Tutorial: Analysing iDynoMiCS Result Data using iDynoR

Package
Table of Contents
1. INETOAUCTION. ...ttt ettt et et a et s e bt et sbe e bt et e sat e b e et e sabeesabeesaseeenneesaneens 1
2. PrOTRQUISITES. .. eeeiieiitieeeeiiteee et ee e et e e e e s et e e e s sttaeesesatbeeeesasaeeessssbaeesssssbaeeesssaaeessssssnssssssssssnaaaeeeees 1
3. InStalling IDYNOR.......cooiiiiiiieeieeeeteeteee ettt et e s e et esae s ba e st e e sbaessabaeessasbeesnasaeesnnns 2
3.1. Easiest Way: From the CRAN IePOSITOTY....cccccutirruierriieeniiieenireeesiieeesiaeeessseeessssaseeesssssnnnenes 2
3.2. Linux/Mac: Download from the Website and Install From Source.........cc.ccccueevvernieennennns 2
4. The Example Simulation ReSUILS..........cceiiiiiiiiiiiiiiieeieeceeetecsee ettt sre e e e e e e e s eavaeeeeens 2
5. Reading in Result File Data.........cccieriiriiiiniiiiieieeieeteeie ettt ettt te et saresssaestaeseeesnns 3
6. Reading Data From Agent State and Agent Sum Files.........c.ccoevueiriiiiniiiiiniieirieceeceeevee e 4
7. Example Methods for Processing Agent Information..........cccceeveverrieenieeniieniiennieenieeesiieeseieee e 5
8. Reading Solute State (env_State) and Solute Sum (env_Sum) Files........cccccccevvviirriiiieeiinniineeennn. 7
9. Example Methods for Processing Solute Information............ccecueeveerieriiieniiennieenieeieesiesceseeeeeen 8

1. Introduction

iDynoMiCS is a computer program, developed by an international team of researchers, whose
purpose is to model and simulate microbial communities in an individual-based way. It is described
in detail in the paper "iDynoMiCS: next-generation individual-based modelling of biofilms" by
Lardon et al, published in Environmental Microbiology in 2011. The simulation produces results in
XML file format, describing the state of each species in each timestep (agent_State), a summary of
the species statistics for a timepoint (agent_Sum), the state of each solute grid in each timestep
(env_State) and a summary of the solutes for a timestep (env_Sum). This R package provides a
means of reading this XML data into R such that the simulation response can be statistically
analysed.

Do note that this tutorial is specific to the iDynoR package, and not iDynoMiCS itself, and thus
does not duplicate any of the information in the iDynoMiCS tutorial. Please ensure that you have
studied the iDynoMiCS tutorial, and understand the simulation output format descriptors, before
going through the tutorial for iDynoR. Also note that this tutorial assumes that you have some
experience in using the R statistical analysis package.

2. Prerequisites

* The R statistical environment, version 2.13.1 or later.

* The iDyno R package, downloaded from the Comprehensive R Archive Network (CRAN)
or from idynomics.org

e The XML and vegan R packages, available for download from CRAN.

» Tutorial example simulation results, available from the project website, or within the
package



3. Installing iDynoR

There are two ways to install the iDynoR package into your R environment. For both methods, you
should ensure that you have installed the vegan and XML R packages first:

3.1. Easiest Way: From the CRAN repository

Open the R environment (Linux/Mac: in the terminal, type R in most cases; Windows: Open from
Programs menu). Enter the following at the prompt:

install.packages("iDynoR")

Or, to install to a specific directory, type the following:

install.packages("iDynoR",lib="/path/to/directory")

3.2. Download from the iDynoMiCS Website and Install From Source
Download the package from the iDynoMiCS website. Then:

Linux/Mac:

Open a terminal window and navigate to the directory where the iDynoR.tar.gz file has been saved.
To install in the R default directory, type the following:

R CMD INSTALL iDynoR.tar.gz

To install to a specific directory, type the following:
R CMD INSTALL iDynoR.tar.gz -1 /path/to/directory/

Windows:
Open the R environment, and type:

install.packages(“[path to where you downloaded iDynoR]")

4. The Example Simulation Results

In this tutorial, we will work with simulation results generated from one of the example protocol
files: multi_species_multi_substrate_nitification_2D.xml. You should have a read through the
protocol file so you understand the simulation setup. You can either run this simulation yourself,
download the example results set from the iDynoMiCS website, or unzip them from the inst/extdata
folder of the iDynoR package itself. If you run the simulation yourself, you may get differing results
to those that you see in this tutorial.



Whether you run the simulation yourself or download the example set, extract the agent_State.zip,
agent_Sum.zip, env_State.zip, and env_Sum.zip files. There is no need to change the name of the
extracted folders. Your results folder should look like that observed in Figure 1.

multi_species_multi_substrate_nitrification_2D(20140113_0928)

ox workspace iDyno_Current iDynoMiCS results examples ~multi_species_m...(20140113_0928) Q = #| v 3

) = ) wd o e o wd )

agent_state agent_Statezip  agent_StateDeath agent_sum agent_sum.zip agent_SumDeath  agent_SumDeath env_State env_Statezip
zip zi

env_sum.zip lastiter logo.txt multi_species_ povray.zip

Figure 1:
iDynoMiCS Results folder structure, with the relevant zip folders extracted

5. Reading in Result File Data

During the course of a simulation, iDynoMiCS will save output files describing the current agent
states. These output files will be written at the interval specified by the outputPeriod parameter in
the simulator mark-up of the protocol file. In each file name, the character in brackets represents the
iteration number at which the file was written. These files are known as agent_state, agent_sum,
env_state, and env_sum files: a detailed description of each can be found in the iDynoMiCS tutorial
available from iDynoMiCS.org. This method reads an XML file into R, returning this as a structure
that can then be accessed by the other methods within this package. Thus, this method is one of the
key methods that you will use if you are utilising this package to analyse simulation results. This
method works with all the four files specified above. Note that to use this method, you should
extract the ZIP files produced by iDynoMiCS before running this method.

In this example, we are going to read in the agent_State file at iteration 40 of this simulation run. To
do this, enter the following at the R prompt. The [resultFolder] is the full path to the
simulation result folder structure, as seen in Figure 1. If you are using the example data downloaded
from the iDynoMiCS website, this will be the full path where you saved that folder. Note that the
directory separator in R is always a forward slash “/”, and not a backslash as used in
Windows.

library(iDynoR)
result40<-readSimResultFile(”[resultFolder]"”, "“agent State”, 40)

where “agent_State” is the type of file being analysed, and 40 is the timepoint.

This stores the result in the data frame result40. In the following methods, we will process data
contained in this data frame.

When reading in other types of result file, simply replace “agent_State” with either “agent_Sum”,
“env_State”, or “env_Sum”.



6. Reading Data From Agent State and Agent Sum Files

The agent_State and agent_Sum files describe the state of the agents in the system; the agent_State
file describes each agent in detail, while the agent_Sum file summarizes the agents on the species
level. This section describes methods that can be utilised to extract data from an agent_state or
agent_sum file for processing using statistical methods. This provides basic functionality to extract
the data they need, then analysis scripts that utilise this data can be written accordingly.

In this example, we are going to extract information from the agent state file at iteration 40. Follow
the steps below to read this result data into R. Note that lines that begin # are comments, and for
explanation purposes, and thus do not need to be copied into the R terminal. Again, the
[resultFolder] is the full path to the simulation result folder structure, as seen in Figure 1.

# Read in the simulation result file
result40<-readSimResultFile(” [resultFolder]”,"agent_ State",40)

# Get the simulation iteration that produced this result
iteration<-agent_ returnSimIteration(result40)

# Get the simulation time represented by this result (i.e. hours)
time<-agent returnSimTime(result40)

# Get the domain information (size and resolution)
res<-agent returnGridResolution(result40)
i<-agent_returnIVoxels(result40)
j<-agent_returnJVoxels(result40)

k<-agent returnKVoxels(result40)

# Get all the species information from the file
allsSpecies<-agent returnSpeciesResultData(result40)

# Get the number of species in this simulation
numSpecies<-agent returnNumSpecies(allSpecies)

# Total the biomass column for each individual of a species

#(for example, MyAutotrophs)

biomassTotal<-agent returnSpeciesColumnTotal(allSpecies, "MyAutotrophs",
"biomass")

In addition to agent_State files, the methods above also work for retrieving information from the
agent_Sum result files.



7. Example Methods for Processing Agent Information

The previous section detailed methods that have been provided for extracting information from an
agent_state or agent_sum file. This section describes exemplar methods that have been provided to
show how this data could be processed. Remember however that this package has been provided to
enable you to access simulation data in R, and we hope that you will be able to build on these
methods that we provide. Note that these methods read in the agent_state or agent_sum files, thus
there is no need to independently read in the simulation file before running these methods.

Type the following commands into R (ignoring the comment lines that begin with the # character).
Again, the [resultFolder] is the full path to the simulation result folder structure, as seen in
Figure 1. In addition, [graphFolder] is the full path to a folder where any graph output should be
saved.

# Get a data frame containing the biomass of species MyAutotrophs over

# time, for all 720 timepoints, specifying that the output period was 20
totalBiomass<-agent getMeasureOverTime("[resultFolder]”,"agent_ State",
720, 20, "MyAutotrophs", "biomass")

# Plot all the agent positions in the simulation at the 260th timestep
# Graph saved as “agent Plot 260.pdf” in the folder specified
plotAgents (" [resultFolder]", 260, *“[graphFolder]")

Example Output for plotAgents:

MyAutotrophs
MyHeterotroph

MySwitchHeterotroph

250
|

200
|

150
|

x [Microns]

50
1

y [Microns]

# Get the abundance of each species throughout the simulation
# (720 timepoints, output period of 20)
speciesAbundance<-getSpeciesSpecificAbundance(" [resultFolder]", 720, 20)

# Plot the abundance of each species (720 timepoints, output period: 20)
# Graph saved as “By_ Species Abundance.pdf” in folder specified
plotTimeCourseAgents (" [resultFolder]"”, 720, 20, *“[graphFolder]")



Example Output for plotTimeCourseAgents:
Individual abundances per species

800

— MyAutotrophs
--  MyHeterotroph
MySwitchHeterotroph

600 —

400

Species Abundance

200 —

Time Course

# Produce a diversity plot of this information, and store the data shown
# (720 timepoints, output period of 20)

# Graph saved as “Species Diversity Simpson.pdf” in the folder specified
simpsonData<-simpsonIndex (" [resultFolder]", 720, 20, “[graphFolder]")

Example Output for simpsonData:

Species diversity

Species diversity (Simpson)

Time course

# Get the total abundance of individuals throughout the simulation
# (720 timepoints, output period of 20)
totalAbundance<-getSpeciesAbundance(" [resultFolder]", 720, 20)

# Plot the total abundance (720 timepoints, output period of 20)
# Graph is saved as “Total Abundance.pdf” in the folder specified
plotTimeCourseAbund (" [resultFolder]", 720, 20, *“[graphFolder]")

Example Output for plotTimeCourseAbund:

Total Abundances

Total Abundance

P

T T T T
0 10 20 30

Time Course



8. Reading Solute State (env_State) and Solute Sum (env_Sum)
Files

The env_State and env_Sum files describe, respectively, the overall state of the solute fields and a
more summarized version. This section describes methods that can be utilised to extract data from
an env_state or env_sum file for processing using statistical methods. This provides basic
functionality to extract the data, from which addititonal analysis scripts can be created.

In this example, we are going to extract information from the env_state file at iteration 40. Follow
the steps below to read this result data into R. Again, lines that begin # are comments, and for
explanation purposes, and thus do not need to be copied into the R terminal. The
[resultFolder] is the full path to the simulation result folder structure, as seen in Figure 1.

# Read in the env_State simulation result file, at iteration 40
simResponse<-readSimResultFile(" [resultFolder]","env_State”,40)

# Get the simulation iteration that produced this file
iteration<-env_returnSimIteration(simResponse)

# Get the simulation time represented by this result (i.e. hours)
time<-env_returnSimTime (simResponse)

# Get the grid information for a given solute. In this example data,
# the first solute is 02d, represented by the number “1”
res<-env_returnSoluteGridRes (simResponse, 1)
i<-env_returnSoluteGridIVoxels(simResponse, 1)
j<-env_returnSoluteGridJVoxels(simResponse, 1)
k<-env_returnSoluteGridKVoxels(simResponse,l)

# Get the biofilm thickness information from the file
meanThick<-env_returnMeanBiofilmThickness (simResponse)
maxThick<-env_returnMaxBiofilmThickness (simResponse)
stdDevThick<-env_returnStdDevBiofilmThickness(simResponse)

# Get the solute grid information for a particular solute, such as o2d.
# In this example data set, o02d is the first solute
02dGrid<-env_returnSpecifiedSoluteData(simResponse, 1)

In addition to env_State files, the above methods above also work for retrieving information from
the env_Sum result files.

The following are env_Sum file specific, and are used to obtain information from the file
concerning production and consumption.

# Get the global production and consumption rates of solutes at this
# timepoint
gpr<-env_returnGlobalProductionRates (simResponse)

# Get the concentration and rate change of solutes, at this timepoint
c_rc<-env_returnConcentrationAndRateChange(simResponse)



9. Example Methods for Processing Solute Information

The previous section detailed methods that have been provided for extracting information from an
env_State or env_Sum file. This section describes exemplar methods that have been provided to
show how this data can be processed. Remember however that this package has been provided to
enable you to access simulation data in R, and we hope that you will be able to build on these
methods that we provide. Note that these methods read in the env_State or env_Sum files, thus there
is no need to independently read in the simulation file before running these methods.

Type the following commands into R (ignoring the comment lines that begin with the # character).
Again, the [resultFolder] is the full path to the simulation result folder structure, as seen in
Figure 1. In addition, [graphFolder] is the full path to a folder where any graph output should be
saved.

# Track the production rate of o02d (solute 1) over time,

# for 720 timepoints, with an output period of 20

o2dProduction<-

env_soluteProductionRateOverTime(" [resultFolder]","env_Sum", 720, 20, 1)

# Plot the contour for o2d (1) at timepoint 40

# This will be saved as “Contour_Solute_ 1 Iteration 40.pdf” in folder
# specified

plotContour (" [resultFolder]", 40, 1,”[graphFolder]")

Example Output for plotContour:

— 0.01000

— 0.00995]

— 0.00990)

— 0.00985

— 0.00980)

— 0.00975

— 0.00970

— 0.00965|




	1. Introduction
	2. Prerequisites
	3. Installing iDynoR
	3.1. Easiest Way: From the CRAN repository
	3.2. Download from the iDynoMiCS Website and Install From Source

	4. The Example Simulation Results
	5. Reading in Result File Data
	6. Reading Data From Agent State and Agent Sum Files
	7. Example Methods for Processing Agent Information
	8. Reading Solute State (env_State) and Solute Sum (env_Sum) Files
	9. Example Methods for Processing Solute Information

