i} (3.5)

are called the marginal contributions (of the criterion i to the subset B).
The actual values of the fuzzy measure can be recovered from the fol-

lowing. Let A = {a1, ..., a|A|} ⊆ N , π be a permutation of (1, 2, . . . , |A|).
Then

v(A) =

|A|∑
i=1

∆aπ(i)
v(Aπ(i−1)), ∀π, (3.6)

where Aπ(i) = {aπ(1), ..., aπ(i)}, Aπ(0) = ∅.
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It is possible to set up a linear programming fitting problem in marginal
contributions representation, even though this representation has more vari-
ables and constraints than the standard representation. However the (suf-
ficient) constraints that enforce sub- or super-modularity are much simpler
(they involve only pairs of neighbouring marginal contributions on each max-
imal chain). Combined with k-interactivity, the resulting fitting problem
becomes simple enough for efficient computational treatment. This method
is implemented in R package.



Chapter 4

Description of the library

4.1 Installation

Installation of Rfmtool package is standard: the user just needs to install
the package from CRAN or from a local file

R CMD INSTALL Rfmtool_5.0.0.tar.gz

4.2 Description of the functions in package Rfmtool

fm()
The function prints the list of all functions implemented in the Rfmtool package.

fm.test()
This function tests the correctness of installation by running tests for all functions
included in the package.

Operations on fuzzy measures

The first operation should always be initialisation. The internal structures are
precomputed for n variables and saved in the environment variable.

fm.Init(n)
The function computes the internal structures for n variables. The output is passed
to the subsequent operations. Example:
env<-fm.Init(3)

The following functions involve the parameters v (the array containing the fuzzy measure in
standard representation) or Mob (in Möbius representation), env - the environment
variable set to n variables. The values of the fuzzy measure always obey the binary
ordering.

fm.Choquet(x, v, env)

45
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The function computes and returns the value of the Choquet integral of x, wrt
fuzzy measure v (eq.(2.3)). The environment variable env is precomputed in the
fm.Init function. x ∈ [0, 1]n, v ∈ [0, 1]m. Example:
r <- fm.Choquet(c(0.6,0.3,0.8),c(0,0.3,0.5,0.6,0.4,0.8,0.7,1),env)

fm.ChoquetMob(x, Mob)
The function computes and returns the value of the Choquet integral of x, wrt
fuzzy measure given in Möbius representation Mob (eq.(2.6)). Example:
fm.ChoquetMob(c(0.6,0.3,0.8),c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1),env)

fm.ChoquetKinter(x, v, kint, env)
Calculates the value of the Choquet integral of x, wrt kinteractive fuzzy measure v
using compact representation of v (in cardinality ordering). Example:
fm.ChoquetKinter(c(0.6,0.3,0.8),c(0,0.3,0.5,0.6,0.4,0.8,0.7,1),2,env)

fm.Sugeno(x, v, env)
Calculates the value of the Sugeno integral of x, wrt fuzzy measure v (eq.(2.25)).
Example:
r <- fm.Sugeno(c(0.6,0.3,0.8),c(0,0.3,0.5,0.6,0.4,0.8,0.7,1), env)

fm.SugenoMob(x, Mob, env)
Calculates the value of the Sugeno integral of x, wrt the fuzzy measure in Möbius
representation Mob (eq.(2.25)). Example:
r <- fm.SugenoMob(c(0.6,0.3,0.8),c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1),
env)

fm.OrnessChoquet(v, env)
Calculates the orness value of the Choquet integral wrt fuzzy measure v in general
representation. Example:
r <- fm.OrnessChoquet(c(0,0.3,0.5,0.6,0.4,0.8,0.7,1), env)

fm.OrnessChoquetMob(Mob, env)
Calculates the orness value of the Choquet integral wrt fuzzy measure v given its
Möbius representation Mob. Example:
r <- fm.OrnessChoquetMob(c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1), env)

fm.EntropyChoquet(v, env)
Calculates the entropy value of the Choquet integral wrt fuzzy measure v in stan-
dard representation. Example:
r <- fm.EntropyChoquet(c(0,0.3,0.5,0.6,0.4,0.8,0.7,1), env)

fm.EntropyChoquetMob(Mob, env)
Calculates the entropy value of the Choquet integral wrt fuzzy measure in Möbius
representation Mob. Example:
r <- fm.EntropyChoquetMob(c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1), env)

fm.Mobius(v, env)
Calculates the Möbius representation of v. Example:
Mob <- fm.Mobius(c(0,0.3,0.5,0.6,0.4,0.8,0.7,1), env)

fm.Zeta(Mob, env)
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Calculates the inverse Möbius representation of a fuzzy measure, i.e. the standard
representation. Example:
v <- fm.Zeta(c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1), env)

fm.Shapley(v, env)
Calculates the Shapley values of v in standard representation and returns it as an
array of size n. Example:
x <- fm.Shapley(c(0,0.3,0.5,0.6,0.4,0.8,0.7,1), env)

fm.ShapleyMob(Mob, env)
Calculates the Shapley values of Mob in Möbius representation and returns it as
an array of size n. Example:
x <- fm.ShapleyMob(c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1), env)

fm.Banzhaf(v)
Calculates the Banzhaf values of v in standard representation and returns it as an
array of size n. Example:
x <- fm.Banzhaf(c(0,0.3,0.5,0.6,0.4,0.8,0.7,1), env)

fm.BanzhafMob(Mob, env)
Calculates the Banzhaf values of Mob in Mobius representation and returns it as
an array of size n. Example:
x <- fm.BanzhafMob(c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1), env)

fm.Interaction(v, env)
Calculates all the interaction indices of fuzzy measure v in standard representation
and returns it in an array of size m. Example:
w <- fm.Interaction(c(0,0.3,0.5,0.6,0.4,0.8,0.7,1), env)

fm.InteractionMob(v, env)
Calculates all the interaction indices of fuzzy measure Mob in Möbius representation
and returns it in an array of size m. Example:
w <- fm.InteractionMob(c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1), env)

fm.InteractionB(v, env)
Calculates all the Banzhaf interaction indices of fuzzy measure v given in standard
representation and returns the result in an array of size m.
w <- fm.InteractionB(c(0,0.3,0.5,0.6,0.4,0.8,0.7,1), env)

fm.InteractionBMob(Mob, env)
Calculates all the Banzhaf interaction indices of fuzzy measure Mob in Möbius
representation and returns the result in an array of size m.
w <- fm.InteractionBMob(c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1), env)

fm.Bipartition(v, env)
Calculates all the Shapley bipartition indices of fuzzy measure v given in standard
representation and returns the result in an array of size m.
w <- fm.Bipartition(c(0,0.3,0.5,0.6,0.4,0.8,0.7,1), env)

fm.BipartitionBanzhaf(v, env)
Calculates all the Banzhaf bipartition indices of fuzzy measure v given in standard
representation and returns the result in an array of size m.
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w <- fm.BipartitionBanzhaf(c(0,0.3,0.5,0.6,0.4,0.8,0.7,1), env)

fm.NonadditivityIndex(v, env)
Calculates all the nonadditivity indices of fuzzy measure v given in standard rep-
resentation and returns the result in an array of size m.
w <- fm.NonadditivityIndex(c(0,0.3,0.5,0.6,0.4,0.8,0.7,1), env)

fm.NonadditivityIndexMob(Mob, env)
Calculates all the nonadditivity indices of fuzzy measure v given in Möbius repre-
sentation and returns the result in an array of size m.
w <- fm.NonadditivityIndexMob(c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1), env)

fm.dualm(v, env)
Calculates the dual of fuzzy measure v in standard representation and returns it in
an array of size m. Example:
w <- fm.dualm(c(0,0.3,0.5,0.6,0.4,0.8,0.7,1), env)

fm.dualmMob(Mob, env)
Calculates the dual of fuzzy measure Mob in Möbius representation and returns it
in an array of size m. Example:
w <- fm.dualm(c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1), env)

fm.ConstructLambdaMeasure(singletons, env)
Given the values of a fuzzy measure at singletons, finds the value of λ, computes
all other values of the fuzzy measure in standard representation, and returns the
pair (λ, v), where v is an array of size m. The input array singletons is an array
of size n of the values of fuzzy measure at singletons. Example:
(lambda, v) <- fm.ConstructLambdaMeasure(c(0, 0.3, 0.5), env)

fm.ConstructLambdaMeasureMob(Mob, env)
Given the values of a fuzzy measure at singletons, finds the value of λ, computes all
other values of the fuzzy measure in Möbius representation, and returns the pair
(λ,Mob), where v is an array of size m. The input array singletons is an array of
size n of the values of fuzzy measure at singletons. Example:
(lambda, Mob) <- fm.ConstructLambdaMeasure(c(0, 0.3, 0.5), env)

fm.NonmodularityIndex(v, env = NULL)
Calculates all the m = 2n nonmodularity indices of fuzzy measure v given in stan-
dard representation and returns the result in an array of size m. Example:
env<-fm.Init(3)
Nonmodularityindex <- fm.NonmodularityIndex(c(0,0.3,0.5,0.6,0.4,0.8,0.7,1),env)

fm.NonmodularityIndexMob(Mob, env = NULL)
Calculates all the nonmodularity indices of fuzzy measure Mob given in Möbius
representation and returns the result in an array of size m. Example:
env<-fm.Init(3)
fm.NonmodularityIndexMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)

fm.NonmodularityIndexMobkadditive(Mob, env = NULL, kadd = "NA")
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Calculates all the m = 2n nonmodularity indices of k-additive fuzzy measure Mob
given in Möbius representation (in cardinality ordering) and returns the result in
an array of size m. Example:
env<-fm.Init(3)
fm.NonmodularityIndexMobkadditive(c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1),env,2)

fm.NonmodularityIndexKinteractive(v, env = NULL, kadd = "NA")
Calculates all the m = 2n nonmodularity indices of k-interactive fuzzy measure v
given in standard representation (in cardinality ordering) and returns the result in
an array of size m. Example:
env<-fm.Init(3)
fm.NonmodularityIndexKinteractive(c(0,0.3,0.5,0.6,0.4,0.8,0.7,1),env,2)

fm.export_maximal_chains(v, env = NULL)
Returns in mc the arrays of maximal chains (there are n! such arrays) of a fuzzy
measure v, each array is of length n and contains the chains of discrete derivatives,
which can be used to calculate the Choquet integrals for all possible orderings of
the argument x, as well as serve as coefficients of the piecewise linear objective
functions. That is, each maximal chain corresponds to the coefficients of a linear
function on the respective simplex. All such simplices form a partition of the unit
cube. Example:
n<-3
env<-fm.Init(n)
exportmaximalchains <- fm.export_maximal_chains( c(0, 0.00224, 0.0649,
0.510, 0.00965, 0.374,0.154, 1),env)

fm.fm_arraysize(env = NULL, kint = "NA")
Returns the length of the array of values of k-interactive fuzzy measures. Useful
for reserving memory to store them. For kint > 5 requires initialisation of the env
variable, otherwise no. Example:
env<-fm.Init(3)
fm.fm_arraysize(env,1)

fm.ShowCoalitions(env = NULL)
fm.ShowCoalitionsCard(env = NULL)

Return the decimal expression for the subsets A, e.g. for A = 11 it will show 124
for printing. In binary and in cardinality ordering respectively. A is the array of
integers to receive the decimal expressions for all 2n coalitions. Example:
env<-fm.Init(3)
fm.ShowCoalitions(env)

The following routines are self-explanatory. They return 1 if yes, 0 if no. The input
parameters are: fuzzy measure v in standard representation and fuzzy measure
Mob in Möbius representation.
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IsMeasureAdditive(v, env)
IsMeasureAdditiveMob(Mob, env)
IsMeasureBalanced(v, env)
IsMeasureBalancedMob(Mob, env)
IsMeasureSelfdual(v, env)
IsMeasureSelfdualMob(Mob, env)
IsMeasureSubadditive(v, env)
IsMeasureSubadditiveMob(v, env)
IsMeasureSubmodular(v, env)
IsMeasureSubmodularMob(Mob, env)
IsMeasureSuperadditive(v, env)
IsMeasureSuperadditiveMob(Mob, env)
IsMeasureSupermodular(v, env)
IsMeasureSupermodularMob(Mob, env)
IsMeasureSymmetric(v, env)
IsMeasureSymmetricMob(Mob, env)
IsMeasureKmaxitive(v, env) (returns k);
IsMeasureKmaxitiveMob(Mob, env) (returns k).

4.3 Description of fuzzy measure fitting routines

The package contains six functions taking taking the empirical data, some options,
and returning the (k-additive) fuzzy measure

fm.fitting([emprical data], [env], [k-additive])
Returns fuzzy measure fitted to data in standard representation.

fm.fittingMob([emprical data], [env], [k-additive])
Returns fuzzy measure fitted to data in Möbius representation.

fm.FuzzyMeasureFitLP([emprical data], [env], [k-additive], [other options])
Returns fuzzy measure fitted to data in standard representation, with optional
constraints on the orness measure and the upper and lower values of Shapley values
and interaction indices.

fm.FuzzyMeasureFitLPMob([emprical data], [env], [k-additive], [other options])
Returns fuzzy measure in Möbius representation fitted to data in standard repre-
sentation, with optional constraints on the orness measure and the upper and lower
values of Shapley values and interaction indices.

fm.fittingKtolerant([emprical data], [env], [k-tolerant])
Returns k-tolerant fuzzy measure fitted to data in standard representation, with
no optional constraints.

fm.fittingKmaxitive([emprical data], [env], [k-maxitive])
Returns k-maxitive fuzzy measure fitted to data in standard representation, with
no optional constraints.

fm.fittingOWA([emprical data], [env])
Returns symmetric fuzzy measure fitted to data. The vector of OWA weights is
returned as in this case the Choquet integral becomes the OWA function.
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fm.fittingWAM([emprical data], [env])
Returns additive fuzzy measure fitted to data. The vector of WAM weights is
returned as in this case the Choquet integral becomes the WAM function.

List of parameters and options of the FuzzyMeasureFitLP function.
fm.FuzzyMeasureFitLP(data, env, kadd, indexlo, indexhigh, options, option1,

orness)
data - an array of size K× (n+1), where each row is the pair (xk, yk), xk ∈ [0, 1]n,
yk ∈ [0, 1], K data altogether.
Kadd - k in k-additive fuzzy measures, 1 < Kadd < n + 1, if Kdd = n - f.m. is
unrestricted.
options (default value is 0)

• 1 - lower bounds on Shapley values supplied in indexlow

• 2 - upper bounds on Shapley values supplied in indexhigh

• 3 - lower and upper bounds on Shapley values supplied in indexlow and
indexhigh

• 4 - lower bounds on all interaction indices supplied in indexlow

• 5 - upper bounds on all interaction indices supplied in indexhigh

• 6 - lower and upper bounds on all interaction indices supplied in indexlow
and indexhigh.

all these value will be treated as additional constraints in the LP.
indexlow, indexhigh - array of size n (options =1,2,3) or m (options=4,5,6) con-
taining the lower and upper bounds on the Shapley values or interaction indices
options1 (default 0) is a flag whose bits indicate which additional properties are
needed. If the first bit is set then the desired interval of orness values specified in
array orness will be used. If the second bit is set, then the f.m. will be forced to
be balanced (currently not implemented). If the third bit is set, then in addition
to fitting the data, the order of output values will be preserved.

If the fourth bit is set, the fuzzy measure will be forced to be sub-modular.
This option is new in version 1.2.

Note that this constraint may lead to inconsistent set of conditions, in which case the
problem will have no solution (and no output vector returned).
orness - array of size 2 which contains the lower and the upper bounds on the
orness value. These values should be from [0,1], and could coincide if an exact
orness value is needed. If the bounds are 0 and 1 respectively they are ignored.
Only used if the first bit of options1 is set.
Notes: 1. arrays indexlow and indexhigh are 0-based if they contain Shapley values
(i.e., the bound on Shapley value of the first input is in indexlow[0], etc. but when
these arrays contain interaction indices, these are 1-based (since there is a non-zero
value of the interaction index corresponding to empty set). In this case the bounds
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are arranged in cardinality order, i.e., the bounds correspond to the sets in this
ordering (for n=3) ∅{1}{2}{3}{12}{13}{23}{123}.
2. If an exact value of some index or Shapley value is needed, use indexlow[i] =
indexhigh[i] = thisvalue if no value for some index is required, use indexlow[i] =
−1, indexhigh[i] = 1.

3. Note that Shapley values have range [0,1], whereas interaction indices have range
[-1,1].

Note that the options as listed above are not implemented for the following
methods.

fm.fittingKinteractive([emprical data], [env], [k-interctive], [KC value])

Returns k-interactive fuzzy measure fitted to data in standard representation, with
fixed parameter KC (the value v(A) at sets of cardinality k + 1).

fm.fittingKinteractiveAuto([emprical data], [env], [k-interctive])

Returns k-interactive fuzzy measure fitted to data in standard representation, with
the parameter KC automatically determined from the data.

fm.fittingKinteractiveMC([emprical data], [env], [k-interctive], [KC value])

Returns k-interactive fuzzy measure fitted to data in standard representation, with
fixed parameter KC (the value v(A) at sets of cardinality k+1). This method uses
maximal chain approach and is more efficient for smaller data sets.

fm.fittingKinteractiveMarginal([emprical data], [env], [k-interctive], [KC value],
[submod])

Returns k-interactive fuzzy measure fitted to data in standard representation, with
fixed parameter KC (the value v(A) at sets of cardinality k + 1). This method
uses marginal contributions representation and may involve more variables and
constraints than the other methods. It is useful when imposing sub- or super-
modularity constraints, in which case parameter submod should be set to -1 (su-
permodularity), +1 (submodularity), or 0 (none).

fm.fittingKinteractiveMarginalMC([emprical data], [env], [k-interctive], [KC
value], [submod])

Returns k-interactive fuzzy measure fitted to data in standard representation, with
fixed parameter KC (the value v(A) at sets of cardinality k + 1). This method
uses marginal contributions representation and maximal chains approach, and may
involve more variables and constraints than the other methods. It is useful when
imposing sub- or super-modularity constraints, in which case parameter submod
should be set to -1 (supermodularity), +1 (submodularity), or 0 (none). It is more
efficient than fittingKinteractiveMarginal in case of a small data set.

Note: at the moment only supermodular option works in this method. If a submodular
measure is needed, fit its dual supermodular to dual data.



4.4. FUZZY MEASURES IN COMPACT AND SPARSE REPRESENTATIONS53

4.4 Fuzzy measures in compact and sparse repre-
sentations

These routines do not require initialisation of the fuzzy measure with fm.fm_init
and can hence be used with large n (limited by the available memory). Note that
2-additive fuzzy measures require O(n2) parameters. They are stored in cardinality
ordering.

Sparse structure definition

Sparse representation is in the form of singletons, pairs and tuples with nonzero
values, stored and indexed in the respective arrays,which are part of the structure
fm_env_sparse.
The following routines require defining a structure envsp of type fm_env_sparse
to store the relevant values, but due to sparse representation only the indicated
k-tuples are stored.

envsp <- fm.PrepareSparseFM(n, vector(), vector())

fm.PrepareSparseFM(n, tups, tupsidx)
This function initialises this structure, if the number of tuples is known, otherwise
can be initialised with 0 tuples (i.e. set tup=0). Given the list of cardinalities of
the nonzero tuples (cardinality, tuple composition) like this: 2 pairs 4-tuple and a
triple: (2,1,2, 2, 3,1, 4, 1,2,3,4, 3,3,2,1...), (can be null vector) It is used to allocate
storage and later populate these values.Example:
n<-3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.FreeSparseFM(envsp)
envsp <- fm.PrepareSparseFM(n, c(0.2,0.4,0.1), c(2,1,2,2,1,3,3,1,2,3))
envsp <- fm.FreeSparseFM(envsp)

fm.FreeSparseFM(envsp)
Frees the memory previously allocated in envsp.Example:
n<-3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.FreeSparseFM(envsp)
envsp <- fm.PrepareSparseFM(n, c(0.2,0.4,0.1), c(2,1,2,2,1,3,3,1,2,3))
envsp <- fm.FreeSparseFM(envsp)

fm.tuple_cardinality_sparse(i, envsp = NULL)
Returns the cardinality of the tuple numbered i in the list of tuples. Example:
n<-3
envsp <- fm.PrepareSparseFM(n, c(0.2,0.4,0.1), c(2,1,2,2,1,3,3,1,2,3))
fm.tuple_cardinality_sparse(0,envsp)
envsp <- fm.FreeSparseFM(envsp)
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fm.get_num_tuples(envsp=NULL)
Returns the number of tuples. Example:
n<-3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_tuple_sparse(c(1,2,3),0.4,envsp)
fm.get_num_tuples(envsp)
envsp <-fm.FreeSparseFM(envsp)

fm.get_sizearray_tuples(envsp=NULL)
Returns the length of the array of tuples. Example:
n<-3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_tuple_sparse(c(1,2,3),0.4,envsp)
fm.get_sizearray_tuples(envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.is_inset_sparse(A, card, i, envsp=NULL)
Checks if element i (1-based) belongs to the tuple indexed A (whose cardinality
can be 1,2, other (automatically determined)) Example:
n<-3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_tuple_sparse(c(1,2,3),0.4,envsp)
fm.is_inset_sparse(0,3,1,envsp)
fm.is_inset_sparse(0,3,4,envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.is_subset_sparse(A, cardA, B, cardB, envsp = NULL)
Checks if tuple B is a subset of tuple A, The cardinalities of both tuples need to
be supplied. Example:
n<-3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_tuple_sparse(c(1,2,3),0.4,envsp)
envsp <- fm.add_pair_sparse(1,2,0.2,envsp)

fm.is_subset_sparse(0,3,0,2,envsp)
fm.is_subset_sparse(0,3,1,2,envsp)

envsp<-fm.FreeSparseFM(envsp)
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fm.min_subset_sparse(x, S, cardS, envsp=NULL)
calculate minimum (maximum) of xi with the indices belonging to tuple indexed as
S (its cardinality cardS can be 1,2, other ( put 3, will be determined automatically)).
Note that x is 0-based, tuples are 1-based. Example:
n<-3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_tuple_sparse(c(1,2,3),0.4,envsp)
fm.min_subset_sparse(c(0.1,0.05,0.2),0,3,envsp)

fm.max_subset_sparse(x, S, cardS, envsp=NULL) calculate minimum (maximum) of xi

with the indices belonging to tuple indexed as S (its cardinality cardS can be 1,2,
other ( put 3, will be determined automatically)). Note that x is 0-based, tuples
are 1-based . Example:
n<-3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_tuple_sparse(c(1,2,3),0.4,envsp)
fm.max_subset_sparse(c(0.1,0.05,0.2),0,3,envsp)

fm.ChoquetMob_sparse(x, envsp=NULL)
Calculates the Choquet integral in Mobius sparse representation. Example:
n<-3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_pair_sparse(1,2,0.4,envsp)
ChoquetMobsparse <- fm.ChoquetMob_sparse(c(0.1,0.05,0.2),envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.ShapleyMob_sparse(n, envsp=NULL)
Calculate Shapley and Banzhaf values vectors (of size n) of a sparse fuzzy measure,
returned in v. Example:
n<-3
envsp <- fm.PrepareSparseFM(n, c(0.2,0.4,0.1), c(2,1,2,2,1,3,3,1,2,3))
fm.ShapleyMob_sparse(3, envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.BanzhafMob_sparse(v, n, envsp)
Calculate Shapley and Banzhaf values vectors (of size n) of a sparse fuzzy measure,
returned in v. Example:
n<-3
tups<-vector()
tupsidx<-vector()
envsp <- fm.PrepareSparseFM(n, tups,tupsidx)
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envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_pair_sparse(1,2,0.4,envsp)
fm.BanzhafMob_sparse(3, envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.Nonmodularityindex_sparse(n, envsp=NULL)
Calculates all 2n nonmodularity indices (returned in w) using Mobius transform of a
fuzzy measure in sparse representation. The result is in binary ordering. Example:
n<-3
tups<-vector()
tupsidx<-vector()
envsp <- fm.PrepareSparseFM(n, tups,tupsidx)
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_pair_sparse(1,2,0.4,envsp)
fm.NonmodularityIndex_sparse(3,envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.populate_fm_2add_sparse(singletons, numpairs, pairs, indicesp1, indicesp2,
envsp=NULL)
Populates 2-additive sparse capacity with nonzero values using the singletons and
two arrays of indices (of size numpairs). Indices need to be 1-based. Singletons
0-based. Example:
n<-3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.populate_fm_2add_sparse(c(0.1,0.2,0.3), 3, c(0.4,0.5,0.6),
c(1,1,2), c(2,3,3), envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.add_pair_sparse(i, j, v, envsp = NULL)
For populating capacities. Add pair (vij) to the structure. Indices are 1-based.
Example:
n<-3
tups<-vector()
tupsidx<-vector()
envsp <- fm.PrepareSparseFM(n, tups,tupsidx)
envsp <-fm.add_pair_sparse(1,2, 0.4, envsp)
envsp <-fm.add_pair_sparse(1,3, 0.3, envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.add_tuple_sparse( tuple, v, envsp=NULL)
For populating capacities, adds a tuple of size tupsize whose 1-based indices are in
tuple Example:
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n <- 4
tups<-vector()
tupsidx<-vector()
envsp <- fm.PrepareSparseFM(n, tups,tupsidx)
fm.add_tuple_sparse(c(1,2,3),0.2,envsp)
fm.add_tuple_sparse(c(1,3,4),0.3,envsp)

fm.populate_fm_2add_sparse_from2add(n, v, envsp=NULL)
Given 2-additive capacity (singletons+pairs in one array v) , selects nonzero pairs
and populates sparse capacity envsp. Example:
n <- 3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
fm.populate_fm_2add_sparse_from2add(3,c(0.4,0.5,0.6, 0, 0, 0.1),envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.expand_2add_full(n, envsp=NULL)
From sparse to full representation of 2-additive capacity (singletons and pairs, aug-
mented with 0s). Vector v has to be allocated, its size is n+ n(n− 1)/2. Example:
n <- 3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_pair_sparse(1,2,0.4,envsp)
cap2add <- fm.expand_2add_full(n,envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.expand_sparse_full(n, envsp=NULL
Exports from sparse to full capacity (vector v, size 2n has to be preallocated).
Example:
n <- 3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_pair_sparse(1,2,0.4,envsp)
cap <- fm.expand_sparse_full(n, envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.sparse_get_singletons(envsp=NULL)
Export the internal arrays of the sparse capacity as arrays of singletons. Return
the numbers of pairs and tuples. Example:
n <- 3
envsp <- fm.PrepareSparseFM(n)
envsp <- fm.add_singletons_sparse(c(0, 0.3, 0.5),envsp)
singletons <- fm.sparse_get_singletons(envsp)
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envsp <- fm.FreeSparseFM(envsp)

fm.sparse_get_pairs(envsp=NULL)
Export the internal arrays of the sparse capacity as arrays of pairs. Return the
numbers of pairs and tuples. Example:
n <- 3
envsp <- fm.PrepareSparseFM(n)
envsp <-fm.add_pair_sparse(1,2, 0.4, envsp)
envsp <-fm.add_pair_sparse(1,3, 0.3, envsp)
pairs <- fm.sparse_get_pairs(envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.sparse_get_tuples(envsp=NULL)
Export the internal arrays of the sparse capacity as arrays of tuples. Return the
numbers of pairs and tuples. Example:
n <- 3
envsp <- fm.PrepareSparseFM(n)
envsp <- fm.add_tuple_sparse(c(1,2,3),0.2,envsp)
envsp <- fm.add_tuple_sparse(c(1,3,4),0.3,envsp)
tuples <- fm.sparse_get_tuples(envsp)
envsp <- fm.FreeSparseFM(envsp)

The following functions do not use sparse representation but they do not require
initialisation by fm.Init either, they work with 2-additive fuzzy measures stored
on an array of Möbius values of singletons and pairs.

fm.dualMobKadd(Mob, env = NULL, kadd = "NA")
Calculate the dual of a k-additive fuzzy measures for n inputs. Generally re-
quires initialisation but not for 2-additive fuzzy measures. Parameters: length
is the size of the array in cardinality based ordering (can be calculated by function
fm_arraysize) , k as in k-additivity, src is the source measure, dest is its dual,
env must be initialised for k > 2 only. Example:
env<-fm.Init(3)
n=20
dualMob_Kadd <- fm.dualMobKadd(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2,
0.1), env,2)

Note that for 2-additive measures the array of Möbius values does not include ∅, that is, the
values are listed as singletons and pairs only.

fm.Shapley2addMob(n, Mob)
fm.Banzhaf2addMob(n, Mob)

Calculate the Shapley and Banzhaf values of a 2-additive fuzzy measure for n inputs
given in Mobius representation. The results are in arrays s or b. Example:



4.5. RANDOM GENERATION OF FUZZY MEASURES 59

Shapley <- fm.Shapley2addMob(3, c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1))
Banzhaf <- fm.Banzhaf2addMob(3, c(0.2, 0.3, 0.5, -0.2, 0.4, 0.1))

fm.Choquet2addMob(n, x, Mob)
Calculates the Choquet integral value of x for a 2-additive fuzzy measure for n
inputs given in Mobius representation.Example:
fm.Choquet2addMob(3, c(0.2,0.5,0.4), c(0.2, 0.3, 0.5, -0.2, 0.4, 0.1))

4.5 Random generation of fuzzy measures

The package Rfmtool provides several methods to randomly generate fuzzy mea-
sures of different types: general, k-interactive, k-additive convex and concave (ie.
supermodular and submodular). General and k-interactive fuzzy measures require
initialisation of the env structures, but sparse and k-additive (for small k) do not,
see section 4.4.

fm.generate_fm_tsort(num, kint, markov, option, K, env = NULL)
fm.generate_fm_minplus(num, kint, markov, option, K, env = NULL)

Both functions generate several random fuzzy measures (num is their number)
stored in cardinality ordering in the array v (the ith fuzzy measure starts at
position i∗ lengthv and has length length, which is returned by this function). The
tsort method is based on topological sort and minplus is based on MinimalsPlus
method (see Section 2.7). Other parameters: 0 < kint ≤ n is for k-interactive fuzzy
measures, markov - how many Markov steps to take, the randomness increases with
that number, but slows down the process, K is the constant in k-interactive fuzzy
measures, v is the array to store the generated values (preallocated of size num∗2n
or less for k-interactive fuzzy measures, see fm.fm_arraysize). option = 1 employs
internal rejection method to improve uniformity, but for n > 5 is is not essential.
Returns the size of the array for each generated fuzzy measure. Example:
env<-fm.Init(3)
fuzzymeasures <- fm.generate_fm_tsort(10,3,1000,0,0.7, env)
fuzzymeasures <- fm.generate_fm_minplus(10,3,1000,0,0.7, env)

fm.generate_fmconvex_tsort(num, kint, markov, option, K, env = NULL)
Generates num convex random fuzzy measures stored consecutively in cardinality
ordering in the array v (the ith fuzzy measure starts at position i∗2n and has length
2n). The parameters are as for the previous two functions. Returns the size of the
array for each generated fuzzy measure. kint for the moment is not implemented.
This method is quite reliable for n < 10 but then becomes slow. There is an internal
rejection process which guarantees supermodularity for small n < 9, but otherwise
the result must be checked as in the example below. Increase Markov chain length
for n > 6. Example:
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env<-fm.Init(3)
fuzzymeasures <- fm.generate_fmconvex_tsort(1,3,1000,0,1, env)

The following routines do not require initialisation of the fuzzy measure with
fm_init and can hence be used with large n (limited by the available memory).
Note that 2-additive fuzzy measures require O(n2) parameters. They are stored in
cardinality ordering.

fm.generate_fm_2additive_convex(num, n)
fm.generate_fm_2additive_concave(num, n)
fm.generate_fm_2additive_convex_withsomeindependent(num, n)

Generates num 2-additive convex (supermodular) or concave (submodular) fuzzy
measures for n inputs. Returns the length of the part of the array v allocated
for each fuzzy measure, and the array with singletons and pairs in Mobius repre-
sentation. The array needs to be reserved in the calling program of size at most
num∗n2. The routine “withsomeindependent” means that a proportion of pairwise
interaction indices will be set to 0, making these pairs independent. The different
fuzzy measures are stored consecutively, so that the ith measure starts at position
i ∗ lengthv. Example:
addconvex <- fm.generate_fm_2additive_convex(5,20)
fuzzymeasures <- fm.generate_fm_2additive_concave(10,20)
addconvex <- fm.generate_fm_2additive_convex_withsomeindependent(5,20)

fm.generate_fm_2additive_convex_sparse(n, envsp = NULL)
Generates a random 2-additive supermodular fuzzy measure in sparse representa-
tion. Some Möbius values will be set to 0. Example:
n <- 5
tups<-vector()
envsp <- fm.PrepareSparseFM(n, tups,tupsidx)
envsp <- fm.generate_fm_2additive_convex_sparse(n, envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.generate_fm_kadditive_convex_sparse(n, kadd, nonzero, envsp = NULL)
Generates a random k-additive Belief fuzzy measure (i.e. totally monotone) in
sparse representation. Some Möbius values will be set to 0. Example:
n <- 5
tups<-vector()
envsp <- fm.PrepareSparseFM(n, tups,tupsidx)
envsp <- fm.generate_fm_kadditive_convex_sparse(n,4,10, envsp)
envsp <- fm.FreeSparseFM(envsp)

New functions in version 5

fm.generate_fm_2additive(num, n)
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Generates num random 2-additive fuzzy measures in Mobius representation. The
output contains singletons and pairs but no emptyset. Example:
num <- 10
n <- 5
fuzzymeasures <- fm.generate_fm_2additive(num,n)

fm.check_monotonicity_mob_2additive(v, n, temp=NULL)
Checks monotonicity of the 2-additive set function v in Mobius representation using
fast check. The auxiliary array of length n2 may or may not be specified (if speed
matters, then preallocate it). No need for initialisation with fm.Init. Example:
v<-fm.generate_fm_2additive(1, 10)
n<-10
v$len
v$v
check <- fm.check_monotonicity_mob_2additive(v$v, n)
temp<-array(0.0,10*10);
check <- fm.check_monotonicity_mob_2additive(v$v, n, temp)

fm.generate_fm_2additive_randomwalk2(num, n, markov, option, step, Fn)
Generates num random 2-additive fuzzy measures in Mobius representation. by
using random walk. The output contains singletons and pairs but no emptyset.
The function Fn can be used for additional checks, see below. Example:
num <- 10
n <- 5
fuzzymeasures <- generate_fm_2additive_randomwalk2(num, n, 1000, 0, 0.001,
NULL)

fm.generate_fm_sorting(num, markov, option, env=NULL)
Generates num general random fuzzy measures in standard representation. The
output contains an array of length num * 2n. It uses a number of Markov steps to
improve randomness. Parameter option is not used (reserved). Example:
env<-fm.Init(3)
markovsteps <- 100
fuzzymeasures <- fm.generate_fm_sorting(10, markovsteps, 0, env)

fm.generate_balanced(num, env=NULL)
Generates num balanced random fuzzy measures in standard representation. The
output contains an array of length num * 2n. Example:
env<-fm.Init(3)
balanced <- fm.generate_balanced(10, env)

fm.generate_antibuoyant(env = NULL)
Generates one antibuoyant random fuzzy measure in standard representation. The
output contains an array of length 1 * 2n. Example:
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env <- fm.Init(3)
antib <- fm.generate_antibuoyant(env)

fm.generate_fm_randomwalk(num, n, kadd, markov, option, step, Fn, env=NULL)
Generates num k-additive fuzzy measures in the standard or Mobius representation
using random walk of length markov of stepsize step.
Options: 0 - normal, 1 convex (supermodular), 2 antibuoyant, 3 kadditive , 4 belief
measure, 5 kadditive convex
The measure generated is in standard representation fo all options except 3,5. The
parameter kadd only matters for options 3 and 5. In that case the measure is in
more compact Mobius representation.
Function Fn, if not NULL, is a callback function to perform additional check at every
Markov step of the current set function, i.e., any extra conditions. The function
should implemented as in the example below.
The output is named list with the first element V being the fuzzy measure and the
second being the length of the array containing it.
Note. The parameter option can be added 256*16 to ensure that convex fuzzy
measures are less likely to be belief measures (e.g. Option<-256*16 + 1). Exam-
ple:
Fn<-function(n,v){
out <- 0.0
for(i in 1:n) out<- out+v[i];
if(out>1) {
return(0)
} else
return(1)
}
env<-fm.Init(3)
step <- 0.0010
Option<- 3
n<- 3
fuzzymeasures <- fm.generate_fm_randomwalk(2, 3, 2, 1000, Option, step,
Fn, env)
print(fuzzymeasures)
print(fuzzymeasures$length)

fm.check_monotonicity_sort_merge(v, indices=NULL, env=NULL)
Checks monotonicity of the set function v in standard representation using merge
sort. The output is a list of (True/False, indices, values). The indices and values
can be used at subsequent steps of monotonicity verification (e.g., values slightly
perturbed). Initially indices need not be specified. Example:
env<-fm.Init(3)
v <- fm.generate_fm_sorting(1, 1000, 0, env)
measure <- fm.check_monotonicity_sort_merge(v, env)
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print(measure$out)
measure$V[1] = measure$V[1] *1.1
measure <- fm.check_monotonicity_sort_merge(measure$V, measure$index,
env)

fm.check_monotonicity_sort_insert(v, indices=NULL, env=NULL)
Checks monotonicity of the set function v in standard representation using insert
sort. The output is a list of (True/False, indices, values). The indices and values
can be used at subsequent steps of monotonicity verification (e.g., values slightly
perturbed). This function is called after merge sort, so the indices are already
precomputed. Example:
env<-fm.Init(3)
v <- fm.generate_fm_sorting(1, 1000, 0, env)
out<- fm.check_monotonicity_sort_merge(v, NULL, env)
out$V[1] = out$V[1] *1.1
out <- fm.check_monotonicity_sort_insert(out$V, out$index, env)

fm.check_monotonicity(v, env=NULL)
Checks monotonicity of the set function v in standard representation using standard
check. Example:
env<-fm.Init(3)
v <- fm.generate_fm_sorting(1, 1000, 0, env)
monotonicity <- fm.check_monotonicity(v, env)

fm.check_monotonicity_mob(v, len, env=NULL)
Checks monotonicity of the set function v in Mobius representation using standard
check. len is the length of the array of Mobius values. It can be obtained by
fm_arraysize_kadd(N, Kadd); Example:
env<-fm.Init(3)
step <- 100
Fn <- NULL
Option<- 3
fuzzymeasures <- fm.generate_fm_randomwalk(1, 3, 2, 1000, Option, step,
Fn, env)
len <- fuzzymeasures$length
check <- fm.check_monotonicity_mob(fuzzymeasures$V, len, env)

fm.check_convexity_monotonicity_mob(v, len, env=NULL)
Checks supermodularity of the set function v in Mobius representation using stan-
dard check. len is the length of the array of Mobius values. It can be obtained by
fm_arraysize_kadd(N, Kadd); Example:
env<-fm.Init(3)
step <- 0.001
Fn <- NULL
Option<- 3
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fuzzymeasures <- fm.generate_fm_randomwalk(1, 3, 2, 1000, Option, step,
Fn, env)
len <- fuzzymeasures$length
check<- fm.check_convexity_monotonicity_mob(fuzzymeasures$V, len, env)

fm.generate_fm_kinteractivedualconvex(num, n, kadd, markov, step, Fn, env = NULL)
Generates num k-interactive dual convex fuzzy measures in Mobius representation
using random walk of length markov of stepsize step. Ensure that n > kadd − 1
(otherwise it makes no sense to use this function). Example:
env<-fm.Init(4)
step <- 0.0001
Fn <- NULL
fuzzymeasures <- fm.generate_fm_kinteractivedualconvex(10, 4, 2, 1000,
step, Fn, env)

fm.generate_fm_kinteractivedualconcave(num, n, kadd, markov, step, Fn, env = NULL)
Generates num k-interactive dual concave fuzzy measures in Mobius representation
using random walk of length markov of stepsize step. Ensure that n > kadd − 1
(otherwise it makes no sense to use this function). Example:
env<-fm.Init(4)
step <- 0.001
Fn <- NULL
fuzzymeasures <- fm.generate_fm_kinteractivedualconcave(10, 4, 2, 1000,
step, Fn, env)

fm.fitting2additive(data, options=0, indexlow=(NULL), indexhigh=(NULL) , option1=0,
orness=(NULL))
This procedure works similar to other fitting routines but is tailored to 2-additive
fuzzy measures which simplifies the process and allows one to wotk with larger n.
The meaning of the parameters is the same as in FuzzyMeasureFitLP. Ensure that
byrow = TRUE when creating matrices from a one dimensional array. Example:
env<-fm.Init(3)
d <- matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338, 0.808716, 0.584991,
0.479858, 0.544309, 0.350281, 0.895935, 0.822815, 0.625868, 0.746582,
0.174103, 0.858917, 0.480347, 0.71048, 0.513519, 0.303986, 0.387631, 0.0149841,
0.0914001, 0.364441, 0.134229, 0.147308, 0.165894, 0.988495, 0.388044,
0.445679, 0.11908, 0.00466919, 0.0897714, 0.00891113, 0.377869, 0.531647,
0.258585, 0.571167, 0.601746, 0.607147, 0.589803, 0.166229, 0.663025,
0.450775, 0.357412, 0.352112, 0.0570374, 0.607666, 0.270228, 0.783295,
0.802582, 0.519867, 0.583348, 0.301941, 0.875946, 0.726654, 0.562174,
0.955872, 0.92569, 0.539337, 0.633631, 0.142334, 0.462067, 0.235321, 0.228419,
0.862213, 0.209595, 0.779633, 0.498077, 0.843628, 0.996765, 0.999664,
0.930197, 0.611481, 0.92426, 0.266205, 0.334666, 0.297272, 0.840118, 0.0237427,
0.168081), nrow=20, ncol=4,byrow=TRUE);
indexlow=c(0.1,0.1,0.2)
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indexhigh=c(0.9,0.9,0.5)
fm.fitting2additive(d, options=3, indexlow, indexhigh, option1=1, orness=c(0.1,0.7))

fm.ConvertCoMob2Kinter(Mob,kadd, fullmu, env=NULL)
Converts dual k-interactive fuzzy measure from Mobius to standard representation.
If fullmu is 1 then all 2n are allocated, otherwise a more compact representation
for k-interactive fuzzy measures is used. Example:
env<-fm.Init(4)
fullmu <- 0
step <- 0.001
Fn <- NULL
fuzzymeasures <- fm.generate_fm_kinteractivedualconvex(1, 4, 2, 1000,
step, Fn, env)

fm.ConvertCoMob2Kinter(fuzzymeasures$V, 2, fullmu, env )

fm.ChoquetCoMobKInter(x, Mob, kinter, env=NULL)
Calculates the Choquet integral of x wrt dual k-interactive fuzzy measure in Mo-
bius representation. This is the same as k-interactive fuzzy measure in coMobius
representaiton. Example:
env<-fm.Init(4)
step <- 0.0001
Fn <- NULL
fuzzymeasures <- fm.generate_fm_kinteractivedualconvex(1, 4, 2, 1000,
step, Fn, env)

fm.ChoquetCoMobKInter(c(0.2,0.5,0.4,0.1), fuzzymeasures$V, 2, env)
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4.6 Examples

library("Rfmtool")
#initialisation for dimension 3
env<-fm.Init(3)

#prepare some data

dcol<-3
drow<-10

mydata<-matrix(runif(dcol*drow,0,1),drow,dcol)

#generate some lambda fuzzy measure
mymeasure<-fm.ConstructLambdaMeasure(c(0.1,0.1,0.9),env)

# calculate choquet integrals of the data

mych<-apply(mydata,1,function(x) fm.Choquet(x, mymeasure$measure, env))

datafit<-cbind(mydata,mych)

# now fit the measure to the data (we should get back the same
# fuzzy measure we used as a model)

fittedm<-fm.fitting(datafit,env);

mymeasure

fittedm

#check some properties of fuzzy measures
fm.IsMeasureAdditive(fittedm,env);
fm.IsMeasureSubadditive(fittedm,env);

# alternative fitting calls

fittedowa<-fm.fittingOWA(datafit,env);

fittedkmax<-fm.fittingKmaxitive(datafit,env,2);

fittedktol<-fm.fittingKtolerant(datafit,env,2);

fittedkinter<-fm.fittingKinteractiveAuto(datafit,env,2);
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fittedkintersubmodular<-fm.fittingKinteractiveMarginal(datafit,env,2,0.5, 1);

fm.IsMeasureSubadditive(fittedkintersubmodular,env);

fm.IsMeasureSubmodular(fittedkintersubmodular,env);
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Operations on fuzzy measures
env<-fm.Init(3)
Nonmodularityindex <- fm.NonmodularityIndex(c(0,0.3,0.5,0.6,0.4,0.8,0.7,1),env)
fm.NonmodularityIndexMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)
fm.NonmodularityIndexMobkadditive(c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1),env,2)
fm.NonmodularityIndexKinteractive(c(0,0.3,0.5,0.6,0.4,0.8,0.7,1),env,2)

n<-3
exportmaximalchains <- fm.export_maximal_chains( c(0, 0.00224, 0.0649,
0.510, 0.00965, 0.374,0.154, 1),env)

env<-fm.Init(3)
arraylength <- fm.fm_arraysize(env,1)
ShowCoalitions <- fm.ShowCoalitions(env)

Fuzzy measures in compact and sparse representations
n<-3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.FreeSparseFM(envsp)
envsp <- fm.PrepareSparseFM(n, c(0.2,0.4,0.1), c(2,1,2,2,1,3,3,1,2,3))
envsp <- fm.FreeSparseFM(envsp)

fm.tuple_cardinality_sparse(i, envsp = NULL)
n<-3
envsp <- fm.PrepareSparseFM(n, c(0.2,0.4,0.1), c(2,1,2,2,1,3,3,1,2,3))
fm.tuple_cardinality_sparse(0,envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.get_num_tuples(envsp=NULL) n<-3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_tuple_sparse(c(1,2,3),0.4,envsp)
fm.get_num_tuples(envsp)
envsp <-fm.FreeSparseFM(envsp)

fm.get_sizearray_tuples(envsp=NULL) n<-3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_tuple_sparse(c(1,2,3),0.4,envsp)
fm.get_sizearray_tuples(envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.is_inset_sparse(A, card, i, envsp=NULL) n<-3



4.6. EXAMPLES 69

envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_tuple_sparse(c(1,2,3),0.4,envsp)
fm.is_inset_sparse(0,3,1,envsp)
fm.is_inset_sparse(0,3,4,envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.is_subset_sparse(A, cardA, B, cardB, envsp = NULL) n<-3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_tuple_sparse(c(1,2,3),0.4,envsp)
envsp <- fm.add_pair_sparse(1,2,0.2,envsp)

fm.is_subset_sparse(0,3,0,2,envsp). Is 0th pair a subset of the 0th truple

fm.is_subset_sparse(0,3,1,2,envsp). Is 1th pair a subset of the 0th truple

envsp<-fm.FreeSparseFM(envsp)

fm.min_subset_sparse(x, S, cardS, envsp=NULL) and fm.max_subset_sparse(x,
S, cardS, envsp=NULL) n<-3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_tuple_sparse(c(1,2,3),0.4,envsp)
fm.min_subset_sparse(c(0.1,0.05,0.2),0,3,envsp)
fm.max_subset_sparse(c(0.1,0.05,0.2),0,3,envsp)

fm.ChoquetMob_sparse(x, envsp=NULL) n<-3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_pair_sparse(1,2,0.4,envsp)
ChoquetMobsparse <- fm.ChoquetMob_sparse(c(0.1,0.05,0.2),envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.ShapleyMob_sparse(n, envsp=NULL)
n<-3
envsp <- fm.PrepareSparseFM(n, c(0.2,0.4,0.1), c(2,1,2,2,1,3,3,1,2,3))
fm.ShapleyMob_sparse(3, envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.BanzhafMob_sparse(v, n, envsp) n<-3
tups<-vector()
tupsidx<-vector()
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envsp <- fm.PrepareSparseFM(n, tups,tupsidx)
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_pair_sparse(1,2,0.4,envsp)
fm.BanzhafMob_sparse(3, envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.Nonmodularityindex_sparse(n, envsp=NULL)
n<-3
tups<-vector()
tupsidx<-vector()
envsp <- fm.PrepareSparseFM(n, tups,tupsidx)
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_pair_sparse(1,2,0.4,envsp)
fm.NonmodularityIndex_sparse(3,envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.populate_fm_2add_sparse(singletons, numpairs, pairs, indicesp1, indicesp2,
envsp=NULL)
n<-3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.populate_fm_2add_sparse(c(0.1,0.2,0.3), 3, c(0.4,0.5,0.6),
c(1,1,2), c(2,3,3), envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.add_pair_sparse(i, j, v, envsp = NULL), fm.add_tuple_sparse( tuple,
v, envsp=NULL), n<-3
tups<-vector()
tupsidx<-vector()
envsp <- fm.PrepareSparseFM(n, tups,tupsidx)
envsp <-fm.add_pair_sparse(1,2, 0.4, envsp)
envsp <-fm.add_pair_sparse(1,3, 0.3, envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.add_tuple_sparse(c(1,2,3),0.2,envsp)
fm.add_tuple_sparse(c(1,3,4),0.3,envsp)

fm.populate_fm_2add_sparse_from2add(n, v, envsp=NULL) n <- 3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
fm.populate_fm_2add_sparse_from2add(3,c(0.4,0.5,0.6, 0, 0, 0.1),envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.expand_2add_full(n, envsp=NULL) n <- 3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
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envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_pair_sparse(1,2,0.4,envsp)
cap2add <- fm.expand_2add_full(n,envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.expand_sparse_full(n, envsp=NULL n <- 3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_pair_sparse(1,2,0.4,envsp)
cap <- fm.expand_sparse_full(n, envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.sparse_get_singletons(envsp=NULL) n <- 3
envsp <- fm.PrepareSparseFM(n)
envsp <- fm.add_singletons_sparse(c(0, 0.3, 0.5),envsp)
singletons <- fm.sparse_get_singletons(envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.sparse_get_pairs(envsp=NULL)
n <- 3
envsp <- fm.PrepareSparseFM(n)
envsp <-fm.add_pair_sparse(1,2, 0.4, envsp)
envsp <-fm.add_pair_sparse(1,3, 0.3, envsp)
pairs <- fm.sparse_get_pairs(envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.sparse_get_tuples(envsp=NULL)
n <- 3
envsp <- fm.PrepareSparseFM(n)
envsp <- fm.add_tuple_sparse(c(1,2,3),0.2,envsp)
envsp <- fm.add_tuple_sparse(c(1,3,4),0.3,envsp)
tuples <- fm.sparse_get_tuples(envsp)
envsp <- fm.FreeSparseFM(envsp)

fm.dualMobKadd(Mob, env = NULL, kadd = "NA")
env<-fm.Init(3)
n=20
dualMob_Kadd <- fm.dualMobKadd(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2,
0.1), env,2)

Shapley <- fm.Shapley2addMob(3, c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1))
Banzhaf <- fm.Banzhaf2addMob(3, c(0.2, 0.3, 0.5, -0.2, 0.4, 0.1))
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fm.Choquet2addMob(3, c(0.2,0.5,0.4), c(0.2, 0.3, 0.5, -0.2, 0.4, 0.1))

4.7 Where to get help

The software library Rfmtool and its components, are distributed by G.Beliakov
AS IS, with no warranty, explicit or implied, of merchantability or fitness for
a particular purpose. G.Beliakov, at his sole discretion, may provide advice
to registered users on the proper use of Rfmtool and its components.

Any queries regarding technical information, sales and licensing
should be directed to gleb@disroot.org. I am interested to learn about your
experiences using Rfmtool , bugs, suggestions, its usefulness, applying it in
practice and so on.

If you want to cite Rfmtool package, use references [2–7,22,23,
25].
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