Tools for Healthcare Machine Learning


[Up] [Top]

Documentation for package ‘healthcareai’ version 2.5.1

Help Pages

add_best_levels Build efficient features from high-cardinality, multiple-membership factors
add_SAM_utility_cols Add SAM utility columns to table
as.model_list Make models into model_list object
build_connection_string Build a connection string for use with MSSQL and dbConnect
catalyst_test_deploy_in_prod Defunct
control_chart Create a control chart
convert_date_cols Convert character date columns to dates and times
db_read Read from a SQL Server database table
evaluate Get model performance metrics
evaluate.model_list Get model performance metrics
evaluate.predicted_df Get model performance metrics
evaluate_classification Get performance metrics for classification predictions
evaluate_multiclass Get performance metrics for multiclass predictions
evaluate_regression Get performance metrics for regression predictions
explore Explore a model's "reasoning" via counterfactual predictions
flash_models Train models without tuning for performance
get_best_levels Build efficient features from high-cardinality, multiple-membership factors
get_cutoffs Get cutoff values for group predictions
get_hyperparameter_defaults Get hyperparameter values
get_random_hyperparameters Get hyperparameter values
get_supported_models Supported models and their hyperparameters
get_thresholds Get class-separating thresholds for classification predictions
get_variable_importance Get variable importances
hcai_impute Specify imputation methods for an existing recipe
healthcareai Machine Learning Made Easy
hyperparameters Get hyperparameter values
impute Impute data and return a reusable recipe
interpret Interpret a model via regularized coefficient estimates
is.classification_list Type checks
is.model_list Type checks
is.multiclass_list Type checks
is.predicted_df Class check
is.regression_list Type checks
load_models Save models to disk and load models from disk
machine_learn Machine learning made easy
make_na Replace missingness values with NA and correct columns types
missingness Find missingness in each column and search for strings that might represent missing values
Mode Mode
models Supported models and their hyperparameters
models_supported Supported models and their hyperparameters
pima_diabetes Patient diabetes dataset
pima_meds Patient medications dataset
pip Patient Impact Predictor
pivot Pivot multiple rows per observation to one row with multiple columns
plot.explore_df Plot Counterfactual Predictions
plot.interpret Plot regularized model coefficients
plot.missingness Plot missingness
plot.model_list Plot performance of models
plot.predicted_df Plot model predictions vs observed outcomes
plot.thresholds_df Plot threshold performance metrics
plot.variable_importance Plot variable importance
plot_classification_predictions Plot model predictions vs observed outcomes
plot_multiclass_predictions Plot model predictions vs observed outcomes
plot_regression_predictions Plot model predictions vs observed outcomes
predict.model_list Get predictions
prep_data Prepare data for machine learning
rename_with_counts Adds the category count to each category name in a given variable column
save_models Save models to disk and load models from disk
separate_drgs Convert MSDRGs into a "base DRG" and complication level
split_train_test Split data into training and test data frames
start_prod_logs Defunct
step_add_levels Add levels to nominal variables
step_date_hcai Date and Time Feature Generator
step_dummy_hcai Dummy Variables Creation
step_locfimpute Last Observation Carried Forward Imputation
step_missing Clean NA values from categorical/nominal variables
stop_prod_logs Defunct
summary.missingness Summarizes data given by 'missingness'
supported_models Supported models and their hyperparameters
tidy.step_add_levels Add levels to nominal variables
tidy.step_date_hcai Date and Time Feature Generator
tidy.step_dummy_hcai Dummy Variables Creation
tidy.step_locfimpute Last Observation Carried Forward Imputation
tidy.step_missing Clean NA values from categorical/nominal variables
tune_models Tune multiple machine learning models using cross validation to optimize performance