Multichannel Wavelet Deconvolution with Additive Long Memory Noise


[Up] [Top]

Documentation for package ‘mwaved’ version 1.1.8

Help Pages

blurSignal Blur an input signal
boxcarBlur Multichannel box car blur
detectBlur Detect type of blur
directBlur Direct kernel matrix
gammaBlur Multichannel Gamma density blur
makeBlocks Generate test signals for simulation
makeBumps Generate test signals for simulation
makeCusp Generate test signals for simulation
makeDoppler Generate test signals for simulation
makeHeaviSine Generate test signals for simulation
makeLIDAR Generate test signals for simulation
makeSignals Generate test signals for simulation
multiCoef Wavelet coefficient estimation from a multichannel signal
multiEstimate Wavelet deconvolution signal estimate from the noisy multichannel convoluted signal
multiNoise Generate multichannel noise
multiProj Meyer wavelet projection given a set of wavelet coefficients
multiSigma Noise level estimation among multichannel signal
multiThresh Resolution level thresholds for hard thresholded wavelet deconvolution estimator
multiWaveD Full mWaveD analysis
mwaved Multichannel wavelet deconvolution with long memory using mwaved.
mWaveDDemo Interactive Demonstration
plot.mWaveD Plot Output for the mWaveD object
plot.waveletCoef Multi-Resolution Analysis plot of wavelet coefficients
resolutionMethod Select appropriate resolution method for blur type
sigmaSNR Determine noise scale levels from specified *S*ignal to *N*oise *R*atios
summary.mWaveD Summary Output for the mWaveD object
theoreticalEta Find optimal theoretical Eta
waveletThresh Apply thresholding regime to a set of wavelet coefficients