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1 Introduction

KDETrees is a tool for finding discordant phylogenetic trees. It takes as input
a collection of trees (as a ape::multiPhylo object), and produces a score for
each tree. High scores mean the tree is relatively similar to other trees in the
sample, while low scores indicate that the tree in question may be discordant
with the others. Low scoring trees are identified as putative outliers, and their
contribution to the score calculation is removed. The result object contains
scores for each tree, and a list of the putative outlier trees. If you use the
program in your research, please cite our paper:

G. Weyenberg, P. Huggins, C. Schardl, D.K. Howe, and R. Yoshida.
kdetrees: Nonparametric estimation of phylogenetic tree distribu-
tions. Bioinformatics, 2014.

2 Using kdetrees

The simplest method of using the software is the kdetrees.complete function.
This is a convienence function which will do all the steps of the analysis at once:
importing trees from file, performing the analysis, and producing output files.
Basic use is to simply pass it the filename of a Newick file containing the trees to
be analyzed. It will write several result files to the R working directory (getwd).

The call below assumes there is a file containing newick formatted trees
named trees.tre in the current working directory. It will write out 4 files:
outliers.tre a newick file containing only the trees identified as outliers; re-
sults.csv a csv files with the density estimates; plot.png and hist.png are
diagnostic images. The names of these output files can be customized with
futher arguments to kdetrees.complete.

> kdetrees.complete("trees.tre")

The kdetrees.complete function also accepts any of the parameters ac-
cepted by the kdetrees function, as described in Sections 2.2 and 3.
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2.1 Importing Trees

Trees may be imported using any of the methods provided by the ape package.
(See ?read.tree and ?read.nexus for examples.) In the following examples,
many functions are a part of the ape package, and it is recommended that you
import it. For example, to load the example apicomplexa dataset, I placed the
Newick tree strings into a file named apicompexa.tre file and ran the com-
mands:

> library(ape)

> apicomplexa <- read.tree("apicomplexa.tre")

NB: The apicomplexa dataset is already included in the kdetrees package as
example data, you do not need to import it. This is purely an example showing
how to import your own trees.

2.2 Running kdetrees

The simplest way to run kdetrees is to call the function of the same name,
with the list of trees as the first argument.

> result <- kdetrees(apicomplexa)

> result

Call: kdetrees(trees = apicomplexa)

Density estimates:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.9963 65.8700 82.6400 77.3000 94.4900 114.5000

Cutoff: 22.92261

Outliers detected:

[1] 488.tre 497.tre 515.tre 546.tre 547.tre 641.tre 660.tre

[8] 662.tre 728.tre 747.tre 773.tre 780.tre

There are 3 main settings which control the method used in the analysis:
the outlier detection tuning parameter (k), the distance computation method
(distance), and whether or not to include branch length information in the dis-
tance calculation (topo.only). The default options are distance="geodesic",
topo.only=FALSE, and k=1.5.

For example, this call uses topology-based dissimilarity map distance.

> kdetrees(apicomplexa, k=1.25, distance="diss", topo.only=TRUE)

One can plot or hist the result object to create diagnostic plots. The plot

and hist methods use the ggplot2 package, not base graphics, thus you can
modify them as you see fit. See Figure 1 for example plots.
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> plot(result)
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> hist(result)
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Figure 1: Diagnostic plots can be created with plot and hist.
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2.3 Results

The result object is a list with three components, as well as several attributes
that are used internally. The first element, density, has the computed score
for each tree in the input list. This is the variable displayed in the diagnostic
plots. The second element, i, contains the indices of the low scoring trees which
were not included in the calculations. Finally, the outliers element contains
the trees which were identified as outliers.

One might then wish to look at a plot of the putative outlier trees. Here I plot
the lowest scoring tree in the apicomplexa dataset. It appears that something
bad happened during the reconstruction of this tree, causing one branch to be
much longer than the others.

> plot(result$outliers[[1]])
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Figure 2: A plot of an outlying tree.

An as.data.frame method is provided for the result object, which can be
used to export the results using the standard R methods. (Such as write.csv.)
The list of outlier trees can be exported using ape::write.tree

> write.tree(result$outliers,file="outliers.tre")

> result.df <- as.data.frame(result)

> write.csv(result.df, file="scores.csv")

3 Advanced Options

3.1 Distance Methods

There are currently two methods implemented for the distance option in kde-

trees: The "geodesic" method, based on work by Billera et al. [2001], as well
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as that of Owen and Provan [2011]; and the "dissimilarity" map method,
which utilizes pairwise tip-to-top distances.

Each of these distances can use either branch lengths supplied by the in-
put trees, topo.only=FALSE, or the branch lengths can be ignored by setting
topo.only=TRUE.

3.2 Bandwidth Selection

Currently, kdetrees uses an adaptive bandwidth method based on a nearest-
neighbor calculation by default. It is possible to control the number of trees
used to define the neighborhood, or disable the adaptive method entirely and
provide a constant bandwidth, using the bw parameter.

If the bw parameter is supplied a list, the list is used as a set of parameters
for a call to bw.nn. Currently, the only interesting setting that may be passed
in this way is prop, which controls the proportion of the set of trees used to
define the neighborhoods. For example, to change the neighborhood to include
50% of the sample we pass the following option.

> kdetrees(apicomplexa, bw=list(prop=0.5))

If bw is set to a single number, a constant bandwidth is used.

> kdetrees(apicomplexa, bw=6)

If bw is a vector, the values are used as bandwidths for the corresponding trees
in the sample, possibly recycling the values if needed.

3.3 Command Line Interface

CLI use can be achieved by using the Rscript executable included with R. For
example, this CLI command replicates the first example call in Section 2.

$ Rscript -e 'library(kdetrees); kdetrees.complete("trees.tre")'

The desired R commands can also be placed into a R script file (e.g. myscript.R),
and run using

$ Rscript myscript.R
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