Penalized Multivariate Analysis


[Up] [Top]

Documentation for package ‘PMA2’ version 2.1

Help Pages

PMA-package Penalized Multivariate Analysis
breastdata Breast cancer gene expression + DNA copy number data set from Chin et. al. and used in Witten, et. al. See references below.
CCA Perform sparse canonical correlation analysis using the penalized matrix decomposition.
CCA.permute Select tuning parameters for sparse canonical correlation analysis using the penalized matrix decomposition.
MultiCCA Perform sparse multiple canonical correlation analysis.
MultiCCA.permute Select tuning parameters for sparse multiple canonical correlation analysis using the penalized matrix decomposition.
plot.MultiCCA.permute Select tuning parameters for sparse multiple canonical correlation analysis using the penalized matrix decomposition.
plot.SPC.cv Perform cross-validation on sparse principal component analysis
PlotCGH Plot CGH data
PMA Penalized Multivariate Analysis
PMD Get a penalized matrix decomposition for a data matrix.
PMD.cv Do tuning parameter selection for PMD via cross-validation
print.CCA Perform sparse canonical correlation analysis using the penalized matrix decomposition.
print.MultiCCA Perform sparse multiple canonical correlation analysis.
print.MultiCCA.permute Select tuning parameters for sparse multiple canonical correlation analysis using the penalized matrix decomposition.
print.SPC Perform sparse principal component analysis
print.SPC.cv Perform cross-validation on sparse principal component analysis
SPC Perform sparse principal component analysis
SPC.cv Perform cross-validation on sparse principal component analysis